WorldWideScience

Sample records for warming potentials part

  1. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Global Warming Potentials A Table A-1 to Subpart A of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... A-1 to Subpart A of Part 98—Global Warming Potentials Name CAS No. Chemical formula Global warming...

  2. Global warming potential impact of bioenergy systems

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, L.; Wenzel, H.

    environmental consequences related to land use changes. In this study the global warming potential impact associated with six alternative bioenergy systems based on willow and Miscanthus was assessed by means of life-cycle assessment. The results showed that bioenergy production may generate higher global...... warming impacts than the reference fossil fuel system, when the impacts from indirect land use changes are accounted for. In a life-cycle perspective, only highly-efficient co-firing with fossil fuel achieved a (modest) GHG emission reduction....

  3. Global warming potential impact of bioenergy systems

    Directory of Open Access Journals (Sweden)

    Wenzel H.

    2012-10-01

    Full Text Available Reducing dependence on fossil fuels and mitigation of GHG emissions is a main focus in the energy strategy of many Countries. In the case of Demark, for instance, the long-term target of the energy policy is to reach 100% renewable energy system. This can be achieved by drastic reduction of the energy demand, optimization of production/distribution and substitution of fossil fuels with biomasses. However, a large increase in biomass consumption will finally induce conversion of arable and currently cultivated land into fields dedicated to energy crops production determining significant environmental consequences related to land use changes. In this study the global warming potential impact associated with six alternative bioenergy systems based on willow and Miscanthus was assessed by means of life-cycle assessment. The results showed that bioenergy production may generate higher global warming impacts than the reference fossil fuel system, when the impacts from indirect land use changes are accounted for. In a life-cycle perspective, only highly-efficient co-firing with fossil fuel achieved a (modest GHG emission reduction.

  4. Halocarbon ozone depletion and global warming potentials

    Science.gov (United States)

    Cox, Richard A.; Wuebbles, D.; Atkinson, R.; Connell, Peter S.; Dorn, H. P.; Derudder, A.; Derwent, Richard G.; Fehsenfeld, F. C.; Fisher, D.; Isaksen, Ivar S. A.

    1990-01-01

    Concern over the global environmental consequences of fully halogenated chlorofluorocarbons (CFCs) has created a need to determine the potential impacts of other halogenated organic compounds on stratospheric ozone and climate. The CFCs, which do not contain an H atom, are not oxidized or photolyzed in the troposphere. These compounds are transported into the stratosphere where they decompose and can lead to chlorine catalyzed ozone depletion. The hydrochlorofluorocarbons (HCFCs or HFCs), in particular those proposed as substitutes for CFCs, contain at least one hydrogen atom in the molecule, which confers on these compounds a much greater sensitivity toward oxidation by hydroxyl radicals in the troposphere, resulting in much shorter atmospheric lifetimes than CFCs, and consequently lower potential for depleting ozone. The available information is reviewed which relates to the lifetime of these compounds (HCFCs and HFCs) in the troposphere, and up-to-date assessments are reported of the potential relative effects of CFCs, HCFCs, HFCs, and halons on stratospheric ozone and global climate (through 'greenhouse' global warming).

  5. 40 CFR Appendix I to Subpart A of... - Global Warming Potentials (Mass Basis), Referenced to the Absolute GWP for the Adopted Carbon...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Global Warming Potentials (Mass Basis..., App. I Appendix I to Subpart A of Part 82—Global Warming Potentials (Mass Basis), Referenced to the... formula Global warming potential (time horizon) 20 years 100 years 500 years CFC-11 CFCl3 5000 4000 1400...

  6. Net global warming potential and greenhouse gas intensity

    Science.gov (United States)

    Various methods exist to calculate global warming potential (GWP) and greenhouse gas intensity (GHG) as measures of net greenhouse gas (GHG) emissions from agroecosystems. Little is, however, known about net GWP and GHGI that account for all sources and sinks of GHG emissions. Sources of GHG include...

  7. Recent decrease in typhoon destructive potential and global warming implications

    Science.gov (United States)

    Lin, I.-I.; Chan, Johnny C. L.

    2015-05-01

    Typhoons (tropical cyclones) severely impact the half-billion population of the Asian Pacific. Intriguingly, during the recent decade, typhoon destructive potential (Power Dissipation Index, PDI) has decreased considerably (by ~35%). This decrease, paradoxically, has occurred despite the increase in typhoon intensity and ocean warming. Using the method proposed by Emanuel (in 2007), we show that the stronger negative contributions from typhoon frequency and duration, decrease to cancel the positive contribution from the increasing intensity, controlling the PDI. Examining the typhoons' environmental conditions, we find that although the ocean condition became more favourable (warming) in the recent decade, the atmospheric condition `worsened' at the same time. The `worsened' atmospheric condition appears to effectively overpower the `better' ocean conditions to suppress PDI. This stronger negative contribution from reduced typhoon frequency over the increased intensity is also present under the global warming scenario, based on analysis of the simulated typhoon data from high-resolution modelling.

  8. Global warming potentials; Part 7 of 7 supporting documents. Sector-specific issues and reporting methodologies supporting the general guidelines for voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992; Public review draft

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-31

    This document provides methods to account for the different effects of different gases on the atmosphere. It discusses the rationale and uses for simplified measures to represent human-related effects on climate and provides a brief introduction to a major index, the global warming potential (GWP) index. Appendix 7.A analyzes the science underlying the development of indices for concerns about climate, which is still evolving, evaluates the usefulness of currently available indices, and presents the state of the art for numerical indices and their uncertainties. For concerns about climate, the Intergovernmental Panel on Climate Change (IPCC) has been instrumental in examining relative indices for comparing the radiative influences of greenhouse gases. The IPCC developed the concept of GWPs to provide a simple representation of the relative effects on climate resulting from a unit mass emission of a greenhouse gas. Alternative measures and variations on the definition of GWPs have also been considered and reported.

  9. Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential

    Data.gov (United States)

    U.S. Environmental Protection Agency — The set of commercially available chemical substances in commerce that may have significant global warming potential (GWP) is not well defined. Although there are...

  10. Energy Saving Potential by Utilizing Natural Ventilation under Warm Conditions

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg

    2014-01-01

    The objective of this article is to show the potential of natural ventilation as a passive cooling method within the residential sector of countries which are located in warm conditions using Mexico as a case study. The method is proposed as performing, with a simplified ventilation model, thermal......, corresponding to 54.4% of the Mexican electric cooling demand for the same year. The practical implications of the study are that the results contribute to an assessment of the economic and environmental benefits for using natural ventilation rather than an active method such as air conditioning. Thereby...

  11. Global warming and prairie wetlands: potential consequences for waterfowl habitat

    Science.gov (United States)

    Poiani, Karen A.; Johnson, W. Carter

    1991-01-01

    precipitation and runoff from melting snow on frozen or saturated soils (Figure 2). Annual water levels fluctuate widely due to climate variability in the Great Plains (Borchert 1950, Kantrud et al. 1989b). Climate affects the quality of habitat for breeding waterfowl by controlling regional water conditions--water depth, areal extent, and length of wet/dry cycles (Cowardin et al. 1988)--and vegetation patterns such as the cover ration (the ratio of emergent plant cover to open water). With increased levels of atmospheric carbon dioxide, climate models project warmer and, in some cases, drier conditions for the northern Great Plains (Karl et al. 1991, Manabe and Wetherald 1986, Mitchell 1983, Rind and Lebedeff 1984). In general, a warmer, drier climate could lower waterfowl production directly by increasing the frequency of dry basins and indirectly by producing less favorable cover rations (i.e., heavy emergent cover with few or no open-water areas). The possibility of diminished waterfowl production in a greenhouse climate comes at a time when waterfowl numbers have sharply declined for other reasons (Johnson and Shaffer 1987). Breeding habitat continues to be lost or altered by agriculture, grazing, burning, mowing, sedimentation, and drainage (Kantrud et al. 1989b). For example, it has been estimated that 60% of the wetland area in North Dakota has been drained (Tiner 1984). Pesticides entering wetlands from adjacent agricultural fields have been destructive to aquatic invertebrate populations and have significantly lowered duckling survival (Grue et al. 1988). In this article, we discuss current understanding and projections of global warming; review wetland vegetation dynamics to establish the strong relationship among climate, wetland hydrology, vegetation patterns, and waterflow habitat; discuss the potential effects of a greenhouse warming on these relationships; and illustrate the potential effects of climate change on wetland habitat by using a simulation model. The

  12. Indirect Global Warming Potentials of Halons Using Atmospheric Models

    Science.gov (United States)

    Youn, D.; Patten, K. O.; Wuebbles, D. J.

    2007-05-01

    Emission of bromochlorofluorocarbons, or Halons, results in stratospheric ozone depletion. This leads to cooling of the climate system in the opposite direction to direct warming contribution of the Halons as greenhouse gases. This cooling is a key indirect effect of Halons on radiative forcing or climate. The Global Warming Potential (GWP) is a relative index used to compare the climate impact of an emitted greenhouse gas, relative to an equal amount of carbon dioxide. Until now, indirect GWPs have been calculated based on the concept of Equivalent Effective Stratospheric Chlorine (EESC), which oversimplifies the complex processes in the atmosphere. As a step towards obtaining indirect GWPs through a more robust approach, 2-D and 3-D global chemical transport models (CTM) were used as the computational tool to derive more realistic ozone changes caused by pulse perturbation of Halons at the surface. Indirect GWPs of Halon-1211 and -1301 for a 100-year time horizon were explicitly calculated based on the University of Illinois at Urbana-Champaign (UIUC) 2-D global CTM and radiative transport model (RTM) and the 3-D CTM, MOZART-3.1. The 2-D and 3-D model simulations show acceptable temporal variations in the atmosphere as well as derived lifetimes and direct GWP values of the Halons. The 2-D model-based indirect GWPs for a 100-year horizon are -16,294 for Halon-1211 and -33,648 for Halon-1301. 3-D indirect GWP for Halon-1211 is -18,216. The indirect GWPs for Halon-1211 presented here are much smaller than previous published results using the previous simplified appraoch.

  13. Areas of potential suitability and survival of Dendroctonus valens in China under extreme climate warming scenario.

    Science.gov (United States)

    He, S Y; Ge, X Z; Wang, T; Wen, J B; Zong, S X

    2015-08-01

    The areas in China with climates suitable for the potential distribution of the pest species red turpentine beetle (RTB) Dendroctonus valens LeConte (Coleoptera: Scolytidae) were predicted by CLIMEX based on historical climate data and future climate data with warming estimated. The model used a historical climate data set (1971-2000) and a simulated climate data set (2010-2039) provided by the Tyndall Centre for Climate Change (TYN SC 2.0). Based on the historical climate data, a wide area was available in China with a suitable climate for the beetle in which every province might contain suitable habitats for this pest, particularly all of the southern provinces. The northern limit of the distribution of the beetle was predicted to reach Yakeshi and Elunchun in Inner Mongolia, and the western boundary would reach to Keerkezi in Xinjiang Province. Based on a global-warming scenario, the area with a potential climate suited to RTB in the next 30 years (2010-2039) may extend further to the northeast. The northern limit of the distribution could reach most parts of south Heilongjiang Province, whereas the western limit would remain unchanged. Combined with the tendency for RTB to spread, the variation in suitable habitats within the scenario of extreme climate warming and the multiple geographical elements of China led us to assume that, within the next 30 years, RTB would spread towards the northeast, northwest, and central regions of China and could be a potentially serious problem for the forests of China.

  14. Dynamics of Warm Chaplygin Gas Inflationary Models With Quartic Potential

    CERN Document Server

    Jawad, Abdul; Rani, Shamaila

    2016-01-01

    Warm inflationary universe models in the context of generalized chaplygin gas, modified chaplygin gas, generalized cosmic chaplygin gas are being studied. The dissipative coefficient of the form $\\Gamma\\propto T$, weak and strong dissipative regimes are being considered. We use quartic potential $\\frac{\\lambda_{*}\\phi^{4}}{4}$, which is ruled out by current data in cold inflation but in our models it is analyzed that it is in agreement with the WMAP$9$ and latest Planck data. In these scenarios, the power spectrum, spectral index, and tensor to scalar ratio are being examined under the slow roll approximation. We show the dependence of tensor scalar ratio $r$ on spectral index $n_{s}$ and observe that the range of tensor scalar ratio is $r<0.05$ in generalized chaplygin gas, $r<0.15$ in modified chaplygin gas, and $r<0.12$ in generalized cosmic chaplygin gas models. Our results are in agreement with recent observational data like WMAP$9$ and latest Planck data.

  15. Comparing the Life Cycle Energy Consumption, Global Warming and Eutrophication Potentials of Several Water and Waste Service Options

    Science.gov (United States)

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG...

  16. Low Global Warming Potential Refrigerants for Commercial Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sharma, Vishaldeep [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Environmental concerns are driving regulations for the heating, ventilating, air-conditioning and refrigeration (HVAC&R) industry towards lower GWP alternatives to HFC refrigerants. Existing lower GWP refrigerant alternatives include hydrocarbons, such as propane (R-290) and isobutane (R-600a), as well as carbon dioxide (R-744), ammonia (R-717), and R-32. In addition, new lower GWP refrigerant alternatives are currently being developed by refrigerant manufacturers, including hydrofluoro-olefin (HFO) and unsaturated hydrochlorofluorocarbon (HCFO) refrigerants. The selection of an appropriate refrigerant for a given refrigeration application should be based on several factors, including the GWP of the refrigerant, the energy consumption of the refrigeration system over its operating lifetime, and leakage of refrigerant over the system lifetime. For example, focusing on energy efficiency alone may overlook the significant environmental impact of refrigerant leakage; while focusing on GWP alone might result in lower efficiency systems that result in higher indirect impact over the equipment lifetime. Thus, the objective of this Collaborative Research and Development Agreement (CRADA) between

  17. Nitrogen Fertilization Effect on Phosphorus Remediation Potential of Three Perennial Warm-Season Forages

    NARCIS (Netherlands)

    Newman, Y.C.; Agyin-Birikorang, S.; Adjei, M.B.; Scholberg, J.M.S.; Silveira, M.L.; Vendramini, J.M.B.; Rechcigl, J.E.; Sollenberger, L.E.

    2009-01-01

    Warm-season C-4 grasses are capable of removing excess soil nutrients because of their high Yield potential and nutrient uptake efficiency. Bahiagrass (Paspalum notatum Flugge), limpograss [Hemarthria altissima (Poir.) Stapf& Hubb], and stargrass (Cynodon nlemfuensis Vanderyst), three commonly

  18. Global Warming Potential Of A Waste Refinery Using Enzymatic Treatment

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2010-01-01

    and fossil resources. This is especially important with respect to the residual waste (i.e. the remains after source-separation and separate collection) which is typically incinerated or landfilled. In this paper the energy and Global Warming performance of a pilot-scale waste refinery for the enzymatic......Decrease of fossil fuel dependence and resource saving has become increasingly important during the last years. In this perspective, higher recycling rates for valuable materials as well as energy recovery from waste streams could play a significant role substituting for virgin material production...... treatment of municipal solid waste (MSW) was presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the utilization of the two outputs were analyzed. Co-combustion in existing power...

  19. Do mitigation strategies reduce global warming potential in the northern U.S. corn belt?

    Science.gov (United States)

    Johnson, Jane M-F; Archer, David W; Weyers, Sharon L; Barbour, Nancy W

    2011-01-01

    Agricultural management practices that enhance C sequestration, reduce greenhouse gas emission (nitrous oxide [N₂O], methane [CH₄], and carbon dioxide [CO₂]), and promote productivity are needed to mitigate global warming without sacrificing food production. The objectives of the study were to compare productivity, greenhouse gas emission, and change in soil C over time and to assess whether global warming potential and global warming potential per unit biomass produced were reduced through combined mitigation strategies when implemented in the northern U.S. Corn Belt. The systems compared were (i) business as usual (BAU); (ii) maximum C sequestration (MAXC); and (iii) optimum greenhouse gas benefit (OGGB). Biomass production, greenhouse gas flux change in total and organic soil C, and global warming potential were compared among the three systems. Soil organic C accumulated only in the surface 0 to 5 cm. Three-year average emission of N₂O and CH was similar among all management systems. When integrated from planting to planting, N₂O emission was similar for MAXC and OGGB systems, although only MAXC was fertilized. Overall, the three systems had similar global warming potential based on 4-yr changes in soil organic C, but average rotation biomass was less in the OGGB systems. Global warming potential per dry crop yield was the least for the MAXC system and the most for OGGB system. This suggests management practices designed to reduce global warming potential can be achieved without a loss of productivity. For example, MAXC systems over time may provide sufficient soil C sequestration to offset associated greenhouse gas emission. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Potential remobilization of belowground permafrost carbon under future global warming

    Science.gov (United States)

    P. Kuhry; E. Dorrepaal; G. Hugelius; E.A.G. Schuur; C. Tarnocai

    2010-01-01

    Research on permafrost carbon has dramatically increased in the past few years. A new estimate of 1672 Pg C of belowground organic carbon in the northern circumpolar permafrost region more than doubles the previous value and highlights the potential role of permafrost carbon in the Earth System. Uncertainties in this new estimate remain due to relatively few available...

  1. Impact of Climate Warming on Passive Night Cooling Potential

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Gyalistras, D.; Manz, H.

    2008-01-01

    Night-time ventilation is often seen as a promising passive cooling concept. However, as it requires a sufficiently high temperature difference between ambient air and the building structure, this technique is highly sensitive to changes in climatic conditions. In order to quantify the impact...... the summer and to decrease by 20-55% during the spring and the autumn. The study clearly shows that night-time cooling potential will cease to be sufficient to ensure thermal comfort in many Southern and Central European buildings. In Central and Northern Europe, a significant passive cooling potential...... is likely to remain, at least for the next few decades. Upper and lower bound estimates for future CCP were found to diverge strongly in the course of the 21st century, suggesting the need for flexible building design and for risk assessments that account for a wide range of emissions scenarios...

  2. Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential.

    Science.gov (United States)

    Betowski, Don; Bevington, Charles; Allison, Thomas C

    2016-01-19

    Halogenated chemical substances are used in a broad array of applications, and new chemical substances are continually being developed and introduced into commerce. While recent research has considerably increased our understanding of the global warming potentials (GWPs) of multiple individual chemical substances, this research inevitably lags behind the development of new chemical substances. There are currently over 200 substances known to have high GWP. Evaluation of schemes to estimate radiative efficiency (RE) based on computational chemistry are useful where no measured IR spectrum is available. This study assesses the reliability of values of RE calculated using computational chemistry techniques for 235 chemical substances against the best available values. Computed vibrational frequency data is used to estimate RE values using several Pinnock-type models, and reasonable agreement with reported values is found. Significant improvement is obtained through scaling of both vibrational frequencies and intensities. The effect of varying the computational method and basis set used to calculate the frequency data is discussed. It is found that the vibrational intensities have a strong dependence on basis set and are largely responsible for differences in computed RE values.

  3. Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential

    Science.gov (United States)

    The set of commercially available chemical substances in commerce that may have significant global warming potential (GWP) is not well defined. Although there are currently over 200 chemicals with high GWP reported by the Intergovernmental Panel on Climate Change, World Meteorological Organization, or Environmental Protection Agency, there may be hundreds of additional chemicals that may also have significant GWP. Evaluation of various approaches to estimate radiative efficiency (RE) and atmospheric lifetime will help to refine GWP estimates for compounds where no measured IR spectrum is available. This study compares values of RE calculated using computational chemistry techniques for 235 chemical compounds against the best available values. It is important to assess the reliability of the underlying computational methods for computing RE to understand the sources of deviations from the best available values. Computed vibrational frequency data is used to estimate RE values using several Pinnock-type models. The values derived using these models are found to be in reasonable agreement with reported RE values (though significant improvement is obtained through scaling). The effect of varying the computational method and basis set used to calculate the frequency data is also discussed. It is found that the vibrational intensities have a strong dependence on basis set and are largely responsible for differences in computed values of RE in this study. Deviations of

  4. Potential impacts of global warming on the diversity and distribution of stream insects in South Korea.

    Science.gov (United States)

    Li, Fengqing; Kwon, Yong-Su; Bae, Mi-Jung; Chung, Namil; Kwon, Tae-Sung; Park, Young-Seuk

    2014-04-01

    Globally, the East Asian monsoon region is one of the richest environments in terms of biodiversity. The region is undergoing rapid human development, yet its river ecosystems have not been well studied. Global warming represents a major challenge to the survival of species in this region and makes it necessary to assess and reduce the potential consequences of warming on species of conservation concern. We projected the effects of global warming on stream insect (Ephemeroptera, Odonata, Plecoptera, and Trichoptera [EOPT]) diversity and predicted the changes of geographical ranges for 121 species throughout South Korea. Plecoptera was the most sensitive (decrease of 71.4% in number of species from the 2000s through the 2080s) order, whereas Odonata benefited (increase of 66.7% in number of species from the 2000s through the 2080s) from the effects of global warming. The impact of global warming on stream insects was predicted to be minimal prior to the 2060s; however, by the 2080s, species extirpation of up to 20% in the highland areas and 2% in the lowland areas were predicted. The projected responses of stream insects under global warming indicated that species occupying specific habitats could undergo major reductions in habitat. Nevertheless, habitat of 33% of EOPT (including two-thirds of Odonata and one-third of Ephemeroptera, Plecoptera, and Trichoptera) was predicted to increase due to global warming. The community compositions predicted by generalized additive models varied over this century, and a large difference in community structure in the highland areas was predicted between the 2000s and the 2080s. However, stream insect communities, especially Odonata, Plecoptera, and Trichoptera, were predicted to become more homogenous under global warming. © 2013 Society for Conservation Biology.

  5. Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role

    Science.gov (United States)

    Ruairuen, Watcharee

    2015-01-01

    As the acreages of agricultural lands increase, changes in surface energetics and evapotranspiration (ET) rates may arise consequently affecting regional climate regimes. The objective of this study was to evaluate summertime ET dynamics and surface energy processes in a subarctic agricultural farm in Interior Alaska. The study includes micrometeorological and hydrological data. Results covering the period from June to September 2012 and 2013 indicated consistent energy fractions: LE/Rnet (67%), G/Rnet (6%), H/Rnet (27%) where LE is latent heat flux, Rnet is the surface net radiation, G is ground heat flux and H is the sensible heat flux. Additionally actual surface evapotranspiration from potential evaporation was found to be in the range of 59 to 66%. After comparing these rates with those of most prominent high latitude ecosystems it is argued here that if agroecosystem in high latitudes become an emerging feature in the land-use, the regional surface energy balance will significantly shift in comparison to existing Arctic natural ecosystems. PMID:26368123

  6. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming

    Science.gov (United States)

    Gunderson, Alex R.; Stillman, Jonathon H.

    2015-01-01

    Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the ‘Bogert effect’. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures. PMID:25994676

  7. The global warming potential of two healthy Nordic diets compared with the average Danish diet

    DEFF Research Database (Denmark)

    Saxe, Henrik; Larsen, Thomas Meinert; Mogensen, Lisbeth

    2013-01-01

    into account so that the ADD contains the actual ratio of organically produced food (6.6 %) and the NND contains 80 %, the GHG emissions for the NND are only 6 % less than for the ADD. When the NND was optimised to be more climate friendly, the global warming potential of the NND was 27 % lower than...

  8. The global warming potential of building materials : An application of life cycle analysis in Nepal

    NARCIS (Netherlands)

    Bhochhibhoya, Silu; Zanetti, Michela; Pierobon, Francesca; Gatto, Paola; Maskey, Ramesh Kumar; Cavalli, Raffaele

    2017-01-01

    This paper analyzes the global-warming potential of materials used to construct the walls of 3 building types - traditional, semimodern, and modern - in Sagarmatha National Park and Buffer Zone in Nepal, using the life-cycle assessment approach. Traditional buildings use local materials, mainly wood

  9. Quantifying impacts of nitrogen use in European agriculture on global warming potential.

    NARCIS (Netherlands)

    Vries, de W.; Kros, J.; Reinds, G.J.; Butterbach-Bahl, K.

    2011-01-01

    This paper summarizes current knowledge on the impacts of changes of nitrogen (Nr) use in agriculture on the global warming potential (GWP) by its impact on carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) emissions from agricultural and terrestrial nonagricultural systems and from

  10. A Historical Perspective of Global Warming Potential from Municipal Solid Waste Management

    DEFF Research Database (Denmark)

    Habib, Komal; Schmidt, Jannick Højrup; Christensen, Per

    2013-01-01

    development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP100), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies......The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical...

  11. Potential impacts of global warming on water resources in southern California.

    Science.gov (United States)

    Beuhler, M

    2003-01-01

    Global warming will have a significant impact on water resources within the 20 to 90-year planning period of many water projects. Arid and semi-arid regions such as Southern California are especially vulnerable to anticipated negative impacts of global warming on water resources. Long-range water facility planning must consider global climate change in the recommended mix of new facilities needed to meet future water requirements. The generally accepted impacts of global warming include temperature, rising sea levels, more frequent and severe floods and droughts, and a shift from snowfall to rain. Precipitation changes are more difficult to predict. For Southern California, these impacts will be especially severe on surface water supplies. Additionally, rising sea levels will exacerbate salt-water intrusion into freshwater and impact the quality of surface water supplies. Integrated water resources planning is emerging as a tool to develop water supplies and demand management strategies that are less vulnerable to the impacts of global warming. These tools include water conservation, conjunctive use of surface and groundwater and desalination of brackish water and possibly seawater. Additionally, planning for future water needs should include explicit consideration of the potential range of global warming impacts through techniques such as scenario planning.

  12. The Global Warming Potential of Building Materials: An Application of Life Cycle Analysis in Nepal

    Directory of Open Access Journals (Sweden)

    Silu Bhochhibhoya

    2017-04-01

    Full Text Available This paper analyzes the global-warming potential of materials used to construct the walls of 3 building types—traditional, semimodern, and modern—in Sagarmatha National Park and Buffer Zone in Nepal, using the life-cycle assessment approach. Traditional buildings use local materials, mainly wood and stone, while semimodern and modern buildings use different amounts of commercial materials, such as cement and glass wool. A comparison of the greenhouse gas emissions associated with the 3 building types, using as the functional unit 1 m2 of wall, found that traditional buildings release about one-fourth of the greenhouse gas emissions released by semimodern buildings and less than one-fifth of the emissions of modern buildings. However, the use of thermal insulation in the modern building walls helps to reduce the energy consumption for space heating and consequently to reduce the global warming potential. In 25 years, the total global warming potential of a traditional building will be 20% higher than that of a modern building. If local materials, such as wood, are used in building construction, the emissions from production and transportation could be dramatically reduced.

  13. A historical perspective of Global Warming Potential from Municipal Solid Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Komal, E-mail: koh@kbm.sdu.dk [Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Niels Bohr’s Alle 1, 5230 Odense M (Denmark); Schmidt, Jannick H.; Christensen, Per [Department of Development and Planning, Aalborg University, Fibigerstraede 13, DK-9220 Aalborg OE (Denmark)

    2013-09-15

    Highlights: • Five scenarios are compared based on different waste management systems from 1970 to 2010. • Technology development for incineration and vehicular exhaust system throughout the time period is considered. • Compared scenarios show continuous improvement regarding environmental performance of waste management system. • Energy and material recovery from waste account for significant savings of Global Warming Potential (GWP) today. • Technology development for incineration has played key role in lowering the GWP during past five decades. - Abstract: The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP{sub 100}), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO{sub 2}-eq. tonne{sup −1} to net saving of 670 kg CO{sub 2}-eq. tonne{sup −1} of MSWM.

  14. Effect of static and dynamic muscle stretching as part of warm up procedures on knee joint proprioception and strength.

    Science.gov (United States)

    Walsh, Gregory S

    2017-10-01

    The importance of warm up procedures prior to athletic performance is well established. A common component of such procedures is muscle stretching. There is conflicting evidence regarding the effect of static stretching (SS) as part of warm up procedures on knee joint position sense (KJPS) and the effect of dynamic stretching (DS) on KJPS is currently unknown. The aim of this study was to determine the effect of dynamic and static stretching as part warm up procedures on KJPS and knee extension and flexion strength. This study had a randomised cross-over design and ten healthy adults (20±1years) attended 3 visits during which baseline KJPS, at target angles of 20° and 45°, and knee extension and flexion strength tests were followed by 15min of cycling and either a rest period (CON), SS, or DS and repeat KJPS and strength tests. All participants performed all conditions, one condition per visit. There were warm up×stretching type interactions for KJPS at 20° (p=0.024) and 45° (p=0.018), and knee flexion (p=0.002) and extension (pstretching is to be performed as part of a warm up, DS should be favoured over SS. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Climate change damage functions in LCA – (1) from global warming potential to natural environment damages

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Hauschild, Michael Zwicky; Bagger Jørgensen, Rikke

    Energy use often is the most significant contributor to the impact category ‘global warming’ in life cycle impact assessment. However, the potential global warming effects on the climate at regional level and consequential effects on the natural environment are not thoroughly described within LCA...... methodology. The current scientific understanding of the extent of climate change impacts is limited due to the immense complexity of the multi-factorial environmental changes and unknown adaptive capacities at process, species and ecosystem level. In the presentation we argue that the global warming impacts...... from a product system being studied in an LCA must be seen in context with the changing future background situation. This background situation is among other things affected by e.g. cumulative atmospheric greenhouse gas emissions of yet unknown magnitude. Here, we define climate change damage...

  16. Anesthetic gases and global warming: Potentials, prevention and future of anesthesia.

    Science.gov (United States)

    Gadani, Hina; Vyas, Arun

    2011-01-01

    Global warming refers to an average increase in the earth's temperature, which in turn causes changes in climate. A warmer earth may lead to changes in rainfall patterns, a rise in sea level, and a wide range of impacts on plants, wildlife, and humans. Greenhouse gases make the earth warmer by trapping energy inside the atmosphere. Greenhouse gases are any gas that absorbs infrared radiation in the atmosphere and include: water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), halogenated fluorocarbons (HCFCs), ozone (O3), perfluorinated carbons (PFCs), and hydrofluorocarbons (HFCs). Hazardous chemicals enter the air we breathe as a result of dozens of activities carried out during a typical day at a healthcare facility like processing lab samples, burning fossil fuels etc. We sometimes forget that anesthetic agents are also greenhouse gases (GHGs). Anesthetic agents used today are volatile halogenated ethers and the common carrier gas nitrous oxide known to be aggressive GHGs. With less than 5% of the total delivered halogenated anesthetic being metabolized by the patient, the vast majority of the anesthetic is routinely vented to the atmosphere through the operating room scavenging system. The global warming potential (GWP) of a halogenated anesthetic is up to 2,000 times greater than CO2. Global warming potentials are used to compare the strength of different GHGs to trap heat in the atmosphere relative to that of CO2. Here we discuss about the GWP of anesthetic gases, preventive measures to decrease the global warming effects of anesthetic gases and Xenon, a newer anesthetic gas for the future of anesthesia.

  17. Ion potential in warm dense matter: wake effects due to streaming degenerate electrons.

    Science.gov (United States)

    Moldabekov, Zhandos; Ludwig, Patrick; Bonitz, Michael; Ramazanov, Tlekkabul

    2015-02-01

    The effective dynamically screened potential of a classical ion in a stationary flowing quantum plasma at finite temperature is investigated. This is a key quantity for thermodynamics and transport of dense plasmas in the warm-dense-matter regime. This potential has been studied before within hydrodynamic approaches or based on the zero temperature Lindhard dielectric function. Here we extend the kinetic analysis by including the effects of finite temperature and of collisions based on the Mermin dielectric function. The resulting ion potential exhibits an oscillatory structure with attractive minima (wakes) and, thus, strongly deviates from the static Yukawa potential of equilibrium plasmas. This potential is analyzed in detail for high-density plasmas with values of the Brueckner parameter in the range 0.1≤r(s)≤1 for a broad range of plasma temperature and electron streaming velocity. It is shown that wake effects become weaker with increasing temperature of the electrons. Finally, we obtain the minimal electron streaming velocity for which attraction between ions occurs. This velocity turns out to be less than the electron Fermi velocity. Our results allow for reliable predictions of the strength of wake effects in nonequilibrium quantum plasmas with fast streaming electrons showing that these effects are crucial for transport under warm-dense-matter conditions, in particular for laser-matter interaction, electron-ion temperature equilibration, and stopping power.

  18. Long-Term Warming Alters Carbohydrate Degradation Potential in Temperate Forest Soils.

    Science.gov (United States)

    Pold, Grace; Billings, Andrew F; Blanchard, Jeff L; Burkhardt, Daniel B; Frey, Serita D; Melillo, Jerry M; Schnabel, Julia; van Diepen, Linda T A; DeAngelis, Kristen M

    2016-11-15

    As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world. The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of

  19. Global Warming: Understanding and Teaching the Forecast. Part A The Greenhouse Effect.

    Science.gov (United States)

    Andrews, Bill

    1993-01-01

    Provides information necessary for an interdisciplinary analysis of the greenhouse effect, enhanced greenhouse effect, global warming, global climate change, greenhouse gases, carbon dioxide, and scientific study of global warming for students grades 4-12. Several activity ideas accompany the information. (LZ)

  20. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming.

    Science.gov (United States)

    Feng, Wenting; Liang, Junyi; Hale, Lauren E; Jung, Chang Gyo; Chen, Ji; Zhou, Jizhong; Xu, Minggang; Yuan, Mengting; Wu, Liyou; Bracho, Rosvel; Pegoraro, Elaine; Schuur, Edward A G; Luo, Yiqi

    2017-11-01

    Quantifying soil organic carbon (SOC) decomposition under warming is critical to predict carbon-climate feedbacks. According to the substrate regulating principle, SOC decomposition would decrease as labile SOC declines under field warming, but observations of SOC decomposition under warming do not always support this prediction. This discrepancy could result from varying changes in SOC components and soil microbial communities under warming. This study aimed to determine the decomposition of SOC components with different turnover times after subjected to long-term field warming and/or root exclusion to limit C input, and to test whether SOC decomposition is driven by substrate lability under warming. Taking advantage of a 12-year field warming experiment in a prairie, we assessed the decomposition of SOC components by incubating soils from control and warmed plots, with and without root exclusion for 3 years. We assayed SOC decomposition from these incubations by combining inverse modeling and microbial functional genes during decomposition with a metagenomic technique (GeoChip). The decomposition of SOC components with turnover times of years and decades, which contributed to 95% of total cumulative CO 2 respiration, was greater in soils from warmed plots. But the decomposition of labile SOC was similar in warmed plots compared to the control. The diversity of C-degradation microbial genes generally declined with time during the incubation in all treatments, suggesting shifts of microbial functional groups as substrate composition was changing. Compared to the control, soils from warmed plots showed significant increase in the signal intensities of microbial genes involved in degrading complex organic compounds, implying enhanced potential abilities of microbial catabolism. These are likely responsible for accelerated decomposition of SOC components with slow turnover rates. Overall, the shifted microbial community induced by long-term warming accelerates the

  1. Assessing Climate Change in Early Warm Season and Impacts on Wildfire Potential in the Southwestern United States

    Science.gov (United States)

    Kafatos, M.; Kim, S. H.; Kim, J.; Nghiem, S. V.; Fujioka, F.; Myoung, B.

    2016-12-01

    Wildfires are an important concern in the Southwestern United States (SWUS) where the prevalent semi-arid to arid climate, vegetation types and hot and dry warm seasons challenge strategic fire management. Although they are part of the natural cycle related to the region's climate, significant growth of urban areas and expansion of the wildland-urban interface, have made wildfires a serious high-risk hazard. Previous studies also showed that the SWUS region is prone to frequent droughts due to large variations in wet season rainfall and has suffered from a number of severe wildfires in the recent decades. Despite the increasing trend in large wildfires, future wildfire risk assessment studies at regional scales for proactive adaptations are lacking. Our previous study revealed strong correlations between the North Atlantic Oscillation (NAO) and temperatures during March-June in SWUS. The abnormally warm and dry conditions in an NAO-positive spring, combined with reduced winter precipitation, can cause an early start of a fire season and extend it for several seasons, from late spring to fall. A strong interannual variation of the Keetch-Byram Drought Index (KBDI) during the early warm season was also found in the 35 year period 1979 - 2013 of the North American Regional Reanalysis (NARR) dataset. Thus, it is crucial to investigate the climate change impact that early warm season temperatures have on future wildfire danger potential. Our study reported here examines fine-resolution fire-weather variables for 2041-2070 projected in the North American Regional Climate Change Assessment Program (NARCCAP). The high-resolution climate data were obtained from multiple regional climate models (RCM) driven by multiple climate scenarios projected from multiple global climate models (GCMs) in conjunction with multiple greenhouse gas concentration pathways. The local wildfire potential in future climate is investigated using both the Keetch-Byram Drought Index (KBDI) and the

  2. Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Gentil, Emmanuel

    2009-01-01

    forcing (RF) and global warming potential (GWP). This paper provides a general introduction of the factors that define a GHG and explains the scientific background for estimating RF and GWP, thereby exposing the lay reader to a brief overview of the methods for calculating the effects of GHGs on climate......Management of post-consumer solid waste contributes to emission of greenhouse gases (GHGs) representing about 3% of global anthropogenic GHG emissions. Most GHG reporting initiatives around the world utilize two metrics proposed by the Intergovernmental Panel on Climate Change (IPCC): radiative...

  3. Increasing potential for intense tropical and subtropical thunderstorms under global warming

    Science.gov (United States)

    Singh, Martin S.; Kuang, Zhiming; Maloney, Eric D.; Hannah, Walter M.; Wolding, Brandon O.

    2017-10-01

    Intense thunderstorms produce rapid cloud updrafts and may be associated with a range of destructive weather events. An important ingredient in measures of the potential for intense thunderstorms is the convective available potential energy (CAPE). Climate models project increases in summertime mean CAPE in the tropics and subtropics in response to global warming, but the physical mechanisms responsible for such increases and the implications for future thunderstorm activity remain uncertain. Here, we show that high percentiles of the CAPE distribution (CAPE extremes) also increase robustly with warming across the tropics and subtropics in an ensemble of state-of-the-art climate models, implying strong increases in the frequency of occurrence of environments conducive to intense thunderstorms in future climate projections. The increase in CAPE extremes is consistent with a recently proposed theoretical model in which CAPE depends on the influence of convective entrainment on the tropospheric lapse rate, and we demonstrate the importance of this influence for simulated CAPE extremes using a climate model in which the convective entrainment rate is varied. We further show that the theoretical model is able to account for the climatological relationship between CAPE and a measure of lower-tropospheric humidity in simulations and in observations. Our results provide a physical basis on which to understand projected future increases in intense thunderstorm potential, and they suggest that an important mechanism that contributes to such increases may be present in Earth's atmosphere.

  4. Increasing potential for intense tropical and subtropical thunderstorms under global warming.

    Science.gov (United States)

    Singh, Martin S; Kuang, Zhiming; Maloney, Eric D; Hannah, Walter M; Wolding, Brandon O

    2017-10-31

    Intense thunderstorms produce rapid cloud updrafts and may be associated with a range of destructive weather events. An important ingredient in measures of the potential for intense thunderstorms is the convective available potential energy (CAPE). Climate models project increases in summertime mean CAPE in the tropics and subtropics in response to global warming, but the physical mechanisms responsible for such increases and the implications for future thunderstorm activity remain uncertain. Here, we show that high percentiles of the CAPE distribution (CAPE extremes) also increase robustly with warming across the tropics and subtropics in an ensemble of state-of-the-art climate models, implying strong increases in the frequency of occurrence of environments conducive to intense thunderstorms in future climate projections. The increase in CAPE extremes is consistent with a recently proposed theoretical model in which CAPE depends on the influence of convective entrainment on the tropospheric lapse rate, and we demonstrate the importance of this influence for simulated CAPE extremes using a climate model in which the convective entrainment rate is varied. We further show that the theoretical model is able to account for the climatological relationship between CAPE and a measure of lower-tropospheric humidity in simulations and in observations. Our results provide a physical basis on which to understand projected future increases in intense thunderstorm potential, and they suggest that an important mechanism that contributes to such increases may be present in Earth's atmosphere. Published under the PNAS license.

  5. The potential of land management to decrease global warming from climate change

    Science.gov (United States)

    Mayer, A.; Hausfather, Z.; Jones, A. D.; Silver, W. L.

    2016-12-01

    Recent evidence suggests that negative emissions (i.e. sequestration) is critical to slow climate change (IPCC, 2013; Gasser et al, 2015). Agricultural (crop and grazing) lands have the potential to act as a significant carbon sink. These ecosystems cover a significant proportion of the global land surface, and are largely degraded with regard to soil carbon due to previous management practices (Bai et al, 2008). However, few studies have examined the required scale of land management interventions that would be required to make a significant contribution to a portfolio of efforts aimed at limiting anthropogenic influences on global mean temperature. To address this, we modelled the quantitative effect of a range of soil carbon sequestration rates on global temperature to 2100. Results showed that by assuming a baseline emissions scenario outlined in RCP 2.6, the sequestration of an additional 0.7 Pg C per year through improved agricultural land management practices would produce a reduction of 0.1 degrees C from predicted global temperatures by the year 2100. We also compiled previous estimates of global carbon sequestration potential of agricultural soils to compare with our theoretical prediction to determine whether carbon sequestration through existing land management practices has potential to significantly reduce global temperatures. Assuming long-term soil carbon uptake, the combined potential of agricultural land management-based mitigation approaches exceeded 0.25 degrees C warming reduction by the year 2100. However, results were highly sensitive to potential carbon saturation, defined as the maximum threshold for carbon storage in soil. Our results suggest that current land management technologies and available land area exist and could make a measureable impact on warming reduction. Results also highlighted potential carbon saturation as a key gap in knowledge.

  6. Comparing the Life Cycle Energy Consumption, Global Warming and Eutrophication Potentials of Several Water and Waste Service Options

    Directory of Open Access Journals (Sweden)

    Xiaobo Xue

    2016-04-01

    Full Text Available Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energy- and carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability and sensitivity were evaluated, the carbon intensity of the local electricity grid and the efficiency of electricity production by the co-digestion with the energy recovery process were the most important for determining the relative global warming potential results.

  7. Potentiation of sprint cycling performance: the effects of a high-inertia ergometer warm-up.

    Science.gov (United States)

    Munro, Lynne A; Stannard, Stephen R; Fink, Philip W; Foskett, Andrew

    2017-07-01

    Participant and protocol factors affect post-activation potentiation response. Performance enhancement is more consistent in highly-trained participants following multiple sets of a biomechanically similar conditioning activity. Providing optimal conditions, 6 international-level sprint cyclists executed multiple sets of short maximal conditioning contractions on a high-inertia ergometer before metered sprint performance. Three trial conditions were completed on separate days after a standardised warm-up: dynamic (DYN: 4 × 4 crank-cycles), isometric (ISO: 4 × 5-sec maximal voluntary contraction (MVC)), and control (CON: rest). Performance was measured from standing start to maximum velocity on an inertial-load ergometer at baseline (Pre), 4 (Post4), 8 (Post8) and 16 (Post16) min post-conditioning. Performance and biomechanical measures were assessed across 4 sprint segments, with magnitude-based inferences used to assess the likelihood that any affect was beneficial. Performance time only improved in DYN Post4, a 3.9% reduction during the first crank cycle (92% likely). On the ascending limb of the power-cadence relationship, peak torque and average power increased by 6.2% (94% likely) and 4.0% (87% likely), respectively. In ISOPost16, optimal cadence increased (82% likely) and average power improved over the descending limb (76% likely). DYN and ISO potentiated extremities of the torque-cadence relationship at distinct recovery times post-conditioning. This study suggests merit in including a high-inertia warm-up for sprint cycling.

  8. Potential Alternative Lower Global Warming Refrigerants for Air Conditioning in Hot Climates

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL; Shen, Bo [ORNL

    2017-01-01

    The earth continues to see record increase in temperatures and extreme weather conditions that is largely driven by anthropogenic emissions of warming gases such as carbon dioxide and other more potent greenhouse gases such as refrigerants. The cooperation of 188 countries in the Conference of the Parties in Paris 2015 (COP21) resulted in an agreement aimed to achieve a legally binding and universal agreement on climate, with the aim of keeping global warming below 2 C. A global phasedown of hydrofluorocarbons (HFCs) can prevent 0.5 C of warming by 2100. However, most of the countries in hot climates are considered as developing countries and as such are still using R-22 (a Hydrochlorofluorocarbon (HCFC)) as the baseline refrigerant and are currently undergoing a phase-out of R-22 which is controlled by current Montreal Protocol to R-410A and other HFC based refrigerants. These HFCs have significantly high Global Warming Potential (GWP) and might not perform as well as R-22 at high ambient temperature conditions. In this paper we present recent results on evaluating the performance of alternative lower GWP refrigerants for R-22 and R-410A for small residential mini-split air conditioners and large commercial packaged units. Results showed that several of the alternatives would provide adequate replacement for R-22 with minor system modification. For the R-410A system, results showed that some of the alternatives were almost drop-in ready with benefit in efficiency and/or capacity. One of the most promising alternatives for R-22 mini-split unit is propane (R-290) as it offers higher efficiency; however it requires compressor and some other minor system modification to maintain capacity and minimize flammability risk. Between the R-410A alternatives, R-32 appears to have a competitive advantage; however at the cost of higher compressor discharge temperature. With respect to the hydrofluoroolefin (HFO) blends, there existed a tradeoff in performance and system design

  9. The effects of household management practices on the global warming potential of urban lawns.

    Science.gov (United States)

    Gu, Chuanhui; Crane, John; Hornberger, George; Carrico, Amanda

    2015-03-15

    Nitrous oxide (N2O) emissions are an important component of the greenhouse gas (GHG) budget for urban turfgrasses. A biogeochemical model DNDC successfully captured the magnitudes and patterns of N2O emissions observed at an urban turfgrass system at the Richland Creek Watershed in Nashville, TN. The model was then used to study the long-term (i.e. 75 years) impacts of lawn management practice (LMP) on soil organic carbon sequestration rate (dSOC), soil N2O emissions, and net Global Warming Potentials (net GWPs). The model simulated N2O emissions and net GWP from the three management intensity levels over 75 years ranged from 0.75 to 3.57 kg N ha(-1)yr(-1) and 697 to 2443 kg CO2-eq ha(-1)yr(-1), respectively, which suggested that turfgrasses act as a net carbon emitter. Reduction of fertilization is most effective to mitigate the global warming potentials of turfgrasses. Compared to the baseline scenario, halving fertilization rate and clipping recycle as an alternative to synthetic fertilizer can reduce net GWPs by 17% and 12%, respectively. In addition, reducing irrigation and mowing are also effective in lowering net GWPs. The minimum-maintenance LMP without irrigation and fertilization can reduce annual N2O emissions and net GWPs by approximately 53% and 70%, respectively, with the price of gradual depletion of soil organic carbon, when compared to the intensive-maintenance LMP. A lawn age-dependent best management practice is recommended: a high dose fertilizer input at the initial stage of lawn establishment to enhance SOC sequestration, followed by decreasing fertilization rate when the lawn ages to minimize N2O emissions. A minimum-maintained LMP with clipping recycling, and minimum irrigation and mowing, is recommended to mitigate global warming effects from urban turfgrass systems. Among all practices, clipping recycle may be a relatively malleable behavior and, therefore, a good target for interventions seeking to reduce the environmental impacts of lawn

  10. Mitochondrial acclimation potential to ocean acidification and warming of Polar cod and Atlantic cod (Gadus morhua)

    National Research Council Canada - National Science Library

    Leo, Elettra; Kunz, Kristina L; Schmidt, Matthias; Storch, Daniela; Portner, Hans-O; Mark, Felix C

    2017-01-01

    Ocean acidification and warming are happening fast in the Arctic but little is known about the effects of ocean acidification and warming on the physiological performance and survival of Arctic fish...

  11. Migration potential of tundra plant species in a warming Arctic: Responses of southern ecotypes of three species to experimental warming in the High Arctic

    Science.gov (United States)

    Bjorkman, Anne; Henry, Greg; Vellend, Mark

    2013-04-01

    Climatic changes due to anthropogenic activity are predicted to have a profound effect on the world's biodiversity and ecosystem functioning. The response of natural communities to climate change will depend primarily on two factors: 1) the ability of species to adapt quickly to changing temperatures and precipitation trends, and 2) the ability of species and populations from southern latitudes to migrate northward and establish in new environments. The assumption is often made that species and populations will track their optimal climate northward as the earth warms, but this assumption ignores a host of other potentially important factors, including the lack of adaptation to photoperiod, soil moisture, and biotic interactions at higher latitudes. In this study, we aim to better understand the ability of southern populations to establish and grow at northern latitudes under warmer temperatures. We collected seeds or ramets of three Arctic plant species (Papaver radicatum, Oxyria digyna, and Arctagrostis latifolia) from Alexandra Fiord on Ellesmere Island, Canada and from southern populations at Cornwallis Island, Canada, Barrow, Alaska, and Latnjajaure, Sweden. These seeds were planted into experimentally warmed and control plots at Alexandra Fiord in 2011. We have tracked their survival, phenology, and growth over two growing seasons. Here, we will present the preliminary results of these experiments. In particular, we will discuss whether individuals originating from southern latitudes exhibit higher growth rates in warm plots than control plots, and whether southern populations survive and grow as well as or better than individuals from Alexandra Fiord in the warmed plots. In both cases, a positive response would indicate that a warming climate may facilitate a migration northward of more southerly species or populations, and that the lack of adaptation to local conditions (soil chemistry, microhabitat, etc.) will not limit this migration. Alternately, a

  12. Recent potentially predictable droughts associated with the west Pacific warming mode and ENSO

    Science.gov (United States)

    Funk, C. C.; Hoell, A.; Shukla, S.; Kelley, C. P.; Harrison, L.

    2015-12-01

    The physicist John Archibald Wheeler suggested that "time is nature's way to keep everything from happening at once". The analog in climate science may be multi-modal analysis, which can be used to identify characteristic space-time patterns associated with major frequency modes (e.g. ENSO, the MJO or the PDO). Under such a paradigm some SST variations, and SST increases, can be meaningfully associated with modes of atmosphere-ocean variability. Here, we build on a recently published work focused on the 'West Pacific Warming Mode' (WPWM) and several new studies examining 'flavors of ENSO'. In this research, multi-modal analyses are applied to observations and to climate change simulations from coupled atmosphere-ocean general circulation models to help us explore interactions between these modes. Understanding these interactions and, by extension, their respective and combined influences on droughts may enable us to better identify drought prediction opportunities. This talk describes the thermodynamic structure of the WPWM, and suggests that warming in the Indo-Pacific warm pool is intensified by local increases in water vapor content. This observed warming has supported an enhanced west-to-central Pacific sea surface temperature gradient. This tendency appears to interact with ENSO variability, favoring La Niña-like conditions and associated teleconnections with East Africa. We examine potential WPWM contributions to drying in East Africa, and examine specific opportunities for regional drought prediction by comparing these boreal spring teleconnections with long-term (1900-2014) rainfall trends for southern Tanzania during boreal winter. While southern Tanzania has experienced substantial rainfall declines over the past 30 years, we suggest that these are mostly due to ENSO-related cooling in the Niño 3.4 region. In contrast, boreal spring declines appear to be strongly influenced by both the WPWM and Niño 4 SST. These analyses suggest that a multi

  13. “Evolution Canyon,” a potential microscale monitor of global warming across life

    Science.gov (United States)

    Nevo, Eviatar

    2012-01-01

    Climatic change and stress is a major driving force of evolution. The effects of climate change on living organisms have been shown primarily on regional and global scales. Here I propose the “Evolution Canyon” (EC) microscale model as a potential life monitor of global warming in Israel and the rest of the world. The EC model reveals evolution in action at a microscale involving biodiversity divergence, adaptation, and incipient sympatric speciation across life from viruses and bacteria through fungi, plants, and animals. The EC consists of two abutting slopes separated, on average, by 200 m. The tropical, xeric, savannoid, “African” south-facing slope (AS = SFS) abuts the forested “European” north-facing slope (ES = NFS). The AS receives 200–800% higher solar radiation than the ES. The ES represents the south European forested maquis. The AS and ES exhibit drought and shade stress, respectively. Major adaptations on the AS are because of solar radiation, heat, and drought, whereas those on the ES relate to light stress and photosynthesis. Preliminary evidence suggests the extinction of some European species on the ES and AS. In Drosophila, a 10-fold higher migration was recorded in 2003 from the AS to ES. I advance some predictions that could be followed in diverse species in EC. The EC microclimatic model is optimal to track global warming at a microscale across life from viruses and bacteria to mammals in Israel, and in additional ECs across the planet. PMID:22308456

  14. "Evolution Canyon," a potential microscale monitor of global warming across life.

    Science.gov (United States)

    Nevo, Eviatar

    2012-02-21

    Climatic change and stress is a major driving force of evolution. The effects of climate change on living organisms have been shown primarily on regional and global scales. Here I propose the "Evolution Canyon" (EC) microscale model as a potential life monitor of global warming in Israel and the rest of the world. The EC model reveals evolution in action at a microscale involving biodiversity divergence, adaptation, and incipient sympatric speciation across life from viruses and bacteria through fungi, plants, and animals. The EC consists of two abutting slopes separated, on average, by 200 m. The tropical, xeric, savannoid, "African" south-facing slope (AS = SFS) abuts the forested "European" north-facing slope (ES = NFS). The AS receives 200-800% higher solar radiation than the ES. The ES represents the south European forested maquis. The AS and ES exhibit drought and shade stress, respectively. Major adaptations on the AS are because of solar radiation, heat, and drought, whereas those on the ES relate to light stress and photosynthesis. Preliminary evidence suggests the extinction of some European species on the ES and AS. In Drosophila, a 10-fold higher migration was recorded in 2003 from the AS to ES. I advance some predictions that could be followed in diverse species in EC. The EC microclimatic model is optimal to track global warming at a microscale across life from viruses and bacteria to mammals in Israel, and in additional ECs across the planet.

  15. A historical perspective of Global Warming Potential from Municipal Solid Waste Management.

    Science.gov (United States)

    Habib, Komal; Schmidt, Jannick H; Christensen, Per

    2013-09-01

    The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP(100)), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO(2)-eq.tonne(-1) to net saving of 670 kg CO(2)-eq.tonne(-1) of MSWM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Assessing the global warming potential of wooden products from the furniture sector to improve their ecodesign.

    Science.gov (United States)

    González-García, Sara; Gasol, Carles M; Lozano, Raúl García; Moreira, María Teresa; Gabarrell, Xavier; Rieradevall i Pons, Joan; Feijoo, Gumersindo

    2011-12-01

    The main objective of this study was to determine the global warming potential of several wood products as an environmental criterion for their ecodesign. Two methodologies were combined: the quantification of greenhouse gas emissions (equivalent CO(2)) of several representative wood based products from the furniture sector and the integration of environmental aspects into product design. The products under assessment were classified in two groups: indoor products and outdoor products, depending on their location. "Indoor products" included a convertible cot/bed, a kitchen cabinet, an office table, a living room furniture, a headboard, youth room accessories and a wine crate, while the "Outdoor products" analysed were a ventilated wooden wall and a wooden playground. Spanish wood processing companies located in Galicia (NW Spain) and Catalonia (NE Spain) were analysed in detail. The life cycle of each product was carried out from a cradle-to-gate perspective according to Life Cycle Assessment (LCA) methodology, using global warming potential as the selected impact category. According to the results, metals, boards and energy use appeared to be the most contributing elements to the environmental impact of the different products under assessment, with total contributions ranging from 40% to 90%. Furthermore, eco-design strategies were proposed by means of the methodology known as Design for the Environment (DfE). Improvement strategies viable for implementation in the short term were considered and analysed in detail, accounting for remarkable reductions in the equivalent CO(2) emissions (up to 60%). These strategies would be focused on the use of renewable energies such as photovoltaic cells, the promotion of national fibres or changes in the materials used. Other alternatives to be implemented in the long term can be of potential interest for future developments. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Cryoinsulation Material Development to Mitigate Obsolescence Risk for Global Warming Potential Foams

    Science.gov (United States)

    Protz, Alison; Bruyns, Roland; Nettles, Mindy

    2015-01-01

    Cryoinsulation foams currently being qualified for the Space Launch System (SLS) core stage are nonozone- depleting substances (ODP) and are compliant with current environmental regulations. However, these materials contain the blowing agent HFC-245fa, a hydrofluorocarbon (HFC), which is a Global Warming Potential (GWP) substance. In August 2014, the Environmental Protection Agency (EPA) proposed a policy change to reduce or eliminate certain HFCs, including HFC-245fa, in end-use categories including foam blowing agents beginning in 2017. The policy proposes a limited exception to allow continued use of HFC and HFC-blend foam blowing agents for military or space- and aeronautics-related applications, including rigid polyurethane spray foams, but only until 2022.

  18. Impact of management strategies on the global warming potential at the cropping system level.

    Science.gov (United States)

    Goglio, Pietro; Grant, Brian B; Smith, Ward N; Desjardins, Raymond L; Worth, Devon E; Zentner, Robert; Malhi, Sukhdev S

    2014-08-15

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha(-1) decreased on average the emissions of N2O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO2 emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  19. Optimal fertilizer nitrogen rates and yield-scaled global warming potential in drill seeded rice.

    Science.gov (United States)

    Adviento-Borbe, Maria Arlene; Pittelkow, Cameron M; Anders, Merle; van Kessel, Chris; Hill, James E; McClung, Anna M; Six, Johan; Linquist, Bruce A

    2013-11-01

    Drill seeded rice ( L.) is the dominant rice cultivation practice in the United States. Although drill seeded systems can lead to significant CH and NO emissions due to anaerobic and aerobic soil conditions, the relationship between high-yielding management practices, particularly fertilizer N management, and total global warming potential (GWP) remains unclear. We conducted three field experiments in California and Arkansas to test the hypothesis that by optimizing grain yield through N management, the lowest yield-scaled global warming potential (GWP = GWP Mg grain) is achieved. Each growing season, urea was applied at rates ranging from 0 to 224 kg N ha before the permanent flood. Emissions of CH and NO were measured daily to weekly during growing seasons and fallow periods. Annual CH emissions ranged from 9.3 to 193 kg CH-C ha yr across sites, and annual NO emissions averaged 1.3 kg NO-N ha yr. Relative to NO emissions, CH dominated growing season (82%) and annual (68%) GWP. The impacts of fertilizer N rates on GHG fluxes were confined to the growing season, with increasing N rate having little effect on CH emissions but contributing to greater NO emissions during nonflooded periods. The fallow period contributed between 7 and 39% of annual GWP across sites years. This finding illustrates the need to include fallow period measurements in annual emissions estimates. Growing season GWP ranged from 130 to 686 kg CO eq Mg season across sites and years. Fertilizer N rate had no significant effect on GWP; therefore, achieving the highest productivity is not at the cost of higher GWP. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Explicit calculation of indirect global warming potentials for halons using atmospheric models

    Directory of Open Access Journals (Sweden)

    D. J. Wuebbles

    2009-11-01

    Full Text Available The concept of Global Warming Potentials (GWPs has been extensively used in policy consideration as a relative index for comparing the climate impact of an emitted greenhouse gas (GHG, relative to carbon dioxide with equal mass emissions. Ozone depletion due to emission of chlorinated or brominated halocarbons leads to cooling of the climate system in the opposite direction to the direct warming contribution by halocarbons as GHGs. This cooling is a key indirect effect of the halocarbons on climatic radiative forcing, which is accounted for by indirect GWPs. With respect to climate, it is critical to understand net influences considering direct warming and indirect cooling effects especially for Halons due to the greater ozone-depleting efficiency of bromine over chlorine. Until now, the indirect GWPs have been calculated using a parameterized approach based on the concept of Equivalent Effective Stratospheric Chlorine (EESC and the observed ozone depletion over the last few decades. As a step towards obtaining indirect GWPs through a more robust approach, we use atmospheric models to explicitly calculate the indirect GWPs of Halon-1211 and Halon-1301 for a 100-year time horizon. State-of-the-art global chemistry-transport models (CTMs were used as the computational tools to derive more realistic ozone depletion changes caused by an added pulse emission of the two major Halons at the surface. The radiative forcings on climate from the ozone changes have been calculated for indirect GWPs using an atmospheric radiative transfer model (RTM. The simulated temporal variations of global average total column Halons after a pulse perturbation follow an exponential decay with an e-folding time which is consistent with the expected chemical lifetimes of the Halons. Our calculated indirect GWPs for the two Halons are much smaller than those from past studies but are within a single standard deviation of WMO (2007 values and the direct GWP values derived

  1. The role of clouds and oceans in global greenhouse warming. Part 1, Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffert, M.I.

    1992-12-01

    During the past three years we have conducted several studies using models and a combination of satellite data, in situ meteorological and oceanic data, and paleoclimate reconstructions, under the DoE program, ``Quantifying the Link Between Change in Radiative Balance and Atmospheric Temperature``. Our goals were to investigate effects of global cloudiness variations on global climate and their implications for cloud feedback and continue development and application of NYU transient climate/ocean models, with emphasis on coupled effects of greenhouse warming and feedbacks by both the clouds and oceans. Our original research plan emphasized the use of cloud, surface temperature and ocean data sets interpreted by focused climate/ocean models to develop a cloud radiative forcing scenario for the past 100 years and to assess the transient climate response; to narrow key uncertainties in the system; and to identify those aspects of the climate system most likely to be affected by greenhouse warming over short, medium and long time scales.

  2. An alternative to the global warming potential for comparing climate impacts of emissions of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Shine, Keith P.; Fuglestvedt, Jan S.; Stuber, Nicola

    2003-07-01

    The global warming potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climate impact of emissions of different greenhouse gases. The GQP has been subject at many criticism because of its formulation but nevertheless it has retained some favour because of the simplicity of this design and application and its transparency compared to proposed alternatives. Here a new metric which we call the Global Temperature Change Potential (GTP) is proposed which is based on a simple analytical climate model that represents the temperature change as a given time due to either a pulse emission of a gas or a sustained emission change relative to a similar emission change of carbon dioxide. The GTP for a pulse emission illustrates that the GWP does not represent well the relative temperature response; however, the GWP is shown to be very close to the GTP for a sustained emission change for time horizons of 100 years or more. The new metric retains the advantage of the GWP in terms of transparency and the relatively small number of input parameters required for calculation. However, it has an enhanced relevance as it is further down the cause-effect chain of the impacts of greenhouse gases emissions. The GTP for a sustained emission appears to be robust to a number of uncertainties and simplifications in its derivation and may be an attractive alternative to the GWP. (Author)

  3. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Letschert, Virginie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.

  4. Global Warming Responses at the Primary Secondary Interface: 2. Potential Effectiveness of Education

    Science.gov (United States)

    Skamp, Keith; Boyes, Eddie; Stannistreet, Martin

    2009-01-01

    In an earlier paper (Skamp, Boyes, & Stanisstreet, 2009b), students' beliefs and willingness to act in relation to 16 specific actions related to global warming were compared across the primary secondary interface. More primary students believed in the effectiveness of most actions to reduce global warming and were willing to take those…

  5. Drylands face potential threat under 2 °C global warming target

    Science.gov (United States)

    Huang, Jianping; Yu, Haipeng; Dai, Aiguo; Wei, Yun; Kang, Litai

    2017-06-01

    The Paris Agreement aims to limit global mean surface warming to less than 2 °C relative to pre-industrial levels. However, we show this target is acceptable only for humid lands, whereas drylands will bear greater warming risks. Over the past century, surface warming over global drylands (1.2-1.3 °C) has been 20-40% higher than that over humid lands (0.8-1.0 °C), while anthropogenic CO2 emissions generated from drylands (~230 Gt) have been only ~30% of those generated from humid lands (~750 Gt). For the twenty-first century, warming of 3.2-4.0 °C (2.4-2.6 °C) over drylands (humid lands) could occur when global warming reaches 2.0 °C, indicating ~44% more warming over drylands than humid lands. Decreased maize yields and runoff, increased long-lasting drought and more favourable conditions for malaria transmission are greatest over drylands if global warming were to rise from 1.5 °C to 2.0 °C. Our analyses indicate that ~38% of the world's population living in drylands would suffer the effects of climate change due to emissions primarily from humid lands. If the 1.5 °C warming limit were attained, the mean warming over drylands could be within 3.0 °C therefore it is necessary to keep global warming within 1.5 °C to prevent disastrous effects over drylands.

  6. Impact of management strategies on the global warming potential at the cropping system level

    Energy Technology Data Exchange (ETDEWEB)

    Goglio, Pietro; Grant, Brian B.; Smith, Ward N. [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Desjardins, Raymond L., E-mail: ray.desjardins@agr.gc.ca [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Worth, Devon E. [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Zentner, Robert [Swift Current Research Station, Swift Current, Saskatchewan S0E 1A0 (Canada); Malhi, Sukhdev S. [Melfort Research Farm, PO Box 1240, Melfort, Saskatchewan S0E 1A0 (Canada)

    2014-08-15

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha{sup −1} decreased on average the emissions of N{sub 2}O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO{sub 2} emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. - Highlights: • LCA was combined with DNDC model to estimate the GWP of a cropping system. • N{sub 2}O, NO and NH{sub 3} flux increased by 39% under the higher fertilizer rate. • A change from 75 to 50 kg N ha{sup −1} reduced the GWP per ha and GJ basis by 18%. • N{sub 2}O emissions contributed 67% to the overall GWP of the cropping system. • Small changes in N fertilizer can have a substantial environmental impact.

  7. Mechanics analysis of axisymmetric thin-walled part in warm sheet hydroforming

    Directory of Open Access Journals (Sweden)

    Yang Xiying

    2015-10-01

    Full Text Available To obtain the influence of fluid pressure and temperature on warm hydroforming of 5A06-O aluminum alloy sheet, the unified mechanics equilibrium equations, which take through-thickness normal stress and friction into account, were established in spherical coordinate system. The distribution of through-thickness normal stress in the thickness direction was determined. The relation between through-thickness normal stress and fluid pressure was also analyzed in different regions of cylindrical cup. Based on the method of subtracting one increasing function from another, the constitutive equation of 5A06-O applied to warm hydroforming was established and in a good agreement with uniaxial tensile data. Based on whether the thickness variation was taken into account, two mechanic models were established to do the comparative study. The results for the studied case show that the calculated stress values are pretty close according to the two models and consistent with results of finite element analysis; the thickness distribution in flange computed by the second model conforms to the experimental data. Finally, the influences of fluid pressure on the flange thickness and radial stress were analyzed.

  8. Municipal solid waste conversion to transportation fuels: a life-cycle estimation of global warming potential and energy consumption

    DEFF Research Database (Denmark)

    Pressley, Phillip N.; Aziz, Tarek N.; DeCarolis, Joseph F.

    2014-01-01

    This paper utilizes life cycle assessment (LCA) methodology to evaluate the conversion of U.S. municipal solid waste (MSW) to liquid transportation fuels via gasification and Fischer-Tropsch (FT). The model estimates the cumulative energy demand and global warming potential (GWP) associated...

  9. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn

    Science.gov (United States)

    Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long-term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emis-sions, and global warming potential (GWP) in irrigated systems, however,...

  10. Comparison of net global warming potential and greenhouse gas intensity affected by management practices in two dryland cropping sites

    Science.gov (United States)

    Little is known about the effect of management practices on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of greenhouse gas (GHG) emissions in dryland cropping systems. The objective of this study was to compare the effect of a combinat...

  11. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Caleb [CTA Architects Engineers, Boise, ID (United States); Reis, Chuck [CTA Architects Engineers, Boise, ID (United States); Nelson, Eric [CTA Architects Engineers, Boise, ID (United States); Armer, James [CTA Architects Engineers, Boise, ID (United States); Arthur, Rob [CTA Architects Engineers, Boise, ID (United States); Heath, Richard [CTA Architects Engineers, Boise, ID (United States); Rono, James [CTA Architects Engineers, Boise, ID (United States); Hirsch, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Doebber, Ian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  12. Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments

    Science.gov (United States)

    Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun

    2017-01-01

    Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO2 (GWPbio). In this study we calculated the GWPbio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWPbio factors ranged from 0.13-0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWPbio. Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWPbio and energy conversion efficiency. By considering the GWPbio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWPbio.

  13. Halocarbon emissions from the United States and Mexico and their global warming potential.

    Science.gov (United States)

    Millet, Dylan B; Atlas, Elliot L; Blake, Donald R; Blake, Nicola J; Diskin, Glenn S; Holloway, John S; Hudman, Rynda C; Meinardi, Simone; Ryerson, Thomas B; Sachse, Glen W

    2009-02-15

    We use recent aircraft measurements of a comprehensive suite of anthropogenic halocarbons, carbon monoxide (CO), and related tracers to place new constraints on North American halocarbon emissions and quantify their global warming potential. Using a chemical transport model (GEOS-Chem) we find that the ensemble of observations are consistent with our prior best estimate of the U.S. anthropogenic CO source, but suggest a 30% underestimate of Mexican emissions. We develop an optimized CO emission inventory on this basis and quantify halocarbon emissions from their measured enhancements relative to CO. Emissions continue for many compounds restricted under the Montreal Protocol, and we show that halocarbons make up an important fraction of the total greenhouse gas source for both countries: our best estimate is 9% (uncertainty range 6-12%) and 32% (21-52%) of equivalent CO2 emissions for the U.S. and Mexico, respectively, on a 20 year time scale. Performance of bottom-up emission inventories is variable, with underestimates for some compounds and overestimates for others. Ongoing methylchloroform emissions are significant in the U.S. (2.8 Gg/y in 2004-2006), in contrast to bottom-up estimates (< 0.05 Gg), with implications for tropospheric OH calculations. Mexican methylchloroform emissions are minor.

  14. Greenhouse gases, radiative forcing, global warming potential and waste management--an introduction.

    Science.gov (United States)

    Scheutz, Charlotte; Kjeldsen, Peter; Gentil, Emmanuel

    2009-11-01

    Management of post-consumer solid waste contributes to emission of greenhouse gases (GHGs) representing about 3% of global anthropogenic GHG emissions. Most GHG reporting initiatives around the world utilize two metrics proposed by the Intergovernmental Panel on Climate Change (IPCC): radiative forcing (RF) and global warming potential (GWP). This paper provides a general introduction of the factors that define a GHG and explains the scientific background for estimating RF and GWP, thereby exposing the lay reader to a brief overview of the methods for calculating the effects of GHGs on climate change. An objective of this paper is to increase awareness that the GWP of GHGs has been re-adjusted as the concentration and relative proportion of these GHGs has changed with time (e.g., the GWP of methane has changed from 21 to 25 CO(2)-eq). Improved understanding of the indirect effects of GHGs has also led to a modification in the methodology for calculating GWP. Following a presentation of theory behind GHG, RF and GWP concepts, the paper briefly describes the most important GHG sources and sinks in the context of the waste management industry. The paper serves as a primer for more detailed research publications presented in this special issue of Waste Management & Research providing a technology-based assessment of quantitative GHG emissions from different waste management technologies.

  15. Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments

    Science.gov (United States)

    Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun

    2017-01-01

    Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO2 (GWPbio). In this study we calculated the GWPbio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWPbio factors ranged from 0.13–0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWPbio. Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWPbio and energy conversion efficiency. By considering the GWPbio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWPbio. PMID:28045111

  16. Effects of screenhouse cultivation and organic materials incorporation on global warming potential in rice fields.

    Science.gov (United States)

    Xu, Guochun; Liu, Xin; Wang, Qiangsheng; Xiong, Ruiheng; Hang, Yuhao

    2017-03-01

    Global rice production will be increasingly challenged by providing healthy food for a growing population at minimal environmental cost. In this study, a 2-year field experiment was conducted to investigate the effects of a novel rice cultivation mode (screenhouse cultivation, SHC) and organic material (OM) incorporation (wheat straw and wheat straw-based biogas residue) on methane (CH 4 ) and nitrous oxide (N 2 O) emissions and rice yields. In addition, the environmental factors and soil properties were also determined. Relative to the traditional open-field cultivation (OFC), SHC decreased the CH 4 and N 2 O emissions by 6.58-18.73 and 2.51-21.35%, respectively, and the global warming potential (GWP) was reduced by 6.49-18.65%. This trend was mainly because of lower soil temperature and higher soil redox potential in SHC. Although the rice grain yield for SHC were reduced by 2.51-4.98% compared to the OFC, the CH 4 emissions and GWP per unit of grain yield (yield-scaled CH 4 emissions and GWP) under SHC were declined. Compared to use of inorganic fertilizer only (IN), combining inorganic fertilizer with wheat straw (WS) or wheat straw-based biogas residue (BR) improved rice grain yield by 2.12-4.10 and 4.68-5.89%, respectively. However, OM incorporation enhanced CH 4 emissions and GWP, leading to higher yield-scaled CH 4 emissions and GWP in WS treatment. Due to rice yield that is relatively high, there was no obvious effect of BR treatment on them. These findings suggest that apparent environmental benefit can be realized by applying SHC and fermenting straw aerobically before its incorporation.

  17. Conceptional Considerations to Energy Balance and Global Warming Potential of Soil Bioengineering Structures

    Science.gov (United States)

    von der Thannen, Magdalena; Paratscha, Roman; Smutny, Roman; Lampalzer, Thomas; Strauss, Alfred; Rauch, Hans Peter

    2016-04-01

    Nowadays there is a high demand on engineering solutions considering not only technical aspects but also ecological and aesthetic values. In this context soil bioengineering techniques are often used as standalone solutions or in combination with conventional engineering structures. It is a construction technique that uses biological components for hydraulic and civil engineering solutions. In general it pursues the same objectives as conventional civil engineering structures. Currently the used assessment methods for soil bioengineering structures are referencing technically, ecologically and socio-economically. In a modern engineering approach additionally, environmental impacts and potential added values should be considered. The research project E-Protect aims at developing Environmental Life Cycle Assessment (LCA) models for this special field of alpine protective constructions. Both, the Cumulative Energy Demand (CED) and the Global Warming Potential (GWP) should be considered in an Environmental LCA over the whole life cycle of an engineering structure. The life cycle itself can be divided into three phases: the construction phase, the use phase and the end of life phase. The paper represents a concept to apply an Environmental LCA model for soil bioengineering structures. Beside the construction phase of these structures particular attention will be given to the use phase. It is not only important in terms of engineering effects but also plays an important role for positive carbon footprint due to the growing plants of soil bioengineering structures in contrast to conventional structures. Innovative Environmental LCA models will be applied to soil bioengineering structures which provide a new transparency for the responsible planners and stakeholders, by pointing out the total consumption of resources in all construction phases and components.

  18. Integrated rice-duck farming mitigates the global warming potential in rice season.

    Science.gov (United States)

    Xu, Guochun; Liu, Xin; Wang, Qiangsheng; Yu, Xichen; Hang, Yuhao

    2017-01-01

    Integrated rice-duck farming (IRDF), as a mode of ecological agriculture, is an important way to realize sustainable development of agriculture. A 2-year split-plot field experiment was performed to evaluate the effects of IRDF on methane (CH4) and nitrous oxide (N2O) emissions and its ecological mechanism in rice season. This experiment was conducted with two rice farming systems (FS) of IRDF and conventional farming (CF) under four paddy-upland rotation systems (PUR): rice-fallow (RF), annual straw incorporating in rice-wheat rotation system (RWS), annual straw-based biogas residues incorporating in rice-wheat rotation system (RWB), and rice-green manure (RGM). During the rice growing seasons, IRDF decreased the CH4 emission by 8.80-16.68%, while increased the N2O emission by 4.23-15.20%, when compared to CF. Given that CH4 emission contributed to 85.83-96.22% of global warming potential (GWP), the strong reduction in CH4 emission led to a significantly lower GWP of IRDF as compared to CF. The reason for this trend was because IRDF has significant effect on dissolved oxygen (DO) and soil redox potential (Eh), which were two pivotal factors for CH4 and N2O emissions in this study. The IRDF not only mitigates the GWP, but also increases the rice yield by 0.76-2.43% compared to CF. Moreover, compared to RWS system, RF, RWB and RGM systems significantly reduced CH4 emission by 50.17%, 44.89% and 39.51%, respectively, while increased N2O emission by 10.58%, 14.60% and 23.90%, respectively. And RWS system had the highest GWP. These findings suggest that mitigating GWP and improving rice yield could be simultaneously achieved by the IRDF, and employing suitable PUR would benefit for relieving greenhouse effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. (CF3)2CFCH=CHF (HFO-1438ezy): OH Radical Rate Coefficient, Infrared Spectrum Measurements and Estimated Global Warming Potentials and Photochemical Ozone Creation Potential

    Science.gov (United States)

    Papadimitriou, V.; Burkholder, J. B.

    2015-12-01

    Short-lived hydrofluoroolefins (HFOs) are proposed replacement compounds for ozone depleting substances (ODSs) and longer-lived greenhouse gases that are used in various industrial and technological applications. HFOs are not ODSs and the presence of the highly reactive unsaturated bond toward the common atmospheric oxidants (OH, Cl, NO3 and O3) is expected to lead to shorter tropospheric lifetimes relative to those of saturated hydrofluorocarbons. The shorter lifetime reduces their direct contribution to Climate Change. In this study, rate coefficients for the gas-phase reaction of the OH radical with (CF3)2CFCH=CHF (HFO-1438ezy), between 214 and 380 K and 50-450 Torr (He, N2), were measured using pulsed laser photolysis-laser induced fluorescence (PLP/LIF) and relative rate methods. No pressure dependence was observed within this measurement range. The reaction displays a non-Arrhenius temperature dependence over this temperature range with a slightly positive temperature dependence above 280 K and near temperature independence at lower temperatures. The infrared spectrum of HFO-1438ezy was measured as part of this work. On the basis of the present measurements, the atmospheric lifetime of HFO-1438ezy as well as its radiative efficiency, global warming potential and photochemical ozone creation potential were estimated.

  20. Performance Optimization of Alternative Lower Global Warming Potential Refrigerants in Mini-Split Room Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL

    2017-01-01

    Oak Ridge National laboratory (ORNL) recently conducted extensive laboratory, drop-in investigations for lower Global Warming Potential (GWP) refrigerants to replace R-22 and R-410A. ORNL studied propane, DR-3, ARM-20B, N-20B and R-444B as lower GWP refrigerant replacement for R-22 in a mini-split room air conditioner (RAC) originally designed for R-22; and, R-32, DR-55, ARM-71A, and L41-2, in a mini-split RAC designed for R-410A. We obtained laboratory testing results with very good energy balance and nominal measurement uncertainty. Drop-in studies are not enough to judge the overall performance of the alternative refrigerants since their thermodynamic and transport properties might favor different heat exchanger configurations, e.g. cross-flow, counter flow, etc. This study compares optimized performances of individual refrigerants using a physics-based system model tools. The DOE/ORNL Heat Pump Design Model (HPDM) was used to model the mini-split RACs by inputting detailed heat exchangers geometries, compressor displacement and efficiencies as well as other relevant system components. The RAC models were calibrated against the lab data for each individual refrigerant. The calibrated models were then used to conduct a design optimization for the cooling performance by varying the compressor displacement to match the required capacity, and changing the number of circuits, refrigerant flow direction, tube diameters, air flow rates in the condenser and evaporator at 100% and 50% cooling capacities. This paper compares the optimized performance results for all alternative refrigerants and highlights best candidates for R-22 and R-410A replacement.

  1. Nitrous oxide and methane exchange in two small temperate forest catchments - effects of hydrological gradients and implications for global warming potentials of forest soils

    DEFF Research Database (Denmark)

    Christiansen, Jesper Riis; Vesterdal, Lars; Gundersen, Per

    2012-01-01

    half the catchment area at both sites, the global warming potential (GWP) derived from N2O and CH4 was more than doubled when accounting for these wet areas in the catchments. The results stress the importance of wet soils in assessments of forest soil global warming potentials, as even small...

  2. Habitat Quality and Anadromous Fish Production Potential on the Warm Springs Indian Reservation: Annual Report 1987.

    Energy Technology Data Exchange (ETDEWEB)

    Heinith, Robert

    1987-12-01

    In 1987, The Warm Springs Indian Reservation Anadromous Fish Production and Habitat Improvement Program was in the sixth year of a scheduled eleven year program. To date, 21 kilometers of reservation stream habitat have been enhanced for salmonid production benefits. Unusual climatic conditions created a severe drought throughout the Warm Springs River Basin and Shitike Creek in 1987. Temperature extremes and low annual discharges ensued throughout reservation waters. Study sites, located in the Warm Springs River Basin and Shitike Creek, continued to be monitored for physical biological parameters. Post treatment evaluation of bioengineering work in Mill Creek (Strawberry Falls Project) was conducted. Despite low discharges, physical habitat parameters were improved and notable gains were observed in both spring chinook salmon (Oncorhynchus tshawytascha) and summer steelhead trout (Salmo gairdneri) abundance and biomass at post treatment sites. Major bioengineering work was completed at the Mill Creek (Potter's Pond) Site. 19 refs., 24 figs., 16 tabs.

  3. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Letschert, Virginie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere, mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel. We find that implementing HFC refrigerant transition and energy efficiency improvement policies in parallel for room air conditioning, roughly doubles the benefit of either policy implemented separately. We estimate that shifting the 2030 world stock of room air conditioners from the low efficiency technology using high-GWP refrigerants to higher efficiency technology and low-GWP refrigerants in parallel would save between 340-790 gigawatts (GW) of peak load globally, which is roughly equivalent to avoiding 680-1550 peak power plants of 500MW each. This would save 0.85 GT/year annually in China equivalent to over 8 Three Gorges dams and over 0.32 GT/year annually in India equivalent to roughly twice India’s 100GW solar mission target. While there is some uncertainty associated with

  4. Photoperiod cues and patterns of genetic variation limit phenological responses to climate change in warm parts of species' range: Modeling diameter-growth cessation in coast Douglas-fir.

    Science.gov (United States)

    Ford, Kevin R; Harrington, Constance A; St Clair, J Bradley

    2017-08-01

    The phenology of diameter-growth cessation in trees will likely play a key role in mediating species and ecosystem responses to climate change. A common expectation is that warming will delay cessation, but the environmental and genetic influences on this process are poorly understood. We modeled the effects of temperature, photoperiod, and seed-source climate on diameter-growth-cessation timing in coast Douglas-fir (an ecologically and economically vital tree) using high-frequency growth measurements across broad environmental gradients for a range of genotypes from different seed sources. Our model suggests that cool temperatures or short photoperiods can induce cessation in autumn. At cool locations (high latitude and elevation), cessation seems to be induced primarily by low temperatures in early autumn (under relatively long photoperiods), so warming will likely delay cessation and extend the growing season. But at warm locations (low latitude or elevation), cessation seems to be induced primarily by short photoperiods later in autumn, so warming will likely lead to only slight extensions of the growing season, reflecting photoperiod limitations on phenological shifts. Trees from seed sources experiencing frequent frosts in autumn or early winter tended to cease growth earlier in the autumn, potentially as an adaptation to avoid frost. Thus, gene flow into populations in warm locations with little frost will likely have limited potential to delay mean cessation dates because these populations already cease growth relatively late. In addition, data from an abnormal heat wave suggested that very high temperatures during long photoperiods in early summer might also induce cessation. Climate change could make these conditions more common in warm locations, leading to much earlier cessation. Thus, photoperiod cues, patterns of genetic variation, and summer heat waves could limit the capacity of coast Douglas-fir to extend its growing season in response to climate

  5. Medicare Part D Roulette, Potential Implications of Random..

    Data.gov (United States)

    U.S. Department of Health & Human Services — Medicare Part D Roulette, Potential Implications of Random Assignment and Plan Restrictions Dual-eligible (Medicare and Medicaid) beneficiaries are randomly assigned...

  6. The Potential of Brazil's Forest Sector for Mitigating Global Warming under the Kyoto Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Fearnside, Philip M. [Instituto Nacional de Pesquisas da Amazonia INPA, Av. Andre Araujo, 1756, C.P. 478, 69011-970 Manaus-Amazonas (Brazil)

    2001-07-01

    Activities in Brazil's forest sector have substantial potential for mitigating global warming as well as additional environmental and other benefits. Silvicultural plantations of different types, reduced impact logging, and deforestation avoidance all have potential mitigation roles. The magnitude of the annual emission from recent rates of deforestation in Amazonia presents an opportunity for carbon (C) benefits through reducing current rates of deforestation. Measures related to Amazonian deforestation have greater potential carbon benefits than do options such as plantation silviculture, but much depends on how benefits are calculated. Procedures are needed for assessing the environmental and social impacts of Clean Development Mechanism (CDM) projects. 55 refs.

  7. Variation of radiative forcings and global warming potentials from regional aviation NOx emissions

    Science.gov (United States)

    Skowron, Agnieszka; Lee, David S.; De León, Ruben R.

    2015-03-01

    The response to hemispherical and regional aircraft NOx emissions is explored by using two climate metrics: radiative forcing (RF) and Global Warming Potential (GWP). The global chemistry transport model, MOZART-3 CTM, is applied in this study for a series of incremental aircraft NOx emission integrations to different regions. It was found that the sensitivity of chemical responses per unit emission rate from regional aircraft NOx emissions varies with size of aircraft NOx emission rate and that climate metric values decrease with increasing aircraft NOx emission rates, except for Southeast Asia. Previous work has recognized that aircraft NOx GWPs may vary regionally. However, the way in which these regional GWPs are calculated are critical. Previous studies have added a fixed amount of NOx to different regions. This approach can heavily bias the results of a regional GWP because of the well-established sensitivity of O3 production to background NOx whereby the Ozone Production Efficiency (OPE) is greater at small background NOx. Thus, even a small addition of NOx in a clean-air area can produce a large O3 response. Using this 'fixed addition' method of 0.035 Tg(N) yr-1, results in the greatest effect observed for North Atlantic and Brazil, ∼10.0 mW m-2/Tg(N) yr-1. An alternative 'proportional approach' is also taken that preserves the subtle balance of local NOx-O3-CH4 systems with the existing emission patterns of aircraft and background NOx, whereby a proportional amount of aircraft NOx, 5% (N) yr-1, is added to each region in order to determine the response. This results in the greatest effect observed for North Pacific that with its net NOx RF of 23.7 mW m-2/Tg(N) yr-1 is in contrast with the 'fixed addition' method. For determining regional NOx GWPs, it is argued that the 'proportional' approach gives more representative results. However, a constraint of both approaches is that the regional GWP determined is dependent on the relative global emission pattern

  8. Review: Effect of global warming on plant evolution and diversity; lessons from the past and its potential recurrence in the future

    OpenAIRE

    AHMAD DWI SETYAWAN

    2009-01-01

    Setyawan AD. 2009. Effect of global warming on plant evolution and diversity; lessons from the past and its potential recurrence in the future. Nusantara Bioscience 1: 43-52. Lessons from the past shows that global warming and glaciation is a natural cycle of repeated, the trigger factor is not always the same, but global warming is always accompanied by elevated levels of CO2 and greenhouse gases in the atmosphere which cause the other rising global temperatures. Present and destruction of v...

  9. Atmospheric chemistry of short-chain haloolefins: photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs).

    Science.gov (United States)

    Wallington, T J; Sulbaek Andersen, M P; Nielsen, O J

    2015-06-01

    Short-chain haloolefins are being introduced as replacements for saturated halocarbons. The unifying chemical feature of haloolefins is the presence of a CC double bond which causes the atmospheric lifetimes to be significantly shorter than for the analogous saturated compounds. We discuss the atmospheric lifetimes, photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs) of haloolefins. The commercially relevant short-chain haloolefins CF3CFCH2 (1234yf), trans-CF3CHCHF (1234ze(Z)), CF3CFCF2 (1216), cis-CF3CHCHCl (1233zd(Z)), and trans-CF3CHCHCl (1233zd(E)) have short atmospheric lifetimes (days to weeks), negligible POCPs, negligible GWPs, and ODPs which do not differ materially from zero. In the concentrations expected in the environment their atmospheric degradation products will have a negligible impact on ecosystems. CF3CFCH2 (1234yf), trans-CF3CHCHF (1234ze(Z)), CF3CFCF2 (1216), cis-CF3CHCHCl (1233zd(Z)), and trans-CF3CHCHCl (1233zd(E)) are environmentally acceptable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Potential Regional Impacts of Global Warming on Precipitation in the Western United States

    OpenAIRE

    United States Department of the Interior, Bureau of Reclamation

    1997-01-01

    Snow and melting of the snowpack provide the principal supply of water to much of the Western United States. Whether global warming threatens this water supply is the focus of this research. This study builds upon a previous Global Climate Change Response Program investigation. Charts were generated of four geopotential height parameters for a domain covering the eastern North Pacific Ocean and western North America. Out of 131 total winter months (from 1946-89), 35 were selected as analo...

  11. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    KAUST Repository

    Sawall, Yvonne

    2015-03-10

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  12. Mitochondrial acclimation potential to ocean acidification and warming of Polar cod (Boreogadus saida) and Atlantic cod (Gadus morhua).

    Science.gov (United States)

    Leo, Elettra; Kunz, Kristina L; Schmidt, Matthias; Storch, Daniela; Pörtner, Hans-O; Mark, Felix C

    2017-01-01

    Ocean acidification and warming are happening fast in the Arctic but little is known about the effects of ocean acidification and warming on the physiological performance and survival of Arctic fish. In this study we investigated the metabolic background of performance through analyses of cardiac mitochondrial function in response to control and elevated water temperatures and PCO2 of two gadoid fish species, Polar cod (Boreogadus saida), an endemic Arctic species, and Atlantic cod (Gadus morhua), which is a temperate to cold eurytherm and currently expanding into Arctic waters in the wake of ocean warming. We studied their responses to the above-mentioned drivers and their acclimation potential through analysing the cardiac mitochondrial function in permeabilised cardiac muscle fibres after 4 months of incubation at different temperatures (Polar cod: 0, 3, 6, 8 °C and Atlantic cod: 3, 8, 12, 16 °C), combined with exposure to present (400μatm) and year 2100 (1170μatm) levels of CO2. OXPHOS, proton leak and ATP production efficiency in Polar cod were similar in the groups acclimated at 400μatm and 1170μatm of CO2, while incubation at 8 °C evoked increased proton leak resulting in decreased ATP production efficiency and decreased Complex IV capacity. In contrast, OXPHOS of Atlantic cod increased with temperature without compromising the ATP production efficiency, whereas the combination of high temperature and high PCO2 depressed OXPHOS and ATP production efficiency. Polar cod mitochondrial efficiency decreased at 8 °C while Atlantic cod mitochondria were more resilient to elevated temperature; however, this resilience was constrained by high PCO2. In line with its lower habitat temperature and higher degree of stenothermy, Polar cod has a lower acclimation potential to warming than Atlantic cod.

  13. Potential extinction of Antarctic endemic fungal species as a consequence of global warming

    Energy Technology Data Exchange (ETDEWEB)

    Selbmann, Laura, E-mail: selbmann@unitus.it [Department of Ecological and Biological Sciences (DEB), Universita degli Studi della Tuscia, Largo dell' Universita, 01100 Viterbo (Italy); Isola, Daniela; Fenice, Massimiliano; Zucconi, Laura [Department of Ecological and Biological Sciences (DEB), Universita degli Studi della Tuscia, Largo dell' Universita, 01100 Viterbo (Italy); Sterflinger, Katja [Department of Biotechnology, Austrian Center of Biological Resources and Applied Mycology (ACBR), University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Wien (Austria); Onofri, Silvano [Department of Ecological and Biological Sciences (DEB), Universita degli Studi della Tuscia, Largo dell' Universita, 01100 Viterbo (Italy)

    2012-11-01

    Cryomyces spp. are fungi adapted to the harsh conditions of the McMurdo Dry Valleys in the Antarctic. The structure of their cell wall is one of the main factors for their uncommon ability to survive external stressors. The cells are, in fact, embedded in a thick and strongly melanised cell wall encrusted with black rigid plaques giving a supplementary protection and making them practically impregnable and refractory even to commercial enzymes including chitinases and glucanases. The Antarctic fungus Lecanicillium muscarium CCFEE 5003, able to produce an arsenal of lytic enzymes, including chitinases and glucanases, is known for its ability to degrade the cell walls of different food spoiling and opportunistic fungi as well as plant pathogenic Oomycota. Active cells of Cryomyces spp. were cultivated in dual culture with the mycoparasitic fungus both in liquid and solid media. Light microscope observations revealed that the cell walls of Cryomyces were heavily decayed. This resulted in the release of protoplasts. Hyphae penetration was evident with both scanning and transmission electron microscope observations. Due to its ecological amplitude (i.e. temperature growth range 0-28 Degree-Sign C), the parasitic fungus could easily expand its area of distribution as a consequence of global warming by invading new areas towards the interior of the continent. The establishment of interactions with organisms living at present in border ecosystems may lead to extinction of extremely specialized and poorly competitive entities. -- Highlights: Black-Right-Pointing-Pointer We studied interactions among Antarctic fungi to evaluate the effects of global warming. Black-Right-Pointing-Pointer Cryomyces spp. was parasitized and killed by Lecanicillum muscarium in co-cultures. Black-Right-Pointing-Pointer L. muscarium lythic activities may have intriguing and new applications. Black-Right-Pointing-Pointer L. muscarium may expand its area of distribution as a consequence of global

  14. CO2 emission and global warming potential (GWP of energy consumption in paddy field production systems

    Directory of Open Access Journals (Sweden)

    Salman Dastan

    2016-05-01

    Full Text Available The objectives of this study was to estimation of greenhouse gases (GHG emissions and global warming in rice production and identify measures to reducing fossil energy use and greenhouse gases emissions. Three rice production systems included SRI, improved and conventional were studied. All activities, field operation and data in production methods and differents inputs rates were monitored and recorded in 2011e2012. Results showed that averages of total energy input in production systems was 22793.02 MJ ha-1 that the least energy input equal 16102.98 MJ ha-1 was observed in SRI. Electricity had the most contribution of energy input in production systems that the greatest global warming and GHGs accounted. Nitrogen fertilizer and fuel were ranked in second and third in GHGs. Average across rice production, GWP were estimated equal to 2307.33 kg CO2-eq ha-1. The maximum and minimum GWP equal to 1640 and 2554 kg CO2-eq ha-1 equivalent to 255.8 and 479.3 kg eq-CO2 GJ-1 were obtained in SRI and conventional systems, respectively. The minimum and maximum GWP per unit energy input was the minimum were in SRI and was the maximum in conventional system. SRI had the least GWP per unit energy output and improved system was ranked in seconed. Therefore, it was concluded that GWP had the positive correlation with field management methods and inputs use.

  15. Enhanced CO2 uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane

    Science.gov (United States)

    Greinert, Jens; Silyakova, Anna; Vielstädte, Lisa; Casso, Michael; Mienert, Jürgen; Bünz, Stefan

    2017-01-01

    Continued warming of the Arctic Ocean in coming decades is projected to trigger the release of teragrams (1 Tg = 106 tons) of methane from thawing subsea permafrost on shallow continental shelves and dissociation of methane hydrate on upper continental slopes. On the shallow shelves (methane released from the seafloor may reach the atmosphere and potentially amplify global warming. On the other hand, biological uptake of carbon dioxide (CO2) has the potential to offset the positive warming potential of emitted methane, a process that has not received detailed consideration for these settings. Continuous sea−air gas flux data collected over a shallow ebullitive methane seep field on the Svalbard margin reveal atmospheric CO2 uptake rates (−33,300 ± 7,900 μmol m−2⋅d−1) twice that of surrounding waters and ∼1,900 times greater than the diffusive sea−air methane efflux (17.3 ± 4.8 μmol m−2⋅d−1). The negative radiative forcing expected from this CO2 uptake is up to 231 times greater than the positive radiative forcing from the methane emissions. Surface water characteristics (e.g., high dissolved oxygen, high pH, and enrichment of 13C in CO2) indicate that upwelling of cold, nutrient-rich water from near the seafloor accompanies methane emissions and stimulates CO2 consumption by photosynthesizing phytoplankton. These findings challenge the widely held perception that areas characterized by shallow-water methane seeps and/or strongly elevated sea−air methane flux always increase the global atmospheric greenhouse gas burden. PMID:28484018

  16. Next Generation Refrigeration Lubricants for Low Global Warming Potential/Low Ozone Depleting Refrigeration and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hessell, Edward

    2013-12-31

    The goal of this project is to develop and test new synthetic lubricants that possess high compatibility with new low ozone depleting (LOD) and low global warming potential (LGWP) refrigerants and offer improved lubricity and wear protection over current lubricant technologies. The improved compatibility of the lubricants with the refrigerants, along with improved lubricating properties, will resulted in lower energy consumption and longer service life of the refrigeration systems used in residential, commercial and industrial heating, ventilating and air-conditioning (HVAC) and refrigeration equipment.

  17. Life Cycle Assessment of the Energy Independence and Security Act of 2007: Ethanol - Global Warming Potential and Environmental Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Heath, G. A.; Hsu, D. D.; Inman, D.; Aden, A.; Mann, M. K.

    2009-07-01

    The objective of this study is to use life cycle assessment (LCA) to evaluate the global warming potential (GWP), water use, and net energy value (NEV) associated with the EISA-mandated 16 bgy cellulosic biofuels target, which is assumed in this study to be met by cellulosic-based ethanol, and the EISA-mandated 15 bgy conventional corn ethanol target. Specifically, this study compares, on a per-kilometer-driven basis, the GWP, water use, and NEV for the year 2022 for several biomass feedstocks.

  18. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term

    OpenAIRE

    Six, J; Ogle, S M; Breidt, F J; Conant, R T; Mosier, A R; Paustian, K

    2004-01-01

    No-tillage (NT) management has been promoted as a practice capable of offsetting greenhouse gas (GHG) emissions because of its ability to sequester carbon in soils. However, true mitigation is only possible if the overall impact of NT adoption reduces the net global warming potential (GWP) determined by fluxes of the three major biogenic GHGs (i.e. CO2, N2O, and CH4). We compiled all available data of soil-derived GHG emission comparisons between conventional tilled (CT) and NT systems for hu...

  19. Groundwater potentials of parts of Ibiono Ibom local government ...

    African Journals Online (AJOL)

    Groundwater potentials of parts of Ibiono Ibom local government Area of Akwa Ibom State Southern Nigeria by vertical electrical sounding technique. ... Eight communities were selected for the study and further classified into three main districts comprising Afaha Utuat, Oko-Ita and Ikot Obio-Okon respectively for a ...

  20. Global warming and the potential spread of vector-borne diseases

    Energy Technology Data Exchange (ETDEWEB)

    Patz, J. [Johns Hopkins School of Hygiene and Public Health, Baltimore, MD (United States). Dept. of Microbiology and Immunology

    1996-12-31

    Climatic factors influence many vector-borne infectious diseases, in addition to demographic, biological, and ecological determinants. The United Nation`s Intergovernmental Panel on Climate Change (IPCC) estimates an unprecedented global rise of 2.0 C by the year 2100. Of major concern is that these changes can affect the spread of many serious infectious diseases, including malaria and dengue fever. Global warming would directly affect disease transmission by shifting the mosquito`s geographic range, increasing reproductive and biting rates, and shortening pathogen incubation period. Human migration and damage to health infrastructures from the projected increase in climate variability and sea level rise could indirectly contribute to disease transmission. A review of this literature, as well as preliminary data from ongoing studies will be presented.

  1. The Genus Neoceratium (Planktonic Dinoflagellates as a Potential Indicator of Ocean Warming

    Directory of Open Access Journals (Sweden)

    Alina Tunin-Ley

    2013-10-01

    Full Text Available Among the planktonic dinoflagellates, the species-rich genus Neoceratium has particularly remarkable features that include its easily recognizable outline and large size. This ubiquitous genus shows consistent presence in all plankton samples and has been a model for numerous studies since the end of the 19th century. It has already been described as a good candidate to monitor water masses and describe ocean circulation. We argue that the sensitivity displayed by Neoceratium to water temperature also makes it relevant as an indicator of ocean warming. The advantages and interests of using Neoceratium species to monitor climate change on a large scale are reassessed in view of recent advances in understanding their biology and ecology.

  2. Enhanced CO2 uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane

    Science.gov (United States)

    Pohlman, John W.; Greinert, Jens; Ruppel, Carolyn; Silyakova, Anna; Vielstädte, Lisa; Casso, Michael; Mienert, Jürgen; Bünz, Stefan

    2017-05-01

    Continued warming of the Arctic Ocean in coming decades is projected to trigger the release of teragrams (1 Tg = 106 tons) of methane from thawing subsea permafrost on shallow continental shelves and dissociation of methane hydrate on upper continental slopes. On the shallow shelves (biological uptake of carbon dioxide (CO2) has the potential to offset the positive warming potential of emitted methane, a process that has not received detailed consideration for these settings. Continuous sea-air gas flux data collected over a shallow ebullitive methane seep field on the Svalbard margin reveal atmospheric CO2 uptake rates (-33,300 ± 7,900 μmol m-2ṡd-1) twice that of surrounding waters and ˜1,900 times greater than the diffusive sea-air methane efflux (17.3 ± 4.8 μmol m-2ṡd-1). The negative radiative forcing expected from this CO2 uptake is up to 231 times greater than the positive radiative forcing from the methane emissions. Surface water characteristics (e.g., high dissolved oxygen, high pH, and enrichment of 13C in CO2) indicate that upwelling of cold, nutrient-rich water from near the seafloor accompanies methane emissions and stimulates CO2 consumption by photosynthesizing phytoplankton. These findings challenge the widely held perception that areas characterized by shallow-water methane seeps and/or strongly elevated sea-air methane flux always increase the global atmospheric greenhouse gas burden.

  3. Potential for deep convection in the Arctic Basin under a warming climate and contribution to the AMOC

    Science.gov (United States)

    Lique, Camille; Thomas, Matthew; Johnson, Helen; Plancherel, Yves

    2017-04-01

    Model studies have previously suggested a link between variations in the rate of deep water formation in the northern North Atlantic and variations in the strength of the Atlantic Meridional Overturning Circulation (AMOC), but the dynamical link between the two is not fully understood. The goal of this study is to investigate the potential for deep Mixed Layer Depths (MLDs) to appear close to the sea ice edge in the Arctic Basin under a warming climate, and to quantify the potential contribution of deep convection in the Arctic Basin to the AMOC. This study uses results from "present day" simulations of two climate models, CNRM and HiGEM, and also from simulations with a four times increase in atmospheric CO2 levels, representing a future, warmer climate. Under a warming climate, we expect (i) a reduction of the AMOC, (ii) a shoaling of the MLD in the North Atlantic and (iii) a northward retreat of the sea ice edge. First, we document the changes affecting the MLD in the Arctic and the North Atlantic under a warming climate. There is a strong shoaling of the MLD in the present-day areas of deep convection in the North Atlantic, but also a deepening in the Eurasian Basin of the Arctic Ocean, where the MLD can episodically reach up to 600m. A detailed examination of the temporal and spatial structures of the changes affecting the ocean surface properties reveals that the Eurasian Basin undergoes a strong surface warming (linked with the retreat of the sea ice edge) and a strong salinization (possibly due the intensification of the surface gyres in the Arctic driven by stronger surface stress as the sea ice pack is thinning and shrinking). Together, these changes decrease the stratification, which triggers convective events in the basin. Second, a quantitative Lagrangian diagnostic is applied to climate model output in order to determine where the mixed layer subduction contributes to the Atlantic Meridional Overturning Circulation at 26°N. We find that, for "present

  4. Analyzing the stripping potential of warm mix asphalt using imaging technique

    Science.gov (United States)

    Rafiq Kakar, Muhammad; Othman Hamzah, Meor; Valentin, Jan

    2017-09-01

    In asphalt mixtures, stripping occurs when the bond between the asphalt and the aggregate is broken due to the intrusion of water within the asphalt aggregate interface. Warm mix asphalt (WMA) is a technology that allows significant reduction in mixing and compaction temperatures of conventional hot mix asphalt. However, WMA is susceptible to moisture damage due to its lower production temperature. This can cause adhesive failure, hence stripping of asphalt binder from the aggregates. In this study, direct tensile strength (DTS) and indirect tensile strength (ITS) tests were applied to fracture the mixture specimen. Imaging technique was applied on the fractured faces of asphalt mixture to quantify the adhesive failure susceptibility due to the destructive effects of moisture. The results showed that adhesive failure increased with the number of freeze and thaw cycles and mixtures prepared with PG-76 binder exhibited lower adhesive failure compared to PG-64 binder. From fractured ITS samples, most of broken aggregates were found located in the vicinity where the indirect tensile load was applied. On the other hand, high adhesive failure was obtained at the center portion where maximum tensile stresses were developed. The image analysis method employed in this work has proven to be very effective to analyze the deterioration of asphalt mixtures subjected to moisture conditioning.

  5. Southern limit of the Western South Atlantic mangroves: Assessment of the potential effects of global warming from a biogeographical perspective

    Science.gov (United States)

    Soares, Mário Luiz Gomes; Estrada, Gustavo Calderucio Duque; Fernandez, Viviane; Tognella, Mônica Maria Pereira

    2012-04-01

    The objective of the present study was to determine the exact location of the latitudinal limit of western South Atlantic mangroves, and to describe how these forests develop at this limit; as well as to analyze the potential responses of these communities to global warming. The study was carried out along the coast of Santa Catarina, Brazil. Specific studies on mangrove structure were carried out in the Santo Antônio Lagoon (28°28'34″S; 48°51'40″W). The coastline of Santa Catarina was surveyed for the occurrence of mangrove species. In the mangrove located at the southernmost distributional limit, the forest structure was characterized. Mean height and diameter, trunks density and basal area were calculated. Climatic and oceanographic factors controlling the occurrence and development of the mangrove forests at their latitudinal limit were analyzed, as well as the possible changes of this limit based on global warming scenarios. The results confirmed that the Santo Antônio Lagoon is the southern limit of the western South Atlantic mangroves. At this limit, the mangrove forests show a low degree of development, defined by low mean diameter and height, and high trunks density and trunks/tree ratio. The observed structural pattern and the local alternation of these forests with salt marsh species are typical of mangrove forests at their latitudinal limits. The absence of mangroves south of Laguna and forest structure at the latitudinal limit are controlled by rigorous climate and oceanographic characteristics. In response to the planetary warming process, we expect that mangroves will expand southward, as a consequence of an increase in air and ocean surface temperatures, a reduction in the incidence of frosts, an increased influence of the Brazil Current and a decreased influence of the Falkland Current, and the availability of sheltered estuarine systems for the establishment of new mangroves.

  6. [Effects of biochar and nitrification inhibitor incorporation on global warming potential of a vegetable field in Nanjing, China].

    Science.gov (United States)

    Li, Bo; Li, Qiao-Ling; Fan, Chang-Hua; Sun, Li-Ying; Xiong, Zheng-Qin

    2014-09-01

    The influences of biochar and nitrification inhibitor incorporation on global warming potential (GWP) of a vegetable field were studied using the static chamber and gas chromatography method. Compared with the treatments without biochar addition, the annual GWP of N2O and CH4 and vegetable yield were increased by 8.7%-12.4% and 16.1%-52.5%, respectively, whereas the greenhouse gas intensity (GHGI) were decreased by 5.4%-28.7% following biochar amendment. Nitrification inhibitor significantly reduced the N2O emission while had little influence on CH4 emission, decreased GWP by 17.5%-20.6%, increased vegetable yield by 21.2%-40.1%, and decreased the GHGI significantly. The combined application of biochar and nitrification inhibitor significantly increased both vegetable yield and GWP, but to a greater extent for vegetable yield. Therefore, nitrification inhibitor incorporation could be served as an appropriate practice for increasing vegetable yield and mitigating GHG emissions in vegetable field.

  7. Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water

    Science.gov (United States)

    Norwood, Zack; Kammen, Daniel

    2012-12-01

    We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of 0.25 kWh-1 electricity and 0.03 kWh-1 thermal, for a system with a life cycle global warming potential of ˜80 gCO2eq kWh-1 of electricity and ˜10 gCO2eq kWh-1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of 1.40 m-3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that 0.40-1.90 m-3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.

  8. Estimating thermal regimes of bull trout and assessing the potential effects of climate warming on critical habitats

    Science.gov (United States)

    Jones, Leslie A.; Muhlfeld, Clint C.; Marshall, Lucy A.; McGlynn, Brian L.; Kershner, Jeffrey L.

    2013-01-01

    Understanding the vulnerability of aquatic species and habitats under climate change is critical for conservation and management of freshwater systems. Climate warming is predicted to increase water temperatures in freshwater ecosystems worldwide, yet few studies have developed spatially explicit modelling tools for understanding the potential impacts. We parameterized a nonspatial model, a spatial flow-routed model, and a spatial hierarchical model to predict August stream temperatures (22-m resolution) throughout the Flathead River Basin, USA and Canada. Model comparisons showed that the spatial models performed significantly better than the nonspatial model, explaining the spatial autocorrelation found between sites. The spatial hierarchical model explained 82% of the variation in summer mean (August) stream temperatures and was used to estimate thermal regimes for threatened bull trout (Salvelinus confluentus) habitats, one of the most thermally sensitive coldwater species in western North America. The model estimated summer thermal regimes of spawning and rearing habitats at <13 C° and foraging, migrating, and overwintering habitats at <14 C°. To illustrate the useful application of such a model, we simulated climate warming scenarios to quantify potential loss of critical habitats under forecasted climatic conditions. As air and water temperatures continue to increase, our model simulations show that lower portions of the Flathead River Basin drainage (foraging, migrating, and overwintering habitat) may become thermally unsuitable and headwater streams (spawning and rearing) may become isolated because of increasing thermal fragmentation during summer. Model results can be used to focus conservation and management efforts on populations of concern, by identifying critical habitats and assessing thermal changes at a local scale.

  9. Final Report and Strategic Plan on the Feasibility Study to Assess Geothermal Potential on Warm Springs Reservation Lands. Report No. DOE/GO/15177

    Energy Technology Data Exchange (ETDEWEB)

    James Manion, Warm Springs Power & Water Enterprises; David McClain, McClain & Associates

    2007-05-17

    In 2005 the Confederated Tribes of Warm Springs Tribal Council authorized an evaluation of the geothermal development potential on the Confederated Tribes of Warm Springs Reservation of Oregon. Warm Springs Power & Water Enterprises obtained a grant from the U.S. Department of Energy to conduct a geological assessment and development estimate. Warm Springs Power & Water Enterprises utilized a team of expert consultants to conduct the study and develop a strategic plan. The resource assessment work was completed in 2006 by GeothermEx Inc., a consulting company specializing in geothermal resource assessments worldwide. The GeothermEx report indicates there is a 90% probability that a commercial geothermal resource exists on tribal lands in the Mt. Jefferson area. The geothermal resource assessment and other cost, risk and constraints information has been incorporated into the strategic plan.

  10. Forage plants of an Arctic-nesting herbivore show larger warming response in breeding than wintering grounds, potentially disrupting migration phenology.

    Science.gov (United States)

    Lameris, Thomas K; Jochems, Femke; van der Graaf, Alexandra J; Andersson, Mattias; Limpens, Juul; Nolet, Bart A

    2017-04-01

    During spring migration, herbivorous waterfowl breeding in the Arctic depend on peaks in the supply of nitrogen-rich forage plants, following a "green wave" of grass growth along their flyway to fuel migration and reproduction. The effects of climate warming on forage plant growth are expected to be larger at the Arctic breeding grounds than in temperate wintering grounds, potentially disrupting this green wave and causing waterfowl to mistime their arrival on the breeding grounds. We studied the potential effect of climate warming on timing of food peaks along the migratory flyway of the Russian population of barnacle geese using a warming experiment with open-top chambers. We measured the effect of 1.0-1.7°C experimental warming on forage plant biomass and nitrogen concentration at three sites along the migratory flyway (temperate wintering site, temperate spring stopover site, and Arctic breeding site) during 2 months for two consecutive years. We found that experimental warming increased biomass accumulation and sped up the decline in nitrogen concentration of forage plants at the Arctic breeding site but not at temperate wintering and stop-over sites. Increasing spring temperatures in the Arctic will thus shorten the food peak of nitrogen-rich forage at the breeding grounds. Our results further suggest an advance of the local food peak in the Arctic under 1-2°C climate warming, which will likely cause migrating geese to mistime their arrival at the breeding grounds, particularly considering the Arctic warms faster than the temperate regions. The combination of a shorter food peak and mistimed arrival is likely to decrease goose reproductive success under climate warming by reducing growth and survival of goslings after hatching.

  11. Physiological and performance responses to the "FIFA 11+" (part 1): is it an appropriate warm-up?

    Science.gov (United States)

    Bizzini, Mario; Impellizzeri, Franco M; Dvorak, Jiri; Bortolan, Lorenzo; Schena, Federico; Modena, Roberto; Junge, Astrid

    2013-01-01

    The aim of the study was to examine the post-exercise effects of the "FIFA 11+" on various physical performance and physiological variables, to understand whether this programme is an appropriate warm-up for football players. Results were compared with the literature using a meta-analytical approach. Twenty amateur male football players [mean age 25.5 (s ± 5.1) years, body mass 75(8) kg, height 181(6) cm] participated in the study. They were tested twice before (control period) and once after the "FIFA 11+" for: 20-m sprints, agility, vertical jump, stiffness, isometric maximal voluntary contraction (MVC), rate of force development (RFD), and star excursion balance test. Oxygen uptake, lactate and core temperature were also measured. Pre-post warm-up differences were found for all the performance variables (from 1.0 to 6.2%; 0.015 FIFA 11+" prevention programme can be considered an appropriate warm-up, inducing improvements in football players comparable with those obtained with other warm-up routines reported in the literature.

  12. Multidecadal Scale Detection Time for Potentially Increasing Atlantic Storm Surges in a Warming Climate

    Science.gov (United States)

    Lee, Benjamin Seiyon; Haran, Murali; Keller, Klaus

    2017-10-01

    Storm surges are key drivers of coastal flooding, which generate considerable risks. Strategies to manage these risks can hinge on the ability to (i) project the return periods of extreme storm surges and (ii) detect potential changes in their statistical properties. There are several lines of evidence linking rising global average temperatures and increasingly frequent extreme storm surges. This conclusion is, however, subject to considerable structural uncertainty. This leads to two main questions: What are projections under various plausible statistical models? How long would it take to distinguish among these plausible statistical models? We address these questions by analyzing observed and simulated storm surge data. We find that (1) there is a positive correlation between global mean temperature rise and increasing frequencies of extreme storm surges; (2) there is considerable uncertainty underlying the strength of this relationship; and (3) if the frequency of storm surges is increasing, this increase can be detected within a multidecadal timescale (≈20 years from now).

  13. Review: Effect of global warming on plant evolution and diversity; lessons from the past and its potential recurrence in the future

    Directory of Open Access Journals (Sweden)

    AHMAD DWI SETYAWAN

    2009-03-01

    Full Text Available Setyawan AD. 2009. Effect of global warming on plant evolution and diversity; lessons from the past and its potential recurrence in the future. Nusantara Bioscience 1: 43-52. Lessons from the past shows that global warming and glaciation is a natural cycle of repeated, the trigger factor is not always the same, but global warming is always accompanied by elevated levels of CO2 and greenhouse gases in the atmosphere which cause the other rising global temperatures. Present and destruction of various plants and other living makhluh continue to happen from time to time. Every era has its own life form, as a mirror of global environmental conditions at the time. Biodiversity is not always the same between one period of global warming are with the next global warming, or one period of glaciation that one with the next glaciation, although new breeds always show traces the evolution of his ancestors. Man is one of the agents of global warming that began with the development of agricultural systems since 8000 years ago. The impact of climate change due to global warming should continue to be wary of. Based on past experience, global warming is always followed by mass extinctions, but various forms of life will still survive even though its shape is almost certainly not the same as before. Living organisms can survive it will evolve into new taxa that are different from its parental taxa. Humans who were present at that time probably were not a men who are present at this time, given Homo sapiens may have been extinct for not being able to adapt or otherwise has evolved into a new man who may no longer shows characteristics of human wisdom.

  14. Future malaria spatial pattern based on the potential global warming impact in South and Southeast Asia

    Directory of Open Access Journals (Sweden)

    Hassan M. Khormi

    2016-11-01

    Full Text Available We used the Model for Interdisciplinary Research on Climate-H climate model with the A2 Special Report on Emissions Scenarios for the years 2050 and 2100 and CLIMEX software for projections to illustrate the potential impact of climate change on the spatial distributions of malaria in China, India, Indochina, Indonesia, and The Philippines based on climate variables such as temperature, moisture, heat, cold and dryness. The model was calibrated using data from several knowledge domains, including geographical distribution records. The areas in which malaria has currently been detected are consistent with those showing high values of the ecoclimatic index in the CLIMEX model. The match between prediction and reality was found to be high. More than 90% of the observed malaria distribution points were associated with the currently known suitable climate conditions. Climate suitability for malaria is projected to decrease in India, southern Myanmar, southern Thailand, eastern Borneo, and the region bordering Cambodia, Malaysia and the Indonesian islands, while it is expected to increase in southern and south-eastern China and Taiwan. The climatic models for Anopheles mosquitoes presented here should be useful for malaria control, monitoring, and management, particularly considering these future climate scenarios.

  15. Future malaria spatial pattern based on the potential global warming impact in South and Southeast Asia.

    Science.gov (United States)

    Khormi, Hassan M; Kumar, Lalit

    2016-11-21

    We used the Model for Interdisciplinary Research on Climate-H climate model with the A2 Special Report on Emissions Scenarios for the years 2050 and 2100 and CLIMEX software for projections to illustrate the potential impact of climate change on the spatial distributions of malaria in China, India, Indochina, Indonesia, and The Philippines based on climate variables such as temperature, moisture, heat, cold and dryness. The model was calibrated using data from several knowledge domains, including geographical distribution records. The areas in which malaria has currently been detected are consistent with those showing high values of the ecoclimatic index in the CLIMEX model. The match between prediction and reality was found to be high. More than 90% of the observed malaria distribution points were associated with the currently known suitable climate conditions. Climate suitability for malaria is projected to decrease in India, southern Myanmar, southern Thailand, eastern Borneo, and the region bordering Cambodia, Malaysia and the Indonesian islands, while it is expected to increase in southern and south-eastern China and Taiwan. The climatic models for Anopheles mosquitoes presented here should be useful for malaria control, monitoring, and management, particularly considering these future climate scenarios.

  16. Evaluation of biochar powder on oxygen supply efficiency and global warming potential during mainstream large-scale aerobic composting.

    Science.gov (United States)

    He, Xueqin; Chen, Longjian; Han, Lujia; Liu, Ning; Cui, Ruxiu; Yin, Hongjie; Huang, Guangqun

    2017-12-01

    This study investigated the effects of biochar powder on oxygen supply efficiency and global warming potential (GWP) in the large-scale aerobic composting pattern which includes cyclical forced-turning with aeration at the bottom of composting tanks in China. A 55-day large-scale aerobic composting experiment was conducted in two different groups without and with 10% biochar powder addition (by weight). The results show that biochar powder improves the holding ability of oxygen, and the duration time (O 2 >5%) is around 80%. The composting process with above pattern significantly reduce CH 4 and N 2 O emissions compared to the static or turning-only styles. Considering the average GWP of the BC group was 19.82% lower than that of the CK group, it suggests that rational addition of biochar powder has the potential to reduce the energy consumption of turning, improve effectiveness of the oxygen supply, and reduce comprehensive greenhouse effects. Copyright © 2017. Published by Elsevier Ltd.

  17. Mitigating global warming potentials of methane and nitrous oxide gases from rice paddies under different irrigation regimes.

    Science.gov (United States)

    Ali, Muhammad Aslam; Hoque, M Anamul; Kim, Pil Joo

    2013-04-01

    A field experiment was conducted in Bangladesh Agricultural University Farm to investigate the mitigating effects of soil amendments such as calcium carbide, calcium silicate, phosphogypsum, and biochar with urea fertilizer on global warming potentials (GWPs) of methane (CH4) and nitrous oxide (N2O) gases during rice cultivation under continuous and intermittent irrigations. Among the amendments phosphogypsum and silicate fertilizer, being potential source of electron acceptors, decreased maximum level of seasonal CH4 flux by 25-27 % and 32-38 % in continuous and intermittent irrigations, respectively. Biochar and calcium carbide amendments, acting as nitrification inhibitors, decreased N2O emissions by 36-40 % and 26-30 % under continuous and intermittent irrigations, respectively. The total GWP of CH4 and N2O gases were decreased by 7-27 % and 6-34 % with calcium carbide, phosphogypsum, and silicate fertilizer amendments under continuous and intermittent irrigations, respectively. However, biochar amendments increased overall GWP of CH4 and N2O gases.

  18. Global Warming Potential and Eutrophication Potential of Biofuel Feedstock Crops Produced in Florida, Measured Under Different Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana; Capece, John

    2013-02-15

    The agriculture sector is in a growing need to develop greenhouse gas (GHG) mitigation techniques to reduce the enhanced greenhouse effect. The challenge to the sector is not only to reduce net emissions but also increase production to meet growing demands for food, fiber, and biofuel. This study focuses on the changes in the GHG balance of three biofuel feedstock (biofuel sugarcane, energy-cane and sweet sorghum) considering changes caused by the adoption of conservationist practices such as reduced tillage, use of controlled-release fertilizers or when cultivation areas are converted from burned harvest to green harvest. Based on the Intergovernmental Panel on Climate Change (IPCC) (2006) balance and the Tools for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) characterization factors published by the EPA, the annual emission balance includes use energy (diesel and electricity), equipment, and ancillary materials, according to the mean annual consumption of supplies per hectare. The total amounts of GWP were 2740, 1791, and 1910 kg CO2e ha-1 y-1 for biofuel sugarcane, energy-cane and sweet sorghum, respectively, when produced with conventional tillage and sugarcane was burned prior to harvesting. Applying reduced tillage practices, the GHG emissions reduced to 13% for biofuel sugarcane, 23% for energy-cane and 8% for sweet sorghum. A similar decrease occurs when a controlled-release fertilizer practice is adopted, which helps reduce the total emission balance in 5%, 12% and 19% for biofuel sugarcane, energy-cane and sweet sorghum, respectively and a 31% average reduction in eutrophication potential. Moreover, the GHG emissions for biofuel sugarcane, with the adoption of green harvest, would result in a smaller GHG balance of 1924 kg CO2e ha-1 y-1, providing an effect strategy for GHG mitigation while still providing a profitable yield in Florida.

  19. Response to Filchner-Ronne Ice Shelf cavity warming in a coupled ocean-ice sheet model - Part 1: The ocean perspective

    Science.gov (United States)

    Timmermann, Ralph; Goeller, Sebastian

    2017-09-01

    The Regional Antarctic ice and Global Ocean (RAnGO) model has been developed to study the interaction between the world ocean and the Antarctic ice sheet. The coupled model is based on a global implementation of the Finite Element Sea-ice Ocean Model (FESOM) with a mesh refinement in the Southern Ocean, particularly in its marginal seas and in the sub-ice-shelf cavities. The cryosphere is represented by a regional setup of the ice flow model RIMBAY comprising the Filchner-Ronne Ice Shelf and the grounded ice in its catchment area up to the ice divides. At the base of the RIMBAY ice shelf, melt rates from FESOM's ice-shelf component are supplied. RIMBAY returns ice thickness and the position of the grounding line. The ocean model uses a pre-computed mesh to allow for an easy adjustment of the model domain to a varying cavity geometry. RAnGO simulations with a 20th-century climate forcing yield realistic basal melt rates and a quasi-stable grounding line position close to the presently observed state. In a centennial-scale warm-water-inflow scenario, the model suggests a substantial thinning of the ice shelf and a local retreat of the grounding line. The potentially negative feedback from ice-shelf thinning through a rising in situ freezing temperature is more than outweighed by the increasing water column thickness in the deepest parts of the cavity. Compared to a control simulation with fixed ice-shelf geometry, the coupled model thus yields a slightly stronger increase in ice-shelf basal melt rates.

  20. Local adaptation and the potential effects of a contaminant on predator avoidance and antipredator responses under global warming: a space-for-time substitution approach.

    Science.gov (United States)

    Janssens, Lizanne; Dinh Van, Khuong; Debecker, Sara; Bervoets, Lieven; Stoks, Robby

    2014-03-01

    The ability to deal with temperature-induced changes in interactions with contaminants and predators under global warming is one of the outstanding, applied evolutionary questions. For this, it is crucial to understand how contaminants will affect activity levels, predator avoidance and antipredator responses under global warming and to what extent gradual thermal evolution may mitigate these effects. Using a space-for-time substitution approach, we assessed the potential for gradual thermal evolution shaping activity (mobility and foraging), predator avoidance and antipredator responses when Ischnura elegans damselfly larvae were exposed to zinc in a common-garden warming experiment at the mean summer water temperatures of shallow water bodies at southern and northern latitudes (24 and 20°C, respectively). Zinc reduced mobility and foraging, predator avoidance and escape swimming speed. Importantly, high-latitude populations showed stronger zinc-induced reductions in escape swimming speed at both temperatures, and in activity levels at the high temperature. The latter indicates that local thermal adaptation may strongly change the ecological impact of contaminants under global warming. Our study underscores the critical importance of considering local adaptation along natural gradients when integrating biotic interactions in ecological risk assessment, and the potential of gradual thermal evolution mitigating the effects of warming on the vulnerability to contaminants.

  1. A global meta-analysis on the impact of management practices on net global warming potential and greenhouse gas intensity from cropland soils

    Science.gov (United States)

    Agricultural practices contribute significant amount of greenhouse gas (GHG) emissions, but little is known about their effects on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of carbon dioxide emissions per unit area or crop yield. Se...

  2. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    Science.gov (United States)

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  3. Biochar amendment reduces paddy soil nitrogen leaching but increases net global warming potential in Ningxia irrigation, China.

    Science.gov (United States)

    Wang, Yongsheng; Liu, Yansui; Liu, Ruliang; Zhang, Aiping; Yang, Shiqi; Liu, Hongyuan; Zhou, Yang; Yang, Zhengli

    2017-05-09

    The efficacy of biochar as an environmentally friendly agent for non-point source and climate change mitigation remains uncertain. Our goal was to test the impact of biochar amendment on paddy rice nitrogen (N) uptake, soil N leaching, and soil CH 4 and N 2 O fluxes in northwest China. Biochar was applied at four rates (0, 4.5, 9 and13.5 t ha -1 yr -1 ). Biochar amendment significantly increased rice N uptake, soil total N concentration and the abundance of soil ammonia-oxidizing archaea (AOA), but it significantly reduced the soil NO 3 - -N concentration and soil bulk density. Biochar significantly reduced NO 3 - -N and NH 4 + -N leaching. The C2 and C3 treatments significantly increased the soil CH 4 flux and reduced the soil N 2 O flux, leading to significantly increased net global warming potential (GWP). Soil NO 3 - -N rather than NH 4 + -N was the key integrator of the soil CH 4 and N 2 O fluxes. Our results indicate that a shift in abundance of the AOA community and increased rice N uptake are closely linked to the reduced soil NO 3 - -N concentration under biochar amendment. Furthermore, soil NO 3 - -N availability plays an important role in regulating soil inorganic N leaching and net GWP in rice paddies in northwest China.

  4. Modeling cumulative effects in life cycle assessment: the case of fertilizer in wheat production contributing to the global warming potential.

    Science.gov (United States)

    Laratte, Bertrand; Guillaume, Bertrand; Kim, Junbeum; Birregah, Babiga

    2014-05-15

    This paper aims at presenting a dynamic indicator for life cycle assessment (LCA) measuring cumulative impacts over time of greenhouse gas (GHG) emissions from fertilizers used for wheat cultivation and production. Our approach offers a dynamic indicator of global warming potential (GWP), one of the most used indicator of environmental impacts (e.g. in the Kyoto Protocol). For a case study, the wheat production in France was selected and considered by using data from official sources about fertilizer consumption and production of wheat. We propose to assess GWP environmental impact based on LCA method. The system boundary is limited to the fertilizer production for 1 ton of wheat produced (functional unit) from 1910 to 2010. As applied to wheat production in France, traditional LCA shows a maximum GWP impact of 500 kg CO2-eq for 1 ton of wheat production, whereas the GWP impact of wheat production over time with our approach to dynamic LCA and its cumulative effects increases to 18,000 kg CO2-eq for 1 ton of wheat production. In this paper, only one substance and one impact assessment indicator are presented. However, the methodology can be generalized and improved by using different substances and indicators. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China.

    Science.gov (United States)

    Xiong, Zhengqin; Liu, Yinglie; Wu, Zhen; Zhang, Xiaolin; Liu, Pingli; Huang, Taiqing

    2015-12-02

    Double rice (DR) and upland crop-single rice (UR) systems are the major rice-based cropping systems in China, yet differences in net global warming potential (NGWP) and greenhouse gas intensity (GHGI) between the two systems are poorly documented. Accordingly, a 3-year field experiment was conducted to simultaneously measure methane (CH4) and nitrous oxide (N2O) emissions and changes in soil organic carbon (SOC) in oil rape-rice-rice and wheat-rice (representing DR and UR, respectively) systems with straw incorporation (0, 3 and 6 t/ha) during the rice-growing seasons. Compared with the UR system, the annual CH4, N2O, grain yield and NGWP were significantly increased in the DR system, though little effect on SOC sequestration or GHGI was observed without straw incorporation. Straw incorporation increased CH4 emission and SOC sequestration but had no significant effect on N2O emission in both systems. Averaged over the three study years, straw incorporation had no significant effect on NGWP and GHGI in the UR system, whereas these parameters were greatly increased in the DR system, i.e., by 108% (3 t/ha) and 180% (6 t/ha) for NGWP and 103% (3 t/ha) and 168% (6 t/ha) for GHGI.

  6. Warming shifts 'worming': effects of experimental warming on invasive earthworms in northern North America.

    Science.gov (United States)

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A; Rice, Karen; Rich, Roy; Reich, Peter B

    2014-11-03

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration.

  7. Warming shifts `worming': effects of experimental warming on invasive earthworms in northern North America

    Science.gov (United States)

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A.; Rice, Karen; Rich, Roy; Reich, Peter B.

    2014-11-01

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration.

  8. Potential effect of atmospheric warming on grapevine phenology and post-harvest heat accumulation across a range of climates

    Science.gov (United States)

    Hall, Andrew; Mathews, Adam J.; Holzapfel, Bruno P.

    2016-09-01

    Carbohydrates are accumulated within the perennial structure of grapevines when their production exceeds the requirements of reproduction and growth. The period between harvest and leaf-fall (the post-harvest period) is a key period for carbohydrate accumulation in relatively warmer grape-growing regions. The level of carbohydrate reserves available for utilisation in the following season has an important effect on canopy growth and yield potential and is therefore an important consideration in vineyard management. In a warming climate, the post-harvest period is lengthening and becoming warmer, evidenced through studies in wine regions worldwide that have correlated recent air temperature increases with changing grapevine phenology. Budbreak, flowering, veraison, and harvest have all been observed to be occurring earlier than in previous decades. Additionally, the final stage of the grapevine phenological cycle, leaf-fall, occurs later. This study explored the potential for increased post-harvest carbohydrate accumulation by modelling heat accumulation following harvest dates for the recent climate (1975-2004) and two warmer climate projections with mean temperature anomalies of +1.26 and +2.61 °C. Summaries of post-harvest heat accumulation between harvest and leaf-fall were produced for each of Australia's Geographical Indications (wine regions) to provide comparisons from the base temperatures to projected warmer conditions across a range of climates. The results indicate that for warmer conditions, all regions observe earlier occurring budbreak and harvest as well as increasing post-harvest growing degree days accumulation before leaf-fall. The level of increase varies depending upon starting climatic condition, with cooler regions experiencing the greatest change.

  9. Field-Based Estimates of Global Warming Potential in Bioenergy Systems of Hawaii: Crop Choice and Deficit Irrigation.

    Science.gov (United States)

    Pawlowski, Meghan N; Crow, Susan E; Meki, Manyowa N; Kiniry, James R; Taylor, Andrew D; Ogoshi, Richard; Youkhana, Adel; Nakahata, Mae

    2017-01-01

    Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHG emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO2), as methane was oxidized and nitrous oxide (N2O) emission was very low even following fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO2 flux. Deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated belowground. In the first two years of cultivation napiergrass did not increase net greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield.

  10. Field-Based Estimates of Global Warming Potential in Bioenergy Systems of Hawaii: Crop Choice and Deficit Irrigation.

    Directory of Open Access Journals (Sweden)

    Meghan N Pawlowski

    Full Text Available Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHG emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO2, as methane was oxidized and nitrous oxide (N2O emission was very low even following fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO2 flux. Deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated belowground. In the first two years of cultivation napiergrass did not increase net greenhouse warming potential (GWP compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield.

  11. Nonsolar energy use and one-hundred-year global warming potential of Iowa swine feedstuffs and feeding strategies.

    Science.gov (United States)

    Lammers, P J; Kenealy, M D; Kliebenstein, J B; Harmon, J D; Helmers, M J; Honeyman, M S

    2010-03-01

    Demand for nonsolar energy and concern about the implications of fossil fuel combustion have encouraged examination of energy use associated with agriculture. The United States is a global leader in pig production, and the United States swine industry is centered in Iowa. Feed is the largest individual input in pig production, but the energy consumption of the Iowa swine feed production chain has yet to be critically examined. This analysis examines nonsolar energy use and resulting 100-yr global warming potential (GWP) associated with the swine feed production chain, beginning with cultivation of crops and concluding with diet formulation. The nonsolar energy use and accompanying 100-yr GWP associated with production of 13 common swine feed ingredients are estimated. Two diet formulation strategies are considered for 4 crop sequence x ingredient choice combinations to generate 8 crop sequence x diet formulation scenarios. The first formulation strategy (simple) does not include synthetic AA or phytase. The second strategy (complex) reduces CP content of the diet by using L-lysine to meet standardized ileal digestibility lysine requirements of pigs and includes the exogenous enzyme phytase. Regardless of crop sequence x diet formulation scenario, including the enzyme phytase is energetically favorable and reduces the potential excretion of P by reducing or removing inorganic P from the complete diet. Including L-lysine reduces the CP content of the diet and requires less nonsolar energy to deliver adequate standardized ileal digestible lysine than simply feeding soybean meal. Replacing soybean meal with full-fat soybeans is not energetically beneficial under Iowa conditions. Swine diets including dried distillers grains with solubles and crude glycerol require approximately 50% more nonsolar energy inputs than corn-soybean meal diets or corn-soybean meal diets including oats. This study provides essential information on cultivation, processing, and manufacture of

  12. Assessing the global warming potential of human settlement expansion in a mesic temperate landscape from 2005 to 2050.

    Science.gov (United States)

    Reinmann, Andrew B; Hutyra, Lucy R; Trlica, Andrew; Olofsson, Pontus

    2016-03-01

    Expansion of human settlements is an important driver of global environmental change that causes land use and land cover change (LULCC) and alters the biophysical nature of the landscape and climate. We use the state of Massachusetts, United States (U.S.) to present a novel approach to quantifying the effects of projected expansion of human settlements on the biophysical nature of the landscape. We integrate nationally available datasets with the U.S. Environmental Protection Agency's Integrated Climate and Land Use Scenarios model to model albedo and C storage and uptake by forests and vegetation within human settlements. Our results indicate a 4.4 to 14% decline in forest cover and a 35 to 40% increase in developed land between 2005 and 2050, with large spatial variability. LULCC is projected to reduce rates of forest C sequestration, but our results suggest that vegetation within human settlements has the potential to offset a substantial proportion of the decline in the forest C sink and may comprise up to 35% of the terrestrial C sink by 2050. Changes in albedo and terrestrial C fluxes are expected to result in a global warming potential (GWP) of +0.13 Mg CO2-C-equivalence ha(-1)year(-1) under the baseline trajectory, which is equivalent to 17% of the projected increase in fossil fuel emissions. Changes in terrestrial C fluxes are generally the most important driver of the increase in GWP, but albedo change becomes an increasingly important component where housing densities are higher. Expansion of human settlements is the new face of LULCC and our results indicate that when quantifying the biophysical response it is essential to consider C uptake by vegetation within human settlements and the spatial variability in the influence of C fluxes and albedo on changes in GWP. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Capparis spinosa L. in A Systematic Review: A Xerophilous Species of Multi Values and Promising Potentialities for Agrosystems under the Threat of Global Warming

    Directory of Open Access Journals (Sweden)

    Stephanie Chedraoui

    2017-10-01

    Full Text Available Caper (Capparis spinosa L. is a xerophytic shrub with a remarkable adaptability to harsh environments. This plant species is of great interest for its medicinal/pharmacological properties and its culinary uses. Its phytochemical importance relies on many bioactive components present in different organs and its cultivation can be of considerable economic value. Moreover, taxonomic identification of C. spinosa L. has been difficult due to its wide heterogeneity, and many authors fell into confusion due to the scarcity of genetic studies. The present review summarizes information concerning C. spinosa L. including agronomic performance, botanical description, taxonomical approaches, traditional pharmacological uses, phytochemical evaluation and genetic studies. This knowledge represents an important tool for further research studies and agronomic development on this indigenous species with respect to the emerging climatic change in the Eastern Mediterranean countries. Indeed, this world region is particularly under the threat of global warming and it appears necessary to rethink agricultural systems to adapt them to current and futures challenging environmental conditions. Capparis spinosa L. could be a part of this approach. So, this review presents a state of the art considering caper as a potential interesting crop under arid or semi-arid regions (such as Eastern Mediterranean countries within the climate change context. The aim is to raise awareness in the scientific community (geneticists, physiologists, ecophysiologists, agronomists, … about the caper strengths and interest to the development of this shrub as a crop.

  14. An Evaluation of the Environmental Impact of Different Commercial Supermarket Refrigeration Systems Using Low Global Warming Potential Refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01

    Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCP of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.

  15. Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential.

    Science.gov (United States)

    Allison, Thomas C

    2016-03-03

    Rate constants for reactions of chemical compounds with hydroxyl radical are a key quantity used in evaluating the global warming potential of a substance. Experimental determination of these rate constants is essential, but it can also be difficult and time-consuming to produce. High-level quantum chemistry predictions of the rate constant can suffer from the same issues. Therefore, it is valuable to devise estimation schemes that can give reasonable results on a variety of chemical compounds. In this article, the construction and training of an artificial neural network (ANN) for the prediction of rate constants at 298 K for reactions of hydroxyl radical with a diverse set of molecules is described. Input to the ANN consists of counts of the chemical bonds and bends present in the target molecule. The ANN is trained using 792 (•)OH reaction rate constants taken from the NIST Chemical Kinetics Database. The mean unsigned percent error (MUPE) for the training set is 12%, and the MUPE of the testing set is 51%. It is shown that the present methodology yields rate constants of reasonable accuracy for a diverse set of inputs. The results are compared to high-quality literature values and to another estimation scheme. This ANN methodology is expected to be of use in a wide range of applications for which (•)OH reaction rate constants are required. The model uses only information that can be gathered from a 2D representation of the molecule, making the present approach particularly appealing, especially for screening applications.

  16. Comparison greenhouse gas (GHG) emissions and global warming potential (GWP) effect of energy use in different wheat agroecosystems in Iran.

    Science.gov (United States)

    Yousefi, Mohammad; Mahdavi Damghani, Abdolmajid; Khoramivafa, Mahmud

    2016-04-01

    The aims of this study were to determine energy requirement and global warming potential (GWP) in low and high input wheat production systems in western of Iran. For this purpose, data were collected from 120 wheat farms applying questionnaires via face-to-face interviews. Results showed that total energy input and output were 60,000 and 180,000 MJ ha(-1) in high input systems and 14,000 and 56,000 MJ ha(-1) in low input wheat production systems, respectively. The highest share of total input energy in high input systems recorded for electricity power, N fertilizer, and diesel fuel with 36, 18, and 13 %, respectively, while the highest share of input energy in low input systems observed for N fertilizer, diesel fuel, and seed with 32, 31, and 27 %. Energy use efficiency in high input systems (3.03) was lower than of low input systems (3.94). Total CO2, N2O, and CH4 emissions in high input systems were 1981.25, 31.18, and 1.87 kg ha(-1), respectively. These amounts were 699.88, 0.02, and 0.96 kg ha(-1) in low input systems. In high input wheat production systems, total GWP was 11686.63 kg CO2eq ha(-1) wheat. This amount was 725.89 kg CO2eq ha(-1) in low input systems. The results show that 1 ha of high input system will produce greenhouse effect 17 times of low input systems. So, high input production systems need to have an efficient and sustainable management for reducing environmental crises such as change climate.

  17. Global warming potential and greenhouse gas intensity in rice agriculture driven by high yields and nitrogen use efficiency

    Science.gov (United States)

    Zhang, Xiaoxu; Xu, Xin; Liu, Yinglie; Wang, Jinyang; Xiong, Zhengqin

    2016-05-01

    Our understanding of how global warming potential (GWP) and greenhouse gas intensity (GHGI) is affected by management practices aimed at food security with respect to rice agriculture remains limited. In the present study, a field experiment was conducted in China to evaluate the effects of integrated soil-crop system management (ISSM) on GWP and GHGI after accounting for carbon dioxide (CO2) equivalent emissions from all sources, including methane (CH4) and nitrous oxide (N2O) emissions, agrochemical inputs and farm operations and sinks (i.e., soil organic carbon sequestration). The ISSM mainly consisted of different nitrogen (N) fertilization rates and split, manure, Zn and Na2SiO3 fertilization and planting density for the improvement of rice yield and agronomic nitrogen use efficiency (NUE). Four ISSM scenarios consisting of different chemical N rates relative to the local farmers' practice (FP) rate were carried out, namely, ISSM-N1 (25 % reduction), ISSM-N2 (10 % reduction), ISSM-N3 (FP rate) and ISSM-N4 (25 % increase). The results showed that compared with the FP, the four ISSM scenarios significantly increased the rice yields by 10, 16, 28 and 41 % and the agronomic NUE by 75, 67, 35 and 40 %, respectively. In addition, compared with the FP, the ISSM-N1 and ISSM-N2 scenarios significantly reduced the GHGI by 14 and 18 %, respectively, despite similar GWPs. The ISSM-N3 and ISSM-N4 scenarios remarkably increased the GWP and GHGI by an average of 69 and 39 %, respectively. In conclusion, the ISSM strategies are promising for both food security and environmental protection, and the ISSM scenario of ISSM-N2 is the optimal strategy to realize high yields and high NUE together with low environmental impacts for this agricultural rice field.

  18. Yield-scaled global warming potential of two irrigation management systems in a highly productive rice system

    Directory of Open Access Journals (Sweden)

    Silvana Tarlera

    2016-02-01

    Full Text Available ABSTRACT Water management impacts both methane (CH4 and nitrous oxide (N2O emissions from rice paddy fields. Although controlled irrigation is one of the most important tools for reducing CH4emission in rice production systems it can also increase N2O emissions and reduce crop yields. Over three years, CH4 and N2O emissions were measured in a rice field in Uruguay under two different irrigation management systems, using static closed chambers: conventional water management (continuous flooding after 30 days of emergence, CF30; and an alternative system (controlled deficit irrigation allowing for wetting and drying, AWDI. AWDI showed mean cumulative CH4 emission values of 98.4 kg CH4 ha−1, 55 % lower compared to CF30, while no differences in nitrous oxide emissions were observed between treatments ( p > 0.05. No yield differences between irrigation systems were observed in two of the rice seasons ( p > 0.05 while AWDI promoted yield reduction in one of the seasons ( p< 0.05. When rice yield and greenhouse gases (GHG emissions were considered together, the AWDI irrigation system allowed for lower yield-scaled total global warming potential (GWP. Higher irrigation water productivity was achieved under AWDI in two of the three rice seasons. These findings suggest that AWDI could be an option for reducing GHG emissions and increasing irrigation water productivity. However, AWDI may compromise grain yield in certain years, reflecting the importance of the need for fine tuning of this irrigation strategy and an assessment of the overall tradeoff between relationships in order to promote its adoption by farmers.

  19. Warm isostatic pressing (WIP'ing) of GS44 Si{sub 3}N{sub 4} FDC parts for defect removal

    Energy Technology Data Exchange (ETDEWEB)

    Wu Suxing; Rangarajan, Sriram; Dai Cheng; McCuiston, Ryan; Langrana, Noshir A.; Safari, Ahmad; Danforth, Stephen C.; Clancy, Richard B.; Whalen, Philip J

    2003-12-15

    Fused deposition of ceramics (FDC) is one of the developing solid freeform fabrication (SFF) techniques. The successful production of high performance ceramics by the FDC process requires that no defects exist in the green parts. However, build defects, such as missing roads, poorly bonded layers or sub-perimeter voids can be encountered in improperly built FDC parts. In this study, a method known as WIP'ing (warm isostatic pressing) was evaluated for its ability to eliminate existing defects in GS44 Si{sub 3}N{sub 4} green FDC parts. Analogous to CIP'ing (cold isostatic pressing), the green FDC parts were rubber bagged and loaded into a pressure chamber filled with water soluble oil at different temperatures, ranging from 30 to 90 deg. C, at pressures of up to 35 MPa. X-Ray radiography results indicated that at temperatures above 70 deg. C, WIP'ing was effective in closing the gaps of the intentionally placed void defects in FDC parts. However, WIP'ing above 70 deg. C was not effective in healing the defects completely. The fracture strengths of FDC parts with intentional added defects, WIP'ed above 70 deg. C were substantially lower than control samples.

  20. Maximising the potential of part-time clinical teachers.

    Science.gov (United States)

    Patston, Philip; Holmes, David; Maalhagh-Fard, Ahmad; Ting, Kang; Ziccardi, Vincent B

    2010-12-01

    A problem faced by health professions education throughout the world is a lack of full-time clinical teachers. This is particularly serious in dentistry and nursing, but is increasingly also true in medicine. To make up for this shortfall there is a growing reliance on part-time clinical teachers. Part-time clinical teachers are essential for the education of students. However, compared with their full-time counterparts, the part-time teachers are often not adequately prepared for their roles as educators within the context of the clinical curriculum. They might not be trained in the latest educational practices, and may be unprepared for the time needed to excel as teachers and mentors. As part-time teachers take on more responsibility, it is important that they take part in orientation and training sessions to assist them in developing the skills they need to succeed. This will require a significant commitment from the institution as well as the part-time teacher, but is critical for maintaining the academic quality of the clinical training programmes. This also represents an untapped area for research into how to ensure the success of part-time clinical teachers. © Blackwell Publishing Ltd 2010.

  1. Nematicidal potential and specific enzyme activity enhancement potential of neem (Azadirachta indica A. Juss.) aerial parts.

    Science.gov (United States)

    Nile, Arti Shivraj; Nile, Shivraj Hariram; Keum, Young Soo; Kim, Doo Hwan; Venkidasamy, Baskar; Ramalingam, Sathishkumar

    2018-02-01

    Nematodes are considered as major plant parasites damaging most of the crops, and neem plant exhibits potential nematicidal and insecticidal properties. This study aimed to check nemato-toxic potential of neem (Azadirachta indica) plant using in vitro and in-planta trials against Meloidogyne incognita. The findings suggested that the neem extracts were lethal to second-stage juvenile (J 2 ) and egg hatching with simultaneous enhancement in treated tomato plant growth. The egg numbers of M. incognita found less sensitive to the aqueous and alcoholic extracts than those of J 2 as per LC 50 values. Complete mortality of J 2 s was recorded at 40, 60, and 80% of neem standard extract (SE) dilutions and for undiluted SE of neem. The undiluted SE extract showed 100% inhibition of egg production. The highest reductions in the number of galls/root system, J 2 population, and egg production were observed with 80, 85, and 82% SE as compared control (untreated distilled water). The maximum 250% growth increment was observed in the length of tomato roots supplemented with neem extracts. Resistance-related enzyme [phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POX)] activities in tomato plant have been increased significantly by supplementation with neem extracts. It appears that the aerial parts of neem (A. indica) extracts showed significant and sustainable eco-friendly nemato-toxic potential towards M. incognita growth inhibition and eradication using alcoholic extracts compared to aqueous. From this study, it was concluded that the neem aerial parts were useful for the control of M. incognita and could be a possible replacement for synthetic nematicides in crop protection with utilization in enhancement of specific enzyme activity in tomato plants.

  2. Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions

    Directory of Open Access Journals (Sweden)

    Victoria L. SCAVEN, Nicole E. RAFFERTY

    2013-06-01

    Full Text Available Growing concern about the influence of climate change on flowering plants, pollinators, and the mutualistic interactions between them has led to a recent surge in research. Much of this research has addressed the consequences of warming for phenological and distributional shifts. In contrast, relatively little is known about the physiological responses of plants and insect pollinators to climate warming and, in particular, how these responses might affect plant-pollinator interactions. Here, we summarize the direct physiological effects of temperature on flowering plants and pollinating insects to highlight ways in which plant and pollinator responses could affect floral resources for pollinators, and pollination success for plants, respectively. We also consider the overall effects of these responses on plant-pollinator interaction networks. Plant responses to warming, which include altered flower, nectar, and pollen production, could modify floral resource availability and reproductive output of pollinating insects. Similarly, pollinator responses, such as altered foraging activity, body size, and life span, could affect patterns of pollen flow and pollination success of flowering plants. As a result, network structure could be altered as interactions are gained and lost, weakened and strengthened, even without the gain or loss of species or temporal overlap. Future research that addresses not only how plant and pollinator physiology are affected by warming but also how responses scale up to affect interactions and networks should allow us to better understand and predict the effects of climate change on this important ecosystem service [Current Zoolo­gy 59 (3: 418–426, 2013].

  3. The potential response of the hydrate reservoir in the South Shetland Margin, Antarctic Peninsula, to ocean warming over the 21st century

    Directory of Open Access Journals (Sweden)

    Héctor Marín-Moreno

    2015-12-01

    Full Text Available In the South Shetland Margin (SSM, Antarctic Peninsula, a bottom-simulating reflector indicates the presence of hydrate between ca. 500 and 3000 m water depth (mwd. The cold seabed temperatures allow hydrate stability at shallower water depths. During the past five decades, the Antarctic Peninsula has been warming up faster than any other part of the Southern Hemisphere, and long-term ocean warming could affect the stability of the SSM hydrate reservoir at shallow waters. Here, we model the transient response of the SSM hydrate reservoir between 375 and 450 mwd to ocean warming for the period 1958–2100. For the period 1958–2010, seabed temperatures are given by oceanographic measurements in the area, and for 2010–2100 by two temperature scenarios represented by the observed trends for the periods 1960–2010 (0.0034°C y−1 and 1980–2010 (0.023°C y−1. Our results show no hydrate-sourced methane emissions for an ocean warming rate at the seabed of 0.0034 °C y−1. For a rate of 0.023°C y−1, emissions start in 2028 at 375 mwd and extend to 442 mwd at an average rate of about 0.91 mwd y−1, releasing ca. 1.13×103 mol y−1 of methane per metre along the margin by 2100. These emissions originate from dissociation at the top of the hydrate layer, a physical process that steady-state modelling cannot represent. Our results are speculative on account of the lack of direct evidence of a shallow water hydrate reservoir, but they illustrate that the SSM is a key area to observe the effects of ocean warming-induced hydrate dissociation in the coming decades.

  4. Potential Responses of Vascular Plants from the Pristine “Lost World” of the Neotropical Guayana Highlands to Global Warming: Review and New Perspectives

    OpenAIRE

    Rull, Valentí; Vegas-Vilarrúbia, Teresa

    2017-01-01

    The neotropical Guayana Highlands (GH) are one of the few remaining pristine environments on Earth, and they host amazing biodiversity with a high degree endemism, especially among vascular plants. Despite the lack of direct human disturbance, GH plants and their communities are threatened with extinction from habitat loss due to global warming (GW). Geographic information systems simulations involving the entire known vascular GH flora (>2430 species) predict potential GW-driven extinctions ...

  5. Transport properties of warm and hot dense iron from orbital free and corrected Yukawa potential molecular dynamics

    Directory of Open Access Journals (Sweden)

    H.Y. Sun

    2017-11-01

    Full Text Available The equation of states, diffusions, and viscosities of strongly coupled Fe at 80 and 240 eV with densities from 1.6 to 40 g/cm3 are studied by orbital-free molecular dynamics, classical molecular dynamics with a corrected Yukawa potential and compared with the results from average atom model. A new local pseudopotential is generated for orbital free calculations. For low densities, the Yukawa model captures the correct ionic interaction behavior around the first peak of the radial distribution function (RDF, thus it gives correct RDFs and transport coefficients. For higher densities, the scaled transformation of the Yukawa potential or adding a short range repulsion part to the Yukawa potential can give correct RDFs and transport coefficients. The corrected potentials are further validated by the force matching method. Keywords: Transport properties, Orbital-free molecular dynamics, Yukawa model, Force matching, PACS codes: 34.20.Cf, 52.25.Fi, 52.27.Gr, 52.65.Yy

  6. Atmospheric chemistry of (Z)-CF3CH═CHCF3: OH radical reaction rate coefficient and global warming potential.

    Science.gov (United States)

    Baasandorj, Munkhbayar; Ravishankara, A R; Burkholder, James B

    2011-09-29

    Rate coefficients, k, for the gas-phase reaction of the OH radical with (Z)-CF(3)CH═CHCF(3) (cis-1,1,1,4,4,4-hexafluoro-2-butene) were measured under pseudo-first-order conditions in OH using pulsed laser photolysis (PLP) to produce OH and laser-induced fluorescence (LIF) to detect it. Rate coefficients were measured over a range of temperatures (212-374 K) and bath gas pressures (20-200 Torr; He, N(2)) and found to be independent of pressure over this range of conditions. The rate coefficient has a non-Arrhenius behavior that is well-described by the expression k(1)(T) = (5.73 ± 0.60) × 10(-19) × T(2) × exp[(678 ± 10)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K) was measured to be (4.91 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1) and the uncertainties are at the 2σ level and include estimated systematic errors. Rate coefficients for the analogous OD radical reaction were determined over a range of temperatures (262-374 K) at 100 Torr (He) to be k(2)(T) = (4.81 ± 0.20) × 10(-19) × T(2) × exp[(776 ± 15)/T], with k(2)(296 K) = (5.73 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1). OH radical rate coefficients were also measured at 296, 345, and 375 K using a relative rate technique and found to be in good agreement with the PLP-LIF results. A room-temperature rate coefficient for the O(3) + (Z)-CF(3)CH═CHCF(3) reaction was measured using an absolute method with O(3) in excess to be reaction was estimated to be ~20 days. Infrared absorption spectra of (Z)-CF(3)CH═CHCF(3) measured in this work were used to determine a (Z)-CF(3)CH═CHCF(3) global warming potential (GWP) of ~9 for the 100 year time horizon. A comparison of the OH reactivity of (Z)-CF(3)CH═CHCF(3) with other unsaturated fluorinated compounds is presented.

  7. Assessment of commercially available energy-efficient room air conditioners including models with low global warming potential (GWP) refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Shah, N. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, W. Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerke, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-30

    Improving the energy efficiency of room air conditioners (RACs) while transitioning to low global-warming-potential (GWP) refrigerants will be a critical step toward reducing the energy, peak load, and emissions impacts of RACs while keeping costs low. Previous research quantified the benefits of leapfrogging to high efficiency in tandem with the transition to low-GWP refrigerants for RACs (Shah et al., 2015) and identified opportunities for initial action to coordinate energy efficiency with refrigerant transition in economies constituting about 65% of the global RAC market (Shah et al., 2017). This report describes further research performed to identify the best-performing (i.e., most efficient and low-GWP-refrigerant using) RACs on the market, to support an understanding of the best available technology (BAT). Understanding BAT can help support market-transformation programs for high-efficiency and low-GWP equipment such as minimum energy performance standards (MEPS), labeling, procurement, and incentive programs. We studied RACs available in six economies—China, Europe, India, Japan, South Korea, and the United States—that together account for about 70% of global RAC demand, as well as other emerging economies. The following are our key findings: • Highly efficient RACs using low-GWP refrigerants, e.g., HFC-32 (R-32) and HC-290 (R-290), are commercially available today at prices comparable to similar RACs using high-GWP HCFC-22 (R-22) or HFC-410A (R-410A). • High efficiency is typically a feature of high-end products. However, highly efficient, cost-competitive (less than 1,000 or 1,500 U.S. dollars in retail price, depending on size) RACs are available. • Where R-22 is being phased out, high GWP R-410A still dominates RAC sales in most mature markets except Japan, where R-32 dominates. • In all of the economies studied except Japan, only a few models are energy efficient and use low-GWP refrigerants. For example, in Europe, India, and Indonesia

  8. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn.

    Science.gov (United States)

    Jin, Virginia L; Schmer, Marty R; Stewart, Catherine E; Sindelar, Aaron J; Varvel, Gary E; Wienhold, Brian J

    2017-07-01

    Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long-term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emissions, and global warming potential (GWP) in irrigated systems, however, remain relatively unknown. Here, residue and tillage management effects were quantified by measuring soil nitrous oxide (N 2 O) and methane (CH 4 ) fluxes and SOC changes (ΔSOC) at a long-term, irrigated continuous corn (Zea mays L.) system in eastern Nebraska, United States. Management treatments began in 2002, and measured treatments included no or high stover removal (0 or 6.8 Mg DM ha -1  yr -1 , respectively) under no-till (NT) or conventional disk tillage (CT) with full irrigation (n = 4). Soil N 2 O and CH 4 fluxes were measured for five crop-years (2011-2015), and ΔSOC was determined on an equivalent mass basis to ~30 cm soil depth. Both area- and yield-scaled soil N 2 O emissions were greater with stover retention compared to removal and for CT compared to NT, with no interaction between stover and tillage practices. Methane comprised <1% of total emissions, with NT being CH 4 neutral and CT a CH 4 source. Surface SOC decreased with stover removal and with CT after 14 years of management. When ΔSOC, soil GHG emissions, and agronomic energy usage were used to calculate system GWP, all management systems were net GHG sources. Conservation practices (NT, stover retention) each decreased system GWP compared to conventional practices (CT, stover removal), but pairing conservation practices conferred no additional mitigation benefit. Although cropping system, management equipment/timing/history, soil type, location, weather, and the depth to which ΔSOC is measured affect the GWP outcomes of irrigated systems at large, this long-term irrigated study provides valuable empirical evidence of how management decisions can impact soil GHG emissions and surface

  9. Three-dimensional visualization of ensemble weather forecasts – Part 2: Forecasting warm conveyor belt situations for aircraft-based field campaigns

    Directory of Open Access Journals (Sweden)

    M. Rautenhaus

    2015-07-01

    Full Text Available We present the application of interactive three-dimensional (3-D visualization of ensemble weather predictions to forecasting warm conveyor belt situations during aircraft-based atmospheric research campaigns. Motivated by forecast requirements of the T-NAWDEX-Falcon 2012 (THORPEX – North Atlantic Waveguide and Downstream Impact Experiment campaign, a method to predict 3-D probabilities of the spatial occurrence of warm conveyor belts (WCBs has been developed. Probabilities are derived from Lagrangian particle trajectories computed on the forecast wind fields of the European Centre for Medium Range Weather Forecasts (ECMWF ensemble prediction system. Integration of the method into the 3-D ensemble visualization tool Met.3D, introduced in the first part of this study, facilitates interactive visualization of WCB features and derived probabilities in the context of the ECMWF ensemble forecast. We investigate the sensitivity of the method with respect to trajectory seeding and grid spacing of the forecast wind field. Furthermore, we propose a visual analysis method to quantitatively analyse the contribution of ensemble members to a probability region and, thus, to assist the forecaster in interpreting the obtained probabilities. A case study, revisiting a forecast case from T-NAWDEX-Falcon, illustrates the practical application of Met.3D and demonstrates the use of 3-D and uncertainty visualization for weather forecasting and for planning flight routes in the medium forecast range (3 to 7 days before take-off.

  10. POTENTIAL OF INFECTED BANANA PARTS T0 TRANSMIT ...

    African Journals Online (AJOL)

    in production.producing 9.8 millionmetrictonnes per year (FAO. l998). Furthcr sprcad ol' this disease will thcrel'ore reduce production and al'l'ect national food security and income. Preliminary l'indings suggest that .... expressed as eolony forming units (CPU) per dilution per plant part. The number of baeterial cells per gram ...

  11. Geophysical studies of groundwater potential of parts of Etim Ekpo ...

    African Journals Online (AJOL)

    A vertical electrical sounding (VES) utilizing the Schlumberger electrode configuration has been used to investigate the groundwater resource potential of some villages in Etim Ekpo local government area of Nigeria. Data was acquired using a SAS 300B model of ABEM terrameter. Current electrode separation varied from ...

  12. Seasonal rainfall and ecohydrological feedbacks ameliorate the potential hydrological impact of climate warming in a Mediterranean ecosystem

    Science.gov (United States)

    Pangle, L. A.; McDonnell, J. J.; Gregg, J. W.

    2011-12-01

    A critical challenge for ecohydrologists is to improve our knowledge of how the hydrologic cycle will respond to environmental stimuli such as climate warming. In particular, we have an incomplete understanding of how climate warming may impact the partitioning of annual precipitation to evapotranspiration (ET) and groundwater recharge (R). This problem has evaded experimentalists due to the overwhelming challenge of measuring the entire water budget in systems with known boundary conditions, and under forecasted alterations in surface air temperatures. Yet, experimental results are critical for qualitatively evaluating model formulations and for identifying key system interactions. Here we present new data from a manipulative-microcosm experiment that examined the combined responses of ET, soil moisture (θ), and deep percolation (a surrogate for R) to a 3.5 degree C temperature increase in a Mediterranean climate. The temperature increase was applied both symmetrically throughout the day, and asymmetrically such that daily minimum temperature was 5 degrees C greater than ambient and daily maximum temperature was 2 degrees C greater than ambient. We hypothesized that increasing air temperatures would accelerate and enhance plant growth and ET during the spring season, causing an associated reduction in R. Additionally, we anticipated greater soil desiccation during the summer drought period, resulting in a greater cumulative rainfall requirement to initiate R at the onset of the fall rains-both effects resulting in increased ET and reduced R at the annual time scale. Our results, spanning October 2007 through June 2010, showed that symmetric and asymmetric warming treatments enhanced ET by an average of 21.5 mm and 18.3 mm, respectively, during spring (April), with corresponding reductions in θ. This perturbation reduced R during late-spring storms, though the reductions amounted to less than 4% of annual R among all years. As a consequence of greater water use

  13. Identification of Potential Wild Herbal as parts of Landscape Elements

    Science.gov (United States)

    Sulistyantara, Bambang; Mentari, Nio

    2017-10-01

    Many landscape plants can grow on their own without cultivated by humans. They are type of plants that can be found anywhere, so they can be categorized as wild plants. The economic value of wild plants are easy to obtain and their maintenance costs are low. Because wild plants not widely known even a just a few of people that aware of their existence, it is necessary to do a study to learn the potential of the wild plants to be used as an element of landscape. This research aims to identify the species that have potential to be used in landscape design, to describe the benefits of the their implementation as a landscape element, and to recommend the wild plants that have functional value and visual. This research used a scoring method based on the functional and visual criteria, and questionnaires were conducted to 50 students of Landscape Architecture IPB who have completed Landscape Plants courses. Based on the research, there are 150 species of wild plants that found in the study site, and 60 of them are recommended as landscape elements. Then all of the species were arranged as a recommendations book so they can be used as alternative landscape plants.

  14. Potential of interferon-alpha in solid tumours: part 2.

    Science.gov (United States)

    Santhanam, Sundar; Decatris, Marios; O'Byrne, Ken

    2002-01-01

    The second part of this review examines the use of recombinant interferon-alpha (rIFNalpha) in the following solid tumours: superficial bladder cancer, Kaposi's sarcoma, head and neck cancer, gastrointestinal cancers, lung cancer, mesothelioma and ovarian, breast and cervical malignancies. In superficial bladder cancer, intravesical rIFNalpha has a promising role as second-line therapy in patients resistant or intolerant to intravesical bacille Calmette-Guérin (BCG). In HIV-associated Kaposi's sarcoma, rIFNalpha is active as monotherapy and in combination with antiretroviral agents, especially in patients with CD4 counts >200/mm(3), no prior opportunistic infections and nonvisceral disease. rIFNalpha has shown encouraging results when used in combination with retinoids in the chemoprevention of head and neck squamous cell cancers. It is effective in the chemoprevention of hepatocellular cancer in hepatitis C-seropositive patients. In neuroendocrine tumours, including carcinoid tumour, low-dosage (IFNalpha may be useful in malignant pleural effusions from mesothelioma. Similarly, intraperitoneal IFNalpha may have a role in the treatment of minimal residual disease in ovarian cancer. In breast cancer, the only possible role for IFNalpha appears to be intralesional administration for resistant disease. IFNalpha may have a role as a radiosensitising agent for the treatment of cervical cancer; however, this requires confirmation in randomised trials. On the basis of current evidence, the routine use of rIFNalpha is not recommended in the therapy of head and neck squamous cell cancers, upper gastrointestinal tract, colorectal and lung cancers, or mesothelioma. Pegylated IFNalpha (peginterferon-alpha) is an exciting development that offers theoretical advantages of increased efficacy, reduced toxicity and improved compliance. Further data from randomised studies in solid tumours are needed where rIFNalpha has activity, such as neuroendocrine tumours, minimal residual

  15. Potential impacts of climate warming on water supply reliability in the Tuolumne and Merced River Basins, California.

    Directory of Open Access Journals (Sweden)

    Michael Kiparsky

    Full Text Available We present an integrated hydrology/water operations simulation model of the Tuolumne and Merced River Basins, California, using the Water Evaluation and Planning (WEAP platform. The model represents hydrology as well as water operations, which together influence water supplied for agricultural, urban, and environmental uses. The model is developed for impacts assessment using scenarios for climate change and other drivers of water system behavior. In this paper, we describe the model structure, its representation of historical streamflow, agricultural and urban water demands, and water operations. We describe projected impacts of climate change on hydrology and water supply to the major irrigation districts in the area, using uniform 2 °C, 4 °C, and 6 °C increases applied to climate inputs from the calibration period. Consistent with other studies, we find that the timing of hydrology shifts earlier in the water year in response to temperature warming (5-21 days. The integrated agricultural model responds with increased water demands 2 °C (1.4-2.0%, 4 °C (2.8-3.9%, and 6 °C (4.2-5.8%. In this sensitivity analysis, the combination of altered hydrology and increased demands results in decreased reliability of surface water supplied for agricultural purposes, with modeled quantity-based reliability metrics decreasing from a range of 0.84-0.90 under historical conditions to 0.75-0.79 under 6 °C warming scenario.

  16. Atmospheric Chemistry of Six Methyl-perfluoroheptene-ethers Used as Heat Transfer Fluid Replacement Compounds: Measured OH Radical Reaction Rate Coefficients, Atmospheric Lifetimes, and Global Warming Potentials

    Science.gov (United States)

    Jubb, A. M.; Gierczak, T.; Baasandorj, M.; Waterland, R. L.; Burkholder, J. B.

    2013-12-01

    Mixtures of methyl-perfluoroheptene-ethers (C7F13OCH3, MPHEs) are currently in use as a replacement for perfluorinated alkane (PFC) and polyether mixtures (both persistent greenhouse gases with atmospheric lifetimes >1000 years) used as heat transfer fluids. Currently, the atmospheric fate of the MPHE isomers are not well characterized, however, reaction with the OH radical is expected to be a dominant tropospheric loss process for these compounds. In order to assess the atmospheric lifetimes and environmental implications of MPHE use, rate coefficients for MPHE isomers' reaction with OH radicals are desired. In the work presented here, rate coefficients, k, for the gas-phase reaction of the OH radical with six MPHEs commonly used in commercial mixtures (isomers and stereoisomers) and their deuterated analogs (d3-MPHE) were determined at 296 K using a relative rate method with combined gas-chromatography/IR spectroscopy detection. A range of OH rate coefficient values was observed, up to a factor of 20× different, between the MPHE isomers with the (E)-stereoisomers exhibiting the greatest reactivity. The measured OH reaction rate coefficients for the d3-MPHE isomers were lower than the observed MPHE values although a large range of k values between isomers was still observed. The reduction in reactivity with deuteration signifies that the MPHE + OH reaction proceeds via both addition to the olefinic C=C bond and H-abstraction from the methyl ester group. OH addition to the C=C bond was determined to be the primary reaction channel. Atmospheric lifetimes with respect to the OH reaction for the six MPHE isomers were found to be in the range of days to months. The short lifetimes indicate that MPHE use will primarily impact tropospheric local and regional air quality. A MPHE atmospheric degradation mechanism will be presented. As part of this work, radiative efficiencies and global warming potentials (GWPs) for the MPHE isomers were estimated based on measured

  17. Assessing energy efficiencies, economy, and global warming potential (GWP) effects of major crop production systems in Iran: a case study in East Azerbaijan province.

    Science.gov (United States)

    Mohammadzadeh, Arash; Mahdavi Damghani, Abdolmajid; Vafabakhsh, Javad; Deihimfard, Reza

    2017-07-01

    Efficient use of energy in farming systems is one of the most important implications for decreasing greenhouse gas (GHG) emissions and mitigating global warming (GW). This paper describes the energy use patterns, analyze the economics, and report global warming potential effects of major crop production systems in East Azerbaijan province, Iran. For this purpose, 110 farmers whose main activity was major crop production in the region, including wheat, barley, carrot, tomato, onion, potato, alfalfa, corn silage, canola, and saffron, were surveyed. Some other data was obtained from the Ministry of Agriculture Jihad of Iran. Results showed that, in terms of total energy input, onion (87,556 Mj ha -1 ) and potato (80,869 Mj ha -1 ) production systems were more energy-intensive than other crops. Among the studied crops, the highest values of net return (6563.8 $ ha -1 ) and benefit/cost ratio (1.95) were related to carrot and corn silage production systems, respectively. Studies have also shown that onion and saffron production systems emit the highest (5332.6 kg CO2eq ha -1 ) and lowest (646.24 kg CO 2 eq ha -1 ) CO 2 eq. emission, respectively. When it was averaged across crops, diesel fuel accounted for the greatest GHG contribution with 43% of the total, followed by electric power (28%) and nitrogen fertilizer (21%). In the present study, eco-efficiency was calculated as a ratio of the gross production value and global warming potential effect for the studied crops. Out of all the studied crops, the highest values of eco-efficiency were calculated to be 8.65 $ kg CO 2 eq -1 for the saffron production system followed by the carrot (3.65 $ kg CO 2 eq -1 ) production. Generally, from the aspect of energy balance and use efficiency, the alfalfa production system was the best; however, from an economical point of view, the carrot production system was better than the other crops.

  18. Heat-Wave Effects on Oxygen, Nutrients, and Phytoplankton Can Alter Global Warming Potential of Gases Emitted from a Small Shallow Lake.

    Science.gov (United States)

    Bartosiewicz, Maciej; Laurion, Isabelle; Clayer, François; Maranger, Roxane

    2016-06-21

    Increasing air temperatures may result in stronger lake stratification, potentially altering nutrient and biogenic gas cycling. We assessed the impact of climate forcing by comparing the influence of stratification on oxygen, nutrients, and global-warming potential (GWP) of greenhouse gases (the sum of CH4, CO2, and N2O in CO2 equivalents) emitted from a shallow productive lake during an average versus a heat-wave year. Strong stratification during the heat wave was accompanied by an algal bloom and chemically enhanced carbon uptake. Solar energy trapped at the surface created a colder, isolated hypolimnion, resulting in lower ebullition and overall lower GWP during the hotter-than-average year. Furthermore, the dominant CH4 emission pathway shifted from ebullition to diffusion, with CH4 being produced at surprisingly high rates from sediments (1.2-4.1 mmol m(-2) d(-1)). Accumulated gases trapped in the hypolimnion during the heat wave resulted in a peak efflux to the atmosphere during fall overturn when 70% of total emissions were released, with littoral zones acting as a hot spot. The impact of climate warming on the GWP of shallow lakes is a more complex interplay of phytoplankton dynamics, emission pathways, thermal structure, and chemical conditions, as well as seasonal and spatial variability, than previously reported.

  19. The potential effect of global warming on the geographic and seasonal distribution of Phlebotomus papatasi in Southwest Asia

    Energy Technology Data Exchange (ETDEWEB)

    Cross, E.R.; Hyams, K.C. [Naval Medical Research Inst., Bethesda, MD (United States)

    1996-07-01

    The distribution of Phlebotomus papatasi in Southwest Asia is thought to be highly dependent on temperature and relative humidity. A discriminant analysis model based on weather data and reported vector surveys was developed to predict the seasonal and geographic distribution of P. papatasi in this region. To simulate global warming, temperature values for 115 weather stations were increased by 1 {degrees}C, 3{degrees}C, and 5{degrees}C, and the outcome variable coded as unknown in the model. Probability of occurrence values were then predicted for each location with a weather station. Stations with positive probability of occurrence values for May, June, July, and August were considered locations where two or more life cycles of P. papatasi could occur and which could support endemic transmission of leishmaniasis and sandfly fever. Among 115 weather stations, 71 (62%) would be considered endemic with current temperature conditions; 14 (12%) additional station could become endemic with an increase of 1 {degrees}C; 17 (15%) more than a 3{degrees}C increase; and 12 (10%) more (all but one station) with a t{degrees}C increase. In addition to increased geographic distribution, seasonality of disease transmission could be extended throughout 12 months of the year in 7 (6%) locations with at least a 3{degrees}C rise in temperature and in 29 (25%) locations with a 5{degrees}C rise. 15 refs., 4 figs.

  20. Sustaining effect of soil warming on organic matter decomposition

    Science.gov (United States)

    Hou, Ruixing; Ouyang, Zhu; Dorodnikov, Maxim; Wilson, Glenn; Kuzyakov, Yakov

    2015-04-01

    Global warming affects various parts of carbon (C) cycle including acceleration of soil organic matter (SOM) decomposition with strong feedback to atmospheric CO2 concentration. Despite many soil warming studies showed changes of microbial community structure, only very few were focused on sustainability of soil warming on microbial activity associated with SOM decomposition. Two alternative hypotheses: 1) acclimation because of substrate exhaustion and 2) sustaining increase of microbial activity with accelerated decomposition of recalcitrant SOM pools were never proven under long term field conditions. This is especially important in the nowadays introduced no-till crop systems leading to redistribution of organic C at the soil surface, which is much susceptible to warming effects than the rest of the profile. We incubated soil samples from a four-year warming experiment with tillage (T) and no-tillage (NT) practices under three temperatures: 15, 21, and 27 °C, and related the evolved total CO2 efflux to changes of organic C pools. Warmed soils released significantly more CO2 than the control treatment (no warming) at each incubation temperature, and the largest differences were observed under 15 °C (26% increase). The difference in CO2 efflux from NT to T increase with temperature showing high vulnerability of C stored in NT to soil warming. The Q10 value reflecting the sensitivity of SOM decomposition to warming was lower for warmed than non-warmed soil indicating better acclimation of microbes or lower C availability during long term warming. The activity of three extracellular enzymes: β-glucosidase, chitinase, sulphatase, reflecting the response of C, N and S cycles to warming, were significantly higher under warming and especially under NT compared to two other respective treatments. The CO2 released during 2 months of incubation consisted of 85% from recalcitrant SOM and the remaining 15% from microbial biomass and extractable organic C based on the

  1. Decomposition of recalcitrant carbon under experimental warming in boreal forest.

    Directory of Open Access Journals (Sweden)

    Adriana L Romero-Olivares

    Full Text Available Over the long term, soil carbon (C storage is partly determined by decomposition rate of carbon that is slow to decompose (i.e., recalcitrant C. According to thermodynamic theory, decomposition rates of recalcitrant C might differ from those of non-recalcitrant C in their sensitivities to global warming. We decomposed leaf litter in a warming experiment in Alaskan boreal forest, and measured mass loss of recalcitrant C (lignin vs. non-recalcitrant C (cellulose, hemicellulose, and sugars throughout 16 months. We found that these C fractions responded differently to warming. Specifically, after one year of decomposition, the ratio of recalcitrant C to non-recalcitrant C remaining in litter declined in the warmed plots compared to control. Consistent with this pattern, potential activities of enzymes targeting recalcitrant C increased with warming, relative to those targeting non-recalcitrant C. Even so, mass loss of individual C fractions showed that non-recalcitrant C is preferentially decomposed under control conditions whereas recalcitrant C losses remain unchanged between control and warmed plots. Moreover, overall mass loss was greater under control conditions. Our results imply that direct warming effects, as well as indirect warming effects (e.g. drying, may serve to maintain decomposition rates of recalcitrant C compared to non-recalcitrant C despite negative effects on overall decomposition.

  2. Decomposition of recalcitrant carbon under experimental warming in boreal forest.

    Science.gov (United States)

    Romero-Olivares, Adriana L; Allison, Steven D; Treseder, Kathleen K

    2017-01-01

    Over the long term, soil carbon (C) storage is partly determined by decomposition rate of carbon that is slow to decompose (i.e., recalcitrant C). According to thermodynamic theory, decomposition rates of recalcitrant C might differ from those of non-recalcitrant C in their sensitivities to global warming. We decomposed leaf litter in a warming experiment in Alaskan boreal forest, and measured mass loss of recalcitrant C (lignin) vs. non-recalcitrant C (cellulose, hemicellulose, and sugars) throughout 16 months. We found that these C fractions responded differently to warming. Specifically, after one year of decomposition, the ratio of recalcitrant C to non-recalcitrant C remaining in litter declined in the warmed plots compared to control. Consistent with this pattern, potential activities of enzymes targeting recalcitrant C increased with warming, relative to those targeting non-recalcitrant C. Even so, mass loss of individual C fractions showed that non-recalcitrant C is preferentially decomposed under control conditions whereas recalcitrant C losses remain unchanged between control and warmed plots. Moreover, overall mass loss was greater under control conditions. Our results imply that direct warming effects, as well as indirect warming effects (e.g. drying), may serve to maintain decomposition rates of recalcitrant C compared to non-recalcitrant C despite negative effects on overall decomposition.

  3. Decomposition of recalcitrant carbon under experimental warming in boreal forest

    Science.gov (United States)

    Allison, Steven D.; Treseder, Kathleen K.

    2017-01-01

    Over the long term, soil carbon (C) storage is partly determined by decomposition rate of carbon that is slow to decompose (i.e., recalcitrant C). According to thermodynamic theory, decomposition rates of recalcitrant C might differ from those of non-recalcitrant C in their sensitivities to global warming. We decomposed leaf litter in a warming experiment in Alaskan boreal forest, and measured mass loss of recalcitrant C (lignin) vs. non-recalcitrant C (cellulose, hemicellulose, and sugars) throughout 16 months. We found that these C fractions responded differently to warming. Specifically, after one year of decomposition, the ratio of recalcitrant C to non-recalcitrant C remaining in litter declined in the warmed plots compared to control. Consistent with this pattern, potential activities of enzymes targeting recalcitrant C increased with warming, relative to those targeting non-recalcitrant C. Even so, mass loss of individual C fractions showed that non-recalcitrant C is preferentially decomposed under control conditions whereas recalcitrant C losses remain unchanged between control and warmed plots. Moreover, overall mass loss was greater under control conditions. Our results imply that direct warming effects, as well as indirect warming effects (e.g. drying), may serve to maintain decomposition rates of recalcitrant C compared to non-recalcitrant C despite negative effects on overall decomposition. PMID:28622366

  4. Safety and efficacy of resistive polymer versus forced air warming in total joint surgery.

    Science.gov (United States)

    Sandoval, Melanie F; Mongan, Paul D; Dayton, Michael R; Hogan, Craig A

    2017-01-01

    Forced-air warming is used as a mechanism to prevent hypothermia and adverse outcomes associated with hypothermia among patients undergoing surgery. Patient safety in healthcare includes the use of devices and technology that minimize potential adverse events to patients. The present study sought to compare the capabilities of patient warming between two different devices that use different mechanisms of warming: forced-air warming and non-air warming. One hundred twenty patients undergoing total hip or total knee arthroplasty received patient warming via a forced warming device or non-air warming fabric conductive material. The project was part of a quality improvement initiative to identify warming devices effective in maintaining normothermic patient core temperatures during orthopedic surgery. Forced-air warming and non-air warming achieved similar results in maintaining the core temperature of patients undergoing total knee or hip arthroplasty. No adverse events were reported in either group. Operating room staff observed that the non-air warming device was less noisy and appreciated the disposable covers that could be changed after each surgical case. These findings demonstrate that hypothermia is achieved by both forced-air and non-forced air warming devices among total knee and hip arthroplasty patients. The potential for airflow disruption is present with the forced-air warming device and does not exist with the non-forced air device. The disruption of laminar airflow may be associated with surgical site infections. The disposable covers used to protect the device and patient have potential implications for surgical site infection. Quality improvement efforts aimed to enhance patient safety should include the implementation of healthcare equipment with the least known or suspected risk.

  5. Potential for the slow growing coral Diploastrea heliopora to yield multi-century Western Pacific Warm Pool climate records

    Science.gov (United States)

    Maupin, C. R.; Quinn, T. M.; Taylor, F. W.

    2009-12-01

    Coral-based stable isotope records of climate variability have begun to provide insight into behavior of the Western Pacific Warm Pool (WPWP), a planetary heat and moisture source and the center of action for the largest source of interannual climate variability on the planet, the El Niño-Southern Oscillation (ENSO). However, no multi-century stable isotope records from the WPWP exist, as the commonly utilized Porites spp. corals from the WPWP region tend to have a relatively short lifespan (< 200 years). Therefore, development of stable isotope records from the longer lived and slower growing (< 0.5 cm yr-1) coral Diploastrea heliopora is a critical step in generating multi-century WPWP-based climate records and examining modern behavior of ENSO in the context of the immediate preindustrial period. However, previous work has emphasized the difficulty of sampling the intricate skeleton of D. heliopora. Here we have utilized a computer controlled micro-milling stage to extract approximately monthly resolved samples from the columnella of individual polyps of cores collected from a D. heliopora colony from off of Olasana Island (8°07.92’ S, 156°54.50’ E), Western Province, Solomon Islands. The Western Province lies within the WPWP, under the South Pacific Convergence Zone, and ENSO-related variability is exhibited by instrumental salinity, rainfall and temperature time series. The ENSO events contained within the resulting preliminary 52-year (1939-1991) time series of δ18O generated from the Olasana D. heliopora colony are unambiguous, and the ENSO-band filtered time series is strongly correlated with the NINO 3.4 index. Additionally, δ18O variations are highly reproducible between individual polyps sampled. These results suggest that careful sampling of this rarely utilized coral can yield robust, multi-century time series of climate variability from D. heliopora from the WPWP.

  6. Sensitivity of the boreal forest-mire ecotone CO2, CH4, and N2O global warming potential to rainy and dry weather

    Science.gov (United States)

    Ťupek, Boris; Minkkinen, Kari; Vesala, Timo; Nikinmaa, Eero

    2015-04-01

    In a mosaic of well drained forests and poorly drained mires of boreal landscape the weather events such as drought and rainy control greenhouse gas dynamics and ecosystem global warming potential (GWP). In forest-mire ecotone especially in ecosystems where CO2 sink is nearly balanced with CO2 source, it's fairly unknown whether the net warming effect of emissions of gases with strong radiative forcing (CH4 and N2O) could offset the net cooling effect of CO2 sequestration. We compared the net ecosystem CO2 exchange (NEE) estimated from the carbon sequestrations of forest stands and forest floor CO2 fluxes against CH4 and N2O fluxes of nine forest/mire site types along the soil moisture gradient in Finland. The ground water of nine sites changed between 10 m in upland forests and 0.1 m in mires, and weather during three years ranged between exceptionally wet and dry for the local climate. The NEE of upland forests was typically a sink of CO2, regardless the weather. Though, xeric pine forest was estimated to be a source of CO2 during wet and intermediate year and became a weak sink only in dry year. The NEE of forest-mire transitions ranged between a sink in dry year, while increased stand carbon sequestration could offset the reduced forest floor CO2 emission, and a source in wet year. The NEE of two sparsely forested mires strongly differed. The lawn type mire was balanced around zero and the hummock type mire was relatively strong NEE sink, regardless the weather. Generally, nearly zero N2O emission could not offset the cooling effect of net CH4 sink and net CO2 sink of upland forest and forest-mire transitions. However in sparsely forested mires, with N2O emission also nearly zero, the CH4 emission during wet and intermediate year played important role in turning the net cooling effect of NEE into a net warming. When evaluating GWP of boreal landscapes, undisturbed forest-mire transitions should be regarded as net cooling ecosystems instead of hotspots of net

  7. Realizing the Latent Potential in the Part-Time Student Workforce

    Science.gov (United States)

    Evans, Carl; Richardson, Mark

    2016-01-01

    The purpose of this article is to challenge employers to make the best use of the latent potential of their part-time student workforce and to retain this talent postgraduation. The authors report research which shows that increasing numbers of university students are working part-time alongside their degree studies, while at the same time…

  8. Anti-diabetic potential of aerial parts of Galium tricornutum (Dandy ...

    African Journals Online (AJOL)

    Purpose: To evaluate the anti-diabetic potential of methanol extract of the aerial parts of Galium tricornutum (Dandy) in diabetic rats. Methods: The methanol extract of the aerial parts of Galium tricornutum was first subjected to acute toxicity studies. Thereafter, the effect of the extract on oral glucose tolerance was determined ...

  9. Global warming potential of material fractions occurring in source-separated organic household waste treated by anaerobic digestion or incineration under different framework conditions

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-01-01

    This study compared the environmental profiles of anaerobic digestion (AD) and incineration, in relation to global warming potential (GWP), for treating individual material fractions that may occur in source-separated organic household waste (SSOHW). Different framework conditions representative....... The study was performed using a life cycle assessment in its consequential approach. Furthermore, the role of waste-sorting guidelines (defined by the material fractions allowed for SSOHW) in relation to GWP of treating overall SSOHW with AD was investigated. A case-study of treating 1tonne of SSOHW under...... framework conditions in Denmark was conducted. Under the given assumptions, vegetable food waste was the only material fraction which was always better for AD compared to incineration. For animal food waste, kitchen tissue, vegetation waste and dirty paper, AD utilisation was better unless it was compared...

  10. Improvement of the repulsive part of the classical interatomic potential for SiC

    CERN Document Server

    Belko, V; Chagarov, E

    2003-01-01

    In order to enable a better description of ballistic and athermal processes occurring in the initial stage of ion-beam-induced defect formation, the repulsive part of the interatomic potentials of Gao and Tersoff is improved. The first modification concerns the two-body part of the potentials. At small interatomic distances it is replaced by the well-tested potential of Ziegler, Biersack and Littmark (ZBL). For repulsive interactions between zero and some 10 electron volt, an exponential spline function is employed to connect the ZBL potential with the two-body part of the Tersoff and the Gao potential. The modified two-body potentials and their first derivatives are continuous and monotonic over the whole range of repulsive interaction. They are in good agreement with data obtained by density-functional-theory calculations. Furthermore, the three-body part of the Tersoff and the Gao potential is modified in order to avoid the strong dependence of repulsive interactions between two atoms on the bond-order par...

  11. Modeling impacts of alternative practices on net global warming potential and greenhouse gas intensity from rice-wheat annual rotation in China.

    Directory of Open Access Journals (Sweden)

    Jinyang Wang

    Full Text Available BACKGROUND: Evaluating the net exchange of greenhouse gas (GHG emissions in conjunction with soil carbon sequestration may give a comprehensive insight on the role of agricultural production in global warming. MATERIALS AND METHODS: Measured data of methane (CH(4 and nitrous oxide (N(2O were utilized to test the applicability of the Denitrification and Decomposition (DNDC model to a winter wheat - single rice rotation system in southern China. Six alternative scenarios were simulated against the baseline scenario to evaluate their long-term (45-year impacts on net global warming potential (GWP and greenhouse gas intensity (GHGI. PRINCIPAL RESULTS: The simulated cumulative CH(4 emissions fell within the statistical deviation ranges of the field data, with the exception of N(2O emissions during rice-growing season and both gases from the control treatment. Sensitivity tests showed that both CH(4 and N(2O emissions were significantly affected by changes in both environmental factors and management practices. Compared with the baseline scenario, the long-term simulation had the following results: (1 high straw return and manure amendment scenarios greatly increased CH(4 emissions, while other scenarios had similar CH(4 emissions, (2 high inorganic N fertilizer increased N(2O emissions while manure amendment and reduced inorganic N fertilizer scenarios decreased N(2O emissions, (3 the mean annual soil organic carbon sequestration rates (SOCSR under manure amendment, high straw return, and no-tillage scenarios averaged 0.20 t C ha(-1 yr(-1, being greater than other scenarios, and (4 the reduced inorganic N fertilizer scenario produced the least N loss from the system, while all the scenarios produced comparable grain yields. CONCLUSIONS: In terms of net GWP and GHGI for the comprehensive assessment of climate change and crop production, reduced inorganic N fertilizer scenario followed by no-tillage scenario would be advocated for this specified

  12. Modeling Impacts of Alternative Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Rice–Wheat Annual Rotation in China

    Science.gov (United States)

    Wang, Jinyang; Zhang, Xiaolin; Liu, Yinglie; Pan, Xiaojian; Liu, Pingli; Chen, Zhaozhi; Huang, Taiqing; Xiong, Zhengqin

    2012-01-01

    Background Evaluating the net exchange of greenhouse gas (GHG) emissions in conjunction with soil carbon sequestration may give a comprehensive insight on the role of agricultural production in global warming. Materials and Methods Measured data of methane (CH4) and nitrous oxide (N2O) were utilized to test the applicability of the Denitrification and Decomposition (DNDC) model to a winter wheat – single rice rotation system in southern China. Six alternative scenarios were simulated against the baseline scenario to evaluate their long-term (45-year) impacts on net global warming potential (GWP) and greenhouse gas intensity (GHGI). Principal Results The simulated cumulative CH4 emissions fell within the statistical deviation ranges of the field data, with the exception of N2O emissions during rice-growing season and both gases from the control treatment. Sensitivity tests showed that both CH4 and N2O emissions were significantly affected by changes in both environmental factors and management practices. Compared with the baseline scenario, the long-term simulation had the following results: (1) high straw return and manure amendment scenarios greatly increased CH4 emissions, while other scenarios had similar CH4 emissions, (2) high inorganic N fertilizer increased N2O emissions while manure amendment and reduced inorganic N fertilizer scenarios decreased N2O emissions, (3) the mean annual soil organic carbon sequestration rates (SOCSR) under manure amendment, high straw return, and no-tillage scenarios averaged 0.20 t C ha−1 yr−1, being greater than other scenarios, and (4) the reduced inorganic N fertilizer scenario produced the least N loss from the system, while all the scenarios produced comparable grain yields. Conclusions In terms of net GWP and GHGI for the comprehensive assessment of climate change and crop production, reduced inorganic N fertilizer scenario followed by no-tillage scenario would be advocated for this specified cropping system. PMID

  13. Performance Prediction of Centrifugal Compressor for Drop-In Testing Using Low Global Warming Potential Alternative Refrigerants and Performance Test Codes

    Directory of Open Access Journals (Sweden)

    Joo Hoon Park

    2017-12-01

    Full Text Available As environmental regulations to stall global warming are strengthened around the world, studies using newly developed low global warming potential (GWP alternative refrigerants are increasing. In this study, substitute refrigerants, R-1234ze (E and R-1233zd (E, were used in the centrifugal compressor of an R-134a 2-stage centrifugal chiller with a fixed rotational speed. Performance predictions and thermodynamic analyses of the centrifugal compressor for drop-in testing were performed. A performance prediction method based on the existing ASME PTC-10 performance test code was proposed. The proposed method yielded the expected operating area and operating point of the centrifugal compressor with alternative refrigerants. The thermodynamic performance of the first and second stages of the centrifugal compressor was calculated as the polytropic state. To verify the suitability of the proposed method, the drop-in test results of the two alternative refrigerants were compared. The predicted operating range based on the permissible deviation of ASME PTC-10 confirmed that the temperature difference was very small at the same efficiency. Because the drop-in test of R-1234ze (E was performed within the expected operating range, the centrifugal compressor using R-1234ze (E is considered well predicted. However, the predictions of the operating point and operating range of R-1233zd (E were lower than those of the drop-in test. The proposed performance prediction method will assist in understanding thermodynamic performance at the expected operating point and operating area of a centrifugal compressor using alternative gases based on limited design and structure information.

  14. Global warming

    CERN Document Server

    Hulme, M

    1998-01-01

    Global warming-like deforestation, the ozone hole and the loss of species- has become one of the late 20the century icons of global environmental damage. The threat, is not the reality, of such a global climate change has motivated governments. businesses and environmental organisations, to take serious action ot try and achieve serious control of the future climate. This culminated last December in Kyoto in the agreement for legally-binding climate protocol. In this series of three lectures I will provide a perspective on the phenomenon of global warming that accepts the scientific basis for our concern, but one that also recognises the dynamic interaction between climate and society that has always exited The future will be no different. The challenge of global warning is not to pretend it is not happening (as with some pressure groups), nor to pretend it threatens global civilisation (as with other pressure groups), and it is not even a challenge to try and stop it from happening-we are too far down the ro...

  15. Potential Responses of Vascular Plants from the Pristine "Lost World" of the Neotropical Guayana Highlands to Global Warming: Review and New Perspectives.

    Science.gov (United States)

    Rull, Valentí; Vegas-Vilarrúbia, Teresa

    2017-01-01

    The neotropical Guayana Highlands (GH) are one of the few remaining pristine environments on Earth, and they host amazing biodiversity with a high degree endemism, especially among vascular plants. Despite the lack of direct human disturbance, GH plants and their communities are threatened with extinction from habitat loss due to global warming (GW). Geographic information systems simulations involving the entire known vascular GH flora (>2430 species) predict potential GW-driven extinctions on the order of 80% by the end of this century, including nearly half of the endemic species. These estimates and the assessment of an environmental impact value for each species led to the hierarchization of plants by their risk of habitat loss and the definition of priority conservation categories. However, the predictions assume that all species will respond to GW by migrating upward and at equal rates, which is unlikely, so current estimates should be considered preliminary and incomplete (although they represent the best that can be done with the existing information). Other potential environmental forcings (i.e., precipitation shifts, an increase in the atmospheric CO 2 concentration) and idiosyncratic plant responses (i.e., resistance, phenotypic acclimation, rapid evolution) should also be considered, so detailed eco-physiological studies of the more threatened species are urgently needed. The main obstacles to developing such studies are the remoteness and inaccessibility of the GH and, especially, the difficulty in obtaining official permits for fieldwork.

  16. Warm-adapted microbial communities enhance their carbon-use efficiency in warmed soils

    Science.gov (United States)

    Rousk, Johannes; Frey, Serita

    2017-04-01

    negligible changes in Topt, Tmin and Q10 for respiration. When these physiological changes were scaled with soil temperature data to estimate real-time variation in situ during three years, the warm-adaptation resulted in elevated microbial CUEs during summer temperatures in warm-adapted communities and reduced microbial CUEs during winter temperatures. By comparing simulated microbial CUEs in cold-adapted communities exposed to warmed conditions to microbial CUEs in the warm-adapted communities exposed to those temperatures, we could demonstrate that the shifts towards warm-adapted microbial communities had selected for elevated microbial CUEs for the full range of in situ soil temperatures during three years. Our results suggest that microbial adaptation to warming will enhance microbial CUEs, shifting their balance of C use from respiration to biomass production. If our estimates scale to ecosystem level, this would imply that warm-adapted microbial communities will ultimately have the potential to store more C in soil than their cold-adapted counter parts could when exposed to warmer temperatures.

  17. Infrared Absorption Spectra, Radiative Efficiencies, and Global Warming Potentials of Newly-Detected Halogenated Compounds: CFC-113a, CFC-112 and HCFC-133a

    Directory of Open Access Journals (Sweden)

    Maryam Etminan

    2014-07-01

    Full Text Available CFC-113a (CF3CCl3, CFC-112 (CFCl2CFCl2 and HCFC-133a (CF3CH2Cl are three newly detected molecules in the atmosphere that are almost certainly emitted as a result of human activity. It is important to characterise the possible contribution of these gases to radiative forcing of climate change and also to provide information on the CO2-equivalence of their emissions. We report new laboratory measurements of absorption cross-sections of these three compounds at a resolution of 0.01 cm−1 for two temperatures 250 K and 295 K in the spectral range of 600–1730 cm−1. These spectra are then used to calculate the radiative efficiencies and global warming potentials (GWP. The radiative efficiencies are found to be between 0.15 and 0.3 W∙m−2∙ppbv−1. The GWP for a 100 year time horizon, relative to carbon dioxide, ranges from 340 for the relatively short-lived HCFC-133a to 3840 for the longer-lived CFC-112. At current (2012 concentrations, these gases make a trivial contribution to total radiative forcing; however, the concentrations of CFC-113a and HCFC-133a are continuing to increase. The 2012 CO2-equivalent emissions, using the GWP (100, are estimated to be about 4% of the current global CO2-equivalent emissions of HFC-134a.

  18. Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115

    Directory of Open Access Journals (Sweden)

    A. Totterdill

    2016-09-01

    Full Text Available Fluorinated compounds such as NF3 and C2F5Cl (CFC-115 are characterised by very large global warming potentials (GWPs, which result from extremely long atmospheric lifetimes and strong infrared absorptions in the atmospheric window. In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. The infrared cross sections are within 10 % of previous measurements for CFC-115 but are found to be somewhat larger than previous estimates for NF3, leading to a radiative efficiency for NF3 that is 25 % larger than that quoted in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A whole atmosphere chemistry–climate model was used to determine the atmospheric lifetimes of NF3 and CFC-115 to be (509 ± 21 years and (492 ± 22 years, respectively. The GWPs for NF3 are estimated to be 15 600, 19 700 and 19 700 over 20, 100 and 500 years, respectively. Similarly, the GWPs for CFC-115 are 6030, 7570 and 7480 over 20, 100 and 500 years, respectively.

  19. Potential of bioenergy with carbon capture and storage to limit global warming to 1.5°C and its climate implications

    Science.gov (United States)

    Muri, Helene

    2017-04-01

    The increasing awareness of the many damaging aspects of climate change over this century and beyond has prompted research into ways of reducing and reversing the recent man-made increase of the carbon concentrations in the atmosphere. Most IPCC emission scenarios stabilising climate at low levels, like the 1.5°C target as outlined by the Paris Agreement, require large scale deployment of Bio-Energy with Carbon Capture and Storage (BECCS). Here, the potential of large scale BECCS deployment in reaching the 1.5°C global warming target is evaluated alongside associated climate and carbon cycle responses. An Earth system model with fully coupled carbon cycle and interactive biogeochemistry is used to assess different BECCS deployment scenarios, including an extreme case scenario, alongside strong mitigation. Large-scale BECCS deployment influence not only the global carbon cycle, but also the feedbacks between the atmosphere and land surface. Changing the land cover to biocrops affects the terrestrial store of carbon, and also the physical properties of the land surface, i.e. biophysical forcing, which leads to important feedbacks in the climate system. The climate implications, including changes to the hydrological cycle, of large scale BECCS deployment will be presented.

  20. The Effects of Rape Residue Mulching on Net Global Warming Potential and Greenhouse Gas Intensity from No-Tillage Paddy Fields

    Science.gov (United States)

    Zhang, Zhi-Sheng; Cao, Cou-Gui; Guo, Li-Jin; Li, Cheng-Fang

    2014-01-01

    A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha−1) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulching treatments showed significantly more organic carbon (C) density for the 0–20 cm soil layer at harvesting than no residue treatment. During a rice-growing season, residue mulching treatments sequestered significantly more organic C from 687 kg C ha−1 season−1 to 1654 kg C ha−1 season−1 than no residue treatment. Residue mulching significantly increased emissions of CO2 and N2O but decreased CH4 emissions. Residue mulching treatments significantly increased GWP by 9–30% but significantly decreased net GWP by 33–71% and GHGI by 35–72% relative to no residue treatment. These results suggest that agricultural economic viability and GHG mitigation can be achieved simultaneously by residue mulching on NT paddy fields in central China. PMID:25140329

  1. High-global warming potential F-gas emissions in California: comparison of ambient-based versus inventory-based emission estimates, and implications of refined estimates.

    Science.gov (United States)

    Gallagher, Glenn; Zhan, Tao; Hsu, Ying-Kuang; Gupta, Pamela; Pederson, James; Croes, Bart; Blake, Donald R; Barletta, Barbara; Meinardi, Simone; Ashford, Paul; Vetter, Arnie; Saba, Sabine; Slim, Rayan; Palandre, Lionel; Clodic, Denis; Mathis, Pamela; Wagner, Mark; Forgie, Julia; Dwyer, Harry; Wolf, Katy

    2014-01-21

    To provide information for greenhouse gas reduction policies, the California Air Resources Board (CARB) inventories annual emissions of high-global-warming potential (GWP) fluorinated gases, the fastest growing sector of greenhouse gas (GHG) emissions globally. Baseline 2008 F-gas emissions estimates for selected chlorofluorocarbons (CFC-12), hydrochlorofluorocarbons (HCFC-22), and hydrofluorocarbons (HFC-134a) made with an inventory-based methodology were compared to emissions estimates made by ambient-based measurements. Significant discrepancies were found, with the inventory-based emissions methodology resulting in a systematic 42% under-estimation of CFC-12 emissions from older refrigeration equipment and older vehicles, and a systematic 114% overestimation of emissions for HFC-134a, a refrigerant substitute for phased-out CFCs. Initial, inventory-based estimates for all F-gas emissions had assumed that equipment is no longer in service once it reaches its average lifetime of use. Revised emission estimates using improved models for equipment age at end-of-life, inventories, and leak rates specific to California resulted in F-gas emissions estimates in closer agreement to ambient-based measurements. The discrepancies between inventory-based estimates and ambient-based measurements were reduced from -42% to -6% for CFC-12, and from +114% to +9% for HFC-134a.

  2. Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115)

    Science.gov (United States)

    Totterdill, Anna; Kovács, Tamás; Feng, Wuhu; Dhomse, Sandip; Smith, Christopher J.; Gómez-Martín, Juan Carlos; Chipperfield, Martyn P.; Forster, Piers M.; Plane, John M. C.

    2016-09-01

    Fluorinated compounds such as NF3 and C2F5Cl (CFC-115) are characterised by very large global warming potentials (GWPs), which result from extremely long atmospheric lifetimes and strong infrared absorptions in the atmospheric window. In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. The infrared cross sections are within 10 % of previous measurements for CFC-115 but are found to be somewhat larger than previous estimates for NF3, leading to a radiative efficiency for NF3 that is 25 % larger than that quoted in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A whole atmosphere chemistry-climate model was used to determine the atmospheric lifetimes of NF3 and CFC-115 to be (509 ± 21) years and (492 ± 22) years, respectively. The GWPs for NF3 are estimated to be 15 600, 19 700 and 19 700 over 20, 100 and 500 years, respectively. Similarly, the GWPs for CFC-115 are 6030, 7570 and 7480 over 20, 100 and 500 years, respectively.

  3. Anthropogenic organochlorine compounds as potential tracers for regional water masses: A case study of estuarine plume, coastal eddy, wind-driven upwelling and long-range warm current.

    Science.gov (United States)

    Ya, Miaolei; Wu, Yuling; Li, Yongyu; Wang, Xinhong

    2017-03-01

    Water masses are the crucial factor driving the terrigenous anthropogenic organochlorine compounds (OCs) migration from the coast to open sea. Therefore, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were investigated in the Northern South China Sea (NSCS), where different types of water masses are generated by the East Asian summer monsoon: Pearl River estuary plume (PREP), Guangdong offshore eddy (GDEC), South China Sea warm current (SCSWC) and wind-driven upwelling current (WDUC). No discrepant distributions of OC concentrations were found in these water masses (p > 0.05). However, compositions and diagnostic ratios of HCHs, DDTs, trans- or cis-chlordane and PCBs could reflect the discrepancies in the input, transport and transformation of OCs caused by the hydrological characteristics of water masses, therefore, this allowing them to serve as potential tracers of regional water masses. In detail, α/γ-HCH and β-HCH percentages could indicate the weathered residue in the GDEC, long-range transport in the SCSWC, rapid photodegradation in the surface WDUC and biodegradation in the deep WDUC, respectively. The predominance of o, p'-DDT and p, p'-DDT could indicate fresh input in the PREP, GDEC and WDUC. DDT/DDTs of ratios erosion in the PREP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of organic fertilizer on net global warming potential under an intensively managed vegetable field in southeastern China: A three-year field study

    Science.gov (United States)

    Zhang, M.; Li, B.; Xiong, Z. Q.

    2016-11-01

    Organic fertilizer may not only improve soil quality but may also contribute to climate protection by increasing carbon sequestration in agricultural ecosystems. A 3-yr study was conducted with ten consecutive vegetable crops in intensively managed vegetable cropping systems in southeastern China to examine the effects of organic fertilizer application (ORGA) on net global warming potential (net GWP) after accounting for carbon dioxide equivalent emissions from all sources including methane (CH4) and nitrous oxide (N2O) emissions, agrochemical inputs and farm operations and sinks (i.e., soil organic carbon (SOC) sequestration derived from the net ecosystem carbon budget). Results indicated that ORGA significantly increased ecosystem respiration by 13.9% without obvious effects on CH4 and N2O emissions as compared to local conventional chemical fertilization (CHEM). The SOC sequestration rates during the 3-year observation period were estimated at -0.52 t C ha-1 for the control, -0.42 t C ha-1 for the CHEM plot and 0.27 t C ha-1 for the ORGA plot, respectively, and thus contributed significantly to the net GWP. Overall, compared with CHEM, the ORGA significantly decreased net GWP and greenhouse gas intensity by 15.3% and 27.4%, respectively. Our findings suggest that higher yields and lower greenhouse gas intensities and carbon costs can be achieved by substituting chemical nitrogen fertilizers with organic fertilization strategies.

  5. Global warming potential of material fractions occurring in source-separated organic household waste treated by anaerobic digestion or incineration under different framework conditions.

    Science.gov (United States)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-12-01

    This study compared the environmental profiles of anaerobic digestion (AD) and incineration, in relation to global warming potential (GWP), for treating individual material fractions that may occur in source-separated organic household waste (SSOHW). Different framework conditions representative for the European Union member countries were considered. For AD, biogas utilisation with a biogas engine was considered and two potential situations investigated - biogas combustion with (1) combined heat and power production (CHP) and (2) electricity production only. For incineration, four technology options currently available in Europe were covered: (1) an average incinerator with CHP production, (2) an average incinerator with mainly electricity production, (3) an average incinerator with mainly heat production and (4) a state-of-the art incinerator with CHP working at high energy recovery efficiencies. The study was performed using a life cycle assessment in its consequential approach. Furthermore, the role of waste-sorting guidelines (defined by the material fractions allowed for SSOHW) in relation to GWP of treating overall SSOHW with AD was investigated. A case-study of treating 1tonne of SSOHW under framework conditions in Denmark was conducted. Under the given assumptions, vegetable food waste was the only material fraction which was always better for AD compared to incineration. For animal food waste, kitchen tissue, vegetation waste and dirty paper, AD utilisation was better unless it was compared to a highly efficient incinerator. Material fractions such as moulded fibres and dirty cardboard were attractive for AD, albeit only when AD with CHP and incineration with mainly heat production were compared. Animal straw, in contrast, was always better to incinerate. Considering the total amounts of individual material fractions in waste generated within households in Denmark, food waste (both animal and vegetable derived) and kitchen tissue are the main material

  6. Differential Responses of Dinitrogen Fixation, Diazotrophic Cyanobacteria and Ammonia Oxidation Reveal a Potential Warming-Induced Imbalance of the N-Cycle in Biological Soil Crusts.

    Directory of Open Access Journals (Sweden)

    Xiaobing Zhou

    Full Text Available N2 fixation and ammonia oxidation (AO are the two most important processes in the nitrogen (N cycle of biological soil crusts (BSCs. We studied the short-term response of acetylene reduction assay (ARA rates, an indicator of potential N2 fixation, and AO rates to temperature (T, -5°C to 35°C in BSC of different successional stages along the BSC ecological succession and geographic origin (hot Chihuahuan and cooler Great Basin deserts. ARA in all BSCs increased with T until saturation occurred between 15 and 20°C, and declined at 30-35°C. Culture studies using cyanobacteria isolated from these crusts indicated that the saturating effect was traceable to their inability to grow well diazotrophically within the high temperature range. Below saturation, temperature response was exponential, with Q10 significantly different in the two areas (~ 5 for Great Basin BSCs; 2-3 for Chihuahuan BSCs, but similar between the two successional stages. However, in contrast to ARA, AO showed a steady increase to 30-35°C in Great Basin, and Chihuhuan BSCs showed no inhibition at any tested temperature. The T response of AO also differed significantly between Great Basin (Q10 of 4.5-4.8 and Chihuahuan (Q10 of 2.4-2.6 BSCs, but not between successional stages. Response of ARA rates to T did not differ from that of AO in either desert. Thus, while both processes scaled to T in unison until 20°C, they separated to an increasing degree at higher temperature. As future warming is likely to occur in the regions where BSCs are often the dominant living cover, this predicted decoupling is expected to result in higher proportion of nitrates in soil relative to ammonium. As nitrate is more easily lost as leachate or to be reduced to gaseous forms, this could mean a depletion of soil N over large landscapes globally.

  7. Effects of cattle-slurry treatment by acidification and separation on nitrogen dynamics and global warming potential after surface application to an acidic soil.

    Science.gov (United States)

    Fangueiro, David; Pereira, José; Bichana, André; Surgy, Sónia; Cabral, Fernanda; Coutinho, João

    2015-10-01

    Cattle-slurry (liquid manure) application to soil is a common practice to provide nutrients and organic matter for crop growth but it also strongly impacts the environment. The objective of the present study was to assess the efficiency of cattle-slurry treatment by solid-liquid separation and/or acidification on nitrogen dynamics and global warming potential (GWP) following application to an acidic soil. An aerobic laboratory incubation was performed over 92 days with a Dystric Cambisol amended with raw cattle-slurry or separated liquid fraction (LF) treated or not by acidification to pH 5.5 by addition of sulphuric acid. Soil mineral N contents and NH3, N2O, CH4 and CO2 emissions were measured. Results obtained suggest that the acidification of raw cattle-slurry reduced significantly NH3 emissions (-88%) but also the GWP (-28%) while increased the N availability relative to raw cattle-slurry (15% of organic N applied mineralised against negative mineralisation in raw slurry). However, similar NH3 emissions and GWP were observed in acidified LF and non-acidified LF treatments. On the other hand, soil application of acidified cattle-slurry rather than non-acidified LF should be preferred attending the lower costs associated to acidification compared to solid-liquid separation. It can then be concluded that cattle-slurry acidification is a solution to minimise NH3 emissions from amended soil and an efficient strategy to decrease the GWP associated with slurry application to soil. Furthermore, the more intense N mineralisation observed with acidified slurry should lead to a higher amount of plant available N and consequently to higher crop yields. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Subsurface watering resulted in reduced soil N2O and CO2 emissions and their global warming potentials than surface watering

    Science.gov (United States)

    Wei, Qi; Xu, Junzeng; Yang, Shihong; Liao, Linxian; Jin, Guangqiu; Li, Yawei; Hameed, Fazli

    2018-01-01

    Water management is an important practice with significant effect on greenhouse gases (GHG) emission from soils. Nitrous oxide (N2O) and carbon dioxide (CO2) emissions and their global warming potentials (GWPs) from subsurface watering soil (SUW) were investigated, with surface watering (SW) as a control. Results indicated that the N2O and CO2 emissions from SUW soils were somewhat different to those from SW soil, with the peak N2O and CO2 fluxes from SUW soil reduced by 28.9% and 19.4%, and appeared 72 h and 168 h later compared with SW. The fluxes of N2O and CO2 from SUW soils were lower than those from SW soil in both pulse and post-pulse periods, and the reduction was significantly (p0.1) lower that from SW soil. Moreover, N2O and CO2 fluxes from both watering treatments increased exponentially with increase of soil water-filled pore space (WFPS) and temperature. Our results suggest that watering soil from subsurface could significantly reduce the integrative greenhouse effect caused by N2O and CO2 and is a promising strategy for soil greenhouse gases (GHGs) mitigation. And the pulse period, contributed most to the reduction in emissions of N2O and CO2 from soils between SW and SUW, should be a key period for mitigating GHGs emissions. Response of N2O and CO2 emissions to soil WFPS and temperature illustrated that moisture was the dominant parameters that triggering GHG pulse emissions (especially for N2O), and temperature had a greater effect on the soil microorganism activity than moisture in drier soil. Avoiding moisture and temperature are appropriate for GHG emission at the same time is essential for GHGs mitigation, because peak N2O and CO2 emission were observed only when moisture and temperature are both appropriate.

  9. Cumulative energy demand and global warming potential of a building-integrated solar thermal system with/without phase change material.

    Science.gov (United States)

    Lamnatou, Chr; Motte, F; Notton, G; Chemisana, D; Cristofari, C

    2018-02-13

    Building-integrated solar thermal (BIST) systems are a specific type of solar thermal systems which are integrated into the building and they participate in building functionality. The present article is about the life-cycle assessment of different options of a BIST system (Mediterranean climatic conditions: Ajaccio, France). The environmental profile of the studied configurations is assessed by means of CED (cumulative energy demand), GWP (global warming potential) and EPBT (energy payback time). The proposed configurations (for the collector) include: i) a system without PCM (phase change material) using only rock wool as insulation and ii) a system with PCM (myristic acid) and rock wool. Concerning life-cycle results based on CED and GWP 100a (scenario without recycling), the configuration without PCM shows 0.67 MJ prim /kWh and 0.06 kg CO 2.eq /kWh while the configuration with PCM presents 0.74 MJ prim /kWh and 0.08 kg CO 2.eq /kWh. Regarding EPBT, if the inputs for pumping/auxiliary heating are not taken into account, both configurations (with/without PCM) have almost the same EPBT (about 1.3 years). On the other hand, if the inputs for pumping/auxiliary heating are considered, EPBT is lower for the system with PCM. In addition, scenarios with recycling have been examined and the results demonstrate that recycling considerably improves the environmental profile of the studied configurations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The Carbon and Global Warming Potential Impacts of Organic Farming: Does It Have a Significant Role in an Energy Constrained World?

    Directory of Open Access Journals (Sweden)

    Ralph C. Martin

    2011-01-01

    Full Text Available About 130 studies were analyzed to compare farm-level energy use and global warming potential (GWP of organic and conventional production sectors. Cross cutting issues such as tillage, compost, soil carbon sequestration and energy offsets were also reviewed. Finally, we contrasted E and GWP data from the wider food system. We concluded that the evidence strongly favours organic farming with respect to whole-farm energy use and energy efficiency both on a per hectare and per farm product basis, with the possible exception of poultry and fruit sectors. For GWP, evidence is insufficient except in a few sectors, with results per ha more consistently favouring organic farming than GWP per unit product. Tillage was consistently a negligible contributor to farm E use and additional tillage on organic farms does not appear to significantly deplete soil C. Energy offsets, biogas, energy crops and residues have a more limited role on organic farms compared to conventional ones, because of the nutrient and soil building uses of soil organic matter, and the high demand for organic foods in human markets. If farm E use represents 35% of total food chain E use, improvements shown of 20% or more in E efficiency through organic farm management would reduce food-chain E use by 7% or more. Among other food supply chain stages, wholesale/retail (including cooling and packaging and processing often each contribute 30% or more to total food system E. Thus, additional improvements can be obtained with reduced processing, whole foods and food waste minimization.

  11. Global warming potential and greenhouse gas emission under different soil nutrient management practices in soybean-wheat system of central India.

    Science.gov (United States)

    Lenka, Sangeeta; Lenka, Narendra Kumar; Singh, Amar Bahadur; Singh, B; Raghuwanshi, Jyothi

    2017-02-01

    Soil nutrient management is a key component contributing to the greenhouse gas (GHG) flux and mitigation potential of agricultural production systems. However, the effect of soil nutrient management practices on GHG flux and global warming potential (GWP) is less understood in agricultural soils of India. The present study was conducted to compare three nutrient management systems practiced for nine consecutive years in a soybean-wheat cropping system in the Vertisols of India, in terms of GHG flux and GWP. The treatments were composed of 100% organic (ONM), 100% inorganic (NPK), and integrated nutrient management (INM) with 50% organic + 50% inorganic inputs. The gas samples for GHGs (CO 2 , CH 4 , and N 2 O) were collected by static chamber method at about 15-day interval during 2012-13 growing season. The change in soil organic carbon (SOC) content was estimated in terms of the changes in SOC stock in the 0-15 cm soil over the 9-year period covering 2004 to 2013. There was a net uptake of CH 4 in all the treatments in both soybean and wheat crop seasons. The cumulative N 2 O and CO 2 emissions were in the order of INM > ONM > NPK with significant difference between treatments (p < 0.05) in both the crop seasons. The annual GWP, expressed in terms of CH 4 and N 2 O emission, also followed the same trend and was estimated to be 1126, 1002, and 896 kg CO 2 eq ha -1  year -1 under INM, ONM, and NPK treatments, respectively. However, the change in SOC stock was significantly higher under ONM (1250 kg ha -1  year -1 ) followed by INM (417 kg ha -1  year -1 ) and least under NPK (198 kg ha -1  year -1 ) treatment. The wheat equivalent yield was similar under ONM and INM treatments and was significantly lower under NPK treatment. Thus, the GWP per unit grain yield was lower under ONM followed by NPK and INM treatments and varied from 250, 261, and 307 kg CO 2 eq Mg -1 grain yield under ONM, NPK, and INM treatments, respectively.

  12. Media narratives of global warming

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, M. [Syracuse Univ., Syracuse, NY (United States)

    2000-06-01

    The way in which the North American print media are representing global warming was the focus of this paper. It was suggested that the way in which the media presents the issue and proposed responses to it, will influence how the public and decision-makers perceive and respond to the problem. This paper also presented examples demonstrating how nature and humanity's relationship to nature are being presented and what types of responses to global warming are being presented. The issue of who is responsible for acting to prevent or mitigate climate change was also discussed. It was shown that media narratives of global warming are not just stories of scientists debating the existence of global warming, but that they now largely accept global warming as a reality. However, the media continue to construct the problem in narrow technical, economic and anthropocentric terms. Mass media interpretation of global warming offer up a limited selection of problem definitions, reasons for acting and ways of addressing the problem. It was cautioned that this approach will likely promote futility, denial and apathy on the part of the public. 21 refs.

  13. East Asian SO2 pollution plume over Europe – Part 2: Evolution and potential impact

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2009-07-01

    Full Text Available We report on the first observation-based case study of an aged East Asian anthropogenic SO2 pollution plume over Europe. Our airborne measurements in that plume detected highly elevated SO2 mole fractions (up to 900 pmol/mol between about 5000 and 7000 m altitude. Here, we focus on investigations of the origin, dispersion, evolution, conversion, and potential impact of the observed excess SO2. In particular, we investigate SO2 conversion to gas-phase sulfuric acid and sulfuric acid aerosols. Our FLEXPART and LAGRANTO model simulations, along with additional trace gas measurements, suggest that the plume originated from East Asian fossil fuel combustion sources and, 8–7 days prior to its arrival over Europe, ascended over the coast region of central East Asia to 9000 m altitude, probably in a cyclonic system with an associated warm conveyor belt. During this initial plume ascent a substantial fraction of the initially available SO2 must have escaped from removal by cloud processes. Hereafter, while mostly descending slowly, the plume experienced advection across the North Pacific, North America and the North Atlantic. During its upper troposphere travel, clouds were absent in and above the plume and OH-induced gas-phase conversion of SO2 to gas-phase sulfuric acid (GSA was operative, followed by GSA nucleation and condensation leading to sulfuric acid aerosol formation and growth. Our AEROFOR model simulations indicate that numerous large sulfuric acid aerosol particles were formed, which at least tempora-rily, caused substantial horizontal visibility degradation, and which have the potential to act as water vapor condensation nuclei in liquid water cloud formation, already at water vapor supersaturations as low as about 0.1%. Our AEROFOR model simulations also indicate that those fossil fuel combustion generated soot particles, which have survived cloud induced removal during the initial plume ascent, have experienced extensive H2SO4/H2O

  14. Amplified Arctic warming by phytoplankton under greenhouse warming.

    Science.gov (United States)

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  15. Forage plants of an Arctic-nesting herbivore show larger warming response in breeding than wintering grounds, potentially disrupting migration phenology

    NARCIS (Netherlands)

    Lameris, Thomas K.; Jochems, Femke; Graaf, van der Alexandra J.; Andersson, Mattias; Limpens, Juul; Nolet, Bart A.

    2017-01-01

    During spring migration, herbivorous waterfowl breeding in the Arctic depend on peaks in the supply of nitrogen-rich forage plants, following a "green wave" of grass growth along their flyway to fuel migration and reproduction. The effects of climate warming on forage plant growth are expected to

  16. Forage plants of an Arctic-nesting herbivore show larger warming response in breeding than wintering grounds, potentially disrupting migration phenology

    NARCIS (Netherlands)

    Lameris, T.K.; Jochems, Femke; van der Graaf, A.J.; Andersson, M.; Limpens, J.; Nolet, B.A.

    2017-01-01

    During spring migration, herbivorous waterfowl breeding in the Arctic depend on peaks in the supply of nitrogen-rich forage plants, following a “green wave” of grass growth along their flyway to fuel migration and reproduction. The effects of climate warming on forage plant growth are expected to be

  17. A Global Meta-Analysis on the Impact of Management Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Cropland Soils

    Science.gov (United States)

    Sainju, Upendra M.

    2016-01-01

    Management practices, such as tillage, crop rotation, and N fertilization, may affect net global warming potential (GWP) and greenhouse gas intensity (GHGI), but their global impact on cropland soils under different soil and climatic conditions need further evaluation. Available global data from 57 experiments and 225 treatments were evaluated for individual and combined effects of tillage, cropping systems, and N fertilization rates on GWP and GHGI which accounted for CO2 equivalents from N2O and CH4 emissions with or without equivalents from soil C sequestration rate (ΔSOC), farm operations, and N fertilization. The GWP and GHGI were 66 to 71% lower with no-till than conventional till and 168 to 215% lower with perennial than annual cropping systems, but 41 to 46% greater with crop rotation than monocroppping. With no-till vs. conventional till, GWP and GHGI were 2.6- to 7.4-fold lower when partial than full accounting of all sources and sinks of greenhouse gases (GHGs) were considered. With 100 kg N ha-1, GWP and GHGI were 3.2 to 11.4 times greater with partial than full accounting. Both GWP and GHGI increased curvilinearly with increased N fertilization rate. Net GWP and GHGI were 70 to 87% lower in the improved combined management that included no-till, crop rotation/perennial crop, and reduced N rate than the traditional combined management that included conventional till, monocopping/annual crop, and recommended N rate. An alternative soil respiration method, which replaces ΔSOC by soil respiration and crop residue returned to soil in the previous year, similarly reduced GWP and GHGI by 133 to 158% in the improved vs. the traditional combined management. Changes in GWP and GHGI due to improved vs. traditional management varied with the duration of the experiment and inclusion of soil and climatic factors in multiple linear regressions improved their relationships. Improved management practices reduced GWP and GHGI compared with traditional management

  18. A Global Meta-Analysis on the Impact of Management Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Cropland Soils.

    Science.gov (United States)

    Sainju, Upendra M

    2016-01-01

    Management practices, such as tillage, crop rotation, and N fertilization, may affect net global warming potential (GWP) and greenhouse gas intensity (GHGI), but their global impact on cropland soils under different soil and climatic conditions need further evaluation. Available global data from 57 experiments and 225 treatments were evaluated for individual and combined effects of tillage, cropping systems, and N fertilization rates on GWP and GHGI which accounted for CO2 equivalents from N2O and CH4 emissions with or without equivalents from soil C sequestration rate (ΔSOC), farm operations, and N fertilization. The GWP and GHGI were 66 to 71% lower with no-till than conventional till and 168 to 215% lower with perennial than annual cropping systems, but 41 to 46% greater with crop rotation than monocroppping. With no-till vs. conventional till, GWP and GHGI were 2.6- to 7.4-fold lower when partial than full accounting of all sources and sinks of greenhouse gases (GHGs) were considered. With 100 kg N ha-1, GWP and GHGI were 3.2 to 11.4 times greater with partial than full accounting. Both GWP and GHGI increased curvilinearly with increased N fertilization rate. Net GWP and GHGI were 70 to 87% lower in the improved combined management that included no-till, crop rotation/perennial crop, and reduced N rate than the traditional combined management that included conventional till, monocopping/annual crop, and recommended N rate. An alternative soil respiration method, which replaces ΔSOC by soil respiration and crop residue returned to soil in the previous year, similarly reduced GWP and GHGI by 133 to 158% in the improved vs. the traditional combined management. Changes in GWP and GHGI due to improved vs. traditional management varied with the duration of the experiment and inclusion of soil and climatic factors in multiple linear regressions improved their relationships. Improved management practices reduced GWP and GHGI compared with traditional management

  19. Effects of nitrogen application rates on net annual global warming potential and greenhouse gas intensity in double-rice cropping systems of the Southern China.

    Science.gov (United States)

    Chen, Zhongdu; Chen, Fu; Zhang, Hailin; Liu, Shengli

    2016-12-01

    The net global warming potential (NGWP) and net greenhouse gas intensity (NGHGI) of double-rice cropping systems are not well documented. We measured the NGWP and NGHGI including soil organic carbon (SOC) change and indirect emissions (IE) from double-crop rice fields with fertilizing systems in Southern China. These experiments with three different nitrogen (N) application rates since 2012 are as follows: 165 kgN ha -1 for early rice and 225 kgN ha -1 for late rice (N1), which was the local N application rates as the control; 135 kgN ha -1 for early rice and 180 kgN ha -1 for late rice (N2, 20 % reduction); and 105 kgN ha -1 for early rice and 135 kgN ha -1 for late rice (N3, 40 % reduction). Results showed that yields increased with the increase of N application rate, but without significant difference between N1 and N2 plots. Annual SOC sequestration rate under N1 was estimated to be 1.15 MgC ha -1  year -1 , which was higher than those under other fertilizing systems. Higher N application tended to increase CH 4 emissions during the flooded rice season and significantly increased N 2 O emissions from drained soils during the nonrice season, ranking as N1 > N2 > N3 with significant difference (P < 0.05). Two-year average IE has a huge contribution to GHG emissions mainly coming from the higher N inputs in the double-rice cropping system. Reducing N fertilizer usage can effectively decrease the NGWP and NGHGI in the double-rice cropping system, with the lowest NGHGI obtained in the N2 plot (0.99 kg CO 2 -eq kg -1 yield year -1 ). The results suggested that agricultural economic viability and GHG mitigation can be simultaneously achieved by properly reducing N fertilizer application in double-rice cropping systems.

  20. Differential responses of dinitrogen fixation, diazotrophic cyanobacteria and ammonia oxidation reveal a potential warming-induced imbalance of the N-cycle in biological soil crusts

    Science.gov (United States)

    Zhou, Xiaobing; Smith, Hilda J.; Giraldo Silva, Ana; Belnap, Jayne; Garcia-Pichel, Ferran

    2017-01-01

    N2 fixation and ammonia oxidation (AO) are the two most important processes in the nitrogen (N) cycle of biological soil crusts (BSCs). We studied the short-term response of acetylene reduction assay (ARA) rates, an indicator of potential N2 fixation, and AO rates to temperature (T, -5°C to 35°C) in BSC of different successional stages along the BSC ecological succession and geographic origin (hot Chihuahuan and cooler Great Basin deserts). ARA in all BSCs increased with T until saturation occurred between 15 and 20°C, and declined at 30–35°C. Culture studies using cyanobacteria isolated from these crusts indicated that the saturating effect was traceable to their inability to grow well diazotrophically within the high temperature range. Below saturation, temperature response was exponential, with Q10 significantly different in the two areas (~ 5 for Great Basin BSCs; 2–3 for Chihuahuan BSCs), but similar between the two successional stages. However, in contrast to ARA, AO showed a steady increase to 30–35°C in Great Basin, and Chihuhuan BSCs showed no inhibition at any tested temperature. The T response of AO also differed significantly between Great Basin (Q10 of 4.5–4.8) and Chihuahuan (Q10 of 2.4–2.6) BSCs, but not between successional stages. Response of ARA rates to T did not differ from that of AO in either desert. Thus, while both processes scaled to T in unison until 20°C, they separated to an increasing degree at higher temperature. As future warming is likely to occur in the regions where BSCs are often the dominant living cover, this predicted decoupling is expected to result in higher proportion of nitrates in soil relative to ammonium. As nitrate is more easily lost as leachate or to be reduced to gaseous forms, this could mean a depletion of soil N over large landscapes globally.

  1. Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management

    Science.gov (United States)

    Huang, T.; Gao, B.; Christie, P.; Ju, X.

    2013-12-01

    The effects of nitrogen and straw management on global warming potential (GWP) and greenhouse gas intensity (GHGI) in a winter wheat-summer maize double-cropping system on the North China Plain were investigated. We measured nitrous oxide (N2O) emissions and studied net GWP (NGWP) and GHGI by calculating the net exchange of CO2 equivalent (CO2-eq) from greenhouse gas emissions, agricultural inputs and management practices, as well as changes in soil organic carbon (SOC), based on a long-term field experiment established in 2006. The field experiment includes six treatments with three fertilizer N levels (zero N (control), optimum and conventional N) and straw removal (i.e. N0, Nopt and Ncon) or return (i.e. SN0, SNopt and SNcon). Optimum N management (Nopt, SNopt) saved roughly half of the fertilizer N compared to conventional agricultural practice (Ncon, SNcon), with no significant effect on grain yields. Annual mean N2O emissions reached 3.90 kg N2O-N ha-1 in Ncon and SNcon, and N2O emissions were reduced by 46.9% by optimizing N management of Nopt and SNopt. Straw return increased annual mean N2O emissions by 27.9%. Annual SOC sequestration was 0.40-1.44 Mg C ha-1 yr-1 in plots with N application and/or straw return. Compared to the conventional N treatments the optimum N treatments reduced NGWP by 51%, comprising 25% from decreasing N2O emissions and 75% from reducing N fertilizer application rates. Straw return treatments reduced NGWP by 30% compared to no straw return because the GWP from increments of SOC offset the GWP from higher emissions of N2O, N fertilizer and fuel after straw return. The GHGI trends from the different nitrogen and straw management practices were similar to the NGWP. In conclusion, optimum N and straw return significantly reduced NGWP and GHGI and concomitantly achieved relatively high grain yields in this important winter wheat-summer maize double-cropping system.

  2. Net global warming potential and greenhouse gas intensity in a double cropping cereal rotation as affected by nitrogen and straw management

    Science.gov (United States)

    Huang, T.; Gao, B.; Christie, P.; Ju, X.

    2013-08-01

    The effects of nitrogen and straw management on global warming potential (GWP) and greenhouse gas intensity (GHGI) in a winter wheat-summer maize double-cropping system on the North China Plain were investigated. We measured nitrous oxide (N2O) emissions and studied net GWP (NGWP) and GHGI by calculating the net exchange of CO2 equivalent (CO2-eq) from greenhouse gas emissions, agricultural inputs and management practices, and changes in soil organic carbon (SOC), based on a long-term field experiment established in 2006. The field experiment includes six treatments with three fertilizer N levels (zero-N control, optimum and conventional N) and straw removal (i.e. N0, Nopt and Ncon) or return (i.e. N0, Nopt and SNcon). Optimum N management (Nopt, SNopt) saved roughly half of the fertilizer N compared to conventional agricultural practice (Ncon, SNcon) with no significant effect on grain yields. Annual mean N2O emissions reached 3.90 kg N2O-N ha-1 in Ncon and SNcon, and N2O emissions were reduced by 46.9% by optimizing N management of Nopt and SNopt. Straw return increased annual mean N2O emissions by 27.9%. Annual SOC sequestration was 0.40-1.44 Mg C ha-1 yr-1 in plots with N application and/or straw return. Compared to the conventional N treatments the optimum N treatments reduced NGWP by 51%, comprising 25% from decreasing N2O emissions and 75% from reducing N fertilizer application rates. Straw return treatments reduced NGWP by 30% compared to no straw return because the GWP from increments of SOC offset the GWP from higher emissions of N2O, N fertilizer and fuel after straw return. The GHGI trends from the different nitrogen and straw management practices were similar to the NGWP. In conclusion, optimum N and straw return significantly reduced NGWP and GHGI and concomitantly achieved relatively high grain yields in this important winter wheat-summer maize double-cropping system.

  3. Impacts of second-generation biofuel feedstock production in the central U.S. on the hydrologic cycle and global warming mitigation potential

    Science.gov (United States)

    Harding, K. J.; Twine, T. E.; VanLoocke, A.; Bagley, J. E.; Hill, J.

    2016-10-01

    Biofuel feedstocks provide a renewable energy source that can reduce fossil fuel emissions; however, if produced on a large scale they can also impact local to regional water and carbon budgets. Simulation results for 2005-2014 from a regional weather model adapted to simulate the growth of two perennial grass biofuel feedstocks suggest that replacing at least half the current annual cropland with these grasses would increase water use efficiency and drive greater rainfall downwind of perturbed grid cells, but increased evapotranspiration (ET) might switch the Mississippi River basin from having a net warm-season surplus of water (precipitation minus ET) to a net deficit. While this scenario reduces land required for biofuel feedstock production relative to current use for maize grain ethanol production, it only offsets approximately one decade of projected anthropogenic warming and increased water vapor results in greater atmospheric heat content.

  4. Global Warming And Meltwater

    Science.gov (United States)

    Bratu, S.

    2012-04-01

    In order to find new approaches and new ideas for my students to appreciate the importance of science in their daily life, I proposed a theme for them to debate. They had to search for global warming information and illustrations in the media, and discuss the articles they found in the classroom. This task inspired them to search for new information about this important and timely theme in science. I informed my students that all the best information about global warming and meltwater they found would be used in a poster that would help us to update the knowledge base of the Physics laboratory. I guided them to choose the most eloquent images and significant information. Searching and working to create this poster, the students arrived to better appreciate the importance of science in their daily life and to critically evaluate scientific information transmitted via the media. In the poster we created, one can find images, photos and diagrams and some interesting information: Global warming refers to the rising average temperature of the Earth's atmosphere and oceans and its projected evolution. In the last 100 years, the Earth's average surface temperature increased by about 0.8 °C with about two thirds of the increase occurring over just the last three decades. Warming of the climate system is unequivocal, and scientists are more than 90% certain most of it is caused by increasing concentrations of greenhouse gases produced by human activities such as deforestation and burning fossil fuel. They indicate that during the 21st century the global surface temperature is likely to rise a further 1.1 to 2.9 °C for the lowest emissions scenario and 2.4 to 6.4 °C for the highest predictions. An increase in global temperature will cause sea levels to rise and will change the amount and pattern of precipitation, and potentially result in expansion of subtropical deserts. Warming is expected to be strongest in the Arctic and would be associated with continuing decrease of

  5. Photochemical properties of trans-1-chloro-3,3,3-trifluoropropene (trans-CHCl═CHCF3): OH reaction rate constant, UV and IR absorption spectra, global warming potential, and ozone depletion potential.

    Science.gov (United States)

    Orkin, Vladimir L; Martynova, Larissa E; Kurylo, Michael J

    2014-07-17

    Measurements of the rate constant for the gas-phase reactions of OH radicals with trans-1-chloro-3,3,3-trifluoropropene (trans-CHCl═CHCF3) were performed using a flash photolysis resonance-fluorescence technique over the temperature range 220-370 K. The reaction rate constant exhibits a noticeable curvature of the temperature dependence in the Arrhenius plot, which can be represented by the following expression: kt-CFP (220-370 K) = 1.025 × 10(-13) × (T/298)(2.29) exp(+384/T) cm(3 )molecule(-1) s(-1). The room-temperature rate constant was determined to be kt-CFP (298 K) = (3.29 ± 0.10) × 10(-13) cm(3) molecule(-1) s(-1), where the uncertainty includes both two standard errors (statistical) and the estimated systematic error. For atmospheric modeling purposes, the rate constant below room temperature can be represented by the following expression: kt-CFP (220-298 K) = (7.20 ± 0.46) × 10(-13) exp[-(237 ± 16)/T] cm(3) molecule(-1) s(-1). There was no difference observed between the rate constants determined at 4 kPa (30 Torr) and 40 kPa (300 Torr) at both 298 and 370 K. The UV and IR absorption cross sections of this compound were measured at room temperature. The atmospheric lifetime, global warming potential, and ozone depletion potential of trans-CHCl═CHCF3 were estimated.

  6. Elemental distributions in surficial sediments and potential offshore mineral resources from the western continental margin of India. Part 2. Potential offshore mineral resources

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A; Mascarenhas, A; Rao, Ch.M.; PrakashBabu, C.; Murty, P.S.N.

    patterns of ten selected elements is surficial sediments. Part 2 projects the potential offshore mineral resources. Target areas for future exploration and indicated and exploration strategies are recommended. Appendix 1 is a compilation of the bibliography...

  7. Sudden Stratospheric Warming Compendium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sudden Stratospheric Warming Compendium (SSWC) data set documents the stratospheric, tropospheric, and surface climate impacts of sudden stratospheric warmings. This...

  8. Twitter as a Potential Disaster Risk Reduction Tool. Part I: Introduction, Terminology, Research and Operational Applications.

    Science.gov (United States)

    Cooper, Guy Paul; Yeager, Violet; Burkle, Frederick M; Subbarao, Italo

    2015-06-29

    Twitter, a popular communications platform, is identified as contributing to improved mortality and morbidity outcomes resulting from the 2013 Hattiesburg, Mississippi EF-4 Tornado. This study describes the methodology by which Twitter was investigated as a potential disaster risk reduction and management tool at the community level and the process by which the at-risk population was identified from the broader Twitter user population. By understanding how various factors contribute to the superspreading of messages, one can better optimize Twitter as an essential communications and risk reduction tool. This study introduces Parts II, III and IV which further define the technological and scientific knowledge base necessary for developing future competency base curriculum and content for Twitter assisted disaster management education and training at the community level.

  9. Integration of additive manufacturing and inkjet printed electronics: a potential route to parts with embedded multifunctionality

    Directory of Open Access Journals (Sweden)

    Stringer Jonathan

    2016-01-01

    Full Text Available Additive manufacturing, an umbrella term for a number of different manufacturing techniques, has attracted increasing interest recently for a number of reasons, such as the facile customisation of parts, reduced time to manufacture from initial design, and possibilities in distributed manufacturing and structural electronics. Inkjet printing is an additive manufacturing technique that is readily integrated with other manufacturing processes, eminently scalable and used extensively in printed electronics. It therefore presents itself as a good candidate for integration with other additive manufacturing techniques to enable the creation of parts with embedded electronics in a timely and cost effective manner. This review introduces some of the fundamental principles of inkjet printing; such as droplet generation, deposition, phase change and post-deposition processing. Particular focus is given to materials most relevant to incorporating structural electronics and how post-processing of these materials has been able to maintain compatibility with temperature sensitive substrates. Specific obstacles likely to be encountered in such an integration and potential strategies to address them will also be discussed.

  10. The Great Warming Brian Fagan

    Science.gov (United States)

    Fagan, B. M.

    2010-12-01

    The Great Warming is a journey back to the world of a thousand years ago, to the Medieval Warm Period. Five centuries of irregular warming from 800 to 1250 had beneficial effects in Europe and the North Atlantic, but brought prolonged droughts to much of the Americas and lands affected by the South Asian monsoon. The book describes these impacts of warming on medieval European societies, as well as the Norse and the Inuit of the far north, then analyzes the impact of harsh, lengthy droughts on hunting societies in western North America and the Ancestral Pueblo farmers of Chaco Canyon, New Mexico. These peoples reacted to drought by relocating entire communities. The Maya civilization was much more vulnerable that small-scale hunter-gatherer societies and subsistence farmers in North America. Maya rulers created huge water storage facilities, but their civilization partially collapsed under the stress of repeated multiyear droughts, while the Chimu lords of coastal Peru adapted with sophisticated irrigation works. The climatic villain was prolonged, cool La Niñalike conditions in the Pacific, which caused droughts from Venezuela to East Asia, and as far west as East Africa. The Great Warming argues that the warm centuries brought savage drought to much of humanity, from China to Peru. It also argues that drought is one of the most dangerous elements in today’s humanly created global warming, often ignored by preoccupied commentators, but with the potential to cause over a billion people to starve. Finally, I use the book to discuss the issues and problems of communicating multidisciplinary science to the general public.

  11. Global warming at the summit

    Science.gov (United States)

    Showstack, Randy

    During the recent summit meeting between Russian President Vladimir Putin and U.S. President Bill Clinton, the two leaders reaffirmed their concerns about global warming and the need to continue to take actions to try to reduce the threat.In a June 4 joint statement, they stressed the need to develop flexibility mechanisms, including international emissions trading, under the Kyoto Protocol to the United Nations Framework Convention on Climate Change. They also noted that initiatives to reduce the risk of greenhouse warming, including specific mechanisms of the Kyoto Protocol, could potentially promote economic growth.

  12. Vitamin D as an adjunctive therapy in asthma. Part 1: A review of potential mechanisms.

    LENUS (Irish Health Repository)

    Kerley, Conor P

    2015-02-27

    Vitamin D deficiency (VDD) is highly prevlalent worldwide. The classical role for vitamin D is to regulate calcium absorption form the gastrointestinal tract and influence bone health. Recently vitamin D receptors and vitamin D metabolic enzymes have been discovered in numerous sites systemically supporting diverse extra-skeletal roles of vitamin D, for example in asthmatic disease. Further, VDD and asthma share several common risk factors including high latitude, winter season, industrialization, poor diet, obesity, and dark skin pigmentation. Vitamin D has been demonstrated to possess potent immunomodulatory effects, including effects on T cells and B cells as well as increasing production of antimicrobial peptides (e.g. cathelicidin). This immunomodulation may lead to asthma specific clinical benefits in terms of decreased bacterial\\/viral infections, altered airway smooth muscle-remodeling and -function as well as modulation of response to standard anti-asthma therapy (e.g. glucocorticoids and immunotherapy). Thus, vitamin D and its deficiency have a number of biological effects that are potentially important in altering the course of disease pathogenesis and severity in asthma. The purpose of this first of a two-part review is to review potential mechanisms whereby altering vitamin D status may influence asthmatic disease.

  13. Potential impact of climate change on the Intra-Americas Sea: Part-1. A dynamic downscaling of the CMIP5 model projections

    Science.gov (United States)

    Liu, Yanyun; Lee, Sang-Ki; Enfield, David B.; Muhling, Barbara A.; Lamkin, John T.; Muller-Karger, Frank E.; Roffer, Mitchell A.

    2015-08-01

    This study examines the potential impact of anthropogenic greenhouse warming on the Intra-Americas Sea (IAS, Caribbean Sea and Gulf of Mexico) by downscaling the Coupled Model Intercomparison Project phase-5 (CMIP5) model simulations under historical and two future emission scenarios using an eddy-resolving resolution regional ocean model. The simulated volume transport by the western boundary current system in the IAS, including the Caribbean Current, Yucatan Current and Loop Current (LC), is reduced by 20-25% during the 21st century, consistent with a similar rate of reduction in the Atlantic Meridional Overturning Circulation (AMOC). The effect of the LC in the present climate is to warm the Gulf of Mexico (GoM). Therefore, the reduced LC and the associated weakening of the warm transient LC eddies have a cooling impact in the GoM, particularly during boreal spring in the northern deep basin, in agreement with an earlier dynamic downscaling study. In contrast to the reduced warming in the northern deep GoM, the downscaled model predicts an intense warming in the shallow (≤ 200 m) northeastern shelf of the GoM especially during boreal summer since there is no effective mechanism to dissipate the increased surface heating. Potential implications of the regionally distinctive warming trend pattern in the GoM on the marine ecosystems and hurricane intensifications during landfall are discussed. This study also explores the effects of 20th century warming and climate variability in the IAS using the regional ocean model forced with observed surface flux fields. The main modes of sea surface temperature variability in the IAS are linked to the Atlantic Multidecadal Oscillation and a meridional dipole pattern between the GoM and Caribbean Sea. It is also shown that variability of the IAS western boundary current system in the 20th century is largely driven by wind stress curl in the Sverdrup interior and the AMOC.

  14. Coarsening of AA6013-T6 Precipitates During Sheet Warm Forming Applications

    Science.gov (United States)

    Di Ciano, M.; DiCecco, S.; Esmaeili, S.; Wells, M. A.; Worswick, M. J.

    2018-01-01

    The use of warm forming for AA6xxx-T6 sheet is of interest to improve its formability; however, the effect warm forming may have on the coarsening of precipitates and the mechanical strength of these sheets has not been well studied. In this research, the coarsening behavior of AA6013-T6 precipitates has been explored, in the temperature range of 200-300 °C, and time of 30 s up to 50 h. Additionally, the effect of warm deformation on coarsening behavior was explored using: (1) simulated warm forming tests in a Gleeble thermo-mechanical simulator and (2) bi-axial warm deformation tests. Using a strong obstacle model to describe the yield strength (YS) evolution of the AA6013-T6 material, and a Lifshitz, Slyozov, and Wagner (LSW) particle coarsening law to describe the change in precipitate size with time, the coarsening kinetics were modeled for this alloy. The coarsening kinetics in the range of 220-300 °C followed a trend similar to that previously found for AA6111 for the 180-220 °C range. There was strong evidence that coarsening kinetics were not altered due to warm deformation above 220 °C. For warm forming between 200 and 220 °C, the YS of the AA6013-T6 material increased slightly, which could be attributed to strain hardening during warm deformation. Finally, a non-isothermal coarsening model was used to assess the potential reduction in the YS of AA6013-T6 for practical processing conditions related to auto-body manufacturing. The model calculations showed that 90% of the original AA6013-T6 YS could be maintained, for warm forming temperatures up to 280 °C, if the heating schedule used to get the part to the warm forming temperature was limited to 1 min.

  15. Examining the Potential Impact of Full Tuition Fees on Mature Part-Time Students in English Higher Education

    Science.gov (United States)

    Shaw, Angela

    2014-01-01

    This paper examines current part-time mature learners' views on the potential impact upon future students as full fees are introduced from 2012. It investigates the problems which part-time mature learners may face with the advent of student loans and subsequent debt, given that they are usually combining complex lives with their studies, with…

  16. Potential for Extensive Forest Loss in the Klamath Mountains due to Increased Fire Activity and Altered Post-Fire Forest Recovery Dynamics in a Warming Climate

    Science.gov (United States)

    Tepley, A. J.; Thompson, J. R.; Epstein, H. E.; Anderson-Teixeira, K. J.

    2016-12-01

    In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or post-fire forest recovery dynamics could bring about extensive conversion of forests to shorter-statured, more fire-prone vegetation, with associated changes in biodiversity, carbon dynamics, and climate feedbacks. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where montane landscapes support conifer forests, but severe fire converts them to systems dominated by broadleaf trees and shrubs that rapidly resprout or germinate from a dormant seedbank. Conifers eventually overtop the competing vegetation, but until they do, these systems are highly fire prone and susceptible to perpetuation through a cycle of reburning. To assess the vulnerability to fire-driven loss of conifer forests in a warming climate, we characterized the trajectories of post-fire forest recovery in 57 sites that burned severely within the last three decades and span the aridity gradient of montane conifer forests. Post-fire conifer regeneration was limited to a surprisingly narrow window, with 89% of all seedlings established in the first four years after fire. Early establishment conferred a competitive growth advantage such that the longer the lag between the fire year and the year of seedling establishment, the slower its height growth. A substantial portion of variation in post-fire conifer seedling density was driven by an interaction between propagule pressure and site moisture status (climatic water deficit). Mesic sites had abundant regeneration except where seed sources were nearly absent across large (ca. 50 ha) high-severity patches. Toward the dry end of the moisture gradient, much higher propagule pressure was required to support even moderate levels of conifer regeneration. The present distribution of conifer forests falls largely within the portion of the moisture gradient

  17. Bioactivity of Nonedible Parts of Punica granatum L.: A Potential Source of Functional Ingredients

    Directory of Open Access Journals (Sweden)

    Nawraj Rummun

    2013-01-01

    Full Text Available Punica granatum L. has a long standing culinary and medicinal traditional use in Mauritius. This prompted a comparative study to determine the bioefficacy of the flower, peel, leaf, stem, and seed extracts of the Mauritian P. granatum. The flower and peel extracts resulting from organic solvent extraction exhibited strong antioxidant activities which correlated with the high levels of total phenolics, flavonoids, and proanthocyanidins. The peel extract had the most potent scavenging capacity reflected by high Trolox equivalent antioxidant capacity value ( μmol/g air dry weight, very low IC50 values for hypochlorous acid ( mg air dry weight/mL, and hydroxyl radicals scavenging ( mg air dry weight/mL. Peel extracts also significantly inhibited S. mutans (, S. mitis (, and L. acidophilus ( growth compared to ciprofloxacin. The flower extract exhibited high ferric reducing, nitric oxide scavenging, and iron (II ions chelation and significantly inhibited microsomal lipid peroxidation. Furthermore, it showed a dose-dependent inhibition of xanthine oxidase with an IC50 value of  mg air dry weight/mL. This study showed that nonedible parts of cultivated pomegranates, that are generally discarded, are bioactive in multiassay systems thereby suggesting their potential use as natural prophylactics and in food applications.

  18. Zeta-potential and flotability of the scheelite mineral in different type of waters, Part 1: Zeta-potential

    OpenAIRE

    Milanović Dragan B.; Marković Zoran S.

    2009-01-01

    The aim of this work is the investigation of zeta-potential of the mineral scheelite from mine 'Rudnik', located in central Serbia. Electrophoresis measurements using zeta-meter were carried out on four different types of water, namely: tap water, distilled water, rain water and spring water. All types of water had different hardness and conductivity as well as natural pH values. It was found that the zeta-potential of mineral scheelite depends on the hardness and electro-conductivity of the ...

  19. Global warming - some perspectives

    OpenAIRE

    Erlykin, Anatoly D.; Wolfendale, Arnold W.; Hanna, Edward

    2012-01-01

    Here the authors critically review the IPCC’s claim that global warming is “very likely” caused by human activity: such a description underestimates the likelihood of the warming being due to this mechanism. Next examined are known alternative “natural” mechanisms which could give rise to the warming if, despite many claims, the man-made explanation was false because of compensation effects (greenhouse gases versus aerosol effects). Also, a number of difficulties, as yet unresolved, ...

  20. Zeta-potential and flotability of the scheelite mineral in different type of waters, Part 1: Zeta-potential

    Directory of Open Access Journals (Sweden)

    Milanović Dragan B.

    2009-01-01

    Full Text Available The aim of this work is the investigation of zeta-potential of the mineral scheelite from mine 'Rudnik', located in central Serbia. Electrophoresis measurements using zeta-meter were carried out on four different types of water, namely: tap water, distilled water, rain water and spring water. All types of water had different hardness and conductivity as well as natural pH values. It was found that the zeta-potential of mineral scheelite depends on the hardness and electro-conductivity of the chosen type of water as well as on Ca2+ content. The results obtained reveal the importance of proper choice of water as well as the type of reagents for flotation processes.

  1. Urban warming reduces aboveground carbon storage

    DEFF Research Database (Denmark)

    Meineke, Emily; Youngsteadt, Elsa; Dunn, Robert Roberdeau

    2016-01-01

    sequestration (carbon stored per year) of mature trees. Urban warming increased herbivorous arthropod abundance on trees, but these herbivores had negligible effects on tree carbon sequestration. Instead, urban warming was associated with an estimated 12% loss of carbon sequestration, in part because...... photosynthesis was reduced at hotter sites. Ecosystem service assessments that do not consider urban conditions may overestimate urban tree carbon storage. Because urban and global warming are becoming more intense, our results suggest that urban trees will sequester even less carbon in the future....

  2. Modelling the seasonality of Lyme disease risk and the potential impacts of a warming climate within the heterogeneous landscapes of Scotland.

    Science.gov (United States)

    Li, Sen; Gilbert, Lucy; Harrison, Paula A; Rounsevell, Mark D A

    2016-03-01

    Lyme disease is the most prevalent vector-borne disease in the temperate Northern Hemisphere. The abundance of infected nymphal ticks is commonly used as a Lyme disease risk indicator. Temperature can influence the dynamics of disease by shaping the activity and development of ticks and, hence, altering the contact pattern and pathogen transmission between ticks and their host animals. A mechanistic, agent-based model was developed to study the temperature-driven seasonality of Ixodes ricinus ticks and transmission of Borrelia burgdorferi sensu lato across mainland Scotland. Based on 12-year averaged temperature surfaces, our model predicted that Lyme disease risk currently peaks in autumn, approximately six weeks after the temperature peak. The risk was predicted to decrease with increasing altitude. Increases in temperature were predicted to prolong the duration of the tick questing season and expand the risk area to higher altitudinal and latitudinal regions. These predicted impacts on tick population ecology may be expected to lead to greater tick-host contacts under climate warming and, hence, greater risks of pathogen transmission. The model is useful in improving understanding of the spatial determinants and system mechanisms of Lyme disease pathogen transmission and its sensitivity to temperature changes. © 2016 The Author(s).

  3. Global Warming: A Myth?

    Indian Academy of Sciences (India)

    tropospheric temperature through a 'positive feedback'. And again, as the troposphere warms up, its water holding capacity also increases, amplifying chances of further warming. But satellite data indicate that free troposphere is largely cut-off from the surface and evaporated water may not moisten the free troposphere ...

  4. Detecting latitudinal and altitudinal expansion of invasive bambooPhyllostachys edulisandPhyllostachys bambusoides(Poaceae) in Japan to project potential habitats under 1.5°C-4.0°C global warming.

    Science.gov (United States)

    Takano, Kohei Takenaka; Hibino, Kenshi; Numata, Ayaka; Oguro, Michio; Aiba, Masahiro; Shiogama, Hideo; Takayabu, Izuru; Nakashizuka, Tohru

    2017-12-01

    Rapid expansion of exotic bamboos has lowered species diversity in Japan's ecosystems by hampering native plant growth. The invasive potential of bamboo, facilitated by global warming, may also affect other countries with developing bamboo industries. We examined past (1975-1980) and recent (2012) distributions of major exotic bamboos ( Phyllostachys edulis and P. bambusoides ) in areas adjacent to 145 weather stations in central and northern Japan. Bamboo stands have been established at 17 sites along the latitudinal and altitudinal distributional limit during the last three decades. Ecological niche modeling indicated that temperature had a strong influence on bamboo distribution. Using mean annual temperature and sun radiation data, we reproduced bamboo distribution (accuracy = 0.93 and AUC (area under the receiver operating characteristic curve) = 0.92). These results infer that exotic bamboo distribution has shifted northward and upslope, in association with recent climate warming. Then, we simulated future climate data and projected the climate change impact on the potential habitat distribution of invasive bamboos under different temperature increases (i.e., 1.5°C, 2.0°C, 3.0°C, and 4.0°C) relative to the preindustrial period. Potential habitats in central and northern Japan were estimated to increase from 35% under the current climate (1980-2000) to 46%-48%, 51%-54%, 61%-67%, and 77%-83% under 1.5°C, 2.0°C, 3.0°C, and 4.0°C warming levels, respectively. These infer that the risk areas can increase by 1.3 times even under a 1.5°C scenario and expand by 2.3 times under a 4.0°C scenario. For sustainable ecosystem management, both mitigation and adaptation are necessary: bamboo planting must be carefully monitored in predicted potential habitats, which covers most of Japan.

  5. Radiation-induced bystander effect: The important part of ionizing radiation response. Potential clinical implications

    Directory of Open Access Journals (Sweden)

    Maria Wideł

    2009-08-01

    Full Text Available It has long been a central radiobiological dogma that the damaging effects of ionizing radiation, such as cell death, cytogenetic changes, apoptosis, mutagenesis, and carcinogenesis, are the results of the direct ionization of cell structures, particularly DNA, or indirect damage via water radiolysis products. However, several years ago attention turned to a third mechanism of radiation, termed the “bystander effect” or “radiation-induced bystander effect” (RIBE. This is induced by agents and signals emitted by directly irradiated cells and manifests as a lowering of survival, cytogenetic damage, apoptosis enhancement, and biochemical changes in neighboring non-irradiated cells. The bystander effect is mainly observed in in vitro experiments using very low doses of alpha particles (range; mGy, cGy, but also after conventional irradiation (X-rays, gamma rays at low as well as conventional doses. The mechanisms responsible for the bystander effect are complex and still poorly understood. It is believed that molecular signals released from irradiated cells induce different signaling ways in non-irradiated neighboring cells, leading to the observed events. The molecular signals may be transmitted through gap junction intercellular communication and through a medium transfer mechanism. The nature of these transmitted factors are diverse, and still not defi nitely established. It seems that RIBE may have important clinical implications for health risk associated with radiation exposure. Potentially, this effectmay have important implications in the creation of whole-body or localized side effects in tissues beyond the irradiation fi eld and also in low-dose radiological and radioisotope diagnostics. Factors emitted by irradiated cells may result in the risk of genetic instability, mutations, and second primary cancer induction. They might also have their own part in inducing and extending post-radiation side effects in normal tissue. The

  6. Land Cover Change on the Seward Peninsula: The Use of Remote Sensing to Evaluate the Potential Influences of Climate Warming on Historical Vegetation Dynamics

    Science.gov (United States)

    Silapaswan, C.S.; Verbyla, D.L.; McGuire, A.D.

    2001-01-01

    Vegetation on the Seward Peninsula. Alaska, which is characterized by transitions from tundra to boreal forest, may be sensitive to the influences of climate change on disturbance and species composition. To determine the ability to detect decadal-scale structural changes in vegetation, Change Vector Analysis (CVA) techniques were evaluated for Landsat Thematic Mapper (TM) imagery of the Seward Peninsula from 1986 to 1999. Scenes were geographically corrected to sub-pixel accuracy and then radiometrically rectified. Between the 1986 and 1992 satellite scenes, the CVA detected changes in direction and magnitude of the two indices (TM Band 4/TM Band 3, TM Band 5). For Row 14, change was detected for 135,518 ha and for Row 15, change was detected for 111,831 ha. Between the 1992 and 1999 scenes, change was detected by CVA for 93,278 ha. CVA results and photo interpretation together show that shrub advance is approximately 100 metres in valleys north of the Bendeleben Mountains and that shrubs have increased along riverbed bottoms. Across Path 78 Row 14 and 15, the unsupervised classification detected that 55% of the pixels changed between 1986 and 1992. Overall, approximately 759,610 ha changed to a class with a more developed canopy and only 268,132 ha changed to a class with a less developed canopy. Thus, the change detection analysis based on the unsupervised classification indicates that land-cover change on the Seward Peninsula was predominantly in the direction of increased shrubbiness. Taken together, our comparison of CVA results, unsupervised classification results, and visual interpretation of aerial photographs suggests that shrub cover may be increasing on the Seward Peninsula, which is consistent with results from experimental warming in tundra. The use of both CVA and unsupervised classification together provided a more powerful interpretation of change than either method alone in transitional regions between tundra and boreal forest.

  7. Respiratory muscle specific warm-up and elite swimming performance.

    Science.gov (United States)

    Wilson, Emma E; McKeever, Tricia M; Lobb, Claire; Sherriff, Tom; Gupta, Luke; Hearson, Glenn; Martin, Neil; Lindley, Martin R; Shaw, Dominick E

    2014-05-01

    Inspiratory muscle training has been shown to improve performance in elite swimmers, when used as part of routine training, but its use as a respiratory warm-up has yet to be investigated. To determine the influence of inspiratory muscle exercise (IME) as a respiratory muscle warm-up in a randomised controlled cross-over trial. A total of 15 elite swimmers were assigned to four different warm-up protocols and the effects of IME on 100 m freestyle swimming times were assessed.Each swimmer completed four different IME warm-up protocols across four separate study visits: swimming-only warm-up; swimming warm-up plus IME warm-up (2 sets of 30 breaths with a 40% maximum inspiratory mouth pressure load using the Powerbreathe inspiratory muscle trainer); swimming warm-up plus sham IME warm-up (2 sets of 30 breaths with a 15% maximum inspiratory mouth pressure load using the Powerbreathe inspiratory muscle trainer); and IME-only warm-up. Swimmers performed a series of physiological tests and scales of perception (rate of perceived exertion and dyspnoea) at three time points (pre warm-up, post warm-up and post time trial). The combined standard swimming warm-up and IME warm-up were the fastest of the four protocols with a 100 m time of 57.05 s. This was significantly faster than the IME-only warm-up (mean difference=1.18 s, 95% CI 0.44 to 1.92, pswim-only warm-up (mean difference=0.62 s, 95% CI 0.001 to 1.23, p=0.05). Using IME combined with a standard swimming warm-up significantly improves 100 m freestyle swimming performance in elite swimmers.

  8. North Atlantic warming and the retreat of Greenland's outlet glaciers.

    Science.gov (United States)

    Straneo, Fiammetta; Heimbach, Patrick

    2013-12-05

    Mass loss from the Greenland ice sheet quadrupled over the past two decades, contributing a quarter of the observed global sea-level rise. Increased submarine melting is thought to have triggered the retreat of Greenland's outlet glaciers, which is partly responsible for the ice loss. However, the chain of events and physical processes remain elusive. Recent evidence suggests that an anomalous inflow of subtropical waters driven by atmospheric changes, multidecadal natural ocean variability and a long-term increase in the North Atlantic's upper ocean heat content since the 1950s all contributed to a warming of the subpolar North Atlantic. This led, in conjunction with increased runoff, to enhanced submarine glacier melting. Future climate projections raise the potential for continued increases in warming and ice-mass loss, with implications for sea level and climate.

  9. First Principles Simulation of the Dynamics of Warm Dense Matter during Femtosecond Laser Damage using a Particle-in-Cell Method with Pair-Potential Interactions and Direct Comparison to Experiment

    Science.gov (United States)

    Russell, Alex; Kafka, Kyle; Chowdhury, Enam; Schumacher, Douglass

    2017-10-01

    Understanding of the warm dense matter (WDM) state is of fundamental importance in the modeling of femtosecond laser damage because laser electron coupling and subsequent electron lattice coupling can rapidly increase the material temperature at the laser focal region to on the order of an eV, producing WDM not well described by standard liquid and solid equations of state. By modifying the particle-in-cell formalism designed for plasmas to include a pair-potential interaction model, we have created the first fundamental simulation method for modelling ultrashort pulse laser damage that can treat large scale (micron sized) damage morphology and resolves dynamics spanning over six orders of magnitude in time from the femtosecond to the nanosecond scale. We confirm the accuracy of our algorithm by comparing simulated crater profiles on copper against those produced from precision experiment and then show the dynamics of transient warm dense matter formation in aluminum. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0069 and computing time from the Ohio Supercomputer Center.

  10. On the two tales of Warm Jupiters

    Science.gov (United States)

    Huang, Chelsea; Wu, Yanqin

    2017-06-01

    Warm Jupiters often refer to giant planets with intermediate orbit periods between 10-200 days. Their period range corresponds to the so-called "period valley", the observed dip in occupation in-between the hot Jupiters and cold Jupiters. Observational evidences suggest that they are a distinct population from the hot Jupiters and are likely to be formed from at least two different channels themselves. Earlier radial velocity surveys show that at least a fraction of the warm Jupiters have modest to high eccentricities, supporting these planets migrate to their current location through either secular perturbations or planet-planet scatterings. On the other hand, transiting warm Jupiters found in Kepler are likely to have close-by transiting low mass companions interior/exterior to the warm Jupiter orbits. The existence of the companions indicating the system needs to be near coplanar, and near circular, unlike their radial velocity counter parts. In this talk, I will review observational properties to date of the warm Jupiters, as well as recent advances in the theory of the warm Jupiter formation. I will then discuss how new discoveries from TESS can help with understanding the transition between the hot and warm Jupiter population, and distinguish the contribution from different formation channels.

  11. Determination of Contact Potential Difference by the Kelvin Probe (Part I I. Basic Principles of Measurements

    Directory of Open Access Journals (Sweden)

    Vilitis O.

    2016-04-01

    Full Text Available Determination of electric potential difference using the Kelvin probe, i.e. vibrating capacitor technique, is one of the most sensitive measuring procedures in surface physics. Periodic modulation of distance between electrodes leads to changes in capacitance, thereby causing current to flow through the external circuit. The procedure of contactless, non-destructive determination of contact potential difference between an electrically conductive vibrating reference electrode and an electrically conductive sample is based on precise control measurement of Kelvin current flowing through a capacitor. The present research is devoted to creation of a new low-cost miniaturised measurement system to determine potential difference in real time and at high measurement resolution. Furthermore, using the electrode of a reference probe, the Kelvin method leads to both the indirect measurement of an electronic work function, or a contact potential of sample, and of a surface potential for insulator type samples.

  12. 42 CFR 423.272 - Review and negotiation of bid and approval of plans submitted by potential Part D sponsors.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Review and negotiation of bid and approval of plans... and negotiation of bid and approval of plans submitted by potential Part D sponsors. (a) Review and negotiation regarding information, terms and conditions. CMS reviews the information filed under § 423.265(c...

  13. Book ReviewL Global Warming

    Directory of Open Access Journals (Sweden)

    Nadia Astriani

    2015-04-01

    Full Text Available Global Warming is part of Greenhaven’s Contemporary Issues Companion series published by, Thomson Gale on 2005. Each volume of the anthologyseries focuses on a topic of current interest, presenting informative and thought-provoking selection written from wide-variety viewpoints. It is an ideal launching point for research on a particular topic. Each anthology in the series is composed of readings taken from an extensive gamut of resources, including periodical, newspapers, books, governmentdocuments, the publications of private and public organization an internet website. Readers will find factual support suitable for use in reports, debate, speeches and research papers. In understanding Environmental Law, student must understand the environmental issues first. Global warming is the latest issue in Environmental Law field, it has been discuss for more than a decade. It is hard for law student, who don’t have any scientific background to understand this issue. That’s why this anthology series is perfect start for student to understanding Global Warming Issue. This book consist of three part, namely: Understanding Global Warming, The Consequences of Global warming and Solving the Global warming Problem. Each chapter contains 6-7 articles.

  14. Atmospheric chemistry of CF3CFHCF2OCF3 and CF3CFHCF2OCF2H: Reaction with Cl atoms and OH radicals, degradation mechanism, and global warming potentials

    DEFF Research Database (Denmark)

    Wallington, TJ; Hurley, MD; Nielsen, OJ

    2004-01-01

    Fourier transform infrared (FTIR) smog chamber techniques were used to measure k(Cl + CF3CFHCF2OCF3) = (4.09 +/- 0.42) x 10(-17), k(OH + CF3CFHCF2OCF3) = (1.43 +/- 0.28) x 10(-15), k(Cl + CF3CFHCF2OCF2H) = (6.89 +/- 1.29) x 10(-17), and k(OH + CF3CFHCF2OCF2H) = (1.79 +/- 0.34) x 10(-15) cm(3) mol...... respectively. The 100-year time horizon global warming potentials of CF3CFHCF2OCF3 and CF3CFHCF2OCF2H relative to CO2 are 4530 and 4340. Results are discussed with respect to the atmospheric chemistry of hydrofluoroethers....

  15. [Effects of combined applications of pig manure and chemical fertilizers on CH4 and N2O emissions and their global warming potentials in paddy fields with double-rice cropping].

    Science.gov (United States)

    Wang, Cong; Shen, Jian-Lin; Zheng, Liang; Liu, Jie-Yun; Qin, Hong-Ling; Li, Yong; Wu, Jin-Shui

    2014-08-01

    A field experiment was carried out to study the effects of combined applications of pig manure and chemical fertilizers on CH4 and N2O emissions, which were measured using the static chamber/gas chromatography method, and their global warming potentials in typical paddy fields with double-rice cropping in Hunan province. The results showed that the combined applications of pig manure and chemical fertilizers did not change the seasonal patterns of CH4 and N2O emissions from paddy soils, but significantly changed the magnitudes of CH4 and N2O fluxes in rice growing seasons as compared with sole application of chemical fertilizers. During the two rice growing seasons, the cumulative CH4 emissions for the pig manure and chemical nitrogen (N) fertilizer each contributing to 50% of the total applied N (1/2N + PM) treatment were higher than those for the treatments of no N fertilizer (ON), half amount of chemical N fertilizer (1/2N) and 100% chemical N fertilizer (N) by 54.83%, 33.85% and 43.30%, respectively (P global warming potential (GWP) in both rice growing seasons, which contributed more than 99% to the integrated GWP of CH4 and N2O emissions for all the four treatments. Both GWP and yield-scaled GWP for the treatment of 1/2N + PM were significantly higher than the other three treatments. The yield-scaled GWP for the treatment of 1/2N + PM was higher than those for the N, 1/2N and ON treatments by 58.21%, 26.82% and 20. 63%, respectively. Therefore, combined applications of pig manure and chemical fertilizers in paddy fields would increase the GWP of CH4 and N2O emissions during rice growing seasons and this effect should be considered in regional greenhouse gases emissions inventory.

  16. Global Warming: A Myth?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 7. Global Warming: A Myth? - Credibility of Climate Scenarios Predicted by Systems Simulations. Deepanjan Majumdar. General Article Volume 6 Issue 7 July 2001 pp 13-21 ...

  17. Global Warming: A Myth?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 6. Global Warming: A Myth? - Anomalous Temperature Trends Recorded from Satellites and Radiosondes. Deepanjan Majumdar. General Article Volume 6 Issue 6 June 2001 pp 43-52 ...

  18. Global Warming on Trial

    National Research Council Canada - National Science Library

    Broecker, Wallace S

    1992-01-01

      The issue of global warming is fraught with controversy, as it pits groups who are concerned with the short-term well-being of society against those who fear for the long-term future of the planet...

  19. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  20. Media Pembelajaran Global Warming

    OpenAIRE

    Tham, Fikri Jufri; Liliana, Liliana; Purba, Kristo Radion

    2016-01-01

    Computer based learning media is one of the media has an important role in learning. Learning media will be attractive when packaged through interactive media , such as interactive media created in paper manufacture " instructional media global warming" . The advantage gained is that it can increase knowledge, generally educate people to be more concerned about the environment , and also can be a means of entertainment. This application is focused to learn about global warming and packaged in...

  1. Global warming yearbook: 1998

    Energy Technology Data Exchange (ETDEWEB)

    Arris, L. [ed.

    1999-02-01

    The report brings together a year`s worth of global warming stories - over 280 in all - in one convenient volume. It provides a one-stop report on the scientific, political and industrial implications of global warming. The report includes: detailed coverage of negotiations on the Kyoto Protocol; scientific findings on carbon sources and sinks, coral bleaching, Antarctic ice shelves, plankton, wildlife and tree growth; new developments on fuel economy, wind power, fuel cells, cogeneration, energy labelling and emissions trading.

  2. Comparison of Collection Schemes of Municipal Solid Waste Metallic Fraction: The Impacts on Global Warming Potential for the Case of the Helsinki Metropolitan Area, Finland

    Directory of Open Access Journals (Sweden)

    Kari Heiskanen

    2012-10-01

    Full Text Available In this research article the sustainability of different practices to collect the metal fraction of household waste in the Helsinki metropolitan area, Finland is examined. The study is carried out by calculating and comparing the greenhouse gas reduction potential of optional practices for collecting the metal fraction of household waste in the Helsinki metropolitan area, Finland. In order to locate the greenhouse gas reduction potential of the separate collection of the metallic fraction of municipal solid waste (MSW collected from residential sources, a comparative carbon footprint analysis using Life Cycle Assessment (LCA on six different waste management scenarios is carried out. The modeled system consisted of a waste collection system, transportation, and different waste management alternatives, including on-site separation, separation at the waste management facility as well as metallurgical recovery of separated scrap. The results show that, in terms of greenhouse gas emissions, separate collection and recycling of the metallic fraction of solid MSW at residential properties is the preferable option compared to a scenario with no source sorting and incineration of everything. According to this research scenario where the metal fraction of solid household waste was not source-separated or collected separately have clearly higher greenhouse gas emissions compared to all the other scenarios with separate collection for metals. In addition, metal recycling by regional collection points has considerably lower greenhouse gas emission potential than metal recycling by collection directly from residential properties.

  3. Momentum dependence of the imaginary part of the ω- and η{sup '}-nucleus optical potential

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S.; Nanova, M.; Metag, V.; Brinkmann, K.T.; Drexler, P.; Gutz, E.; Makonyi, K.; Zaunick, H.G. [Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Afzal, F.N.; Beck, R.; Becker, M.; Boese, S.; Funke, C.; Gottschall, M.; Gruener, M.; Hammann, C.; Hartmann, J.; Hoffmeister, P.; Honisch, C.; Kaiser, D.; Kalischewski, F.; Koop, K.; Lang, M.; Mueller, J.; Muellers, J.; Piontek, D.M.; Schaab, D.; Schmidt, C.; Schmitz, R.; Seifen, T.; Sokhoyan, V.; Spieker, K.; Thiel, A.; Thoma, U.; Urban, M.; Pee, H. van; Walther, D.; Wendel, C.; Wilson, A.; Wunderlich, Y. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Bayadilov, D. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Bantes, B.; Eberhardt, H.; Elsner, D.; Frommberger, F.; Hannappel, J.; Hillert, W.; Jude, T.; Klein, F.; Messi, F.; Schmieden, H. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany); Crede, V. [Florida State University, Department of Physics, Tallahassee, FL (United States); Keshelashvili, I.; Krusche, B.; Rostomyan, T.; Werthmueller, D.; Witthauer, L. [Universitaet Basel, Departement Physik, Basel (Switzerland); Sowa, C.; Triffterer, T.; Wiedner, U. [Universitaet Bochum, Physikalisches Institut, Bochum (Germany); Collaboration: The CBELSA/TAPS Collaboration

    2016-09-15

    The photoproduction of ω and η{sup '} mesons off carbon and niobium nuclei has been measured as a function of the meson momentum for incident photon energies of 1.2-2.9 GeV at the electron accelerator ELSA. The mesons have been identified via the ω → π{sup 0}γ → 3γ and η{sup '} → π{sup 0}π{sup 0}η → 6γ decays, respectively, registered with the CBELSA/TAPS detector system. From the measured meson momentum distributions the momentum dependence of the transparency ratio has been determined for both mesons. Within a Glauber analysis the in-medium ω and η{sup '} widths and the corresponding absorption cross sections have been deduced as a function of the meson momentum. The results are compared to recent theoretical predictions for the in-medium ω width and η{sup '}-N absorption cross sections. The energy dependence of the imaginary part of the ω- and η{sup '}-nucleus optical potential has been extracted. The finer binning of the present data compared to the existing data allows a more reliable extrapolation towards the production threshold. The modulus of the imaginary part of the η{sup '}-nucleus potential is found to be about three times smaller than recently determined values of the real part of the η{sup '}-nucleus potential, which makes the η{sup '} meson a suitable candidate for the search for meson-nucleus bound states. For the ω meson, the modulus of the imaginary part near threshold is comparable to the modulus of the real part of the potential. As a consequence, only broad structures can be expected, which makes the observation of ω mesic states very difficult experimentally. (orig.)

  4. Transportation in America's future: potentials for the next half century. Part 1. Societal context. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Curry, D.; Carlson, R.; Henderson, C.; Mandel, T.; Mitchell, A.

    1977-06-01

    The report describes four potential socioeconomic futures for the United States and their implications for transportation through 2025. The futures--designated Success, Foul Weather, Disciplined Society, and Transformation--vary particularly in economic performance, climate, institutional structure, and personal values. For each future, Part 1 provides a detailed narrative account or scenario, accompanied by separate analyses of the energy, demographic, economic, and urban implications of each scenario. Part 2 provides demand forecasts for most modes; technology forecasts for twelve transportation modes and seven specific systems or technologies; and analyses of six critical transportation problems.

  5. Geology and hydrocarbon potential of a part of Assam-Arakan Basin and its adjacent region

    Energy Technology Data Exchange (ETDEWEB)

    Rangarao, A.

    1984-11-01

    The Assam-Arakan geological province extends from the eastern border of Bihar to the extreme north-eastern corner of Assam and to the Arakan Coast of Buram. The area considered in this presentation includes a part of Assam and Nagaland, Manipur and Mizoram. The geology of Arunachal Himalyan Foot-hills has been included because of its closeness with Arakan, during Upper Tertiary. The material for this presentation is drawn from various unpublished reports of ONGC and other published sources but the interpretations given in this presentation are of the author.

  6. When could global warming reach 4°C?

    Science.gov (United States)

    Betts, Richard A; Collins, Matthew; Hemming, Deborah L; Jones, Chris D; Lowe, Jason A; Sanderson, Michael G

    2011-01-13

    The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) assessed a range of scenarios of future greenhouse-gas emissions without policies to specifically reduce emissions, and concluded that these would lead to an increase in global mean temperatures of between 1.6°C and 6.9°C by the end of the twenty-first century, relative to pre-industrial. While much political attention is focused on the potential for global warming of 2°C relative to pre-industrial, the AR4 projections clearly suggest that much greater levels of warming are possible by the end of the twenty-first century in the absence of mitigation. The centre of the range of AR4-projected global warming was approximately 4°C. The higher end of the projected warming was associated with the higher emissions scenarios and models, which included stronger carbon-cycle feedbacks. The highest emissions scenario considered in the AR4 (scenario A1FI) was not examined with complex general circulation models (GCMs) in the AR4, and similarly the uncertainties in climate-carbon-cycle feedbacks were not included in the main set of GCMs. Consequently, the projections of warming for A1FI and/or with different strengths of carbon-cycle feedbacks are often not included in a wider discussion of the AR4 conclusions. While it is still too early to say whether any particular scenario is being tracked by current emissions, A1FI is considered to be as plausible as other non-mitigation scenarios and cannot be ruled out. (A1FI is a part of the A1 family of scenarios, with 'FI' standing for 'fossil intensive'. This is sometimes erroneously written as A1F1, with number 1 instead of letter I.) This paper presents simulations of climate change with an ensemble of GCMs driven by the A1FI scenario, and also assesses the implications of carbon-cycle feedbacks for the climate-change projections. Using these GCM projections along with simple climate-model projections, including uncertainties in carbon

  7. Warming reduces carbon losses from grassland exposed to elevated atmospheric carbon dioxide.

    Directory of Open Access Journals (Sweden)

    Elise Pendall

    Full Text Available The flux of carbon dioxide (CO2 between terrestrial ecosystems and the atmosphere may ameliorate or exacerbate climate change, depending on the relative responses of ecosystem photosynthesis and respiration to warming temperatures, rising atmospheric CO2, and altered precipitation. The combined effect of these global change factors is especially uncertain because of their potential for interactions and indirectly mediated conditions such as soil moisture. Here, we present observations of CO2 fluxes from a multi-factor experiment in semi-arid grassland that suggests a potentially strong climate - carbon cycle feedback under combined elevated [CO2] and warming. Elevated [CO2] alone, and in combination with warming, enhanced ecosystem respiration to a greater extent than photosynthesis, resulting in net C loss over four years. The effect of warming was to reduce respiration especially during years of below-average precipitation, by partially offsetting the effect of elevated [CO2] on soil moisture and C cycling. Carbon losses were explained partly by stimulated decomposition of soil organic matter with elevated [CO2]. The climate - carbon cycle feedback observed in this semiarid grassland was mediated by soil water content, which was reduced by warming and increased by elevated [CO2]. Ecosystem models should incorporate direct and indirect effects of climate change on soil water content in order to accurately predict terrestrial feedbacks and long-term storage of C in soil.

  8. Evaluation of the Phytochemical and Antioxidant Potential of Aerial Parts of Iranian Tanacetum parthenium

    Directory of Open Access Journals (Sweden)

    Farshid Rezaei, Rashid Jamei, Reza Heidari

    2017-06-01

    Full Text Available Background: The objective of this study was to analyze the essential oil, fatty acid, flavonoid, phenolic compounds and in vitro antioxidant activity of oil from Feverfew (Tanacetum parthenium L. wild grown and collected from north of Iran. Methods: The essential oil of aerial parts was analyzed by spectroscopy method (GC/MS using HP-5MS column while the fatty acid content was analyzed by gas chromatography (GC/FID. Phenolic contents of the oil were evaluated using high performance liquid chromatography (HPLC/UV technique while total phenols and flavonoids were determined colorimetrically. The in vitro antioxidant activity of the essential oil was evaluated by 1,1-diphenyl-2 picryl hydrazyl (DPPH radical scavenging technique. Results: In the essential oil thirteen compounds were characterized with camphor (43.97 %, chrysanthenyl acetate (12.46 % and farnesol (7.54% as the major components. Principal fatty acid components of the herb were palmitic acid (57.27% and myristic acid (14.7%. HPLC analysis revealed that the cinnamic acid derivatives were the major compounds, with sinapic (3.86 ± 0.1 mg/g dw and ferulic (2.59 ± 0.1 mg/g dw acids being the predominant ones. Also, evaluation the bioactivity of the oil showed considerable antioxidant capacity (TPC = 152.8 ± 0.8 mg/g and DPPH = 73.8 ± 1.3 %. Conclusion: This study revealed that the essential oil was rich in camphor/chrysanthenyl acetate chemotype and different polyphenols in the category of hydroxycinnamic acid derivatives. In addition, this research demonstrated that the aerial parts of this aromatic herb were various sources of oily components, especially essential fatty acids.

  9. Potential linkages between mineral magnetic measurements and urban roadside soil pollution (part 2).

    Science.gov (United States)

    Crosby, C J; Fullen, M A; Booth, C A

    2014-03-01

    Use of mineral magnetic concentration parameters (χLF, χARM and SIRM) as a potential pollution proxy for soil samples collected from Wolverhampton (UK) is explored. Comparison of soil-related analytical data by correlation analyses between each magnetic parameter and individual geochemical classes (i.e. Fe, Pb, Ni, Zn, Cd), are reported. χLF, χARM and SIRM parameters reveal significant (p soils in certain environments and/or specific settings that are appropriate for monitoring techniques. The mineral magnetic technique offers a simple, reliable, rapid, sensitive, inexpensive and non-destructive approach that could be a valuable pollution proxy for soil contamination studies.

  10. Influence of sudden stratospheric warmings on tropospheric winds

    NARCIS (Netherlands)

    Hinssen, Y.B.L.; van Delden, A.J.; Opsteegh, T.

    2011-01-01

    The influence of changes in the zonal mean stratospheric potential vorticity, associated with sudden stratospheric warmings, on the zonal mean zonal wind in the troposphere is investigated by piecewise potential vorticity inversion. The focus is on the major sudden stratospheric warming that

  11. Improving the Clinical Pharmacologic Assessment of Abuse Potential: Part 1: Regulatory Context and Risk Management.

    Science.gov (United States)

    Sellers, Edward M

    2018-02-01

    This article brings to the attention of drug developers the Food and Drug Administration's (FDA's) recent final Guidance to Industry on Assessment of Abuse Potential and provides practical suggestions about compliance with the Guidance. The Guidance areas are reviewed, analyzed, and placed in the context of current scientific knowledge and best practices to mitigate regulatory risk. The Guidance provides substantial new detail on what needs to be done at all stages of drug development for central nervous system-active drugs. However, because many psychopharmacologic agents have unique preclinical and clinical features, the plan for each agent needs to be not only carefully prepared but also reviewed and approved by the FDA. Examples are provided where assumptions about interpretation of the Guidance can delay development. If the expertise and experience needed for assessing abuse potential during drug development do not exist within a company, external preclinical and clinical expert should be involved. Consultation with the FDA is encouraged and important because the specific requirements for each drug will vary.

  12. Potential antioxidant compounds in Mallotus species fingerprints. Part I: indication, using linear multivariate calibration techniques.

    Science.gov (United States)

    Tistaert, C; Dejaegher, B; Nguyen Hoai, N; Chataigné, G; Rivière, C; Nguyen Thi Hong, V; Chau Van, M; Quetin-Leclercq, J; Vander Heyden, Y

    2009-09-01

    Some Mallotus species are used in traditional medicine in Vietnam and China. Some also show interesting activities, such as antioxidant and cytotoxic ones. Combining fingerprint technology with data-handling techniques allows indicating the peaks potentially responsible for given activities. In this study it is aspired to indicate from chromatographic fingerprints the peaks potentially responsible for the antioxidant activity of several Mallotus species. Relevant information was extracted using linear multivariate calibration techniques, both before and after alignment of the fingerprints with correlation optimized warping (COW). From the studied techniques, Stepwise Multiple Linear Regression is least recommended as it made an inadequate variable selection. Principal Component Regression theoretically can take largely varying variables uncorrelated to the antioxidant activity into account. However, in practice in the actual case study this problem was limited. These problems in principle do not occur using Partial Least Squares (PLS) models. Of the tested PLS methods, Orthogonal Projections to Latent Structures was preferred because of its simplicity, reproducibility, reduced model complexity and improved interpretability of the regression coefficients, yielding a clearer view on the individual contribution of the compounds. Furthermore, reducing analysis times from 60 min to 35 and 22.5 min resulted in the same main compounds, indicated responsible for the antioxidant activity. Models built after alignment by COW did not result in additional information.

  13. Frequency-Dependent Streaming Potential of Porous Media—Part 1: Experimental Approaches and Apparatus Design

    Directory of Open Access Journals (Sweden)

    P. W. J. Glover

    2012-01-01

    Full Text Available Electrokinetic phenomena link fluid flow and electrical flow in porous and fractured media such that a hydraulic flow will generate an electrical current and vice versa. Such a link is likely to be extremely useful, especially in the development of the electroseismic method. However, surprisingly few experimental measurements have been carried out, particularly as a function of frequency because of their difficulty. Here we have considered six different approaches to make laboratory determinations of the frequency-dependent streaming potential coefficient. In each case, we have analyzed the mechanical, electrical, and other technical difficulties involved in each method. We conclude that the electromagnetic drive is currently the only approach that is practicable, while the piezoelectric drive may be useful for low permeability samples and at specified high frequencies. We have used the electro-magnetic drive approach to design, build, and test an apparatus for measuring the streaming potential coefficient of unconsolidated and disaggregated samples such as sands, gravels, and soils with a diameter of 25.4 mm and lengths between 50 mm and 300 mm.

  14. HOW ARE PLANT SPECIES IN CENTRAL EUROPEAN BEECH (FAGUS SYLVATICA L. FORESTS AFFECTED BY TEMPERATURE CHANGES? SHIFT OF POTENTIAL SUITABLE HABITATS UNDER GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    M. C. Jantsch

    2013-10-01

    Full Text Available This study reveals which temperature range is favoured or avoided by 156 forest plant species and how the distribution of potential suitable habitats of species in beech forests may change in the future. We performed 140 phytosociological relevés along a temperature gradient (4.1 to 9.8 °C in Bavaria, southern Germany, on south exposed slopes. One half of the plots were located on acidic substrate, the other half on base-rich substrate. Generalized linear models (GLM were used to analyse species occurrence along the temperature gradient and to model habitats for species in beech forests under a present (1971-2000 and a future climate (2071-2100 scenario assuming a temperature increase of 1.8 °C. Herb species of beech forests are more adapted to lower temperatures and tree species more to higher temperatures. Current habitats will clearly change under increasing temperatures. We found large habitat losses for Luzula sylvatica (Huds. Gaudin, Maianthemum bifolium (L. F. W. Schmidt, Picea abies (L. H. Karst., Prenanthes purpurea L. and large habitat gains for Carpinus betulus L., Impatiens parviflora DC., Prunus avium (L. L. and Quercus petraea (Matt. Liebl. on both substrates. Forestry will be affected positively as well as negatively with a change in tree cultivation. Losses in biodiversity might be strong for mountainous forests and must also be considered in future conservation plans.

  15. To Which Degree Does Sector Specific Standardization Make Life Cycle Assessments Comparable?—The Case of Global Warming Potential of Smartphones

    Directory of Open Access Journals (Sweden)

    Anders S. G. Andrae

    2014-11-01

    Full Text Available Here attributional life cycle assessments (LCAs for the same smartphone model are presented by two different organizations (Orange, OGE and Huawei, HuW and the effect of different modeling approach is analyzed. A difference of around 32% (29.6 kg and 39.2 kg for CO2e baseline scores is found using same study object and sector specific LCA standard, however, different metrics, emission intensities, and LCA software programs. The CO2e difference is reduced to 12% (29.9 kg and 33.5 kg when OGE use HuW metrics for use phase power consumption and total mass, and when HuW use OGE metrics for gold mass and silicon die area. Further, a probability test confirms that present baseline climate change results, for one specific study object modeled with two largely different and independent LCA modeling approaches, are comparable if both use the European Telecommunications Standard Institute (ETSI LCA standard. The general conclusion is that the ETSI LCA standard strongly facilitates comparable CC results for technically comparable smartphone models. Moreover, thanks to the reporting requirements of ETSI LCA standard, a clear understanding of the differences between LCA modeling approaches is obtained. The research also discusses the magnitude of the CO2e reduction potential in the life cycle of smartphones.

  16. Biogas and Power Generation Potential. Part I: Bovine and Pig Manure

    Directory of Open Access Journals (Sweden)

    Vera-Romero Iván

    2014-07-01

    Full Text Available The potential energy through biogas obtained directly from the dung of bovine and pigs is reported in this paper, in the Cienega region of Michoacan, Mexico. The last INEGI Agricultural Census was used to determine the livestock population, and then the amount of manure by type of animal was established according to an average size. The total amount of manure was calculated and the amount of biogas and electricity produced. Representing a saving of electrical energy corresponding to 4.23% in 2013 to an amount of $18,300,00 Mexican pesos approximately, with an average cost of 2.326 pesos per kWh at a rate 5A Federal Electricity Commission (CFE.

  17. Medical versus surgical abortion: comparing satisfaction and potential confounders in a partly randomized study

    DEFF Research Database (Denmark)

    Rørbye, Christina; Nørgaard, Mogens; Nilas, Lisbeth

    2005-01-01

    ) or a surgical abortion (vacuum aspiration in general anaesthesia). The procedure was determined either by randomization (n = 111) or by choice (n = 922). Data on satisfaction, side effects and expectations were collected from questionnaires 2 and 8 weeks after termination. RESULTS: More women were very.......05. Satisfaction with the medical procedure was inversely correlated with GA and the intensity of pain, nausea, vomiting and dizziness, while satisfaction with the surgical procedure was unaffected by these side effects. Fewer women with a failed medical than a failed surgical abortion were satisfied (17% vs 62......BACKGROUND: The aim of the study was to compare satisfaction with medical and surgical abortion and to identify potential confounders affecting satisfaction. METHODS: 1033 women with gestational age (GA)

  18. Organophilic bentonites based on Argentinean and Brazilian bentonites: part 2: potential evaluation to obtain nanocomposites

    Directory of Open Access Journals (Sweden)

    L. B. Paiva

    2012-12-01

    Full Text Available This work describes the preparation of composites of polypropylene and organophilic bentonites based on Brazilian and Argentinean bentonites. During the processing of the samples in a twin screw microextruder, torque and pressures of the extruder were accompanied and the viscosity values were calculated. No significant changes in the torque, pressure and viscosity were found for composites prepared with different bentonites. The samples were characterized by XRD and TEM to evaluate the structure and dispersion of the organophilic bentonites. Composites with exfoliated, partially exfoliated and intercalated structures were obtained and correlations between the intrinsic properties of the sodium clays and organophilic bentonites and their influence on the composites were studied. The cation exchange capacity of the sodium bentonites and the swelling capacity of the organophilic bentonites were the most important properties to obtain exfoliated structures in composites. All bentonites showed the potential to obtain polymer nanocomposites, but the ones from Argentina displayed the best results.

  19. Medical versus surgical abortion: comparing satisfaction and potential confounders in a partly randomized study

    DEFF Research Database (Denmark)

    Rørbye, Christina; Nørgaard, Mogens; Nilas, Lisbeth

    2005-01-01

    BACKGROUND: The aim of the study was to compare satisfaction with medical and surgical abortion and to identify potential confounders affecting satisfaction. METHODS: 1033 women with gestational age (GA) medical (600 mg mifepristone followed by 1 mg gemeprost...... satisfied or satisfied after a surgical than a medical abortion both after choosing method (92% vs 82%, P medical procedure than after randomization to the same procedure; 82% and 68%, respectively, P ....05. Satisfaction with the medical procedure was inversely correlated with GA and the intensity of pain, nausea, vomiting and dizziness, while satisfaction with the surgical procedure was unaffected by these side effects. Fewer women with a failed medical than a failed surgical abortion were satisfied (17% vs 62...

  20. [Vegetarian nutrition: preventive potential and possible risks. Part 2: animal foods and recommendations].

    Science.gov (United States)

    Ströhle, Alexander; Waldmann, Annika; Wolters, Maike; Hahn, Andreas

    2006-12-01

    As shown in the first part of this article, consuming high amounts of fruits, vegetables, whole grains and nuts can lower the risk for several chronic diseases. However, the relevance of animal foods consumed within a vegetarian diet is less well-known. We followed a nutritive and a metabolic-epidemiological approach to obtain dietary recommendations. A MEDLINE-research was performed for all animal food groups relevant with a vegetarian diet (key words: "eggs", "milk", "dietary pattern" "vegetarian diet", "cancer", "cardiovascular disease", "diabetes mellitus", "osteoporosis", "vitamin D", "vitamin B(12)", "iron", "iodine"). All relevant food groups were characterized regarding their nutrient content and rated with respect to the available metabolic-epidemiological evidence. Based on the evidence criteria of the WHO/FAO, colorectal cancer risk reduction by a high intake of milk and milk products is assessed as probable, while a higher risk of prostate and ovarial carcinomas is also probable. The evidence of a risk-increasing effect of eggs relating to cardiovascular disease, colorectal cancer and breast cancer is assessed as probable. As the data of prospective cohort studies suggest, a prudent diet pattern characterized high in fruits, vegetables, whole grains and nuts is associated with a lower risk of coronary heart disease and diabetes mellitus type 2. In contrast, there is no overall association between prudent diet pattern and risk of breast cancer or colorectal cancer. The critical key nutrients for vegetarians are vitamin D and B12, iodine and iron. For the first time evidence based dietary recommendations were provided for persons on a vegetarian diet in the D-A-CH-region.

  1. Study of diffuse H II regions potentially forming part of the gas streams around Sgr A*

    Science.gov (United States)

    Armijos-Abendaño, J.; López, E.; Martín-Pintado, J.; Báez-Rubio, A.; Aravena, M.; Requena-Torres, M. A.; Martín, S.; Llerena, M.; Aldás, F.; Logan, C.; Rodríguez-Franco, A.

    2018-02-01

    We present a study of diffuse extended ionised gas toward three clouds located in the Galactic Centre (GC). One line of sight (LOS) is toward the 20 km s-1 cloud (LOS-0.11) in the Sgr A region, another LOS is toward the 50 km s-1 cloud (LOS-0.02), also in Sgr A, while the third is toward the Sgr B2 cloud (LOS+0.693). The emission from the ionised gas is detected from Hnα and Hmβ radio recombination lines (RRLs). Henα and Hemβ RRL emission is detected with the same n and m as those from the hydrogen RRLs only toward LOS+0.693. RRLs probe gas with positive and negative velocities toward the two Sgr A sources. The Hmβ to Hnα ratios reveal that the ionised gas is emitted under local thermodynamic equilibrium conditions in these regions. We find a He to H mass fraction of 0.29±0.01 consistent with the typical GC value, supporting the idea that massive stars have increased the He abundance compared to its primordial value. Physical properties are derived for the studied sources. We propose that the negative velocity component of both Sgr A sources is part of gas streams considered previously to model the GC cloud kinematics. Associated massive stars with what are presumably the closest H II regions to LOS-0.11 (positive velocity gas), LOS-0.02 and LOS+0.693 could be the main sources of UV photons ionising the gas. The negative velocity components of both Sgr A sources might be ionised by the same massive stars, but only if they are in the same gas stream.

  2. A comprehensive analysis of coherent rainfall patterns in China and potential drivers. Part I: Interannual variability

    Science.gov (United States)

    Stephan, Claudia Christine; Klingaman, Nicholas Pappas; Vidale, Pier Luigi; Turner, Andrew George; Demory, Marie-Estelle; Guo, Liang

    2017-09-01

    Interannual rainfall variability in China affects agriculture, infrastructure and water resource management. To improve its understanding and prediction, many studies have associated precipitation variability with particular causes for specific seasons and regions. Here, a consistent and objective method, Empirical Orthogonal Teleconnection (EOT) analysis, is applied to 1951-2007 high-resolution precipitation observations over China in all seasons. Instead of maximizing the explained space-time variance, the method identifies regions in China that best explain the temporal variability in domain-averaged rainfall. The EOT method is validated by the reproduction of known relationships to the El Niño Southern Oscillation (ENSO): high positive correlations with ENSO are found in eastern China in winter, along the Yangtze River in summer, and in southeast China during spring. New findings include that wintertime rainfall variability along the southeast coast is associated with anomalous convection over the tropical eastern Atlantic and communicated to China through a zonal wavenumber-three Rossby wave. Furthermore, spring rainfall variability in the Yangtze valley is related to upper-tropospheric midlatitude perturbations that are part of a Rossby wave pattern with its origin in the North Atlantic. A circumglobal wave pattern in the northern hemisphere is also associated with autumn precipitation variability in eastern areas. The analysis is objective, comprehensive, and produces timeseries that are tied to specific locations in China. This facilitates the interpretation of associated dynamical processes, is useful for understanding the regional hydrological cycle, and allows the results to serve as a benchmark for assessing general circulation models.

  3. Greenhouse Warming Research

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    2016-01-01

    The changing greenhouse effect caused by natural and anthropogenic causes is explained and efforts to model the behavior of the near-surface constituents of the Earth's land, ocean and atmosphere are discussed. Emissions of various substances and other aspects of human activity influence...... the greenhouse warming, and the impacts of the warming may again impact the wellbeing of human societies. Thus physical modeling of the near-surface ocean-soil-atmosphere system cannot be carried out without an idea of the development of human activities, which is done by scenario analysis. The interactive...

  4. Suppression of Bromus tectorum L. by Established Perennial Grasses: Potential Mechanisms—Part One

    Directory of Open Access Journals (Sweden)

    Robert R. Blank

    2012-01-01

    Full Text Available Bromus tectorum L. (cheatgrass is an Eurasian annual grass that has invaded ecosystems throughout the Intermountain west of the United States. Our purpose was to examine mechanisms by which established perennial grasses suppress the growth of B. tectorum. Using rhizotrons, the experiment was conducted over 5 growth cycles: (1 B. tectorum planted between perennial grasses; (2 perennials clipped and B. tectorum planted; (3 perennials clipped and B. tectorum planted into soil mixed with activated carbon; (4 perennials clipped, B. tectorum planted, and top-dressed with fertilizer, and; (5 perennial grasses killed and B. tectorum planted. Water was not limiting in this study. Response variables measured at the end of each growth cycle included above-ground mass and tissue nutrient concentrations. Relative to controls (B. tectorum without competition, established perennial grasses significantly hindered the growth of B. tectorum. Overall, biomass of B. tectorum, grown between established perennials, increased considerably after fertilizer addition and dramatically upon death of the perennials. Potential mechanisms involved in the suppression of B. tectorum include reduced nitrogen (possibly phosphorus availability and coopting of biological soil space by perennial roots. Our data cannot confirm or reject allelopathic suppression. Understanding the mechanisms involved with suppression may lead to novel control strategies against B. tectorum.

  5. How technology and price affect US tight gas potential. Part 1. Technology of tight gas production

    Energy Technology Data Exchange (ETDEWEB)

    Veatch, R.W. Jr.; Baker, O.

    1983-01-01

    The tight gas resource in the US currently is estimated at 900 tcf, of which 600 tcf is considered technically recoverable. This gas is found in basins that cover a prospective area of one million square miles (one million sections). Of these, ca 120,000 sections are potentially productive. The tight gas picture is composed of many different and often complex reservoirs, ranging from the shallow horizons of the Northern Great Plains to the deep formations of the Rocky Mountains. These reservoirs range from the blanket-like formations that cover wide geographical areas to the highly lenticular zones such as those common to the Mesa Verde. The one thing they have in common is microdarcy permeabilities. A good perspective of the challenge is obvious when such permeability values are realized to be similar to that of cement normally used for oil and gas well casing strings. The advanced technology presumes improved exploration knowledge, longer fractures, higher fracture conductivity, and a higher density of well development. Advanced technology is particularly necessary for lenticular reservoirs which contain ca 40% of the recoverable gas.

  6. [Vegetarian nutrition: Preventive potential and possible risks. Part 1: Plant foods].

    Science.gov (United States)

    Ströhle, Alexander; Waldmann, Annika; Wolters, Maike; Hahn, Andreas

    2006-10-01

    Today vegetarian nutrition is more accepted and widespread in Europe than in former years. For a long time scientific research on vegetarian diets has focused mostly on malnutrition, whereas nowadays research centers increasingly on the preventive potential of plant-based diets. We followed a nutritive and a metabolic-epidemiological approach to obtain dietary recommendations. A MEDLINE research was performed for all plant food groups relevant for a vegetarian diet (key words: all relevant food groups, "vegetarian diet", "chronic disease", "cancer", "cardiovascular disease", "diabetes mellitus", "osteoporosis"). All relevant food groups were characterized regarding their nutrient content and rated with respect to the available metabolic-epidemiological evidence. Based on the evidence criteria of the WHO/FAO, cancer risk reduction by a high intake of vegetables and fruits is assessed as probable or possible, while a lowered risk of cardiovascular disease is convincing and a lowered risk of osteoporosis is probable. The evidence of a risk reducing effect of whole grain relating to colorectal cancer is assessed as possible, whereas it is probable relating to cardiovascular disease and diabetes mellitus type 2. There is an insufficient risk-reducing effect of legumes like soja relating to epithelial tumours and cardiovascular disease. The evidence of a risk-reducing effect of nuts to cardiovascular disease is assessed as probable, and in relation to cholelithiasis and diabetes mellitus type 2 as possible and insufficient, respectively. In conclusion, high consumption of fruits, vegetables, whole grains and nuts can lower the risk for several chronic diseases.

  7. Geophysical evaluation of groundwater potential in part of southwestern Basement Complex terrain of Nigeria

    Science.gov (United States)

    Bayewu, Olateju O.; Oloruntola, Moroof O.; Mosuro, Ganiyu O.; Laniyan, Temitope A.; Ariyo, Stephen O.; Fatoba, Julius O.

    2017-12-01

    The geophysical assessment of groundwater in Awa-Ilaporu, near Ago Iwoye southwestern Nigeria was carried out with the aim of delineating probable areas of high groundwater potential. The area falls within the Crystalline Basement Complex of southwestern Nigeria which is predominantly underlain by banded gneiss, granite gneiss and pegmatite. The geophysical investigation involves the very low frequency electromagnetic (VLF-EM) and Vertical Electrical Sounding (VES) methods. The VLF-EM survey was at 10 m interval along eight traverses ranging between 290 and 700 m in length using ABEM WADI VLF-EM unit. The VLF-EM survey was used to delineate areas with conductive/fractured zones. Twenty-three VES surveys were carried out with the use of Campus Ohmega resistivity meter at different location and at locations areas delineated as high conductive areas by VLF-EM survey. The result of VLF-EM survey along its traverse was used in delineating high conductive/fractured zones, it is, however, in agreement with the delineation of the VES survey. The VES results showed 3-4 geoelectric layers inferred as sandy topsoil, sandy clay, clayey and fractured/fresh basement. The combination of these two methods, therefore, helped in resolving the prospecting location for the groundwater yield in the study area.

  8. The potential of socio-psychological models for the development of prevention programs (Part 1

    Directory of Open Access Journals (Sweden)

    Bovina I.B.

    2014-12-01

    Full Text Available This paper considers the problem of designing prevention programs in health and disease. We note that smoking cessation on the planet would reduce mortality from various types of cancer by 25%, and would also save the lives of hundreds of thousands of people who die each year from heart attacks. Losing weight by only 10% through proper nutrition and exercise would reduce the incidence of cardiovascular disease, as well as certain types of cancer. Based on the literature review, we reveal the different types of prevention, show the importance of preventive measures aimed at the patient's immediate environment. Among the main difficulties associated with the development of effective prevention programs we discuss the following: 1 ignoring the psychological mechanisms of behavior change; 2 irrelevance of media broadcast methods in prevention campaigns; 3 the time between the problem behavior and its negative effects on health. We discuss the potential of social influence models for the development of prevention programs in the field of health and disease.

  9. Photoperiod cues and patterns of genetic variation limit phenological responses to climate change in warm parts of species’ range: Modeling diameter-growth cessation in coast Douglas-fir

    Science.gov (United States)

    Kevin R. Ford; Constance A. Harrington; J. Bradley St. Clair

    2017-01-01

    The phenology of diameter-growth cessation in trees will likely play a key role in mediating species and ecosystem responses to climate change. A common expectation is that warming will delay cessation, but the environmental and genetic influences on this process are poorly understood. We modeled the effects of temperature, photoperiod, and seed-source climate on...

  10. Evaluation of red blood cell stability during immersion blood warming

    African Journals Online (AJOL)

    Temperature increase within the blood unit being warmed by immersion in warm water is non-uniform, with the outer part showing the largest temperature increases. This was examined at waterbath temperatures of 45°C and 47°C and represented graphically. Temperature decrease in a stainless steel bucket filled with 10 ...

  11. Safety and efficacy of resistive polymer versus forced air warming in total joint surgery

    OpenAIRE

    Sandoval, Melanie F.; Mongan, Paul D.; Dayton, Michael R.; Craig A Hogan

    2017-01-01

    Background Forced-air warming is used as a mechanism to prevent hypothermia and adverse outcomes associated with hypothermia among patients undergoing surgery. Patient safety in healthcare includes the use of devices and technology that minimize potential adverse events to patients. The present study sought to compare the capabilities of patient warming between two different devices that use different mechanisms of warming: forced-air warming and non-air warming. Methods One hundred twenty pa...

  12. Uses of warmed water in agriculture. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, R.E.

    1978-11-01

    Energy in the form of warmed water is available from condenser cooling water from fossil fuel or nuclear-electric power-generating facilities, geothermal power plants, geothermal fluids, or spent steam and cooling water from industrial processes. A re-analysis of the characteristics of possible agricultural uses of warmed water has revealed the need to decouple considerations of warmed water sources from those of warmed water users. Conflicting objectives and managerial requirements seem to preclude an integrated system approach. Rather an interface must be established with separate costs and benefits identified for a reliable warmed water source and for its various potential uses. These costs and benefits can be utilized as a basis for decisions separately by the energy supplier and the prospective energy users. A method of classifying uses of warmed water according to need, volume, objective, temperature, and quality is presented and preliminary classifications are discussed for several potential agricultural uses of warmed water. Specific uses for soil warming, space heating in greenhouses, and irrigation are noted. Specific uses in aquaculture for catfish, lobster, and prawn production are discussed. Warmed water use in animal shelters is mentioned. Low-quality heat is required for methane generation from biomass and warmed water heating could be utilized in this industry. 53 references. (MCW)

  13. Characterizing ammonia emissions from swine farms in eastern North Carolina: part 2--potential environmentally superior technologies for waste treatment.

    Science.gov (United States)

    Aneja, Viney P; Arya, S Pal; Rumsey, Ian C; Kim, D-S; Bajwa, K; Arkinson, H L; Semunegus, H; Dickey, D A; Stefanski, L A; Todd, L; Mottus, K; Robarge, W P; Williams, C M

    2008-09-01

    The need for developing environmentally superior and sustainable solutions for managing the animal waste at commercial swine farms in eastern North Carolina has been recognized in recent years. Program OPEN (Odor, Pathogens, and Emissions of Nitrogen), funded by the North Carolina State University Animal and Poultry Waste Management Center (APWMC), was initiated and charged with the evaluation of potential environmentally superior technologies (ESTs) that have been developed and implemented at selected swine farms or facilities. The OPEN program has demonstrated the effectiveness of a new paradigm for policy-relevant environmental research related to North Carolina's animal waste management programs. This new paradigm is based on a commitment to improve scientific understanding associated with a wide array of environmental issues (i.e., issues related to the movement of N from animal waste into air, water, and soil media; the transmission of odor and odorants; disease-transmitting vectors; and airborne pathogens). The primary focus of this paper is on emissions of ammonia (NH3) from some potential ESTs that were being evaluated at full-scale swine facilities. During 2-week-long periods in two different seasons (warm and cold), NH3 fluxes from water-holding structures and NH3 emissions from animal houses or barns were measured at six potential EST sites: (1) Barham farm--in-ground ambient temperature anaerobic digester/energy recovery/greenhouse vegetable production system; (2) BOC #93 farm--upflow biofiltration system--EKOKAN; (3) Carrolls farm--aerobic blanket system--ISSUES-ABS; (4) Corbett #1 farm--solids separation/ gasification for energy and ash recovery centralized system--BEST; (5) Corbett #2 farm--solid separation/ reciprocating water technology--ReCip; and (6) Vestal farm--Recycling of Nutrient, Energy and Water System--ISSUES-RENEW. The ESTs were compared with similar measurements made at two conventional lagoon and spray technology (LST) farms (Moore

  14. Drought under Global Warming: A Review

    Science.gov (United States)

    Dai, A.

    2011-12-01

    One of the big concerns associated with global warming is the potential change to land surface moisture conditions that could have a huge impact on agriculture, freshwater resources, and many other aspects of our society and the environment. How drought has changed during recent past and how it might change in the coming decades is increasingly becoming a great concern as global warming continues and more severe droughts are reported in the media. In this presentation, I will provide an overview, based on my own and others' work, of how drought has changed in the last several centuries and during recent decades over many regions around the world based on historical records, and how it might change in the coming decades based on IPCC AR4 model-predicted climate changes. I will present results from analyses of changes in precipitation, streamflow, soil moisture, and (improved) Palmer Drought Severity Index (PDSI) to show that aridity has increased during the last 50-60 years over many land areas, and rapid warming since the 1980s has contributed significantly to this drying. The PDSI (with improved evapotranspiration estimates) calculated from the AR4 multi-model predicted future climate suggests severe drying in the next 20-50 years over most land areas except the northern high-latitudes and parts of Asia. This drying pattern is consistent with other analyses of model-predicted soil moisture and precipitation changes. Although the quantitative interpretation of the future PDSI values may need to be cautious, combined with the other analyses, the PDSI result points to a dire situation with more severe to extreme droughts in the coming decades over the continental U.S., most of Africa and South America, Australia, southern Europe, and western and southeastern Asia. Changes in precipitation play an important role over many land areas, but enhanced evaporation due to increased radiative heating is also a major factor for the model-predicted drying. For more details, see

  15. Warming shifts ‘worming’: effects of experimental warming on invasive earthworms in northern North America

    OpenAIRE

    Nico Eisenhauer; Artur Stefanski; Fisichelli, Nicholas A.; Karen Rice; Roy Rich; Reich, Peter B.

    2014-01-01

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm...

  16. Amplification of Arctic warming by past air pollution reductions in Europe

    Science.gov (United States)

    Acosta Navarro, J. C.; Varma, V.; Riipinen, I.; Seland, Ø.; Kirkevåg, A.; Struthers, H.; Iversen, T.; Hansson, H.-C.; Ekman, A. M. L.

    2016-04-01

    The Arctic region is warming considerably faster than the rest of the globe, with important consequences for the ecosystems and human exploration of the region. However, the reasons behind this Arctic amplification are not entirely clear. As a result of measures to enhance air quality, anthropogenic emissions of particulate matter and its precursors have drastically decreased in parts of the Northern Hemisphere over the past three decades. Here we present simulations with an Earth system model with comprehensive aerosol physics and chemistry that show that the sulfate aerosol reductions in Europe since 1980 can potentially explain a significant fraction of Arctic warming over that period. Specifically, the Arctic region receives an additional 0.3 W m-2 of energy, and warms by 0.5 °C on annual average in simulations with declining European sulfur emissions in line with historical observations, compared with a model simulation with fixed European emissions at 1980 levels. Arctic warming is amplified mainly in fall and winter, but the warming is initiated in summer by an increase in incoming solar radiation as well as an enhanced poleward oceanic and atmospheric heat transport. The simulated summertime energy surplus reduces sea-ice cover, which leads to a transfer of heat from the Arctic Ocean to the atmosphere. We conclude that air quality regulations in the Northern Hemisphere, the ocean and atmospheric circulation, and Arctic climate are inherently linked.

  17. Geomatics for Mapping of Groundwater Potential Zones in Northern Part of the United Arab Emiratis - Sharjah City

    Science.gov (United States)

    Al-Ruzouq, R.; Shanableh, A.; Merabtene, T.

    2015-04-01

    In United Arab Emirates (UAE) domestic water consumption has increased rapidly over the last decade. The increased demand for high-quality water, create an urgent need to evaluate the groundwater production of aquifers. The development of a reasonable model for groundwater potential is therefore crucial for future systematic developments, efficient management, and sustainable use of groundwater resources. The objective of this study is to map the groundwater potential zones in northern part of UAE and assess the contributing factors for exploration of potential groundwater resources. Remote sensing data and geographic information system will be used to locate potential zones for groundwater. Various maps (i.e., base, soil, geological, Hydro-geological, Geomorphologic Map, structural, drainage, slope, land use/land cover and average annual rainfall map) will be prepared based on geospatial techniques. The groundwater availability of the basin will qualitatively classified into different classes based on its hydro-geo-morphological conditions. The land use/land cover map will be also prepared for the different seasons using a digital classification technique with a ground truth based on field investigation.

  18. Warm-temperate deciduous forests around the Northern Hemisphere

    National Research Council Canada - National Science Library

    Box E.O; Fujiwara K

    2015-01-01

    Warm-temperate deciduous forests are "southern", mainly oak-dominated deciduous forests, as found over the warmer southern parts of the temperate deciduous forest regions of East Asia, Europe and eastern North America...

  19. 78 FR 20632 - Mandatory Reporting of Greenhouse Gases: Notice of Data Availability Regarding Global Warming...

    Science.gov (United States)

    2013-04-05

    ... AGENCY Mandatory Reporting of Greenhouse Gases: Notice of Data Availability Regarding Global Warming... EPA is announcing to the public the availability of estimated global warming potentials, as well as... requesting comments on the estimated global warming potentials and the data and analysis supporting them. We...

  20. Phosphate occurrence and potential in the region of Afghanistan, including parts of China, Iran, Pakistan, Tajikistan, Turkmenistan, and Uzbekistan

    Science.gov (United States)

    Orris, Greta J.; Dunlap, Pamela; Wallis, John; Wynn, Jeff

    2015-01-01

    As part of a larger study, the U.S. Geological Survey undertook a study to identify the potential for phosphate deposits in Afghanistan. As part of this study, a geographic information system was constructed containing a database of phosphate occurrences in Afghanistan and adjacent countries, and a database of potential host lithologies compiled from 1:1,000,000 scale maps. Within Afghanistan, a handful of known occurrences and reports indicate the presence of phosphate in Permian, Cretaceous, and Paleogene sediments and in carbonatite. With the exception of the Khanneshin carbonatite, very little is known about these occurrences. In the countries surrounding Afghanistan, economic phosphate is known to occur in Cambrian, Devonian, and Paleogene sediments and in Kiruna-type Fe-apatite deposits. Many of the host units may extend into Afghanistan or equivalent units may be present. Although the possibility of economic phosphate deposits exist for Afghanistan, the need for detailed exploration for phosphate, the remoteness of some locations, and the probability that a deposit would not be exposed at the surface mean that one or more deposits are not likely to be identified in the near future. Even if a phosphate-bearing deposit is identified in Afghanistan, it is not clear if the probable size, thickness, and grade ranges would allow economic development of the hypothesized resource.

  1. EFFECTS OF GLOBAL WARMING

    OpenAIRE

    Dr. Basanti Jain

    2017-01-01

    The abnormal increase in the concentration of the greenhouse gases is resulting in higher temperatures. We call this effect is global warming. The average temperature around the world has increased about 1'c over 140 years, 75% of this has risen just over the past 30 years. The solar radiation, as it reaches the earth, produces "greenhouse effect" in the atmosphere. The thick atmospheric layers over the earth behaves as a glass surface, as it permits short wave radiations from coming in, but ...

  2. Forecasting effects of global warming on biodiversity

    DEFF Research Database (Denmark)

    Botkin, D.B.; Saxe, H.; Araújo, M.B.

    2007-01-01

    The demand for accurate forecasting of the effects of global warming on biodiversity is growing, but current methods for forecasting have limitations. In this article, we compare and discuss the different uses of four forecasting methods: (1) models that consider species individually, (2) niche...... and theoretical ecological results suggest that many species could be at risk from global warming, during the recent ice ages surprisingly few species became extinct. The potential resolution of this conundrum gives insights into the requirements for more accurate and reliable forecasting. Our eight suggestions...

  3. A real-time Global Warming Index.

    Science.gov (United States)

    Haustein, K; Allen, M R; Forster, P M; Otto, F E L; Mitchell, D M; Matthews, H D; Frame, D J

    2017-11-13

    We propose a simple real-time index of global human-induced warming and assess its robustness to uncertainties in climate forcing and short-term climate fluctuations. This index provides improved scientific context for temperature stabilisation targets and has the potential to decrease the volatility of climate policy. We quantify uncertainties arising from temperature observations, climate radiative forcings, internal variability and the model response. Our index and the associated rate of human-induced warming is compatible with a range of other more sophisticated methods to estimate the human contribution to observed global temperature change.

  4. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects

    Science.gov (United States)

    Chen, Xing; Jeong, Su-Jong

    2018-02-01

    To meet the growing demand for food, land is being managed to be more productive using agricultural intensification practices, such as the use of irrigation. Understanding the specific environmental impacts of irrigation is a critical part of using it as a sustainable way to provide food security. However, our knowledge of irrigation effects on climate is still limited to daytime effects. This is a critical issue to define the effects of irrigation on warming related to greenhouse gases (GHGs). This study shows that irrigation led to an increasing temperature (0.002 °C year‑1) by enhancing nighttime warming (0.009 °C year‑1) more than daytime cooling (‑0.007 °C year‑1) during the dry season from 1961–2004 over the North China Plain (NCP), which is one of largest irrigated areas in the world. By implementing irrigation processes in regional climate model simulations, the consistent warming effect of irrigation on nighttime temperatures over the NCP was shown to match observations. The intensive nocturnal warming is attributed to energy storage in the wetter soil during the daytime, which contributed to the nighttime surface warming. Our results suggest that irrigation could locally amplify the warming related to GHGs, and this effect should be taken into account in future climate change projections.

  5. [Effects of farming managements on the global warming potentials of CH4 and N2O from a rice-wheat rotation system based on the analysis of DNDC modeling].

    Science.gov (United States)

    Zhang, Xiao-Lin; Pan, Xiao-Jian; Xiong, Zheng-Qin; Wang, Jin-Yang; Yang, Bo; Liu, Ying-Lie; Liu, Ping-Li

    2013-03-01

    Taking a rice-wheat rotation system in the suburb of Nanjing, Jiangsu Province of East China as test object, this paper studied the fluxes of CH4 and N2O and their annual dynamics under different farming managements in 2010-2011, and the field observation data were applied to validate the process-based model, denitrification-decomposition (DNDC) model, aimed to approach the applicability of the model to this rotation system, and to use this model to simulate the effects of different environmental factors and farming managements on the global warming potentials (GWPs) of CH4 and N2O. The results showed that except in the treatment control and during wheat growth season, the simulated cumulative emissions of CH4 and N2O from the rotation system in all treatments were basically in coincide with the observed data, the relative deviations being from 7. 1% to 26.3%, and thus, the DNDC model could be applied to simulate the GWPs of cumulative emissions of CH4 and N2O as affected by various environmental factors or management practices. The sensitivity test showed that the GWPs of CH4 and N2O varied significantly with the changes of environmental factors such as the mean annual air temperature, soil bulk density, soil organic carbon, soil texture, and soil pH. Farming managements such as N fertilization, straw returning, and duration of mid-season drainage also had significant effects on the GWPs of CH4 and NO20. Therefore, the above-mentioned environmental factors and farming managements should be taken into account to estimate the greenhouse gases emission from the rice-wheat cropping system on site-specific or regional scale.

  6. Handling and Curing Characteristics of Cut-Strip Tobacco. Part 2: Effect of Yellowing Time and Drying Potential

    Directory of Open Access Journals (Sweden)

    Johnson WH

    2014-12-01

    Full Text Available This paper presents Part 2 of a study on comparative handling and curing characteristics of cut-strip vs. whole leaf tobacco. Part 1 considered the effect of leaf size (cut-strip size vs. whole leaf, packing density and mode of leaf orientation on cured leaf chemistry and leaf quality; whereas, the present study considers further the effect of leaf form, two yellowing times and two drying potentials during yellowing. Results showed that leaf chemistry and quality were quite similar for cut-strip (15.2 × 22.9 cm and whole leaf. Insignificant differences were noted for cured leaf starch and sugars, although slightly lower levels of alkaloids (significant at the 0.01 level were observed for cut strip. Curing treatments significantly affected leaf chemistry. Increased yellowing time resulted in lower levels of starch and higher levels of sugar. Sugars were also higher for tobacco yellowed under the higher drying potential. The two forms of leaf responded similarly to different curing schedules (i.e. no interaction of leaf form with schedule. Also, government grade and price data were essentially unaffected by leaf form or curing schedule over the range of variables tested. Cured leaf starch was abnormally high on the average for both leaf forms. Interestingly, starch levels were lower when intact tobacco was bulk-cured in racks rather than box cured (6.35% vs. 9.02%. Since curing schedules were similar, air velocity in the two curing methods might be a factor. Also the cured leaf starch content was about 56% lower for tobacco produced at the Oxford Tobacco Research Station (in a secondary study than at the Central Crops Research Station. It is postulated that carbohydrate and nitrogen metabolism during growth and maturation might be affected by excess rainfall events and/or nitrogen availability, with subsequent effects on starch-to-sugar conversion during curing.

  7. Antioxidant, antityrosinase and antitumor activity comparison: the potential utilization of fibrous root part of Bletilla striata (Thunb. Reichb.f.

    Directory of Open Access Journals (Sweden)

    Fusheng Jiang

    Full Text Available This study was carried out to evaluate the utilization probability of the fibrous root part (FRP of Bletilla striata, which was usually discarded and harvesting pseudobulb part (PSP. The chemical composition, total phenolic content, DPPH radical scavenging activity, Ferric-reducing antioxidant power and tyrosinase inhibition activity were compared between FRP and PSP. Antioxidant and pro-oxidant effect as well as antitumor effect of the extract of FRP and PSP were analyzed by in vitro cell system as well. Thin layer chromatography and high performance liquid chromatography analysis indicated that the chemical compositions in the two parts were similar, but the content in FRP was much higher than PSP. Meanwhile, the FRP extracts showed higher phenolic content, stronger DPPH scavenging activity, Ferric-reducing antioxidant capacity and tyrosinase inhibition activity. Sub-fraction analysis revealed that the distribution characteristic of phenolic components and other active constituents in FRP and PSP were consistent, and mainly deposited in chloroform and acetoacetate fractions. Especially, the chloroform sub-fraction (sch of FRP showed extraordinary DPPH scavenging activity and tyrosinase inhibition activity, with IC50 0.848 mg/L and 4.3 mg/L, respectively. Besides, tyrosinase inhibition activity was even stronger than the positive compound arbutin (31.8 mg/L. Moreover, In vitro cell system analysis confirmed that FRP extract exerts comparable activity with PSP, especially, the sub-fraction sch of FRP showed better antioxidant activity at low dosage and stronger per-oxidant activity at high dosage, and both sch of FRP and PSP can dose-dependent induce HepG2 cells apoptosis, which implied tumor therapeutic effect. Considering that an additional 0.3 kg FRP would be obtained when producing 1.0 kg PSP, our work demonstrated that FRP is very potential to be used together with PSP.

  8. Isolation and Identification of Potential Allelochemicals from Aerial Parts of Avena fatua L. and Their Allelopathic Effect on Wheat.

    Science.gov (United States)

    Liu, Xingang; Tian, Fajun; Tian, Yingying; Wu, Yanbing; Dong, Fengshou; Xu, Jun; Zheng, Yongquan

    2016-05-11

    Five compounds (syringic acid, tricin, acacetin, syringoside, and diosmetin) were isolated from the aerial parts of wild oats (Avena fatua L.) using chromatography columns of silica gel and Sephadex LH-20. Their chemical structures were identified by means of electrospray ionization and high-resolution mass spectrometry as well as (1)H and (13)C nuclear magnetic resonance spectroscopic analyses. Bioassays showed that the five compounds had significant allelopathic effects on the germination and seedling growth of wheat (Triticum aestivum L.). The five compounds inhibited fresh wheat as well as the shoot and root growth of wheat by approximately 50% at a concentration of 100 mg/kg, except for tricin and syringoside for shoot growth. The results of activity testing indicated that the aerial parts of wild oats had strong allelopathic potential and could cause different degrees of influence on surrounding plants. Moreover, these compounds could be key allelochemicals in wild-oat-infested wheat fields and interfere with wheat growth via allelopathy.

  9. Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit

    Science.gov (United States)

    Dornheim, Tobias; Groth, Simon; Sjostrom, Travis; Malone, Fionn D.; Foulkes, W. M. C.; Bonitz, Michael

    2016-10-01

    We perform ab initio quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas in the thermodynamic limit. By combining QMC data with the linear response theory, we are able to remove finite-size errors from the potential energy over the substantial parts of the warm dense regime, overcoming the deficiencies of the existing finite-size corrections by Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)]. Extensive new QMC results for up to N =1000 electrons enable us to compute the potential energy V and the exchange-correlation free energy Fxc of the macroscopic electron gas with an unprecedented accuracy of |Δ V |/|V |,|Δ Fxc|/|F |xc˜10-3 . A comparison of our new data to the recent parametrization of Fxc by Karasiev et al. [Phys. Rev. Lett. 112, 076403 (2014)] reveals significant deviations to the latter.

  10. The phytogeography and ecotourism potential of the eastern province of lower part of the "Köprü river" basin.

    Science.gov (United States)

    Kaya, Bastürk; Akis, Ayhan

    2012-04-01

    Köprü River Basin is located in the western Taurus mountains in south-western Turkey. The area is in the Mediterranean phytogeographical region. The climate in the area is typically Mediterranean: mild and rainy in winter, hot and dry in summer. Xerophytic plants can easily grow in this climate. Pinus brutia forests are common in the study area. Maquis and garique elements with sclerophyll character also occur in the region. The study aims to determine the distribution of the vegetation in the eastern province of lower part of the "Köprü River" Basin. The factors which affect the distribution of vegetation are climate, landforms and soils. In order to determine the plant growth and climate relationship, the climatic data were analyzed. As well as the geological and geomorphological conditions, the soils were investigated and the effects of these factors on vegetation cover were analyzed. The region also has various attributes for the development of ecotourism, including canyons, forests and historical places. The region has a great potential for many different social, cultural, and scientific activities related to ecotourism. These are highland tourism, rafting, botanic tourism, trekking, and climbing. In order to make ecotourism available for local people to benefit, ecotourism should be developed and introduced to the world. Moreover, plans for the sustainability of the resources should be made. The study highlights the ecotourism potential of the area which is of social, economic, and ecological importance for the region.

  11. Design and Development of Potential Tissue Engineering Scaffolds from Structurally Different Longitudinal Parts of a Bovine-Femur

    Science.gov (United States)

    Pramanik, Sumit; Pingguan-Murphy, Belinda; Cho, Jongman; Osman, Noor Azuan Abu

    2014-07-01

    The complex architecture of the cortical part of the bovine-femur was examined to develop potential tissue engineering (TE) scaffolds. Weight-change and X-ray diffraction (XRD) results show that significant phase transformation and morphology conversion of the bone occur at 500-750°C and 750-900°C, respectively. Another breakthrough finding was achieved by determining a sintering condition for the nucleation of hydroxyapatite crystal from bovine bone via XRD technique. Scanning electron microscopy results of morphological growth suggests that the concentration of polymer fibrils increases (or decreases, in case of apatite crystals) from the distal to proximal end of the femur. Energy-dispersive analysis of X-ray, Fourier transform infrared, micro-computer tomography, and mechanical studies of the actual composition also strongly support our microscopic results and firmly indicate the functionally graded material properties of bovine-femur. Bones sintered at 900 and 1000°C show potential properties for soft and hard TE applications, respectively.

  12. Book ReviewL Global Warming

    OpenAIRE

    Nadia Astriani

    2015-01-01

    Global Warming is part of Greenhaven’s Contemporary Issues Companion series published by, Thomson Gale on 2005. Each volume of the anthologyseries focuses on a topic of current interest, presenting informative and thought-provoking selection written from wide-variety viewpoints. It is an ideal launching point for research on a particular topic. Each anthology in the series is composed of readings taken from an extensive gamut of resources, including periodical, newspapers, books, governmentdo...

  13. Perturbations in warm inflation

    Energy Technology Data Exchange (ETDEWEB)

    de Oliveira, H. P.; Joras, S. E.

    2001-09-15

    Warm inflation is an interesting possibility to describe the early universe, whose basic feature is the absence, at least in principle, of a preheating or reheating phase. Here we analyze the dynamics of warm inflation generalizing the usual slow-roll parameters that are useful for characterizing the inflationary phase. We study the evolution of entropy and adiabatic perturbations, where the main result is that for a very small amount of dissipation the entropy perturbations can be neglected and the purely adiabatic perturbations will be responsible for the primordial spectrum of inhomogeneities. Taking into account the Cosmic Background Explorer Differential Microwave Radiometer data of the cosmic microwave background anisotropy as well as the fact that the interval of inflation for which the scales of astrophysical interest cross outside the Hubble radius is about 50 e-folds before the end of inflation, we could estimate the magnitude of the dissipation term. It is also possible to show that at the end of inflation the universe is hot enough to provide a smooth transition to the radiation era.

  14. Experimental warming alters migratory caribou forage quality.

    Science.gov (United States)

    Zamin, Tara J; Côté, Steeve D; Tremblay, Jean-Pierre; Grogan, Paul

    2017-10-01

    Global declines in caribou and reindeer (Rangifer) populations have drawn attention to the myriad of stressors that these Arctic and boreal forest herbivores currently face. Arctic warming has resulted in increased tundra shrub growth and therefore Rangifer forage quantity. However, its effects on forage quality have not yet been addressed although they may be critical to Rangifer body condition and fecundity. We investigated the impact of 8 yrs of summer warming on the quality of forage available to the Bathurst caribou herd using experimental greenhouses (n = 5) located in mesic birch hummock tundra in the central Canadian Low Arctic. Leaf forage quality and digestibility characteristics associated with nutrients (nitrogen and phosphorus), phenolics, and fiber were measured on the deciduous shrub Betula glandulosa (an important Rangifer diet component) at six time points through the growing season, and on five other very common vascular plant and lichen species in late summer. Experimental warming reduced B. glandulosa leaf nitrogen concentrations by ~10% in both late June and mid-July, but not afterwards. It also reduced late summer forage quality of the graminoid Eriophorum vaginatum by increasing phenolic concentrations 38%. Warming had mixed effects on forage quality of the lichen Cetraria cucullata in that it increased nutrient concentrations and tended to decrease fiber contents, but it also increased phenolics. Altogether, these warming-induced changes in forage quality over the growing season, and response differences among species, highlight the importance of Rangifer adaptability in diet selection. Furthermore, the early season reduction in B. glandulosa nitrogen content is a particular concern given the importance of this time for calf growth. Overall, our demonstration of the potential for significant warming impacts on forage quality at critical times for these animals underscores the importance of effective Rangifer range conservation to ensure

  15. Abrupt warming of the Red Sea

    KAUST Repository

    Raitsos, D. E.

    2011-07-19

    Coral reef ecosystems, often referred to as “marine rainforests,” concentrate the most diverse life in the oceans. Red Sea reef dwellers are adapted in a very warm environment, fact that makes them vulnerable to further and rapid warming. The detection and understanding of abrupt temperature changes is an important task, as ecosystems have more chances to adapt in a slowly rather than in a rapid changing environment. Using satellite derived sea surface and ground based air temperatures, it is shown that the Red Sea is going through an intense warming initiated in the mid-90s, with evidence for an abrupt increase after 1994 (0.7°C difference pre and post the shift). The air temperature is found to be a key parameter that influences the Red Sea marine temperature. The comparisons with Northern Hemisphere temperatures revealed that the observed warming is part of global climate change trends. The hitherto results also raise additional questions regarding other broader climatic impacts over the area.

  16. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    OpenAIRE

    Xiumin Yan; Kehong Wang; Lihong Song; Xuefeng Wang; Donghui Wu

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatmen...

  17. Physical Mechanisms of Rapid Lake Warming

    Science.gov (United States)

    Lenters, J. D.

    2016-12-01

    Recent studies have shown significant warming of inland water bodies around the world. Many lakes are warming more rapidly than the ambient surface air temperature, and this is counter to what is often expected based on the lake surface energy balance. A host of reasons have been proposed to explain these discrepancies, including changes in the onset of summer stratification, significant loss of ice cover, and concomitant changes in winter air temperature and/or summer cloud cover. A review of the literature suggests that no single physical mechanism is primarily responsible for the majority of these changes, but rather that the large heterogeneity in regional climate trends and lake geomorphometry results in a host of potential physical drivers. In this study, we discuss the variety of mechanisms that have been proposed to explain rapid lake warming and offer an assessment of the physical plausibility for each potential contributor. Lake Superior is presented as a case study to illustrate the "perfect storm" of factors that can cause a deep, dimictic lake to warm at rate that exceeds the rate of global air temperature warming by nearly an order of magnitude. In particular, we use a simple mixed-layer model to show that spatially variable trends in Lake Superior surface water temperature are determined, to first order, by variations in bathymetry and winter air temperature. Summer atmospheric conditions are often of less significance, and winter ice cover may simply be a correlate. The results highlight the importance of considering the full range of factors that can lead to trends in lake surface temperature, and that conventional wisdom may often not be the best guide.

  18. Competent and Warm?

    Science.gov (United States)

    Hansen, Karolina; Rakić, Tamara; Steffens, Melanie C

    2017-01-01

    Most research on ethnicity has focused on visual cues. However, accents are strong social cues that can match or contradict visual cues. We examined understudied reactions to people whose one cue suggests one ethnicity, whereas the other cue contradicts it. In an experiment conducted in Germany, job candidates spoke with an accent either congruent or incongruent with their (German or Turkish) appearance. Based on ethnolinguistic identity theory, we predicted that accents would be strong cues for categorization and evaluation. Based on expectancy violations theory we expected that incongruent targets would be evaluated more extremely than congruent targets. Both predictions were confirmed: accents strongly influenced perceptions and Turkish-looking German-accented targets were perceived as most competent of all targets (and additionally most warm). The findings show that bringing together visual and auditory information yields a more complete picture of the processes underlying impression formation.

  19. Global Warming on Triton

    Science.gov (United States)

    Elliot, J. L.; Hammel, H. B.; Wasserman, L. H.; Franz, O. G.; McDonald, S. W.; Person, M. J.; Olkin, C. B.; Dunham, E. J.; Spencer, J. R.; Stansberry, J. A.; hide

    1998-01-01

    Triton, Neptune's largest moon, has been predicted to undergo significant seasonal changes that would reveal themselves as changes in its mean frost temperature. But whether this temperature should at the present time be increasing, decreasing or constant depends on a number of parameters (such as the thermal properties of the surface, and frost migration patterns) that are unknown. Here we report observations of a recent stellar occultation by Triton which, when combined with earlier results, show that Triton has undergone a period of global warming since 1989. Our most conservative estimates of the rate of temperature and surface-pressure increase during this period imply that the atmosphere is doubling in bulk every 10 years, significantly faster than predicted by any published frost model for Triton. Our result suggests that permanent polar caps on Triton play a c dominant role in regulating seasonal atmospheric changes. Similar processes should also be active on Pluto.

  20. Biological Activities and Nutraceutical Potentials of Water Extracts from Different Parts of Cynomorium Coccineum L. (Maltese Mushroom

    Directory of Open Access Journals (Sweden)

    Zucca Paolo

    2016-07-01

    Full Text Available Maltese Mushroom (Cynomorium coccineum L. is a non-photosynthetic plant that has been used in traditional medicine for many centuries. In this paper, water extracts from the whole plant, external layer and peeled plant were studied to determine the main components responsible for its biological activities, i.e., its antimicrobial, antioxidant, and anti-tyrosinase activities; its cytotoxicity against mouse melanoma B16F10 cells; and its pro-erectile activity in adult male rats. The results of electron transfer and hydrogen transfer assays showed that the antioxidant activity was mainly due to anthocyanins in the external layer, whereas the external layer and peeled plant extracts both inhibited the microbial growth of several Gram-positive strains. In contrast, the whole plant extract had the highest anti-tyrosinase activity and exhibited pro-erectile activity when administered subcutaneously. Overall, this study elucidated which parts of Maltese Mushroom are responsible for its antimicrobial, antioxidant, and anti-tyrosinase activities and thus which extracts have potential for use in nutraceutical formulations.

  1. Local warming: daily temperature change influences belief in global warming.

    Science.gov (United States)

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  2. Revisiting CMB constraints on warm inflation

    Science.gov (United States)

    Arya, Richa; Dasgupta, Arnab; Goswami, Gaurav; Prasad, Jayanti; Rangarajan, Raghavan

    2018-02-01

    We revisit the constraints that Planck 2015 temperature, polarization and lensing data impose on the parameters of warm inflation. To this end, we study warm inflation driven by a single scalar field with a quartic self interaction potential in the weak dissipative regime. We analyse the effect of the parameters of warm inflation, namely, the inflaton self coupling λ and the inflaton dissipation parameter QP on the CMB angular power spectrum. We constrain λ and QP for 50 and 60 number of e-foldings with the full Planck 2015 data (TT, TE, EE + lowP and lensing) by performing a Markov-Chain Monte Carlo analysis using the publicly available code CosmoMC and obtain the joint as well as marginalized distributions of those parameters. We present our results in the form of mean and 68 % confidence limits on the parameters and also highlight the degeneracy between λ and QP in our analysis. From this analysis we show how warm inflation parameters can be well constrained using the Planck 2015 data.

  3. Implications of global warming for the climate of African rainforests.

    Science.gov (United States)

    James, Rachel; Washington, Richard; Rowell, David P

    2013-01-01

    African rainforests are likely to be vulnerable to changes in temperature and precipitation, yet there has been relatively little research to suggest how the regional climate might respond to global warming. This study presents projections of temperature and precipitation indices of relevance to African rainforests, using global climate model experiments to identify local change as a function of global temperature increase. A multi-model ensemble and two perturbed physics ensembles are used, one with over 100 members. In the east of the Congo Basin, most models (92%) show a wet signal, whereas in west equatorial Africa, the majority (73%) project an increase in dry season water deficits. This drying is amplified as global temperature increases, and in over half of coupled models by greater than 3% per °C of global warming. Analysis of atmospheric dynamics in a subset of models suggests that this could be partly because of a rearrangement of zonal circulation, with enhanced convection in the Indian Ocean and anomalous subsidence over west equatorial Africa, the Atlantic Ocean and, in some seasons, the Amazon Basin. Further research to assess the plausibility of this and other mechanisms is important, given the potential implications of drying in these rainforest regions.

  4. Committed warming inferred from observations

    Science.gov (United States)

    Mauritsen, Thorsten; Pincus, Robert

    2017-09-01

    Due to the lifetime of CO2, the thermal inertia of the oceans, and the temporary impacts of short-lived aerosols and reactive greenhouse gases, the Earth’s climate is not equilibrated with anthropogenic forcing. As a result, even if fossil-fuel emissions were to suddenly cease, some level of committed warming is expected due to past emissions as studied previously using climate models. Here, we provide an observational-based quantification of this committed warming using the instrument record of global-mean warming, recently improved estimates of Earth’s energy imbalance, and estimates of radiative forcing from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Compared with pre-industrial levels, we find a committed warming of 1.5 K (0.9-3.6, 5th-95th percentile) at equilibrium, and of 1.3 K (0.9-2.3) within this century. However, when assuming that ocean carbon uptake cancels remnant greenhouse gas-induced warming on centennial timescales, committed warming is reduced to 1.1 K (0.7-1.8). In the latter case there is a 13% risk that committed warming already exceeds the 1.5 K target set in Paris. Regular updates of these observationally constrained committed warming estimates, although simplistic, can provide transparent guidance as uncertainty regarding transient climate sensitivity inevitably narrows and the understanding of the limitations of the framework is advanced.

  5. LES MISÉRABLES IN THE MEDIA: AN ESSAY IN FOUR PARTS. Part I. Very Successful Performances: from Kitsch to artistic potential

    Directory of Open Access Journals (Sweden)

    Miceli Sergio

    2015-10-01

    Full Text Available Famous Italian scientist Sergio Miceli examines the phenomenon of adaptation of Victor Hugo's novel in audio and audiovisual media, from radio theater productions of O.Welles and French "classic" films of the 1930s, for example, directed by R.Bernard and music composed by A .Honegger, to the modern on-screen interpretations of C.Lelouch and B.August, miniseries of director J.Dayan and animated films: VHS – TV – DVD. The researcher proposes to consider the video-recording of live performance in theater like a reproductive medium adaptation. Author stops especially on music of the Italian composer A.Cicognini in the second post-war Italian film of R.Freda, on work of the Hollywood composer A.North in L.Milestone’s movie, on the one of the first television version directed by J.-P. le Chanois with music of J. van Parys, and on the biggest Les Misérables TV version (3 hours and 40 minutes directed by R.Hossein, 1983 (composer M.Magne. In addition, unprecedented in the history and hyper-mass case of adaptation of a literary opus is confirmed via many musicals, musical shows, flash mobs, comics, shows staged in colleges, "interpretations" on YouTube, etc. (Part III. The last Part (IV is entirely dedicated to Les Misérables on stage and in movie musicals.

  6. Distribution of Phenolic Contents, Antidiabetic Potentials, Antihypertensive Properties, and Antioxidative Effects of Soursop (Annona muricata L.) Fruit Parts In Vitro.

    Science.gov (United States)

    Adefegha, Stephen A; Oyeleye, Sunday I; Oboh, Ganiyu

    2015-01-01

    Soursop fruit has been used in folklore for the management of type-2 diabetes and hypertension with limited information on the scientific backing. This study investigated the effects of aqueous extracts (1 : 100 w/v) of Soursop fruit part (pericarp, pulp, and seed) on key enzymes linked to type-2 diabetes (α-amylase and α-glucosidase) and hypertension [angiotensin-I converting enzyme (ACE)]. Radicals scavenging and Fe(2+) chelation abilities and reducing property as well as phenolic contents of the extracts were also determined. Our data revealed that the extracts inhibited α-amylase and α-glucosidase and ACE activities dose-dependently. The effective concentration of the extract causing 50% antioxidant activity (EC50) revealed that pericarp extract had the highest α-amylase (0.46 mg/mL), α-glucosidase (0.37 mg/mL), and ACE (0.03 mg/mL) inhibitory activities while the seed extract had the least [α-amylase (0.76 mg/mL); α-glucosidase (0.73 mg/mL); and ACE (0.20 mg/mL)]. Furthermore, the extracts scavenged radicals, reduced Fe(3+) to Fe(2+), and chelated Fe(2+). The phenolic contents in the extracts ranged from 85.65 to 560.21 mg/100 g. The enzymes inhibitory and antioxidants potentials of the extracts could be attributed to their phenolic distributions which could be among the scientific basis for their use in the management of diabetes and hypertension. However, the pericarp appeared to be most promising.

  7. Materials and simulation modelling of a crash-beam performance - a comparison study showing the potential for weight saving using warm-formed ultra-high strength aluminium alloys

    Science.gov (United States)

    Schlosser, J.; Schneider, R.; Rimkus, W.; Kelsch, R.; Gerstner, F.; Harrison, D. K.; Grant, R. J.

    2017-09-01

    Forming complex parts out of high and ultra-high strength aluminium alloys has proved to be more challenging in comparison to the currently used deep drawing steels. The novel “Warmforming-Process” offers the potential to produce light and highly integrated one-piece components out of such aluminium alloys at elevated temperatures. When considering aluminium alloys in the 7000 group, which can reach strength values (UTS) far above 600 MPa, crash components such as side impact bars would offer a suitable field of application. It is important when taking into consideration the geometric design of structural components to utilise their load bearing characteristics in an efficient manner. This structural optimisation lends itself well to computational simulation techniques, which are essential in the evaluation of appropriate geometry and sizing of complex structures with challenging load scenarios. Crash simulations using the nonlinear finite element method (FEM) of side impact protection beams have been used to demonstrate the weight saving potential of high and ultra-high strength aluminium alloys. A beam design formed from a 7000 series alloy was taken as a reference. Substituting various materials, inter alia press hardened steel (phs), and benchmarking against the original beam’s crash performance, by changing the material thickness, equivalent beams were produced. The thicknesses of the beam geometries have been evaluated by “sizing optimisation” and their possible mass reduction are compared against each other. The nonlinear FEM simulations show good agreement with a corresponding set of experimental results. It was seen that for a common crash performance the ultra-high strength aluminium alloys outperform press hardened steel components in terms of their weight. Thus, there is a significant weight saving potential to be realised if crash components are manufactured using 7000 series aluminium alloys. In this work, the weight saving potential was

  8. Recent warming of lake Kivu.

    Science.gov (United States)

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  9. Recent warming of lake Kivu.

    Directory of Open Access Journals (Sweden)

    Sergei Katsev

    Full Text Available Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  10. Designing connected marine reserves in the face of global warming.

    Science.gov (United States)

    Álvarez-Romero, Jorge G; Munguía-Vega, Adrián; Beger, Maria; Del Mar Mancha-Cisneros, Maria; Suárez-Castillo, Alvin N; Gurney, Georgina G; Pressey, Robert L; Gerber, Leah R; Morzaria-Luna, Hem Nalini; Reyes-Bonilla, Héctor; Adams, Vanessa M; Kolb, Melanie; Graham, Erin M; VanDerWal, Jeremy; Castillo-López, Alejandro; Hinojosa-Arango, Gustavo; Petatán-Ramírez, David; Moreno-Baez, Marcia; Godínez-Reyes, Carlos R; Torre, Jorge

    2018-02-01

    Marine reserves are widely used to protect species important for conservation and fisheries and to help maintain ecological processes that sustain their populations, including recruitment and dispersal. Achieving these goals requires well-connected networks of marine reserves that maximize larval connectivity, thus allowing exchanges between populations and recolonization after local disturbances. However, global warming can disrupt connectivity by shortening potential dispersal pathways through changes in larval physiology. These changes can compromise the performance of marine reserve networks, thus requiring adjusting their design to account for ocean warming. To date, empirical approaches to marine prioritization have not considered larval connectivity as affected by global warming. Here, we develop a framework for designing marine reserve networks that integrates graph theory and changes in larval connectivity due to potential reductions in planktonic larval duration (PLD) associated with ocean warming, given current socioeconomic constraints. Using the Gulf of California as case study, we assess the benefits and costs of adjusting networks to account for connectivity, with and without ocean warming. We compare reserve networks designed to achieve representation of species and ecosystems with networks designed to also maximize connectivity under current and future ocean-warming scenarios. Our results indicate that current larval connectivity could be reduced significantly under ocean warming because of shortened PLDs. Given the potential changes in connectivity, we show that our graph-theoretical approach based on centrality (eigenvector and distance-weighted fragmentation) of habitat patches can help design better-connected marine reserve networks for the future with equivalent costs. We found that maintaining dispersal connectivity incidentally through representation-only reserve design is unlikely, particularly in regions with strong asymmetric patterns of

  11. Management of drought risk under global warming

    Science.gov (United States)

    Zhang, Qiang; Han, Lanying; Jia, Jianying; Song, Lingling; Wang, Jinsong

    2016-07-01

    Drought is a serious ecological problem around the world, and its impact on crops and water availability for humans can jeopardize human life. Although drought has always been common, the drought risk has become increasingly prominent because of the climatic warming that has occurred during the past century. However, it still does not comprehensively understand the mechanisms that determine the occurrence of the drought risk it poses to humans, particularly in the context of global climate change. In this paper, we summarize the progress of research on drought and the associated risk, introduce the principle of a drought "transition" from one stage to another, synthesize the characteristics of key factors and their interactions, discuss the potential effect of climatic warming on drought risk, and use this discussion to define the basic requirements for a drought risk management system. We also discuss the main measures that can be used to prevent or mitigate droughts in the context of a risk management strategy.

  12. Global warming and coral reefs

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.

    Ever increasing global warming trend is predicted to cause within the next 100 years an accelerated sea level rise, increase in sea surface temparature and enhanced ultraviolet radiation to a significant enough extent to affect drastically...

  13. Arctic dimension of global warming

    OpenAIRE

    G. V. Alekseev

    2014-01-01

    A brief assessment of the global warming in the Arctic climate system with the emphasis on sea ice is presented. The Arctic region is coupled to the global climate system by the atmosphere and ocean circulation that providesa major contribution to the Arctic energy budget. On this basis using of special indices it is shown that amplification of warming in the Arctic is associated with the increasing of meridional heat transport from the low latitudes.

  14. ASSESSMENT OF EFFECTIVENESS OF SPORTS MASSAGE IN SUPPORTING OF WARM-UP

    Directory of Open Access Journals (Sweden)

    Dariusz Boguszewski

    2014-10-01

    Full Text Available Purpose: Warm-up is necessary part of sports training, because prepare the body for exercises and minimize the risk of injury. The aim of this study was assess the effectiveness of two types of warm-up: aerobic exercises and exercises with sports massage (before. Material and Methods: The research covered 59 women. All of them did fitness tests two times. Each test was preceded by a different form of warm-up (aerobic exercises, exercises with massage. For examined the differences t-Student test was used. Results : Warm-up with massage had positive effect for fitness level. More effective was exercises preceded by massage - differences in results (after the standard warm-up and warm-up with massage in every tests were significant (p<0.001. Conclusion: Alternative form of warm-up can be effective way to preparing the body for exercises and make the training more attractive.

  15. Report on a survey in fiscal 1999. The survey on structuring institutions for energy environment policies. Part 2. Collection of information about policies in major countries for prevention of global warming; 1999 nendo energy kankyo seisaku no seido kochiku ni kansuru chosa. 2. Kakkoku ondanka boshi seisaku johoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The present survey is intended to collect and put in order the literatures and items of information related to: the current status and future directionality in the policies in advanced nations related to achieving the targets of the Kyoto Protocol, and trends of improving national institutions to respond to the Kyoto mechanisms, and the background of the conceptions thereof (including the conceptions on designing the international institutions). The survey gives considerations at the same time on possibilities of realization of the policies being implement and/or discussed. The report consists of two parts. Part 1 puts in order the trends until the most recent date in the summary of warming prevention policies in the major European and North American countries, placing the importance on the policies and measures that use economic methods (environment taxation system, national discharge quantity transaction, voluntary action plans and agreements). Part 2 (the present paper) introduces the contents of the major literatures and administrative materials in the policy trends in each nation, and puts in order the basic items of information that are considered useful for performing in the future the surveys related to the subject areas. (NEDO)

  16. Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit.

    Science.gov (United States)

    Dornheim, Tobias; Groth, Simon; Sjostrom, Travis; Malone, Fionn D; Foulkes, W M C; Bonitz, Michael

    2016-10-07

    We perform ab initio quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas in the thermodynamic limit. By combining QMC data with the linear response theory, we are able to remove finite-size errors from the potential energy over the substantial parts of the warm dense regime, overcoming the deficiencies of the existing finite-size corrections by Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)]. Extensive new QMC results for up to N=1000 electrons enable us to compute the potential energy V and the exchange-correlation free energy F_{xc} of the macroscopic electron gas with an unprecedented accuracy of |ΔV|/|V|,|ΔF_{xc}|/|F|_{xc}∼10^{-3}. A comparison of our new data to the recent parametrization of F_{xc} by Karasiev et al. [Phys. Rev. Lett. 112, 076403 (2014)] reveals significant deviations to the latter.

  17. Predicting the ultimate potential of natural gas SOFC power cycles with CO2 capture : Part B: Applications

    NARCIS (Netherlands)

    Campanari, Stefano; Mastropasqua, Luca; Gazzani, Matteo; Chiesa, Paolo; Romano, Matteo C.

    2016-01-01

    An important advantage of solid oxide fuel cells (SOFC) as future systems for large scale power generation is the possibility of being efficiently integrated with processes for CO2 capture. Focusing on natural gas power generation, Part A of this work assessed the performances of advanced

  18. Does increasing active warm-up duration affect afternoon short-term maximal performance during Ramadan?

    Science.gov (United States)

    Baklouti, Hana; Aloui, Asma; Chtourou, Hamdi; Briki, Walid; Chaouachi, Anis; Souissi, Nizar

    2015-01-01

    The purpose of this study was to examine the effect of active warm-up duration on short-term maximal performance assessed during Ramadan in the afternoon. Twelve healthy active men took part in the study. The experimental design consisted of four test sessions conducted at 5 p.m., before and during Ramadan, either with a 5-minute or a 15-minute warm-up. The warm-up consisted in pedaling at 50% of the power output obtained at the last stage of a submaximal multistage cycling test. During each session, the subjects performed two vertical jump tests (squat jump and counter movement jump) for measurement of vertical jump height followed by a 30-second Wingate test for measurement of peak and mean power. Oral temperature was recorded at rest and after warming-up. Moreover, ratings of perceived exertion were obtained immediately after the Wingate test. Oral temperature was higher before Ramadan than during Ramadan at rest, and was higher after the 15-minute warm-up than the 5-minute warm-up both before and during Ramadan. In addition, vertical jump heights were not significantly different between the two warm-up conditions before and during Ramadan, and were lower during Ramadan than before Ramadan after both warm-up conditions. Peak and mean power were not significantly different between the two warm-up durations before Ramadan, but were significantly higher after the 5-minute warm-up than the 15-minute warm-up during Ramadan. Moreover, peak and mean power were lower during Ramadan than before Ramadan after both warm-up conditions. Furthermore, ratings of perceived exertion were higher after the 15-minute warm-up than the 5-minute warm-up only during Ramadan. The prolonged active warm-up has no effect on vertical jump height but impairs anaerobic power assessed during Ramadan in the afternoon.

  19. Plants reverse warming effect on ecosystem water balance.

    Science.gov (United States)

    Zavaleta, Erika S; Thomas, Brian D; Chiariello, Nona R; Asner, Gregory P; Shaw, M Rebecca; Field, Christopher B

    2003-08-19

    Models predict that global warming may increase aridity in water-limited ecosystems by accelerating evapotranspiration. We show that interactions between warming and the dominant biota in a grassland ecosystem produced the reverse effect. In a 2-year field experiment, simulated warming increased spring soil moisture by 5-10% under both ambient and elevated CO2. Warming also accelerated the decline of canopy greenness (normalized difference vegetation index) each spring by 11-17% by inducing earlier plant senescence. Lower transpirational water losses resulting from this earlier senescence provide a mechanism for the unexpected rise in soil moisture. Our findings illustrate the potential for organism-environment interactions to modify the direction as well as the magnitude of global change effects on ecosystem functioning.

  20. Australia's Unprecedented Future Temperature Extremes Under Paris Limits to Warming

    Science.gov (United States)

    Lewis, Sophie C.; King, Andrew D.; Mitchell, Daniel M.

    2017-10-01

    Record-breaking temperatures can detrimentally impact ecosystems, infrastructure, and human health. Previous studies show that climate change has influenced some observed extremes, which are expected to become more frequent under enhanced future warming. Understanding the magnitude, as a well as frequency, of such future extremes is critical for limiting detrimental impacts. We focus on temperature changes in Australian regions, including over a major coral reef-building area, and assess the potential magnitude of future extreme temperatures under Paris Agreement global warming targets (1.5°C and 2°C). Under these limits to global mean warming, we determine a set of projected high-magnitude unprecedented Australian temperature extremes. These include extremes unexpected based on observational temperatures, including current record-breaking events. For example, while the difference in global-average warming during the hottest Australian summer and the 2°C Paris target is 1.1°C, extremes of 2.4°C above the observed summer record are simulated. This example represents a more than doubling of the magnitude of extremes, compared with global mean change, and such temperatures are unexpected based on the observed record alone. Projected extremes do not necessarily scale linearly with mean global warming, and this effect demonstrates the significant potential benefits of limiting warming to 1.5°C, compared to 2°C or warmer.

  1. The critical review of methodologies and approaches to assess the inherent skin sensitization potential (skin allergies) of chemicals. Part I

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Giménez-Arnau, Elena; Lepoittevin, Jean-Pierre

    2012-01-01

    To critically review currently available methods, or methods under development (in vivo, in vitro, in silico, etc.) used in the evaluation of skin sensitization potential and their applicability in the derivation of quantitative 'safety thresholds'.......To critically review currently available methods, or methods under development (in vivo, in vitro, in silico, etc.) used in the evaluation of skin sensitization potential and their applicability in the derivation of quantitative 'safety thresholds'....

  2. Warm Up to a Good Sound

    Science.gov (United States)

    Tovey, David C.

    1977-01-01

    Most choral directors in schools today have been exposed to a variety of warm-up procedures. Yet, many do not use the warm-up time effectively as possible. Considers the factors appropriate to a warm-up exercise and three basic warm-up categories. (Author/RK)

  3. How warm days increase belief in global warming

    Science.gov (United States)

    Zaval, Lisa; Keenan, Elizabeth A.; Johnson, Eric J.; Weber, Elke U.

    2014-02-01

    Climate change judgements can depend on whether today seems warmer or colder than usual, termed the local warming effect. Although previous research has demonstrated that this effect occurs, studies have yet to explain why or how temperature abnormalities influence global warming attitudes. A better understanding of the underlying psychology of this effect can help explain the public's reaction to climate change and inform approaches used to communicate the phenomenon. Across five studies, we find evidence of attribute substitution, whereby individuals use less relevant but available information (for example, today's temperature) in place of more diagnostic but less accessible information (for example, global climate change patterns) when making judgements. Moreover, we rule out alternative hypotheses involving climate change labelling and lay mental models. Ultimately, we show that present temperature abnormalities are given undue weight and lead to an overestimation of the frequency of similar past events, thereby increasing belief in and concern for global warming.

  4. Long-term consequences of CNS treatment for childhood cancer, Part I: Pathologic consequences and potential for oncogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M.E.; Duffner, P.K. (Department of Neurology, State University of New York, Buffalo (United States))

    1991-05-01

    The pathologic changes associated with the treatment of cancer of the nervous system are reviewed. Computed tomographic, magnetic resonance imaging, and positron emission tomographic findings of these abnormalities are described, followed by discussion of the known histopathologic features. For the most part, pathologic effects are primary vascular and/or demyelinating. They authors review each of these effects at all levels of the neural axis. This review concludes with a discussion of the risk of developing second malignancies. Although this complication is infrequent, the likelihood that survivors of childhood cancer will develop a second malignancy is 10 times that of age-matched controls. This phenomenon in part relates to genetic predisposition, environmental factors, and host susceptibility. These qualifications not withstanding, most studies implicate central nervous system radiation with and without chemotherapy as the primary etiology for second malignancies. 48 references.

  5. Population risk perceptions of global warming in Australia.

    Science.gov (United States)

    Agho, Kingsley; Stevens, Garry; Taylor, Mel; Barr, Margo; Raphael, Beverley

    2010-11-01

    According to the World Health Organisation (WHO), global warming has the potential to dramatically disrupt some of life's essential requirements for health, water, air and food. Understanding how Australians perceive the risk of global warming is essential for climate change policy and planning. The aim of this study was to determine the prevalence of, and socio-demographic factors associated with, high levels of perceived likelihood that global warming would worsen, concern for self and family and reported behaviour changes. A module of questions on global warming was incorporated into the New South Wales Population Health Survey in the second quarter of 2007. This Computer Assisted Telephone Interview (CATI) was completed by a representative sample of 2004 adults. The weighted sample was comparable to the Australian population. Bivariate and multivariate statistical analyses were conducted to examine the socio-demographic and general health factors. Overall 62.1% perceived that global warming was likely to worsen; 56.3% were very or extremely concerned that they or their family would be directly affected by global warming; and 77.6% stated that they had made some level of change to the way they lived their lives, because of the possibility of global warming. After controlling for confounding factors, multivariate analyses revealed that those with high levels of psychological distress were 2.17 (Adjusted Odds Ratio (AOR)=2.17; CI: 1.16-4.03; P=0.015) times more likely to be concerned about global warming than those with low psychological distress levels. Those with a University degree or equivalent and those who lived in urban areas were significantly more likely to think that global warming would worsen compared to those without a University degree or equivalent and those who lived in the rural areas. Females were significantly (AOR=1.69; CI: 1.23-2.33; P=0.001) more likely to report they had made changes to the way they lived their lives due to the risk of

  6. Global warming and infectious disease.

    Science.gov (United States)

    Khasnis, Atul A; Nettleman, Mary D

    2005-01-01

    Global warming has serious implications for all aspects of human life, including infectious diseases. The effect of global warming depends on the complex interaction between the human host population and the causative infectious agent. From the human standpoint, changes in the environment may trigger human migration, causing disease patterns to shift. Crop failures and famine may reduce host resistance to infections. Disease transmission may be enhanced through the scarcity and contamination of potable water sources. Importantly, significant economic and political stresses may damage the existing public health infrastructure, leaving mankind poorly prepared for unexpected epidemics. Global warming will certainly affect the abundance and distribution of disease vectors. Altitudes that are currently too cool to sustain vectors will become more conducive to them. Some vector populations may expand into new geographic areas, whereas others may disappear. Malaria, dengue, plague, and viruses causing encephalitic syndromes are among the many vector-borne diseases likely to be affected. Some models suggest that vector-borne diseases will become more common as the earth warms, although caution is needed in interpreting these predictions. Clearly, global warming will cause changes in the epidemiology of infectious diseases. The ability of mankind to react or adapt is dependent upon the magnitude and speed of the change. The outcome will also depend on our ability to recognize epidemics early, to contain them effectively, to provide appropriate treatment, and to commit resources to prevention and research.

  7. The potential impact of climate change on seasonal snow in New Zealand: part II—industry vulnerability and future snowmaking potential

    Science.gov (United States)

    Hendrikx, J.; Hreinsson, E. Ö.

    2012-12-01

    Seasonal snow in New Zealand is likely to be subject to substantial change due to the impacts of climate change. These changes will have wide ranging impacts on the New Zealand's economy through the energy, agricultural and tourism sectors. In this paper, we assess the impact of climate change, at a micro-scale for a selection of ski area locations in New Zealand. Where available, we have used current observations of snow depth to calibrate the snow model output for the current climate. We consider the change in the number of days with snow depths exceeding 0.30 m, `snow-days', at each of these locations for the 2030-2049 (mid-point reference 2040) and 2080-2099 (mid-point reference 2090) time periods, for the three different emission scenarios (B1, A1B and A1FI). These future scenarios are compared to simulations of current, 1980-1999 (mid-point reference 1990), number of snow-days at these locations. We consider both an average year in each 20-year period, as well as a `worst-case' year. At each ski area, we consider an upper and lower elevation site. Depending on the elevation and location of the specific site, our analysis shows that there will be a reduction in the number of snow-days in nearly all of the future scenarios and time periods. When we consider a worst-case or minimum snow year in the 1990s, the number of snow-days at each site ranges from 0 to 229, while by the 2040s, it ranges from 0 to 187 (B1), 0 to 183 (A1B) and 0 to 176 (A1FI). By the 2090s the number of snow-days ranges from 0 to 155 (B1), 0 to 90 (A1B) and 0 to 74 (A1FI). We also simulate the hourly future climate for the 2040s and 2090s, for the A1FI scenario, to enable calculations of the potential available time for snowmaking in these two future time periods. We use simulated temperatures and humidity to calculate the total potential snowmaking hours in the future climates. For the snowmaking analysis, only a worst-case year in each time period, rather than an average year, was used to

  8. Peranan Environmental Accounting Terhadap Global Warming

    OpenAIRE

    Martusa, Riki

    2009-01-01

    This article explores about is global warming. The distortion of nature causes global warming. Industrial sector is one of global warming incurred. Some nations create a group to cope this matter. They try to reduce carbon emission as one of global warming causes by controlling industrial carbon emission through financial reporting. This article explores normatively roles of environmental accounting in cope with global warming.  

  9. Biofuel production potentials in Europe: sustainable use of cultivated land and pastures. Part II: Land use scenarios

    NARCIS (Netherlands)

    Fischer, G.; Prieler, S.; van Velthuizen, H.; Berndes, G.; Faaij, A.P.C.; Londo, H.M.; de Wit, M.P.

    2009-01-01

    Europe's agricultural land (including Ukraine) comprise of 164 million hectares of cultivated land and 76 million hectares of permanent pasture. A “food first” paradigm was applied in the estimations of land potentially available for the production of biofuel feedstocks, without putting at risk food

  10. Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Kerzenmacher, S.; Kraeling, U.; von Stetten, F. [Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg (Germany); Schroeder, M. [Institut fuer Anorganische und Analytische Chemie, University of Freiburg, Albertstrasse 21, 79104 Freiburg (Germany); Braemer, R. [Hochschule Offenburg - University of Applied Sciences, Badstrasse 24, 79652 Offenburg (Germany); Zengerle, R. [Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg (Germany); Centre for Biological Signalling Studies (bioss), Albert-Ludwigs-Universitaet Freiburg (Germany)

    2010-10-01

    We report the fabrication and characterization of glucose-tolerant Raney-platinum cathodes for oxygen reduction in potentially implantable glucose fuel. Fabricated by extraction of aluminum from 1 {mu}m thin platinum-aluminum bi-layers annealed at 300 C, the novel cathodes show excellent resistance against hydrolytic and oxidative attack. This renders them superior over previous cathodes fabricated from hydrogel-bound catalyst particles. Annealing times of 60, 120, and 240 min result in approximately 400-550 nm thin porous films (roughness factors {proportional_to}100-150), which contain platinum and aluminum in a ratio of {proportional_to}9:1. Aluminum release during electrode operation can be expected to have no significant effect on physiological normal levels, which promises good biocompatibility. Annealing time has a distinct influence on the density of trenches formed in the cathode. Higher trench densities lead to lower electrode potentials in the presence of glucose. This suggests that glucose sensitivity is governed by mixed potential formation resulting from oxygen depletion within the trenches. During performance characterization the diffusion resistance to be expected from tissue capsule formation upon electrode implantation was taken into account by placing a membrane in front of the cathode. Despite the resulting limited oxygen supply, cathodes prepared by annealing for 60 min show more positive electrode potentials than previous cathodes fabricated from hydrogel-bound activated carbon. Compared to operation in phosphate buffered saline containing 3.0 mM glucose, a potential loss of approximately 120 mV occurs in artificial tissue fluid. This can be reduced to approximately 90 mV with a protective Nafion layer that is easily electro-coated onto the Raney-platinum film. (author)

  11. Global Health Education: a cross-sectional study among German medical students to identify needs, deficits and potential benefits (Part 2 of 2: Knowledge gaps and potential benefits

    Directory of Open Access Journals (Sweden)

    Schubert Kirsten

    2010-10-01

    Full Text Available Abstract Background In Germany, educational deficits or potential benefits involved in global health education have not been analysed till now. Objective We assess the importance medical students place on learning about social determinants of health (SDH and assess their knowledge of global health topics in relation to (i mobility patterns, their education in (ii tropical medicine or (iii global health. Methods Cross-sectional study among medical students from all 36 medical schools in Germany using a web-based, semi-structured questionnaire. Participants were recruited via mailing-lists of students' unions, all medical students registered in 2007 were eligible to participate in the study. We captured international mobility patterns, exposure to global health learning opportunities and attitudes to learning about SDH. Both an objective and subjective knowledge assessment were performed. Results 1126 online-replies were received and analysed. International health electives in developing countries correlated significantly with a higher importance placed on all provided SDH (p ≤ 0.006. Participation in tropical medicine (p In the knowledge assessment students achieved an average score of 3.6 (SD 1.5; Mdn 4.0, 75% achieved a score of 4.0 or less (Q25 = 3.0; Q75 = 4.0 from a maximum achievable score of 8.0. A better performance was associated with international health electives (p = 0.032, participation in tropical medicine (p = 0.038 and global health (p = 0.258 courses. Conclusion The importance medical students in our sample placed on learning about SDH strongly interacts with students' mobility, and participation in tropical medicine and global health courses. The knowledge assessment revealed deficits and outlined needs to further analyse education gaps in global health. Developing concerted educational interventions aimed at fostering students' engagement with SDH could make full use of synergy effects inherent in student mobility, tropical

  12. Geriatric forensics - Part 2 “Prevalence of elder abuse and their potential forensic markers among medical and dental patients”

    Science.gov (United States)

    Mattoo, Khurshid A.; Garg, Rishabh; Kumar, Shalabh

    2015-01-01

    Context: This study is a continuation of the earlier studies and has been extended to investigate the potential forensic markers of elder abuse. Aims: To determine the prevalence of elder abuse in various outpatient departments (OPDs). To study the associated parameters related to the abuser and the abused. To determine the existence of potential forensic markers of elder abuse. Settings and Design: The subjects were randomly selected from the medical and the dental OPDs of the university. Materials and Methods: Eight hundred and thirty two elderly subjects in the age range 40-60 years were interviewed using a questionnaire to determine the existence of elder abuse. The subjects were investigated and examined for weight, nutrition and hydration, vital signs, habits, existing visual and auditory capabilities, medications, disclosure of wills/deeds, signs of depression, and documented cleanliness. The mini-mental state examination, the Geriatric Depression Scale, the Clock drawing test, and the Brief Psychiatric Rating Scale were used to determine the potential forensic markers. Statistical Analysis Used: Mean values in percentage were determined by dividing the number of determined subjects by the total number of subjects for that parameter. Results: About 37% in medical and 41% in dental OPDs were found to have suffered from abuse, mostly in the age group 60-70 years. Females received more abuse and a combination of son and daughter-in-law constituted most abusers. Various potential markers of elder abuse and neglect investigated among the elder abuse victims included depression (89%), signs of improper feeding (83%), changes in personal hygiene (69%), need for medical/dental treatment (78%), medication misuse (67%), changes in wills/deeds (26%), decubiti (10%), bruises (17%), skin tears (27%), and confusion (23%). Conclusions: Elder abuse exists in one or more forms in both medical and dental OPDs among both males and females in all age groups. PMID:26816460

  13. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene

    Science.gov (United States)

    Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.; Jaccard, Samuel L.; Tiedemann, Ralf; Haug, Gerald H.

    2017-01-01

    An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world’s largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv (parts per million by volume) CO2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming. PMID:28924606

  14. Greater future global warming inferred from Earth's recent energy budget.

    Science.gov (United States)

    Brown, Patrick T; Caldeira, Ken

    2017-12-06

    Climate models provide the principal means of projecting global warming over the remainder of the twenty-first century but modelled estimates of warming vary by a factor of approximately two even under the same radiative forcing scenarios. Across-model relationships between currently observable attributes of the climate system and the simulated magnitude of future warming have the potential to inform projections. Here we show that robust across-model relationships exist between the global spatial patterns of several fundamental attributes of Earth's top-of-atmosphere energy budget and the magnitude of projected global warming. When we constrain the model projections with observations, we obtain greater means and narrower ranges of future global warming across the major radiative forcing scenarios, in general. In particular, we find that the observationally informed warming projection for the end of the twenty-first century for the steepest radiative forcing scenario is about 15 per cent warmer (+0.5 degrees Celsius) with a reduction of about a third in the two-standard-deviation spread (-1.2 degrees Celsius) relative to the raw model projections reported by the Intergovernmental Panel on Climate Change. Our results suggest that achieving any given global temperature stabilization target will require steeper greenhouse gas emissions reductions than previously calculated.

  15. Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra

    Science.gov (United States)

    S.M. Natali; E.A.G. Schuur; C. Trucco; C.E. Hicks Pries; K.G. Crummer; A.F. Baron Lopez

    2011-01-01

    The carbon (C) storage capacity of northern latitude ecosystems may diminish as warming air temperatures increase permafrost thaw and stimulate decomposition of previously frozen soil organic C. However, warming may also enhance plant growth so that photosynthetic carbon dioxide (C02) uptake may, in part, offset respiratory losses. To determine...

  16. A note on Arabian Sea warm pool and its possible relation with monsoon onset over Kerala

    Digital Repository Service at National Institute of Oceanography (India)

    Chacko, K.V.; HareeshKumar, P.V.; RameshKumar, M.R.; Mathew, B.; Bannur, V.M.

    The possible relation of the Arabian Sea Warm Pool (ASWP) with monsoon onset over Kerala is studied by utilizing the TRMM Microwave Imager data during the period 2007-2011 (5 years). The ASWP is a part of the Indian Ocean warm pool and forms...

  17. Geochemistry of groundwater in front of a warm-based glacier in Southeast Greenland

    DEFF Research Database (Denmark)

    Kristiansen, Søren Munch; Yde, Jacob Clement; Barcena, Teresa Gomez

    2013-01-01

    Groundwater in front of warm-based glaciers is likely to become a more integrated part of the future proglacial hydrological system at high latitudes due to global warming. Here, we present the first monitoring results of shallow groundwater chemistry and geochemical fingerprinting of glacier mel...

  18. Global Health Education: a cross-sectional study among German medical students to identify needs, deficits and potential benefits (Part 2 of 2: Knowledge gaps and potential benefits).

    Science.gov (United States)

    Bozorgmehr, Kayvan; Menzel-Severing, Johannes; Schubert, Kirsten; Tinnemann, Peter

    2010-10-08

    In Germany, educational deficits or potential benefits involved in global health education have not been analysed till now. We assess the importance medical students place on learning about social determinants of health (SDH) and assess their knowledge of global health topics in relation to (i) mobility patterns, their education in (ii) tropical medicine or (iii) global health. Cross-sectional study among medical students from all 36 medical schools in Germany using a web-based, semi-structured questionnaire. Participants were recruited via mailing-lists of students' unions, all medical students registered in 2007 were eligible to participate in the study. We captured international mobility patterns, exposure to global health learning opportunities and attitudes to learning about SDH. Both an objective and subjective knowledge assessment were performed. 1126 online-replies were received and analysed. International health electives in developing countries correlated significantly with a higher importance placed on all provided SDH (p ≤ 0.006). Participation in tropical medicine (p educational system' (p = 0.007) and the 'health system structure' (p = 0.007), while the item 'politics' was marginally significant (p = 0.053).In the knowledge assessment students achieved an average score of 3.6 (SD 1.5; Mdn 4.0), 75% achieved a score of 4.0 or less (Q25 = 3.0; Q75 = 4.0) from a maximum achievable score of 8.0. A better performance was associated with international health electives (p = 0.032), participation in tropical medicine (p = 0.038) and global health (p = 0.258) courses. The importance medical students in our sample placed on learning about SDH strongly interacts with students' mobility, and participation in tropical medicine and global health courses. The knowledge assessment revealed deficits and outlined needs to further analyse education gaps in global health. Developing concerted educational interventions aimed at fostering students' engagement with SDH

  19. Global Health Education: a cross-sectional study among German medical students to identify needs, deficits and potential benefits (Part 2 of 2: Knowledge gaps and potential benefits)

    Science.gov (United States)

    2010-01-01

    Background In Germany, educational deficits or potential benefits involved in global health education have not been analysed till now. Objective We assess the importance medical students place on learning about social determinants of health (SDH) and assess their knowledge of global health topics in relation to (i) mobility patterns, their education in (ii) tropical medicine or (iii) global health. Methods Cross-sectional study among medical students from all 36 medical schools in Germany using a web-based, semi-structured questionnaire. Participants were recruited via mailing-lists of students' unions, all medical students registered in 2007 were eligible to participate in the study. We captured international mobility patterns, exposure to global health learning opportunities and attitudes to learning about SDH. Both an objective and subjective knowledge assessment were performed. Results 1126 online-replies were received and analysed. International health electives in developing countries correlated significantly with a higher importance placed on all provided SDH (p ≤ 0.006). Participation in tropical medicine (p culture, language and religion' and the 'economic system'. Global health trainings correlated with significantly higher ratings of the 'educational system' (p = 0.007) and the 'health system structure' (p = 0.007), while the item 'politics' was marginally significant (p = 0.053). In the knowledge assessment students achieved an average score of 3.6 (SD 1.5; Mdn 4.0), 75% achieved a score of 4.0 or less (Q25 = 3.0; Q75 = 4.0) from a maximum achievable score of 8.0. A better performance was associated with international health electives (p = 0.032), participation in tropical medicine (p = 0.038) and global health (p = 0.258) courses. Conclusion The importance medical students in our sample placed on learning about SDH strongly interacts with students' mobility, and participation in tropical medicine and global health courses. The knowledge assessment

  20. Urban warming in villages

    Science.gov (United States)

    Lindén, J.; Grimmond, C. S. B.; Esper, J.

    2015-07-01

    Long term meteorological records (> 100 years) from stations associated with villages are generally classified as rural and assumed to have no urban influence. Using networks installed in two European villages, the local and microclimatic variations around two of these rural-village sites are examined. An annual average temperature difference (Δ{T}) of 0.6 and 0.4 K was observed between the built-up village area and the current meteorological station in Geisenheim (Germany) and Haparanda (Sweden), respectively. Considerably larger values were recorded for the minimum temperatures and during summer. The spatial variations in temperature within the villages are of the same order as recorded over the past 100+ years in these villages (0.06 to 0.17 K/10 years). This suggests that the potential biases in the long records of rural-villages also warrant careful consideration like those of the more commonly studied large urban areas effects.

  1. Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 1: Nickel-free glucose oxidation anodes

    Energy Technology Data Exchange (ETDEWEB)

    Kerzenmacher, S.; von Stetten, F. [Laboratory for MEMS Applications, Department of Microsystems Engineering- IMTEK, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg (Germany); Schroeder, M. [Institut fuer Anorganische und Analytische Chemie, University of Freiburg, Albertstrasse 21, 79104 Freiburg (Germany); Braemer, R. [Hochschule Offenburg- University of Applied Sciences, Badstrasse 24, 79652 Offenburg (Germany); Zengerle, R. [Laboratory for MEMS Applications, Department of Microsystems Engineering- IMTEK, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg (Germany); Centre for Biological Signalling Studies (bioss), Albert-Ludwigs-Universitaet Freiburg (Germany)

    2010-10-01

    We present a novel fabrication route yielding Raney-platinum film electrodes intended as glucose oxidation anodes for potentially implantable fuel cells. Fabrication roots on thermal alloying of an extractable metal with bulk platinum at 200 C for 48 h. In contrast to earlier works using carcinogenic nickel, we employ zinc as potentially biocompatible alloying partner. Microstructure analysis indicates that after removal of extractable zinc the porous Raney-platinum film (roughness factor {proportional_to}2700) consists predominantly of the Pt{sub 3}Zn phase. Release of zinc during electrode operation can be expected to have no significant effect on physiological normal levels in blood and serum, which promises good biocompatibility. In contrast to previous anodes based on hydrogel-bound catalyst particles the novel anodes exhibit excellent resistance against hydrolytic and oxidative attack. Furthermore, they exhibit significantly lower polarization with up to approximately 100 mV more negative electrode potentials in the current density range relevant for fuel cell operation. The anodes' amenability to surface modification with protective polymers is demonstrated by the exemplary application of an approximately 300 nm thin Nafion coating. This had only a marginal effect on the anode long-term stability and amino acid tolerance. While in physiological glucose solution after approximately 100 h of operation gradually increasing performance degradation occurs, rapid electrode polarization within 24 h is observed in artificial tissue fluid. Optimization approaches may include catalyst enhancement by adatom surface modification and the application of specifically designed protective polymers with controlled charge and mesh size. (author)

  2. Plant movements and climate warming

    DEFF Research Database (Denmark)

    De Frenne, Pieter; Coomes, David A.; De Schrijver, An

    2014-01-01

    •Most range shift predictions focus on the dispersal phase of the colonization process. Because moving populations experience increasingly dissimilar nonclimatic environmental conditions as they track climate warming, it is also critical to test how individuals originating from contrasting therma...

  3. The tropical Pacific as a key pacemaker of the variable rates of global warming

    Science.gov (United States)

    Kosaka, Yu; Xie, Shang-Ping

    2016-09-01

    Global mean surface temperature change over the past 120 years resembles a rising staircase: the overall warming trend was interrupted by the mid-twentieth-century big hiatus and the warming slowdown since about 1998. The Interdecadal Pacific Oscillation has been implicated in modulations of global mean surface temperatures, but which part of the mode drives the variability in warming rates is unclear. Here we present a successful simulation of the global warming staircase since 1900 with a global ocean-atmosphere coupled model where tropical Pacific sea surface temperatures are forced to follow the observed evolution. Without prescribed tropical Pacific variability, the same model, on average, produces a continual warming trend that accelerates after the 1960s. We identify four events where the tropical Pacific decadal cooling markedly slowed down the warming trend. Matching the observed spatial and seasonal fingerprints we identify the tropical Pacific as a key pacemaker of the warming staircase, with radiative forcing driving the overall warming trend. Specifically, tropical Pacific variability amplifies the first warming epoch of the 1910s-1940s and determines the timing when the big hiatus starts and ends. Our method of removing internal variability from the observed record can be used for real-time monitoring of anthropogenic warming.

  4. The post-2002 global surface warming slowdown caused by the subtropical Southern Ocean heating acceleration

    Science.gov (United States)

    Oka, A.; Watanabe, M.

    2017-04-01

    The warming rate of global mean surface temperature slowed down during 1998-2012. Previous studies pointed out role of increasing ocean heat uptake during this global warming slowdown, but its mechanism remains under discussion. Our numerical simulations, in which wind stress anomaly in the equatorial Pacific is imposed from reanalysis data, suggest that subsurface warming in the equatorial Pacific took place during initial phase of the global warming slowdown (1998-2002), as previously reported. It is newly clarified that the Ekman transport from tropics to subtropics is enhanced during the later phase of the slowdown (after 2002) and enhanced subtropical Ekman downwelling causes accelerated heat storage below depth of 700 m in the subtropical Southern Ocean, leading to the post-2002 global warming slowdown. Observational data of ocean temperature also support this scenario. This study provides clear evidence that deeper parts of the Southern Ocean play a critical role in the post-2002 warming slowdown.

  5. Impact of biofuels on contrail warming

    Science.gov (United States)

    Caiazzo, Fabio; Agarwal, Akshat; Speth, Raymond L.; Barrett, Steven R. H.

    2017-11-01

    Contrails and contrail-cirrus may be the largest source of radiative forcing (RF) attributable to aviation. Biomass-derived alternative jet fuels are a potentially major way to mitigate the climate impacts of aviation by reducing lifecycle CO2 emissions. Given the up to 90% reduction in soot emissions from paraffinic biofuels, the potential for a significant impact on contrail RF due to the reduction in contrail-forming ice nuclei (IN) remains an open question. We simulate contrail formation and evolution to quantify RF over the United States under different emissions scenarios. Replacing conventional jet fuels with paraffinic biofuels generates two competing effects. First, the higher water emissions index results in an increase in contrail occurrence (~ +8%). On the other hand, these contrails are composed of larger diameter crystals (~ +58%) at lower number concentrations (~ ‑75%), reducing both contrail optical depth (~ ‑29%) and albedo (~ ‑32%). The net changes in contrail RF induced by switching to biofuels range from ‑4% to +18% among a range of assumed ice crystal habits (shapes). In comparison, cleaner burning engines (with no increase in water emissions index) result in changes to net contrail RF ranging between ‑13% and +5% depending on habit. Thus, we find that even 67% to 75% reductions in aircraft soot emissions are insufficient to substantially reduce warming from contrails, and that the use of biofuels may either increase or decrease contrail warming—contrary to previous expectations of a significant decrease in warming.

  6. Chemical Composition of Hexane Extract of Different Parts of Anthemis talyschensis and its Potential to Use in Sunscreen Products

    Directory of Open Access Journals (Sweden)

    Alireza Motavalizadehkakhky

    2016-06-01

    Full Text Available In this study, both the presence and concentration of some unsaturated compounds in hexane extracts of different parts of Anthemis talyschensis showing absorption at wavelength 280-450 nm were surveyed, with the view of possibly using extracts of this plant in new formulations of sunscreen creams. The hexane extracts of flower, leaf and stem of A. talyschensis, collected from Northwest Iran, were obtained using a Soxhlet apparatus. The fatty acids were derivatized to methyl esters and were determined by gas chromatography/flame ionization detector (GC/FID and gas chromatography/mass spectrometry (GC/MS systems. The chemical analysis resulted in identification of 14, 9 and 29 constituents, comprising about 99.5, 97.1 and 98.2% of the total constituents in hexane extracts of flower, leaf and stem, respectively. The main unsaturated constituents in the hexane extract of A. talyschensis flower were 9, 12-octadecadienoic acid, 9-octadecenoic acid and 6, 9, 12-octadecatrienoic acid; while the leaf's extract contained 9, 12-octadecadienoic acid and 9-octadecenoic acid; no unsaturated compounds were detected in the stem. The ratios of unsaturated fatty acid /saturated fatty acid were 13.6, 9.3 and 0 in extracts of the flower, leaf and stem, respectively, but the total amounts in the leaf were much greater. It can be concluded the leaf extract is more likely to be suitable for producing sunscreens creams than others.

  7. Pediatric cancer gone viral. Part II: potential clinical application of oncolytic herpes simplex virus-1 in children

    Directory of Open Access Journals (Sweden)

    Gregory K Friedman

    Full Text Available Oncolytic engineered herpes simplex viruses (HSVs possess many biologic and functional attributes that support their use in clinical trials in children with solid tumors. Tumor cells, in an effort to escape regulatory mechanisms that would impair their growth and progression, have removed many mechanisms that would have protected them from virus infection and eventual virus-mediated destruction. Viruses engineered to exploit this weakness, like mutant HSV, can be safely employed as tumor cell killers, since normal cells retain these antiviral strategies. Many preclinical studies and early phase trials in adults demonstrated that oncolytic HSV can be safely used and are highly effective in killing tumor cells that comprise pediatric malignancies, without generating the toxic side effects of nondiscriminatory chemotherapy or radiation therapy. A variety of engineered viruses have been developed and tested in numerous preclinical models of pediatric cancers and initial trials in patients are underway. In Part II of this review series, we examine the preclinical evidence to support the further advancement of oncolytic HSV in the pediatric population. We discuss clinical advances made to date in this emerging era of oncolytic virotherapy.

  8. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications.

    Science.gov (United States)

    Ehrlich, H; Steck, E; Ilan, M; Maldonado, M; Muricy, G; Bavestrello, G; Kljajic, Z; Carballo, J L; Schiaparelli, S; Ereskovsky, A; Schupp, P; Born, R; Worch, H; Bazhenov, V V; Kurek, D; Varlamov, V; Vyalikh, D; Kummer, K; Sivkov, V V; Molodtsov, S L; Meissner, H; Richter, G; Hunoldt, S; Kammer, M; Paasch, S; Krasokhin, V; Patzke, G; Brunner, E; Richter, W

    2010-08-01

    In order to evaluate the biomedical potential of three-dimensional chitinous scaffolds of poriferan origin, chondrocyte culturing experiments were performed. It was shown for the first time that freshly isolated chondrocytes attached well to the chitin scaffold and synthesized an extracellular matrix similar to that found in other cartilage tissue engineering constructs. Chitin scaffolds also supported deposition of a proteoglycan-rich extracellular matrix of chondrocytes seeded bioconstructs in an in vivo environment. We suggest that chitin sponge scaffolds, apart from the demonstrated biomedical applications, are highly optimized structures for use as filtering systems, templates for biomineralization as well as metallization in order to produce catalysts. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 1.

    Science.gov (United States)

    Sagar, S M; Yance, D; Wong, R K

    2006-02-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiologic pathways that support tumour development and minimize normal-tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The present article focuses on products that have a high degree of anti-angiogenic activity, but it also describes some of the many other actions of these agents that can inhibit tumour progression and reduce the risk of metastasis. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclooxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. The herbs that are traditionally used for anticancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose-response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy, they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or as

  10. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 2.

    Science.gov (United States)

    Sagar, S M; Yance, D; Wong, R K

    2006-06-01

    The herbalist has access to hundreds of years of observational data on the anticancer activity of many herbs. Laboratory studies are expanding the clinical knowledge that is already documented in traditional texts. The herbs that are traditionally used for anti-cancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclo-oxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose-response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or as adaptogens, potentially enhancing the efficacy of the conventional therapies or reducing toxicity. Their effectiveness may be increased when multiple agents are used in optimal combinations. New designs for trials to demonstrate activity in human subjects are required. Although controlled trials may be preferable, smaller studies with appropriate endpoints and

  11. Predicting dredging-associated effects to coral reefs in Apra Harbor, Guam - Part 2: Potential coral effects.

    Science.gov (United States)

    Nelson, Deborah Shafer; McManus, John; Richmond, Robert H; King, David B; Gailani, Joe Z; Lackey, Tahirih C; Bryant, Duncan

    2016-03-01

    Coral reefs are in decline worldwide due to anthropogenic stressors including reductions in water and substratum quality. Dredging results in the mobilization of sediments, which can stress and kill corals via increasing turbidity, tissue damage and burial. The Particle Tracking Model (PTM) was applied to predict the potential impacts of dredging-associated sediment exposure on the coral reef ecosystems of Apra Harbor, Guam. The data were interpreted using maps of bathymetry and coral abundance and distribution in conjunction with impact parameters of suspended sediment concentration (turbidity) and sedimentation using defined coral response thresholds. The results are presented using a "stoplight" model of negligible or limited impacts to coral reefs (green), moderate stress from which some corals would be expected to recover while others would not (yellow) and severe stress resulting in mortality (red). The red conditions for sediment deposition rate and suspended sediment concentration (SSC) were defined as values exceeding 25 mg cm(-2) d(-1) over any 30 day window and >20 mg/l for any 18 days in any 90 day period over a column of water greater than 2 m, respectively. The yellow conditions were defined as values >10 mg cm(-2) d(-1) and <25 mg cm(-2) d(-1) over any 30 day period, and as 20% of 3 months' concentration exceeding 10 mg/l for the deposition and SSC, respectively. The model also incorporates the potential for cumulative effects on the assumption that even sub-lethal stress levels can ultimately lead to mortality in a multi-stressor system. This modeling approach can be applied by resource managers and regulatory agencies to support management decisions related to planning, site selection, damage reduction, and compensatory mitigation. Published by Elsevier Ltd.

  12. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer—Part 1

    Science.gov (United States)

    Sagar, S.M.; Yance, D.; Wong, R.K.

    2006-01-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiologic pathways that support tumour development and minimize normal-tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The present article focuses on products that have a high degree of anti-angiogenic activity, but it also describes some of the many other actions of these agents that can inhibit tumour progression and reduce the risk of metastasis. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclooxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. The herbs that are traditionally used for anticancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose–response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy, they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or

  13. Warm-Up Strategies for Sport and Exercise: Mechanisms and Applications.

    Science.gov (United States)

    McGowan, Courtney J; Pyne, David B; Thompson, Kevin G; Rattray, Ben

    2015-11-01

    It is widely accepted that warming-up prior to exercise is vital for the attainment of optimum performance. Both passive and active warm-up can evoke temperature, metabolic, neural and psychology-related effects, including increased anaerobic metabolism, elevated oxygen uptake kinetics and post-activation potentiation. Passive warm-up can increase body temperature without depleting energy substrate stores, as occurs during the physical activity associated with active warm-up. While the use of passive warm-up alone is not commonplace, the idea of utilizing passive warming techniques to maintain elevated core and muscle temperature throughout the transition phase (the period between completion of the warm-up and the start of the event) is gaining in popularity. Active warm-up induces greater metabolic changes, leading to increased preparedness for a subsequent exercise task. Until recently, only modest scientific evidence was available supporting the effectiveness of pre-competition warm-ups, with early studies often containing relatively few participants and focusing mostly on physiological rather than performance-related changes. External issues faced by athletes pre-competition, including access to equipment and the length of the transition/marshalling phase, have also frequently been overlooked. Consequently, warm-up strategies have continued to develop largely on a trial-and-error basis, utilizing coach and athlete experiences rather than scientific evidence. However, over the past decade or so, new research has emerged, providing greater insight into how and why warm-up influences subsequent performance. This review identifies potential physiological mechanisms underpinning warm-ups and how they can affect subsequent exercise performance, and provides recommendations for warm-up strategy design for specific individual and team sports.

  14. Global warming and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two

  15. Integrating both interaction pathways between warming and pesticide exposure on upper thermal tolerance in high- and low-latitude populations of an aquatic insect.

    Science.gov (United States)

    Op de Beeck, Lin; Verheyen, Julie; Stoks, Robby

    2017-05-01

    Global warming and chemical pollution are key anthropogenic stressors with the potential to interact. While warming can change the impact of pollutants and pollutants can change the sensitivity to warming, both interaction pathways have never been integrated in a single experiment. Therefore, we tested the effects of warming and multiple pesticide pulses (allowing accumulation) of chlorpyrifos on upper thermal tolerance (CTmax) and associated physiological traits related to aerobic/anaerobic energy production in the damselfly Ischnura elegans. To also assess the role of latitude-specific thermal adaptation in shaping the impact of warming and pesticide exposure on thermal tolerance, we exposed larvae from replicated high- and low-latitude populations to the pesticide in a common garden rearing experiment at 20 and 24 °C, the mean summer water temperatures at high and low latitudes. As expected, exposure to chlorpyrifos resulted in a lower CTmax. Yet, this pesticide effect on CTmax was lower at 24 °C compared to 20 °C because of a lower accumulation of chlorpyrifos in the medium at 24 °C. The effects on CTmax could partly be explained by reduction of the aerobic scope. Given that these effects did not differ between latitudes, gradual thermal evolution is not expected to counteract the negative effect of the pesticide on thermal tolerance. By for the first time integrating both interaction pathways we were not only able to provide support for both of them, but more importantly demonstrate that they can directly affect each other. Indeed, the warming-induced reduction in pesticide impact generated a lower pesticide-induced climate change sensitivity (in terms of decreased upper thermal tolerance). Our results indicate that, assuming no increase in pesticide input, global warming might reduce the negative effect of multiple pulse exposures to pesticides on sensitivity to elevated temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Utilization of by-products from the tequila industry. Part 2: Potential value of Agave tequilana Weber azul leaves.

    Science.gov (United States)

    Iñiguez-Covarrubias, G; Díaz-Teres, R; Sanjuan-Dueñas, R; Anzaldo-Hernández, J; Rowell, R M

    2001-04-01

    The leaves of the agave plant are left in the field after harvesting the heads for tequila production. Different types of agave leaves were isolated, classified, and their content in the total plant determined. The usable fractions were collected and their properties determined. Of the total wet weight of the agave plant, 54% corresponds to the agave head, 32% corresponds to materials which could be usable for sugar and fiber production which leaves 14% of the wet plant without apparent utility. The fractions with higher total reducing sugars (TRS) content were the fresh fraction of partially dry leaves stuck to the head and the leaf bases with a TRS content of 16.1% and 13.1%, respectively. The highest TRS concentration (16-28%) is in the agave head which is used for tequila production. The leaves are 90-120 cm long and 8-12 cm wide and contain fiber bundles that are 23-52 cm long and 0.6-13 mm wide. The ultimate fiber length is approximately 1.6 mm with an average width of 25 microns. There are several types of leaf fibers that can be utilized depending on what part of the plant they come from and what product is desired. Agave leaf fibers were pulped using a soda pulping process and the pulp was hand formed into test sheets. Test sheets made from pulped agave leaf fibers had a breaking length comparable to paper made from both pine and eucalyptus fibers, but the tear index and burst index were lower than the other two papers.

  17. Evaluation of the quality, thermal maturity and distribution of potential source rocks in the Danish part of the Norwegian–Danish Basin

    Directory of Open Access Journals (Sweden)

    Kristensen, Lars

    2008-11-01

    Full Text Available The quality, thermal maturity and distribution of potential source rocks within the Palaeozoic–Mesozoic succession of the Danish part of the Norwegian–Danish Basin have been evaluated on the basis of screening data from over 4000 samples from the pre-Upper Cretaceous succession in 33 wells. The Lower Palaeozoic in the basin is overmature and the Upper Cretaceous – Cenozoic strata have no petroleum generation potential, but the Toarcian marine shales of the Lower Jurassic Fjerritslev Formation (F-III, F-IV members and the uppermost Jurassic – lowermost Cretaceous shales of the Frederikshavn Formation may qualify as potential source rocks in parts of the basin. Neither of these potential source rocks has a basinwide distribution; the present occurrence of the Lower Jurassic shales was primarily determined by regional early Middle Jurassic uplift and erosion. The generation potential of these source rocks is highly variable. The F-III and F-IV members show significant lateral changes in generation capacity, the best-developed source rocks occurring in the basin centre. The combined F-III andF-IV members in the Haldager-1, Kvols-1 and Rønde-1 wells contain ‘net source-rock’ thicknesses (cumulative thickness of intervals with Hydrogen Index (HI >200 mg HC/g TOC of 40 m, 83 m, and 92 m, respectively, displaying average HI values of 294, 369 and 404 mg HC/g TOC. The Mors-1 well contains 123 m of ‘net source rock’ with an average HI of 221 mg HC/g TOC. Parts of the Frederikshavn Formation possess a petroleum generation potential in the Hyllebjerg-1, Skagen-2, Voldum-1 and Terne-1 wells, the latter well containing a c.160 m thick highly oil-prone interval with an average HI of 478 mg HC/g TOC and maximum HI values >500 mg HC/g TOC. The source-rock evaluation suggests that a Mesozoic petroleum system is the most likely in the study area. Two primary plays are possible: (1 the Upper Triassic – lowermost Jurassic Gassum play, and (2the

  18. How does ocean ventilation change under global warming?

    Directory of Open Access Journals (Sweden)

    A. Gnanadesikan

    2007-01-01

    Full Text Available Since the upper ocean takes up much of the heat added to the earth system by anthropogenic global warming, one would expect that global warming would lead to an increase in stratification and a decrease in the ventilation of the ocean interior. However, multiple simulations in global coupled climate models using an ideal age tracer which is set to zero in the mixed layer and ages at 1 yr/yr outside this layer show that the intermediate depths in the low latitudes, Northwest Atlantic, and parts of the Arctic Ocean become younger under global warming. This paper reconciles these apparently contradictory trends, showing that the decreases result from changes in the relative contributions of old deep waters and younger surface waters. Implications for the tropical oxygen minimum zones, which play a critical role in global biogeochemical cycling are considered in detail.

  19. Wind Profiles and Wave Spectra for Potential Wind Farms in South China Sea. Part I: Wind Speed Profile Model

    Directory of Open Access Journals (Sweden)

    Yichao Liu

    2017-01-01

    Full Text Available With the setting of wind energy harvesting moving from coastal waters to deep waters, the South China Sea has been deemed to offer great potential for the construction of floating wind farms thanks to the abundance of wind energy resources. An engineering model describing the wind profiles and wave spectra specific to the South China Sea conditions, which is the precondition for offshore wind farm construction, has, however, not yet been proposed. In the present study, a series of numerical simulations have been conducted using the Weather Forecast and Research model. Through analyzing the wind and wave information extracted from the numerical simulation results, engineering models to calculate vertical profiles of wind speeds and wave spectra have been postulated. While the present paper focuses on the wind profile model, a companion paper articulates the wave spectrum model. For wind profiles under typhoon conditions, the power-law and log-law models have been found applicable under the condition that the Hellmann exponent α or the friction velocity u * are modified to vary with the wind strength. For wind profiles under non-typhoon conditions, the log-law model is revised to take into consideration the influence of the atmospheric stability.

  20. Scientists' Views about Attribution of Global Warming

    Science.gov (United States)

    Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo

    2015-04-01

    What do scientists think? That is an important question when engaging in science communication, in which an attempt is made to communicate the scientific understanding to a lay audience. To address this question we undertook a large and detailed survey among scientists studying various aspects of climate change , dubbed "perhaps the most thorough survey of climate scientists ever" by well-known climate scientist and science communicator Gavin Schmidt. Among more than 1800 respondents we found widespread agreement that global warming is predominantly caused by human greenhouse gases. This consensus strengthens with increased expertise, as defined by the number of self-reported articles in the peer-reviewed literature. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), agreed that anthropogenic greenhouse gases are the dominant cause of recent global warming, i.e. having contributed more than half of the observed warming. With this survey we specified what the consensus position entails with much greater specificity than previous studies. The relevance of this consensus for science communication will be discussed. Another important result from our survey is that the main attribution statement in IPCC's fourth assessment report (AR4) may lead to an underestimate of the greenhouse gas contribution to warming, because it implicitly includes the lesser known masking effect of cooling aerosols. This shows the importance of the exact wording in high-profile reports such as those from IPCC in how the statement is perceived, even by fellow scientists. The phrasing was improved in the most recent assessment report (AR5). Respondents who characterized the human influence on climate as insignificant, reported having the most frequent media coverage regarding their views on climate change. This shows that contrarian opinions are amplified in the media in relation to their prevalence in the scientific community. This

  1. Separating warming-induced drought from drought-induced warming

    Science.gov (United States)

    Roderick, Michael; Wolf, Sebastian; Yin, Dongqin

    2017-04-01

    A very widely held public perception is that increasing temperature is a cause of "drying" and drought. The atmospheric-focused meteorologic community has often assumed that the warmer temperatures increase evaporation and that this contributes to worsening drought via atmospheric demand. On the other hand, the agricultural and hydrologic scientific communities have a very different interpretation linked to water supply, with the lack of available water leading to reduced evaporation and enhanced surface warming. This is a classic chicken-or-the-egg problem that has resisted definitive explanation probably due to the lack of radiative observations at suitable spatial and temporal scales. Here we use recently released NASA CERES satellite radiation data to study the 2013-2014 Californian drought. We evaluate whether the observed increase in near-surface air temperature should be considered a forcing (as per standard meteorological approaches) or a feedback (as per standard agricultural and hydrologic approaches). We find that the radiative perturbation associated with the drought has a distinct radiative signature for more incoming shortwave- and less incoming longwave-radiation. That result, coupled with estimates of decreased evapotranspiration show that around two-third of the warming has a radiative origin and the remaining one-third is the result of a surface feedback from reduced evaporative cooling. Hence, the radiative perturbation during the recent Californian drought was distinctly different from the projected radiative perturbation of the enhanced greenhouse effect. We conclude that the warming experienced during meteorological drought is very different from the warming projected as a consequence of the enhanced greenhouse effect.

  2. Why is the global warming proceeding much slower than expected?

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, L.; Roeckner, E.; Stendel, M.

    1998-05-01

    Upper air observations from radiosondes and microwave satellite instruments do not indicate any global warming during the last 19 years in contrary to surface measurements where a warming trend is supposedly being found. This result is somewhat difficult to reconcile, since climate model experiments do indicate a reverse trend, namely that upper tropospheric air should warm faster than the surface. To contribute towards an understanding of this difficulty, we have here undertaken some specific experiments to study the effect on climate due to the decrease in stratospheric ozone and the Mt. Pinatubo eruption in 1991. The associated forcing was added to the forcing from greenhouse gases, sulfate aerosols (direct and indirect effect) and tropospheric ozone, which was investigated in a separate series of experiments. Furthermore, we have undertaken an ensemble study in order to explore the natural variability of an advanced climate model exposed to such a forcing over 19 years. The result shows that the reduction of stratospheric ozone does not only cool the lower stratosphere but also the troposphere, in particular the upper and middle part. In the upper troposphere the cooling from stratospheric ozone leads to a significant reduction of the greenhouse warming. The stratospheric aerosols from Mt. Pinatubo generate a climate response (stratospheric warming and tropospheric cooling) in good agreement with microwave satellite measurements. Finally, the analysis of a series of experiments with both stratospheric ozone and the Mt. Pinatubo effect shows a considerably variability in its climate response.

  3. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.

    Science.gov (United States)

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-02-03

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.

  4. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming.

    NARCIS (Netherlands)

    Rinnan, R.; Rousk, J.; Yergeau, E.; Kowalchuk, G.A.; Baath, E.

    2009-01-01

    Soil microorganisms, the central drivers of terrestrial Antarctic ecosystems, are being confronted with increasing temperatures as parts of the continent experience considerable warming. Here we determined short-term temperature dependencies of Antarctic soil bacterial community growth rates, using

  5. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming

    NARCIS (Netherlands)

    Rinnan, R.; Rousk, J.; Yergeau, E.; Kowalchuk, G.A.; Baath, E.

    2009-01-01

    Soil microorganisms, the central drivers of terrestrial Antarctic ecosystems, are being confronted with increasing temperatures as parts of the continent experience considerable warming. Here we determined short-term temperature dependencies of Antarctic soil bacterial community growth rates, using

  6. Temperature response of soil respiration largely unaltered with experimental warming

    NARCIS (Netherlands)

    Carey, J.C.; Tang, J.; Templer, P.H.; Kroeger, K.D.; Crowther, T.W.; Burton, A.J.; Dukes, J.S.; Emmett, B.; Frey, S.D.; Heskel, M.A.; Jiang, L.; Machmuller, M.B.; Mohan, J.; Panetta, A.M.; Reich, P.B.; Reinsch, S.; Wang, X.; Allison, S.D.; Bamminger, C.; Bridgham, S.; Collins, S.L.; de Dato, G.; Eddy, W.C.; Enquist, B.J.; Estiarte, M.; Harte, J.; Henderson, A.; Johnson, B.R.; Larsen, K.S.; Luo, Y.; Marhan, S.; Melillo, J.M.; Peñuelas, J.; Pfeifer-Meister, L.; Poll, C.; Rastetter, E.; Reinmann, A.B.; Reynolds, L.L.; Schmidt, I.K.; Shaver, G.R.; Strong, A.L.; Suseela, V.; Tietema, A.

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific

  7. Hot Water and Warm Homes from Sunlight. Teacher's Guide.

    Science.gov (United States)

    Gould, Alan

    A basic understanding of the potential of solar energy is increasingly relevant given the pollution caused by the burning of fossil fuel, health problems associated with that pollution, the possibility of global warming, and the complex issues raised by the dependence of industrialized nations on oil and natural gas. This teacher's guide presents…

  8. Arctic warming will promote Atlantic-Pacific fish interchange

    DEFF Research Database (Denmark)

    Wisz, Mary; Broennimann, O.; Grønkjær, Peter

    2015-01-01

    Throughout much of the Quaternary Period, inhospitable environmental conditions above the Arctic Circle have been a formidable barrier separating most marine organisms in the North Atlantic from those in the North Pacific. Rapid warming has begun to lift this barrier, potentially facilitating...... to ecosystems that at present contribute 39% to global marine fish landings...

  9. Global Warming Blame the Sun

    CERN Document Server

    Calder, N

    1997-01-01

    Concern about climate change reaches a political peak at a UN conference in Kyoto, 1-10 December, but behind the scenes the science is in turmoil. A challenge to the hypothesis that greenhouse gases are responsible for global warming comes from the discovery that cosmic rays from the Galaxy are involved in making clouds (Svensmark and Friis-Christensen, 1997). During the 20th Century the wind from the Sun has grown stronger and the count of cosmic rays has diminished. With fewer clouds, the EarthÕs surface has warmed up. This surprising mechanism explains the link between the Sun and climate change that astronomers and geophysicists have suspected for 200 years.

  10. Hydrological consequences of global warming

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Norman L.

    2009-06-01

    The 2007 Intergovernmental Panel for Climate Change indicates there is strong evidence that the atmospheric concentration of carbon dioxide far exceeds the natural range over the last 650,000 years, and this recent warming of the climate system is unequivocal, resulting in more frequent extreme precipitation events, earlier snowmelt runoff, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. The effects of recent warming has been well documented and climate model projections indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99 percent) of occurring with significant to severe consequences in response to a warmer lower atmosphere with an accelerating hydrologic cycle.

  11. PR Software: Warm Water Energie met grafieken

    NARCIS (Netherlands)

    Kanis, J.; Verstappen-Boerekamp, J.

    1999-01-01

    Het computerprogramma Warm Water Energie (WWE) berekent het verbruik van (warm) water, energie en reinigingsmiddelen bij de melkwinning. De nieuwste versie bevat grafieken die in één oogopslag de productie en het verbruik van warm water weergeven. In de overzichtelijke rapportage staan nu ook de

  12. Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci: an endemic plant to Turkey.

    Science.gov (United States)

    Zengin, Gokhan; Aktumsek, Abdurrahman

    2014-01-01

    The genus Asphodeline (Liliaceae) is represented in Turkey by 20 taxa, which are traditionally used for medicinal purposes in Anatolia. In this study, we tested the phytochemical content and antioxidant effect of different solvent extracts obtained from different anatomical parts of Asphodeline anatolica. The different extracts of each plant parts were tested for antioxidant activity using different chemical assays. The total antioxidant components were also calculated. Generally, acetone extracts produced the seed and root exhibited significantly higher antioxidant activity with high antioxidant components. Total phenolic content of extracts were significantly correlated with antioxidant potentials (except for, metal chelating activity). On the basis of the results obtained, A. anatolica extracts should be regarded as a valuable source of natural antioxidants for food and therapeutic applications.

  13. [Prospects for the use of cells possessing myogenic potential in the treatment of skeletal muscle diseases: a review of research. Part 1 - satellite cells].

    Science.gov (United States)

    Zorin, V L; Zorina, A I; Pulin, A A; Kopnin, P B; Eremin, I I

    2015-01-01

    Musculoskeletal functions disorders may develop as a consequence of injuries and various types of congenital / acquired diseases, among which a special place belongs to muscular dystrophy. The technology with use of cells possessing myogenic potential is considered as one of the most promising approaches to solve the problem of effective restoration of skeletal muscles structure and function. In part I of the article the characteristic features, functions and phenotypic characteristics of satellite cells (SC) are reviewed as key factors of skeletal muscle tissue regeneration. Presented analysis of research results (preclinical and clinical) concerning therapeutic possibilities of technology using SC. In the second part of review will be presented data of the therapeutic use of stem cells of muscle and non-muscle origin for the treatment of skeletal muscles diseases.

  14. Temperature response of soil respiration largely unaltered with experimental warming

    Science.gov (United States)

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; Collins, Scott L.; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Steenberg Larsen, Klaus; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Penuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward B.; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  15. Economic Theory and Global Warming

    Science.gov (United States)

    Uzawa, Hirofumi

    2003-08-01

    Hirofumi Uzawa's theoretical framework addresses three major problems concerning global warming and other environmental hazards. First, it considers all phenomena involved with global environmental issues that exhibit externalities of one kind or another. Secondly, it covers global environmental issues involving international and intergenerational equity and justice. Lastly, it deals with global environmental issues concerning the management of the atmosphere, the oceans, water, soil, and other natural resources having to be decided by a consensus of affected countries.

  16. Projected changes in diverse ecosystems from climate warming and biophysical drivers in northwest Alaska

    Science.gov (United States)

    Mark Torre Jorgenson; Bruce G. Marcot; David K. Swanson; Janet C. Jorgenson; Anthony R. DeGange

    2015-01-01

    Climate warming affects arctic and boreal ecosystems by interacting with numerous biophysical factors across heterogeneous landscapes. To assess potential effects of warming on diverse local-scale ecosystems (ecotypes) across northwest Alaska, we compiled data on historical areal changes over the last 25–50 years. Based on historical rates of change relative to time...

  17. The interaction of radiative and dynamical processes during a simulating sudden stratospheric warming

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, R.B.; Blackshear, W.T.; Grose, W.L.; Turner, R.E. (NASA Langley Research Center, Hampton VA (United States)); Fairlie, T.D. (Science and Technology Corporation, Hampton, VA (United States))

    1993-12-01

    An analysis of a spontaneous sudden stratospheric warming that occurred during a 2-year integration of the Langley Research Center Atmospheric Simulation Model is presented. The simulated warming resembles observed [open quotes]wave 1[close quotes] warmings in the Northern Hemisphere stratosphere and provides an opportunity to investigate the radiative and dynamical processes occurring during the warming event. Isentropic analysis of potential vorticity sources and sinks indicates that dynamically induced departures from radiative equilibrium play an important role in the warming event. Enhanced radiative cooling associated with a series of upper stratospheric warm pools leads to radiative dampening within the polar vortex. Within the [open quotes]surf zone[close quotes] large-scale radiative cooling leads to diabatic advection of high potential vorticity air from aloft. Lagrangian area diagnostics of the simulated warming agree well with LIMS analysis. Dynamical mixing is shown to account for the majority of the decrease in the size of the polar vortex during the simulated warming. An investigation of the nonlinear deformation of material lines that are initially coincident with diagnosed potential vorticity isopleths is conducted to clarify the relationship between the lagrangian area diagnostics and potential vorticity advection during wave breaking events. 27 refs., 25 figs.

  18. The Discovery of Global Warming

    Science.gov (United States)

    MacCracken, Michael C.

    2004-07-01

    At the beginning of the twentieth century, the prospect of ``global warming'' as a result of human activities was thought to be far off, and in any case, likely to be beneficial. As we begin the twenty-first century, science adviser to the British government, Sir David King, has said that he considers global warming to be the world's most important problem, including terrorism. Yet, dealing with it has become the subject of a contentious international protocol, numerous conferences of international diplomats, and major scientific assessments and research programs. Spencer Weart, who is director of the Center for History of Physics of the American Institute of Physics, has taken on the challenge of explaining how this came to be. In the tradition of the Intergovernmental Panel on Climate Change (IPCC), which was established in 1988 to evaluate and assess the state of global warming science, this book is roughly equivalent to the Technical Summary, in terms of its technical level, being quite readable, but with substantive content about the main lines of evidence. Underpinning this relatively concise presentation, there is a well-developed-and still developing-Web site that, like the detailed chapters of the full IPCC assessment reports, provides vastly more information and linkages to a much wider set of reference materials (see http://www.aip.org/history/climate).

  19. Soil crusts to warm the planet

    Science.gov (United States)

    Garcia-Pichel, Ferran; Couradeau, Estelle; Karaoz, Ulas; da Rocha Ulisses, Nunes; Lim Hsiao, Chiem; Northen, Trent; Brodie, Eoin

    2016-04-01

    Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can also be colonized by photosynthetic microbes that build biocrust communities. We used concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming had apparent and immediate consequences for the crust soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. These results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales. Based on estimates of the global biomass of cyanobacteria in soil biocrusts, one can easily calculate that there must currently exist about 15 million metric tons of scytonemin at work, warming soil surfaces worldwide

  20. Identifying the Molecular Origin of Global Warming

    Science.gov (United States)

    Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2009-01-01

    We have investigated the physical characteristics of greenhouse gases (GHGs) to assess which properties are most important in determining the efficiency of a GHG. Chlorofluorcarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), nitrogen fluorides, and various other known atmospheric trace molecules have been included in this study. Compounds containing the halogens F or Cl have in common very polar X-F or X-Cl bonds, particularly the X-F bonds. It is shown that as more F atoms bond to the same central atom, the bond dipoles become larger as a result of the central atom becoming more positive. This leads to a linear increase in the total or integrated XF bond dipole derivatives for the molecule, which leads to a non-linear (quadratic) increase in infrared (IR) intensity. Moreover, virtually all of the X-F bond stretches occur in the atmospheric IR window as opposed to X-H stretches, which do not occur in the atmospheric window. It is concluded that molecules possessing several F atoms will always have a large radiative forcing parameter in the calculation of their global warming potential. Some of the implications for global warming and climate change are discussed.

  1. Warm Dense Matter: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-04-21

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities

  2. Evaluation of the quality, thermal maturity and distribution of potential source rocks in the Danish part of the Norwegian-Danish Basin

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H.I.; Nielsen, L.H.; Bojesen-Koefoed, J.A.; Mathiesen, A.; Kristensen, L.; Dalhoff, F. (Geological Survey of Denmark and Greenland, Copenhagen (Denmark))

    2008-11-15

    The results of hydrocarbon exploration in the Norwegian-Danish Basin in northern Denmark over the past 70 years have been largely disappointing. Although the principal components of a viable petroleum system are in place, the existence of effective source rocks has been questioned. This bulletin presents an evaluation of the quality, extent and thermal maturity of potential source rocks within the Palaeozoic-Mesozoic succession of the Danish part of the Norwegian-Danish Basin. A range of potential source rocks are documented, of which those in the Jurassic lowermost Cretaceous are judged the most promising. Over much of the basin, these Mesozoic source rocks have experienced insufficient burial to have produced hydrocarbons--the source rocks are regionally immature or only marginally mature. Local hydrocarbon kitchens with mature source rocks may be present in the centre of the basin, however, associated with salt structures and minor grabens. (au)

  3. Liquid Film Migration in Warm Formed Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, M. J.; Whitney, M. A.; Wells, M. A.; Jin, H.; Winkler, S.

    2017-10-01

    Warm forming has previously proven to be a promising manufacturing route to improve formability of Al brazing sheets used in automotive heat exchanger production; however, the impact of warm forming on subsequent brazing has not previously been studied. In particular, the interaction between liquid clad and solid core alloys during brazing through the process of liquid film migration (LFM) requires further understanding. Al brazing sheet comprised of an AA3003 core and AA4045 clad alloy, supplied in O and H24 tempers, was stretched between 0 and 12 pct strain, at room temperature and 523K (250 °C), to simulate warm forming. Brazeability was predicted through thermal and microstructure analysis. The rate of solid-liquid interactions was quantified using thermal analysis, while microstructure analysis was used to investigate the opposing processes of LFM and core alloy recrystallization during brazing. In general, liquid clad was consumed relatively rapidly and LFM occurred in forming conditions where the core alloy did not recrystallize during brazing. The results showed that warm forming could potentially impair brazeability of O temper sheet by extending the regime over which LFM occurs during brazing. No change in microstructure or thermal data was found for H24 sheet when the forming temperature was increased, and thus warm forming was not predicted to adversely affect the brazing performance of H24 sheet.

  4. Warm and homely or cold and beautiful? Sex differences in trading off traits in mate selection.

    Science.gov (United States)

    Fletcher, Garth J O; Tither, Jacqueline M; O'Loughlin, Claire; Friesen, Myron; Overall, Nickola

    2004-06-01

    Prior research and theory suggest that people use three main sets of criteria in mate selection: warmth/trustworthiness, attractiveness/vitality, and status/resources. In two studies, men and women made mating choices between pairs of hypothetical potential partners and were forced to make trade-offs among these three criteria (e.g., warm and homely vs. cold and attractive). As predicted, women (relative to men) placed greater importance on warmth/trustworthiness and status/resources in a potential mate but less importance on attractiveness/vitality. In addition, as expected (a) ratings of ideal standards partly mediated the link between sex and mate choices, (b) ideal standards declined in importance from long-term to short-term relationships, with the exception of attractiveness/vitality, and unexpectedly, (c) sex differences were higher for long-term (compared to short-term) mate choice. Explanations and implications are discussed.

  5. Potential land use planning and assessment in the west part of the Büyük Menderes basin by ILSEN Model

    Directory of Open Access Journals (Sweden)

    Mustafa Bolca

    2013-01-01

    Full Text Available This research was planned to investigate the structural properties and soil mapping capability according to rules of the 7. Approximation Soil Taxonomic System of the region western part of the Büyük Menderes Basin by using Landsat satellite images in remote sensing technique. The data gathered from field observation about some soil properties and land requirements of different land use types were correlated and as a result of that the boundaries of land use patterns were carried out. Land use patterns were detected according to suitable land use classes for soil mapping units and potential land use map were done. Land use assessment is likely to be the prediction of land potential for productive land use types. This case is great important in guiding decisions on land uses in terms of potential and conserving natural resources for future generations. The main objective of this study was to determine land resources and to assess potential land use in the west part of the Büyük Menderes Basin of Aegean region. The study area covers about 24.300 km2 and formed on alluvial material deposited by Büyük Menders River. Using Landsat 5 TM satellite images, which cover back and foot slope of mountain and alluvial plains of the western part of Menderes Basin, and taking physiographic units of the region as basis, detailed soil series and phases were determined. Soils of the region were classified as Entisol, Inceptisol as 2 orders, 4 suborders, 4 great groups and 6 sub groups, and 10 series. Twenty-five different land utilization types grouped into 4 major land use groups were evaluated for the studied area’s soils. ILSEN computer model was used to determined potential land use groups and suitable classes for agricultural uses. In addition, ArcGIS software was used to generate their maps and database. Suitability map for agricultural uses results showed that, distributions of the best, relatively good, problematic and restricted agricultural lands

  6. Declining global per capita agricultural production and warming oceans threaten food security

    Science.gov (United States)

    Funk, Christopher C.; Brown, Molly E.

    2009-01-01

    Despite accelerating globalization, most people still eat food that is grown locally. Developing countries with weak purchasing power tend to import as little food as possible from global markets, suffering consumption deficits during times of high prices or production declines. Local agricultural production, therefore, is critical to both food security and economic development among the rural poor. The level of local agricultural production, in turn, will be determined by the amount and quality of arable land, the amount and quality of agricultural inputs (fertilizer, seeds, pesticides, etc.), as well as farm-related technology, practices and policies. This paper discusses several emerging threats to global and regional food security, including declining yield gains that are failing to keep up with population increases, and warming in the tropical Indian Ocean and its impact on rainfall. If yields continue to grow more slowly than per capita harvested area, parts of Africa, Asia and Central and Southern America will experience substantial declines in per capita cereal production. Global per capita cereal production will potentially decline by 14% between 2008 and 2030. Climate change is likely to further affect food production, particularly in regions that have very low yields due to lack of technology. Drought, caused by anthropogenic warming in the Indian and Pacific Oceans, may also reduce 21st century food availability in some countries by disrupting moisture transports and bringing down dry air over crop growing areas. The impacts of these circulation changes over Asia remain uncertain. For Africa, however, Indian Ocean warming appears to have already reduced rainfall during the main growing season along the eastern edge of tropical Africa, from southern Somalia to northern parts of the Republic of South Africa. Through a combination of quantitative modeling of food balances and an examination of climate change, this study presents an analysis of emerging

  7. Declining Global Per Capita Agricultural Production and Warming Oceans Threaten Food Security

    Science.gov (United States)

    Funk, Chris C.; Brown, Molly E.

    2009-01-01

    Despite accelerating globalization, most people still eat food that was grown locally. Developing countries with weak purchasing power tend to import as little food as possible from global markets, suffering consumption deficits during times of high prices or production declines. Local agricultural production, therefore, is critical to both food security and economic development among the rural poor. The level of local agricultural production, in turn, will be controlled by the amount and quality of arable land, the amount and quality of agricultural inputs (fertilizer, seeds, pesticides, etc.), as well as farm-related technology, practices, and policies. In this paper we discuss several emerging threats to global and regional food security, including declining yield gains that are failing to keep up with population increases, and warming in the tropical Indian Ocean and its impact on rainfall. If yields continue to grow more slowly than per capita harvested area, parts of Africa, Asia, and Central and Southern America will experience substantial declines in per capita cereal production. Global per capita cereal production will potentially decline by 14 percent between 2008 and 2030. Climate change is likely to further affect food production, particularly in regions that have very low yields due to lack of technology. Drought, caused by anthropogenic warming in the Indian and Pacific Oceans, may also reduce 21 st century food availability by disrupting Indian Ocean moisture transports and tilting the 21 st century climate toward a more El Nino-like state. The impacts of these circulation changes over Asia remain uncertain. For Africa, however, Indian Ocean warming appears to have already reduced main growing season rainfall along the eastern edge of tropical Africa, from southern Somalia to northern parts of the Republic of South Africa. Through a combination of quantitative modeling of food balances and an examination of climate change, we present an analysis of

  8. Shifting suitability for malaria vectors across Africa with warming climates

    Directory of Open Access Journals (Sweden)

    Peterson A Townsend

    2009-05-01

    Full Text Available Abstract Background Climates are changing rapidly, producing warm climate conditions globally not previously observed in modern history. Malaria is of great concern as a cause of human mortality and morbidity, particularly across Africa, thanks in large part to the presence there of a particularly competent suite of mosquito vector species. Methods I derive spatially explicit estimates of human populations living in regions newly suitable climatically for populations of two key Anopheles gambiae vector complex species in Africa over the coming 50 years, based on ecological niche model projections over two global climate models, two scenarios of climate change, and detailed spatial summaries of human population distributions. Results For both species, under all scenarios, given the changing spatial distribution of appropriate conditions and the current population distribution, the models predict a reduction of 11.3–30.2% in the percentage of the overall population living in areas climatically suitable for these vector species in coming decades, but reductions and increases are focused in different regions: malaria vector suitability is likely to decrease in West Africa, but increase in eastern and southern Africa. Conclusion Climate change effects on African malaria vectors shift their distributional potential from west to east and south, which has implications for overall numbers of people exposed to these vector species. Although the total is reduced, malaria is likely to pose novel public health problems in areas where it has not previously been common.

  9. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    Science.gov (United States)

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.

  10. Can Global Warming be Stopped?

    Science.gov (United States)

    Luria, M.

    2013-12-01

    Earlier this year, the CO2 levels exceeded the 400 ppm level and there is no sign that the 1-2 ppm annual increase is going to slow down. Concerns regarding the danger of global warming have been reported in numerous occasions for more than a generation, ever since CO2 levels reached the 350 ppm range in the mid 1980's. Nevertheless, all efforts to slow down the increase have showed little if any effect. Mobile sources, including surface and marine transportation and aviation, consist of 20% of the global CO2 emission. The only realistic way to reduce the mobile sources' CO2 signature is by improved fuel efficiency. However, any progress in this direction is more than compensated by continuous increased demand. Stationary sources, mostly electric power generation, are responsible for the bulk of the global CO2 emission. The measurements have shown, that the effect of an increase in renewable sources, like solar wind and geothermal, combined with conversion from coal to natural gas where possible, conservation and efficiency improvement, did not compensate the increased demand mostly in developing countries. Increased usage of nuclear energy can provide some relief in carbon emission but has the potential of even greater environmental hazard. A major decrease in carbon emission can be obtained by either significant reduction in the cost of non-carbon based energy sources or by of carbon sequestration. The most economical way to make a significant decrease in carbon emission is to apply carbon sequestration technology at large point sources that use coal. Worldwide there are about 10,000 major sources that burn >7 billion metric tons of coal which generate the equivalent of 30 trillion kwh. There is a limited experience in CO2 sequestration of such huge quantities of CO2, however, it is estimated that the cost would be US$ 0.01-0.1 per kwh. The cost of eliminating this quantity can be estimated at an average of 1.5 trillion dollars annually. The major emitters, US

  11. Global warming and obesity: a systematic review.

    Science.gov (United States)

    An, R; Ji, M; Zhang, S

    2018-02-01

    Global warming and the obesity epidemic are two unprecedented challenges mankind faces today. A literature search was conducted in the PubMed, Web of Science, EBSCO and Scopus for articles published until July 2017 that reported findings on the relationship between global warming and the obesity epidemic. Fifty studies were identified. Topic-wise, articles were classified into four relationships - global warming and the obesity epidemic are correlated because of common drivers (n = 21); global warming influences the obesity epidemic (n = 13); the obesity epidemic influences global warming (n = 13); and global warming and the obesity epidemic influence each other (n = 3). We constructed a conceptual model linking global warming and the obesity epidemic - the fossil fuel economy, population growth and industrialization impact land use and urbanization, motorized transportation and agricultural productivity and consequently influences global warming by excess greenhouse gas emission and the obesity epidemic by nutrition transition and physical inactivity; global warming also directly impacts obesity by food supply/price shock and adaptive thermogenesis, and the obesity epidemic impacts global warming by the elevated energy consumption. Policies that endorse deployment of clean and sustainable energy sources, and urban designs that promote active lifestyles, are likely to alleviate the societal burden of global warming and obesity. © 2017 World Obesity Federation.

  12. Exceptional warming in the Western Pacific-Indian Ocean warm pool has contributed to more frequent droughts in eastern Africa

    Science.gov (United States)

    Funk, Christopher C.; Peterson, Thomas C.; Stott, Peter A.; Herring, Stephanie

    2012-01-01

    In 2011, East Africa faced a tragic food crisis that led to famine conditions in parts of Somalia and severe food shortages in parts of Ethiopia and Somalia. While many nonclimatic factors contributed to this crisis (high global food prices, political instability, and chronic poverty, among others) failed rains in both the boreal winter of 2010/11 and the boreal spring of 2011 played a critical role. The back-to-back failures of these rains, which were linked to the dominant La Niña climate and warm SSTs in the central and southeastern Indian Ocean, were particularly problematic since they followed poor rainfall during the spring and summer of 2008 and 2009. In fact, in parts of East Africa, in recent years, there has been a substantial increase in the number of below-normal rainy seasons, which may be related to the warming of the western Pacific and Indian Oceans (for more details, see Funk et al. 2008; Williams and Funk 2011; Williams et al. 2011; Lyon and DeWitt 2012). The basic argument of this work is that recent warming in the Indian–Pacific warm pool (IPWP) enhances the export of geopotential height energy from the warm pool, which tends to produce subsidence across eastern Africa and reduce onshore moisture transports. The general pattern of this disruption has been supported by canonical correlation analyzes and numerical experiments with the Community Atmosphere Model (Funk et al. 2008), diagnostic evaluations of reanalysis data (Williams and Funk 2011; Williams et al. 2011), and SST-driven experiments with ECHAM4.5, ECHAM5, and the Community Climate Model version 3 (CCM3.6) (Lyon and DeWitt 2012).

  13. It is rocket science - why dietary nitrate is hard to 'beet'! Part II: further mechanisms and therapeutic potential of the nitrate-nitrite-NO pathway.

    Science.gov (United States)

    Mills, Charlotte Elizabeth; Khatri, Jibran; Maskell, Perry; Odongerel, Chimed; Webb, Andrew James

    2017-01-01

    Dietary nitrate (found in green leafy vegetables such as rocket and in beetroot) is now recognized to be an important source of nitric oxide, via the nitrate-nitrite-NO pathway. Dietary nitrate confers several cardiovascular beneficial effects on blood pressure, platelets, endothelial function, mitochondrial efficiency and exercise. Having described key twists and turns in the elucidation of the pathway and the underlying mechanisms in Part I, we explore the more recent developments which have served to confirm mechanisms, extend our understanding, and discover new properties and potential therapeutic uses of the pathway in Part II. Even the established dependency on low oxygen states for bioactivation of nitrite has recently been challenged. Dietary nitrate appears to be an important component of 'healthy diets', such as the DASH diet to lower blood pressure and the Mediterranean diet, with its potential to lower cardiovascular risk, possibly through beneficial interactions with a range of other constituents. The World Cancer Research Foundation report strong evidence for vegetables including spinach and lettuce (high nitrate-containing) decreasing cancer risk (mouth, pharynx, larynx, oesophagus and stomach), summarized in a 'Nitrate-Cancer Risk Veg-Table'. The European Space Agency recommends that beetroot, lettuce, spinach and rocket (high-nitrate vegetables) are grown to provide food for long-term space missions. Nitrate, an ancient component of rocket fuel, could support sustainable crops for healthy humans. © 2016 The British Pharmacological Society.

  14. It is rocket science – why dietary nitrate is hard to ‘beet’! Part II: further mechanisms and therapeutic potential of the nitrate‐nitrite‐NO pathway

    Science.gov (United States)

    Mills, Charlotte Elizabeth; Khatri, Jibran; Maskell, Perry; Odongerel, Chimed

    2016-01-01

    Dietary nitrate (found in green leafy vegetables such as rocket and in beetroot) is now recognized to be an important source of nitric oxide, via the nitrate‐nitrite‐NO pathway. Dietary nitrate confers several cardiovascular beneficial effects on blood pressure, platelets, endothelial function, mitochondrial efficiency and exercise. Having described key twists and turns in the elucidation of the pathway and the underlying mechanisms in Part I, we explore the more recent developments which have served to confirm mechanisms, extend our understanding, and discover new properties and potential therapeutic uses of the pathway in Part II. Even the established dependency on low oxygen states for bioactivation of nitrite has recently been challenged. Dietary nitrate appears to be an important component of ‘healthy diets’, such as the DASH diet to lower blood pressure and the Mediterranean diet, with its potential to lower cardiovascular risk, possibly through beneficial interactions with a range of other constituents. The World Cancer Research Foundation report strong evidence for vegetables including spinach and lettuce (high nitrate‐containing) decreasing cancer risk (mouth, pharynx, larynx, oesophagus and stomach), summarized in a ‘Nitrate‐Cancer Risk Veg‐Table’. The European Space Agency recommends that beetroot, lettuce, spinach and rocket (high‐nitrate vegetables) are grown to provide food for long‐term space missions. Nitrate, an ancient component of rocket fuel, could support sustainable crops for healthy humans. PMID:26914827

  15. Responses of greenhouse gas fluxes to experimental warming in wheat season under conventional tillage and no-tillage fields.

    Science.gov (United States)

    Tu, Chun; Li, Fadong

    2017-04-01

    Understanding the effects of warming on greenhouse gas (GHG, such as N2O, CH4 and CO2) feedbacks to climate change represents the major environmental issue. However, little information is available on how warming effects on GHG fluxes in farmland of North China Plain (NCP). An infrared warming simulation experiment was used to assess the responses of N2O, CH4 and CO2 to warming in wheat season of 2012-2014 from conventional tillage (CT) and no-tillage (NT) systems. The results showed that warming increased cumulative N2O emission by 7.7% in CT but decreased it by 9.7% in NT fields (pwarming effects on GHG fluxes in two wheat seasons. However, in 2013, the long-term drought stress due to infrared warming and less precipitation decreased N2O and CO2 emission in warmed treatments. In contrast, warming during this time increased CH4 emission from deep soil depth. Across two years wheat seasons, warming significantly decreased by 30.3% and 63.9% sustained-flux global warming potential (SGWP) of N2O and CH4 expressed as CO2 equivalent in CT and NT fields, respectively. However, increase in soil CO2 emission indicated that future warming projection might provide positive feedback between soil C release and global warming in NCP. Copyright © 2016. Published by Elsevier B.V.

  16. [Predicting the impact of global warming on the geographical distribution pattern of Quercus variabilis in China].

    Science.gov (United States)

    Li, Yao; Zhang, Xing-wang; Fang, Yan-ming

    2014-12-01

    The geographical distribution of Quercus variabilis in China with its climate characteristics was analyzed based on DIVA-GIS which was also used to estimate the response of future potential distribution to global warming by Bioclim and Domain models. Analysis results showed the geographical distribution of Q. variabilis could be divided into 7 subregions: Henduan Mountains, Yunnan-Guizhou Plateau, North China, East China, Liaodong-Shandong Peninsula, Taiwan Island, and Qinling-Daba Mountains. These subregions are across 7 temperature zones, 2 moisture regions and 17 climatic subregions, including 8 climate types. The modern abundance center of Q. variabilis is Qinling, Daba and Funiu mountains. The condition of mean annual temperature 7.5-19.8 degrees C annual precipitation 471-1511 mm, is suitable for Q. variabilis. Areas under the receiver operating characteristic curve (AUC values), of Domain and Boiclim models were 0.910, 0.779; the former predicted that the potential regions of high suitability for Q. variabilis are Qinling, Daba, Funiu, Tongbai, and Dabie mountains, eastern and western Yunnan-Guizhou Plateau, hills of southern Jiangsu and Anhui, part of the mountains in North China. Global warming might lead to the shrinking in suitable region and retreating from the south for Q. variabilis.

  17. Ocean deoxygenation in a warming world.

    Science.gov (United States)

    Keeling, Ralph E; Körtzinger, Arne; Gruber, Nicolas

    2010-01-01

    Ocean warming and increased stratification of the upper ocean caused by global climate change will likely lead to declines in dissolved O2 in the ocean interior (ocean deoxygenation) with implications for ocean productivity, nutrient cycling, carbon cycling, and marine habitat. Ocean models predict declines of 1 to 7% in the global ocean O2 inventory over the next century, with declines continuing for a thousand years or more into the future. An important consequence may be an expansion in the area and volume of so-called oxygen minimum zones, where O2 levels are too low to support many macrofauna and profound changes in biogeochemical cycling occur. Significant deoxygenation has occurred over the past 50 years in the North Pacific and tropical oceans, suggesting larger changes are looming. The potential for larger O2 declines in the future suggests the need for an improved observing system for tracking ocean 02 changes.

  18. Cutaneous warming promotes sleep onset.

    Science.gov (United States)

    Raymann, Roy J E M; Swaab, Dick F; Van Someren, Eus J W

    2005-06-01

    Sleep occurs in close relation to changes in body temperature. Both the monophasic sleep period in humans and the polyphasic sleep periods in rodents tend to be initiated when core body temperature is declining. This decline is mainly due to an increase in skin blood flow and consequently skin warming and heat loss. We have proposed that these intrinsically occurring changes in core and skin temperatures could modulate neuronal activity in sleep-regulating brain areas (Van Someren EJW, Chronobiol Int 17: 313-54, 2000). We here provide results compatible with this hypothesis. We obtained 144 sleep-onset latencies while directly manipulating core and skin temperatures within the comfortable range in eight healthy subjects under controlled conditions. The induction of a proximal skin temperature difference of only 0.78 +/- 0.03 degrees C (mean +/- SE) around a mean of 35.13 +/- 0.11 degrees C changed sleep-onset latency by 26%, i.e., by 3.09 minutes [95% confidence interval (CI), 1.91 to 4.28] around a mean of 11.85 min (CI, 9.74 to 14.41), with faster sleep onsets when the proximal skin was warmed. The reduction in sleep-onset latency occurred despite a small but significant decrease in subjective comfort during proximal skin warming. The induction of changes in core temperature (delta = 0.20 +/- 0.02 degrees C) and distal skin temperature (delta = 0.74 +/- 0.05 degrees C) were ineffective. Previous studies have demonstrated correlations between skin temperature and sleep-onset latency. Also, sleep disruption by ambient temperatures that activate thermoregulatory defense mechanisms has been shown. The present study is the first to experimentally demonstrate a causal contribution to sleep-onset latency of skin temperature manipulations within the normal nocturnal fluctuation range. Circadian and sleep-appetitive behavior-induced variations in skin temperature might act as an input signal to sleep-regulating systems.

  19. Mesoamerican Nephropathy or Global Warming Nephropathy?

    Science.gov (United States)

    Roncal-Jimenez, Carlos A; García-Trabanino, Ramon; Wesseling, Catharina; Johnson, Richard J

    2016-01-01

    An epidemic of chronic kidney disease (CKD) of unknown cause has emerged along the Pacific Coast of Central America. The disease primarily affects men working manually outdoors, and the major group affected is sugarcane workers. The disease presents with an asymptomatic rise in serum creatinine that progresses to end-stage renal disease over several years. Renal biopsies show chronic tubulointerstitial disease. While the cause remains unknown, recent studies suggest that it is driven by recurrent dehydration in the hot climate. Potential mechanisms include the development of hyperosmolarity with the activation of the aldose reductase-fructokinase pathway in the proximal tubule leading to local injury and inflammation, and the possibility that renal injury may be the consequence of repeated uricosuria and urate crystal formation as a consequence of both increased generation and urinary concentration, similar to a chronic tumor lysis syndrome. The epidemic is postulated to be increasing due to the effects of global warming. An epidemic of CKD has led to the death of more than 20,000 lives in Central America. The cause is unknown, but appears to be due to recurrent dehydration. Potential mechanisms for injury are renal damage as a consequence of recurrent hyperosmolarity and/or injury to the tubules from repeated episodes of uricosuria. The epidemic of CKD in Mesoamerica may be due to chronic recurrent dehydration as a consequence of global warming and working conditions. This entity may be one of the first major diseases attributed to climate change and the greenhouse effect. © 2016 S. Karger AG, Basel.

  20. Cosmic Rays and Global Warming

    OpenAIRE

    Sloan, T.; Wolfendale, A W

    2007-01-01

    It has been claimed by others that observed temporal correlations of terrestrial cloud cover with `the cosmic ray intensity' are causal. The possibility arises, therefore, of a connection between cosmic rays and Global Warming. If true, the implications would be very great. We have examined this claim to look for evidence to corroborate it. So far we have not found any and so our tentative conclusions are to doubt it. Such correlations as appear are more likely to be due to the small variatio...

  1. [Medical consequences of global warming].

    Science.gov (United States)

    Swynghedauw, Bernard

    2009-04-01

    The global warming of the planet and its anthropogenic origin are no longer debatable. Nevertheless, from a medical point of view, while the epidemiological consequences of the warming are rather well-known, the biological consequences are still poorly documented. This is a good example of evolutionary (or darwinian) medicine. The research strategy of this systematic review is based on both PubMed during the period of 2000-2007 and several reviews articles for the period >2000. From a medical point of view, there are four types of consequences. 1-The simple elevation of the average external temperature is accompanied by an increased global mortality and morbidity, the mortality/external temperature is a J curve, with the warm branch more pronounced than the cold one. A recent study on 50 different cities had confirmed that global, and more specifically cardiovascular mortalities were enhanced at the two extreme of the temperatures. 2-The acute heatwaves, such as that which happened in France in August 2003, have been studied in detail by several groups. The mortality which was observed during the recent heatwaves was not compensated by harvesting, strongly suggesting that we were dealing with heat stroke, and that such an increased mortality was more reflecting the limits of our adaptational capacities than aggravation of a previously altered health status. 3-Climate changes have modified the repartition and virulence of pathogenic agents (dengue, malaria...) and above all their vectors. Such modifications were exponential and are likely to reflect the biological properties of parasites. 4-Indirect consequences of global warming include variations in the hydraulic cycle, the new form of tropical hurricanes and many different changes affecting both biodiversity and ecosystems. They will likely result in an increased level of poverty. These finding gave rise to several basic biological questions, rarely evoked, and that concern the limits of the adaptational

  2. Influence of stretching and warm-up on Achilles tendon material properties.

    Science.gov (United States)

    Park, Don Young; Rubenson, Jonas; Carr, Amelia; Mattson, James; Besier, Thor; Chou, Loretta B

    2011-04-01

    Controversy exists on stretching and warm-up in injury prevention. We hypothesized that warm up has a greater effect on Achilles tendon biomechanics than static stretching. This study investigated static stretching and warm-up on Achilles tendon biomechanics in recreational athletes, in vivo. Ten active, healthy subjects, 5 males, 5 females, With a mean age of 22.9 years with no previous Achilles tendon injuries were recruited. Typical stretching and warm-up routines were created. Testing was performed in a randomized cross-over design. A custom-built dynamometer was utilized to perform controlled isometric plantarflexion. A low profile ultrasound probe was utilized to visualize the musculotendinous junction of the medial gastrocnemius. An eight-camera motion capture system was used to capture ankle motion. Custom software calculated Achilles tendon biomechanics. Achilles tendon force production was consistent. No statistically significant differences were detected in stretch, stiffness, and strain between pre-, post-stretching, and post-warm-up interventions. Stretching or warm-up alone, and combined did not demonstrate statistically significant differences. Stretching and warm-up may have an equivalent effect on Achilles tendon biomechanics. Prolonged and more intense protocols may be required for changes to occur. Stretching and warm-up of the Achilles before exercise are commonly practiced. Investigating the effect of stretching and warm-up may shed light on potential injury prevention.

  3. Metabolic rates and tissue composition of the coral Pocillopora verrucosa over 12 latitudes in the Red Sea characterized by strong temperature and nutrient gradient, supplement to: Sawall, Yvonne; Al-Sofyani, A; Hohn, S; Banguera-Hinestroza, E; Voolstra, Christian R; Wahl, Martin (2015): Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming. Scientific Reports, 5, 8940

    KAUST Repository

    Sawall, Yvonne

    2015-01-01

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12 degrees latitudes featuring a steep temperature gradient between the northern (28.5 degrees N, 21-27 degrees C) and southern (16.5 degrees N, 28-33 degrees C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29 degrees C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals

  4. A zero-power warming chamber for investigating plant responses to rising temperature

    Directory of Open Access Journals (Sweden)

    K. F. Lewin

    2017-09-01

    Full Text Available Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. However, current passive warming approaches are only able to elevate the mean daily air temperature by  ∼  1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be  ∼  2–3 °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. The approach we describe is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming

  5. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application.

    Science.gov (United States)

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2018-01-01

    Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long-term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long-term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high-temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (Rs ), and metabolic quotient (qCO2 ) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N2 O emissions, possibly due to accelerated N-cycling at elevated soil temperature and to biochar-induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar-C into soil was estimated to offset warming-induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N2 O emissions under warming limit the GHG mitigation potential of biochar. © 2017 John Wiley & Sons Ltd.

  6. A zero-power warming chamber for investigating plant responses to rising temperature

    Science.gov (United States)

    Lewin, Keith F.; McMahon, Andrew M.; Ely, Kim S.; Serbin, Shawn P.; Rogers, Alistair

    2017-09-01

    Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. However, current passive warming approaches are only able to elevate the mean daily air temperature by ˜ 1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be ˜ 2-3 °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW) chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. The approach we describe is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming approaches is desired.

  7. Responses of two understory herbs, Maianthemum canadense and Eurybia macrophylla, to experimental forest warming: early emergence is the key to enhanced reproductive output.

    Science.gov (United States)

    Jacques, Marie-Hélène; Lapointe, Line; Rice, Karen; Montgomery, Rebecca A; Stefanski, Artur; Reich, Peter B

    2015-10-01

    Understory herbs might be the most sensitive plant form to global warming in deciduous forests, yet they have been little studied in the context of climate change. A field experiment set up in Minnesota, United States simulated global warming in a forest setting and provided the opportunity to study the responses of Maianthemum canadense and Eurybia macrophylla in their natural environment in interaction with other components of the ecosystem. Effects of +1.7° and +3.4°C treatments on growth, reproduction, phenology, and gas exchange were evaluated along with treatment effects on light, water, and nutrient availability, potential drivers of herb responses. Overall, growth and gas exchanges of these two species were modestly affected by warming. They emerged up to 16 (E. macrophylla) to 17 d (M. canadense) earlier in the heated plots than in control plots, supporting early-season carbon gain under high light conditions before canopy closure. This additional carbon gain in spring likely supported reproduction. Eurybia macrophylla only flowered in the heated plots, and both species had some aspect of reproduction that was highest in the +1.7°C treatment. The reduced reproductive effort in the +3.4°C plots was likely due to reduced soil water availability, counteracting positive effects of warming. Global warming might improve fitness of herbaceous species in deciduous forests, mainly by advancing their spring emergence. However, other impacts of global warming such as drier soils in the summer might partly reduce the carbon gain associated with early emergence. © 2015 Botanical Society of America.

  8. Population growth and global warming

    Science.gov (United States)

    Short, R.V.

    2009-01-01

    When I was born in 1930, the human population of the world was a mere 2 billion. Today, it has already reached 6.8 billion, and is projected to reach 9.1 billion by 2050. That is unsustainable. It is slowly beginning to dawn on us that Global Warming is the result of increasing human CO2 emissions, and the more people there are in the world, the worse it will become. Ultimately, it is the sky that will prove to be the limit to our numbers. The developed countries of the world are the most affluent, and also the most effluent, so we must lead by example and contain our own population growth and per capita emissions. We also have a big debt to repay to former colonial territories in Africa, Asia and South America, who desperately need our help to contain their excessive rates of population growth. Belgian and Dutch obstetricians and gynaecologists can play a critical role in this endeavour. After all, we already have a pill that will stop global warming – the oral contraceptive pill. PMID:25478068

  9. Global Warming, Elevational Range Shifts, and Lowland Biotic Attrition in the Wet Tropics

    National Research Council Canada - National Science Library

    Robert K. Colwell; Gunnar Brehm; Catherine L. Cardelús; Alex C. Gilman; John T. Longino

    2008-01-01

    .... Based on new data for plants and insects on an elevational transect in Costa Rica, we assess the potential for lowland biotic attrition, range-shift gaps, and mountaintop extinctions under projected warming...

  10. Forced-air warming: a source of airborne contamination in the operating room?

    National Research Council Canada - National Science Library

    Albrecht, Mark; Gauthier, Robert; Leaper, David

    2009-01-01

    Forced-air-warming (FAW) is an effective and widely used means for maintaining surgical normothermia, but FAW also has the potential to generate and mobilize airborne contamination in the operating...

  11. Preliminary Analysis of Effects of Reduced Discharge onThermal Habitat of Pedersen Warm Springs Channel

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A preliminary report to study the potential impacts of possible flow reductions in thermal spring systems located in the Warm Springs area of Moapa Valley NWR on the...

  12. Nonlinear climate sensitivity and its implications for future greenhouse warming

    Science.gov (United States)

    Friedrich, Tobias; Timmermann, Axel; Tigchelaar, Michelle; Elison Timm, Oliver; Ganopolski, Andrey

    2016-01-01

    Global mean surface temperatures are rising in response to anthropogenic greenhouse gas emissions. The magnitude of this warming at equilibrium for a given radiative forcing—referred to as specific equilibrium climate sensitivity (S)—is still subject to uncertainties. We estimate global mean temperature variations and S using a 784,000-year-long field reconstruction of sea surface temperatures and a transient paleoclimate model simulation. Our results reveal that S is strongly dependent on the climate background state, with significantly larger values attained during warm phases. Using the Representative Concentration Pathway 8.5 for future greenhouse radiative forcing, we find that the range of paleo-based estimates of Earth’s future warming by 2100 CE overlaps with the upper range of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Furthermore, we find that within the 21st century, global mean temperatures will very likely exceed maximum levels reconstructed for the last 784,000 years. On the basis of temperature data from eight glacial cycles, our results provide an independent validation of the magnitude of current CMIP5 warming projections. PMID:28861462

  13. Analyzing the Potential for High-speed Rail as Part of the Multimodal Transportation System in the United States' Midwest Corridor

    Directory of Open Access Journals (Sweden)

    Jeffrey C. Peters

    2014-06-01

    Full Text Available With increasing demand and rising fuel costs, both travel time and cost of current intercity passenger transportation modes are becoming increasingly relevant. Around the world, highspeed rail (HSR is seen as a way to alleviate demand on highways and at airports. Ridership is the critical element in determining the viability of a large capital, long-term transportation investment. This paper provides a systematic, consistent methodology for analyzing systemwide modal ridership with and without a proposed HSR network and analyzes the potential for highspeed rail as part of the existing multimodal transportation system in a region in terms of ridership. Considerations of capital investment (e.g., network design and HSR speed, along with exogenous demographic, technological, economic, and policy trends in the long-term, are used to project ridership over time. This study represents an important step toward a consistent, comprehensive economic analysis of HSR in the United States.

  14. The isovector/isoscalar ratio for the imaginary part of the medium-energy nucleon optical model potential studied by the quantum molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Satoshi; Niita, Koji; Fukahori, Tokio; Maruyama, Tomoyuki; Maruyama, Toshiki; Iwamoto, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-05-01

    Energy dependence of the ratio of the isovector and isoscalar strengths in the imaginary part of the nucleon optical model potential at the medium energy range was extracted from an analysis of proton and neutron induced total reaction cross sections on {sup 11}Li with a theoretical framework called quantum molecular dynamics (QMD). The isovector/isoscalar ratio was found to be about 0.8 at 100 MeV, and decreased almost linearly in log(E) to 0 at several hundred MeV. This result was consistent with an estimate at lower energy, and was also in good accord with the values used by Kozack and Madland for the analysis of nucleon + {sup 208}Pb reactions. (author)

  15. Collection, transfer and transport of waste: accounting of greenhouse gases and global warming contribution

    DEFF Research Database (Denmark)

    Eisted, Rasmus; Larsen, Anna Warberg; Christensen, Thomas Højlund

    2009-01-01

    The collection, transfer and transport of waste are basic activities of waste management systems all over the world. These activities all use energy and fuels, primarily of fossil origin. Electricity and fuel consumptions of the individual processes were reviewed and greenhouse gases (GHG......) emissions were quantified. The emission factors were assigned a global warming potential (GWP) and aggregated into global warming factors (GWFs), which express the potential contribution to global warming from collection, transport and transfer of 1 tonne of wet waste. Six examples involving collection...

  16. Local potential evolutions during proton exchange membrane fuel cell operation with dead-ended anode - Part II: Aging mitigation strategies based on water management and nitrogen crossover

    Science.gov (United States)

    Abbou, S.; Dillet, J.; Maranzana, G.; Didierjean, S.; Lottin, O.

    2017-02-01

    Proton exchange membrane (PEM) fuel cells operate with dead-ended anode in order to reduce system cost and complexity when compared with hydrogen re-circulation systems. In the first part of this work, we showed that localized fuel starvation events may occur, because of water and nitrogen accumulation in the anode side, which could be particularly damaging to the cell performance. To prevent these degradations, the anode compartment must be purged which may lead to an overall system efficiency decrease because of significant hydrogen waste. In the second part, we present several purge strategies in order to minimize both hydrogen waste and membrane-electrode assembly degradations during dead-ended anode operation. A linear segmented cell with reference electrodes was used to monitor simultaneously the current density distribution along the gas channel and the time evolution of local anode and cathode potentials. To asses MEA damages, Platinum ElectroChemical Surface Area (ECSA) and cell performance were periodically measured. The results showed that dead-end mode operation with an anode plate maintained at a temperature 5 °C hotter than the cathode plate limits water accumulation in the anode side, reducing significantly purge frequency (and thus hydrogen losses) as well as MEA damages. As nitrogen contribution to hydrogen starvation is predominant in this thermal configuration, we also tested a microleakage solution to discharge continuously most the nitrogen accumulating in the anode side while ensuring low hydrogen losses and minimum ECSA losses provided the right microleakage flow rate is chosen.

  17. Climate warming and precipitation redistribution modify tree-grass interactions and tree species establishment in a warm-temperate savanna.

    Science.gov (United States)

    Volder, Astrid; Briske, David D; Tjoelker, Mark G

    2013-03-01

    Savanna tree-grass interactions may be particularly sensitive to climate change. Establishment of two tree canopy dominants, post oak (Quercus stellata) and eastern redcedar (Juniperus virginiana), grown with the dominant C4 perennial grass (Schizachyrium scoparium) in southern oak savanna of the United States were evaluated under four climatic scenarios for 6 years. Tree-grass interactions were examined with and without warming (+1.5 °C) in combination with a long-term mean rainfall treatment and a modified rainfall regime that redistributed 40% of summer rainfall to spring and fall, intensifying summer drought. The aim was to determine: (1) the relative growth response of these species, (2) potential shifts in the balance of tree-grass interactions, and (3) the trajectory of juniper encroachment into savannas, under these anticipated climatic conditions. Precipitation redistribution reduced relative growth rate (RGR) of trees grown with grass. Warming increased growth of J. virginiana and strongly reduced Q. stellata survival. Tiller numbers of S. scoparium plants were unaffected by warming, but the number of reproductive tillers was increasingly suppressed by intensified drought each year. Growth rates of J. virginiana and Q. stellata were suppressed by grass presence early, but in subsequent years were higher when grown with grass. Quercus stellata had overall reduced RGR, but enhanced survival when grown with grass, while survival of J. virginiana remained near 100% in all treatments. Once trees surpassed a threshold height of 1.1 m, both tiller number and survival of S. scoparium plants were drastically reduced by the presence of J. virginiana, but not Q. stellata. Juniperus virginiana was the only savanna dominant in which neither survival nor final aboveground mass were adversely affected by the climate scenario of warming and intensified summer drought. These responses indicate that climate warming and altered precipitation patterns will further

  18. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    Science.gov (United States)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-20

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  19. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    Science.gov (United States)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-07

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  20. GLOBAL WARMING BETWEEN SCIENCE AND POLITICS

    Directory of Open Access Journals (Sweden)

    Eugen Străuțiu

    2015-03-01

    Full Text Available During the last three decades, the scientific theory of global warming has become a political ideology. Significant political components are found both in the premises and (especially in the consequences. But witnessed also at least a decade of negationism: global warming research programs are questionable regarding methodology and the ethics of research. Face to all contestations, “Global warming theory” has already become “Global climate change theory”. It is true that global warming ideology preparing a global governing over a strictly limited number of people?

  1. Competitive advantage on a warming planet.

    Science.gov (United States)

    Lash, Jonathan; Wellington, Fred

    2007-03-01

    Whether you're in a traditional smokestack industry or a "clean" business like investment banking, your company will increasingly feel the effects of climate change. Even people skeptical about global warming's dangers are recognizing that, simply because so many others are concerned, the phenomenon has wide-ranging implications. Investors already are discounting share prices of companies poorly positioned to compete in a warming world. Many businesses face higher raw material and energy costs as more and more governments enact policies placing a cost on emissions. Consumers are taking into account a company's environmental record when making purchasing decisions. There's also a burgeoning market in greenhouse gas emission allowances (the carbon market), with annual trading in these assets valued at tens of billions of dollars. Companies that manage and mitigate their exposure to the risks associated with climate change while seeking new opportunities for profit will generate a competitive advantage over rivals in a carbon-constrained future. This article offers a systematic approach to mapping and responding to climate change risks. According to Jonathan Lash and Fred Wellington of the World Resources Institute, an environmental think tank, the risks can be divided into six categories: regulatory (policies such as new emissions standards), products and technology (the development and marketing of climate-friendly products and services), litigation (lawsuits alleging environmental harm), reputational (how a company's environmental policies affect its brand), supply chain (potentially higher raw material and energy costs), and physical (such as an increase in the incidence of hurricanes). The authors propose a four-step process for responding to climate change risk: Quantify your company's carbon footprint; identify the risks and opportunities you face; adapt your business in response; and do it better than your competitors.

  2. Geological investigation of shaft mine in Devonian limestone in Kansas City, Missouri and other potentially dry excavated subsurface space in part of the Forest City Basin

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, E.D.

    1977-10-01

    A high quality limestone is currently being mined from a deep shaft mine (1072 feet) in Middle Devonian rocks (Callaway) within the city limits of Kansas City, Missouri. About 15 acres of essentially dry space (room and pillar) with up to 14-foot ceilings have been developed. There are few natural joints observable in the rock within the mine. Some of these are periodically damp. More than 80% of the mine is dry. Saltwater from aquifers (Pennsylvanian) cut by the shaft accumulates behind the shaft at the pump station at 850 feet and at the bottom of the shaft (Devonian-Ordovician rocks). As long as the pumps lift the water to the surface, the mine can be kept relatively dry. Grouting of the aquifer's rocks in the shaft may seal off that source of water. The Burlington limestone of the Mississippian System is potentially mineable on the property now developed. The Burlington limestone, the Middle Devonian limestone, and the Kimmswick (Middle Ordovician) limestone are all potentially mineable by shaft mining in the northern part of Greater Kansas City and northward into the Forest City Basin.

  3. Potential radionuclide emissions from stacks on the Hanford Site, Part 2: Dose assessment methodology using portable low-resolution gamma spectroscoy

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J.M.

    1994-07-01

    In September 1992, the Westinghouse Hanford Company began developing an in situ measurement method to assess gamma radiation emanating from high-efficiency particulate air filters using portable low-resolution gamma spectroscopy. The purpose of the new method was to assess radioactive exhaust stack air emissions from empirical data rather than from theoretical models and to determine the potential unabated dose to an offsite theoretical maximally exposed individual. In accordance with Title 40, Code of Federal Regulations, Part 61, Subpart H, ``National Emission Standards for Hazardous Air Pollutants``, stacks that have the potential to emit {ge} 0.1 mrem per year to the maximally exposed individual are considered ``major`` and must meet the continuous monitoring requirements. After the method was tested and verified, the US Environmental Protection Agency, Region 10, approved its use in June 1993. Of the 125 stacks operated by the Westinghouse Hanford Company, 22 were targeted for evaluation by this method; and 15 were assessed. The most significant,result from this study was the redesignation. of the T Plant main stack. The stack was assessed as being ``minor``, and it now only requires periodic confirmatory measurements and meets federally imposed sampling requirements.

  4. Hierarchical Bridging Between Ab Initio and Atomistic Level Computations: Sensitivity and Uncertainty Analysis for the Modified Embedded-Atom Method (MEAM) Potential (Part B)

    Science.gov (United States)

    Hughes, J. M.; Horstemeyer, M. F.; Carino, R.; Sukhija, N.; Lawrimore, W. B.; Kim, S.; Baskes, M. I.

    2015-01-01

    In this paper, a sensitivity and general uncertainty analysis is performed related to the modified embedded-atom method (MEAM) potential calibration of pure aluminum for data garnered from lower length scale (ab initio) simulations. Input uncertainties were quantified from 95% normal distribution confidence intervals of the various calibrated MEAM potential parameters from Part A of this study. A perturbation method was used to quantify the MEAM sensitivities to input parameters. The input uncertainties and sensitivities were then combined in a general uncertainty propagation analysis method. The results of the sensitivity analysis show that all the MEAM parameters interdependently influence all MEAM model outputs to varying degrees, allowing for the definition of an ordered calibration procedure to target specific MEAM outputs. In relation to the generalized stacking fault energy (GSFE) curve, the coefficient of the embedding function related to the background electron density, asub, was the most influential parameter related to the first peak. The first peak of the GSFE curve is related to unstable dislocations, in effect dislocation nucleation, and the first trough is related to stable dislocations. This connection of tying asub to the dislocation nucleation and motion was not obvious before this study indicating the power of the sensitivity and uncertainty method that was employed.

  5. Automobility: Global Warming as Symptomatology

    Directory of Open Access Journals (Sweden)

    Gary Backhaus

    2009-04-01

    Full Text Available The argument of this paper is that sustainability requires a new worldview-paradigm. It critically evaluates Gore’s liberal-based environmentalism in order to show how “shallow ecologies” are called into question by deeper ecologies. This analysis leads to the notion that global warming is better understood as a symptom indicative of the worldview that is the source for environmental crises. Heidegger’s ontological hermeneutics and its critique of modern technology show that the modern worldview involves an enframing (a totalizing technological ordering of the natural. Enframing reveals entities as standing reserve (on demand energy suppliers. My thesis maintains that enframing is geographically expressed as automobility. Because of the energy needs used to maintain automobility, reaching the goal of sustainability requires rethinking the spatial organization of life as a function of stored energy technologies.

  6. Warm liquid calorimetry for LHC

    CERN Document Server

    Geulig,E; Wallraff,W; Bézaguet, Alain-Arthur; Cavanna, F; Cinnini, P; Cittolin, Sergio; Dreesen, P; Demoulin, M; Dunps, L; Fucci, A; Gallay, G; Givernaud, Alain; Gonidec, A; Jank, Werner; Maurin, Guy; Placci, Alfredo; Porte, J P; Radermacher, E; Samyn, D; Schinzel, D; Schmidt, W F; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    Results from the beam tests of the U/TMP "warm liquid" calorimeter show that such a technique is very promising for the LHC. Our aim is to extend this programme and design a calorimeter that can satisfy the requirements of high rates, high radiation levels, compensation, uniformity and granularity, as well as fully contain hadronic showers. We propose to construct liquid ionization chambers operated at very high fields, capable of collecting the total charge produced by ionizing particles within times comparable to the bunch crossing time of the future Collider. For this reason we plan to extend the current programme on tetramethylpentane (TMP) to tetramethylsilane (TMSi). An electromagnetic calorimeter consisting of very high field ionization chambers filled with TMSi as sensitive medium with Uranium and/or other high density material as absorber will first be built (to be followed by a full-scale calorimeter module), on which newly designed fast amplifiers and readout electronics will be tested. In addition...

  7. DPIS for warm dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, K.; Kanesue, T.; Horioka, K.; Okamura, M.

    2010-05-23

    Warm Dense Matter (WDM) offers an challenging problem because WDM, which is beyond ideal plasma, is in a low temperature and high density state with partially degenerate electrons and coupled ions. WDM is a common state of matter in astrophysical objects such as cores of giant planets and white dwarfs. The WDM studies require large energy deposition into a small target volume in a shorter time than the hydrodynamical time and need uniformity across the full thickness of the target. Since moderate energy ion beams ({approx} 0.3 MeV/u) can be useful tool for WDM physics, we propose WDM generation using Direct Plasma Injection Scheme (DPIS). In the DPIS, laser ion source is connected to the Radio Frequency Quadrupole (RFQ) linear accelerator directly without the beam transport line. DPIS with a realistic final focus and a linear accelerator can produce WDM.

  8. Assessment of effectiveness of sports massage in supporting of warm-up

    OpenAIRE

    Boguszewski Dariusz; Kowalska Sylwia; Adamczyk Jakub Grzegorz; Białoszewski Dariusz

    2014-01-01

    Purpose: Warm-up is necessary part of sports training, because prepare the body for exercises and minimize the risk of injury. The aim of this study was assess the effectiveness of two types of warm-up: aerobic exercises and exercises with sports massage (before). Material and Methods: The research covered 59 women. All of them did fitness tests two times. Each test was preceded by a different form of warm-up (aerobic exercises, exercises with massage). For examined the differences t-Student ...

  9. Apocalypse soon? Dire messages reduce belief in global warming by contradicting just-world beliefs.

    Science.gov (United States)

    Feinberg, Matthew; Willer, Robb

    2011-01-01

    Though scientific evidence for the existence of global warming continues to mount, in the United States and other countries belief in global warming has stagnated or even decreased in recent years. One possible explanation for this pattern is that information about the potentially dire consequences of global warming threatens deeply held beliefs that the world is just, orderly, and stable. Individuals overcome this threat by denying or discounting the existence of global warming, and this process ultimately results in decreased willingness to counteract climate change. Two experiments provide support for this explanation of the dynamics of belief in global warming, suggesting that less dire messaging could be more effective for promoting public understanding of climate-change research.

  10. More losers than winners in a century of future Southern Ocean seafloor warming

    Science.gov (United States)

    Griffiths, Huw J.; Meijers, Andrew J. S.; Bracegirdle, Thomas J.

    2017-10-01

    The waters of the Southern Ocean are projected to warm over the coming century, with potential adverse consequences for native cold-adapted organisms. Warming waters have caused temperate marine species to shift their ranges poleward. The seafloor animals of the Southern Ocean shelf have long been isolated by the deep ocean surrounding Antarctica and the Antarctic Circumpolar Current, with little scope for southward migration. How these largely endemic species will react to future projected warming is unknown. By considering 963 invertebrate species, we show that within the current century, warming temperatures alone are unlikely to result in wholesale extinction or invasion affecting Antarctic seafloor life. However, 79% of Antarctica's endemic species do face a significant reduction in suitable temperature habitat (an average 12% reduction). Our findings highlight the species and regions most likely to respond significantly (negatively and positively) to warming and have important implications for future management of the region.

  11. UV and infrared absorption spectra, atmospheric lifetimes, and ozone depletion and global warming potentials for CCl2FCCl2F (CFC-112, CCl3CClF2 (CFC-112a, CCl3CF3 (CFC-113a, and CCl2FCF3 (CFC-114a

    Directory of Open Access Journals (Sweden)

    M. E. Davis

    2016-07-01

    Full Text Available The potential impact of CCl2FCF3 (CFC-114a and the recently observed CCl2FCCl2F (CFC-112, CCl3CClF2 (CFC-112a, and CCl3CF3 (CFC-113a chlorofluorocarbons (CFCs on stratospheric ozone and climate is presently not well characterized. In this study, the UV absorption spectra of these CFCs were measured between 192.5 and 235 nm over the temperature range 207–323 K. Precise parameterizations of the UV absorption spectra are presented. A 2-D atmospheric model was used to evaluate the CFC atmospheric loss processes, lifetimes, ozone depletion potentials (ODPs, and the associated uncertainty ranges in these metrics due to the kinetic and photochemical uncertainty. The CFCs are primarily removed in the stratosphere by short-wavelength UV photolysis with calculated global annually averaged steady-state lifetimes (years of 63.6 (61.9–64.7, 51.5 (50.0–52.6, 55.4 (54.3–56.3, and 105.3 (102.9–107.4 for CFC-112, CFC-112a, CFC-113a, and CFC-114a, respectively. The range of lifetimes given in parentheses is due to the 2σ uncertainty in the UV absorption spectra and O(1D rate coefficients included in the model calculations. The 2-D model was also used to calculate the CFC ozone depletion potentials (ODPs with values of 0.98, 0.86, 0.73, and 0.72 obtained for CFC-112, CFC-112a, CFC-113a, and CFC-114a, respectively. Using the infrared absorption spectra and lifetimes determined in this work, the CFC global warming potentials (GWPs were estimated to be 4260 (CFC-112, 3330 (CFC-112a, 3650 (CFC-113a, and 6510 (CFC-114a for the 100-year time horizon.

  12. UV and infrared absorption spectra, atmospheric lifetimes, and ozone depletion and global warming potentials for CCl2FCCl2F (CFC-112), CCl3CClF2 (CFC-112a), CCl3CF3 (CFC-113a), and CCl2FCF3 (CFC-114a)

    Science.gov (United States)

    Davis, Maxine E.; Bernard, François; McGillen, Max R.; Fleming, Eric L.; Burkholder, James B.

    2016-07-01

    The potential impact of CCl2FCF3 (CFC-114a) and the recently observed CCl2FCCl2F (CFC-112), CCl3CClF2 (CFC-112a), and CCl3CF3 (CFC-113a) chlorofluorocarbons (CFCs) on stratospheric ozone and climate is presently not well characterized. In this study, the UV absorption spectra of these CFCs were measured between 192.5 and 235 nm over the temperature range 207-323 K. Precise parameterizations of the UV absorption spectra are presented. A 2-D atmospheric model was used to evaluate the CFC atmospheric loss processes, lifetimes, ozone depletion potentials (ODPs), and the associated uncertainty ranges in these metrics due to the kinetic and photochemical uncertainty. The CFCs are primarily removed in the stratosphere by short-wavelength UV photolysis with calculated global annually averaged steady-state lifetimes (years) of 63.6 (61.9-64.7), 51.5 (50.0-52.6), 55.4 (54.3-56.3), and 105.3 (102.9-107.4) for CFC-112, CFC-112a, CFC-113a, and CFC-114a, respectively. The range of lifetimes given in parentheses is due to the 2σ uncertainty in the UV absorption spectra and O(1D) rate coefficients included in the model calculations. The 2-D model was also used to calculate the CFC ozone depletion potentials (ODPs) with values of 0.98, 0.86, 0.73, and 0.72 obtained for CFC-112, CFC-112a, CFC-113a, and CFC-114a, respectively. Using the infrared absorption spectra and lifetimes determined in this work, the CFC global warming potentials (GWPs) were estimated to be 4260 (CFC-112), 3330 (CFC-112a), 3650 (CFC-113a), and 6510 (CFC-114a) for the 100-year time horizon.

  13. Antioxidant Activity and Inhibitory Potential of Cistus salviifolius (L. and Cistus monspeliensis (L. Aerial Parts Extracts against Key Enzymes Linked to Hyperglycemia

    Directory of Open Access Journals (Sweden)

    Karima Sayah

    2017-01-01

    Full Text Available Cistus genus (Cistaceae comprises several medicinal plants used in traditional medicines to treat several pathological conditions including hyperglycemia. These include Cistus salviifolius L. (CS and Cistus monspeliensis L. (CM, still not fully explored as a source of metabolites with therapeutic potential for human diseases. In this study, the antioxidant α-amylase and α-glucosidase enzyme inhibitory effects of aqueous and hydromethanolic extracts from the aerial parts of Moroccan CS and CM were investigated. Antioxidant activity has been assessed using 1,1-diphenyl-2-picrylhydrazyl (DPPH and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS radicals and ferric reducing/antioxidant power (FRAP methods. The α-amylase and α-glucosidase inhibitory activity has been assessed using an in vitro model. Moreover, mineral and phenolic contents of CS and CM were analyzed. The extracts of both species exhibited potent antioxidant activity in all used systems and possess strong inhibitory effect towards α-glucosidase (IC50: 0.95±0.14 to 14.58±1.26 μg/mL and significant inhibitory potential against α-amylase (IC50: 217.10±0.15 to 886.10±0.10 μg/mL. Furthermore, the result showed high levels of phenolic content and unexpectedly some higher levels of mineral content in CS. The results suggest that the phenolic rich extracts of CS and CM may have a therapeutic potential against diseases associated with oxidative stress and may be useful in the management of hyperglycemia in diabetic patients.

  14. Antioxidant Activity and Inhibitory Potential ofCistus salviifolius(L.) andCistus monspeliensis(L.) Aerial Parts Extracts against Key Enzymes Linked to Hyperglycemia.

    Science.gov (United States)

    Sayah, Karima; Marmouzi, Ilias; Naceiri Mrabti, Hanae; Cherrah, Yahia; Faouzi, My El Abbes

    2017-01-01

    Cistus genus (Cistaceae) comprises several medicinal plants used in traditional medicines to treat several pathological conditions including hyperglycemia. These include Cistus salviifolius L. (CS) and Cistus monspeliensis L. (CM), still not fully explored as a source of metabolites with therapeutic potential for human diseases. In this study, the antioxidant α -amylase and α -glucosidase enzyme inhibitory effects of aqueous and hydromethanolic extracts from the aerial parts of Moroccan CS and CM were investigated. Antioxidant activity has been assessed using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radicals and ferric reducing/antioxidant power (FRAP) methods. The α -amylase and α -glucosidase inhibitory activity has been assessed using an in vitro model. Moreover, mineral and phenolic contents of CS and CM were analyzed. The extracts of both species exhibited potent antioxidant activity in all used systems and possess strong inhibitory effect towards α -glucosidase (IC 50 : 0.95 ± 0.14 to 14.58 ± 1.26  μ g/mL) and significant inhibitory potential against α -amylase (IC 50 : 217.10 ± 0.15 to 886.10 ± 0.10  μ g/mL). Furthermore, the result showed high levels of phenolic content and unexpectedly some higher levels of mineral content in CS. The results suggest that the phenolic rich extracts of CS and CM may have a therapeutic potential against diseases associated with oxidative stress and may be useful in the management of hyperglycemia in diabetic patients.

  15. Warming can boost denitrification disproportionately due to altered oxygen dynamics.

    Directory of Open Access Journals (Sweden)

    Annelies J Veraart

    Full Text Available BACKGROUND: Global warming and the alteration of the global nitrogen cycle are major anthropogenic threats to the environment. Denitrification, the biological conversion of nitrate to gaseous nitrogen, removes a substantial fraction of the nitrogen from aquatic ecosystems, and can therefore help to reduce eutrophication effects. However, potential responses of denitrification to warming are poorly understood. Although several studies have reported increased denitrification rates with rising temperature, the impact of temperature on denitrification seems to vary widely between systems. METHODOLOGY/PRINCIPAL FINDINGS: We explored the effects of warming on denitrification rates using microcosm experiments, field measurements and a simple model approach. Our results suggest that a three degree temperature rise will double denitrification rates. By performing experiments at fixed oxygen concentrations as well as with oxygen concentrations varying freely with temperature, we demonstrate that this strong temperature dependence of denitrification can be explained by a systematic decrease of oxygen concentrations with rising temperature. Warming decreases oxygen concentrations due to reduced solubility, and more importantly, because respiration rates rise more steeply with temperature than photosynthesis. CONCLUSIONS/SIGNIFICANCE: Our results show that denitrification rates in aquatic ecosystems are strongly temperature dependent, and that this is amplified by the temperature dependencies of photosynthesis and respiration. Our results illustrate the broader phenomenon that coupling of temperature dependent reactions may in some situations strongly alter overall effects of temperature on ecological processes.

  16. Hardy exotics species in temperate zone: can "warm water" crayfish invaders establish regardless of low temperatures?

    Science.gov (United States)

    Veselý, Lukáš; Buřič, Miloš; Kouba, Antonín

    2015-11-17

    The spreading of new crayfish species poses a serious risk for freshwater ecosystems; because they are omnivores they influence more than one level in the trophic chain and they represent a significant part of the benthic biomass. Both the environmental change through global warming and the expansion of the pet trade increase the possibilities of their spreading. We investigated the potential of four "warm water" highly invasive crayfish species to overwinter in the temperate zone, so as to predict whether these species pose a risk for European freshwaters. We used 15 specimens of each of the following species: the red swamp crayfish (Procambarus clarkii), the marbled crayfish (Procambarus fallax f. virginalis), the yabby (Cherax destructor), and the redclaw (Cherax quadricarinatus). Specimens were acclimatized and kept for 6.5 months at temperatures simulating the winter temperature regime of European temperate zone lentic ecosystems. We conclude that the red swamp crayfish, marbled crayfish and yabby have the ability to withstand low winter temperatures relevant for lentic habitats in the European temperate zone, making them a serious invasive threat to freshwater ecosystems.

  17. Efficient Warm-ups: Creating a Warm-up That Works.

    Science.gov (United States)

    Lauffenburger, Sandra Kay

    1992-01-01

    Proper warm-up is important for any activity, but designing an effective warm-up can be time consuming. An alternative approach is to take a cue from Laban Movement Analysis (LMA) and consider movement design from the perspective of space and planes of motion. Efficient warm-up exercises using LMA are described. (SM)

  18. The effects of experimental warming on the timing of a plant-insect herbivore interaction.

    Science.gov (United States)

    Kharouba, Heather M; Vellend, Mark; Sarfraz, Rana M; Myers, Judith H

    2015-05-01

    The phenology of many species is shifting in response to climatic changes, and these shifts are occurring at varying rates across species. This can potentially affect species' interactions and individual fitness. However, few studies have experimentally tested the influence of warming on the timing of species interactions. This is an important gap in the literature given the potential for different direct and indirect effects of temperature via phenological change. Our aim was to test the effects of warming on the western tent caterpillar (Malacosoma californicum pluviale). In addition to the direct effects of warming, we considered the two primary indirect effects mediated by warming-driven changes in its host plant, red alder (Alnus rubra): changes in resource availability due to phenological mismatch (i.e. changes in the relative timing of the interaction), and changes in resource quality associated with leaf maturation. We experimentally warmed egg masses and larvae of the western tent caterpillar placed on branches of red alder in the field. Warming advanced the timing of larval but not leaf emergence. This led to varying degrees of phenological mismatch, with larvae emerging as much as 25 days before to 10 days after the emergence of leaves. Even the earliest-emerging larvae, however, had high survival in the absence of leaves for up to 3 weeks, and they were surprisingly resistant to starvation. In addition, although warming created phenological mismatch that initially slowed the development of larvae that emerged before leaf emergence, it accelerated larval development once leaves were available. Therefore, warming had no net effect on our measures of insect performance. Our results demonstrate that the indirect effects of warming, in creating phenological mismatch, are as important to consider as the direct effects on insect performance. Although future climatic warming might influence plants and insects in different ways, some insects may be well adapted

  19. New device for the vitrification and in-straw warming of in vitro produced bovine embryos.

    Science.gov (United States)

    Morató, Roser; Mogas, Teresa

    2014-04-01

    Two experiments were designed to test the use of a new device designed to vitrify and in-straw warm in vitro produced (IVP) embryos, which can potentially be used for their direct transfer to recipient females in field conditions. In experiment 1, IVP embryos from both prepubertal and adult animals were vitrified on cryotops and warmed in steps (1, 0.5 and 0M sucrose; protocol W3) or directly in 0.5M (protocol W1/0.5) or 0M sucrose (protocol W1/0). Similar survival rates were recorded 24h after warming for calf embryos irrespective of the warming procedure (W3: 79.2%, W1/0.5: 62.5%, W1/0: 66.7%). For cow embryos, survival rates at 24h post-warming were significantly higher when embryos were warmed using the W3 (85.7%) or W1/0.5 (89.1%) protocols compared to the W1/0 protocol (70.5%). In experiment 2, IVP embryos were vitrified on the new designed device followed by their in-straw cryoprotectant (0.5M sucrose) dilution/warming and different warming temperatures (45, 50, 60 and 70°C) were tested. When warming solution passed through the new vitrification/warming device at 45°C, 61.5% of blastocysts were fully re-expanded or hatched at 24h post-warming, being not significantly different to the control (65%). Other warming temperatures triggered significantly lower survival rates at 24h post-warming. No significant differences were detected in total cell numbers and blastocyst apoptosis indices in response to vitrification followed by warming at 45°C respect to the control. Our findings indicate that the new device allows vitrification and in-straw warming of IVP bovine embryos, being a useful option for their direct transfer in field conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Effects of soil warming and nitrogen addition on soil respiration in a New Zealand tussock grassland.

    Science.gov (United States)

    Graham, Scott L; Hunt, John E; Millard, Peter; McSeveny, Tony; Tylianakis, Jason M; Whitehead, David

    2014-01-01

    Soil respiration (RS) represents a large terrestrial source of CO2 to the atmosphere. Global change drivers such as climate warming and nitrogen deposition are expected to alter the terrestrial carbon cycle with likely consequences for RS and its components, autotrophic (RA) and heterotrophic respiration (RH). Here we investigate the impacts of a 3°C soil warming treatment and a 50 kg ha(-1) y(-1) nitrogen addition treatment on RS, RH and their respective seasonal temperature responses in an experimental tussock grassland. Average respiration in untreated soils was 0.96±0.09 μmol m(-2) s(-1) over the course of the experiment. Soil warming and nitrogen addition increased RS by 41% and 12% respectively. These treatment effects were additive under combined warming and nitrogen addition. Warming increased RH by 37% while nitrogen addition had no effect. Warming and nitrogen addition affected the seasonal temperature response of RS by increasing the basal rate of respiration (R10) by 14% and 20% respectively. There was no significant interaction between treatments for R10. The treatments had no impact on activation energy (E0). The seasonal temperature response of RH was not affected by either warming or nitrogen addition. These results suggest that the additional CO2 emissions from New Zealand tussock grassland soils as a result of warming-enhanced RS constitute a potential positive feedback to rising atmospheric CO2 concentration.

  1. Long-term warming alters richness and composition of taxonomic and functional groups of arctic fungi.

    Science.gov (United States)

    Geml, József; Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik

    2015-08-01

    Fungi, including symbionts, pathogens and decomposers, play crucial roles in community dynamics and nutrient cycling in terrestrial ecosystems. Despite their ecological importance, the response of most arctic fungi to climate warming is unknown, so are their potential roles in driving the observed and predicted changes in tundra communities. We carried out deep DNA sequencing of soil samples to study the long-term effects of experimental warming on fungal communities in dry heath and moist tussock tundra in Arctic Alaska. The data presented here indicate that fungal community composition responds strongly to warming in the moist tundra, but not in the dry tundra. While total fungal richness was not significantly affected by warming, there were clear correlations among operational taxonomic unit richness of various ecological and taxonomic groups and long-term warming. Richness of ectomycorrhizal, ericoid mycorrhizal and lichenized fungi generally decreased with warming, while richness of saprotrophic, plant and animal pathogenic, and root endophytic fungi tended to increase in the warmed plots. More importantly, various taxa within these functional guilds followed opposing trends that highlight the importance of species-specific responses to warming. We recommend that species-level ecological differences be taken into account in climate change and nutrient cycling studies that involve arctic fungi. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Characterizing changes in soil bacterial community structure in response to short-term warming

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Jinbo [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; School of Marine Sciences, Ningbo University, Ningbo China; Sun, Huaibo [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; Peng, Fei [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou China; Zhang, Huayong [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; Xue, Xian [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou China; Gibbons, Sean M. [Argonne National Laboratory Biosciences Division, Argonne IL USA; Graduate Program in Biophysical Sciences, University of Chicago, Chicago IL USA; Gilbert, Jack A. [Argonne National Laboratory Biosciences Division, Argonne IL USA; Department of Ecology and Evolution, University of Chicago, Chicago IL USA; Chu, Haiyan [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China

    2014-02-18

    High altitude alpine meadows are experiencing considerably greater than average increases in soil surface temperature, potentially as a result of ongoing climate change. The effects of warming on plant productivity and soil edaphic variables have been established previously, but the influence of warming on soil microbial community structure has not been well characterized. Here, the impact of 15 months of soil warming (both + 1 and + 2 degrees C) on bacterial community structure was examined in a field experiment on a Tibetan plateau alpine meadow using bar-coded pyrosequencing. Warming significantly changed (P < 0.05) the structure of the soil bacterial community, but the alpha diversity was not dramatically affected. Changes in the abundance of the Actinobacteria and Alphaproteobacteria were found to contribute the most to differences between ambient (AT) and artificially warmed conditions. A variance partitioning analysis (VPA) showed that warming directly explained 7.15% variation in bacterial community structure, while warming-induced changes in soil edaphic and plant phenotypic properties indirectly accounted for 28.3% and 20.6% of the community variance, respectively. Interestingly, certain taxa showed an inconsistent response to the two warming treatments, for example Deltaproteobacteria showed a decreased relative abundance at + 1 degrees C, but a return to AT control relative abundance at + 2 degrees C. This suggests complex microbial dynamics that could result from conditional dependencies between bacterial taxa.

  3. Springback of aluminum alloy brazing sheet in warm forming

    Science.gov (United States)

    Han, Kyu Bin; George, Ryan; Kurukuri, Srihari; Worswick, Michael J.; Winkler, Sooky

    2017-10-01

    The use of aluminum is increasing in the automotive industry due to its high strength-to-weight ratio, recyclability and corrosion resistance. However, aluminum is prone to significant springback due to its low elastic modulus coupled with its high strength. In this paper, a warm forming process is studied to improve the springback characteristics of 0.2 mm thick brazing sheet with an AA3003 core and AA4045 clad. Warm forming decreases springback by lowering the flow stress. The parts formed have complex features and geometries that are representative of automotive heat exchangers. The key objective is to utilize warm forming to control the springback to improve the part flatness which enables the use of harder temper material with improved strength. The experiments are performed by using heated dies at several different temperatures up to 350 °C and the blanks are pre-heated in the dies. The measured springback showed a reduction in curvature and improved flatness after forming at higher temperatures, particularly for the harder temper material conditions.

  4. Constraining warm inflation with CMB data

    Science.gov (United States)

    Bastero-Gil, Mar; Bhattacharya, Sukannya; Dutta, Koushik; Gangopadhyay, Mayukh Raj

    2018-02-01

    We confront the warm inflation observational predictions directly with the latest CMB data. We focus on a linear temperature (T) dissipative coefficient combined with the simplest model of inflation, a quartic chaotic potential. Although excluded in its standard cold inflation version, dissipation reduces the tensor-to-scalar ratio and brings the quartic chaotic model within the observable allowed range. We will use the CosmoMC package to derive constraints on the model parameters: the combination of coupling constants giving rise to dissipation, the effective number of relativistic degrees of freedom contributing to the thermal bath, and the quartic coupling in the inflaton potential. We do not assume a priori a power-law primordial spectrum, neither we fix the no. of e-folds at the horizon exit. The relation between the no. of e-folds and the comoving scale at horizon crossing is derived from the dynamics, depending on the parameters of the model, which allows us to obtain the k-dependent primordial power spectrum. We study the two possibilities considered in the literature for the spectrum, with the inflaton fluctuations having a thermal or a non-thermal origin, and discuss the ability of the data to constraint the model parameters.

  5. Is obesity associated with global warming?

    Science.gov (United States)

    Squalli, J

    2014-12-01

    Obesity is a national epidemic that imposes direct medical and indirect economic costs on society. Recent scholarly inquiries contend that obesity also contributes to global warming. The paper investigates the relationship between greenhouse gas emissions and obesity. Cross-sectional state-level data for the year 2010. Multiple regression analysis using least squares with bootstrapped standard errors and quantile regression. States with higher rates of obesity are associated with higher CO2 and CH4 emissions (p < 0.05) and marginally associated with higher N2O emissions (p < 0.10), net of other factors. Reverting to the obesity rates of the year 2000 across the entire United States could decrease greenhouse gas emissions by about two percent, representing more than 136 million metric tons of CO2 equivalent. Future studies should establish clear causality between obesity and emissions by using longitudinal data while controlling for other relevant factors. They should also consider identifying means to net out the potential effects of carbon sinks, conversion of CH4 to energy, cross-state diversion, disposal, and transfer of municipal solid waste, and potentially lower energy consumption from increased sedentariness. Copyright © 2014 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  6. Global Warming: Lessons from Ozone Depletion

    Science.gov (United States)

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  7. Strategies for mitigation of global warming

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2009-01-01

    The paper analyses the international negotions on climate change leading up to COP15 in Copenhagen. Supplementary policies for mitigation of global warming are proposed.......The paper analyses the international negotions on climate change leading up to COP15 in Copenhagen. Supplementary policies for mitigation of global warming are proposed....

  8. Exploring the Sociopolitical Dimensions of Global Warming

    Science.gov (United States)

    Sadler, Troy D.; Klosterman, Michelle L.

    2009-01-01

    The authors present an activity to help high school students conceptualize the sociopolitical complexity of global warming through an exploration of varied perspectives on the issue. They argue that socioscientific issues such as global warming present important contexts for learning science and that the social and political dimensions of these…

  9. Awareness And Perception of Global Warming Among ...

    African Journals Online (AJOL)

    BACKGROUND: Increase in the emission of green house gases and the attendant climatic changes have led to the phenomenon of global warming with all its catastrophic consequences. OBJECTIVE: To assess knowledge and perception of the concept of global warming among undergraduate medical students

  10. National Security Implications of Global Warming Policy

    Science.gov (United States)

    2010-03-01

    Although numerous historical examples demonstrate how actual climate change has contributed to the rise and fall of powers, global warming , in and of...become convinced that global warming is universally bad and humans are the primary cause, political leaders may develop ill-advised policies restricting

  11. Warming of Water in a Glass

    Science.gov (United States)

    Paulins, Paulis; Krauze, Armands; Ozolinsh, Maris; Muiznieks, Andris

    2016-01-01

    The article focuses on the process of water warming from 0 °C in a glass. An experiment is performed that analyzes the temperature in the top and bottom layers of water during warming. The experimental equipment is very simple and can be easily set up using devices available in schools. The temperature curves obtained from the experiment help us…

  12. Global warming: Evidence from satellite observations

    National Research Council Canada - National Science Library

    Prabhakara, C; Iacovazzi, R; Yoo, J.‐M; Dalu, G

    2000-01-01

    ...‐weighted global‐mean temperature of the atmosphere, with a peak weight near the mid troposphere, warmed at the rate of 0.13±0.05 Kdecade −1 during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite‐deduced result.

  13. Global Warming: How Much and Why?

    Science.gov (United States)

    Lanouette, William

    1990-01-01

    Summarizes the history of the study of global warming and includes a discussion of the role of gases, like carbon dioxide, methane, and chlorofluorocarbon (CFC). Discusses modern research on the global warming, including computer modelling and the super-greenhouse effect. (YP)

  14. Turkish Students' Ideas about Global Warming

    Science.gov (United States)

    Kilinc, Ahmet; Stanisstreet, Martin; Boyes, Edward

    2008-01-01

    A questionnaire was used to explore the prevalence of ideas about global warming in Year 10 (age 15-16 years) school students in Turkey. The frequencies of individual scientific ideas and misconceptions about the causes, consequences and "cures" of global warming were identified. In addition, several general findings emerged from this…

  15. Contrasting above- and belowground organic matter decomposition and carbon and nitrogen dynamics in response to warming in High Arctic tundra.

    Science.gov (United States)

    Blok, Daan; Faucherre, Samuel; Banyasz, Imre; Rinnan, Riikka; Michelsen, Anders; Elberling, Bo

    2017-12-13

    Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high-arctic tundra heath sites in NE-Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above- and belowground tundra carbon turnover, possibly governed by microbial resource availability. © 2017 John

  16. Enhanced greenhouse gas emissions from the Arctic with experimental warming

    Science.gov (United States)

    Voigt, Carolina; Lamprecht, Richard E.; Marushchak, Maija E.; Lind, Saara E.; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J.; Biasi, Christina

    2017-04-01

    Temperatures in the Arctic are projected to increase more rapidly than in lower latitudes. With temperature being a key factor for regulating biogeochemical processes in ecosystems, even a subtle temperature increase might promote the release of greenhouse gases (GHGs) to the atmosphere. Usually, carbon dioxide (CO2) and methane (CH4) are the GHGs dominating the climatic impact of tundra. However, bare, patterned ground features in the Arctic have recently been identified as hot spots for nitrous oxide (N2O). N2O is a potent greenhouse gas, which is almost 300 times more effective in its global warming potential than CO2; but studies on arctic N2O fluxes are rare. In this study we examined the impact of temperature increase on the seasonal GHG balance of all three important GHGs (CO2, CH4 and N2O) from three tundra surface types (vegetated peat soils, unvegetated peat soils, upland mineral soils) in the Russian Arctic (67˚ 03' N 62˚ 55' E), during the course of two growing seasons. We deployed open-top chambers (OTCs), inducing air and soil surface warming, thus mimicking predicted warming scenarios. We combined detailed CO2, CH4 and N2O flux studies with concentration measurements of these gases within the soil profile down to the active layer-permafrost interface, and complemented these GHG measurements with detailed soil nutrient (nitrate and ammonium) and dissolved organic carbon (DOC) measurements in the soil pore water profile. In our study, gentle air warming (˜1.0 ˚ C) increased the seasonal GHG release of all dominant surface types: the GHG budget of vegetated peat and mineral soils, which together cover more than 80 % of the land area in our study region, shifted from a sink to a source of -300 to 144 g CO2-eq m-2 and from -198 to 105 g CO2-eq m-2, respectively. While the positive warming response was governed by CO2, we provide here the first in situ evidence that warming increases arctic N2O emissions: Warming did not only enhance N2O emissions from

  17. Recent high mountain rockfalls and warm daily temperature extremes

    Science.gov (United States)

    Allen, S. K.; Huggel, C.

    2012-04-01

    temperatures in the 7 days prior to failure, (between 6 - 9°C above average), and in three of these cases, temperatures exceeded even the 99th percentile. A further 3 events occurring in this region during the longer term heatwave of 2003 similarly were also preceded by extreme daily maximum temperatures. This relationship holds for other failures analysed in the northern, and eastern regions of the central Alps. Most interestingly, the weekly temperature anomaly, and the proportion of 'extreme' days, generally decreases as the analyses are extended from 1, 2, 3 and 4 weeks out from each failure. In other words, there is a notable warming, and conditions become increasingly extreme in the lead-up to slope failure. In addition to extreme summer temperatures, our analyses points towards a possible role of unusually warm autumn and spring days influencing slope stability. A linkage between short term periods of extremely warm temperatures and rock failure may be reasonably facilitated through melt water operating within rock discontinues, processes that have recently been measured in high-mountain rock faces, and are considered to be particularly important in spring/early summer melt periods. It is not clear whether slope failures during warm autumn periods can be linked to the same processes. Rockfalls in the winter months remain rare, however, the 27 December 2011 rock avalanche at Piz Cengalo, Val Bregaglia, Switzerland (ca 2-3million m3), occurred following the warmest year on record, potentially reinforcing the role of longer term warming destabilising bedrock with permafrost at depth.

  18. Implications of climate change (global warming) for the healthcare system.

    Science.gov (United States)

    Raffa, R B; Eltoukhy, N S; Raffa, K F

    2012-10-01

    Temperature-sensitive pathogenic species and their vectors and hosts are emerging in previously colder regions as a consequence of several factors, including global warming. As a result, an increasing number of people will be exposed to pathogens against which they have not previously needed defences. We illustrate this with a specific example of recent emergence of Cryptococcus gattii infections in more temperate climates. The outbreaks in more temperate climates of the highly virulent--but usually tropically restricted--C. gattii is illustrative of an anticipated growing challenge for the healthcare system. There is a need for preparedness by healthcare professionals in anticipation and for management of such outbreaks, including other infections whose recent increased prevalence in temperate climates can be at least partly associated with global warming. (Re)emergence of temperature-sensitive pathogenic species in more temperate climates will present new challenges for healthcare systems. Preparation for outbreaks should precede their occurrence. © 2012 Blackwell Publishing Ltd.

  19. THEORETICAL AND IDEOLOGICAL ASPECTS OF THE GLOBAL WARMING DISCOURSE

    Directory of Open Access Journals (Sweden)

    Lucas Moreira Sales de Oliveira

    2016-12-01

    Full Text Available The global warming derived from human activities issue takes account today of a considerable part of individual and public attention in the political, economic, social and environmental scenario. The theoretical and ideological aspects of the environmental discourses involved are however often ignored. This paper aims to bring to light without attempting to exhaust the discussion on this subject (the ideology that involves interpretations of global climate change. To reach the objective it will be used de theoretical framework of ideology developed by Göhan Therborn (1991 applied to Six Degrees book by Mark Lynas (2009 and An inconvenient truth documentary by Al Gore (2006 analysis. Both works served as an example for the characterization of the point of view that blames human activities for global warming as ideological and how this ideology interpellates the individuals, in order to submit and qualify them.

  20. What are the implications of rapid global warming for landslide-triggered turbidity current activity?

    Science.gov (United States)

    Clare, Michael; Peter, Talling; James, Hunt

    2014-05-01

    arithmetic mean recurrence, λ, for the full records (λ=0.007 and 0.0125 Myr). This period of inactivity is coincident with a dramatic carbon isotopic excursion (i.e. warmest part of the IETM) and heavily skews statistical analyses for both records. Dramatic global warming appears to exert a strong control on inhibiting turbidity current activity; whereas the effects of sea level change are not shown to be statistically significant. Rapid global warming is often implicated as a potential landslide trigger, due to dissociation of gas hydrates in response to elevated ocean temperatures. Other studies have suggested that intense global warming may actually be attributed to the atmospheric release of gas hydrates following catastrophic failure of large parts of a continental slope. Either way, a greater intensity of landslide and resultant turbidity current activity would be expected during the IETM; however, our findings are to the contrary. We offer some explanations in relation to potential triggers. Our work suggests that previous rapid global warming at the IETM did not trigger more frequent turbidity currents. This has direct relevance to future assessments relating to landslide-triggered tsunami hazard, and breakage of subsea cables by turbidity currents.

  1. Can climate-effective land management reduce regional warming?

    Science.gov (United States)

    Hirsch, A. L.; Wilhelm, M.; Davin, E. L.; Thiery, W.; Seneviratne, S. I.

    2017-02-01

    Limiting global warming to well below 2°C is an imminent challenge for humanity. However, even if this global target can be met, some regions are still likely to experience substantial warming relative to others. Using idealized global climate simulations, we examine the potential of land management options in affecting regional climate, with a focus on crop albedo enhancement and irrigation (climate-effective land management). The implementation is performed over all crop regions globally to provide an upper bound. We find that the implementation of both crop albedo enhancement and irrigation can reduce hot temperature extremes by more than 2°C in North America, Eurasia, and India over the 21st century relative to a scenario without management application. The efficacy of crop albedo enhancement scales with the magnitude, where a cooling response exceeding 0.5°C for hot temperature extremes was achieved with a large (i.e., ≥0.08) change in crop albedo. Regional differences were attributed to the surface energy balance response with temperature changes mostly explained by latent heat flux changes for irrigation and net shortwave radiation changes for crop albedo enhancement. However, limitations do exist, where we identify warming over the winter months when climate-effective land management is temporarily suspended. This was associated with persistent cloud cover that enhances longwave warming. It cannot be confirmed if the magnitude of this feedback is reproducible in other climate models. Our results overall demonstrate that regional warming of hot extremes in our climate model can be partially mitigated when using an idealized treatment of climate-effective land management.

  2. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 1. Chemical aspects and biological sources of oxidative stress in the brain.

    Science.gov (United States)

    Moniczewski, Andrzej; Gawlik, Maciej; Smaga, Irena; Niedzielska, Ewa; Krzek, Jan; Przegaliński, Edmund; Pera, Joanna; Filip, Małgorzata

    2015-06-01

    Oxidative stress is a dysfunctional state of living cells, caused by the disturbance of the pro-/antioxidative equilibrium. This dynamic equilibrium, constitutive for all aerobic organisms, is an inevitable necessity of maintaining the level of oxidative factors on non-destructive value to the cell. Among these factors reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the best known molecules. This review article shows the current state of knowledge on the chemical specificity, relative reactivity and main sources of ROS and RNS in biological systems. As a Part 1 to the report about the role of oxidative stress in psychiatric disorders (see Smaga et al., Pharmacological Reports, this issue), special emphasis is placed on biochemical determinants in nervous tissue, which predisposed it to oxidative damage. Oxidative stress can be identified based on the analysis of various biochemical indicators showing the status of antioxidant barrier or size of the damage. In our article, we have compiled the most commonly used biomarkers of oxidative stress described in the literature with special regard to potentially effective in the early diagnosis of neurodegenerative processes. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. Global warming: it's not only size that matters

    Science.gov (United States)

    Hegerl, Gabriele C.

    2011-09-01

    impacts than temperatures that have occurred frequently due to internal climate variability. Determining when exactly temperatures enter unusual ranges may be done in many different ways (and the paper shows several, and more could be imagined), but the main result of first local emergence in low latitudes remains robust. A worrying factor is that the regions where the signal is expected to emerge first, or is already emerging are largely regions in Africa, parts of South and Central America, and the Maritime Continent; regions that are vulnerable to climate change for a variety of regions (see IPCC 2007), and regions which contribute generally little to global greenhouse gas emissions. In contrast, strong emissions of greenhouse gases occur in regions of low warming-to-variability ratio. To get even closer to the relevance of this finding for impacts, it would be interesting to place the emergence of highly unusual summer temperatures in the context not of internal variability, but in the context of variability experienced by the climate system prior to the 20th century, as, e.g. documented in palaeoclimatic reconstructions and simulated in simulations of the last millennium (see Jansen et al 2007). External forcing has moved the temperature range around more strongly for some regions and in some seasons than others. For example, while reconstructions of summer temperatures in Europe appear to show small long-term variations, winter shows deep drops in temperature in the little Ice Age and a long-term increase since then (Luterbacher et al 2004), which was at least partly caused by external forcing (Hegerl et al 2011a) and therefore 'natural variability' may be different from internal variability. A further interesting question in attempts to provide a climate-based proxy for impacts of climate change is: to what extent does the rapidity of change matter, and how does it compare to trends due to natural variability? It is reasonable to assume that fast changes impact

  4. Global warming and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, P.E. [Nuclear and Particle Physics Laboratory, Department of Physics, Oxford Univ., Oxford (United Kingdom)

    1999-09-01

    The concentration of carbon dioxide in the atmosphere is steadily increasing and it is widely believed that this will lead to global warming that will have serious consequences for life on earth. The Intergovernmental Panel on Climate Change has estimated that the temperature of the earth will increase by between 1 and 3.5 degrees in the next century. This will melt some of the Antarctic ice cap, raise the sea level and flood many low-lying countries, and also produce unpredictable changes in the earth's climate. The possible ways of reducing carbon dioxide emission are discussed. It is essential to reduce the burning of fossil fuels, but then how are we to obtain the energy we need? We can try to reduce energy use, but we will still need to generate large amounts energy. Some possible ways of doing this are by using wind and solar generators, by hydroelectric and tidal plants, and also by nuclear power. These possibilities will be critically examined. (author)

  5. Warm antibody autoimmune hemolytic anemia.

    Science.gov (United States)

    Kalfa, Theodosia A

    2016-12-02

    Autoimmune hemolytic anemia (AIHA) is a rare and heterogeneous disease that affects 1 to 3/100 000 patients per year. AIHA caused by warm autoantibodies (w-AIHA), ie, antibodies that react with their antigens on the red blood cell optimally at 37°C, is the most common type, comprising ∼70% to 80% of all adult cases and ∼50% of pediatric cases. About half of the w-AIHA cases are called primary because no specific etiology can be found, whereas the rest are secondary to other recognizable underlying disorders. This review will focus on the postulated immunopathogenetic mechanisms in idiopathic and secondary w-AIHA and report on the rare cases of direct antiglobulin test-negative AIHA, which are even more likely to be fatal because of inherent characteristics of the causative antibodies, as well as because of delays in diagnosis and initiation of appropriate treatment. Then, the characteristics of w-AIHA associated with genetically defined immune dysregulation disorders and special considerations on its management will be discussed. Finally, the standard treatment options and newer therapeutic approaches for this chronic autoimmune blood disorder will be reviewed. © 2016 by The American Society of Hematology. All rights reserved.

  6. Global Warming and Its Health Impact

    Directory of Open Access Journals (Sweden)

    Antonella Rossati

    2017-01-01

    Full Text Available Since the mid-19th century, human activities have increased greenhouse gases such as carbon dioxide, methane, and nitrous oxide in the Earth's atmosphere that resulted in increased average temperature. The effects of rising temperature include soil degradation, loss of productivity of agricultural land, desertification, loss of biodiversity, degradation of ecosystems, reduced fresh-water resources, acidification of the oceans, and the disruption and depletion of stratospheric ozone. All these have an impact on human health, causing non-communicable diseases such as injuries during natural disasters, malnutrition during famine, and increased mortality during heat waves due to complications in chronically ill patients. Direct exposure to natural disasters has also an impact on mental health and, although too complex to be quantified, a link has even been established between climate and civil violence. Over time, climate change can reduce agricultural resources through reduced availability of water, alterations and shrinking arable land, increased pollution, accumulation of toxic substances in the food chain, and creation of habitats suitable to the transmission of human and animal pathogens. People living in low-income countries are particularly vulnerable. Climate change scenarios include a change in distribution of infectious diseases with warming and changes in outbreaks associated with weather extreme events. After floods, increased cases of leptospirosis, campylobacter infections and cryptosporidiosis are reported. Global warming affects water heating, rising the transmission of water-borne pathogens. Pathogens transmitted by vectors are particularly sensitive to climate change because they spend a good part of their life cycle in a cold-blooded host invertebrate whose temperature is similar to the environment. A warmer climate presents more favorable conditions for the survival and the completion of the life cycle of the vector, going as far

  7. Global Warming and Its Health Impact.

    Science.gov (United States)

    Rossati, Antonella

    2017-01-01

    Since the mid-19th century, human activities have increased greenhouse gases such as carbon dioxide, methane, and nitrous oxide in the Earth's atmosphere that resulted in increased average temperature. The effects of rising temperature include soil degradation, loss of productivity of agricultural land, desertification, loss of biodiversity, degradation of ecosystems, reduced fresh-water resources, acidification of the oceans, and the disruption and depletion of stratospheric ozone. All these have an impact on human health, causing non-communicable diseases such as injuries during natural disasters, malnutrition during famine, and increased mortality during heat waves due to complications in chronically ill patients. Direct exposure to natural disasters has also an impact on mental health and, although too complex to be quantified, a link has even been established between climate and civil violence. Over time, climate change can reduce agricultural resources through reduced availability of water, alterations and shrinking arable land, increased pollution, accumulation of toxic substances in the food chain, and creation of habitats suitable to the transmission of human and animal pathogens. People living in low-income countries are particularly vulnerable. Climate change scenarios include a change in distribution of infectious diseases with warming and changes in outbreaks associated with weather extreme events. After floods, increased cases of leptospirosis, campylobacter infections and cryptosporidiosis are reported. Global warming affects water heating, rising the transmission of water-borne pathogens. Pathogens transmitted by vectors are particularly sensitive to climate change because they spend a good part of their life cycle in a cold-blooded host invertebrate whose temperature is similar to the environment. A warmer climate presents more favorable conditions for the survival and the completion of the life cycle of the vector, going as far as to speed it up

  8. The Role of Information Professionals in Reducing the Effects of Global Warming through Knowledge Management

    Directory of Open Access Journals (Sweden)

    Lect. Ph. D. Priti Jain

    2009-05-01

    Full Text Available As a result of global environmental change, global warming is the greatest environmental challenge in the 21st century. It could lead to the ultimate end of existence of earth and man. Potential catastrophic effects on the environment and for human life are one of the biggest concerns and most widely discussed issues in the world. This paper will explore how Information Professionals can build knowledge management related to global warming and thus make their contribution towards a sustainable environment. With a brief discussion of causes, effects, solutions and challenges related to global warming, the conclusion suggests a way forward for librarians and information professionals.

  9. Does exclusion of protest zeros and warm-glow bidders cause selection bias in Contingent Valuation?

    DEFF Research Database (Denmark)

    Grammatikopoulou, Ioanna; Olsen, Søren Bøye; Pouta, Eija

    the true WTP due to protest behavior. We conduct a contingent valuation study to estimate the WTP for conserving a Natura 2000 wetland area in Greece. We find that 54% of the positive bidders exert warm glow motivations while 29% of all responses can be classified as protest zero bids. We employ three...... different models to test for the potential impacts of how these positive warm glow and protest zero bidders are treated. We first exclude the warm glow cases, secondly we include them, and, finally, we correct for selection bias by using the Full Information Maximum Likelihood method for grouped data model...

  10. Research on trend of warm-humid climate in Central Asia

    Science.gov (United States)

    Gong, Zhi; Peng, Dailiang; Wen, Jingyi; Cai, Zhanqing; Wang, Tiantian; Hu, Yuekai; Ma, Yaxin; Xu, Junfeng

    2017-07-01

    Central Asia is a typical arid area, which is sensitive and vulnerable part of climate changes, at the same time, Central Asia is the Silk Road Economic Belt of the core district, the warm-humid climate change will affect the production and economic development of neighboring countries. The average annual precipitation, average anneal temperature and evapotranspiration are the important indexes to weigh the climate change. In this paper, the annual precipitation, annual average temperature and evapotranspiration data of every pixel point in Central Asia are analyzed by using long-time series remote sensing data to analyze the trend of warm and humid conditions. Finally, using the model to analyzed the distribution of warm-dry trend, the warm-wet trend, the cold-dry trend and the cold-wet trend in Central Asia and Xinjiang area. The results showed that most of the regions of Central Asia were warm-humid and warm-dry trends, but only a small number of regions showed warm-dry and cold-dry trends. It is of great significance to study the climatic change discipline and guarantee the ecological safety and improve the ability to cope with climate change in the region. It also provide scientific basis for the formulation of regional climate change program. The first section in your paper

  11. Characteristics of Arabian Sea mini warm pool and Indian summer monsoon

    Energy Technology Data Exchange (ETDEWEB)

    Neema, C.P. [Indian Institute of Science, Bangalore (India); Hareeshkumar, P.V. [Naval Physical and Oceanographic Laboratory, Kochi, Kerala (India); Babu, C.A. [School of Marine Science, CUSAT, Kochi (India)

    2012-05-15

    Arabian Sea Mini Warm Pool (ASMWP) is a part of the Indian Ocean Warm Pool and formed in the eastern Arabian Sea prior to the onset of the summer monsoon season. This warm pool attained its maximum intensity during the pre-monsoon season and dissipated with the commencement of summer monsoon. The main focus of the present work was on the triggering of the dissipation of this warm pool and its relation to the onset of summer monsoon over Kerala. This phenomenon was studied utilizing NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric and Research) re-analysis data, TRMM Micro wave Imager (TMI) and observational data. To define the ASMWP, sea surface temperature exceeding 30.25 C was taken as the criteria. The warm pool attained its maximum dimension and intensity nearly 2 weeks prior to the onset of summer monsoon over Kerala. Interestingly, the warm pool started its dissipation immediately after attaining its maximum core temperature. This information can be included in the present numerical models to enhance the prediction capability. It was also found that the extent and intensity of the ASMWP varied depending on the type of monsoon i.e., excess, normal, and deficient monsoon. Maximum core temperature and wide coverage of the warm pool observed during the excess monsoon years compared to normal and deficient monsoon years. The study also revealed a strong relationship between the salinity in the eastern Arabian Sea and the nature of the monsoon. (orig.)

  12. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    Science.gov (United States)

    Zhang, Lei; Li, Tim

    2017-02-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  13. Herbivory enables marine communities to resist warming.

    Science.gov (United States)

    Kordas, Rebecca L; Donohue, Ian; Harley, Christopher D G

    2017-10-01

    Climate change can influence ecosystems via both direct effects on individual organisms and indirect effects mediated by species interactions. However, we understand little about how these changes will ripple through ecosystems or whether there are particular ecological characteristics that might make ecosystems more susceptible-or more resistant-to warming. By combining in situ experimental warming with herbivore manipulations in a natural rocky intertidal community for over 16 months, we show that herbivory regulates the capacity of marine communities to resist warming. We found that limpet herbivores helped to preserve trophic and competitive interactions under experimental warming, dampening the impact of warming on overall community composition. The presence of limpets facilitated the survival of the main habitat modifier (barnacles) under warmer conditions, which, in turn, facilitated the presence of a consumer guild. When limpets were removed, environmental warming altered trophic, competitive, and facilitative interactions, with cascading impacts on community succession and stability. We conclude that conserving trophic structure and the integrity of interaction networks is vitally important as Earth continues to warm.

  14. The efficacy and characteristics of warm-up and re-warm-up practices in soccer players: a systematic review.

    Science.gov (United States)

    Hammami, Amri; Zois, James; Slimani, Maamer; Russel, Mark; Bouhlel, Ezdine

    2018-01-01

    This review aimed 1) to evaluate the current research that examines the efficacy of warm-up (WU) and re-warm-up (RWU) on physical performance; and 2) to highlight the WU and RWU characteristics that optimise subsequent performance in soccer players. A computerized search was performed in the PubMed, ScienceDirect and Google Scholar (from 1995 to December 2015) for English-language, peer-reviewed investigations using the terms "soccer" OR "football" AND "warm-up" OR "stretching" OR "post-activation potentiation" OR "pre-activity" OR "re-warm-up" AND "performance" OR "jump" OR "sprint" OR "running". Twenty seven articles were retrieved. Particularly, 22 articles examined the effects of WU on soccer performance and 5 articles focused on the effects of RWU. Clear evidence exists supporting the inclusion of dynamic stretching or postactivation potentiation-based exercises within a WU as acute performance enhancements were reported (pooled estimate changes of +3.46% and +4.21%, respectively). The FIFA 11+ WU also significantly increases strength, jump, speed and explosive performances (changes from 1% to 20%). At half-time, active RWU protocols including postactivation potentiation practices and multidirectional speed drills attenuate temperature and performance reductions induced by habitual practice. The data obtained in the present review showed that the level of play did not moderate the effectiveness of WU and RWU on soccer performance. This review demonstrated that a static stretching WU reduced acute subsequent performance, while WU activities that include dynamic stretching, PAP-based exercises, and the FIFA 11+ can elicit positive effects in soccer players. The efficacy of an active RWU during half-time is also justified.

  15. Lagging adaptation to warming climate in Arabidopsis thaliana.

    Science.gov (United States)

    Wilczek, Amity M; Cooper, Martha D; Korves, Tonia M; Schmitt, Johanna

    2014-06-03

    If climate change outpaces the rate of adaptive evolution within a site, populations previously well adapted to local conditions may decline or disappear, and banked seeds from those populations will be unsuitable for restoring them. However, if such adaptational lag has occurred, immigrants from historically warmer climates will outperform natives and may provide genetic potential for evolutionary rescue. We tested for lagging adaptation to warming climate using banked seeds of the annual weed Arabidopsis thaliana in common garden experiments in four sites across the species' native European range: Valencia, Spain; Norwich, United Kingdom; Halle, Germany; and Oulu, Finland. Genotypes originating from geographic regions near the planting site had high relative fitness in each site, direct evidence for broad-scale geographic adaptation in this model species. However, genotypes originating in sites historically warmer than the planting site had higher average relative fitness than local genotypes in every site, especially at the northern range limit in Finland. This result suggests that local adaptive optima have shifted rapidly with recent warming across the species' native range. Climatic optima also differed among seasonal germination cohorts within the Norwich site, suggesting that populations occurring where summer germination is common may have greater evolutionary potential to persist under future warming. If adaptational lag has occurred over just a few decades in banked seeds of an annual species, it may be an important consideration for managing longer-lived species, as well as for attempts to conserve threatened populations through ex situ preservation.

  16. Trophic level responses differ as climate warms in Ireland

    Science.gov (United States)

    Donnelly, Alison; Yu, Rong; Liu, Lingling

    2015-08-01

    Effective ecosystem functioning relies on successful species interaction. However, this delicate balance may be disrupted if species do not respond to environmental change at a similar rate. Here we examine trends in the timing of spring phenophases of groups of species occupying three trophic levels as a potential indicator of ecosystem response to climate warming in Ireland. The data sets were of varying length (1976-2009) and from varying locations: (1) timing of leaf unfolding and May Shoot of a range of broadleaf and conifer tree species, (2) first appearance dates of a range of moth species, and (3) first arrival dates of a range of spring migrant birds. All three groups revealed a statistically significant ( Pinterdependent phenophases as temperatures rise. Even though these data were not specifically collected to examine climate warming impacts, we conclude that such data may be used as an early warning indicator and as a means to monitor the potential for future ecosystem disruption to occur as climate warms.

  17. Microphysical imprint of entrainment in warm cumulus

    Directory of Open Access Journals (Sweden)

    Jennifer D. Small

    2013-07-01

    Full Text Available We analyse the cloud microphysical response to entrainment mixing in warm cumulus clouds observed from the CIRPAS Twin Otter during the GoMACCS field campaign near Houston, Texas, in summer 2006. Cloud drop size distributions and cloud liquid water contents from the Artium Flight phase-Doppler interferometer in conjunction with meteorological observations are used to investigate the degree to which inhomogeneous versus homogeneous mixing is preferred as a function of height above cloud base, distance from cloud edge and aerosol concentration. Using four complete days of data with 101 cloud penetrations (minimum 300 m in length, we find that inhomogeneous mixing primarily explains liquid water variability in these clouds. Furthermore, we show that there is a tendency for mixing to be more homogeneous towards the cloud top, which we attribute to the combination of increased turbulent kinetic energy and cloud drop size with altitude which together cause the Damköhler number to increase by a factor of between 10 and 30 from cloud base to cloud top. We also find that cloud edges appear to be air from cloud centres that have been diluted solely through inhomogeneous mixing. Theory predicts the potential for aerosol to affect mixing type via changes in drop size over the range of aerosol concentrations experienced (moderately polluted rural sites to highly polluted urban sites. However, the observations, while consistent with this hypothesis, do not show a statistically significant effect of aerosol on mixing type.

  18. GIS applications to evaluate public health effects of global warming

    Energy Technology Data Exchange (ETDEWEB)

    Regens, J.L.; Hodges, D.G. [Tulane Univ. Medical Center, New Orleans, LA (United States)

    1996-12-31

    Modeling projections of future climatic conditions suggest changes in temperature and precipitation patterns that might induce direct adverse effects on human health by altering the extent and severity of infectious and vector-borne diseases. The incidence of mosquito-borne diseases, for example, could increase substantially in areas where temperature and relative humidity rise. The application of Geographic Information Systems (GIS) offers new methodologies to evaluate the impact of global warming on changes in the incidence of infectious and vector-borne diseases. This research illustrates the potential analytical and communication uses of GIS for monitoring historical patterns of climate and human health variables and for projecting changes in these health variables with global warming.

  19. Global Warming and 21st Century Drying

    Science.gov (United States)

    Cook, Benjamin I.; Smerdun, Jason E.; Seager, Richard; Coats, Sloan

    2014-01-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twentyfirst century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman- Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  20. Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest.

    Science.gov (United States)

    Shi, Zheng; Xu, Xia; Souza, Lara; Wilcox, Kevin; Jiang, Lifen; Liang, Junyi; Xia, Jianyang; García-Palacios, Pablo; Luo, Yiqi

    2016-06-15

    Past global change studies have identified changes in species diversity as a major mechanism regulating temporal stability of production, measured as the ratio of the mean to the standard deviation of community biomass. However, the dominant plant functional group can also strongly determine the temporal stability. Here, in a grassland ecosystem subject to 15 years of experimental warming and hay harvest, we reveal that warming increases while hay harvest decreases temporal stability. This corresponds with the biomass of the dominant C4 functional group being higher under warming and lower under hay harvest. As a secondary mechanism, biodiversity also explains part of the variation in temporal stability of production. Structural equation modelling further shows that warming and hay harvest regulate temporal stability through influencing both temporal mean and variation of production. Our findings demonstrate the joint roles that dominant plant functional group and biodiversity play in regulating the temporal stability of an ecosystem under global change.

  1. Short Communication: Global warming – Problem with environmental and economical impacts

    Directory of Open Access Journals (Sweden)

    SHIVANI M. RAI

    2013-11-01

    Full Text Available Rai SM. 2013. Short Communication: Global warming – Problem with envir