WorldWideScience

Sample records for warming affects marine

  1. Circumpolar dynamics of a marine top-predator track ocean warming rates.

    Science.gov (United States)

    Descamps, Sébastien; Anker-Nilssen, Tycho; Barrett, Robert T; Irons, David B; Merkel, Flemming; Robertson, Gregory J; Yoccoz, Nigel G; Mallory, Mark L; Montevecchi, William A; Boertmann, David; Artukhin, Yuri; Christensen-Dalsgaard, Signe; Erikstad, Kjell-Einar; Gilchrist, H Grant; Labansen, Aili L; Lorentsen, Svein-Håkon; Mosbech, Anders; Olsen, Bergur; Petersen, Aevar; Rail, Jean-Francois; Renner, Heather M; Strøm, Hallvard; Systad, Geir H; Wilhelm, Sabina I; Zelenskaya, Larisa

    2017-09-01

    Global warming is a nonlinear process, and temperature may increase in a stepwise manner. Periods of abrupt warming can trigger persistent changes in the state of ecosystems, also called regime shifts. The responses of organisms to abrupt warming and associated regime shifts can be unlike responses to periods of slow or moderate change. Understanding of nonlinearity in the biological responses to climate warming is needed to assess the consequences of ongoing climate change. Here, we demonstrate that the population dynamics of a long-lived, wide-ranging marine predator are associated with changes in the rate of ocean warming. Data from 556 colonies of black-legged kittiwakes Rissa tridactyla distributed throughout its breeding range revealed that an abrupt warming of sea-surface temperature in the 1990s coincided with steep kittiwake population decline. Periods of moderate warming in sea temperatures did not seem to affect kittiwake dynamics. The rapid warming observed in the 1990s may have driven large-scale, circumpolar marine ecosystem shifts that strongly affected kittiwakes through bottom-up effects. Our study sheds light on the nonlinear response of a circumpolar seabird to large-scale changes in oceanographic conditions and indicates that marine top predators may be more sensitive to the rate of ocean warming rather than to warming itself. © 2017 John Wiley & Sons Ltd.

  2. Designing connected marine reserves in the face of global warming.

    Science.gov (United States)

    Álvarez-Romero, Jorge G; Munguía-Vega, Adrián; Beger, Maria; Del Mar Mancha-Cisneros, Maria; Suárez-Castillo, Alvin N; Gurney, Georgina G; Pressey, Robert L; Gerber, Leah R; Morzaria-Luna, Hem Nalini; Reyes-Bonilla, Héctor; Adams, Vanessa M; Kolb, Melanie; Graham, Erin M; VanDerWal, Jeremy; Castillo-López, Alejandro; Hinojosa-Arango, Gustavo; Petatán-Ramírez, David; Moreno-Baez, Marcia; Godínez-Reyes, Carlos R; Torre, Jorge

    2018-02-01

    Marine reserves are widely used to protect species important for conservation and fisheries and to help maintain ecological processes that sustain their populations, including recruitment and dispersal. Achieving these goals requires well-connected networks of marine reserves that maximize larval connectivity, thus allowing exchanges between populations and recolonization after local disturbances. However, global warming can disrupt connectivity by shortening potential dispersal pathways through changes in larval physiology. These changes can compromise the performance of marine reserve networks, thus requiring adjusting their design to account for ocean warming. To date, empirical approaches to marine prioritization have not considered larval connectivity as affected by global warming. Here, we develop a framework for designing marine reserve networks that integrates graph theory and changes in larval connectivity due to potential reductions in planktonic larval duration (PLD) associated with ocean warming, given current socioeconomic constraints. Using the Gulf of California as case study, we assess the benefits and costs of adjusting networks to account for connectivity, with and without ocean warming. We compare reserve networks designed to achieve representation of species and ecosystems with networks designed to also maximize connectivity under current and future ocean-warming scenarios. Our results indicate that current larval connectivity could be reduced significantly under ocean warming because of shortened PLDs. Given the potential changes in connectivity, we show that our graph-theoretical approach based on centrality (eigenvector and distance-weighted fragmentation) of habitat patches can help design better-connected marine reserve networks for the future with equivalent costs. We found that maintaining dispersal connectivity incidentally through representation-only reserve design is unlikely, particularly in regions with strong asymmetric patterns of

  3. Upper temperature limits of tropical marine ectotherms: global warming implications.

    Directory of Open Access Journals (Sweden)

    Khanh Dung T Nguyen

    Full Text Available Animal physiology, ecology and evolution are affected by temperature and it is expected that community structure will be strongly influenced by global warming. This is particularly relevant in the tropics, where organisms are already living close to their upper temperature limits and hence are highly vulnerable to rising temperature. Here we present data on upper temperature limits of 34 tropical marine ectotherm species from seven phyla living in intertidal and subtidal habitats. Short term thermal tolerances and vertical distributions were correlated, i.e., upper shore animals have higher thermal tolerance than lower shore and subtidal animals; however, animals, despite their respective tidal height, were susceptible to the same temperature in the long term. When temperatures were raised by 1°C hour(-1, the upper lethal temperature range of intertidal ectotherms was 41-52°C, but this range was narrower and reduced to 37-41°C in subtidal animals. The rate of temperature change, however, affected intertidal and subtidal animals differently. In chronic heating experiments when temperature was raised weekly or monthly instead of every hour, upper temperature limits of subtidal species decreased from 40°C to 35.4°C, while the decrease was more than 10°C in high shore organisms. Hence in the long term, activity and survival of tropical marine organisms could be compromised just 2-3°C above present seawater temperatures. Differences between animals from environments that experience different levels of temperature variability suggest that the physiological mechanisms underlying thermal sensitivity may vary at different rates of warming.

  4. Albedo enhancement of marine clouds to counteract global warming: impacts on the hydrological cycle

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G. [Indian Institute of Science, Divecha Center for Climate Change, Bangalore (India); Indian Institute of Science, Center for Atmospheric and Oceanic Sciences, Bangalore (India); Caldeira, Ken; Cao, Long; Ban-Weiss, George; Shin, Ho-Jeong [Carnegie Institution, Department of Global Ecology, Stanford, CA (United States); Nemani, Rama [NASA Ames Research Center, Moffett Field, CA (United States)

    2011-09-15

    Recent studies have shown that changes in solar radiation affect the hydrological cycle more strongly than equivalent CO{sub 2} changes for the same change in global mean surface temperature. Thus, solar radiation management ''geoengineering'' proposals to completely offset global mean temperature increases by reducing the amount of absorbed sunlight might be expected to slow the global water cycle and reduce runoff over land. However, proposed countering of global warming by increasing the albedo of marine clouds would reduce surface solar radiation only over the oceans. Here, for an idealized scenario, we analyze the response of temperature and the hydrological cycle to increased reflection by clouds over the ocean using an atmospheric general circulation model coupled to a mixed layer ocean model. When cloud droplets are reduced in size over all oceans uniformly to offset the temperature increase from a doubling of atmospheric CO{sub 2}, the global-mean precipitation and evaporation decreases by about 1.3% but runoff over land increases by 7.5% primarily due to increases over tropical land. In the model, more reflective marine clouds cool the atmospheric column over ocean. The result is a sinking motion over oceans and upward motion over land. We attribute the increased runoff over land to this increased upward motion over land when marine clouds are made more reflective. Our results suggest that, in contrast to other proposals to increase planetary albedo, offsetting mean global warming by reducing marine cloud droplet size does not necessarily lead to a drying, on average, of the continents. However, we note that the changes in precipitation, evaporation and P-E are dominated by small but significant areas, and given the highly idealized nature of this study, a more thorough and broader assessment would be required for proposals of altering marine cloud properties on a large scale. (orig.)

  5. Multistressor impacts of warming and acidification of the ocean on marine invertebrates' life histories.

    Science.gov (United States)

    Byrne, Maria; Przeslawski, Rachel

    2013-10-01

    Benthic marine invertebrates live in a multistressor world where stressor levels are, and will continue to be, exacerbated by global warming and increased atmospheric carbon dioxide. These changes are causing the oceans to warm, decrease in pH, become hypercapnic, and to become less saturated in carbonate minerals. These stressors have strong impacts on biological processes, but little is known about their combined effects on the development of marine invertebrates. Increasing temperature has a stimulatory effect on development, whereas hypercapnia can depress developmental processes. The pH, pCO2, and CaCO3 of seawater change simultaneously with temperature, challenging our ability to predict future outcomes for marine biota. The need to consider both warming and acidification is reflected in the recent increase in cross-factorial studies of the effects of these stressors on development of marine invertebrates. The outcomes and trends in these studies are synthesized here. Based on this compilation, significant additive or antagonistic effects of warming and acidification of the ocean are common (16 of 20 species studied), and synergistic negative effects also are reported. Fertilization can be robust to near-future warming and acidification, depending on the male-female mating pair. Although larvae and juveniles of some species tolerate near-future levels of warming and acidification (+2°C/pH 7.8), projected far-future conditions (ca. ≥4°C/ ≤pH 7.6) are widely deleterious, with a reduction in the size and survival of larvae. It appears that larvae that calcify are sensitive both to warming and acidification, whereas those that do not calcify are more sensitive to warming. Different sensitivities of life-history stages and species have implications for persistence and community function in a changing ocean. Some species are more resilient than others and may be potential "winners" in the climate-change stakes. As the ocean will change more gradually over

  6. Climate warming and estuarine and marine coastal ecosystems

    International Nuclear Information System (INIS)

    Kennedy, V.S.

    1994-01-01

    Estuaries are physically controlled, resilient coastal ecosystems harboring environmentally tolerant species in diluted seawater. Marine coastal systems are less stressed physically and contain some environmentally less tolerant species. Both systems are biologically productive and economically significant. Because of their complex structure and function, it is difficult to predict accurately the effects of climate change, but some broad generalizations can be made. If climate warming occurs, it will raise sea-level, heat shallow waters, and modify precipitation, wind, and water circulation patterns. Rapid sea-level rise could cause the loss of salt marshes, mangrove swamps, and coral reefs, thus diminishing the ecological roles of these highly productive systems. Warmer waters could eliminate heat-sensitive species from part of their geographical range while allowing heat-tolerant species to expand their range, depending on their ability to disperse. Most thermally influenced losses of species will probably only be local, but changed distributions may lead to changed community function. It is more difficult to predict the effects of modified precipitation, wind, and water circulation patterns, but changes could affect organisms dependent on such patterns for food production (e.g., in upwelling regions) or for retention in estuaries. Aquacultural and fishery-related enterprises would be affected negatively in some regions and positively in others. 73 refs

  7. Sustained climate warming drives declining marine biological productivity

    Science.gov (United States)

    Moore, J. Keith; Fu, Weiwei; Primeau, Francois; Britten, Gregory L.; Lindsay, Keith; Long, Matthew; Doney, Scott C.; Mahowald, Natalie; Hoffman, Forrest; Randerson, James T.

    2018-03-01

    Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease by more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.

  8. Enhanced marine sulphur emissions offset global warming and impact rainfall.

    Science.gov (United States)

    Grandey, B S; Wang, C

    2015-08-21

    Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate.

  9. Marine ecosystems in alteration under global warming

    International Nuclear Information System (INIS)

    Prestrud, Paal

    2004-01-01

    It is commonly thought among fishermen, researchers and in the fishing industries that the administration and harvesting of the fish resources is more important for the stock of fish than are changes in the climate. However, many scientific investigations now link changes in temperature with changes in the spreading, survival and beginning of life processes. There is solid evidence that there are important changes in progress in the North Atlantic marine ecosystem caused by global warming. If the heating of the water masses continues, it will probably have a large impact on the ocean's productivity and consequently for the fishing industry

  10. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming

    Science.gov (United States)

    Harvey, Ben P; Gwynn-Jones, Dylan; Moore, Pippa J

    2013-01-01

    Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta-analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life-history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, but not growth) interacted synergistically when warming and acidification were combined. The observed synergisms between interacting stressors suggest that care must be made in making inferences from single-stressor studies. Our findings clearly have implications for the development of adaptive management strategies particularly given that the frequency of stressors interacting in marine systems will be likely to intensify in the future. There is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions. Without them accurate predictions about the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century will not be possible. PMID:23610641

  11. Chronic environmental stress enhances tolerance to seasonal gradual warming in marine mussels.

    Directory of Open Access Journals (Sweden)

    Ionan Marigómez

    Full Text Available In global climate change scenarios, seawater warming acts in concert with multiple stress sources, which may enhance the susceptibility of marine biota to thermal stress. Here, the responsiveness to seasonal gradual warming was investigated in temperate mussels from a chronically stressed population in comparison with a healthy one. Stressed and healthy mussels were subjected to gradual temperature elevation for 8 days (1°C per day; fall: 16-24°C, winter: 12-20°C, summer: 20-28°C and kept at elevated temperature for 3 weeks. Healthy mussels experienced thermal stress and entered the time-limited survival period in the fall, became acclimated in winter and exhibited sublethal damage in summer. In stressed mussels, thermal stress and subsequent health deterioration were elicited in the fall but no transition into the critical period of time-limited survival was observed. Stressed mussels did not become acclimated to 20°C in winter, when they experienced low-to-moderate thermal stress, and did not experience sublethal damage at 28°C in summer, showing instead signs of metabolic rate depression. Overall, although the thermal threshold was lowered in chronically stressed mussels, they exhibited enhanced tolerance to seasonal gradual warming, especially in summer. These results challenge current assumptions on the susceptibility of marine biota to the interactive effects of seawater warming and pollution.

  12. La lutte internationale contre le réchauffement climatique comme étant une source de dégradation des ressources marines The international fight against global warming as a source of degradation of marine resources

    Directory of Open Access Journals (Sweden)

    Syrine Ismaili

    2012-04-01

    Full Text Available Les ressources marines constituent une richesse économique d'une grande importance pour un grand nombre de pays de la planète. Du fait de l'action de l'homme, ces ressources subissent une fragilisation et une raréfaction dues entre autres à la pollution, à la surpêche, à l'urbanisation intensive...S'ajoute à cette liste, depuis quelques années, le réchauffement de la planète qui affecte d'une manière sensible la diversité biologique marine. Pourtant les réponses internationales face à cette dégradation, au delà du fait qu'elles soient timides, sont rares. Il faudra dès lors se rabattre sur les solutions de lutte globale contre le réchauffement de la planète entreprise par la communauté internationale afin de contrer cette dégradation.Marine resources are a wealth of great economic importance for many countries in the world. Due to the action of man, these resources undergo embrittlement and rarification among others to pollution, overfishing, urbanization, intensive ... Added to this list in recent years, the global warming that affects a significantly marine biodiversity. Yet the international response to this degradation, beyond the fact that they are shy, is rare. It will therefore fall back on solutions to the global fight against global warming taken by the international community to counter this degradation.

  13. The metabolic response of marine copepods to environmental warming and ocean acidification in the absence of food

    Science.gov (United States)

    Mayor, Daniel J.; Sommer, Ulf; Cook, Kathryn B.; Viant, Mark R.

    2015-09-01

    Marine copepods are central to the productivity and biogeochemistry of marine ecosystems. Nevertheless, the direct and indirect effects of climate change on their metabolic functioning remain poorly understood. Here, we use metabolomics, the unbiased study of multiple low molecular weight organic metabolites, to examine how the physiology of Calanus spp. is affected by end-of-century global warming and ocean acidification scenarios. We report that the physiological stresses associated with incubation without food over a 5-day period greatly exceed those caused directly by seawater temperature or pH perturbations. This highlights the need to contextualise the results of climate change experiments by comparison to other, naturally occurring stressors such as food deprivation, which is being exacerbated by global warming. Protein and lipid metabolism were up-regulated in the food-deprived animals, with a novel class of taurine-containing lipids and the essential polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid and docosahexaenoic acid, changing significantly over the duration of our experiment. Copepods derive these PUFAs by ingesting diatoms and flagellated microplankton respectively. Climate-driven changes in the productivity, phenology and composition of microplankton communities, and hence the availability of these fatty acids, therefore have the potential to influence the ability of copepods to survive starvation and other environmental stressors.

  14. Ecological consequences of invasion across the freshwater-marine transition in a warming world.

    Science.gov (United States)

    Crespo, Daniel; Solan, Martin; Leston, Sara; Pardal, Miguel A; Dolbeth, Marina

    2018-02-01

    The freshwater-marine transition that characterizes an estuarine system can provide multiple entry options for invading species, yet the relative importance of this gradient in determining the functional contribution of invading species has received little attention. The ecological consequences of species invasion are routinely evaluated within a freshwater versus marine context, even though many invasive species can inhabit a wide range of salinities. We investigate the functional consequences of different sizes of Corbicula fluminea -an invasive species able to adapt to a wide range of temperatures and salinity-across the freshwater-marine transition in the presence versus absence of warming. Specifically, we characterize how C. fluminea affect fluid and particle transport, important processes in mediating nutrient cycling (NH 4 -N, NO 3 -N, PO 4 -P). Results showed that sediment particle reworking (bioturbation) tends to be influenced by size and to a lesser extent, temperature and salinity; nutrient concentrations are influenced by different interactions between all variables (salinity, temperature, and size class). Our findings demonstrate the highly context-dependent nature of the ecosystem consequences of invasion and highlight the potential for species to simultaneously occupy multiple components of an ecosystem. Recognizing of this aspect of invasibility is fundamental to management and conservation efforts, particularly as freshwater and marine systems tend to be compartmentalized rather than be treated as a contiguous unit. We conclude that more comprehensive appreciation of the distribution of invasive species across adjacent habitats and different seasons is urgently needed to allow the true extent of biological introductions, and their ecological consequences, to be fully realized.

  15. Recent increased warming of the Alaskan marine Arctic due to midlatitude linkages

    Science.gov (United States)

    Overland, James E.; Wang, Muyin; Ballinger, Thomas J.

    2018-01-01

    Alaskan Arctic waters have participated in hemispheric-wide Arctic warming over the last two decades at over two times the rate of global warming. During 2008-13, this relative warming occurred only north of the Bering Strait and the atmospheric Arctic front that forms a north-south thermal barrier. This front separates the southeastern Bering Sea temperatures from Arctic air masses. Model projections show that future temperatures in the Chukchi and Beaufort seas continue to warm at a rate greater than the global rate, reaching a change of +4°C by 2040 relative to the 1981-2010 mean. Offshore at 74°N, climate models project the open water duration season to increase from a current average of three months to five months by 2040. These rates are occasionally enhanced by midlatitude connections. Beginning in August 2014, additional Arctic warming was initiated due to increased SST anomalies in the North Pacific and associated shifts to southerly winds over Alaska, especially in winter 2015-16. While global warming and equatorial teleconnections are implicated in North Pacific SSTs, the ending of the 2014-16 North Pacific warm event demonstrates the importance of internal, chaotic atmospheric natural variability on weather conditions in any given year. Impacts from global warming on Alaskan Arctic temperature increases and sea-ice and snow loss, with occasional North Pacific support, are projected to continue to propagate through the marine ecosystem in the foreseeable future. The ecological and societal consequences of such changes show a radical departure from the current Arctic environment.

  16. Comparing the sensitivity of permafrost and marine gas hydrate to climate warming

    International Nuclear Information System (INIS)

    Taylor, A.E.; Dallimore, S.R.; Hyndman, R.D.; Wright, F.

    2005-01-01

    The sensitivity of Arctic subpermafrost gas hydrate at the Mallik borehole was compared to temperate marine gas hydrate located offshore southwestern Canada. In particular, a finite element geothermal model was used to determine the sensitivity to the end of the ice age, and contemporary climate warming of a 30 m thick methane hydrate layer lying at the base of a gas hydrate stability zone prior to 13.5 kiloannum (ka) before present (BP). It was suggested that the 30 m gas-hydrate-bearing layer would have disappeared by now, according to the thermal signal alone. However, the same gas-hydrate-bearing layer underlying permafrost would persist until at least 4 ka after present, even with contemporary climate warming. The longer time for subpermafrost gas hydrate comes from the thawing pore ice at the base of permafrost, at the expense of dissociation of the deeper gas hydrate. The dissociation of underlying gas hydrate from climate surface warming is buffered by the overlying permafrost

  17. Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem

    KAUST Repository

    Gittings, John; Raitsos, Dionysios E.; Krokos, George; Hoteit, Ibrahim

    2018-01-01

    In the tropics, thermal stratification (during warm conditions) may contribute to a shallowing of the mixed layer above the nutricline and a reduction in the transfer of nutrients to the surface lit-layer, ultimately limiting phytoplankton growth. Using remotely sensed observations and modelled datasets, we study such linkages in the northern Red Sea (NRS) - a typical tropical marine ecosystem. We assess the interannual variability (1998-2015) of both phytoplankton biomass and phenological indices (timing of bloom initiation, duration and termination) in relation to regional warming. We demonstrate that warmer conditions in the NRS are associated with substantially weaker winter phytoplankton blooms, which initiate later, terminate earlier and are shorter in their overall duration (~ 4 weeks). These alterations are directly linked with the strength of atmospheric forcing (air-sea heat fluxes) and vertical stratification (mixed layer depth [MLD]). The interannual variability of sea surface temperature (SST) is found to be a good indicator of phytoplankton abundance, but appears to be less important for predicting bloom timing. These findings suggest that future climate warming scenarios may have a two-fold impact on phytoplankton growth in tropical marine ecosystems: 1) a reduction in phytoplankton abundance and 2) alterations in the timing of seasonal phytoplankton blooms.

  18. Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem

    KAUST Repository

    Gittings, John

    2018-01-29

    In the tropics, thermal stratification (during warm conditions) may contribute to a shallowing of the mixed layer above the nutricline and a reduction in the transfer of nutrients to the surface lit-layer, ultimately limiting phytoplankton growth. Using remotely sensed observations and modelled datasets, we study such linkages in the northern Red Sea (NRS) - a typical tropical marine ecosystem. We assess the interannual variability (1998-2015) of both phytoplankton biomass and phenological indices (timing of bloom initiation, duration and termination) in relation to regional warming. We demonstrate that warmer conditions in the NRS are associated with substantially weaker winter phytoplankton blooms, which initiate later, terminate earlier and are shorter in their overall duration (~ 4 weeks). These alterations are directly linked with the strength of atmospheric forcing (air-sea heat fluxes) and vertical stratification (mixed layer depth [MLD]). The interannual variability of sea surface temperature (SST) is found to be a good indicator of phytoplankton abundance, but appears to be less important for predicting bloom timing. These findings suggest that future climate warming scenarios may have a two-fold impact on phytoplankton growth in tropical marine ecosystems: 1) a reduction in phytoplankton abundance and 2) alterations in the timing of seasonal phytoplankton blooms.

  19. Amplified Arctic warming by phytoplankton under greenhouse warming.

    Science.gov (United States)

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  20. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content.

    Science.gov (United States)

    Garzke, Jessica; Hansen, Thomas; Ismar, Stefanie M H; Sommer, Ulrich

    2016-01-01

    Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1-5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts.

  1. How the marine biotoxins affect human health.

    Science.gov (United States)

    Morabito, Silvia; Silvestro, Serena; Faggio, Caterina

    2018-03-01

    Several marine microalgae produce dangerous toxins very damaging to human health, aquatic ecosystems and coastal resources. These Harmful Algal Blooms (HABs) in recent decades seem greatly increased regarding frequency, severity and biogeographical level, causing serious health risks as a consequence of the consumption of contaminated seafood. Toxins can cause various clinically described syndromes, characterised by a wide range of symptoms: amnesic (ASP), diarrhoetic (DSP), azaspirazid (AZP), neurotoxic (NSP) and paralytic (PSP) shellfish poisonings and ciguatera fish poisoning. The spread of HABs is probably a result of anthropogenic activities and climate change, that influence marine planktonic systems, including global warming, habitat modification, eutrophication and growth of exogenous species in response to human pressures. HABs are a worldwide matter that requests local solutions and international cooperation. This review supplies an overview of HAB phenomena, and, in particular, we describe the major consequences of HABs on human health.

  2. Moderate ocean warming mitigates, but more extreme warming exacerbates the impacts of zinc from engineered nanoparticles on a marine larva.

    Science.gov (United States)

    Mos, Benjamin; Kaposi, Katrina L; Rose, Andrew L; Kelaher, Brendan; Dworjanyn, Symon A

    2017-09-01

    There is growing concern about the combined effects of multiple human-induced stressors on biodiversity. In particular, there are substantial knowledge gaps about the combined effects of existing stressors (e.g. pollution) and predicted environmental stress from climate change (e.g. ocean warming). We investigated the impacts of ocean warming and engineered nanoparticles (nano-zinc oxide, nZnO) on larvae of a cosmopolitan tropical sea urchin, Tripneustes gratilla. Larval T. gratilla were exposed to all combinations of three temperatures, 25, 27 and 29 °C (current SST and near-future predicted warming of +2 and + 4 °C) and six concentrations of nZnO (0, 0.001, 0.01, 0.1, 1 and 10 mg nZnO·L -1 ). These stressors had strong interactive effects on fertilization, gastrulation and normal development of 5 day old larvae. High concentrations of nZnO had a negative effect, but this impact was less pronounced for sea urchins reared at their preferred temperature of 27 °C compared to 25 or 29 °C. Larval growth was also impacted by combined stress of elevated temperature and nZnO. Subsequent measurement of the dissolution and aggregation of nZnO particles and the direct effect of Zn 2+ ions on larvae, suggest the negative effects of nZnO on larval development and growth were most likely due to Zn 2+ ions. Our results demonstrate that marine larvae may be more resilient to stressors at optimal temperatures and highlight the potential for ocean warming to exacerbate the effects of pollution on marine larvae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Terrestrial carbon cycle affected by non-uniform climate warming

    International Nuclear Information System (INIS)

    Jianyang Xia; Yiqi Luo; Jiquan Chen; Shilong Piao; Ciais, Philippe; Shiqiang Wan

    2014-01-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30 degrees and 90 degrees N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research. (authors)

  4. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content.

    Directory of Open Access Journals (Sweden)

    Jessica Garzke

    Full Text Available Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1-5 and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA and arachidonic acid (ARA to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts.

  5. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance.

    Science.gov (United States)

    Garzke, Jessica; Ismar, Stefanie M H; Sommer, Ulrich

    2015-03-01

    Concern about climate change has re-ignited interest in universal ecological responses to temperature variations: (1) biogeographical shifts, (2) phenology changes, and (3) size shifts. In this study we used copepods as model organisms to study size responses to temperature because of their central role in the pelagic food web and because of the ontogenetic length constancy between molts, which facilitates the definition of size of distinct developmental stages. In order to test the expected temperature-induced shifts towards smaller body size and lower abundances under warming conditions, a mesocosm experiment using plankton from the Baltic Sea at three temperature levels (ambient, ambient +4 °C, ambient -4 °C) was performed in summer 2010. Overall copepod and copepodit abundances, copepod size at all life stages, and adult copepod size in particular, showed significant temperature effects. As expected, zooplankton peak abundance was lower in warm than in ambient treatments. Copepod size-at-immature stage significantly increased in cold treatments, while adult size significantly decreased in warm treatments.

  6. Signature of ocean warming in global fisheries catch.

    Science.gov (United States)

    Cheung, William W L; Watson, Reg; Pauly, Daniel

    2013-05-16

    Marine fishes and invertebrates respond to ocean warming through distribution shifts, generally to higher latitudes and deeper waters. Consequently, fisheries should be affected by 'tropicalization' of catch (increasing dominance of warm-water species). However, a signature of such climate-change effects on global fisheries catch has so far not been detected. Here we report such an index, the mean temperature of the catch (MTC), that is calculated from the average inferred temperature preference of exploited species weighted by their annual catch. Our results show that, after accounting for the effects of fishing and large-scale oceanographic variability, global MTC increased at a rate of 0.19 degrees Celsius per decade between 1970 and 2006, and non-tropical MTC increased at a rate of 0.23 degrees Celsius per decade. In tropical areas, MTC increased initially because of the reduction in the proportion of subtropical species catches, but subsequently stabilized as scope for further tropicalization of communities became limited. Changes in MTC in 52 large marine ecosystems, covering the majority of the world's coastal and shelf areas, are significantly and positively related to regional changes in sea surface temperature. This study shows that ocean warming has already affected global fisheries in the past four decades, highlighting the immediate need to develop adaptation plans to minimize the effect of such warming on the economy and food security of coastal communities, particularly in tropical regions.

  7. Ocean warming and acidification have complex interactive effects on the dynamics of a marine fungal disease

    Science.gov (United States)

    Williams, Gareth J.; Price, Nichole N.; Ushijima, Blake; Aeby, Greta S.; Callahan, Sean M.; Davy, Simon K.; Gove, Jamison M.; Johnson, Maggie D.; Knapp, Ingrid S.; Shore-Maggio, Amanda; Smith, Jennifer E.; Videau, Patrick; Work, Thierry M.

    2014-01-01

    Diseases threaten the structure and function of marine ecosystems and are contributing to the global decline of coral reefs. We currently lack an understanding of how climate change stressors, such as ocean acidification (OA) and warming, may simultaneously affect coral reef disease dynamics, particularly diseases threatening key reef-building organisms, for example crustose coralline algae (CCA). Here, we use coralline fungal disease (CFD), a previously described CCA disease from the Pacific, to examine these simultaneous effects using both field observations and experimental manipulations. We identify the associated fungus as belonging to the subphylum Ustilaginomycetes and show linear lesion expansion rates on individual hosts can reach 6.5 mm per day. Further, we demonstrate for the first time, to our knowledge, that ocean-warming events could increase the frequency of CFD outbreaks on coral reefs, but that OA-induced lowering of pH may ameliorate outbreaks by slowing lesion expansion rates on individual hosts. Lowered pH may still reduce overall host survivorship, however, by reducing calcification and facilitating fungal bio-erosion. Such complex, interactive effects between simultaneous extrinsic environmental stressors on disease dynamics are important to consider if we are to accurately predict the response of coral reef communities to future climate change.

  8. Large benefits to marine fisheries of meeting the 1.5°C global warming target.

    Science.gov (United States)

    Cheung, William W L; Reygondeau, Gabriel; Frölicher, Thomas L

    2016-12-23

    Translating the Paris Agreement to limit global warming to 1.5°C above preindustrial level into impact-related targets facilitates communication of the benefits of mitigating climate change to policy-makers and stakeholders. Developing ecologically relevant impact-related targets for marine ecosystem services, such as fisheries, is an important step. Here, we use maximum catch potential and species turnover as climate-risk indicators for fisheries. We project that potential catches will decrease by more than 3 million metric tons per degree Celsius of warming. Species turnover is more than halved when warming is lowered from 3.5° to 1.5°C above the preindustrial level. Regionally, changes in maximum catch potential and species turnover vary across ecosystems, with the biggest risk reduction in the Indo-Pacific and Arctic regions when the Paris Agreement target is achieved. Copyright © 2016, American Association for the Advancement of Science.

  9. From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots.

    Science.gov (United States)

    Popova, Ekaterina; Yool, Andrew; Byfield, Valborg; Cochrane, Kevern; Coward, Andrew C; Salim, Shyam S; Gasalla, Maria A; Henson, Stephanie A; Hobday, Alistair J; Pecl, Gretta T; Sauer, Warwick H; Roberts, Michael J

    2016-06-01

    Ocean warming 'hotspots' are regions characterized by above-average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts of marine climate change, and test-beds for developing adaptation options for coping with those impacts. Here, we examine five hotspots off the coasts of eastern Australia, South Africa, Madagascar, India and Brazil. These particular hotspots have underpinned a large international partnership that is working towards improving community adaptation by characterizing, assessing and projecting the likely future of coastal-marine food resources through the provision and sharing of knowledge. To inform this effort, we employ a high-resolution global ocean model forced by Representative Concentration Pathway 8.5 and simulated to year 2099. In addition to the sea surface temperature, we analyse projected stratification, nutrient supply, primary production, anthropogenic CO2 -driven ocean acidification, deoxygenation and ocean circulation. Our simulation finds that the temperature-defined hotspots studied here will continue to experience warming but, with the exception of eastern Australia, may not remain the fastest warming ocean areas over the next century as the strongest warming is projected to occur in the subpolar and polar areas of the Northern Hemisphere. Additionally, we find that recent rapid change in SST is not necessarily an indicator that these areas are also hotspots of the other climatic stressors examined. However, a consistent facet of the hotspots studied here is that they are all strongly influenced by ocean circulation, which has already shown changes in the recent past and is projected to undergo further strong change into the future. In addition to the fast warming, change in local ocean circulation represents a distinct feature of present and future

  10. Warming and organic matter sources impact the proportion of dissolved to total activities in marine extracellular enzymatic rates

    KAUST Repository

    Baltar, Federico

    2017-04-19

    Extracellular enzymatic activities (EEAs) are the rate-limiting step in the degradation of organic matter. Extracellular enzymes can be found associated to cells or dissolved in the surrounding water. The proportion of cell-free EEA constitutes in many marine environments more than half of the total activity. This high proportion causes an uncoupling between hydrolysis rates and the actual bacterial activity. However, we do not know what factors control the proportion of dissolved relative to total EEA, nor how this may change in the future ocean. To resolve this, we performed laboratory experiments with water from the Great Barrier Reef (Australia) to study the effects of temperature and dissolved organic matter sources on EEA and the proportion of dissolved EEA. We found that warming increases the rates of organic matter hydrolysis and reduces the proportion of dissolved relative to total EEA. This suggests a potential increase of the coupling between organic matter hydrolysis and heterotrophic activities with increasing ocean temperatures, although strongly dependent on the organic matter substrates available. Our study suggests that local differences in the organic matter composition in tropical coastal ecosystems will strongly affect the proportion of dissolved EEA in response to ocean warming.

  11. Acidification and warming affect both a calcifying predator and prey, but not their interaction

    DEFF Research Database (Denmark)

    Landes, Anja; Zimmer, Martin

    2012-01-01

    Both ocean warming and acidification have been demonstrated to affect the growth, performance and reproductive success of calcifying invertebrates. However, relatively little is known regarding how such environmental change may affect interspecific interactions. We separately treated green crabs...... to environmental change. Acidification negatively affected the closer-muscle length of the crusher chela and correspondingly the claw-strength increment in C. maenas. The effects of warming and/or acidification on L. littorea were less consistent but indicated weaker shells in response to acidification...... Carcinus maenas and periwinkles Littorina littorea under conditions that mimicked either ambient conditions (control) or warming and acidification, both separately and in combination, for 5 mo. After 5 mo, the predators, prey and predator-prey interactions were screened for changes in response...

  12. Ocean acidification ameliorates harmful effects of warming in primary consumer.

    Science.gov (United States)

    Pedersen, Sindre Andre; Hanssen, Anja Elise

    2018-01-01

    Climate change-induced warming and ocean acidification are considered two imminent threats to marine biodiversity and current ecosystem structures. Here, we have for the first time examined an animal's response to a complete life cycle of exposure to co-occurring warming (+3°C) and ocean acidification (+1,600 μatm CO 2 ), using the key subarctic planktonic copepod, Calanus finmarchicus , as a model species. The animals were generally negatively affected by warming, which significantly reduced the females' energy status and reproductive parameters (respectively, 95% and 69%-87% vs. control). Unexpectedly, simultaneous acidification partially offset the negative effect of warming in an antagonistic manner, significantly improving reproductive parameters and hatching success (233%-340% improvement vs. single warming exposure). The results provide proof of concept that ocean acidification may partially offset negative effects caused by warming in some species. Possible explanations and ecological implications for the observed antagonistic effect are discussed.

  13. The rise of global warming skepticism: exploring affective image associations in the United States over time.

    Science.gov (United States)

    Smith, Nicholas; Leiserowitz, Anthony

    2012-06-01

    This article explores how affective image associations to global warming have changed over time. Four nationally representative surveys of the American public were conducted between 2002 and 2010 to assess public global warming risk perceptions, policy preferences, and behavior. Affective images (positive or negative feelings and cognitive representations) were collected and content analyzed. The results demonstrate a large increase in "naysayer" associations, indicating extreme skepticism about the issue of climate change. Multiple regression analyses found that holistic affect and "naysayer" associations were more significant predictors of global warming risk perceptions than cultural worldviews or sociodemographic variables, including political party and ideology. The results demonstrate the important role affective imagery plays in judgment and decision-making processes, how these variables change over time, and how global warming is currently perceived by the American public. © 2012 Society for Risk Analysis.

  14. RAF 7015: Strengthening Regional Capacities for Marine Risk Assessment Using Nuclear and Related Techniques

    International Nuclear Information System (INIS)

    Okuku, E.; Mwangi, S.

    2017-01-01

    To develop and implement harmonized and integrated regional sea food safety monitoring in the MS through the application of nuclear techniques for enhanced sustainability of marine resource. Rapid urbanization and industrialization are causing alterations of the characteristics of marine environment thus threatening the ecosystem health and sustainability of marine environment and Affects public health, recreational water quality and economic viability.Threats to marine ecosystem include Over-exploitation, habitat destruction, Global warming- rise in SST, HABs and invasive species, Ocean acidification and Marine pollution

  15. Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses.

    Science.gov (United States)

    Nagelkerken, Ivan; Munday, Philip L

    2016-03-01

    Biological communities are shaped by complex interactions between organisms and their environment as well as interactions with other species. Humans are rapidly changing the marine environment through increasing greenhouse gas emissions, resulting in ocean warming and acidification. The first response by animals to environmental change is predominantly through modification of their behaviour, which in turn affects species interactions and ecological processes. Yet, many climate change studies ignore animal behaviour. Furthermore, our current knowledge of how global change alters animal behaviour is mostly restricted to single species, life phases and stressors, leading to an incomplete view of how coinciding climate stressors can affect the ecological interactions that structure biological communities. Here, we first review studies on the effects of warming and acidification on the behaviour of marine animals. We demonstrate how pervasive the effects of global change are on a wide range of critical behaviours that determine the persistence of species and their success in ecological communities. We then evaluate several approaches to studying the ecological effects of warming and acidification, and identify knowledge gaps that need to be filled, to better understand how global change will affect marine populations and communities through altered animal behaviours. Our review provides a synthesis of the far-reaching consequences that behavioural changes could have for marine ecosystems in a rapidly changing environment. Without considering the pervasive effects of climate change on animal behaviour we will limit our ability to forecast the impacts of ocean change and provide insights that can aid management strategies. © 2015 John Wiley & Sons Ltd.

  16. Warming impacts on fish species composition in the Kattegat-Belt Sea

    DEFF Research Database (Denmark)

    Bryndum, Karoline Minna; MacKenzie, Brian

    Sea temperatures have been rising in the waters near Denmark during the past 1-2 decades and are expected to affect marine populations, species, communities and foodwebs. Here we investigate whether and how the species richness and composition of the marine fish community in the Kattegat and Belt...... of the southern range limits of all species captured in the surveys shows that the mean southern latitudinal limit of the fish community has been decreasing and is also corrrelated with bottom temperatures; these patterns are consistent with immigration of fish from southerly zoogeographic regions. Warm...

  17. King penguin population threatened by Southern Ocean warming.

    Science.gov (United States)

    Le Bohec, Céline; Durant, Joël M; Gauthier-Clerc, Michel; Stenseth, Nils C; Park, Young-Hyang; Pradel, Roger; Grémillet, David; Gendner, Jean-Paul; Le Maho, Yvon

    2008-02-19

    Seabirds are sensitive indicators of changes in marine ecosystems and might integrate and/or amplify the effects of climate forcing on lower levels in food chains. Current knowledge on the impact of climate changes on penguins is primarily based on Antarctic birds identified by using flipper bands. Although flipper bands have helped to answer many questions about penguin biology, they were shown in some penguin species to have a detrimental effect. Here, we present for a Subantarctic species, king penguin (Aptenodytes patagonicus), reliable results on the effect of climate on survival and breeding based on unbanded birds but instead marked by subcutaneous electronic tags. We show that warm events negatively affect both breeding success and adult survival of this seabird. However, the observed effect is complex because it affects penguins at several spatio/temporal levels. Breeding reveals an immediate response to forcing during warm phases of El Niño Southern Oscillation affecting food availability close to the colony. Conversely, adult survival decreases with a remote sea-surface temperature forcing (i.e., a 2-year lag warming taking place at the northern boundary of pack ice, their winter foraging place). We suggest that this time lag may be explained by the delay between the recruitment and abundance of their prey, adjusted to the particular 1-year breeding cycle of the king penguin. The derived population dynamic model suggests a 9% decline in adult survival for a 0.26 degrees C warming. Our findings suggest that king penguin populations are at heavy extinction risk under the current global warming predictions.

  18. Ocean warming and acidification synergistically increase coral mortality

    Science.gov (United States)

    Prada, F.; Caroselli, E.; Mengoli, S.; Brizi, L.; Fantazzini, P.; Capaccioni, B.; Pasquini, L.; Fabricius, K. E.; Dubinsky, Z.; Falini, G.; Goffredo, S.

    2017-01-01

    Organisms that accumulate calcium carbonate structures are particularly vulnerable to ocean warming (OW) and ocean acidification (OA), potentially reducing the socioeconomic benefits of ecosystems reliant on these taxa. Since rising atmospheric CO2 is responsible for global warming and increasing ocean acidity, to correctly predict how OW and OA will affect marine organisms, their possible interactive effects must be assessed. Here we investigate, in the field, the combined temperature (range: 16-26 °C) and acidification (range: pHTS 8.1-7.4) effects on mortality and growth of Mediterranean coral species transplanted, in different seasonal periods, along a natural pH gradient generated by a CO2 vent. We show a synergistic adverse effect on mortality rates (up to 60%), for solitary and colonial, symbiotic and asymbiotic corals, suggesting that high seawater temperatures may have increased their metabolic rates which, in conjunction with decreasing pH, could have led to rapid deterioration of cellular processes and performance. The net calcification rate of the symbiotic species was not affected by decreasing pH, regardless of temperature, while in the two asymbiotic species it was negatively affected by increasing acidification and temperature, suggesting that symbiotic corals may be more tolerant to increasing warming and acidifying conditions compared to asymbiotic ones.

  19. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot.

    Science.gov (United States)

    Caputi, Nick; Kangas, Mervi; Denham, Ainslie; Feng, Ming; Pearce, Alan; Hetzel, Yasha; Chandrapavan, Arani

    2016-06-01

    An extreme marine heat wave which affected 2000 km of the midwest coast of Australia occurred in the 2010/11 austral summer, with sea-surface temperature (SST) anomalies of 2-5°C above normal climatology. The heat wave was influenced by a strong Leeuwin Current during an extreme La Niña event at a global warming hot spot in the Indian Ocean. This event had a significant effect on the marine ecosystem with changes to seagrass/algae and coral habitats, as well as fish kills and southern extension of the range of some tropical species. The effect has been exacerbated by above-average SST in the following two summers, 2011/12 and 2012/13. This study examined the major impact the event had on invertebrate fisheries and the management adaption applied. A 99% mortality of Roei abalone ( Haliotis roei ) and major reductions in recruitment of scallops ( Amusium balloti ), king ( Penaeus latisulcatus ) and tiger ( P. esculentus ) prawns, and blue swimmer crabs were detected with management adapting with effort reductions or spatial/temporal closures to protect the spawning stock and restocking being evaluated. This study illustrates that fisheries management under extreme temperature events requires an early identification of temperature hot spots, early detection of abundance changes (preferably using pre-recruit surveys), and flexible harvest strategies which allow a quick response to minimize the effect of heavy fishing on poor recruitment to enable protection of the spawning stock. This has required researchers, managers, and industry to adapt to fish stocks affected by an extreme environmental event that may become more frequent due to climate change.

  20. COMBINED EFFECTS OF OCEAN ACIDIFICATION, OCEAN WARMING AND OIL SPILL ON ASPECTS OF DEVELOPMENT OF MARINE INVERTEBRATES

    OpenAIRE

    Arnberg, maj

    2016-01-01

    Full version unavailable due to 3rd party copyright restrictions. For decades, humans have impacted marine ecosystems in a variety of ways including contamination by pollution, fishing, and physical destruction of habitats. Global change has, and will, lead to alterations in in a number of abiotic factors of our ocean in particular reduced oxygen saturation, salinity changes, elevated temperature (ocean warming or OW) and elevated carbon dioxide (ocean acidification or OA). Now and in the...

  1. Experimental Warming Decreases the Average Size and Nucleic Acid Content of Marine Bacterial Communities

    KAUST Repository

    Huete-Stauffer, Tamara M.

    2016-05-23

    Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nucleic acid content of coastal marine prokaryotic communities to temperature was studied over a full annual cycle at a NE Atlantic temperate site. We used flow cytometry and experimental warming incubations, spanning a 6°C range, to analyze the hypothesized reduction with temperature in the size of the widespread flow cytometric bacterial groups of high and low nucleic acid content (HNA and LNA bacteria, respectively). Our results showed decreases in size in response to experimental warming, which were more marked in 0.8 μm pre-filtered treatment rather than in the whole community treatment, thus excluding the role of protistan grazers in our findings. Interestingly, a significant effect of temperature on reducing the average nucleic acid content (NAC) of prokaryotic cells in the communities was also observed. Cell size and nucleic acid decrease with temperature were correlated, showing a common mean decrease of 0.4% per °C. The usually larger HNA bacteria consistently showed a greater reduction in cell and NAC compared with their LNA counterparts, especially during the spring phytoplankton bloom period associated to maximum bacterial growth rates in response to nutrient availability. Our results show that the already smallest planktonic microbes, yet with key roles in global biogeochemical cycling, are likely undergoing important structural shrinkage in response to rising temperatures.

  2. Experimental Warming Decreases the Average Size and Nucleic Acid Content of Marine Bacterial Communities

    KAUST Repository

    Huete-Stauffer, Tamara M.; Arandia-Gorostidi, Nestor; Alonso-Sá ez, Laura; Moran, Xose Anxelu G.

    2016-01-01

    Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nucleic acid content of coastal marine prokaryotic communities to temperature was studied over a full annual cycle at a NE Atlantic temperate site. We used flow cytometry and experimental warming incubations, spanning a 6°C range, to analyze the hypothesized reduction with temperature in the size of the widespread flow cytometric bacterial groups of high and low nucleic acid content (HNA and LNA bacteria, respectively). Our results showed decreases in size in response to experimental warming, which were more marked in 0.8 μm pre-filtered treatment rather than in the whole community treatment, thus excluding the role of protistan grazers in our findings. Interestingly, a significant effect of temperature on reducing the average nucleic acid content (NAC) of prokaryotic cells in the communities was also observed. Cell size and nucleic acid decrease with temperature were correlated, showing a common mean decrease of 0.4% per °C. The usually larger HNA bacteria consistently showed a greater reduction in cell and NAC compared with their LNA counterparts, especially during the spring phytoplankton bloom period associated to maximum bacterial growth rates in response to nutrient availability. Our results show that the already smallest planktonic microbes, yet with key roles in global biogeochemical cycling, are likely undergoing important structural shrinkage in response to rising temperatures.

  3. Abrupt warming of the Red Sea

    KAUST Repository

    Raitsos, D. E.

    2011-07-19

    Coral reef ecosystems, often referred to as “marine rainforests,” concentrate the most diverse life in the oceans. Red Sea reef dwellers are adapted in a very warm environment, fact that makes them vulnerable to further and rapid warming. The detection and understanding of abrupt temperature changes is an important task, as ecosystems have more chances to adapt in a slowly rather than in a rapid changing environment. Using satellite derived sea surface and ground based air temperatures, it is shown that the Red Sea is going through an intense warming initiated in the mid-90s, with evidence for an abrupt increase after 1994 (0.7°C difference pre and post the shift). The air temperature is found to be a key parameter that influences the Red Sea marine temperature. The comparisons with Northern Hemisphere temperatures revealed that the observed warming is part of global climate change trends. The hitherto results also raise additional questions regarding other broader climatic impacts over the area.

  4. Abrupt warming of the Red Sea

    Science.gov (United States)

    Raitsos, D. E.; Hoteit, I.; Prihartato, P. K.; Chronis, T.; Triantafyllou, G.; Abualnaja, Y.

    2011-07-01

    Coral reef ecosystems, often referred to as “marine rainforests,” concentrate the most diverse life in the oceans. Red Sea reef dwellers are adapted in a very warm environment, fact that makes them vulnerable to further and rapid warming. The detection and understanding of abrupt temperature changes is an important task, as ecosystems have more chances to adapt in a slowly rather than in a rapid changing environment. Using satellite derived sea surface and ground based air temperatures, it is shown that the Red Sea is going through an intense warming initiated in the mid-90s, with evidence for an abrupt increase after 1994 (0.7°C difference pre and post the shift). The air temperature is found to be a key parameter that influences the Red Sea marine temperature. The comparisons with Northern Hemisphere temperatures revealed that the observed warming is part of global climate change trends. The hitherto results also raise additional questions regarding other broader climatic impacts over the area.

  5. Coral and mollusc resistance to ocean acidification adversely affected by warming

    Science.gov (United States)

    Rodolfo-Metalpa, R.; Houlbrèque, F.; Tambutté, É.; Boisson, F.; Baggini, C.; Patti, F. P.; Jeffree, R.; Fine, M.; Foggo, A.; Gattuso, J.-P.; Hall-Spencer, J. M.

    2011-09-01

    Increasing atmospheric carbon dioxide (CO2) concentrations are expectedto decrease surface ocean pH by 0.3-0.5 units by 2100 (refs , ), lowering the carbonate ion concentration of surfacewaters. This rapid acidification is predicted to dramatically decrease calcification in many marine organisms. Reduced skeletal growth under increased CO2 levels has already been shown for corals, molluscs and many other marine organisms. The impact of acidification on the ability of individual species to calcify has remained elusive, however, as measuring net calcification fails to disentangle the relative contributions of gross calcification and dissolution rates on growth. Here, we show that corals and molluscs transplanted along gradients of carbonate saturation state at Mediterranean CO2 vents are able to calcify and grow at even faster than normal rates when exposed to the high CO2 levels projected for the next 300 years. Calcifiers remain at risk, however, owing to the dissolution of exposed shells and skeletons that occurs as pH levels fall. Our results show that tissues and external organic layers play a major role in protecting shells and skeletons from corrosive sea water, limiting dissolution and allowing organisms to calcify. Our combined field and laboratory results demonstrate that the adverse effects of global warming are exacerbated when high temperatures coincide with acidification.

  6. More losers than winners in a century of future Southern Ocean seafloor warming

    Science.gov (United States)

    Griffiths, Huw J.; Meijers, Andrew J. S.; Bracegirdle, Thomas J.

    2017-10-01

    The waters of the Southern Ocean are projected to warm over the coming century, with potential adverse consequences for native cold-adapted organisms. Warming waters have caused temperate marine species to shift their ranges poleward. The seafloor animals of the Southern Ocean shelf have long been isolated by the deep ocean surrounding Antarctica and the Antarctic Circumpolar Current, with little scope for southward migration. How these largely endemic species will react to future projected warming is unknown. By considering 963 invertebrate species, we show that within the current century, warming temperatures alone are unlikely to result in wholesale extinction or invasion affecting Antarctic seafloor life. However, 79% of Antarctica's endemic species do face a significant reduction in suitable temperature habitat (an average 12% reduction). Our findings highlight the species and regions most likely to respond significantly (negatively and positively) to warming and have important implications for future management of the region.

  7. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    Science.gov (United States)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  8. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    Directory of Open Access Journals (Sweden)

    Nicholas A J Graham

    Full Text Available Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  9. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    Science.gov (United States)

    Graham, Nicholas A J; McClanahan, Tim R; MacNeil, M Aaron; Wilson, Shaun K; Polunin, Nicholas V C; Jennings, Simon; Chabanet, Pascale; Clark, Susan; Spalding, Mark D; Letourneur, Yves; Bigot, Lionel; Galzin, René; Ohman, Marcus C; Garpe, Kajsa C; Edwards, Alasdair J; Sheppard, Charles R C

    2008-08-27

    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  10. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota.

    Science.gov (United States)

    Constable, Andrew J; Melbourne-Thomas, Jessica; Corney, Stuart P; Arrigo, Kevin R; Barbraud, Christophe; Barnes, David K A; Bindoff, Nathaniel L; Boyd, Philip W; Brandt, Angelika; Costa, Daniel P; Davidson, Andrew T; Ducklow, Hugh W; Emmerson, Louise; Fukuchi, Mitsuo; Gutt, Julian; Hindell, Mark A; Hofmann, Eileen E; Hosie, Graham W; Iida, Takahiro; Jacob, Sarah; Johnston, Nadine M; Kawaguchi, So; Kokubun, Nobuo; Koubbi, Philippe; Lea, Mary-Anne; Makhado, Azwianewi; Massom, Rob A; Meiners, Klaus; Meredith, Michael P; Murphy, Eugene J; Nicol, Stephen; Reid, Keith; Richerson, Kate; Riddle, Martin J; Rintoul, Stephen R; Smith, Walker O; Southwell, Colin; Stark, Jonathon S; Sumner, Michael; Swadling, Kerrie M; Takahashi, Kunio T; Trathan, Phil N; Welsford, Dirk C; Weimerskirch, Henri; Westwood, Karen J; Wienecke, Barbara C; Wolf-Gladrow, Dieter; Wright, Simon W; Xavier, Jose C; Ziegler, Philippe

    2014-10-01

    Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed. © 2014 John Wiley & Sons Ltd.

  11. Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions.

    Science.gov (United States)

    Jassey, Vincent E J; Chiapusio, Geneviève; Binet, Philippe; Buttler, Alexandre; Laggoun-Défarge, Fatima; Delarue, Frédéric; Bernard, Nadine; Mitchell, Edward A D; Toussaint, Marie-Laure; Francez, André-Jean; Gilbert, Daniel

    2013-03-01

    Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above- and belowground linkages that regulate soil organic carbon dynamics and C-balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top-predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum-polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above- and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands. © 2012 Blackwell Publishing Ltd.

  12. The Oceans 2015 Initiative, Part II - An updated understanding of the observed and projected impacts of ocean warming and acidification on marine and coastal socioeconomic activities/sectors

    International Nuclear Information System (INIS)

    Weatherdon, Lauren; Sumaila, Rashid; Cheung, William W.L.; Rogers, Alex; Magnan, Alexandre

    2015-01-01

    Between 1971 and 2010, the oceans have absorbed approximately 93% of the excess heat caused by global warming, leading to several major changes such as the increase in stratification, limitation in the circulation of nutrients from deep waters to the surface, and sea level rise. In addition, the oceans absorbed 26% of anthropogenic CO 2 emitted since the start of the Industrial Revolution, which resulted in ocean acidification. Together, these processes strongly affect marine and coastal species' geographic distribution, abundance, migration patterns and phenology. As a consequence of these complex environmental changes, marine and coastal human sectors (i.e., fisheries, aquaculture, coastal tourism and health) are in turn at risk. This report provides an updated synthesis of what the science tells us about such a risk, based upon IPCC AR5 (2013- 2014) and published scientific articles and grey literature that have been published between July 2013 and April 2015. Although uncertainty remains strong, there is growing scientific evidence that ocean warming and acidification will affect key resources for societies through ecosystems services. For example, while AR5 indicated that coral reefs had little scope for adaptation, recent research has suggested that there may be some capacity for some coral species to recover from climatic hocks and bleaching events, and to acquire heat resistance through acclimatization. This will have huge implications on many coastal economies in the developing and developed countries. More generally, key sectors will be affected. For example, while the fish catch potential is expected to decrease at the global scale, it will show diversified trends at the regional scale as fish stocks have started shifting in latitudes or by depth. This will impact regional to local fisheries systems. Also, climate and acidification-related impacts to existing aquaculture are expected to be generally negative, with impacts varying by location

  13. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models.

    Science.gov (United States)

    Griffith, Gary P; Fulton, Elizabeth A; Gorton, Rebecca; Richardson, Anthony J

    2012-12-01

    An important challenge for conservation is a quantitative understanding of how multiple human stressors will interact to mitigate or exacerbate global environmental change at a community or ecosystem level. We explored the interaction effects of fishing, ocean warming, and ocean acidification over time on 60 functional groups of species in the southeastern Australian marine ecosystem. We tracked changes in relative biomass within a coupled dynamic whole-ecosystem modeling framework that included the biophysical system, human effects, socioeconomics, and management evaluation. We estimated the individual, additive, and interactive effects on the ecosystem and for five community groups (top predators, fishes, benthic invertebrates, plankton, and primary producers). We calculated the size and direction of interaction effects with an additive null model and interpreted results as synergistic (amplified stress), additive (no additional stress), or antagonistic (reduced stress). Individually, only ocean acidification had a negative effect on total biomass. Fishing and ocean warming and ocean warming with ocean acidification had an additive effect on biomass. Adding fishing to ocean warming and ocean acidification significantly changed the direction and magnitude of the interaction effect to a synergistic response on biomass. The interaction effect depended on the response level examined (ecosystem vs. community). For communities, the size, direction, and type of interaction effect varied depending on the combination of stressors. Top predator and fish biomass had a synergistic response to the interaction of all three stressors, whereas biomass of benthic invertebrates responded antagonistically. With our approach, we were able to identify the regional effects of fishing on the size and direction of the interacting effects of ocean warming and ocean acidification. ©2012 Society for Conservation Biology.

  14. Climate sensitivity of marine energy

    OpenAIRE

    Harrison, Gareth; Wallace, Robin

    2005-01-01

    Marine energy has a significant role to play in lowering carbon emissions within the energy sector. Paradoxically, it may be susceptible to changes in climate that will result from rising carbon emissions. Wind patterns are expected to change and this will alter wave regimes. Despite a lack of definite proof of a link to global warming, wind and wave conditions have been changing over the past few decades. Changes in the wind and wave climate will affect offshore wind and wave energy conversi...

  15. Seasonal exposure to drought and air warming affects soil Collembola and mites.

    Directory of Open Access Journals (Sweden)

    Guo-Liang Xu

    Full Text Available Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4 °C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length ≤ 0.20 mm increased, but the percentage of large mites (body length >0.40 mm decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type.

  16. Seasonal Exposure to Drought and Air Warming Affects Soil Collembola and Mites

    Science.gov (United States)

    Xu, Guo-Liang; Kuster, Thomas M.; Günthardt-Goerg, Madeleine S.; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4°C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type. PMID:22905210

  17. Seasonal exposure to drought and air warming affects soil Collembola and mites.

    Science.gov (United States)

    Xu, Guo-Liang; Kuster, Thomas M; Günthardt-Goerg, Madeleine S; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4 °C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length ≤ 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type.

  18. Sensitivity of Marine Warm Cloud Retrieval Statistics to Algorithm Choices: Examples from MODIS Collection 6

    Science.gov (United States)

    Platnick, Steven; Wind, Galina; Zhang, Zhibo; Ackerman, Steven A.; Maddux, Brent

    2012-01-01

    The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the l.6, 2.1, and 3.7 m spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "notclear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud'edges as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the ID cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.

  19. Smile intensity and warm touch as thin slices of child and family affective style.

    Science.gov (United States)

    Oveis, Christopher; Gruber, June; Keltner, Dacher; Stamper, Juliet L; Boyce, W Thomas

    2009-08-01

    The authors investigate the claim that thin slices of expressive behavior serve as reliable indicators of affective style in children and their families. Using photographs, the authors assessed smile intensity and tactile contact in kindergartners and their families. Consistent with claims that smiling and touch communicate positive emotion, measures of children's smile intensity and warm family touch were correlated across classroom and family contexts. Consistent with studies of parent-child personality associations, parents' warm smiles and negative facial displays resembled those of their children. Finally, consistent with observed relations between adult personality and positive display, children's smiling behavior in the classroom correlated with parent ratings of children's Extraversion/Surgency. These results highlight the utility of thin slices of smiling and touch as indicators of child and family affective style. 2009 APA, all rights reserved.

  20. Response of a Habitat-Forming Marine Plant to a Simulated Warming Event Is Delayed, Genotype Specific, and Varies with Phenology.

    Directory of Open Access Journals (Sweden)

    Laura K Reynolds

    Full Text Available Growing evidence shows that increasing global temperature causes population declines and latitudinal shifts in geographical distribution for plants living near their thermal limits. Yet, even populations living well within established thermal limits of a species may suffer as the frequency and intensity of warming events increase with climate change. Adaptive response to this stress at the population level depends on the presence of genetic variation in thermal tolerance in the populations in question, yet few data exist to evaluate this. In this study, we examined the immediate effects of a moderate warming event of 4.5°C lasting 5 weeks and the legacy effects after a 5 week recovery on different genotypes of the marine plant Zostera marina (eelgrass. We conducted the experiment in Bodega Bay, CA USA, where average summer water temperatures are 14-15°C, but extended warming periods of 17-18°C occur episodically. Experimental warming increased shoot production by 14% compared to controls held at ambient temperature. However, after returning temperature to ambient levels, we found strongly negative, delayed effects of warming on production: shoot production declined by 27% and total biomass decreased by 50% relative to individuals that had not been warmed. While all genotypes' production decreased in the recovery phase, genotypes that grew the most rapidly under benign thermal conditions (control were the most susceptible to the detrimental effects of warming. This suggests a potential tradeoff in relative performance at normal vs. elevated temperatures. Modest short-term increases in water temperature have potentially prolonged negative effects within the species' thermal envelope, but genetic variation within these populations may allow for population persistence and adaptation. Further, intraspecific variation in phenology can result in maintenance of population diversity and lead to enhanced production in diverse stands given sufficient

  1. Abrupt warming of the Red Sea

    KAUST Repository

    Raitsos, D. E.; Hoteit, Ibrahim; Prihartato, Perdana; Chronis, T.; Triantafyllou, G.; Abualnaja, Y.

    2011-01-01

    marine temperature. The comparisons with Northern Hemisphere temperatures revealed that the observed warming is part of global climate change trends. The hitherto results also raise additional questions regarding other broader climatic impacts over

  2. Hypoxia in the changing marine environment

    Science.gov (United States)

    Zhang, J.; Cowie, G.; Naqvi, S. W. A.

    2013-03-01

    The predicted future of the global marine environment, as a combined result of forcing due to climate change (e.g. warming and acidification) and other anthropogenic perturbation (e.g. eutrophication), presents a challenge to the sustainability of ecosystems from tropics to high latitudes. Among the various associated phenomena of ecosystem deterioration, hypoxia can cause serious problems in coastal areas as well as oxygen minimum zones in the open ocean (Diaz and Rosenberg 2008 Science 321 926-9, Stramma et al 2008 Science 320 655-8). The negative impacts of hypoxia include changes in populations of marine organisms, such as large-scale mortality and behavioral responses, as well as variations of species distributions, biodiversity, physiological stress, and other sub-lethal effects (e.g. growth and reproduction). Social and economic activities that are related to services provided by the marine ecosystems, such as tourism and fisheries, can be negatively affected by the aesthetic outcomes as well as perceived or real impacts on seafood quality (STAP 2011 (Washington, DC: Global Environment Facility) p 88). Moreover, low oxygen concentration in marine waters can have considerable feedbacks to other compartments of the Earth system, like the emission of greenhouse gases to the atmosphere, and can affect the global biogeochemical cycles of nutrients and trace elements. It is of critical importance to prediction and adaptation strategies that the key processes of hypoxia in marine environments be precisely determined and understood (cf Zhang et al 2010 Biogeosciences 7 1-24).

  3. Does ultraviolet radiation affect the xanthophyll cycle in marine phytoplankton?

    NARCIS (Netherlands)

    van de Poll, W.H.; Buma, A.G.J.

    2009-01-01

    This Perspective summarizes the state of knowledge of the impact of ultraviolet radiation on the photoprotective xanthophyll cycle in marine phytoplankton. Excess photosynthetically active radiation (PAR; 400-700 nm) and ultraviolet radiation (UVR; 280-400 nm) affect various cellular processes and

  4. How do changes in warm-phase microphysics affect deep convective clouds?

    Science.gov (United States)

    Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.; Dagan, Guy; Pinto, Lital

    2017-08-01

    Understanding aerosol effects on deep convective clouds and the derived effects on the radiation budget and rain patterns can largely contribute to estimations of climate uncertainties. The challenge is difficult in part because key microphysical processes in the mixed and cold phases are still not well understood. For deep convective clouds with a warm base, understanding aerosol effects on the warm processes is extremely important as they set the initial and boundary conditions for the cold processes. Therefore, the focus of this study is the warm phase, which can be better resolved. The main question is: How do aerosol-derived changes in the warm phase affect the properties of deep convective cloud systems? To explore this question, we used a weather research and forecasting (WRF) model with spectral bin microphysics to simulate a deep convective cloud system over the Marshall Islands during the Kwajalein Experiment (KWAJEX). The model results were validated against observations, showing similarities in the vertical profile of radar reflectivity and the surface rain rate. Simulations with larger aerosol loading resulted in a larger total cloud mass, a larger cloud fraction in the upper levels, and a larger frequency of strong updrafts and rain rates. Enlarged mass both below and above the zero temperature level (ZTL) contributed to the increase in cloud total mass (water and ice) in the polluted runs. Increased condensation efficiency of cloud droplets governed the gain in mass below the ZTL, while both enhanced condensational and depositional growth led to increased mass above it. The enhanced mass loading above the ZTL acted to reduce the cloud buoyancy, while the thermal buoyancy (driven by the enhanced latent heat release) increased in the polluted runs. The overall effect showed an increased upward transport (across the ZTL) of liquid water driven by both larger updrafts and larger droplet mobility. These aerosol effects were reflected in the larger ratio

  5. How do changes in warm-phase microphysics affect deep convective clouds?

    Directory of Open Access Journals (Sweden)

    Q. Chen

    2017-08-01

    Full Text Available Understanding aerosol effects on deep convective clouds and the derived effects on the radiation budget and rain patterns can largely contribute to estimations of climate uncertainties. The challenge is difficult in part because key microphysical processes in the mixed and cold phases are still not well understood. For deep convective clouds with a warm base, understanding aerosol effects on the warm processes is extremely important as they set the initial and boundary conditions for the cold processes. Therefore, the focus of this study is the warm phase, which can be better resolved. The main question is: How do aerosol-derived changes in the warm phase affect the properties of deep convective cloud systems? To explore this question, we used a weather research and forecasting (WRF model with spectral bin microphysics to simulate a deep convective cloud system over the Marshall Islands during the Kwajalein Experiment (KWAJEX. The model results were validated against observations, showing similarities in the vertical profile of radar reflectivity and the surface rain rate. Simulations with larger aerosol loading resulted in a larger total cloud mass, a larger cloud fraction in the upper levels, and a larger frequency of strong updrafts and rain rates. Enlarged mass both below and above the zero temperature level (ZTL contributed to the increase in cloud total mass (water and ice in the polluted runs. Increased condensation efficiency of cloud droplets governed the gain in mass below the ZTL, while both enhanced condensational and depositional growth led to increased mass above it. The enhanced mass loading above the ZTL acted to reduce the cloud buoyancy, while the thermal buoyancy (driven by the enhanced latent heat release increased in the polluted runs. The overall effect showed an increased upward transport (across the ZTL of liquid water driven by both larger updrafts and larger droplet mobility. These aerosol effects were reflected in the

  6. Large-scale climatic anomalies affect marine predator foraging behaviour and demography

    Science.gov (United States)

    Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  7. Hypoxia in the changing marine environment

    International Nuclear Information System (INIS)

    Zhang, J; Cowie, G; Naqvi, S W A

    2013-01-01

    The predicted future of the global marine environment, as a combined result of forcing due to climate change (e.g. warming and acidification) and other anthropogenic perturbation (e.g. eutrophication), presents a challenge to the sustainability of ecosystems from tropics to high latitudes. Among the various associated phenomena of ecosystem deterioration, hypoxia can cause serious problems in coastal areas as well as oxygen minimum zones in the open ocean (Diaz and Rosenberg 2008 Science 321 926–9, Stramma et al 2008 Science 320 655–8). The negative impacts of hypoxia include changes in populations of marine organisms, such as large-scale mortality and behavioral responses, as well as variations of species distributions, biodiversity, physiological stress, and other sub-lethal effects (e.g. growth and reproduction). Social and economic activities that are related to services provided by the marine ecosystems, such as tourism and fisheries, can be negatively affected by the aesthetic outcomes as well as perceived or real impacts on seafood quality (STAP 2011 (Washington, DC: Global Environment Facility) p 88). Moreover, low oxygen concentration in marine waters can have considerable feedbacks to other compartments of the Earth system, like the emission of greenhouse gases to the atmosphere, and can affect the global biogeochemical cycles of nutrients and trace elements. It is of critical importance to prediction and adaptation strategies that the key processes of hypoxia in marine environments be precisely determined and understood (cf Zhang et al 2010 Biogeosciences 7 1–24). (synthesis and review)

  8. Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances.

    Directory of Open Access Journals (Sweden)

    Rafael A Magris

    Full Text Available Incorporating warming disturbances into the design of marine protected areas (MPAs is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST data, integrating both observed (1985-2009 and projected (2010-2099 time-series. We derived indices of acute (time under reduced ecosystem function following short-term events and chronic thermal stress (rate of warming and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii by strategically allocating different forms of spatial management (MPA types intended to mitigate warming impacts and also enhance future resistance to climate warming.

  9. Ocean Warming and CO2-Induced Acidification Impact the Lipid Content of a Marine Predatory Gastropod

    Directory of Open Access Journals (Sweden)

    Roselyn Valles-Regino

    2015-09-01

    Full Text Available Ocean warming and acidification are current global environmental challenges impacting aquatic organisms. A shift in conditions outside the optimal environmental range for marine species is likely to generate stress that could impact metabolic activity, with consequences for the biosynthesis of marine lipids. The aim of this study was to investigate differences in the lipid content of Dicathais orbita exposed to current and predicted future climate change scenarios. The whelks were exposed to a combination of temperature and CO2-induced acidification treatments in controlled flowthrough seawater mesocosms for 35 days. Under current conditions, D. orbita foot tissue has an average of 6 mg lipid/g tissue, but at predicted future ocean temperatures, the total lipid content dropped significantly, to almost half. The fatty acid composition is dominated by polyunsaturated fatty acids (PUFA 52% with an n-3:6 fatty acid ratio of almost 2, which remains unchanged under future ocean conditions. However, we detected an interactive effect of temperature and pCO2 on the % PUFAs and n-3 and n-6 fatty acids were significantly reduced by elevated water temperature, while both the saturated and monounsaturated fatty acids were significantly reduced under increased pCO2 acidifying conditions. The present study indicates the potential for relatively small predicted changes in ocean conditions to reduce lipid reserves and alter the fatty acid composition of a predatory marine mollusc. This has potential implications for the growth and survivorship of whelks under future conditions, but only minimal implications for human consumption of D. orbita as nutritional seafood are predicted.

  10. Non-climatic thermal adaptation: implications for species' responses to climate warming.

    Science.gov (United States)

    Marshall, David J; McQuaid, Christopher D; Williams, Gray A

    2010-10-23

    There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky-eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail's body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail's upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models.

  11. Climate of the Arctic marine environment.

    Science.gov (United States)

    Walsh, John E

    2008-03-01

    The climate of the Arctic marine environment is characterized by strong seasonality in the incoming solar radiation and by tremendous spatial variations arising from a variety of surface types, including open ocean, sea ice, large islands, and proximity to major landmasses. Interannual and decadal-scale variations are prominent features of Arctic climate, complicating the distinction between natural and anthropogenically driven variations. Nevertheless, climate models consistently indicate that the Arctic is the most climatically sensitive region of the Northern Hemisphere, especially near the sea ice margins. The Arctic marine environment has shown changes over the past several decades, and these changes are part of a broader global warming that exceeds the range of natural variability over the past 1000 years. Record minima of sea ice coverage during the past few summers and increased melt from Greenland have important implications for the hydrographic regime of the Arctic marine environment. The recent changes in the atmosphere (temperature, precipitation, pressure), sea ice, and ocean appear to be a coordinated response to systematic variations of the large-scale atmospheric circulation, superimposed on a general warming that is likely associated with increasing greenhouse gases. The changes have been sufficiently large in some sectors (e.g., the Bering/Chukchi Seas) that consequences for marine ecosystems appear to be underway. Global climate models indicate an additional warming of several degrees Celsius in much of the Arctic marine environment by 2050. However, the warming is seasonal (largest in autumn and winter), spatially variable, and closely associated with further retreat of sea ice. Additional changes predicted for 2050 are a general decrease of sea level pressure (largest in the Bering sector) and an increase of precipitation. While predictions of changes in storminess cannot be made with confidence, the predicted reduction of sea ice cover will

  12. Is the distribution of Prochlorococcus and Synechococcus ecotypes in the Mediterranean Sea affected by global warming?

    Science.gov (United States)

    Mella-Flores, D.; Mazard, S.; Humily, F.; Partensky, F.; Mahé, F.; Bariat, L.; Courties, C.; Marie, D.; Ras, J.; Mauriac, R.; Jeanthon, C.; Mahdi Bendif, E.; Ostrowski, M.; Scanlan, D. J.; Garczarek, L.

    2011-09-01

    Biological communities populating the Mediterranean Sea, which is situated at the northern boundary of the subtropics, are often claimed to be particularly affected by global warming. This is indicated, for instance, by the introduction of (sub)tropical species of fish or invertebrates that can displace local species. This raises the question of whether microbial communities are similarly affected, especially in the Levantine basin where sea surface temperatures have significantly risen over the last 25 years (0.50 ± 0.11 °C in average per decade, P Lions and by clade III and groups genetically related to clades WPC1 and VI in the rest of the Mediterranean Sea. In contrast, only a few sequences of clade II, a group typical of warm waters, were observed. These data indicate that local cyanobacterial populations have not yet been displaced by their (sub)tropical counterparts.

  13. The Impact of Global Warming and Anoxia on Marine Benthic Community Dynamics: an Example from the Toarcian (Early Jurassic)

    Science.gov (United States)

    Danise, Silvia; Twitchett, Richard J.; Little, Crispin T. S.; Clémence, Marie-Emilie

    2013-01-01

    The Pliensbachian-Toarcian (Early Jurassic) fossil record is an archive of natural data of benthic community response to global warming and marine long-term hypoxia and anoxia. In the early Toarcian mean temperatures increased by the same order of magnitude as that predicted for the near future; laminated, organic-rich, black shales were deposited in many shallow water epicontinental basins; and a biotic crisis occurred in the marine realm, with the extinction of approximately 5% of families and 26% of genera. High-resolution quantitative abundance data of benthic invertebrates were collected from the Cleveland Basin (North Yorkshire, UK), and analysed with multivariate statistical methods to detect how the fauna responded to environmental changes during the early Toarcian. Twelve biofacies were identified. Their changes through time closely resemble the pattern of faunal degradation and recovery observed in modern habitats affected by anoxia. All four successional stages of community structure recorded in modern studies are recognised in the fossil data (i.e. Stage III: climax; II: transitional; I: pioneer; 0: highly disturbed). Two main faunal turnover events occurred: (i) at the onset of anoxia, with the extinction of most benthic species and the survival of a few adapted to thrive in low-oxygen conditions (Stages I to 0) and (ii) in the recovery, when newly evolved species colonized the re-oxygenated soft sediments and the path of recovery did not retrace of pattern of ecological degradation (Stages I to II). The ordination of samples coupled with sedimentological and palaeotemperature proxy data indicate that the onset of anoxia and the extinction horizon coincide with both a rise in temperature and sea level. Our study of how faunal associations co-vary with long and short term sea level and temperature changes has implications for predicting the long-term effects of “dead zones” in modern oceans. PMID:23457537

  14. Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients.

    Science.gov (United States)

    Sampaio, E; Rodil, I F; Vaz-Pinto, F; Fernández, A; Arenas, F

    2017-04-01

    Since the past century, rising CO 2 levels have led to global changes (ocean warming and acidification) with subsequent effects on marine ecosystems and organisms. Macroalgae-herbivore interactions have a main role in the regulation of marine community structure (top-down control). Gradients of warming prompt complex non-linear effects on organism metabolism, cascading into altered trophic interactions and community dynamics. However, not much is known on how will acidification and grazer assemblage composition shape these effects. Within this context, we aimed to assess the combined effects of warming gradients and acidification on macroalgae-herbivore interactions, using three cosmopolitan species, abundant in the Iberian Peninsula and closely associated in nature: the amphipod Melita palmata, the gastropod Gibbula umbilicalis, and the green macroalga Ulva rigida. Under two CO 2 treatments (ΔCO 2 ≃ 450 μatm) across a temperature gradient (13.5, 16.6, 19.9 and 22.1 °C), two mesocosm experiments were performed to assess grazer consumption rates and macroalgae-herbivore interaction, respectively. Warming (Experiment I and II) and acidification (Experiment II) prompted negative effects in grazer's survival and species-specific differences in consumption rates. M. palmata was shown to be the stronger grazer per biomass (but not per capita), and also the most affected by climate stressors. Macroalgae-herbivore interaction strength was markedly shaped by the temperature gradient, while simultaneous acidification lowered thermal optimal threshold. In the near future, warming and acidification are likely to strengthen top-down control, but further increases in disturbances may lead to bottom-up regulated communities. Finally, our results suggest that grazer assemblage composition may modulate future macroalgae-herbivore interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. How does warming affect carbon allocation, respiration and residence time in trees? An isotope tracer approach in a eucalypt

    Science.gov (United States)

    Pendall, E.; Drake, J. E.; Furze, M.; Barton, C. V.; Carillo, Y.; Richter, A.; Tjoelker, M. G.

    2017-12-01

    Climate warming has the potential to alter the balance between photosynthetic carbon assimilation and respiratory losses in forest trees, leading to uncertainty in predicting their future physiological functioning. In a previous experiment, warming decreased canopy CO2 assimilation (A) rates of Eucalyptus tereticornis trees, but respiration (R) rates were usually not significantly affected, due to physiological acclimation to temperature. This led to a slight increase in (R/A) and thus decrease in plant carbon use efficiency with climate warming. In contrast to carbon fluxes, the effect of warming on carbon allocation and residence time in trees has received less attention. We conducted a study to test the hypothesis that warming would decrease the allocation of C belowground owing to reduced cost of nutrient uptake. E. parramattensis trees were grown in the field in unique whole-tree chambers operated at ambient and ambient +3 °C temperature treatments (n=3 per treatment). We applied a 13CO2 pulse and followed the label in CO2 respired from leaves, roots, canopy and soil, in plant sugars, and in rhizosphere microbes over a 3-week period in conjunction with measurements of tree growth. The 9-m tall, 57 m3 whole-tree chambers were monitored for CO2 concentrations in independent canopy and below ground (root and soil) compartments; periodic monitoring of δ13C values in air in the compartments allowed us to quantify the amount of 13CO2 assimilated and respired by each tree. Warmed trees grew faster and assimilated more of the label than control trees, but the 13C allocation to canopy, root and soil respiration was not altered. However, warming appeared to reduce the residence time of carbon respired from leaves, and especially from roots and soil, indicating that autotrophic respiration has the potential to feedback to climate change. This experiment provides insights into how warming may affect the fate of assimilated carbon from the leaf to the ecosystem scale.

  16. Cloud Feedback Key to Marine Heatwave off Baja California

    Science.gov (United States)

    Myers, Timothy A.; Mechoso, Carlos R.; Cesana, Gregory V.; DeFlorio, Michael J.; Waliser, Duane E.

    2018-05-01

    Between 2013 and 2015, the northeast Pacific Ocean experienced the warmest surface temperature anomalies in the modern observational record. This "marine heatwave" marked a shift of Pacific decadal variability to its warm phase and was linked to significant impacts on marine species as well as exceptionally arid conditions in western North America. Here we show that the subtropical signature of this warming, off Baja California, was associated with a record deficit in the spatial coverage of co-located marine boundary layer clouds. This deficit coincided with a large increase in downwelling solar radiation that dominated the anomalous energy budget of the upper ocean, resulting in record-breaking warm sea surface temperature anomalies. Our observation-based analysis suggests that a positive cloud-surface temperature feedback was key to the extreme intensity of the heatwave. The results demonstrate the extent to which boundary layer clouds can contribute to regional variations in climate.

  17. Smile Intensity and Warm Touch as Thin Slices of Child and Family Affective Style

    OpenAIRE

    Oveis, Christopher; Gruber, June; Keltner, Dacher; Stamper, Juliet L.; Boyce, W. Thomas

    2009-01-01

    We investigate the claim that thin slices of expressive behavior serve as reliable indicators of affective style in children and their families. Using photographs, we assessed smile intensity and tactile contact in kindergartners and their families. Consistent with claims that smiling and touch communicate positive emotion, measures of children’s smile intensity and warm family touch were correlated across classroom and family contexts. Consistent with studies of parent-child personality asso...

  18. Sea surface temperature contributes to marine crocodylomorph evolution.

    Science.gov (United States)

    Martin, Jeremy E; Amiot, Romain; Lécuyer, Christophe; Benton, Michael J

    2014-08-18

    During the Mesozoic and Cenozoic, four distinct crocodylomorph lineages colonized the marine environment. They were conspicuously absent from high latitudes, which in the Mesozoic were occupied by warm-blooded ichthyosaurs and plesiosaurs. Despite a relatively well-constrained stratigraphic distribution, the varying diversities of marine crocodylomorphs are poorly understood, because their extinctions neither coincided with any major biological crises nor with the advent of potential competitors. Here we test the potential link between their evolutionary history in terms of taxic diversity and two abiotic factors, sea level variations and sea surface temperatures (SST). Excluding Metriorhynchoidea, which may have had a peculiar ecology, significant correlations obtained between generic diversity and estimated Tethyan SST suggest that water temperature was a driver of marine crocodylomorph diversity. Being most probably ectothermic reptiles, these lineages colonized the marine realm and diversified during warm periods, then declined or became extinct during cold intervals.

  19. How does whole ecosystem warming of a peatland affect methane production and consumption?

    Science.gov (United States)

    Hopple, A.; Brunik, K.; Keller, J.; Pfeifer-Meister, L.; Woerndle, G.; Zalman, C.; Hanson, P.; Bridgham, S. D.

    2017-12-01

    Peatlands are among Earth's most important terrestrial ecosystems due to their massive soil carbon (C) stores and significant release of methane (CH4) into the atmosphere. Methane has a sustained-flux global warming potential 45-times greater than carbon dioxide (CO2), and the accuracy of Earth system model projections relies on our mechanistic understanding of peatland CH4 cycling in the context of environmental change. The objective of this study was to determine, under in situ conditions, how heating of the peat profile affects ecosystem-level anaerobic C cycling. We assessed the response of CO2 and CH4 production, as well as the anaerobic oxidation of CH4 (AOM), in a boreal peatland following 13 months of deep peat heating (DPH) and 16 months of subsequent whole-ecosystem warming (surface and deep heating; WEW) as part of the Spruce and Peatland Responses Under Changing Environments (SPRUCE) project in northern Minnesota, USA. The study uses a regression-based experimental design including 5 temperature treatments that warmed the entire 2 m peat profile from 0 to +9 °C above ambient temperature. Soil cores were collected at multiple depths (25-200 cm) from each experimental chamber at the SPRUCE site and anaerobically incubated at in situ temperatures for 1-2 weeks. Methane and CO2 production in surface peat were positively correlated with elevated temperature, but no consistent temperature response was found at depth (75-200 cm) following DPH. However, during WEW, we observed significant increases in both surface and deep peat methanogenesis with increasing temperature. Surface peat had greater CH4 production rates than deeper peat, implying that the increased CH4 emissions observed in the field were largely driven by surface peat warming. The CO2:CH4 ratio was inversely correlated with temperature across all depths following 16 months of WEW, indicating that the entire peat profile is becoming more methanogenic with warming. We also observed AOM throughout

  20. Ecosystem Warming Affects CO2 Flux in an Agricultural Soil

    Science.gov (United States)

    Global warming seems likely based on present-day climate predictions. Our objective was to characterize and quantify the interactive effects of ecosystem warming (i.e., canopy temperature, TS), soil moisture content ('S) and microbial biomass (BM: bacteria, fungi) on the intra-row soil CO2 flux (FS)...

  1. Climate-driven changes in functional biogeography of Arctic marine fish communities.

    Science.gov (United States)

    Frainer, André; Primicerio, Raul; Kortsch, Susanne; Aune, Magnus; Dolgov, Andrey V; Fossheim, Maria; Aschan, Michaela M

    2017-11-14

    Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions. Copyright © 2017 the Author(s). Published by PNAS.

  2. Fish energy budget under ocean warming and flame retardant exposure.

    Science.gov (United States)

    Anacleto, Patrícia; Figueiredo, Cátia; Baptista, Miguel; Maulvault, Ana Luísa; Camacho, Carolina; Pousão-Ferreira, Pedro; Valente, Luísa M P; Marques, António; Rosa, Rui

    2018-07-01

    Climate change and chemical contamination are global environmental threats of growing concern for the scientific community and regulatory authorities. Yet, the impacts and interactions of both stressors (particularly ocean warming and emerging chemical contaminants) on physiological responses of marine organisms remain unclear and still require further understanding. Within this context, the main goal of this study was to assess, for the first time, the effects of warming (+ 5 °C) and accumulation of a polybrominated diphenyl ether congener (BDE-209, brominated flame retardant) through dietary exposure on energy budget of the juvenile white seabream (Diplodus sargus). Specifically, growth (G), routine metabolism (R), excretion (faecal, F and nitrogenous losses, U) and food consumption (C) were calculated to obtain the energy budget. The results demonstrated that the energy proportion spent for G dominated the mode of the energy allocation of juvenile white seabream (56.0-67.8%), especially under the combined effect of warming plus BDE-209 exposure. Under all treatments, the energy channelled for R varied around 26% and a much smaller percentage was channelled for excretion (F: 4.3-16.0% and U: 2.3-3.3%). An opposite trend to G was observed to F, where the highest percentage (16.0 ± 0.9%) was found under control temperature and BDE-209 exposure via diet. In general, the parameters were significantly affected by increased temperature and flame retardant exposure, where higher levels occurred for: i) wet weight, relative growth rate, protein and ash contents under warming conditions, ii) only for O:N ratio under BDE-209 exposure via diet, and iii) for feed efficiency, ammonia excretion rate, routine metabolic rate and assimilation efficiency under the combination of both stressors. On the other hand, decreased viscerosomatic index was observed under warming and lower fat content was observed under the combined effect of both stressors. Overall, under future

  3. Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism.

    Science.gov (United States)

    Hoover, Shelley E R; Ladley, Jenny J; Shchepetkina, Anastasia A; Tisch, Maggie; Gieseg, Steven P; Tylianakis, Jason M

    2012-03-01

    Environmental changes threaten plant-pollinator mutualisms and their critical ecosystem service. Drivers such as land use, invasions and climate change can affect pollinator diversity or species encounter rates. However, nitrogen deposition, climate warming and CO(2) enrichment could interact to disrupt this crucial mutualism by altering plant chemistry in ways that alter floral attractiveness or even nutritional rewards for pollinators. Using a pumpkin model system, we show that these drivers non-additively affect flower morphology, phenology, flower sex ratios and nectar chemistry (sugar and amino acids), thereby altering the attractiveness of nectar to bumble bee pollinators and reducing worker longevity. Alarmingly, bees were attracted to, and consumed more, nectar from a treatment that reduced their survival by 22%. Thus, three of the five major drivers of global environmental change have previously unknown interactive effects on plant-pollinator mutualisms that could not be predicted from studies of individual drivers in isolation. © 2012 Blackwell Publishing Ltd/CNRS.

  4. Deforestation and stream warming affect body size of Amazonian fishes.

    Science.gov (United States)

    Ilha, Paulo; Schiesari, Luis; Yanagawa, Fernando I; Jankowski, KathiJo; Navas, Carlos A

    2018-01-01

    Declining body size has been suggested to be a universal response of organisms to rising temperatures, manifesting at all levels of organization and in a broad range of taxa. However, no study to date evaluated whether deforestation-driven warming could trigger a similar response. We studied changes in fish body size, from individuals to assemblages, in streams in Southeastern Amazonia. We first conducted sampling surveys to validate the assumption that deforestation promoted stream warming, and to test the hypothesis that warmer deforested streams had reduced fish body sizes relative to cooler forest streams. As predicted, deforested streams were up to 6 °C warmer and had fish 36% smaller than forest streams on average. This body size reduction could be largely explained by the responses of the four most common species, which were 43-55% smaller in deforested streams. We then conducted a laboratory experiment to test the hypothesis that stream warming as measured in the field was sufficient to cause a growth reduction in the dominant fish species in the region. Fish reared at forest stream temperatures gained mass, whereas those reared at deforested stream temperatures lost mass. Our results suggest that deforestation-driven stream warming is likely to be a relevant factor promoting observed body size reductions, although other changes in stream conditions, like reductions in organic matter inputs, can also be important. A broad scale reduction in fish body size due to warming may be occurring in streams throughout the Amazonian Arc of Deforestation, with potential implications for the conservation of Amazonian fish biodiversity and food supply for people around the Basin.

  5. Deforestation and stream warming affect body size of Amazonian fishes

    Science.gov (United States)

    Yanagawa, Fernando I.; Jankowski, KathiJo; Navas, Carlos A.

    2018-01-01

    Declining body size has been suggested to be a universal response of organisms to rising temperatures, manifesting at all levels of organization and in a broad range of taxa. However, no study to date evaluated whether deforestation-driven warming could trigger a similar response. We studied changes in fish body size, from individuals to assemblages, in streams in Southeastern Amazonia. We first conducted sampling surveys to validate the assumption that deforestation promoted stream warming, and to test the hypothesis that warmer deforested streams had reduced fish body sizes relative to cooler forest streams. As predicted, deforested streams were up to 6 °C warmer and had fish 36% smaller than forest streams on average. This body size reduction could be largely explained by the responses of the four most common species, which were 43–55% smaller in deforested streams. We then conducted a laboratory experiment to test the hypothesis that stream warming as measured in the field was sufficient to cause a growth reduction in the dominant fish species in the region. Fish reared at forest stream temperatures gained mass, whereas those reared at deforested stream temperatures lost mass. Our results suggest that deforestation-driven stream warming is likely to be a relevant factor promoting observed body size reductions, although other changes in stream conditions, like reductions in organic matter inputs, can also be important. A broad scale reduction in fish body size due to warming may be occurring in streams throughout the Amazonian Arc of Deforestation, with potential implications for the conservation of Amazonian fish biodiversity and food supply for people around the Basin. PMID:29718960

  6. NEOTEC: Negative-CO2-Emissions Marine Energy With Direct Mitigation of Global Warming, Sea-Level Rise and Ocean Acidification

    Science.gov (United States)

    Rau, G. H.; Baird, J.; Noland, G.

    2016-12-01

    The vertical thermal energy potential in the ocean is a massive renewable energy resource that is growing due to anthropogenic warming of the surface and near-surface ocean. The conversion of this thermal energy to useful forms via Ocean Thermal Energy Conversion (OTEC) has been demonstrated over the past century, albeit at small scales. Because OTEC removes heat from the surface ocean, this could help directly counter ongoing, deleterious ocean/atmosphere warming. The only other climate intervention that could do this is solar radiation "geoengineering". Conventional OTEC requires energy intensive, vertical movement of seawater resulting in ocean and atmospheric chemistry alteration, but this can be avoided via more energy efficient, vertical closed-cycle heating and cooling of working fluid like CO2 or NH3. An energy carrier such as H2 is required to transport energy optimally extracted far offshore, and methods of electrochemically generating H2 while also consuming CO2 and converting it to ocean alkalinity have been demonstrated. The addition of such alkalinity to the ocean would provide vast, stable, carbon storage, while also helping chemically counter the effects of ocean acidification. The process might currently be profitable given the >$100/tonne CO2 credit offered by California's Low Carbon Fuel Standard for transportation fuels like H2. Negative-Emissions OTEC, NEOTEC, thus can potentially provide constant, cost effective, high capacity, negative-emissions energy while: a) reducing surface ocean heat load, b) reducing thermal ocean expansion and sea-level rise, c) utilizing a very large, natural marine carbon storage reservoir, and d) helping mitigate ocean acidification. The technology also avoids the biophysical and land use limitations posed by negative emissions methods that rely on terrestrial biology, such as afforestation and BECCS. NEOTEC and other marine-based, renewable energy and CO2 removal approaches could therefore greatly increase the

  7. Does increasing active warm-up duration affect afternoon short-term maximal performance during Ramadan?

    Science.gov (United States)

    Baklouti, Hana; Aloui, Asma; Chtourou, Hamdi; Briki, Walid; Chaouachi, Anis; Souissi, Nizar

    2015-01-01

    The purpose of this study was to examine the effect of active warm-up duration on short-term maximal performance assessed during Ramadan in the afternoon. Twelve healthy active men took part in the study. The experimental design consisted of four test sessions conducted at 5 p.m., before and during Ramadan, either with a 5-minute or a 15-minute warm-up. The warm-up consisted in pedaling at 50% of the power output obtained at the last stage of a submaximal multistage cycling test. During each session, the subjects performed two vertical jump tests (squat jump and counter movement jump) for measurement of vertical jump height followed by a 30-second Wingate test for measurement of peak and mean power. Oral temperature was recorded at rest and after warming-up. Moreover, ratings of perceived exertion were obtained immediately after the Wingate test. Oral temperature was higher before Ramadan than during Ramadan at rest, and was higher after the 15-minute warm-up than the 5-minute warm-up both before and during Ramadan. In addition, vertical jump heights were not significantly different between the two warm-up conditions before and during Ramadan, and were lower during Ramadan than before Ramadan after both warm-up conditions. Peak and mean power were not significantly different between the two warm-up durations before Ramadan, but were significantly higher after the 5-minute warm-up than the 15-minute warm-up during Ramadan. Moreover, peak and mean power were lower during Ramadan than before Ramadan after both warm-up conditions. Furthermore, ratings of perceived exertion were higher after the 15-minute warm-up than the 5-minute warm-up only during Ramadan. The prolonged active warm-up has no effect on vertical jump height but impairs anaerobic power assessed during Ramadan in the afternoon.

  8. Global warming: Clouds cooled the Earth

    Science.gov (United States)

    Mauritsen, Thorsten

    2016-12-01

    The slow instrumental-record warming is consistent with lower-end climate sensitivity. Simulations and observations now show that changing sea surface temperature patterns could have affected cloudiness and thereby dampened the warming.

  9. In hot water: the future of Australia's coastal and marine ecosystems

    International Nuclear Information System (INIS)

    Richardson, Anthony J; Poloczanska, Elvira

    2007-01-01

    Full text: Full text: Marine ecosystems are extremely important economically and ecologically to Australia in terms of tourism, coastal defence, resources, and ecosystem services such as nutrient cycling and waste disposal. Australia is also a globally important repository of biodiversity. Here we describe the observed and potential future impacts of climate change on Australia's marine diversity. Climate simulations project oceanic warming, an increase in stratification, a strengthening of the Eastern Australian Current, increased ocean acidification, a rise in sea level, and altered storm and rainfall regimes, which taken collectively will fundamentally change marine ecosystems. There has already been widespread bleaching of tropical corals, poleward shifts of temperate fish and plankton populations, and a decline in cold-water giant kelp off Tasmania. Future changes are likely to be even more dramatic and have considerable economic and ecological consequences, especially in 'hot spots' of climate change such as theTasman Sea and the Great Barrier Reef area. Corals are likely to bleach more frequently and decline in abundance in response to both warming and ocean acidification. Planktonic animals with calcium carbonate shells, such as winged pteropod snails and coccolithophorid phytoplankton, are likely to decline as increased ocean acidification impairs their ability to maintain carbonate body structures. The projected high warming off south-east Australia is of particular concern. Marine ecosystems in this region are already stressed by high metal concentrations, sewage pollution, and overfishing, and climate models project that this region will warm more than anywhere else in the Southern Hemisphere this century because of enhanced southerly penetration of the East Australian Current. Venomous jellyfish and harmful algal blooms, which are major threats to human health, will potentially extend further south and occur more frequently. Temperate species

  10. Nickel and ocean warming affect scleractinian coral growth.

    Science.gov (United States)

    Biscéré, T; Lorrain, A; Rodolfo-Metalpa, R; Gilbert, A; Wright, A; Devissi, C; Peignon, C; Farman, R; Duvieilbourg, E; Payri, C; Houlbrèque, F

    2017-07-15

    The sensitivity of corals and their Symbiodinium to warming has been extensively documented; however very few studies considered that anthropogenic inputs such as metal pollution have already an impact on many fringing reefs. Thus, today, nickel releases are common in coastal ecosystems. In this study, two major reef-building species Acropora muricata and Pocillopora damicornis were exposed in situ to ambient and moderate nickel concentrations on a short-term period (1h) using benthic chamber experiments. Simultaneously, we tested in laboratory conditions the combined effects of a chronic exposure (8weeks) to moderate nickel concentrations and ocean warming on A. muricata. The in situ experiment highlighted that nickel enrichment, at ambient temperature, stimulated by 27 to 47% the calcification rates of both species but not their photosynthetic performances. In contrast, an exposure to higher nickel concentration, in combination with elevated temperature simulated in aquaria, severely depressed by 30% the growth of A. muricata. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Holocene environmental changes recorded in Dicksonfjorden and Woodfjorden, Svalbard: impacts of global climate changes in a glacial-marine system

    Science.gov (United States)

    Joo, Y. J.; Nam, S. I.; Son, Y. J.; Forwick, M.

    2017-12-01

    Fjords in the Svalbard archipelago are characterized by an extreme environmental gradient between 1) the glacial system affected by tidewater glaciers and seasonal sea ice inside the fjords and 2) the warm Atlantic Water intrusion by the West Spitsbergen Current from open ocean. As sediment is largely supplied from the terrestrial source area exposed along the steep slopes of the fjords, the changes in the surface processes affected by glaciers are likely preserved in the sediments in the inner fjords. On the other hand, variations in the influence of the warm Atlantic Water in the marine realm (e.g. marine productivity) can be archived in the sediment deposited in the vicinity of the entrance to the fjords. Since the last deglaciation of the Svalbard-Barents ice sheet ( 13000 yrs BP), the Svalbard fjords have faced dramatic climate changes including the early Holocene Climate Optimum (HCO) and subsequent cooling that eventually led to the current cold and dry climate. We investigate the Holocene environmental changes in both terrestrial and marine realms based on stable isotopic and inorganic geochemical analyses of sediments deposited in Dicksonfjorden and Woodfjorden in the western and northern Spitsbergen, respectively. The two fjords are expected to provide intriguing information regarding how terrestrial and marine realms of the Arctic fjords system responded to regional and global climate changes. Being a branch of the larger Isfjorden, Dicksonfjorden penetrates deeply to the land, whereas Woodfjorden is rather directly connected to the open ocean. Accordingly, the results suggest that the Dicksonfjorden sediment records mainly terrestrial signals with marked fluctuations in sediment composition that coincide with major climate changes (e.g. HCO). On the contrary, the two Woodfjorden cores collected from different parts of the fjord exhibit contrasting results, likely illustrating differing response of terrestrial and marine realms to the climate changes in

  12. Climate sensitivity of marine energy

    International Nuclear Information System (INIS)

    Harrison, G.P.; Wallace, A.R.

    2005-01-01

    Marine energy has a significant role to play in lowering carbon emissions within the energy sector. Paradoxically, it may be susceptible to changes in climate that will result from rising carbon emissions. Wind patterns are expected to change and this will alter wave regimes. Despite a lack of definite proof of a link to global warming, wind and wave conditions have been changing over the past few decades. Changes in the wind and wave climate will affect offshore wind and wave energy conversion: where the resource is constrained, production and economic performance may suffer; alternatively, stormier climates may create survival issues. Here, a relatively simple sensitivity study is used to quantify how changes in mean wind speed - as a proxy for wider climate change - influence wind and wave energy production and economics. (author)

  13. Marine Picoeukaryotes in Cold Water

    DEFF Research Database (Denmark)

    Sørensen, Nikolaj

    Picoeukaryotes form an important part of marine ecosystems, both as primary producers, bacterial grazers and parasites. The Arctic is experiencing accelerated global warming and picoeukaryotes may thus be considered to be at the forefront of climate change. This PhD thesis sets out to investigate...

  14. Physiological and ecological implications of ocean deoxygenation for vision in marine organisms

    Science.gov (United States)

    McCormick, Lillian R.; Levin, Lisa A.

    2017-08-01

    Climate change has induced ocean deoxygenation and exacerbated eutrophication-driven hypoxia in recent decades, affecting the physiology, behaviour and ecology of marine organisms. The high oxygen demand of visual tissues and the known inhibitory effects of hypoxia on human vision raise the questions if and how ocean deoxygenation alters vision in marine organisms. This is particularly important given the rapid loss of oxygen and strong vertical gradients in oxygen concentration in many areas of the ocean. This review evaluates the potential effects of low oxygen (hypoxia) on visual function in marine animals and their implications for marine biota under current and future ocean deoxygenation based on evidence from terrestrial and a few marine organisms. Evolutionary history shows radiation of eye designs during a period of increasing ocean oxygenation. Physiological effects of hypoxia on photoreceptor function and light sensitivity, in combination with morphological changes that may occur throughout ontogeny, have the potential to alter visual behaviour and, subsequently, the ecology of marine organisms, particularly for fish, cephalopods and arthropods with `fast' vision. Visual responses to hypoxia, including greater light requirements, offer an alternative hypothesis for observed habitat compression and shoaling vertical distributions in visual marine species subject to ocean deoxygenation, which merits further investigation. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  15. Habitat availability and heterogeneity and the indo-pacific warm pool as predictors of marine species richness in the tropical Indo-Pacific.

    Science.gov (United States)

    Sanciangco, Jonnell C; Carpenter, Kent E; Etnoyer, Peter J; Moretzsohn, Fabio

    2013-01-01

    Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs), 820 reef-building corals, 50 seagrasses, and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity, and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km(2) with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction of marine species and that changes in sea surface temperatures may influence the evolutionary potential of the region.

  16. Habitat availability and heterogeneity and the indo-pacific warm pool as predictors of marine species richness in the tropical Indo-Pacific.

    Directory of Open Access Journals (Sweden)

    Jonnell C Sanciangco

    Full Text Available Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs, 820 reef-building corals, 50 seagrasses, and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity, and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km(2 with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction of marine species and that changes in sea surface temperatures may influence the evolutionary potential of the region.

  17. A Key Marine Diazotroph in a Changing Ocean: The Interacting Effects of Temperature, CO2 and Light on the Growth of Trichodesmium erythraeum IMS101.

    Directory of Open Access Journals (Sweden)

    Tobias G Boatman

    Full Text Available Trichodesmium is a globally important marine diazotroph that accounts for approximately 60 - 80% of marine biological N2 fixation and as such plays a key role in marine N and C cycles. We undertook a comprehensive assessment of how the growth rate of Trichodesmium erythraeum IMS101 was directly affected by the combined interactions of temperature, pCO2 and light intensity. Our key findings were: low pCO2 affected the lower temperature tolerance limit (Tmin but had no effect on the optimum temperature (Topt at which growth was maximal or the maximum temperature tolerance limit (Tmax; low pCO2 had a greater effect on the thermal niche width than low-light; the effect of pCO2 on growth rate was more pronounced at suboptimal temperatures than at supraoptimal temperatures; temperature and light had a stronger effect on the photosynthetic efficiency (Fv/Fm than did CO2; and at Topt, the maximum growth rate increased with increasing CO2, but the initial slope of the growth-irradiance curve was not affected by CO2. In the context of environmental change, our results suggest that the (i nutrient replete growth rate of Trichodesmium IMS101 would have been severely limited by low pCO2 at the last glacial maximum (LGM, (ii future increases in pCO2 will increase growth rates in areas where temperature ranges between Tmin to Topt, but will have negligible effect at temperatures between Topt and Tmax, (iii areal increase of warm surface waters (> 18°C has allowed the geographic range to increase significantly from the LGM to present and that the range will continue to expand to higher latitudes with continued warming, but (iv continued global warming may exclude Trichodesmium spp. from some tropical regions by 2100 where temperature exceeds Topt.

  18. Is the distribution of Prochlorococcus and Synechococcus ecotypes in the Mediterranean Sea affected by global warming?

    Directory of Open Access Journals (Sweden)

    M. Ostrowski

    2011-09-01

    Full Text Available Biological communities populating the Mediterranean Sea, which is situated at the northern boundary of the subtropics, are often claimed to be particularly affected by global warming. This is indicated, for instance, by the introduction of (subtropical species of fish or invertebrates that can displace local species. This raises the question of whether microbial communities are similarly affected, especially in the Levantine basin where sea surface temperatures have significantly risen over the last 25 years (0.50 ± 0.11 °C in average per decade, P Prochlorococcus and Synechococcus, was examined during two cruises through both eastern and western Mediterranean Sea basins held in September 1999 (PROSOPE cruise and in June–July 2008 (BOUM cruise. Diversity was studied using dot blot hybridization with clade-specific 16S rRNA oligonucleotide probes and/or clone libraries of the 16S-23S ribosomal DNA Internal Transcribed Spacer (ITS region, with a focus on the abundance of clades that may constitute bioindicators of warm waters. During both cruises, the dominant Prochlorococcus clade in the upper mixed layer at all stations was HLI, a clade typical of temperate waters, whereas the HLII clade, the dominant group in (subtropical waters, was only present at very low concentrations. The Synechococcus community was dominated by clades I, III and IV in the northwestern waters of the Gulf of Lions and by clade III and groups genetically related to clades WPC1 and VI in the rest of the Mediterranean Sea. In contrast, only a few sequences of clade II, a group typical of warm waters, were observed. These data indicate that local cyanobacterial populations have not yet been displaced by their (subtropical counterparts.

  19. North Pacific deglacial hypoxic events linked to abrupt ocean warming

    Science.gov (United States)

    Praetorius, Summer K; Mix, Alan C.; Davies, Maureen H.; Wolhowe, Matthew D; Addison, Jason A.; Prahl, Frederick G

    2015-01-01

    Marine sediments from the North Pacific document two episodes of expansion and strengthening of the subsurface oxygen minimum zone (OMZ) accompanied by seafloor hypoxia during the last deglacial transition1, 2, 3, 4. The mechanisms driving this hypoxia remain under debate1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. We present a new high-resolution alkenone palaeotemperature reconstruction from the Gulf of Alaska that reveals two abrupt warming events of 4–5 degrees Celsius at the onset of the Bølling and Holocene intervals that coincide with sudden shifts to hypoxia at intermediate depths. The presence of diatomaceous laminations and hypoxia-tolerant benthic foraminiferal species, peaks in redox-sensitive trace metals12, 13, and enhanced 15N/14N ratio of organic matter13, collectively suggest association with high export production. A decrease in 18O/16O values of benthic foraminifera accompanying the most severe deoxygenation event indicates subsurface warming of up to about 2 degrees Celsius. We infer that abrupt warming triggered expansion of the North Pacific OMZ through reduced oxygen solubility and increased marine productivity via physiological effects; following initiation of hypoxia, remobilization of iron from hypoxic sediments could have provided a positive feedback on ocean deoxygenation through increased nutrient utilization and carbon export. Such a biogeochemical amplification process implies high sensitivity of OMZ expansion to warming.

  20. The effect of the global warming on marine ecosystems in the Arctic

    International Nuclear Information System (INIS)

    Wassmann, Paul

    2007-01-01

    The article discusses various results from studies of development in the ecosystems in the Arctic region and the effect the global warming may have. The warming in these areas is larger than in the central Europe and influence the economic and social development of the region. The focus is on the fisheries, exploitation of oil and gas, transport, diversity in species, acidification of the oceans, meteorological phenomena etc.. Some environmental and energy related aspects are mentioned. (tk)

  1. Decadal-scale variation in diet forecasts persistently poor breeding under ocean warming in a tropical seabird.

    Science.gov (United States)

    Tompkins, Emily M; Townsend, Howard M; Anderson, David J

    2017-01-01

    Climate change effects on population dynamics of natural populations are well documented at higher latitudes, where relatively rapid warming illuminates cause-effect relationships, but not in the tropics and especially the marine tropics, where warming has been slow. Here we forecast the indirect effect of ocean warming on a top predator, Nazca boobies in the equatorial Galápagos Islands, where rising water temperature is expected to exceed the upper thermal tolerance of a key prey item in the future, severely reducing its availability within the boobies' foraging envelope. From 1983 to 1997 boobies ate mostly sardines, a densely aggregated, highly nutritious food. From 1997 until the present, flying fish, a lower quality food, replaced sardines. Breeding success under the poor diet fell dramatically, causing the population growth rate to fall below 1, indicating a shrinking population. Population growth may not recover: rapid future warming is predicted around Galápagos, usually exceeding the upper lethal temperature and maximum spawning temperature of sardines within 100 years, displacing them permanently from the boobies' island-constrained foraging range. This provides rare evidence of the effect of ocean warming on a tropical marine vertebrate.

  2. Decadal-scale variation in diet forecasts persistently poor breeding under ocean warming in a tropical seabird.

    Directory of Open Access Journals (Sweden)

    Emily M Tompkins

    Full Text Available Climate change effects on population dynamics of natural populations are well documented at higher latitudes, where relatively rapid warming illuminates cause-effect relationships, but not in the tropics and especially the marine tropics, where warming has been slow. Here we forecast the indirect effect of ocean warming on a top predator, Nazca boobies in the equatorial Galápagos Islands, where rising water temperature is expected to exceed the upper thermal tolerance of a key prey item in the future, severely reducing its availability within the boobies' foraging envelope. From 1983 to 1997 boobies ate mostly sardines, a densely aggregated, highly nutritious food. From 1997 until the present, flying fish, a lower quality food, replaced sardines. Breeding success under the poor diet fell dramatically, causing the population growth rate to fall below 1, indicating a shrinking population. Population growth may not recover: rapid future warming is predicted around Galápagos, usually exceeding the upper lethal temperature and maximum spawning temperature of sardines within 100 years, displacing them permanently from the boobies' island-constrained foraging range. This provides rare evidence of the effect of ocean warming on a tropical marine vertebrate.

  3. Ocean acidification but not warming alters sex determination in the Sydney rock oyster, Saccostrea glomerata.

    Science.gov (United States)

    Parker, Laura M; O'Connor, Wayne A; Byrne, Maria; Dove, Michael; Coleman, Ross A; Pörtner, Hans-O; Scanes, Elliot; Virtue, Patti; Gibbs, Mitchell; Ross, Pauline M

    2018-02-14

    Whether sex determination of marine organisms can be altered by ocean acidification and warming during this century remains a significant, unanswered question. Here, we show that exposure of the protandric hermaphrodite oyster, Saccostrea glomerata to ocean acidification, but not warming, alters sex determination resulting in changes in sex ratios. After just one reproductive cycle there were 16% more females than males. The rate of gametogenesis, gonad area, fecundity, shell length, extracellular pH and survival decreased in response to ocean acidification. Warming as a sole stressor slightly increased the rate of gametogenesis, gonad area and fecundity, but this increase was masked by the impact of ocean acidification at a level predicted for this century. Alterations to sex determination, sex ratios and reproductive capacity will have flow on effects to reduce larval supply and population size of oysters and potentially other marine organisms. © 2018 The Author(s).

  4. Marine Pharmacology in 2012–2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action

    Directory of Open Access Journals (Sweden)

    Alejandro M. S. Mayer

    2017-08-01

    Full Text Available The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998–2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012–2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories.

  5. Temperature change affected groundwater quality in a confined marine aquifer during long-term heating and cooling.

    Science.gov (United States)

    Saito, Takeshi; Hamamoto, Shoichiro; Ueki, Takashi; Ohkubo, Satoshi; Moldrup, Per; Kawamoto, Ken; Komatsu, Toshiko

    2016-05-01

    Global warming and urbanization together with development of subsurface infrastructures (e.g. subways, shopping complexes, sewage systems, and Ground Source Heat Pump (GSHP) systems) will likely cause a rapid increase in the temperature of relatively shallow groundwater reservoirs (subsurface thermal pollution). However, potential effects of a subsurface temperature change on groundwater quality due to changed physical, chemical, and microbial processes have received little attention. We therefore investigated changes in 34 groundwater quality parameters during a 13-month enhanced-heating period, followed by 14 months of natural or enhanced cooling in a confined marine aquifer at around 17 m depth on the Saitama University campus, Japan. A full-scale GSHP test facility consisting of a 50 m deep U-tube for circulating the heat-carrying fluid and four monitoring wells at 1, 2, 5, and 10 m from the U-tube were installed, and groundwater quality was monitored every 1-2 weeks. Rapid changes in the groundwater level in the area, especially during the summer, prevented accurate analyses of temperature effects using a single-well time series. Instead, Dual-Well Analysis (DWA) was applied, comparing variations in subsurface temperature and groundwater chemical concentrations between the thermally-disturbed well and a non-affected reference well. Using the 1 m distant well (temperature increase up to 7 °C) and the 10 m distant well (non-temperature-affected), the DWA showed an approximately linear relationships for eight components (B, Si, Li, dissolved organic carbon (DOC), Mg(2+), NH4(+), Na(+), and K(+)) during the combined 27 months of heating and cooling, suggesting changes in concentration between 4% and 31% for a temperature change of 7 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Marine viruses and global climate change

    NARCIS (Netherlands)

    Danovaro, R.; Corinaldesi, C.; Dell'Anno, A.; Fuhrman, J.A.; Middelburg, J.J.; Noble, R.T.; Suttle, C.A.

    2011-01-01

    Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface

  7. Marine Invertebrates: Communities at Risk

    Directory of Open Access Journals (Sweden)

    Jennifer Mather

    2013-06-01

    Full Text Available Our definition of the word ‘animal’ centers on vertebrates, yet 99% of the animals on the planet are invertebrates, about which we know little. In addition, although the Census of Marine Life (COML.org has recently conducted an extensive audit of marine ecosystems, we still do not understand much about the animals of the seas. Surveys of the best-known ecosystems, in which invertebrate populations often play a key role, show that the invertebrate populations are affected by human impact. Coral animals are the foundation of coral reef systems, which are estimated to contain 30% of the species in the ocean. Physical impact and chemical changes on the water severely damage these reefs, and may lead to the removal of these important habitats. Tiny pteropod molluscs live in huge numbers in the polar seas, and their fragile shells are particularly vulnerable to ocean acidification. Their removal would mean that fishes on which we depend would have a hugely diminished food supply. In the North Sea, warming is leading to replacement of colder water copepods by warmer water species which contain less fat. This is having an effect on the birds which eat them, who enrich the otherwise poor land on which they nest. Conversely, the warming of the water and the loss of top predators such as whales and sharks has led to an explosion of the jumbo squid of the Pacific coast of North America. This is positive in the development of a squid fishery, yet negative because the squid eat fish that have been the mainstay of the fishery along that coast. These examples show how invertebrates are key in the oceans, and what might happen when global changes impact them.

  8. Marine invertebrates: communities at risk.

    Science.gov (United States)

    Mather, Jennifer

    2013-06-10

    Our definition of the word 'animal' centers on vertebrates, yet 99% of the animals on the planet are invertebrates, about which we know little. In addition, although the Census of Marine Life (COML.org) has recently conducted an extensive audit of marine ecosystems, we still do not understand much about the animals of the seas. Surveys of the best-known ecosystems, in which invertebrate populations often play a key role, show that the invertebrate populations are affected by human impact. Coral animals are the foundation of coral reef systems, which are estimated to contain 30% of the species in the ocean. Physical impact and chemical changes on the water severely damage these reefs, and may lead to the removal of these important habitats. Tiny pteropod molluscs live in huge numbers in the polar seas, and their fragile shells are particularly vulnerable to ocean acidification. Their removal would mean that fishes on which we depend would have a hugely diminished food supply. In the North Sea, warming is leading to replacement of colder water copepods by warmer water species which contain less fat. This is having an effect on the birds which eat them, who enrich the otherwise poor land on which they nest. Conversely, the warming of the water and the loss of top predators such as whales and sharks has led to an explosion of the jumbo squid of the Pacific coast of North America. This is positive in the development of a squid fishery, yet negative because the squid eat fish that have been the mainstay of the fishery along that coast. These examples show how invertebrates are key in the oceans, and what might happen when global changes impact them.

  9. Thirty-Three Years of Ocean Benthic Warming Along the U.S. Northeast Continental Shelf and Slope: Patterns, Drivers, and Ecological Consequences

    Science.gov (United States)

    Kavanaugh, Maria T.; Rheuban, Jennie E.; Luis, Kelly M. A.; Doney, Scott C.

    2017-12-01

    The U.S. Northeast Continental Shelf is experiencing rapid warming, with potentially profound consequences to marine ecosystems. While satellites document multiple scales of spatial and temporal variability on the surface, our understanding of the status, trends, and drivers of the benthic environmental change remains limited. We interpolated sparse benthic temperature data along the New England Shelf and upper Slope using a seasonally dynamic, regionally specific multiple linear regression model that merged in situ and remote sensing data. The statistical model predicted nearly 90% of the variability of the data, resulting in a synoptic time series spanning over three decades from 1982 to 2014. Benthic temperatures increased throughout the domain, including in the Gulf of Maine. Rates of benthic warming ranged from 0.1 to 0.4°C per decade, with fastest rates occurring in shallow, nearshore regions and on Georges Bank, the latter exceeding rates observed in the surface. Rates of benthic warming were up to 1.6 times faster in winter than the rest of the year in many regions, with important implications for disease occurrence and energetics of overwintering species. Drivers of warming varied over the domain. In southern New England and the mid-Atlantic shallow Shelf regions, benthic warming was tightly coupled to changes in SST, whereas both regional and basin-scale changes in ocean circulation affect temperatures in the Gulf of Maine, the Continental Shelf, and Georges Banks. These results highlight data gaps, the current feasibility of prediction from remotely sensed variables, and the need for improved understanding on how climate may affect seasonally specific ecological processes.

  10. Experimental winter warming modifies thermal performance and primes acorn ants for warm weather

    DEFF Research Database (Denmark)

    MacLean, Heidi J.; Penick, Clint A.; Dunn, Robert R.

    2017-01-01

    The frequency of warm winter days is increasing under global climate change, but how organisms respond to warmer winters is not well understood. Most studies focus on growing season responses to warming. Locomotor performance is often highly sensitive to temperature, and can determine fitness...... outcomes through a variety of mechanisms including resource acquisition and predator escape. As a consequence, locomotor performance, and its impacts on fitness, may be strongly affected by winter warming in winter-active species. Here we use the acorn ant, Temnothorax curvispinosus, to explore how thermal...... performance (temperature-driven plasticity) in running speed is influenced by experimental winter warming of 3–5 °C above ambient in a field setting. We used running speed as a measure of performance as it is a common locomotor trait that influences acquisition of nest sites and food in acorn ants...

  11. The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming

    Science.gov (United States)

    Zhang, Xiaoye; Zhong, Junting; Wang, Jizhi; Wang, Yaqiang; Liu, Yanju

    2018-04-01

    The weather conditions affecting aerosol pollution in Beijing and its vicinity (BIV) in wintertime have worsened in recent years, particularly after 2010. The relation between interdecadal changes in weather conditions and climate warming is uncertain. Here, we analyze long-term variations of an integrated pollution-linked meteorological index (which is approximately and linearly related to aerosol pollution), the extent of changes in vertical temperature differences in the boundary layer (BL) in BIV, and northerly surface winds from Lake Baikal during wintertime to evaluate the potential contribution of climate warming to changes in meteorological conditions directly related to aerosol pollution in this area; this is accomplished using NCEP reanalysis data, surface observations, and long-term vertical balloon sounding observations since 1960. The weather conditions affecting BIV aerosol pollution are found to have worsened since the 1960s as a whole. This worsening is more significant after 2010, with PM2.5 reaching unprecedented high levels in many cities in China, particularly in BIV. The decadal worsening of meteorological conditions in BIV can partly be attributed to climate warming, which is defined by more warming in the higher layers of the boundary layer (BL) than the lower layers. This worsening can also be influenced by the accumulation of aerosol pollution, to a certain extent (particularly after 2010), because the increase in aerosol pollution from the ground leads to surface cooling by aerosol-radiation interactions, which facilitates temperature inversions, increases moisture accumulations, and results in the extra deterioration of meteorological conditions. If analyzed as a linear trend, weather conditions have worsened by ˜ 4 % each year from 2010 to 2017. Given such a deterioration rate, the worsening of weather conditions may lead to a corresponding amplitude increase in PM2.5 in BIV during wintertime in the next 5 years (i.e., 2018 to 2022

  12. Seagrass ecophysiological performance under ocean warming and acidification.

    Science.gov (United States)

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R; Rosa, Inês C; Grilo, Tiago F; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-02-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, F v /F m ) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and F v /F m (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming.

  13. Warming by immersion or exercise affects initial cooling rate during subsequent cold water immersion.

    Science.gov (United States)

    Scott, Chris G; Ducharme, Michel B; Haman, François; Kenny, Glen P

    2004-11-01

    We examined the effect of prior heating, by exercise and warm-water immersion, on core cooling rates in individuals rendered mildly hypothermic by immersion in cold water. There were seven male subjects who were randomly assigned to one of three groups: 1) seated rest for 15 min (control); 2) cycling ergometry for 15 min at 70% Vo2 peak (active warming); or 3) immersion in a circulated bath at 40 degrees C to an esophageal temperature (Tes) similar to that at the end of exercise (passive warming). Subjects were then immersed in 7 degrees C water to a Tes of 34.5 degrees C. Initial Tes cooling rates (initial approximately 6 min cooling) differed significantly among the treatment conditions (0.074 +/- 0.045, 0.129 +/- 0.076, and 0.348 +/- 0.117 degrees C x min(-1) for control, active, and passive warming conditions, respectively); however, secondary cooling rates (rates following initial approximately 6 min cooling to the end of immersion) were not different between treatments (average of 0.102 +/- 0.085 degrees C x min(-1)). Overall Tes cooling rates during the full immersion period differed significantly and were 0.067 +/- 0.047, 0.085 +/- 0.045, and 0.209 +/- 0.131 degrees C x min(-1) for control, active, and passive warming, respectively. These results suggest that prior warming by both active and, to a greater extent, passive warming, may predispose a person to greater heat loss and to experience a larger decline in core temperature when subsequently exposed to cold water. Thus, functional time and possibly survival time could be reduced when cold water immersion is preceded by whole-body passive warming, and to a lesser degree by active warming.

  14. Is the distribution of Prochlorococcus and Synechococcus ecotypes in the Mediterranean Sea affected by global warming?

    Science.gov (United States)

    Mella-Flores, D.; Mazard, S.; Humily, F.; Partensky, F.; Mahé, F.; Bariat, L.; Courties, C.; Marie, D.; Ras, J.; Mauriac, R.; Jeanthon, C.; Bendif, E. M.; Ostrowski, M.; Scanlan, D. J.; Garczarek, L.

    2011-05-01

    Biological communities populating the Mediterranean Sea, which is situated at the northern boundary of the subtropics, are often claimed to be particularly affected by global warming. This is indicated, for instance, by the introduction of (sub)tropical species of fish or invertebrates that can displace local species. This raises the question of whether microbial communities are similarly affected, especially in the Levantine basin where sea surface temperatures have risen in recent years. In this paper, the genetic diversity of the two most abundant members of the phytoplankton community, the picocyanobacteria Prochlorococcus and Synechococcus, was examined on a transect from the South coast of France to Cyprus in the summer of 2008 (BOUM cruise). Diversity was studied using dot blot hybridization with clade-specific 16S rRNA oligonucleotide probes and clone libraries of the 16S-23S ribosomal DNA Internal Transcribed Spacer (ITS) region. Data were compared with those obtained during the PROSOPE cruise held almost a decade earlier, with a focus on the abundance of clades that may constitute bioindicators of warm waters. During both cruises, the dominant Prochlorococcus clade in the upper mixed layer at all stations was HLI, a clade typical of temperate waters, whereas the HLII clade, the dominant group in (sub)tropical waters, was only present at very low concentrations. The Synechococcus community was dominated by clades I, III and IV in the northwestern waters of the Gulf of Lions and by clade III and groups genetically related to clades WPC1 and VI in the rest of the Mediterranean Sea. In contrast, only a few sequences of clade II, a group typical of warm waters, were observed. These data indicate that local cyanobacterial populations have not yet been displaced by their (sub)tropical counterparts. This is discussed in the context of the low phosphorus concentrations found in surface waters in the eastern Mediterranean basin, as this may constitute a barrier to

  15. Climate. Meeting the challenge of global warming

    International Nuclear Information System (INIS)

    Masson-Delmotte, Valerie; Mann, Michael; Greene, Charles; Salas y Melia, David; Dufresne, Jean-Louis; Journe, Venance; Guegan, Jean-Francois; ); Bopp, Laurent; Magnan, Alexandre; Gattuso, Jean-Pierre; Bally, Rene; Duponnois, Robin; Giodda, Alain; MOATTI, JEAN-PAUL; Recio, Carlos; Santana, Luis; Hulot, Nicolas; Criqui, Patrick; Meritet, Sophie; Jacobson, Mark; Delucchi, Mark; Julliard, Romain; Balibar, Sebastien; Prevot, Anne-Caroline; Colleony, Agathe; Mangin, Loic

    2015-01-01

    The contributions of this publication first discuss and comment the cost of inaction in front of global warming. The authors deny the existence of a climate pause, explain the existence of harsh winters in Europe in the context of global warming, outline that models developed and used in the 1960 already predicted the present trend, discuss the complex relationships between climate change and health, outline the threats on the oceans (acidification, impact on marine species, level rise) and consequently on mankind. A second set of contributions addresses opportunities to be implemented now: to plant trees along the Sahara, the example of an ecologic island (El Hierro, Canaries Islands), the commitment of communities, associations and citizens, the necessary energy transition, innovation at the service of climate, the role of finances and investments. The third set of contributions addresses perspectives: to do without fossil energies, how to reduce the impact of global warming in cities (by planting trees and closing shutters), the emergence of participative science, arguments against climate sceptics, a difficult change of behaviours

  16. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments

    DEFF Research Database (Denmark)

    Robador, Alberto; Brüchert, Volker; Jørgensen, Bo Barker

    2009-01-01

    Arctic regions may be particularly sensitive to climate warming and, consequently, rates of carbon mineralization in warming marine sediment may also be affected. Using long-term (24 months) incubation experiments at 0°C, 10°C and 20°C, the temperature response of metabolic activity and community...... composition of sulfate-reducing bacteria were studied in the permanently cold sediment of north-western Svalbard (Arctic Ocean) and compared with a temperate habitat with seasonally varying temperature (German Bight, North Sea). Short-term 35S-sulfate tracer incubations in a temperature-gradient block...... (between -3.5°C and +40°C) were used to assess variations in sulfate reduction rates during the course of the experiment. Warming of arctic sediment resulted in a gradual increase of the temperature optima (Topt) for sulfate reduction suggesting a positive selection of psychrotolerant/mesophilic sulfate...

  17. Warming affects growth rates and microcystin production in tropical bloom-forming microcystis strains

    NARCIS (Netherlands)

    Bui, Trung; Dao, Thanh Son; Vo, Truong Giang; Lürling, Miquel

    2018-01-01

    Warming climate is predicted to promote cyanobacterial blooms but the toxicity of cyanobacteria under global warming is less well studied. We tested the hypothesis that raising temperature may lead to increased growth rates but to decreased microcystin (MC) production in tropical Microcystis

  18. Non-additive effects of ocean acidification in combination with warming on the larval proteome of the Pacific oyster, Crassostrea gigas.

    Science.gov (United States)

    Harney, Ewan; Artigaud, Sébastien; Le Souchu, Pierrick; Miner, Philippe; Corporeau, Charlotte; Essid, Hafida; Pichereau, Vianney; Nunes, Flavia L D

    2016-03-01

    Increasing atmospheric carbon dioxide results in ocean acidification and warming, significantly impacting marine invertebrate larvae development. We investigated how ocean acidification in combination with warming affected D-veliger larvae of the Pacific oyster Crassostrea gigas. Larvae were reared for 40h under either control (pH8.1, 20 °C), acidified (pH7.9, 20 °C), warm (pH8.1, 22 °C) or warm acidified (pH7.9, 22 °C) conditions. Larvae in acidified conditions were significantly smaller than in the control, but warm acidified conditions mitigated negative effects on size, and increased calcification. A proteomic approach employing two-dimensional electrophoresis (2-DE) was used to quantify proteins and relate their abundance to phenotypic traits. In total 12 differentially abundant spots were identified by nano-liquid chromatography-tandem mass spectrometry. These proteins had roles in metabolism, intra- and extra-cellular matrix formations, stress response, and as molecular chaperones. Seven spots responded to reduced pH, four to increased temperature, and six to acidification and warming. Reduced abundance of proteins such as ATP synthase and GAPDH, and increased abundance of superoxide dismutase, occurred when both pH and temperature changes were imposed, suggesting altered metabolism and enhanced oxidative stress. These results identify key proteins that may be involved in the acclimation of C. gigas larvae to ocean acidification and warming. Increasing atmospheric CO2 raises sea surface temperatures and results in ocean acidification, two climatic variables known to impact marine organisms. Larvae of calcifying species may be particularly at risk to such changing environmental conditions. The Pacific oyster Crassostrea gigas is ecologically and commercially important, and understanding its ability to acclimate to climate change will help to predict how aquaculture of this species is likely to be impacted. Modest, yet realistic changes in pH and

  19. Analysis of chemical factors affecting marine ecosystem around nuclear power plant

    International Nuclear Information System (INIS)

    Chun, Kwan Sik; Choi, Yoon Dong; Chun, Ki Jeong; Kim, Jin Kyu; Jung, Kyeong Chai; Lee, Yeong Keun; Park, Hyo Kook

    1994-06-01

    The ecological data of the coastal area of Youngkwang nuclear power plant from 1987 to 1993 were comprehensively analyzed, and various physical and chemical properties of sea water and sediments were measured. Major factors affecting phytoplankton standing crops were suspended substances, nitrate, and silicate. The contents of iron, chromium, copper, and sulfur in sediments sampled from the discharge channel were slightly higher than those in the other areas. In order to qantify the chemical impacts on marine ecosystem, it is desirable that a systematic survey be made through the whole year cycle to assure the consistency and confidence of the related data. (Author)

  20. Biological responses of two marine organisms of ecological relevance to on-going ocean acidification and global warming.

    Science.gov (United States)

    Gomiero, A; Bellerby, R G J; Manca Zeichen, M; Babbini, L; Viarengo, A

    2018-05-01

    Recently, there has been a growing concern that climate change may rapidly and extensively alter global ecosystems with unknown consequences for terrestrial and aquatic life. While considerable emphasis has been placed on terrestrial ecology consequences, aquatic environments have received relatively little attention. Limited knowledge is available on the biological effects of increments of seawater temperature and pH decrements on key ecological species, i.e., primary producers and/or organisms representative of the basis of the trophic web. In the present study, we addressed the biological effects of global warming and ocean acidification on two model organisms, the microbenthic marine ciliate Euplotes crassus and the green alga Dunaliella tertiocleta using a suite of high level ecological endpoint tests and sub-lethal stress measures. Organisms were exposed to combinations of pH and temperature (TR1: 7.9 [pH], 25.5 °C and TR2: 7.8 [pH], 27,0 °C) simulating two possible environmental scenarios predicted to occur in the habitats of the selected species before the end of this century. The outcomes of the present study showed that the tested scenarios did not induce a significant increment of mortality on protozoa. Under the most severe exposure conditions, sub-lethal stress indices show that pH homeostatic mechanisms have energetic costs that divert energy from essential cellular processes and functions. The marine protozoan exhibited significant impairment of the lysosomal compartment and early signs of oxidative stress under these conditions. Similarly, significant impairment of photosynthetic efficiency and an increment in lipid peroxidation were observed in the autotroph model organism held under the most extreme exposure condition tested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Warming and neighbor removal affect white spruce seedling growth differently above and below treeline.

    Science.gov (United States)

    Okano, Kyoko; Bret-Harte, M Syndonia

    2015-01-01

    Climate change is expected to be pronounced towards higher latitudes and altitudes. Warming triggers treeline and vegetation shifts, which may aggravate interspecific competition and affect biodiversity. This research tested the effects of a warming climate, habitat type, and neighboring plant competition on the establishment and growth of white spruce (Picea glauca (Moench) Voss) seedlings in a subarctic mountain region. P. glauca seedlings were planted in June 2010 under 4 different treatments (high/control temperatures, with/without competition) in 3 habitats (alpine ridge above treeline/tundra near treeline /forest below treeline habitats). After two growing seasons in 2011, growth, photosynthesis and foliar C and N data were obtained from a total of 156, one-and-a-half year old seedlings that had survived. Elevated temperatures increased growth and photosynthetic rates above and near treeline, but decreased them below treeline. Competition was increased by elevated temperatures in all habitat types. Our results suggest that increasing temperatures will have positive effects on the growth of P. glauca seedlings at the locations where P. glauca is expected to expand its habitat, but increasing temperatures may have negative effects on seedlings growing in mature forests. Due to interspecific competition, possibly belowground competition, the upslope expansion of treelines may not be as fast in the future as it was the last fifty years.

  2. Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action †

    Science.gov (United States)

    Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2013-01-01

    The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories. PMID:23880931

  3. Biochemical impacts of Hg in Mytilus galloprovincialis under present and predicted warming scenarios.

    Science.gov (United States)

    Coppola, Francesca; Almeida, Ângela; Henriques, Bruno; Soares, Amadeu M V M; Figueira, Etelvina; Pereira, Eduarda; Freitas, Rosa

    2017-12-01

    The interest in the consequences of climate change on the physiological and biochemical functioning of marine organisms is increasing, but the indirect and interactive effects resulting from warming on bioconcentration and responsiveness to pollutants are still poorly explored, particularly in terms of cellular responses. The present study investigated the impacts of Hg in Mytilus galloprovincialis under control (17°C) and warming (21°C) conditions, assessing mussels Hg bioconcentration capacity, metabolic and oxidative status after 14 and 28days of exposure. Results obtained showed greater impacts in mussels exposed for 28days in comparison to 14days of exposure. Furthermore, our findings revealed that the increase in temperature from 17 to 21°C reduced the bioconcentration of Hg by M. galloprovincialis, which may explain higher mortality rates at 17°C in comparison to 21°C. Lower Hg concentration at 21°C in mussels tissue may result from valves closure for longer periods, identified by reduced energy reserves consumption at higher temperature, which in turn might also contributed to higher oxidative stress in organisms exposed to this condition. The highest LPO levels observed in mussels exposed to higher temperatures alone indicate that warming conditions will greatly affect M. galloprovincialis. Furthermore, the present study showed that the impacts induced by the combination of Hg and warming were similar to the ones caused by increased temperature acting alone, mainly due to increased antioxidant defenses in organisms under combined effects of Hg and warming, suggesting that warming was the factor that mostly contributed to oxidative stress in mussels. Although higher mortality was observed in individuals exposed to 17°C and Hg compared to organisms exposed to Hg at 21°C, the oxidative stress induced at higher temperature may generate negative consequences on mussels reproductive and feeding capacity, growth and, consequently, on population

  4. Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming

    Science.gov (United States)

    Pieńkowski, Grzegorz; Hodbod, Marta; Ullmann, Clemens V.

    2016-08-01

    Soils - constituting the largest terrestrial carbon pool - are vulnerable to climatic warming. Currently existing uncertainties regarding carbon fluxes within terrestrial systems can be addressed by studies of past carbon cycle dynamics and related climate change recorded in sedimentary successions. Here we show an example from the Early Jurassic (early Toarcian, c. 183 mya) marginal-marine strata from Poland, tracking the hinterland response to climatic changes through a super-greenhouse event. In contrast to anoxia-related enhanced carbon storage in coeval open marine environments, Total Organic Carbon (TOC) concentrations in the Polish successions are substantially reduced during this event. Increasing temperature favoured fungal-mediated decomposition of plant litter - specifically of normally resistant woody tissues. The associated injection of oxidized organic matter into the atmosphere corresponds to abrupt changes in standing vegetation and may have contributed significantly to the amplified greenhouse climate on Earth. The characteristic Toarcian signature of multiple warm pulses coinciding with rapidly decreasing carbon isotope ratios may in part be the result of a radical reduction of the terrestrial carbon pool as a response to climate change.

  5. Recent warming of lake Kivu.

    Science.gov (United States)

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  6. Recent warming of lake Kivu.

    Directory of Open Access Journals (Sweden)

    Sergei Katsev

    Full Text Available Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  7. Coral and mollusc resistance to ocean acidification adversely affected by warming

    OpenAIRE

    Rodolfo-Metalpa, R; Houlbrèque, F; Tambutté, E; Boisson, F; Baggini, C; Patti, FP; Jeffree, R; Fine, M; Foggo, A; Gattuso, JP; Hall-Spencer, JM

    2011-01-01

    Increasing atmospheric carbon dioxide (CO 2) concentrations are expectedto decrease surface ocean pH by 0.3-0.5 units by 2100 (refs,), lowering the carbonate ion concentration of surfacewaters. This rapid acidification is predicted to dramatically decrease calcification in many marine organisms. Reduced skeletal growth under increased CO 2 levels has already been shown for corals, molluscs and many other marine organisms. The impact of acidification on the ability of individual species to cal...

  8. Incubation under Climate Warming Affects Behavioral Lateralisation in Port Jackson Sharks

    Directory of Open Access Journals (Sweden)

    Catarina Vila Pouca

    2018-05-01

    Full Text Available Climate change is warming the world’s oceans at an unprecedented rate. Under predicted end-of-century temperatures, many teleosts show impaired development and altered critical behaviors, including behavioral lateralisation. Since laterality is an expression of brain functional asymmetries, changes in the strength and direction of lateralisation suggest that rapid climate warming might impact brain development and function. However, despite the implications for cognitive functions, the potential effects of elevated temperature in lateralisation of elasmobranch fishes are unknown. We incubated and reared Port Jackson sharks at current and projected end-of-century temperatures and measured preferential detour responses to left or right. Sharks incubated at elevated temperature showed stronger absolute laterality and were significantly biased towards the right relative to sharks reared at current temperature. We propose that animals reared under elevated temperatures might have more strongly lateralized brains to cope with deleterious effects of climate change on brain development and growth. However, far more research in elasmobranch lateralisation is needed before the significance of these results can be fully comprehended. This study provides further evidence that elasmobranchs are susceptible to the effects of future ocean warming, though behavioral mechanisms might allow animals to compensate for some of the challenges imposed by climate change.

  9. Arctic warming will promote Atlantic-Pacific fish interchange

    DEFF Research Database (Denmark)

    Wisz, Mary; Broennimann, O.; Grønkjær, Peter

    2015-01-01

    the interchange of marine biota between the two seas. Here, we forecast the potential northward progression of 515 fish species following climate change, and report the rate of potential species interchange between the Atlantic and the Pacific via the Northwest Passage and the Northeast Passage. For this, we...... projected niche-based models under climate change scenarios and simulated the spread of species through the passages when climatic conditions became suitable. Results reveal a complex range of responses during this century, and accelerated interchange after 2050. By 2100 up to 41 species could enter......Throughout much of the Quaternary Period, inhospitable environmental conditions above the Arctic Circle have been a formidable barrier separating most marine organisms in the North Atlantic from those in the North Pacific. Rapid warming has begun to lift this barrier, potentially facilitating...

  10. Contrasting Heat Budget Dynamics During Two La Niña Marine Heat Wave Events Along Northwestern Australia

    Science.gov (United States)

    Xu, Jiangtao; Lowe, Ryan J.; Ivey, Gregory N.; Jones, Nicole L.; Zhang, Zhenling

    2018-02-01

    Two marine heat wave events along Western Australia (WA) during the alternate austral summer periods of 2010/2011 and 2012/2013, both linked to La Niña conditions, severely impacted marine ecosystems over more than 12° of latitude, which included the unprecedented bleaching of many coral reefs. Although these two heat waves were forced by similar large-scale climate drivers, the warming patterns differed substantially between events. The central coast of WA (south of 22°S) experienced greater warming in 2010/2011, whereas the northwestern coast of WA experienced greater warming in 2012/2013. To investigate how oceanic and atmospheric heat exchange processes drove these different spatial patterns, an analysis of the ocean heat budget was conducted by integrating remote sensing observations, in situ mooring data, and a high-resolution (˜1 km) ocean circulation model (Regional Ocean Modeling System). The results revealed substantial spatial differences in the relative contributions made by heat advection and air-sea heat exchange between the two heat wave events. During 2010/2011, anomalous warming driven by heat advection was present throughout the region but was much stronger south of 22°S where the poleward-flowing Leeuwin Current strengthens. During 2012/2013, air-sea heat exchange had a much more positive (warming) influence on sea surface temperatures (especially in the northwest), and when combined with a more positive contribution of heat advection in the north, this can explain the regional differences in warming between these two La Niña-associated marine heat wave events.

  11. Sea Surface Warming and Increased Aridity at Mid-latitudes during Eocene Thermal Maximum 2

    Science.gov (United States)

    Harper, D. T.; Zeebe, R. E.; Hoenisch, B.; Schrader, C.; Lourens, L. J.; Zachos, J. C.

    2017-12-01

    Early Eocene hyperthermals, i.e. abrupt global warming events characterized by the release of isotopically light carbon to the atmosphere, can provide insight into the sensitivity of the Earth's climate system and hydrologic cycle to carbon emissions. Indeed, the largest Eocene hyperthermal, the Paleocene-Eocene Thermal Maximum (PETM), has provided one case study of extreme and abrupt global warming, with a mass of carbon release roughly equivalent to total modern fossil fuel reserves and a release rate 1/10 that of modern. Global sea surface temperatures (SST) increased by 5-8°C during the PETM and extensive evidence from marine and terrestrial records indicates significant shifts in the hydrologic cycle consistent with an increase in poleward moisture transport in response to surface warming. The second largest Eocene hyperthermal, Eocene Thermal Maximum 2 (ETM-2) provides an additional calibration point for determining the sensitivity of climate and the hydrologic cycle to massive carbon release. Marine carbon isotope excursions (CIE) and warming at the ETM-2 were roughly half as large as at the PETM, but reliable evidence for shifts in temperature and the hydrologic cycle are sparse for the ETM-2. Here, we utilize coupled planktic foraminiferal δ18O and Mg/Ca to determine ΔSST and ΔSSS (changes in sea surface temperature and salinity) for ETM-2 at ODP Sites 1209 (28°N paleolatitude in the Pacific) and 1265 (42°S paleolatitude in the S. Atlantic), accounting for potential pH influence on the two proxies by using LOSCAR climate-carbon cycle simulated ΔpH. Our results indicate a warming of 2-4°C at both mid-latitude sites and an increase in SSS of 1-3ppt, consistent with simulations of early Paleogene hydroclimate that suggest an increase in low- to mid-latitude aridity due to an intensification of moisture transport to high-latitudes. Furthermore, the magnitude of the CIE and warming for ETM-2 scales with the CIE and warming for the PETM, suggesting that

  12. Climatic warming strengthens a positive feedback between alpine shrubs and fire.

    Science.gov (United States)

    Camac, James S; Williams, Richard J; Wahren, Carl-Henrik; Hoffmann, Ary A; Vesk, Peter A

    2017-08-01

    Climate change is expected to increase fire activity and woody plant encroachment in arctic and alpine landscapes. However, the extent to which these increases interact to affect the structure, function and composition of alpine ecosystems is largely unknown. Here we use field surveys and experimental manipulations to examine how warming and fire affect recruitment, seedling growth and seedling survival in four dominant Australian alpine shrubs. We found that fire increased establishment of shrub seedlings by as much as 33-fold. Experimental warming also doubled growth rates of tall shrub seedlings and could potentially increase their survival. By contrast, warming had no effect on shrub recruitment, postfire tussock regeneration, or how tussock grass affected shrub seedling growth and survival. These findings indicate that warming, coupled with more frequent or severe fires, will likely result in an increase in the cover and abundance of evergreen shrubs. Given that shrubs are one of the most flammable components in alpine and tundra environments, warming is likely to strengthen an existing feedback between woody species abundance and fire in these ecosystems. © 2017 John Wiley & Sons Ltd.

  13. Flourishing ocean drives the end-Permian marine mass extinction.

    Science.gov (United States)

    Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas; Strauss, Harald; Korn, Dieter; Korte, Christoph

    2015-08-18

    The end-Permian mass extinction, the most severe biotic crisis in the Phanerozoic, was accompanied by climate change and expansion of oceanic anoxic zones. The partitioning of sulfur among different exogenic reservoirs by biological and physical processes was of importance for this biodiversity crisis, but the exact role of bioessential sulfur in the mass extinction is still unclear. Here we show that globally increased production of organic matter affected the seawater sulfate sulfur and oxygen isotope signature that has been recorded in carbonate rock spanning the Permian-Triassic boundary. A bifurcating temporal trend is observed for the strata spanning the marine mass extinction with carbonate-associated sulfate sulfur and oxygen isotope excursions toward decreased and increased values, respectively. By coupling these results to a box model, we show that increased marine productivity and successive enhanced microbial sulfate reduction is the most likely scenario to explain these temporal trends. The new data demonstrate that worldwide expansion of euxinic and anoxic zones are symptoms of increased biological carbon recycling in the marine realm initiated by global warming. The spatial distribution of sulfidic water column conditions in shallow seafloor environments is dictated by the severity and geographic patterns of nutrient fluxes and serves as an adequate model to explain the scale of the marine biodiversity crisis. Our results provide evidence that the major biodiversity crises in Earth's history do not necessarily implicate an ocean stripped of (most) life but rather the demise of certain eukaryotic organisms, leading to a decline in species richness.

  14. Does warming affect growth rate and biomass production of shrubs in the High Arctic?

    DEFF Research Database (Denmark)

    Campioli, Matteo; Schmidt, Niels Martin; Albert, Kristian Rost

    2013-01-01

    Few studies have assessed directly the impact of warming on plant growth and biomass production in the High Arctic. Here, we aimed to investigate the impact of 7 years of warming (open greenhouses) on the aboveground relative growth rate (RGR) of Cassiope tetragona and Salix arctica in North-East...

  15. Renewable marine energies, resources for the future

    International Nuclear Information System (INIS)

    Le Lidec, Frederic

    2012-01-01

    The need for alternative sources of energy has never been more urgent than it is today. At the very time International Energy Agency estimates that demand will increase 30% by 2030, fossil fuels (oil, gas and coal) are beginning to dwindle, as the need to counter global warming imposes limits on CO 2 emissions. In this context, DCNS has entered a new field of innovation and development: ocean energy. Having included marine renewable energy as an intrinsic part of its strategic growth plan, DCNS is the only industrial company in the world to invest in all four key technologies in this sector: - the tidal energy generated using underwater turbines known as 'tidal turbines',' which convert the energy of marine tidal streams into electricity; - the ocean thermal energy conversion (OTEC) technology that exploits the difference of temperature between the warm surface water of tropical oceans and the cold water found in the ocean depths to generate electrical power 24 hours a day, 35 days a year; - the offshore wind energy generated by offshore floating wind turbines; - the wave energy technology which operates on the principle of recovering energy from the ocean swell. With 400 years of expertise in shipbuilding and its in-depth understanding of the marine environment, DCNS is committed to playing a major role in the development of this new ocean industry. (author)

  16. Long range global warming

    International Nuclear Information System (INIS)

    Rolle, K.C.; Pulkrabek, W.W.; Fiedler, R.A.

    1995-01-01

    This paper explores one of the causes of global warming that is often overlooked, the direct heating of the environment by engineering systems. Most research and studies of global warming concentrate on the modification that is occurring to atmospheric air as a result of pollution gases being added by various systems; i.e., refrigerants, nitrogen oxides, ozone, hydrocarbons, halon, and others. This modification affects the thermal radiation balance between earth, sun and space, resulting in a decrease of radiation outflow and a slow rise in the earth's steady state temperature. For this reason the solution to the problem is perceived as one of cleaning up the processes and effluents that are discharged into the environment. In this paper arguments are presented that suggest, that there is a far more serious cause for global warming that will manifest itself in the next two or three centuries; direct heating from the exponential growth of energy usage by humankind. Because this is a minor contributor to the global warming problem at present, it is overlooked or ignored. Energy use from the combustion of fuels and from the output of nuclear reactions eventually is manifest as warming of the surroundings. Thus, as energy is used at an ever increasing rate the consequent global warming also increases at an ever increasing rate. Eventually this rate will become equal to a few percent of solar radiation. When this happens the earth's temperature will have risen by several degrees with catastrophic results. The trends in world energy use are reviewed and some mathematical models are presented to suggest future scenarios. These models can be used to predict when the global warming problem will become undeniably apparent, when it will become critical, and when it will become catastrophic

  17. Effects of Warming Hiatuses on Vegetation Growth in the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    Hong Wei

    2018-04-01

    Full Text Available There have been hiatuses in global warming since the 1990s, and their potential impacts have attracted extensive attention and discussion. Changes in temperature not only directly affect the greening of vegetation but can also indirectly alter both the growth state and the growth tendency of vegetation by altering other climatic elements. The middle-high latitudes of the Northern Hemisphere (NH constitute the region that has experienced the most warming in recent decades; therefore, identifying the effects of warming hiatuses on the vegetation greening in that region is of great importance. Using satellite-derived Normalized Difference Vegetation Index (NDVI data and climatological observation data from 1982–2013, we investigated hiatuses in warming trends and their impact on vegetation greenness in the NH. Our results show that the regions with warming hiatuses in the NH accounted for 50.1% of the total area and were concentrated in Mongolia, central China, and other areas. Among these regions, 18.8% of the vegetation greenness was inhibited in the warming hiatus areas, but 31.3% of the vegetation grew faster. Because temperature was the main positive climatic factor in central China, the warming hiatuses caused the slow vegetation greening rate. However, precipitation was the main positive climatic factor affecting vegetation greenness in Mongolia; an increase in precipitation accelerated vegetation greening. The regions without a warming hiatus, which were mainly distributed in northern Russia, northern central Asia, and other areas, accounted for 49.9% of the total area. Among these regions, 21.4% of the vegetation grew faster over time, but 28.5% of the vegetation was inhibited. Temperature was the main positive factor affecting vegetation greenness in northern Russia; an increase in temperature promoted vegetation greening. However, radiation was the main positive climatic factor in northern central Asia; reductions in radiation

  18. Neither elevated nor reduced CO2 affects the photophysiological performance of the marine Antarctic diatom Chaetoceros brevis

    NARCIS (Netherlands)

    Boelen, Peter; de Poll, Willem H. van; van der Strate, Han J.; Neven, Ika A.; Beardall, John; Buma, Anita G. J.

    2011-01-01

    Enhanced or reduced pCO(2) (partial pressure of CO2) may affect the photosynthetic performance of marine microalgae since changes in pCO(2) can influence the activity of carbon concentrating mechanisms, modulate cellular RuBisCO levels or alter carbon uptake efficiency. In the present study we

  19. Warm-up and performance in competitive swimming.

    Science.gov (United States)

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Marinho, Daniel A

    2014-03-01

    Warm-up before physical activity is commonly accepted to be fundamental, and any priming practices are usually thought to optimize performance. However, specifically in swimming, studies on the effects of warm-up are scarce, which may be due to the swimming pool environment, which has a high temperature and humidity, and to the complexity of warm-up procedures. The purpose of this study is to review and summarize the different studies on how warming up affects swimming performance, and to develop recommendations for improving the efficiency of warm-up before competition. Most of the main proposed effects of warm-up, such as elevated core and muscular temperatures, increased blood flow and oxygen delivery to muscle cells and higher efficiency of muscle contractions, support the hypothesis that warm-up enhances performance. However, while many researchers have reported improvements in performance after warm-up, others have found no benefits to warm-up. This lack of consensus emphasizes the need to evaluate the real effects of warm-up and optimize its design. Little is known about the effectiveness of warm-up in competitive swimming, and the variety of warm-up methods and swimming events studied makes it difficult to compare the published conclusions about the role of warm-up in swimming. Recent findings have shown that warm-up has a positive effect on the swimmer's performance, especially for distances greater than 200 m. We recommend that swimmers warm-up for a relatively moderate distance (between 1,000 and 1,500 m) with a proper intensity (a brief approach to race pace velocity) and recovery time sufficient to prevent the early onset of fatigue and to allow the restoration of energy reserves (8-20 min).

  20. Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species.

    Science.gov (United States)

    Hernán, Gema; Ortega, María J; Gándara, Alberto M; Castejón, Inés; Terrados, Jorge; Tomas, Fiona

    2017-11-01

    Increases in seawater temperature are expected to have negative consequences for marine organisms. Beyond individual effects, species-specific differences in thermal tolerance are predicted to modify species interactions and increase the strength of top-down effects, particularly in plant-herbivore interactions. Shifts in trophic interactions will be especially important when affecting habitat-forming species such as seagrasses, as the consequences on their abundance will cascade throughout the food web. Seagrasses are a major component of coastal ecosystems offering important ecosystem services, but are threatened by multiple anthropogenic stressors, including warming. The mechanistic understanding of seagrass responses to warming at multiple scales of organization remains largely unexplored, especially in early-life stages such as seedlings. Yet, these early-life stages are critical for seagrass expansion processes and adaptation to climate change. In this study, we determined the effects of a 3 month experimental exposure to present and predicted mean summer SST of the Mediterranean Sea (25°C, 27°C, and 29°C) on the photophysiology, size, and ecology (i.e., plant-herbivore interactions) of seedlings of the seagrass Posidonia oceanica. Warming resulted in increased mortality, leaf necrosis, and respiration as well as lower carbohydrate reserves in the seed, the main storage organ in seedlings. Aboveground biomass and root growth were also limited with warming, which could hamper seedling establishment success. Furthermore, warming increased the susceptibility to consumption by grazers, likely due to lower leaf fiber content and thickness. Our results indicate that warming will negatively affect seagrass seedlings through multiple direct and indirect pathways: increased stress, reduced establishment potential, lower storage of carbohydrate reserves, and increased susceptibly to consumption. This work provides a significant step forward in understanding the

  1. Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland

    Energy Technology Data Exchange (ETDEWEB)

    Rillig, M.C.; Wright, S.F.; Shaw, M.R.; Field, C.B.

    2002-04-01

    Despite the importance of arbuscular mycorrhizae to the functioning of terrestrial ecosystems (e.g. nutrient uptake, soil aggregation), and the increasing evidence of global warming, responses of arbuscular mycorrhizal fungi (AMF) to climate warming are poorly understood. In a field experiment using infrared heaters, we found effects of warming on AMF after one growing season in an annual grassland, in the absence of any effects on measured root parameters (weight, length, average diameter). AMF soil hyphal length was increased by over 40% in the warmed plots, accompanied by a strong trend for AMF root colonization increase. In the following year, root weight was again not significantly changed, and AMF root colonization increased significantly in the warmed plots. Concentration of the soil protein glomalin, a glycoprotein produced by AMF hyphae with importance in soil aggregation, was decreased in the warmed plots. Soil aggregate water stability, measured for five diameter size classes, was also decreased significantly. In the following year, soil aggregate weight in two size classes was decreased significantly, but the effect size was very small. These results indicate that ecosystem warming may have stimulated carbon allocation to AMF. Other factors either influenced glomalin decomposition or production, hence influencing the role of these symbionts in soil aggregation. The observed small changes in soil aggregation, if widespread among terrestrial ecosystems, could have important consequences for soil carbon storage and erosion in a warmed climate, especially if there are cumulative effects of warming. (au)

  2. Global warming

    International Nuclear Information System (INIS)

    Houghton, John

    2005-01-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources

  3. Climate change and the marine ecosystem of the western Antarctic Peninsula

    Science.gov (United States)

    Clarke, Andrew; Murphy, Eugene J; Meredith, Michael P; King, John C; Peck, Lloyd S; Barnes, David K.A; Smith, Raymond C

    2006-01-01

    The Antarctic Peninsula is experiencing one of the fastest rates of regional climate change on Earth, resulting in the collapse of ice shelves, the retreat of glaciers and the exposure of new terrestrial habitat. In the nearby oceanic system, winter sea ice in the Bellingshausen and Amundsen seas has decreased in extent by 10% per decade, and shortened in seasonal duration. Surface waters have warmed by more than 1 K since the 1950s, and the Circumpolar Deep Water (CDW) of the Antarctic Circumpolar Current has also warmed. Of the changes observed in the marine ecosystem of the western Antarctic Peninsula (WAP) region to date, alterations in winter sea ice dynamics are the most likely to have had a direct impact on the marine fauna, principally through shifts in the extent and timing of habitat for ice-associated biota. Warming of seawater at depths below ca 100 m has yet to reach the levels that are biologically significant. Continued warming, or a change in the frequency of the flooding of CDW onto the WAP continental shelf may, however, induce sublethal effects that influence ecological interactions and hence food-web operation. The best evidence for recent changes in the ecosystem may come from organisms which record aspects of their population dynamics in their skeleton (such as molluscs or brachiopods) or where ecological interactions are preserved (such as in encrusting biota of hard substrata). In addition, a southwards shift of marine isotherms may induce a parallel migration of some taxa similar to that observed on land. The complexity of the Southern Ocean food web and the nonlinear nature of many interactions mean that predictions based on short-term studies of a small number of species are likely to be misleading. PMID:17405211

  4. Climate change and the marine ecosystem of the western Antarctic Peninsula.

    Science.gov (United States)

    Clarke, Andrew; Murphy, Eugene J; Meredith, Michael P; King, John C; Peck, Lloyd S; Barnes, David K A; Smith, Raymond C

    2007-01-29

    The Antarctic Peninsula is experiencing one of the fastest rates of regional climate change on Earth, resulting in the collapse of ice shelves, the retreat of glaciers and the exposure of new terrestrial habitat. In the nearby oceanic system, winter sea ice in the Bellingshausen and Amundsen seas has decreased in extent by 10% per decade, and shortened in seasonal duration. Surface waters have warmed by more than 1 K since the 1950s, and the Circumpolar Deep Water (CDW) of the Antarctic Circumpolar Current has also warmed. Of the changes observed in the marine ecosystem of the western Antarctic Peninsula (WAP) region to date, alterations in winter sea ice dynamics are the most likely to have had a direct impact on the marine fauna, principally through shifts in the extent and timing of habitat for ice-associated biota. Warming of seawater at depths below ca 100 m has yet to reach the levels that are biologically significant. Continued warming, or a change in the frequency of the flooding of CDW onto the WAP continental shelf may, however, induce sublethal effects that influence ecological interactions and hence food-web operation. The best evidence for recent changes in the ecosystem may come from organisms which record aspects of their population dynamics in their skeleton (such as molluscs or brachiopods) or where ecological interactions are preserved (such as in encrusting biota of hard substrata). In addition, a southwards shift of marine isotherms may induce a parallel migration of some taxa similar to that observed on land. The complexity of the Southern Ocean food web and the nonlinear nature of many interactions mean that predictions based on short-term studies of a small number of species are likely to be misleading.

  5. Long-term effects of ocean warming on vibrios

    Science.gov (United States)

    Pruzzo, C.; Pezzati, E.; Brettar, I.; Reid, P. C.; Colwell, R.; Höfle, M. G.; vezzulli, L.

    2012-12-01

    Vibrios are a major source of human disease, play an important role in the ecology and health of marine animals and are regarded as an abundant fraction of culturable bacteria of the ocean. There has been a considerable global effort to reduce the risk of Vibrio infections and yet in most countries both human and non-human illnesses associated with these bacteria are increasing. The cause of this increase is not known, but since vibrios are strongly thermodependant there is good reason to believe that global warming may have contributed. To investigate this possibility we examined historical samples from the Continuous Plankton Recorder (CPR) archive using advanced molecular analysis and pyrosequencing. For the first time we were able to recover environmental DNA from CPR samples that had been stored for up to ~50 years in a formalin-fixed format, which is suitable for molecular analyses of the associated prokaryotic community. To overcome the problem of DNA degradation due to the sample age and storage in formalin we develop an unbiased index of abundance for Vibrio quantification in CPR samples termed a 'relative Vibrio Abundance Index' (VAI). VAI is defined as the ratio of Vibrio spp. cells to total bacterial cells assessed by Real-Time PCR using genus-specific and universal primers, respectively, producing small amplicons of similar size (~100bp). We assessed VAI index on 55 samples (each representing 10 nautical miles tow equal to 3 m3 of filtered sewater) collected in August by the CPR survey in the North Sea from off the Rhine and Humber estuaries between 1961 to 2005 showing that the genus Vibrio has increased in prevalence in the last 44 years and that this increase is correlated significantly, during the same period, with warming sea surface temperature. In addition, by applying deep sequencing analysis of a subset of these samples we provide evidence that bacteria belonging to the genus Vibrio, including the human pathogen V. cholerae, not only increased

  6. Multi-scale responses to warming in an experimental insect metacommunity.

    Science.gov (United States)

    Grainger, Tess Nahanni; Gilbert, Benjamin

    2017-12-01

    In metacommunities, diversity is the product of species interactions at the local scale and dispersal between habitat patches at the regional scale. Although warming can alter both species interactions and dispersal, the combined effects of warming on these two processes remains uncertain. To determine the independent and interactive effects of warming-induced changes to local species interactions and dispersal, we constructed experimental metacommunities consisting of enclosed milkweed patches seeded with five herbivorous milkweed specialist insect species. We treated metacommunities with two levels of warming (unwarmed and warmed) and three levels of connectivity (isolated, low connectivity, high connectivity). Based on metabolic theory, we predicted that if plant resources were limited, warming would accelerate resource drawdown, causing local insect declines and increasing both insect dispersal and the importance of connectivity to neighboring patches for insect persistence. Conversely, given abundant resources, warming could have positive local effects on insects, and the risk of traversing a corridor to reach a neighboring patch could outweigh the benefits of additional resources. We found support for the latter scenario. Neither resource drawdown nor the weak insect-insect associations in our system were affected by warming, and most insect species did better locally in warmed conditions and had dispersal responses that were unchanged or indirectly affected by warming. Dispersal across the matrix posed a species-specific risk that led to declines in two species in connected metacommunities. Combined, this scaled up to cause an interactive effect of warming and connectivity on diversity, with unwarmed metacommunities with low connectivity incurring the most rapid declines in diversity. Overall, this study demonstrates the importance of integrating the complex outcomes of species interactions and spatial structure in understanding community response to climate

  7. Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Roberto Danovaro

    2009-09-01

    Full Text Available Marine snow (small amorphous aggregates with colloidal properties is present in all oceans of the world. Surface water warming and the consequent increase of water column stability can favour the coalescence of marine snow into marine mucilage, large marine aggregates representing an ephemeral and extreme habitat. Marine mucilage characterize aquatic systems with altered environmental conditions.We investigated, by means of molecular techniques, viruses and prokaryotes within the mucilage and in surrounding seawater to examine the potential of mucilage to host new microbial diversity and/or spread marine diseases. We found that marine mucilage contained a large and unexpectedly exclusive microbial biodiversity and hosted pathogenic species that were absent in surrounding seawater. We also investigated the relationship between climate change and the frequency of mucilage in the Mediterranean Sea over the last 200 years and found that the number of mucilage outbreaks increased almost exponentially in the last 20 years. The increasing frequency of mucilage outbreaks is closely associated with the temperature anomalies.We conclude that the spreading of mucilage in the Mediterranean Sea is linked to climate-driven sea surface warming. The mucilage can act as a controlling factor of microbial diversity across wide oceanic regions and could have the potential to act as a carrier of specific microorganisms, thereby increasing the spread of pathogenic bacteria.

  8. Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes.

    Science.gov (United States)

    Hofmann, Matthias; Schellnhuber, Hans-Joachim

    2009-03-03

    Rising atmospheric CO(2) levels will not only drive future global mean temperatures toward values unprecedented during the whole Quaternary but will also lead to massive acidification of sea water. This constitutes by itself an anthropogenic planetary-scale perturbation that could significantly modify oceanic biogeochemical fluxes and severely damage marine biota. As a step toward the quantification of such potential impacts, we present here a simulation-model-based assessment of the respective consequences of a business-as-usual fossil-fuel-burning scenario where a total of 4,075 Petagrams of carbon is released into the atmosphere during the current millennium. In our scenario, the atmospheric pCO(2) level peaks at approximately 1,750 microatm in the year 2200 while the sea-surface pH value drops by >0.7 units on global average, inhibiting the growth of marine calcifying organisms. The study focuses on quantifying 3 major concomitant effects. The first one is a significant (climate-stabilizing) negative feedback on rising pCO(2) levels as caused by the attenuation of biogenic calcification. The second one is related to the biological carbon pump. Because mineral ballast, notably CaCO(3), is found to play a dominant role in carrying organic matter through the water column, a reduction of its export fluxes weakens the strength of the biological carbon pump. There is, however, a third effect with severe consequences: Because organic matter is oxidized in shallow waters when mineral-ballast fluxes weaken, oxygen holes (hypoxic zones) start to expand considerably in the oceans in our model world--with potentially harmful impacts on a variety of marine ecosystems.

  9. Shifting baselines in Antarctic ecosystems; ecophysiological response to warming in Lissarca miliaris at Signy Island, Antarctica.

    Science.gov (United States)

    Reed, Adam J; Thatje, Sven; Linse, Katrin

    2012-01-01

    The Antarctic Peninsula has experienced a rapid increase in atmospheric temperature over the last 50 years. Whether or not marine organisms thriving in this cold stenothermal environment are able to cope with warming is of concern. Here, we present changes to the growth and shell characteristics of the ecologically important, small and short lived brooding bivalve Lissarca miliaris from Signy Island, Antarctica. Using material collected from the 1970's to the present day, we show an increase in growth rate and adult shell deterioration accompanied by a decrease in offspring size, associated with an increase in annual average temperatures. Critical changes to the bivalve's ecology seen today evidence the problem of a shift in baseline since the onset of warming recorded in Antarctica. These small bivalves are demonstrating ecophysiological responses to subtle warming that, provided warming continues, could soon surpass a physiological tipping point, adding to warming associated threats such as increased predatory pressure and ocean acidification.

  10. Shifting baselines in Antarctic ecosystems; ecophysiological response to warming in Lissarca miliaris at Signy Island, Antarctica.

    Directory of Open Access Journals (Sweden)

    Adam J Reed

    Full Text Available The Antarctic Peninsula has experienced a rapid increase in atmospheric temperature over the last 50 years. Whether or not marine organisms thriving in this cold stenothermal environment are able to cope with warming is of concern. Here, we present changes to the growth and shell characteristics of the ecologically important, small and short lived brooding bivalve Lissarca miliaris from Signy Island, Antarctica. Using material collected from the 1970's to the present day, we show an increase in growth rate and adult shell deterioration accompanied by a decrease in offspring size, associated with an increase in annual average temperatures. Critical changes to the bivalve's ecology seen today evidence the problem of a shift in baseline since the onset of warming recorded in Antarctica. These small bivalves are demonstrating ecophysiological responses to subtle warming that, provided warming continues, could soon surpass a physiological tipping point, adding to warming associated threats such as increased predatory pressure and ocean acidification.

  11. Marine biogeography and evolution : Diversity patterns of planktonic gastropods and amphipods

    NARCIS (Netherlands)

    Burridge, A.K.

    2017-01-01

    Current changes in the oceans, including global warming and ocean acidification, are partially caused by human activity, unlike earlier episodes of change throughout geological history. Understanding and forecasting the responses of marine organisms to these changes is top priority for scientists,

  12. MECO Warming Changes Continental Rainfall Patterns in Eocene Western North America

    Science.gov (United States)

    Methner, K.; Mulch, A.; Fiebig, J.; Wacker, U.; Gerdes, A.; Graham, S. A.; Chamberlain, C. P.

    2016-12-01

    Eocene hyperthermals represent temperature extremes superimposed on an existing warm climate. They dramatically affected the marine and terrestrial biosphere, but still remain among the most enigmatic phenomena of Cenozoic climate dynamics. To evaluate the impacts of global warm periods on terrestrial temperature and rainfall records in continental interiors, we sampled a suite of middle Eocene ( 40 Ma) paleosols from a high-elevation mammal fossil locality in the hinterland of the North American Cordillera (Sage Creek Basin, Montana, USA) and integrated laser ablation U-Pb dating of pedogenic carbonate, stable isotope (δ18O) and clumped isotope temperature (Δ47) records. Δ47 temperature data of soil carbonates progressively increase from 23 °C ±3 °C to peak temperatures of 32 °C ±3 °C and subsequently drop to 21 °C ±2 °C and delineate a rapid +9/-11 °C temperature excursion in the paleosol record. This hyperthermal event is accompanied by large and rapid shifts towards low δ18O values and reduced pedogenic CaCO3 contents. U-Pb geochronology of the paleosol carbonate confirms a middle Eocene age for soil carbonate formation (39.5 ±1.4 Ma and 40.1 ±0.8 Ma). Based on U-Pb geochronology, magneto- and biostratigraphy we suggest that the recorded Δ47 temperature excursion reflects peak warming during the Middle Eocene Climatic Optimum (MECO). The MECO in continental western North America appears to be characterized by warmer and wetter (sub-humid) conditions in this high-elevation site. Shifts in δ18O values of precipitation and pedogenic CaCO3 contents parallel temperature changes and require modification of mid-latitude rainfall patterns, indicating a profound impact of the MECO on the hydrological cycle and consequently on atmospheric circulation patterns in the hinterland of the North American Cordillera.

  13. Biodiversity of Arctic marine ecosystems and responses to climate change

    DEFF Research Database (Denmark)

    Michel, C.; Bluhm, B.; Gallucci, V.

    2012-01-01

    The Arctic Ocean is undergoing major changes in many of its fundamental physical constituents, from a shift from multi- to first-year ice, shorter ice-covered periods, increasing freshwater runoff and surface stratification, to warming and alteration in the distribution of water masses....... These changes have important impacts on the chemical and biological processes that are at the root of marine food webs, influencing their structure, function and biodiversity. Here we summarise current knowledge on the biodiversity of Arctic marine ecosystems and provide an overview of fundamental factors...... that structure ecosystem biodiversity in the Arctic Ocean. We also discuss climateassociated effects on the biodiversity of Arctic marine ecosystems and discuss implications for the functioning of Arctic marine food webs. Based on the complexity and regional character of Arctic ecosystem reponses...

  14. The Great Warming Brian Fagan

    Science.gov (United States)

    Fagan, B. M.

    2010-12-01

    The Great Warming is a journey back to the world of a thousand years ago, to the Medieval Warm Period. Five centuries of irregular warming from 800 to 1250 had beneficial effects in Europe and the North Atlantic, but brought prolonged droughts to much of the Americas and lands affected by the South Asian monsoon. The book describes these impacts of warming on medieval European societies, as well as the Norse and the Inuit of the far north, then analyzes the impact of harsh, lengthy droughts on hunting societies in western North America and the Ancestral Pueblo farmers of Chaco Canyon, New Mexico. These peoples reacted to drought by relocating entire communities. The Maya civilization was much more vulnerable that small-scale hunter-gatherer societies and subsistence farmers in North America. Maya rulers created huge water storage facilities, but their civilization partially collapsed under the stress of repeated multiyear droughts, while the Chimu lords of coastal Peru adapted with sophisticated irrigation works. The climatic villain was prolonged, cool La Niñalike conditions in the Pacific, which caused droughts from Venezuela to East Asia, and as far west as East Africa. The Great Warming argues that the warm centuries brought savage drought to much of humanity, from China to Peru. It also argues that drought is one of the most dangerous elements in today’s humanly created global warming, often ignored by preoccupied commentators, but with the potential to cause over a billion people to starve. Finally, I use the book to discuss the issues and problems of communicating multidisciplinary science to the general public.

  15. Population risk perceptions of global warming in Australia.

    Science.gov (United States)

    Agho, Kingsley; Stevens, Garry; Taylor, Mel; Barr, Margo; Raphael, Beverley

    2010-11-01

    According to the World Health Organisation (WHO), global warming has the potential to dramatically disrupt some of life's essential requirements for health, water, air and food. Understanding how Australians perceive the risk of global warming is essential for climate change policy and planning. The aim of this study was to determine the prevalence of, and socio-demographic factors associated with, high levels of perceived likelihood that global warming would worsen, concern for self and family and reported behaviour changes. A module of questions on global warming was incorporated into the New South Wales Population Health Survey in the second quarter of 2007. This Computer Assisted Telephone Interview (CATI) was completed by a representative sample of 2004 adults. The weighted sample was comparable to the Australian population. Bivariate and multivariate statistical analyses were conducted to examine the socio-demographic and general health factors. Overall 62.1% perceived that global warming was likely to worsen; 56.3% were very or extremely concerned that they or their family would be directly affected by global warming; and 77.6% stated that they had made some level of change to the way they lived their lives, because of the possibility of global warming. After controlling for confounding factors, multivariate analyses revealed that those with high levels of psychological distress were 2.17 (Adjusted Odds Ratio (AOR)=2.17; CI: 1.16-4.03; P=0.015) times more likely to be concerned about global warming than those with low psychological distress levels. Those with a University degree or equivalent and those who lived in urban areas were significantly more likely to think that global warming would worsen compared to those without a University degree or equivalent and those who lived in the rural areas. Females were significantly (AOR=1.69; CI: 1.23-2.33; P=0.001) more likely to report they had made changes to the way they lived their lives due to the risk of

  16. Global warming from an energy perspective

    International Nuclear Information System (INIS)

    Edwards, A.G.

    1991-01-01

    Global climate change and energy are integrally related. The majority of greenhouse gas emissions are the result of energy production and use; at the same time, warming will affect energy patterns in California through physical increases in energy demand, physical changes in energy supply, and changes in both energy end-use patterns and supplies resulting from climate-change policies. There seems to be a growing political consensus that the world (as well as the state) needs to act soon to minimize further commitment to future warming. While California is not likely to experience the physical changes resulting from a warmer climate for years or perhaps decades, policy responses to the warming issue may cause more immediate impacts. This chapter will discuss how policy response to potential warming may be the most significant early impact of the issue on California's energy system. Makers of energy policy face the dilemma of deciding how to respond to the climate warming issue in the face of scientific uncertainties about its timing and seriousness. The chapter will conclude by presenting a conceptual framework for dealing with this dilemma, along with general recommendations for action

  17. Transgenerational plasticity mitigates the impact of global warming to offspring sex ratios.

    Science.gov (United States)

    Donelson, Jennifer M; Munday, Philip L

    2015-08-01

    Global warming poses a threat to organisms with temperature-dependent sex determination because it can affect operational sex ratios. Using a multigenerational experiment with a marine fish, we provide the first evidence that parents developing from early life at elevated temperatures can adjust their offspring gender through nongenetic and nonbehavioural means. However, this adjustment was not possible when parents reproduced, but did not develop, at elevated temperatures. Complete restoration of the offspring sex ratio occurred when parents developed at 1.5 °C above the present-day average temperature for one generation. However, only partial improvement in the sex ratio occurred at 3.0 °C above average conditions, even after two generations, suggesting a limitation to transgenerational plasticity when developmental temperature is substantially increased. This study highlights the potential for transgenerational plasticity to ameliorate some impacts of climate change and that development from early life may be essential for expression of transgenerational plasticity in some traits. © 2015 John Wiley & Sons Ltd.

  18. Environmental boundaries of marine cladoceran distributions in the NW Mediterranean: Implications for their expansion under global warming

    KAUST Repository

    Atienza, Dacha

    2016-08-10

    We studied the horizontal and vertical distributions of marine cladocerans across the Catalan Sea shelf (NW Mediterranean) in July and September 2003, and in June and July 2004. At the seasonal scale, Penilia avirostris appears first in June in the southern region, where temperatures are warmer, and its populations develop northward during the summer. Evadne-Pseudevadne did not show a clear pattern, likely because several species were pooled. In 2003 successive heat waves affecting southwestern Europe resulted in surface seawater temperatures about 2 °C higher than usual across the whole study region. These high temperatures were associated with much lower abundance of P. avirostris. Overall, the mesoscale distributions of cladocerans were associated with the presence of low salinity, productive and stratified waters of continental origin, and negatively linked to the intrusion of offshore waters. On the vertical scale P. avirostris was located within or above the thermocline, whereas Evadne-Pseudevadne was much shallower; no evidence of diel migration was detected in either group. Our study provides new insights regarding the environmental limits for marine cladocerans in the NW Mediterranean; in the particular case of P. avirostris that knowledge can define the likely boundaries of its new distributions as it expands poleward under climate change. © 2016 Elsevier B.V.

  19. Environmental boundaries of marine cladoceran distributions in the NW Mediterranean: Implications for their expansion under global warming

    Science.gov (United States)

    Atienza, Dacha; Sabatés, Ana; Isari, Stamatina; Saiz, Enric; Calbet, Albert

    2016-12-01

    We studied the horizontal and vertical distributions of marine cladocerans across the Catalan Sea shelf (NW Mediterranean) in July and September 2003, and in June and July 2004. At the seasonal scale, Penilia avirostris appears first in June in the southern region, where temperatures are warmer, and its populations develop northward during the summer. Evadne-Pseudevadne did not show a clear pattern, likely because several species were pooled. In 2003 successive heat waves affecting southwestern Europe resulted in surface seawater temperatures about 2 °C higher than usual across the whole study region. These high temperatures were associated with much lower abundance of P. avirostris. Overall, the mesoscale distributions of cladocerans were associated with the presence of low salinity, productive and stratified waters of continental origin, and negatively linked to the intrusion of offshore waters. On the vertical scale P. avirostris was located within or above the thermocline, whereas Evadne-Pseudevadne was much shallower; no evidence of diel migration was detected in either group. Our study provides new insights regarding the environmental limits for marine cladocerans in the NW Mediterranean; in the particular case of P. avirostris that knowledge can define the likely boundaries of its new distributions as it expands poleward under climate change.

  20. Elevated CO2 and warming induce substantial and persistent declines in forage quality irrespective of warming in mixed grass prairie

    Science.gov (United States)

    Increasing atmospheric [CO2] and temperature are expected to affect the productivity, species composition, biogeochemistry, and therefore the quantity and quality of forage available to herbivores in rangeland ecosystems. Both elevated CO2 (eCO2) and warming affect plant tissue chemistry through mul...

  1. Effect of Temperature Rising on the Stygobitic Crustacean Species Diacyclops belgicus: Does Global Warming Affect Groundwater Populations?

    Directory of Open Access Journals (Sweden)

    Tiziana Di Lorenzo

    2017-12-01

    Full Text Available The average global temperature is predicted to increase by 3 °C by the end of this century due to human-induced climate change. The overall metabolism of the aquatic biota will be directly affected by rising temperatures and associated changes. Since thermal stability is a characteristic of groundwater ecosystems, global warming is expected to have a profound effect on the groundwater fauna. The prediction that stygobitic (obligate groundwater dweller species are vulnerable to climate change includes assumptions about metabolic effects that can only be tested by comparisons across a thermal gradient. To this end, we investigated the effects of two different thermal regimes on the metabolism of the stygobitic copepod species Diacyclops belgicus (Kiefer, 1936. We measured the individual-based oxygen consumption of this species as a proxy of possible metabolic reactions to temperature rising from 14 to 17 °C. We used a sealed glass microplate equipped with planar oxygen sensor spots with optical isolation glued onto the bottom of 80-μL wells integrated with a 24-channel fluorescence-based respirometry system. The tests have provided controversial results according to which the D. belgicus populations should be prudently considered at risk under a global warming scenario.

  2. Transitional states in marine fisheries: adapting to predicted global change.

    Science.gov (United States)

    MacNeil, M Aaron; Graham, Nicholas A J; Cinner, Joshua E; Dulvy, Nicholas K; Loring, Philip A; Jennings, Simon; Polunin, Nicholas V C; Fisk, Aaron T; McClanahan, Tim R

    2010-11-27

    Global climate change has the potential to substantially alter the production and community structure of marine fisheries and modify the ongoing impacts of fishing. Fish community composition is already changing in some tropical, temperate and polar ecosystems, where local combinations of warming trends and higher environmental variation anticipate the changes likely to occur more widely over coming decades. Using case studies from the Western Indian Ocean, the North Sea and the Bering Sea, we contextualize the direct and indirect effects of climate change on production and biodiversity and, in turn, on the social and economic aspects of marine fisheries. Climate warming is expected to lead to (i) yield and species losses in tropical reef fisheries, driven primarily by habitat loss; (ii) community turnover in temperate fisheries, owing to the arrival and increasing dominance of warm-water species as well as the reduced dominance and departure of cold-water species; and (iii) increased diversity and yield in Arctic fisheries, arising from invasions of southern species and increased primary production resulting from ice-free summer conditions. How societies deal with such changes will depend largely on their capacity to adapt--to plan and implement effective responses to change--a process heavily influenced by social, economic, political and cultural conditions.

  3. Socio-economic assessment of the physical and ecological impacts of climate change on the marine environment of the Atlantic region of Canada. Evaluation socio-economic des consequences physiques et ecologiques du changement climatique sur le milieu marin dans la region de l'Atlantique; Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, P

    1988-01-01

    A study on the implications of long term climatic change for Atlantic Canada is summarized. The impacts on the marine environment, fisheries, marine transportation, energy development, coastal infrastructure, and tourism or outdoor recreation under a climate warming caused by a doubling of atmospheric carbon dioxide are assessed. The major physical changes projected include a rise in mean sea level, an increase in the average sea surface temperature, and an absence of sea ice south of Labrador for most years. A warmer climate would favor continuing growth of the aquaculture industry, longer fishing seasons, and an extension of summer recreational and tourism activities. Absence of sea ice could reduce costs for ferry services and marine transport in the region and permit extended seasons on some routes. Costs of ice-related downtime in offshore oil and gas operations could be practically eliminated. Changes in precipitation patterns would affect hydroelectric power output in various regions, with corresponding gains or losses in revenue. Heating oil demand in the region would decrease by about 25%.

  4. Sensitivity to deliberate sea salt seeding of marine clouds - observations and model simulations

    OpenAIRE

    Alterskjaer, K.; Kristjansson, J. E.; Seland, O.

    2012-01-01

    Sea salt seeding of marine clouds to increase their albedo is a proposed technique to counteract or slow global warming. In this study, we first investigate the susceptibility of marine clouds to sea salt injections, using observational data of cloud droplet number concentration, cloud optical depth, and liquid cloud fraction from the MODIS (Moderate Resolution Imaging Spectroradiometer) instruments on board the Aqua and Terra satellites. We then compare the derived susceptibility function to...

  5. Experimental warming differentially affects microbial structure and activity in two contrasted moisture sites in a Sphagnum-dominated peatland.

    Science.gov (United States)

    Delarue, Frédéric; Buttler, Alexandre; Bragazza, Luca; Grasset, Laurent; Jassey, Vincent E J; Gogo, Sébastien; Laggoun-Défarge, Fatima

    2015-04-01

    Several studies on the impact of climate warming have indicated that peat decomposition/mineralization will be enhanced. Most of these studies deal with the impact of experimental warming during summer when prevalent abiotic conditions are favorable to decomposition. Here, we investigated the effect of experimental air warming by open-top chambers (OTCs) on water-extractable organic matter (WEOM), microbial biomasses and enzymatic activities in two contrasted moisture sites named Bog and Fen sites, the latter considered as the wetter ones. While no or few changes in peat temperature and water content appeared under the overall effect of OTCs, we observed that air warming smoothed water content differences and led to a decrease in mean peat temperature at the warmed Bog sites. This thermal discrepancy between the two sites led to contrasting changes in microbial structure and activities: a rise in hydrolytic activity at the warmed Bog sites and a relative enhancement of bacterial biomass at the warmed Fen sites. These features were not associated with any change in WEOM properties namely carbon and sugar contents and aromaticity, suggesting that air warming did not trigger any shift in OM decomposition. Using various tools, we show that the use of single indicators of OM decomposition can lead to fallacious conclusions. Lastly, these patterns may change seasonally as a consequence of complex interactions between groundwater level and air warming, suggesting the need to improve our knowledge using a high time-resolution approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Simulated warming differentially affects the growth and competitive ability of Centaurea maculosa populations from home and introduced ranges.

    Directory of Open Access Journals (Sweden)

    Wei-Ming He

    Full Text Available Climate warming may drive invasions by exotic plants, thereby raising concerns over the risks of invasive plants. However, little is known about how climate warming influences the growth and competitive ability of exotic plants from their home and introduced ranges. We conducted a common garden experiment with an invasive plant Centaurea maculosa and a native plant Poa pratensis, in which a mixture of sand and vermiculite was used as a neutral medium, and contrasted the total biomass, competitive effects, and competitive responses of C. maculosa populations from Europe (home range and North America (introduced range under two different temperatures. The warming-induced inhibitory effects on the growth of C. maculosa alone were stronger in Europe than in North America. The competitive ability of C. maculosa plants from North America was greater than that of plants from Europe under the ambient condition whereas this competitive ability followed the opposite direction under the warming condition, suggesting that warming may enable European C. maculosa to be more invasive. Across two continents, warming treatment increased the competitive advantage instead of the growth advantage of C. maculosa, suggesting that climate warming may facilitate C. maculosa invasions through altering competitive outcomes between C. maculosa and its neighbors. Additionally, the growth response of C. maculosa to warming could predict its ability to avoid being suppressed by its neighbors.

  7. Simulated warming differentially affects the growth and competitive ability of Centaurea maculosa populations from home and introduced ranges.

    Science.gov (United States)

    He, Wei-Ming; Li, Jing-Ji; Peng, Pei-Hao

    2012-01-01

    Climate warming may drive invasions by exotic plants, thereby raising concerns over the risks of invasive plants. However, little is known about how climate warming influences the growth and competitive ability of exotic plants from their home and introduced ranges. We conducted a common garden experiment with an invasive plant Centaurea maculosa and a native plant Poa pratensis, in which a mixture of sand and vermiculite was used as a neutral medium, and contrasted the total biomass, competitive effects, and competitive responses of C. maculosa populations from Europe (home range) and North America (introduced range) under two different temperatures. The warming-induced inhibitory effects on the growth of C. maculosa alone were stronger in Europe than in North America. The competitive ability of C. maculosa plants from North America was greater than that of plants from Europe under the ambient condition whereas this competitive ability followed the opposite direction under the warming condition, suggesting that warming may enable European C. maculosa to be more invasive. Across two continents, warming treatment increased the competitive advantage instead of the growth advantage of C. maculosa, suggesting that climate warming may facilitate C. maculosa invasions through altering competitive outcomes between C. maculosa and its neighbors. Additionally, the growth response of C. maculosa to warming could predict its ability to avoid being suppressed by its neighbors.

  8. Ecosystem warming does not affect photosynthesis or aboveground autotrophic respiration for boreal black spruce

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, D.R. [Wyoming Univ., Laramie, WY (United States). Dept. of Renewable Resources; Gower, S.T. [Wisconsin Univ., Madison, WI (United States). Dept. of Forest Ecology and Management

    2010-04-15

    Substantial increases in climatic temperatures may cause boreal forests to become a carbon source. An improved understanding of the effect of climatic warming on photosynthesis and autotrophic respiration is needed in order to determine the impact of temperature increases on net carbon balances. This study measured the light-saturated photosynthesis foliage respiration and stem respiration of black spruce in heated and control plots during a 3-year period at a site located in Thompson, Manitoba. Greenhouses and soil-heating cables were used to maintain air and soil temperatures at 5 degrees C above ambient air and soil temperatures. Studies were conducted to determine the influence of soil and air warming; soil-only warming; and greenhouses maintained at ambient temperatures. The study showed that treatment differences for photosynthesis, foliage respiration, and stem respiration were not significant over the 3-year period. Results suggested that black spruce may not have significant changes in photosynthesis or respiration rates in warmer climates. 38 refs., 3 tabs., 4 figs.

  9. Coexistence dilemmas in European marine spatial planning practices. The case of marine renewables and marine protected areas

    International Nuclear Information System (INIS)

    Kyriazi, Zacharoula; Maes, Frank; Degraer, Steven

    2016-01-01

    The question whether coexistence of marine renewable energy (MRE) projects and marine protected areas (MPAs) is a common spatial policy in Europe and how a number of factors can affect it, has been addressed by empirical research undertaken in eleven European marine areas. Policy drivers and objectives that are assumed to affect coexistence, such as the fulfillment of conservation objectives and the prioritization of other competing marine uses, were scored by experts and predictions were crosschecked with state practice. While in most areas MRE-MPA coexistence is not prohibited by law, practice indicates resistance towards it. Furthermore expert judgment demonstrated that a number of additional factors, such as the lack of suitable space for MRE projects and the uncertainty about the extent of damage by MRE to the MPA, might influence the intentions of the two major parties involved (i.e. the MRE developer and the MPA authority) to pursue or avoid coexistence. Based on these findings, the interactions of these two players are further interpreted, their policy implications are discussed, while the need towards efficient, fair and acceptable MRE-MPA coexistence is highlighted.

  10. Shallow marine response to global climate change during the Paleocene-Eocene Thermal Maximum, Salisbury Embayment, USA

    Science.gov (United States)

    Self-Trail, Jean; Robinson, Marci M.; Bralower, Timothy J.; Sessa, Jocelyn A.; Hajek, Elizabeth A.; Kump, Lee R.; Trampush, Sheila M.; Willard, Debra A.; Edwards, Lucy E.; Powars, David S.; Wandless, Gregory A.

    2017-01-01

    The Paleocene-Eocene Thermal Maximum (PETM) was an interval of extreme warmth that caused disruption of marine and terrestrial ecosystems on a global scale. Here we examine the sediments, flora, and fauna from an expanded section at Mattawoman Creek-Billingsley Road (MCBR) in Maryland and explore the impact of warming at a nearshore shallow marine (30–100 m water depth) site in the Salisbury Embayment. Observations indicate that at the onset of the PETM, the site abruptly shifted from an open marine to prodelta setting with increased terrestrial and fresh water input. Changes in microfossil biota suggest stratification of the water column and low-oxygen bottom water conditions in the earliest Eocene. Formation of authigenic carbonate through microbial diagenesis produced an unusually large bulk carbon isotope shift, while the magnitude of the corresponding signal from benthic foraminifera is similar to that at other marine sites. This proves that the landward increase in the magnitude of the carbon isotope excursion measured in bulk sediment is not due to a near instantaneous release of 12C-enriched CO2. We conclude that the MCBR site records nearshore marine response to global climate change that can be used as an analog for modern coastal response to global warming.

  11. Shallow marine response to global climate change during the Paleocene-Eocene Thermal Maximum, Salisbury Embayment, USA

    Science.gov (United States)

    Self-Trail, Jean M.; Robinson, Marci M.; Bralower, Timothy J.; Sessa, Jocelyn A.; Hajek, Elizabeth A.; Kump, Lee R.; Trampush, Sheila M.; Willard, Debra A.; Edwards, Lucy E.; Powars, David S.; Wandless, Gregory A.

    2017-07-01

    The Paleocene-Eocene Thermal Maximum (PETM) was an interval of extreme warmth that caused disruption of marine and terrestrial ecosystems on a global scale. Here we examine the sediments, flora, and fauna from an expanded section at Mattawoman Creek-Billingsley Road (MCBR) in Maryland and explore the impact of warming at a nearshore shallow marine (30-100 m water depth) site in the Salisbury Embayment. Observations indicate that at the onset of the PETM, the site abruptly shifted from an open marine to prodelta setting with increased terrestrial and fresh water input. Changes in microfossil biota suggest stratification of the water column and low-oxygen bottom water conditions in the earliest Eocene. Formation of authigenic carbonate through microbial diagenesis produced an unusually large bulk carbon isotope shift, while the magnitude of the corresponding signal from benthic foraminifera is similar to that at other marine sites. This proves that the landward increase in the magnitude of the carbon isotope excursion measured in bulk sediment is not due to a near instantaneous release of 12C-enriched CO2. We conclude that the MCBR site records nearshore marine response to global climate change that can be used as an analog for modern coastal response to global warming.

  12. Chromium Isotope Anomaly Scaling with Past Warming Episodes

    Science.gov (United States)

    Remmelzwaal, S.; O'Connor, L.; Preston, W.; Parkinson, I. J.; Schmidt, D. N.

    2017-12-01

    The recent expansion of oxygen minimum zones caused by anthropogenic global warming raises questions about the scale of this expansion with different emission scenarios. Ocean deoxygenation will impact marine ecosystems and fisheries demanding an assessment of the possible extent and intensity of deoxygenation. Here, we used past climate warming events to quantify a potential link between warming and the spread of oxygen minimum zones: including Ocean Anoxic Event (OAE) 1a, OAE 2 in the Cretaceous, the Palaeocene-Eocene Thermal Maximum (PETM), the Eocene Thermal Maximum 2 (ETM2), and Pleistocene glacial-interglacial cycles. We applied the emerging proxy of chromium isotopes in planktic foraminifera to assess redox changes during the PETM, ETM2, and Pleistocene and bulk carbonate for the OAEs. Both δ53Cr and chromium concentrations respond markedly during the PETM indicative of a reduction in dissolved oxygen concentrations caused by changes in ocean ventilation and associated warming [1]. A strong correlation between Δδ53Cr and benthic Δδ18O, a measure of the excursion size in both oxygen and chromium isotopes, suggest temperatures to be one of the main drivers of ocean deoxygenation in the past [1]. Chromium concentrations decrease during ETM2 and OAE1a, and, increase by 4.5 ppm over the Plenus Cold Event during OAE2, which suggests enhanced seafloor ventilation. [1] Remmelzwaal, S.R.C., Dixon, S., Parkinson, I.J., Schmidt, D.N., Monteiro, F.M., Sexton, P., Fehr, M., Peacock, C., Donnadieu, Y., James, R.H., in review. Ocean deoxygenation during the Palaeocene-Eocene Thermal Maximum. EPSL.

  13. Transgenerational effects persist down the maternal line in marine sticklebacks: gene expression matches physiology in a warming ocean.

    Science.gov (United States)

    Shama, Lisa N S; Mark, Felix C; Strobel, Anneli; Lokmer, Ana; John, Uwe; Mathias Wegner, K

    2016-10-01

    Transgenerational effects can buffer populations against environmental change, yet little is known about underlying mechanisms, their persistence or the influence of environmental cue timing. We investigated mitochondrial respiratory capacity (MRC) and gene expression of marine sticklebacks that experienced acute or developmental acclimation to simulated ocean warming (21°C) across three generations. Previous work showed that acute acclimation of grandmothers to 21°C led to lower (optimized) offspring MRCs. Here, developmental acclimation of mothers to 21°C led to higher, but more efficient offspring MRCs. Offspring with a 21°C × 17°C grandmother-mother environment mismatch showed metabolic compensation: their MRCs were as low as offspring with a 17°C thermal history across generations. Transcriptional analyses showed primarily maternal but also grandmaternal environment effects: genes involved in metabolism and mitochondrial protein biosynthesis were differentially expressed when mothers developed at 21°C, whereas 21°C grandmothers influenced genes involved in hemostasis and apoptosis. Genes involved in mitochondrial respiration all showed higher expression when mothers developed at 21° and lower expression in the 21°C × 17°C group, matching the phenotypic pattern for MRCs. Our study links transcriptomics to physiology under climate change, and demonstrates that mechanisms underlying transgenerational effects persist across multiple generations with specific outcomes depending on acclimation type and environmental mismatch between generations.

  14. ORTHOMYXO- AND PARAMYXOVIRUSES IN MARINE MAMMALS

    Directory of Open Access Journals (Sweden)

    Marina G. Gulyaeva

    2018-01-01

    Full Text Available Abstract. Aim. Marine mammals play the role of "sentries", standing guard over the health and functioning of marine ecosystems. The analysis of data reported in literature was carried out to understand and to evaluate a circulation of representatives of the Orthomyxoviridae and Paramyxoviridae, dangerous pathogens capable to cause morbidity and mortality in marine warm-blooded animals. Discussion. In the population of marine animals, in the available literature, no more than twenty infectious diseases were described. At the same time, according to preliminary estimates, about 15% of marine mammals die from indicated diseases. Previous studies conducted by various groups of scientists have already shown the circulation of various viral pathogens, which cause different infections in these animals. The present fact indicates the important role of marine mammals in the ecology and spreading of a number of viruses. In accordance with a literature data, representatives of Orthomixoviruses and Paramyxoviruses are among the most dangerous pathogens, which may infect this type of animals. Thus, it was suggested that seals may be infected with a wide range of influenza viruses without prior adaptation. It was emphasized that pinnipeds are one of the reservoir of a human influenza B virus in nature. Infections caused by morbilliviruses, can be the reason of epizootics in a population of seals and among the other species of marine mammals. Signs of a disease are similar to the clinic of carnivore plague. Main conclusions. The data presented in literature is extremely not enough for fully understanding a role of marine mammals as hosts or carriers of potential zoonotic pathogens, such as avian influenza virus (AIV, morbilliviruses and others. Thus, this issue requires further more detailed study.

  15. Nearshore marine benthic invertebrates moving north along the U.S. Atlantic coast

    Science.gov (United States)

    Numerous species have shifted their ranges north in response to global warming. We examined 21 years (1990-2010) of marine benthic invertebrate data from the National Coastal Assessment’s monitoring of nearshore waters along the US Atlantic coast. Data came from three bioge...

  16. Global cooling as a driver of diversification in a major marine clade

    Science.gov (United States)

    Davis, Katie E.; Hill, Jon; Astrop, Tim I.; Wills, Matthew A.

    2016-10-01

    Climate is a strong driver of global diversity and will become increasingly important as human influences drive temperature changes at unprecedented rates. Here we investigate diversification and speciation trends within a diverse group of aquatic crustaceans, the Anomura. We use a phylogenetic framework to demonstrate that speciation rate is correlated with global cooling across the entire tree, in contrast to previous studies. Additionally, we find that marine clades continue to show evidence of increased speciation rates with cooler global temperatures, while the single freshwater clade shows the opposite trend with speciation rates positively correlated to global warming. Our findings suggest that both global cooling and warming lead to diversification and that habitat plays a role in the responses of species to climate change. These results have important implications for our understanding of how extant biota respond to ongoing climate change and are of particular importance for conservation planning of marine ecosystems.

  17. Marine ecosystem response to the Atlantic Multidecadal Oscillation.

    Directory of Open Access Journals (Sweden)

    Martin Edwards

    Full Text Available Against the backdrop of warming of the Northern Hemisphere it has recently been acknowledged that North Atlantic temperature changes undergo considerable variability over multidecadal periods. The leading component of natural low-frequency temperature variability has been termed the Atlantic Multidecadal Oscillation (AMO. Presently, correlative studies on the biological impact of the AMO on marine ecosystems over the duration of a whole AMO cycle (∼60 years is largely unknown due to the rarity of continuously sustained biological observations at the same time period. To test whether there is multidecadal cyclic behaviour in biological time-series in the North Atlantic we used one of the world's longest continuously sustained marine biological time-series in oceanic waters, long-term fisheries data and historical records over the last century and beyond. Our findings suggest that the AMO is far from a trivial presence against the backdrop of continued temperature warming in the North Atlantic and accounts for the second most important macro-trend in North Atlantic plankton records; responsible for habitat switching (abrupt ecosystem/regime shifts over multidecadal scales and influences the fortunes of various fisheries over many centuries.

  18. Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming.

    Science.gov (United States)

    Rosa, Rui; Lopes, Ana Rita; Pimentel, Marta; Faleiro, Filipa; Baptista, Miguel; Trübenbach, Katja; Narciso, Luis; Dionísio, Gisela; Pegado, Maria Rita; Repolho, Tiago; Calado, Ricardo; Diniz, Mário

    2014-10-01

    Cleaning symbioses play an important role in the health of certain coastal marine communities. These interspecific associations often occur at specific sites (cleaning stations) where a cleaner organism (commonly a fish or shrimp) removes ectoparasites/damaged tissue from a 'client' (a larger cooperating fish). At present, the potential impact of climate change on the fitness of cleaner organisms remains unknown. This study investigated the physiological and biochemical responses of tropical (Lysmata amboinensis) and temperate (L. seticaudata) cleaner shrimp to global warming. Specifically, thermal limits (CTMax), metabolic rates, thermal sensitivity, heat shock response (HSR), lipid peroxidation [malondialdehyde (MDA) concentration], lactate levels, antioxidant (GST, SOD and catalase) and digestive enzyme activities (trypsin and alkaline phosphatase) at current and warming (+3 °C) temperature conditions. In contrast to the temperate species, CTMax values decreased significantly from current (24-27 °C) to warming temperature conditions (30 °C) for the tropical shrimp, where metabolic thermal sensitivity was affected and the HSR was significantly reduced. MDA levels in tropical shrimp increased dramatically, indicating extreme cellular lipid peroxidation, which was not observed in the temperate shrimp. Lactate levels, GST and SOD activities were significantly enhanced within the muscle tissue of the tropical species. Digestive enzyme activities in the hepatopancreas of both species were significantly decreased by warmer temperatures. Our data suggest that the tropical cleaner shrimp will be more vulnerable to global warming than the temperate Lysmata seticaudata; the latter evolved in a relatively unstable environment with seasonal thermal variations that may have conferred greater adaptive plasticity. Thus, tropical cleaning symbioses may be challenged at a greater degree by warming-related anthropogenic forcing, with potential cascading effects on the health

  19. Sources, factors, mechanisms and possible solutions to pollutants in marine ecosystems

    International Nuclear Information System (INIS)

    Mostofa, Khan M.G.; Liu, Cong-Qiang; Vione, Davide; Gao, Kunshan; Ogawa, Hiroshi

    2013-01-01

    Algal toxins or red-tide toxins produced during algal blooms are naturally-derived toxic emerging contaminants (ECs) that may kill organisms, including humans, through contaminated fish or seafood. Other ECs produced either naturally or anthropogenically ultimately flow into marine waters. Pharmaceuticals are also an important pollution source, mostly due to overproduction and incorrect disposal. Ship breaking and recycle industries (SBRIs) can also release various pollutants and substantially deteriorate habitats and marine biodiversity. Overfishing is significantly increasing due to the global food crisis, caused by an increasing world population. Organic matter (OM) pollution and global warming (GW) are key factors that exacerbate these challenges (e.g. algal blooms), to which acidification in marine waters should be added as well. Sources, factors, mechanisms and possible remedial measures of these challenges to marine ecosystems are discussed, including their eventual impact on all forms of life including humans. -- Review of sources, factors, mechanisms and possible remedial measures of key pollutants (contaminants, toxins, ship breaking, overfishing) in marine ecosystems

  20. Forecasting wildlife response to rapid warming in the Alaskan Arctic

    Science.gov (United States)

    Van Hemert, Caroline R.; Flint, Paul L.; Udevitz, Mark S.; Koch, Joshua C.; Atwood, Todd C.; Oakley, Karen L.; Pearce, John M.

    2015-01-01

    Arctic wildlife species face a dynamic and increasingly novel environment because of climate warming and the associated increase in human activity. Both marine and terrestrial environments are undergoing rapid environmental shifts, including loss of sea ice, permafrost degradation, and altered biogeochemical fluxes. Forecasting wildlife responses to climate change can facilitate proactive decisions that balance stewardship with resource development. In this article, we discuss the primary and secondary responses to physical climate-related drivers in the Arctic, associated wildlife responses, and additional sources of complexity in forecasting wildlife population outcomes. Although the effects of warming on wildlife populations are becoming increasingly well documented in the scientific literature, clear mechanistic links are often difficult to establish. An integrated science approach and robust modeling tools are necessary to make predictions and determine resiliency to change. We provide a conceptual framework and introduce examples relevant for developing wildlife forecasts useful to management decisions.

  1. The Effect of Traditional Singing Warm-Up Versus Semioccluded Vocal Tract Exercises on the Acoustic Parameters of Singing Voice.

    Science.gov (United States)

    Duke, Emily; Plexico, Laura W; Sandage, Mary J; Hoch, Matthew

    2015-11-01

    This study investigated the effect of traditional vocal warm-up versus semioccluded vocal tract exercises on the acoustic parameters of voice through three questions: does vocal warm-up condition significantly alter the singing power ratio of the singing voice? Is singing power ratio dependent upon vowel? Is perceived phonatory effort affected by warm-up condition? Hypotheses were that vocal warm-up would alter the singing power ratio, and that semioccluded vocal tract warm-up would affect the singing power ratio more than no warm-up or traditional warm-up, that singing power ratio would vary across vowel, and that perceived phonatory effort would vary with warm-up condition. This study was a within-participant repeated measures design with counterbalanced conditions. Thirteen male singers were recorded under three different conditions: no warm-up, traditional warm-up, and semioccluded vocal tract exercise warm-up. Recordings were made of these singers performing the Star Spangled Banner, and singing power ratio (SPR) was calculated from four vowels. Singers rated their perceived phonatory effort (PPE) singing the Star Spangled Banner after each warm-up condition. Warm-up condition did not significantly affect SPR. SPR was significantly different for /i/ and /e/. PPE was not significantly different between warm-up conditions. The present study did not find significant differences in SPR between warm-up conditions. SPR differences for /i/, support previous findings. PPE did not differ significantly across warm-up condition despite the expectation that traditional or semioccluded warm-up would cause a decrease. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  2. Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability

    Science.gov (United States)

    Oliver, Eric C. J.; Lago, Véronique; Hobday, Alistair J.; Holbrook, Neil J.; Ling, Scott D.; Mundy, Craig N.

    2018-02-01

    Surface waters off eastern Tasmania are a global warming hotspot. Here, mean temperatures have been rising over several decades at nearly four times the global average rate, with concomitant changes in extreme temperatures - marine heatwaves. These changes have recently caused the marine biodiversity, fisheries and aquaculture industries off Tasmania's east coast to come under stress. In this study we quantify the long-term trends, variability and predictability of marine heatwaves off eastern Tasmania. We use a high-resolution ocean model for Tasmania's eastern continental shelf. The ocean state over the 1993-2015 period is hindcast, providing daily estimates of the three-dimensional temperature and circulation fields. Marine heatwaves are identified at the surface and subsurface from ocean temperature time series using a consistent definition. Trends in marine heatwave frequency are positive nearly everywhere and annual marine heatwave days and penetration depths indicate significant positive changes, particularly off southeastern Tasmania. A decomposition into modes of variability indicates that the East Australian Current is the dominant driver of marine heatwaves across the domain. Self-organising maps are used to identify 12 marine heatwave types, each with its own regionality, seasonality, and associated large-scale oceanic and atmospheric circulation patterns. The implications of this work for marine ecosystems and their management were revealed through review of past impacts and stakeholder discussions regarding use of these data.

  3. Warming Affects Growth Rates and Microcystin Production in Tropical Bloom-Forming Microcystis Strains

    Directory of Open Access Journals (Sweden)

    Trung Bui

    2018-03-01

    Full Text Available Warming climate is predicted to promote cyanobacterial blooms but the toxicity of cyanobacteria under global warming is less well studied. We tested the hypothesis that raising temperature may lead to increased growth rates but to decreased microcystin (MC production in tropical Microcystis strains. To this end, six Microcystis strains were isolated from different water bodies in Southern Vietnam. They were grown in triplicate at 27 °C (low, 31 °C (medium, 35 °C (high and 37 °C (extreme. Chlorophyll-a-, particle- and MC concentrations as well as dry-weights were determined. All strains yielded higher biomass in terms of chlorophyll-a concentration and dry-weight at 31 °C compared to 27 °C and then either stabilised, slightly increased or declined with higher temperature. Five strains easily grew at 37 °C but one could not survive at 37 °C. When temperature was increased from 27 °C to 37 °C total MC concentration decreased by 35% in strains with MC-LR as the dominant variant and by 94% in strains with MC-RR. MC quota expressed per particle, per unit chlorophyll-a and per unit dry-weight significantly declined with higher temperatures. This study shows that warming can prompt the growth of some tropical Microcystis strains but that these strains become less toxic.

  4. Astronomically forced paleoclimate change from middle Eocene to early Oligocene: continental conditions in central China compared with the global marine isotope record

    Science.gov (United States)

    Huang, C.; Hinnov, L. A.

    2010-12-01

    The early Eocene climatic optimum ended with a long interval of global cooling that began in the early Middle Eocene and ended at the Eocene-Oligocene transition. During this long-term cooling, a series of short-term warming reversals occurred in the marine realm. Here, we investigate corresponding continental climate conditions as revealed in the Qianjiang Formation of the Jianghan Basin in central China, which consists of more than 4000 m of saline lake sediments. The Qianjiang Formation includes, in its deepest sections, a halite-rich rhythmic sediment succession with dark mudstone, brownish-white siltstone and sandstone, and greyish-white halite. Alternating fresh water (humid/cool)—saline water (dry/hot) deposits reflect climate cycles driven by orbital forcing. High-resolution gamma ray (GR) logging from the basin center captures these pronounced lithological rhythms throughout the formation. Several halite-rich intervals are interpreted as short-term warming events within the middle Eocene to early Oligocene, and could be expressions of coeval warming events in the global marine oxygen isotope record, for example, the middle Eocene climate optimum (MECO) event around 41 Ma. The Eocene-Oligocene boundary is distinguished by a radical change from halite-rich to clastic sediments, indicating a dramatic climate change from warm to cool conditions. Power spectral analysis of the GR series indicates strong short (~100 kyr) eccentricity cycling during the warm/hot episodes. Amplitude modulation of the short eccentricity in the GR series occurs with a strong 405 kyr periodicity. This cycling is calibrated to the La2004 orbital eccentricity model. A climate reversal occurs at 36.5 Ma within the long-term marine cooling trend following MECO, which is reflected also in the Qianjiang GR series, with the latter indicating several brief warm/dry reversals within the trend. A ~2.6 Myr halite-rich warm interval occurs in the latest Eocene in the continental record; both

  5. Experimental and natural warming elevates mercury concentrations in estuarine fish.

    Directory of Open Access Journals (Sweden)

    Jennifer A Dijkstra

    Full Text Available Marine food webs are the most important link between the global contaminant, methylmercury (MeHg, and human exposure through consumption of seafood. Warming temperatures may increase human exposure to MeHg, a potent neurotoxin, by increasing MeHg production as well as bioaccumulation and trophic transfer through marine food webs. Studies of the effects of temperature on MeHg bioaccumulation are rare and no study has specifically related temperature to MeHg fate by linking laboratory experiments with natural field manipulations in coastal ecosystems. We performed laboratory and field experiments on MeHg accumulation under varying temperature regimes using the killifish, Fundulus heteroclitus. Temperature treatments were established in salt pools on a coastal salt marsh using a natural temperature gradient where killifish fed on natural food sources. Temperatures were manipulated across a wider range in laboratory experiments with killifish exposed to MeHg enriched food. In both laboratory microcosms and field mesocosms, MeHg concentrations in killifish significantly increased at elevated temperatures. Moreover, in field experiments, other ancillary variables (salinity, MeHg in sediment, etc. did not relate to MeHg bioaccumulation. Modeling of laboratory experimental results suggested increases in metabolic rate as a driving factor. The elevated temperatures we tested are consistent with predicted trends in climate warming, and indicate that in the absence of confounding factors, warmer sea surface temperatures could result in greater in bioaccumulation of MeHg in fish, and consequently, increased human exposure.

  6. Climate change and marine top predators

    DEFF Research Database (Denmark)

    Climate change affects all components of marine ecosystems. For endothermic top predators, i.e. seabirds and marine mammals, these impacts are often complex and mediated through trophic relationships. In this Research Topic, leading researchers attempt to identify patterns of change among seabirds...... and marine mammals, and the mechanisms through which climate change drives these changes....

  7. A new international environmental order? An assessment of the impact of the global warming epistemic community

    International Nuclear Information System (INIS)

    Smith, H.A.

    1993-12-01

    Global warming is a problem which ignores national boundaries, making international cooperation essential. The role of epistemic communities, or those composed of professionals who share a commitment to a common causal model and a set of political values, in affecting the international response to the global warming problem is examined. It is claimed that the epistemic global warming community can affect the policy process, both domestically and internationally, and facilitate cooperation in an era of ecological interdependence. This claim is explored and eventually supported through the examination of two case studies: the responses of Canada and Britain to the issue of global warming between 1988 and November 1990. The case studies are supplemented with a more general discussion of the issues surrounding the international politics of global warming through the same period. Through these studies, it is found that a global warming community can be identified and that its efforts have played a significant role in framing the global warming issue. 121 refs

  8. Does pre-exposure to warming conditions increase Mytilus galloprovincialis tolerance to Hg contamination?

    Science.gov (United States)

    Freitas, Rosa; Coppola, Francesca; Henriques, Bruno; Wrona, Fredrick; Figueira, Etelvina; Pereira, Eduarda; Soares, Amadeu M V M

    2017-12-01

    The degree to which marine invertebrate populations can tolerate extreme weather events, such as short-term exposure to high temperatures, and the underlying biochemical response mechanisms are not yet fully understood. Furthermore, scarce information is available on how marine organisms respond to the presence of pollutants after exposure to heat stress conditions. Therefore, the present study aimed to understand how the mussel Mytilus galloprovincialis responds to Hg pollution after pre-exposure to warming conditions. Mussels were exposed to control (17°C) and warming (21°C) conditions during 14days, followed by Hg contamination during 28days under different temperature regimes (17 and 21°C). The results obtained demonstrated significantly higher Hg concentrations in mussels under 17°C during the entire experiment than in organisms exposed to 21°C during the same period, which resulted in higher oxidative stress in mussels under control temperature. Significantly higher Hg concentrations were also observed in mussels pre-exposed to 21°C followed by a 17°C exposure comparing with organisms maintained the entire experiment at 21°C. These results may be explained by higher metabolic capacity in organisms exposed to 17°C after pre-exposure to 21°C that although induced antioxidant defences were not enough to prevent oxidative stress. No significant differences in terms of Hg concentration were found between mussels exposed to 17°C during the entire experiment and organisms pre-exposed to 21°C followed by a 17°C exposure, leading to similar oxidative stress levels in mussels exposed to both conditions. Therefore, our findings demonstrated that pre-exposure to warming conditions did not change mussels' accumulation and tolerance to Hg in comparison to Hg contaminated mussels maintained at control temperature. Furthermore, the present study indicate that organisms maintained under warming conditions for long periods may prevent the accumulation of

  9. Ocean acidification exerts negative effects during warming conditions in a developing Antarctic fish.

    Science.gov (United States)

    Flynn, Erin E; Bjelde, Brittany E; Miller, Nathan A; Todgham, Anne E

    2015-01-01

    Anthropogenic CO2 is rapidly causing oceans to become warmer and more acidic, challenging marine ectotherms to respond to simultaneous changes in their environment. While recent work has highlighted that marine fishes, particularly during early development, can be vulnerable to ocean acidification, we lack an understanding of how life-history strategies, ecosystems and concurrent ocean warming interplay with interspecific susceptibility. To address the effects of multiple ocean changes on cold-adapted, slowly developing fishes, we investigated the interactive effects of elevated partial pressure of carbon dioxide (pCO2) and temperature on the embryonic physiology of an Antarctic dragonfish (Gymnodraco acuticeps), with protracted embryogenesis (∼10 months). Using an integrative, experimental approach, our research examined the impacts of near-future warming [-1 (ambient) and 2°C (+3°C)] and ocean acidification [420 (ambient), 650 (moderate) and 1000 μatm pCO2 (high)] on survival, development and metabolic processes over the course of 3 weeks in early development. In the presence of increased pCO2 alone, embryonic mortality did not increase, with greatest overall survival at the highest pCO2. Furthermore, embryos were significantly more likely to be at a later developmental stage at high pCO2 by 3 weeks relative to ambient pCO2. However, in combined warming and ocean acidification scenarios, dragonfish embryos experienced a dose-dependent, synergistic decrease in survival and developed more slowly. We also found significant interactions between temperature, pCO2 and time in aerobic enzyme activity (citrate synthase). Increased temperature alone increased whole-organism metabolic rate (O2 consumption) and developmental rate and slightly decreased osmolality at the cost of increased mortality. Our findings suggest that developing dragonfish are more sensitive to ocean warming and may experience negative physiological effects of ocean acidification only in

  10. The effect of global warming on infectious diseases.

    Science.gov (United States)

    Kurane, Ichiro

    2010-12-01

    Global warming has various effects on human health. The main indirect effects are on infectious diseases. Although the effects on infectious diseases will be detected worldwide, the degree and types of the effect are different, depending on the location of the respective countries and socioeconomical situations. Among infectious diseases, water- and foodborne infectious diseases and vector-borne infectious diseases are two main categories that are forecasted to be most affected. The effect on vector-borne infectious diseases such as malaria and dengue fever is mainly because of the expansion of the infested areas of vector mosquitoes and increase in the number and feeding activity of infected mosquitoes. There will be increase in the number of cases with water- and foodborne diarrhoeal diseases. Even with the strongest mitigation procedures, global warming cannot be avoided for decades. Therefore, implementation of adaptation measures to the effect of global warming is the most practical action we can take. It is generally accepted that the impacts of global warming on infectious diseases have not been apparent at this point yet in East Asia. However, these impacts will appear in one form or another if global warming continues to progress in future. Further research on the impacts of global warming on infectious diseases and on future prospects should be conducted.

  11. Thyroid storm and warm autoimmune hemolytic anemia.

    Science.gov (United States)

    Moore, Joseph A; Gliga, Louise; Nagalla, Srikanth

    2017-08-01

    Graves' disease is often associated with other autoimmune disorders, including rare associations with autoimmune hemolytic anemia (AIHA). We describe a unique presentation of thyroid storm and warm AIHA diagnosed concurrently in a young female with hyperthyroidism. The patient presented with nausea, vomiting, diarrhea and altered mental status. Laboratory studies revealed hemoglobin 3.9g/dL, platelets 171×10 9 L -1 , haptoglobin storm and warm AIHA. She was started on glucocorticoids to treat both warm AIHA and thyroid storm, as well as antithyroid medications, propranolol and folic acid. Due to profound anemia and hemodynamic instability, the patient was transfused two units of uncrossmatched packed red blood cells slowly and tolerated this well. She was discharged on methimazole as well as a prolonged prednisone taper, and achieved complete resolution of the thyrotoxicosis and anemia at one month. Hyperthyroidism can affect all three blood cell lineages of the hematopoietic system. Anemia can be seen in 10-20% of patients with thyrotoxicosis. Several autoimmune processes can lead to anemia in Graves' disease, including pernicious anemia, celiac disease, and warm AIHA. This case illustrates a rarely described presentation of a patient with Graves' disease presenting with concurrent thyroid storm and warm AIHA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Infectious diseases affect marine fisheries and aquaculture economics

    Science.gov (United States)

    Lafferty, Kevin D.; Harvell, C. Drew; Conrad, Jonathan M.; Friedman, Carolyn S.; Kent, Michael L.; Kuris, Armand M.; Powell, Eric N.; Rondeau, Daniel; Saksida, Sonja M.

    2015-01-01

    Seafood is a growing part of the economy, but its economic value is diminished by marine diseases. Infectious diseases are common in the ocean, and here we tabulate 67 examples that can reduce commercial species' growth and survivorship or decrease seafood quality. These impacts seem most problematic in the stressful and crowded conditions of aquaculture, which increasingly dominates seafood production as wild fishery production plateaus. For instance, marine diseases of farmed oysters, shrimp, abalone, and various fishes, particularly Atlantic salmon, cost billions of dollars each year. In comparison, it is often difficult to accurately estimate disease impacts on wild populations, especially those of pelagic and subtidal species. Farmed species often receive infectious diseases from wild species and can, in turn, export infectious agents to wild species. However, the impact of disease export on wild fisheries is controversial because there are few quantitative data demonstrating that wild species near farms suffer more from infectious diseases than those in other areas. The movement of exotic infectious agents to new areas continues to be the greatest concern.

  13. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue .... shell growth is adversely affected. ... local stressors in action, such as ocean acidification ..... that the distribution of many intertidal sessile animals.

  14. Using global warming potential to compare methane and CO2 emissions

    International Nuclear Information System (INIS)

    Dufresne, J.L.

    2009-01-01

    Greenhouse gases affect the planetary heat budget. Any change of their concentration affects this budget and therefore the global mean surface temperature of the Earth. These gases have different radiative properties and different lifetimes in the atmosphere, which prevents any direct comparison of the consequences of their emissions on global warming. Almost twenty years ago, the Intergovernmental Panel on Climate Change (IPCC) proposed the global warming potential (GWP) as an index to compare the emissions of the various greenhouse gases. In a recent paper, it has been stated that the use of GWP leads to strongly underestimating the global warming due to constant methane emissions compared to that of constant CO 2 emissions. Here we show that it is not really the case. The GWP enables comparisons of global warming due to constant emissions for any prescribed period, 100 years being often used. But this comparison is not universal. For instance, the impact of methane is underestimated at the beginning of the chosen period while the impact of CO 2 is underestimated after this period

  15. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    Science.gov (United States)

    Irena F. Creed; Adam T. Spargo; Julia A. Jones; Jim M. Buttle; Mary B. Adams; Fred D. Beall; Eric G. Booth; John L. Campbell; Dave Clow; Kelly Elder; Mark B. Green; Nancy B. Grimm; Chelcy Miniat; Patricia Ramlal; Amartya Saha; Stephen Sebestyen; Dave Spittlehouse; Shannon Sterling; Mark W. Williams; Rita Winkler; Huaxia. Yao

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary.We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm...

  16. The role of emotion in global warming policy support and opposition.

    Science.gov (United States)

    Smith, Nicholas; Leiserowitz, Anthony

    2014-05-01

    Prior research has found that affect and affective imagery strongly influence public support for global warming. This article extends this literature by exploring the separate influence of discrete emotions. Utilizing a nationally representative survey in the United States, this study found that discrete emotions were stronger predictors of global warming policy support than cultural worldviews, negative affect, image associations, or sociodemographic variables. In particular, worry, interest, and hope were strongly associated with increased policy support. The results contribute to experiential theories of risk information processing and suggest that discrete emotions play a significant role in public support for climate change policy. Implications for climate change communication are also discussed. © 2013 Society for Risk Analysis.

  17. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    OpenAIRE

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatmen...

  18. Warm-Up Strategies for Sport and Exercise: Mechanisms and Applications.

    Science.gov (United States)

    McGowan, Courtney J; Pyne, David B; Thompson, Kevin G; Rattray, Ben

    2015-11-01

    It is widely accepted that warming-up prior to exercise is vital for the attainment of optimum performance. Both passive and active warm-up can evoke temperature, metabolic, neural and psychology-related effects, including increased anaerobic metabolism, elevated oxygen uptake kinetics and post-activation potentiation. Passive warm-up can increase body temperature without depleting energy substrate stores, as occurs during the physical activity associated with active warm-up. While the use of passive warm-up alone is not commonplace, the idea of utilizing passive warming techniques to maintain elevated core and muscle temperature throughout the transition phase (the period between completion of the warm-up and the start of the event) is gaining in popularity. Active warm-up induces greater metabolic changes, leading to increased preparedness for a subsequent exercise task. Until recently, only modest scientific evidence was available supporting the effectiveness of pre-competition warm-ups, with early studies often containing relatively few participants and focusing mostly on physiological rather than performance-related changes. External issues faced by athletes pre-competition, including access to equipment and the length of the transition/marshalling phase, have also frequently been overlooked. Consequently, warm-up strategies have continued to develop largely on a trial-and-error basis, utilizing coach and athlete experiences rather than scientific evidence. However, over the past decade or so, new research has emerged, providing greater insight into how and why warm-up influences subsequent performance. This review identifies potential physiological mechanisms underpinning warm-ups and how they can affect subsequent exercise performance, and provides recommendations for warm-up strategy design for specific individual and team sports.

  19. Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules.

    Science.gov (United States)

    Roggatz, Christina C; Lorch, Mark; Hardege, Jörg D; Benoit, David M

    2016-12-01

    Ocean acidification is a global challenge that faces marine organisms in the near future with a predicted rapid drop in pH of up to 0.4 units by the end of this century. Effects of the change in ocean carbon chemistry and pH on the development, growth and fitness of marine animals are well documented. Recent evidence also suggests that a range of chemically mediated behaviours and interactions in marine fish and invertebrates will be affected. Marine animals use chemical cues, for example, to detect predators, for settlement, homing and reproduction. But, while effects of high CO 2 conditions on these behaviours are described across many species, little is known about the underlying mechanisms, particularly in invertebrates. Here, we investigate the direct influence of future oceanic pH conditions on the structure and function of three peptide signalling molecules with an interdisciplinary combination of methods. NMR spectroscopy and quantum chemical calculations were used to assess the direct molecular influence of pH on the peptide cues, and we tested the functionality of the cues in different pH conditions using behavioural bioassays with shore crabs (Carcinus maenas) as a model system. We found that peptide signalling cues are susceptible to protonation in future pH conditions, which will alter their overall charge. We also show that structure and electrostatic properties important for receptor binding differ significantly between the peptide forms present today and the protonated signalling peptides likely to be dominating in future oceans. The bioassays suggest an impaired functionality of the signalling peptides at low pH. Physiological changes due to high CO 2 conditions were found to play a less significant role in influencing the investigated behaviour. From our results, we conclude that the change of charge, structure and consequently function of signalling molecules presents one possible mechanism to explain altered behaviour under future oceanic p

  20. Global change in the trophic functioning of marine food webs

    DEFF Research Database (Denmark)

    Maureaud, Aurore; Gascuel, Didier; Colléter, Mathieu

    2017-01-01

    and life history traits of marine species, we tested the hypothesis that anthropogenic ecological impacts may have led to changes in the global parameters defining the transfers of biomass within the food web. First, we developed two indicators to assess such changes: the Time Cumulated Indicator (TCI......The development of fisheries in the oceans, and other human drivers such as climate warming, have led to changes in species abundance, assemblages, trophic interactions, and ultimately in the functioning of marine food webs. Here, using a trophodynamic approach and global databases of catches......) measuring the residence time of biomass within the food web, and the Efficiency Cumulated Indicator (ECI) quantifying the fraction of secondary production reaching the top of the trophic chain. Then, we assessed, at the large marine ecosystem scale, the worldwide change of these two indicators over the 1950...

  1. Simulative Global Warming Negatively Affects Cotton Fiber Length through Shortening Fiber Rapid Elongation Duration.

    Science.gov (United States)

    Dai, Yanjiao; Yang, Jiashuo; Hu, Wei; Zahoor, Rizwan; Chen, Binglin; Zhao, Wenqing; Meng, Yali; Zhou, Zhiguo

    2017-08-23

    Global warming could possibly increase the air temperature by 1.8-4.0 °C in the coming decade. Cotton fiber is an essential raw material for the textile industry. Fiber length, which was found negatively related to the excessively high temperature, determines yarn quality to a great extent. To investigate the effects of global warming on cotton fiber length and its mechaism, cottons grown in artificially elevated temperature (34.6/30.5 °C, T day /T night ) and ambient temperature (31.6/27.3 °C) regions have been investigated. Becaused of the high sensitivities of enzymes V-ATPase, PEPC, and genes GhXTH1 and GhXTH2 during fiber elongation when responding to high temperature stress, the fiber rapid elongation duration (FRED) has been shortened, which led to a significant suppression on final fiber length. Through comprehensive analysis, T night had a great influence on fiber elongation, which means T n could be deemed as an ideal index for forecasting the degree of high temperature stress would happen to cotton fiber property in future. Therefore, we speculate the global warming would bring unfavorable effects on cotton fiber length, which needs to take actions in advance for minimizing the loss in cotton production.

  2. Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event.

    Science.gov (United States)

    Petrenko, Vasilii V; Smith, Andrew M; Schaefer, Hinrich; Riedel, Katja; Brook, Edward; Baggenstos, Daniel; Harth, Christina; Hua, Quan; Buizert, Christo; Schilt, Adrian; Fain, Xavier; Mitchell, Logan; Bauska, Thomas; Orsi, Anais; Weiss, Ray F; Severinghaus, Jeffrey P

    2017-08-23

    Methane (CH 4 ) is a powerful greenhouse gas and plays a key part in global atmospheric chemistry. Natural geological emissions (fossil methane vented naturally from marine and terrestrial seeps and mud volcanoes) are thought to contribute around 52 teragrams of methane per year to the global methane source, about 10 per cent of the total, but both bottom-up methods (measuring emissions) and top-down approaches (measuring atmospheric mole fractions and isotopes) for constraining these geological emissions have been associated with large uncertainties. Here we use ice core measurements to quantify the absolute amount of radiocarbon-containing methane ( 14 CH 4 ) in the past atmosphere and show that geological methane emissions were no higher than 15.4 teragrams per year (95 per cent confidence), averaged over the abrupt warming event that occurred between the Younger Dryas and Preboreal intervals, approximately 11,600 years ago. Assuming that past geological methane emissions were no lower than today, our results indicate that current estimates of today's natural geological methane emissions (about 52 teragrams per year) are too high and, by extension, that current estimates of anthropogenic fossil methane emissions are too low. Our results also improve on and confirm earlier findings that the rapid increase of about 50 per cent in mole fraction of atmospheric methane at the Younger Dryas-Preboreal event was driven by contemporaneous methane from sources such as wetlands; our findings constrain the contribution from old carbon reservoirs (marine methane hydrates, permafrost and methane trapped under ice) to 19 per cent or less (95 per cent confidence). To the extent that the characteristics of the most recent deglaciation and the Younger Dryas-Preboreal warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future atmospheric releases of methane from old carbon sources are unlikely to occur.

  3. Albedo enhancement over land to counteract global warming: impacts on hydrological cycle

    Energy Technology Data Exchange (ETDEWEB)

    Bala, Govindasamy; Nag, Bappaditya [Indian Institute of Science, Divecha Center for Climate Change and Center for Atmospheric and Oceanic Sciences, Bangalore (India)

    2012-09-15

    A recent modelling study has shown that precipitation and runoff over land would increase when the reflectivity of marine clouds is increased to counter global warming. This implies that large scale albedo enhancement over land could lead to a decrease in runoff over land. In this study, we perform simulations using NCAR CAM3.1 that have implications for Solar Radiation Management geoengineering schemes that increase the albedo over land. We find that an increase in reflectivity over land that mitigates the global mean warming from a doubling of CO{sub 2} leads to a large residual warming in the southern hemisphere and cooling in the northern hemisphere since most of the land is located in northern hemisphere. Precipitation and runoff over land decrease by 13.4 and 22.3%, respectively, because of a large residual sinking motion over land triggered by albedo enhancement over land. Soil water content also declines when albedo over land is enhanced. The simulated magnitude of hydrological changes over land are much larger when compared to changes over oceans in the recent marine cloud albedo enhancement study since the radiative forcing over land needed (-8.2 W m{sup -2}) to counter global mean radiative forcing from a doubling of CO{sub 2} (3.3 W m{sup -2}) is approximately twice the forcing needed over the oceans (-4.2 W m{sup -2}). Our results imply that albedo enhancement over oceans produce climates closer to the unperturbed climate state than do albedo changes on land when the consequences on land hydrology are considered. Our study also has important implications for any intentional or unintentional large scale changes in land surface albedo such as deforestation/afforestation/reforestation, air pollution, and desert and urban albedo modification. (orig.)

  4. Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event

    Science.gov (United States)

    Petrenko, Vasilii V.; Smith, Andrew M.; Schaefer, Hinrich; Riedel, Katja; Brook, Edward; Baggenstos, Daniel; Harth, Christina; Hua, Quan; Buizert, Christo; Schilt, Adrian; Fain, Xavier; Mitchell, Logan; Bauska, Thomas; Orsi, Anais; Weiss, Ray F.; Severinghaus, Jeffrey P.

    2017-08-01

    Methane (CH4) is a powerful greenhouse gas and plays a key part in global atmospheric chemistry. Natural geological emissions (fossil methane vented naturally from marine and terrestrial seeps and mud volcanoes) are thought to contribute around 52 teragrams of methane per year to the global methane source, about 10 per cent of the total, but both bottom-up methods (measuring emissions) and top-down approaches (measuring atmospheric mole fractions and isotopes) for constraining these geological emissions have been associated with large uncertainties. Here we use ice core measurements to quantify the absolute amount of radiocarbon-containing methane (14CH4) in the past atmosphere and show that geological methane emissions were no higher than 15.4 teragrams per year (95 per cent confidence), averaged over the abrupt warming event that occurred between the Younger Dryas and Preboreal intervals, approximately 11,600 years ago. Assuming that past geological methane emissions were no lower than today, our results indicate that current estimates of today’s natural geological methane emissions (about 52 teragrams per year) are too high and, by extension, that current estimates of anthropogenic fossil methane emissions are too low. Our results also improve on and confirm earlier findings that the rapid increase of about 50 per cent in mole fraction of atmospheric methane at the Younger Dryas-Preboreal event was driven by contemporaneous methane from sources such as wetlands; our findings constrain the contribution from old carbon reservoirs (marine methane hydrates, permafrost and methane trapped under ice) to 19 per cent or less (95 per cent confidence). To the extent that the characteristics of the most recent deglaciation and the Younger Dryas-Preboreal warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future atmospheric releases of methane from old carbon sources are unlikely to occur.

  5. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments.

    Science.gov (United States)

    Keil, Richard

    2017-01-03

    Carbon preservation in marine sediments, supplemented by that in large lakes, is the primary mechanism that moves carbon from the active surficial carbon cycle to the slower geologic carbon cycle. Preservation rates are low relative to the rates at which carbon moves between surface pools, which has led to the preservation term largely being ignored when evaluating anthropogenic forcing of the global carbon cycle. However, a variety of anthropogenic drivers-including ocean warming, deoxygenation, and acidification, as well as human-induced changes in sediment delivery to the ocean and mixing and irrigation of continental margin sediments-all work to decrease the already small carbon preservation term. These drivers affect the cycling of both carbonate and organic carbon in the ocean. The overall effect of anthropogenic forcing in the modern ocean is to decrease delivery of carbon to sediments, increase sedimentary dissolution and remineralization, and subsequently decrease overall carbon preservation.

  6. Viruses manipulate the marine environment.

    Science.gov (United States)

    Rohwer, Forest; Thurber, Rebecca Vega

    2009-05-14

    Marine viruses affect Bacteria, Archaea and eukaryotic organisms and are major components of the marine food web. Most studies have focused on their role as predators and parasites, but many of the interactions between marine viruses and their hosts are much more complicated. A series of recent studies has shown that viruses have the ability to manipulate the life histories and evolution of their hosts in remarkable ways, challenging our understanding of this almost invisible world.

  7. Effects of in situ climate warming on monarch caterpillar (Danaus plexippus development

    Directory of Open Access Journals (Sweden)

    Nathan P. Lemoine

    2015-10-01

    Full Text Available Climate warming will fundamentally alter basic life history strategies of many ectothermic insects. In the lab, rising temperatures increase growth rates of lepidopteran larvae but also reduce final pupal mass and increase mortality. Using in situ field warming experiments on their natural host plants, we assessed the impact of climate warming on development of monarch (Danaus plexippus larvae. Monarchs were reared on Asclepias tuberosa grown under ‘Ambient’ and ‘Warmed’ conditions. We quantified time to pupation, final pupal mass, and survivorship. Warming significantly decreased time to pupation, such that an increase of 1 °C corresponded to a 0.5 day decrease in pupation time. In contrast, survivorship and pupal mass were not affected by warming. Our results indicate that climate warming will speed the developmental rate of monarchs, influencing their ecological and evolutionary dynamics. However, the effects of climate warming on larval development in other monarch populations and at different times of year should be investigated.

  8. The combined effects of ocean warming and acidification on shallow-water meiofaunal assemblages.

    Science.gov (United States)

    Lee, Matthew R; Torres, Rodrigo; Manríquez, Patricio H

    2017-10-01

    Climate change due to increased anthropogenic CO 2 in the atmosphere is causing an increase in seawater temperatures referred to as ocean warming and a decrease in seawater pH, referred to as ocean acidification. The meiofauna play an important role in the ecology of marine ecosystems and the functions they provide. Using microcosms, meiofaunal assemblages were exposed to two temperatures (15 and 19 °C) and two pHs (pCO 2 of 400 and 1000 ppm), both individually and in combination, for a period of 90 days. The hypothesis that increased temperature will increase meiofaunal abundance was not supported. The hypothesis that a reduced pH will reduce meiofaunal abundance and species richness was supported. The combination of future conditions of temperature and pH (19 °C and pCO 2 of 1000 ppm) did not affect overall abundance but the structure of the nematode assemblage changed becoming dominated by a few opportunistic species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Marine cloud brightening

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action

  10. Marine Cloud Brightening

    Energy Technology Data Exchange (ETDEWEB)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  11. Marine cloud brightening.

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-09-13

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  12. Small inner companions of warm Jupiters: Lifetimes and legacies

    International Nuclear Information System (INIS)

    Van Laerhoven, Christa; Greenberg, Richard

    2013-01-01

    Although warm Jupiters are generally too far from their stars for tides to be important, the presence of an inner planetary companion to a warm Jupiter can result in tidal evolution of the system. Insight into the process and its effects comes form classical secular theory of planetary perturbations. The lifetime of the inner planet may be shorter than the age of the system, because the warm Jupiter maintains its eccentricity and hence promotes tidal migration into the star. Thus a warm Jupiter observed to be alone in its system might have previously cleared away any interior planets. Before its demise, even if an inner planet is of terrestrial scale, it may promote damping of the warm Jupiter's eccentricity. Thus any inferences of the initial orbit of an observed warm Jupiter must include the possibility of a greater initial eccentricity than would be estimated by assuming it had always been alone. Tidal evolution involving multiple planets also enhances the internal heating of the planets, which readily exceeds that of stellar radiation for the inner planet, and may be great enough to affect the internal structure of warm Jupiters. Secular theory gives insight into the tidal processes, providing, among other things, a way to constrain eccentricities of transiting planets based on estimates of the tidal parameter Q.

  13. A cascade of warming impacts brings bluefin tuna to Greenland waters

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Payne, Mark; Boje, Jesper

    Rising ocean temperatures are causing marine fish species to shift spatial distributions and ranges, and are altering predator-prey dynamics in food-webs. Most documented cases of species shifts so far involve relatively small species at lower trophic levels, and consider individual species...... since 1985, when temperatures began to rise. The presence of bluefin tuna in this region is likely due to a combination of warm temperatures that are physiologically more tolerable and immigration of an important prey species into the region. We conclude that a cascade of climate change impacts...

  14. Long-term warming and litter addition affects nitrogen fixation in a subarctic heath

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Michelsen, Anders

    2011-01-01

    the measurements. We analyzed N fixation rates on both whole-ecosystem level and specifically on two moss species: Sphagnum warnstorfii and Hylocomium splendens. The whole-ecosystem N fixation of the warmed plots almost tripled compared with the control plots. However, in the Sphagnum and Hylocomium mosses we...

  15. Warming off southwestern Japan linked to distributional shifts of subtidal canopy-forming seaweeds.

    Science.gov (United States)

    Tanaka, Kouki; Taino, Seiya; Haraguchi, Hiroko; Prendergast, Gabrielle; Hiraoka, Masanori

    2012-11-01

    To assess distributional shifts of species in response to recent warming, historical distribution records are the most requisite information. The surface seawater temperature (SST) of Kochi Prefecture, southwestern Japan on the western North Pacific, has significantly risen, being warmed by the Kuroshio Current. Past distributional records of subtidal canopy-forming seaweeds (Laminariales and Fucales) exist at about 10-year intervals from the 1970s, along with detailed SST datasets at several sites along Kochi's >700 km coastline. In order to provide a clear picture of distributional shifts of coastal marine organisms in response to warming SST, we observed the present distribution of seaweeds and analyzed the SST datasets to estimate spatiotemporal SST trends in this coastal region. We present a large increase of 0.3°C/decade in the annual mean SST of this area over the past 40 years. Furthermore, a comparison of the previous and present distributions clearly showed the contraction of temperate species' distributional ranges and expansion of tropical species' distributional ranges in the seaweeds. Although the main temperate kelp Ecklonia (Laminariales) had expanded their distribution during periods of cooler SST, they subsequently declined as the SST warmed. Notably, the warmest SST of the 1997-98 El Niño Southern Oscillation event was the most likely cause of a widespread destruction of the kelp populations; no recovery was found even in the present survey at the formerly habitable sites where warm SSTs have been maintained. Temperate Sargassum spp. (Fucales) that dominated widely in the 1970s also declined in accordance with recent warming SSTs. In contrast, the tropical species, S. ilicifolium, has gradually expanded its distribution to become the most conspicuously dominant among the present observations. Thermal gradients, mainly driven by the warming Kuroshio Current, are presented as an explanation for the successive changes in both temperate and

  16. Cumulative human impacts on marine predators

    DEFF Research Database (Denmark)

    Maxwell, Sara M; Hazen, Elliott L; Bograd, Steven J

    2013-01-01

    Stressors associated with human activities interact in complex ways to affect marine ecosystems, yet we lack spatially explicit assessments of cumulative impacts on ecologically and economically key components such as marine predators. Here we develop a metric of cumulative utilization and impact...

  17. The importance of warm season warming to western U.S. streamflow changes

    Science.gov (United States)

    Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P.

    2011-01-01

    Warm season climate warming will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. Warm season (April-September) warming reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) warming, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent warm season. A uniform warm season warming of 3C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same warming applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Copyright 2011 by the American Geophysical Union.

  18. Hydrologic response and watershed sensitivity to climate warming in California's Sierra Nevada.

    Directory of Open Access Journals (Sweden)

    Sarah E Null

    Full Text Available This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2 degrees, 4 degrees, and 6 degrees C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds.

  19. Will marine productivity wane?

    Science.gov (United States)

    Laufkötter, Charlotte; Gruber, Nicolas

    2018-03-01

    If marine algae are impaired severely by global climate change, the resulting reduction in marine primary production would strongly affect marine life and the ocean's biological pump that sequesters substantial amounts of atmospheric carbon dioxide in the ocean's interior. Most studies, including the latest generation of Earth system models, project only moderate global decreases in biological production until 2100 (1, 2), suggesting that these concerns are unwarranted. But on page 1139 of this issue, Moore et al. (3) show that this conclusion might be shortsighted and that there may be much larger long-term changes in ocean productivity than previously appreciated.

  20. A phenological timetable of oak growth under experimental drought and air warming.

    Directory of Open Access Journals (Sweden)

    Thomas M Kuster

    Full Text Available Climate change is expected to increase temperature and decrease summer precipitation in Central Europe. Little is known about how warming and drought will affect phenological patterns of oaks, which are considered to possess excellent adaptability to these climatic changes. Here, we investigated bud burst and intra-annual shoot growth of Quercus robur, Q. petraea and Q. pubescens grown on two different forest soils and exposed to air warming and drought. Phenological development was assessed over the course of three growing seasons. Warming advanced bud burst by 1-3 days °C⁻¹ and led to an earlier start of intra-annual shoot growth. Despite this phenological shift, total time span of annual growth and shoot biomass were not affected. Drought changed the frequency and intensity of intra-annual shoot growth and advanced bud burst in the subsequent spring of a severe summer drought by 1-2 days. After re-wetting, shoot growth recovered within a few days, demonstrating the superior drought tolerance of this tree genus. Our findings show that phenological patterns of oaks are modified by warming and drought but also suggest that ontogenetic factors and/or limitations of water and nutrients counteract warming effects on the biomass and the entire span of annual shoot growth.

  1. Research on trend of warm-humid climate in Central Asia

    Science.gov (United States)

    Gong, Zhi; Peng, Dailiang; Wen, Jingyi; Cai, Zhanqing; Wang, Tiantian; Hu, Yuekai; Ma, Yaxin; Xu, Junfeng

    2017-07-01

    Central Asia is a typical arid area, which is sensitive and vulnerable part of climate changes, at the same time, Central Asia is the Silk Road Economic Belt of the core district, the warm-humid climate change will affect the production and economic development of neighboring countries. The average annual precipitation, average anneal temperature and evapotranspiration are the important indexes to weigh the climate change. In this paper, the annual precipitation, annual average temperature and evapotranspiration data of every pixel point in Central Asia are analyzed by using long-time series remote sensing data to analyze the trend of warm and humid conditions. Finally, using the model to analyzed the distribution of warm-dry trend, the warm-wet trend, the cold-dry trend and the cold-wet trend in Central Asia and Xinjiang area. The results showed that most of the regions of Central Asia were warm-humid and warm-dry trends, but only a small number of regions showed warm-dry and cold-dry trends. It is of great significance to study the climatic change discipline and guarantee the ecological safety and improve the ability to cope with climate change in the region. It also provide scientific basis for the formulation of regional climate change program. The first section in your paper

  2. Marine organic geochemistry in industrially affected coastal areas in Greece: Hydrocarbons in surface sediments

    Science.gov (United States)

    Hatzianestis, Ioannis

    2015-04-01

    Hydrocarbons are abundant components of the organic material in coastal zones. Their sources are mainly anthropogenic, but several natural ones have also been recognized. Among hydrocarbons, the polycyclic aromatic ones (PAHs) have received special attention since they considered as hazardous environmental chemicals and are included in priority pollutant lists. The purpose of this study was to investigate the distribution, sources and transport pathways of hydrocarbons in marine areas in Greece directly influenced from the operation of major industrial units in the coastal zone by using a molecular marker approach, characteristic compositional patterns and related indices and also to evaluate their potential toxicity. Thirty two surface sediment samples were collected from three marine areas: a) Antikyra bay in Korinthiakos gulf, affected from the operation of an alumina and production plant b) Larymna bay in Noth Evoikos, affected from the operation of a nickel production plant and c) Aliveri bay in South Evoikos Gulf, affected from a cement production plant. In all the studied areas aquaculture and fishing activities have been also developed in the coastal zone. High aliphatic hydrocarbon (AHC) concentrations (~500 μg/g), indicating significant petroleum related inputs, were measured only in Antikyra bay. In all the other samples, AHC values were below 100 μg/g. N-alkanes were the most prominent resolved components (R) with an elevated odd to even carbon number preference, revealing the high importance of terrestrial inputs in the study areas. The unresolved complex mixture (UCM) was the major component of the aliphatic fraction (UCM/R > 4), indicating a chronic oil pollution. A series of hopanes were also identified, with patterns characteristic of oil-derived hydrocarbons, further confirming the presence of pollutant inputs from fossil fuel products. Extremely high PAH concentrations (> 100,000 ng/g) were found in the close vicinity of the alumina production

  3. Prediction of Typhoon Wind Speeds under Global Warming Conditions

    International Nuclear Information System (INIS)

    Choun, Young Sun; Kim, Min Kyu; Kang, Ju Whan; Kim, Yang Seon

    2016-01-01

    The continuous increase of SST by global warming conditions in the western North Pacific Ocean results in an increased occurrence of supertyphoons in East Asia and the Korean Peninsula. Recent numerical experiments have found that the central pressures of two historical typhoons, Maemi (2003) and Rusa (2002), which recorded the highest storm surges along the coasts of the Korean Peninsula, dropped about 19 and 17 hPa, respectively, when considering the future SST (a warming of 3.9 .deg. C for 100 years) over the East China Sea. The maximum wind speeds increase under global warming conditions. The probability of occurrence of super-typhoons increases in the future. The estimated return period for supertyphoons affecting the Younggwang site is about 1,000,000 years.

  4. Prediction of Typhoon Wind Speeds under Global Warming Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of); Kang, Ju Whan; Kim, Yang Seon [Mokpo National University, Muan (Korea, Republic of)

    2016-05-15

    The continuous increase of SST by global warming conditions in the western North Pacific Ocean results in an increased occurrence of supertyphoons in East Asia and the Korean Peninsula. Recent numerical experiments have found that the central pressures of two historical typhoons, Maemi (2003) and Rusa (2002), which recorded the highest storm surges along the coasts of the Korean Peninsula, dropped about 19 and 17 hPa, respectively, when considering the future SST (a warming of 3.9 .deg. C for 100 years) over the East China Sea. The maximum wind speeds increase under global warming conditions. The probability of occurrence of super-typhoons increases in the future. The estimated return period for supertyphoons affecting the Younggwang site is about 1,000,000 years.

  5. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    Science.gov (United States)

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  6. Developmental and physiological challenges of octopus (Octopus vulgaris) early life stages under ocean warming.

    Science.gov (United States)

    Repolho, Tiago; Baptista, Miguel; Pimentel, Marta S; Dionísio, Gisela; Trübenbach, Katja; Lopes, Vanessa M; Lopes, Ana Rita; Calado, Ricardo; Diniz, Mário; Rosa, Rui

    2014-01-01

    The ability to understand and predict the effects of ocean warming (under realistic scenarios) on marine biota is of paramount importance, especially at the most vulnerable early life stages. Here we investigated the impact of predicted environmental warming (+3 °C) on the development, metabolism, heat shock response and antioxidant defense mechanisms of the early stages of the common octopus, Octopus vulgaris. As expected, warming shortened embryonic developmental time by 13 days, from 38 days at 18 °C to 25 days at 21 °C. Concomitantly, survival decreased significantly (~29.9 %). Size at hatching varied inversely with temperature, and the percentage of smaller premature paralarvae increased drastically, from 0 % at 18 °C to 17.8 % at 21 °C. The metabolic costs of the transition from an encapsulated embryo to a free planktonic form increased significantly with warming, and HSP70 concentrations and glutathione S-transferase activity levels were significantly magnified from late embryonic to paralarval stages. Yet, despite the presence of effective antioxidant defense mechanisms, ocean warming led to an augmentation of malondialdehyde levels (an indicative of enhanced ROS action), a process considered to be one of the most frequent cellular injury mechanisms. Thus, the present study provides clues about how the magnitude and rate of ocean warming will challenge the buffering capacities of octopus embryos and hatchlings' physiology. The prediction and understanding of the biochemical and physiological responses to warmer temperatures (under realistic scenarios) is crucial for the management of highly commercial and ecologically important species, such as O. vulgaris.

  7. Intermediate report on the problems of warm water drainage

    International Nuclear Information System (INIS)

    1976-01-01

    The investigation into the solution of the problems of warm water drainage and its related matters was conducted, and the result was summarized by the warm water drainage sectional committee of the central public nuisance-prevention council entrusted by the Environment Agency. The first section of this report deals with the background of the warm water drainage problems. In December 1970, the environmental pollution prevention act was revised so as to include warm water drainage in the law. The second section deals with the progress of deliberation by the sectional committee. The third section deals with the actual conditions of warm water drainage. The temperature difference at the inlet and outlet of water was 5 to 11 0 C in power plants, 5 to 16 0 C in iron and steel works, 4 to 11 0 C in petroleum refineries, and 7 to 25 0 C in petrochemical plants. The amount of heat energy discharged from power plants was greater than that from the others. Other sections deal with its effects on the living things in water, the forecast of diffusion of warm drainage, the concept of the regulation of warm drainage, and the present countermeasure. Twelve points which require future investigation are listed. They are the change in the phases of living things affected by the change in temperature and flow of warm drainage, the effects on fishery resources, the estimation system for the environmental calorific capacity in the sea, the mechanism of diffusion and the forecasting method for the diffusion range. (Iwakiri, K.)

  8. Global warming considerations in northern Boreal forest ecosystems

    International Nuclear Information System (INIS)

    Slaughter, C.W.

    1993-01-01

    The northern boreal forests of circumpolar lands are of special significance to questions of global climate change. Throughout its range, these forests are characterized by a relatively few tree species, although they may exhibit great spatial heterogeneity. Their ecosystems are simpler than temperate systems, and ecosystem processes are strongly affected by interactions between water, the landscape, and the biota. Northern boreal forest vegetation patterns are strongly influenced by forest fires, and distribution of forest generally coincides with occurrence of permafrost. Boreal forest landscapes are extremely sensitive to thermal disruption; global warming may result in lasting thermal and physical degradation of soils, altered rates and patterns of vegetation succession, and damage to engineered structures. A change in fire severity and frequency is also a significant concern. The total carbon pool of boreal forests and their associated peatlands is significant on a global scale; this carbon may amount to 10-20% of the global carbon pool. A change in latitudinal or elevational treeline has been suggested as a probable consequence of global warming. More subtle aspects of boreal forest ecosystems which may be affected by global warming include the depth of the active soil layer, the hydrologic cycle, and biological attributes of boreal stream systems. 48 refs., 2 figs

  9. Global warming

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Canada's Green Plan strategy for dealing with global warming is being implemented as a multidepartmental partnership involving all Canadians and the international community. Many of the elements of this strategy are built on an existing base of activities predating the Green Plan. Elements of the strategy include programs to limit emissions of greenhouse gases, such as initiatives to encourage more energy-efficient practices and development of alternate fuel sources; studies and policy developments to help Canadians prepare and adapt to climate change; research on the global warming phenomenon; and stimulation of international action on global warming, including obligations arising out of the Framework Convention on Climate Change. All the program elements have been approved, funded, and announced. Major achievements to date are summarized, including improvements in the Energy Efficiency Act, studies on the socioeconomic impacts of global warming, and participation in monitoring networks. Milestones associated with the remaining global warming initiatives are listed

  10. Impact of warm winters on microbial growth

    Science.gov (United States)

    Birgander, Johanna; Rousk, Johannes; Axel Olsson, Pål

    2014-05-01

    Growth of soil bacteria has an asymmetrical response to higher temperature with a gradual increase with increasing temperatures until an optimum after which a steep decline occurs. In laboratory studies it has been shown that by exposing a soil bacterial community to a temperature above the community's optimum temperature for two months, the bacterial community grows warm-adapted, and the optimum temperature of bacterial growth shifts towards higher temperatures. This result suggests a change in the intrinsic temperature dependence of bacterial growth, as temperature influenced the bacterial growth even though all other factors were kept constant. An intrinsic temperature dependence could be explained by either a change in the bacterial community composition, exchanging less tolerant bacteria towards more tolerant ones, or it could be due to adaptation within the bacteria present. No matter what the shift in temperature tolerance is due to, the shift could have ecosystem scale implications, as winters in northern Europe are getting warmer. To address the question of how microbes and plants are affected by warmer winters, a winter-warming experiment was established in a South Swedish grassland. Results suggest a positive response in microbial growth rate in plots where winter soil temperatures were around 6 °C above ambient. Both bacterial and fungal growth (leucine incorporation, and acetate into ergosterol incorporation, respectively) appeared stimulated, and there are two candidate explanations for these results. Either (i) warming directly influence microbial communities by modulating their temperature adaptation, or (ii) warming indirectly affected the microbial communities via temperature induced changes in bacterial growth conditions. The first explanation is in accordance with what has been shown in laboratory conditions (explained above), where the differences in the intrinsic temperature relationships were examined. To test this explanation the

  11. The Basketball warms-ups - theoretical assumptions and practical solutions

    Directory of Open Access Journals (Sweden)

    Sebastian Łubiński

    2017-06-01

    Full Text Available Many authors emphasize the importance of warm-up. Warm-up in team games aims at enhancing the body adaptation to the physical activity and to activate physiological functions from the rest state to the active state. Warm-up brings many different benefits, for example: physiological, psychological, and preventive, regardless of the classification of the above. From a psychological standpoint, the warm-up is performed to create the body "alertness", activity and readiness, and a willingness to act effectively. It was found that the players who perform the correct warm-up are better mentally prepared than those who do not perform it. After a well performed warm-up, the athlete is self-confident and has a positive attitude to the match. It is believed that the warm-up can also be the way to relieve tension and anxiety and to increase concentration and motivation before the match. Warm-up also improves the emotional states and reduces fear of failure. It has been verified that the warm-up, performed under appropriate conditions, improves focus, visual perception, action accuracy, self-confidence, speed and responsiveness, speed of processing and decision making. From the physiological point of view, the warm-up is an activity that adapts the basketball player’s body to an effort. It is an important factor that affects the effect of participation in the competition. Data from the literature suggest that the warm-up individualization is necessary in terms of duration and intensity. There are two types of warm-ups: passive and active. Passive warm-up is the one that is performed by using hot showers, baths, saunas, and steam baths or by using energetics massage. Active warm-up requires a lot of commitment and determination from the athlete during exercises that prepare the body and muscles for an effort. The training measures used during this part of warm-up are the general exercises that improve strength, stretch, coordination

  12. Focus: Assessing the regional impacts of global warming

    International Nuclear Information System (INIS)

    Woo, Mingko

    1992-01-01

    Five studies are presented which assess the impacts of global warming on physical, economic, and social systems in Canada. A study on the use of climatic change scenarios to estimate ecoclimatic impacts was carried out. These scenarios may include synthetic scenarios produced from historical data, global climate model (GCM) simulations, and hybrid scenarios. The advantages and drawbacks of various scenarios are discussed along with the criteria for selecting impact assessment models. An examination of water resources in the Great Lakes and the Saskatchewan River subbasin uses case studies of two areas that have experienced wide hydrological variations due to climatic variability in order to determine the impacts of global warming scenarios on net basin supply. Problems of developing regional models are discussed and results of projected changes in net basin supply are presented for GCM-based simulations and hypothetical warming scenarios. A study of the impacts of climate warming on transportation and the regional economy in northern Canada uses stochastic models to provide examples of how Mackenzie River barge traffic will be affected. The economic impacts of the resultant lengthened shipping season are outlined under three scenarios. The implications of climatic change on Ontario agriculture are assessed according to GCM scenarios. Results are presented for crop yields and production as well as land resource suitability. Finally, sociocultural implications of global warming on the Arctic and the Inuit are summarized, with reference to a past warming episode occurring around the year 1000. 45 refs., 4 figs., 3 tabs

  13. Temperature and UV light affect the activity of marine cell-free enzymes

    Directory of Open Access Journals (Sweden)

    B. Thomson

    2017-09-01

    Full Text Available Microbial extracellular enzymatic activity (EEA is the rate-limiting step in the degradation of organic matter in the oceans. These extracellular enzymes exist in two forms: cell-bound, which are attached to the microbial cell wall, and cell-free, which are completely free of the cell. Contrary to previous understanding, cell-free extracellular enzymes make up a substantial proportion of the total marine EEA. Little is known about these abundant cell-free enzymes, including what factors control their activity once they are away from their sites (cells. Experiments were run to assess how cell-free enzymes (excluding microbes respond to ultraviolet radiation (UVR and temperature manipulations, previously suggested as potential control factors for these enzymes. The experiments were done with New Zealand coastal waters and the enzymes studied were alkaline phosphatase (APase, β-glucosidase, (BGase, and leucine aminopeptidase (LAPase. Environmentally relevant UVR (i.e. in situ UVR levels measured at our site reduced cell-free enzyme activities by up to 87 % when compared to controls, likely a consequence of photodegradation. This effect of UVR on cell-free enzymes differed depending on the UVR fraction. Ambient levels of UV radiation were shown to reduce the activity of cell-free enzymes for the first time. Elevated temperatures (15 °C increased the activity of cell-free enzymes by up to 53 % when compared to controls (10 °C, likely by enhancing the catalytic activity of the enzymes. Our results suggest the importance of both UVR and temperature as control mechanisms for cell-free enzymes. Given the projected warming ocean environment and the variable UVR light regime, it is possible that there could be major changes in the cell-free EEA and in the enzymes contribution to organic matter remineralization in the future.

  14. Warm season chloride concentrations in stream habitats of freshwater mussel species at risk

    International Nuclear Information System (INIS)

    Todd, Aaron K.; Kaltenecker, M. Georgina

    2012-01-01

    Warm season (May–October) chloride concentrations were assessed in stream habitats of freshwater mussel species at risk in southern Ontario, Canada. Significant increases in concentrations were observed at 96% of 24 long-term (1975–2009) monitoring sites. Concentrations were described as a function of road density indicating an anthropogenic source of chloride. Linear regression showed that 36% of the variation of concentrations was explained by road salt use by the provincial transportation ministry. Results suggest that long-term road salt use and retention is contributing to a gradual increase in baseline chloride concentrations in at risk mussel habitats. Exposure of sensitive mussel larvae (glochidia) to increasing chloride concentrations may affect recruitment to at risk mussel populations. - Highlights: ► Warm season chloride concentrations were assessed in habitats of mussel species at risk. ► Concentrations increased significantly at 96% of 24 long-term monitoring sites. ► Concentrations increased with increases in road density and road salt use. ► Retention of road salt likely contributed to elevated warm season concentrations. ► Glochidia exposure to increasing concentrations may affect mussel reproduction. - Warm season chloride concentrations increased in southern Ontario streams with road salt use, such that reproduction of freshwater mussel species at risk may be affected.

  15. Effects of nanomaterials on marine invertebrates.

    Science.gov (United States)

    Canesi, Laura; Corsi, Ilaria

    2016-09-15

    The development of nanotechnology will inevitably lead to the release of consistent amounts of nanomaterials (NMs) and nanoparticles (NPs) into marine ecosystems. Ecotoxicological studies have been carried out to identify potential biological targets of NPs, and suitable models for predicting their impact on the health of the marine environment. Recent studies in invertebrates mainly focused on NP accumulation and sub-lethal effects, rather than acute toxicity. Among marine invertebrates, bivalves represent by large the most studied group, with polychaetes and echinoderms also emerging as significant targets of NPs. However, major scientific gaps still need to be filled. In this work, factors affecting the fate of NPs in the marine environment, and their consequent uptake/accumulation/toxicity in marine invertebrates will be summarized. The results show that in different model species, NP accumulation mainly occurs in digestive tract and gills. Data on sub-lethal effects and modes of action of different types of NPs (mainly metal oxides and metal based NPs) in marine invertebrates will be reviewed, in particular on immune function, oxidative stress and embryo development. Moreover, the possibility that such effects may be influenced by NP interactions with biomolecules in both external and internal environment will be introduced. In natural environmental media, NP interactions with polysaccharides, proteins and colloids may affect their agglomeration/aggregation and consequent bioavailability. Moreover, once within the organism, NPs are known to interact with plasma proteins, forming a protein corona that can affect particle uptake and toxicity in target cells in a physiological environment. These interactions, leading to the formation of eco-bio-coronas, may be crucial in determining particle behavior and effects also in marine biota. In order to classify NPs into groups and predict the implications of their release into the marine environment, information on

  16. Future oceanic warming and acidification alter immune response and disease status in a commercial shellfish species, Mytilus edulis L.

    Directory of Open Access Journals (Sweden)

    Clara L Mackenzie

    Full Text Available Increases in atmospheric carbon dioxide are leading to physical changes in marine environments including parallel decreases in ocean pH and increases in seawater temperature. This study examined the impacts of a six month exposure to combined decreased pH and increased temperature on the immune response and disease status in the blue mussel, Mytilus edulis L. Results provide the first confirmation that exposure to future acidification and warming conditions via aquarium-based simulation may have parallel implications for bivalve health. Collectively, the data suggests that temperature more than pH may be the key driver affecting immune response in M. edulis. Data also suggests that both increases in temperature and/or lowered pH conditions may lead to changes in parasite abundance and diversity, pathological conditions, and bacterial incidence in M. edulis. These results have implications for future management of shellfish under a predicted climate change scenario and future sustainability of shellfisheries. Examination of the combined effects of two stressors over an extended exposure period provides key preliminary data and thus, this work represents a unique and vital contribution to current research efforts towards a collective understanding of expected near-future impacts of climate change on marine environments.

  17. Hunt warm, rest cool: bioenergetic strategy underlying diel vertical migration of a benthic shark.

    Science.gov (United States)

    Sims, David W; Wearmouth, Victoria J; Southall, Emily J; Hill, Jacqueline M; Moore, Pippa; Rawlinson, Kate; Hutchinson, Neil; Budd, Georgina C; Righton, David; Metcalfe, Julian D; Nash, Jon P; Morritt, David

    2006-01-01

    1. Diel vertical migration (DVM) is a widespread phenomenon among marine and freshwater organisms and many studies with various taxa have sought to understand its adaptive significance. Among crustacean zooplankton and juveniles of some fish species DVM is accepted widely as an antipredator behaviour, but little is known about its adaptive value for relatively large-bodied, adult predatory fish such as sharks. Moreover, the majority of studies have focused on pelagic forms, which raises the question of whether DVM occurs in bottom-living predators. 2. To investigate DVM in benthic predatory fish in the marine environment and to determine why it might occur we tracked movements of adult male dogfish (Scyliorhinus canicula) by short- and long-term acoustic and archival telemetry. Movement studies were complemented with measurements of prey abundance and availability and thermal habitat within home ranges. A thermal choice experiment and energy budget modelling was used to investigate trade-offs between foraging and thermal habitat selection. 3. Male dogfish undertook normal DVM (nocturnal ascent) within relatively small home ranges (-100 x 100 m) comprising along-bottom movements up submarine slopes from deeper, colder waters occupied during the day into warmer, shallow prey-rich areas above the thermocline at night. Few daytime vertical movements occurred. Levels of activity were higher during the night above the thermocline compared to below it during the day indicating they foraged in warm water and rested in colder depths. 4. A thermal choice experiment using environmentally realistic temperatures supported the field observation that dogfish positively avoided warmer water even when it was associated with greater food availability. Males in laboratory aquaria moved into warm water from a cooler refuge only to obtain food, and after food consumption they preferred to rest and digest in cooler water. 5. Modelling of energy budgets under different realistic thermal

  18. Humid Heat Waves at different warming levels

    Science.gov (United States)

    Russo, S.; Sillmann, J.; Sterl, A.

    2017-12-01

    The co-occurrence of consecutive hot and humid days during a heat wave can strongly affect human health. Here, we quantify humid heat wave hazard in the recent past and at different levels of global warming.We find that the magnitude and apparent temperature peak of heat waves, such as the ones observed in Chicago in 1995 and China in 2003, have been strongly amplified by humidity. Climate model projections suggest that the percentage of area where heat wave magnitude and peak are amplified by humidity increases with increasing warming levels. Considering the effect of humidity at 1.5o and 2o global warming, highly populated regions, such as the Eastern US and China, could experience heat waves with magnitude greater than the one in Russia in 2010 (the most severe of the present era).The apparent temperature peak during such humid-heat waves can be greater than 55o. According to the US Weather Service, at this temperature humans are very likely to suffer from heat strokes. Humid-heat waves with these conditions were never exceeded in the present climate, but are expected to occur every other year at 4o global warming. This calls for respective adaptation measures in some key regions of the world along with international climate change mitigation efforts.

  19. Soil Warming Elevates the Abundance of Collembola in the Songnen Plain of China

    Directory of Open Access Journals (Sweden)

    Xiumin Yan

    2015-01-01

    Full Text Available The effect of soil warming and precipitation control in the context of soil warming on Collembola community was studied in Songnen grassland, China. Treatments included (1 control; (2 soil warming; (3 soil warming with low precipitation; and (4 soil warming with high precipitation. The open top chambers were used to increase the soil temperature, and the low and high precipitation were created by covering 30% of the chamber and artificial addition after rainfall through the three-year long field experiment. Soil samples were taken and collembolans were extracted in the 15th in June, August and October from 2010 to 2012. Abundance of total Collembola and dominant morphospecies Orchesellides sp.1 was significantly increased by soil warming. Total Collembola abundance was not affected by the precipitation. However, the abundance of Mesaphorura sp.1 was significantly increased by warming with low precipitation treatment. Collembola species richness, diversity and evenness were not impacted by any treatment through all the sampling times. These results suggest that more attention should be paid to the Collembola community variation under global warming in the future.

  20. Early onset of significant local warming in low latitude countries

    International Nuclear Information System (INIS)

    Mahlstein, I; Knutti, R; Solomon, S; Portmann, R W

    2011-01-01

    The Earth is warming on average, and most of the global warming of the past half-century can very likely be attributed to human influence. But the climate in particular locations is much more variable, raising the question of where and when local changes could become perceptible enough to be obvious to people in the form of local warming that exceeds interannual variability; indeed only a few studies have addressed the significance of local signals relative to variability. It is well known that the largest total warming is expected to occur in high latitudes, but high latitudes are also subject to the largest variability, delaying the emergence of significant changes there. Here we show that due to the small temperature variability from one year to another, the earliest emergence of significant warming occurs in the summer season in low latitude countries (∼25 deg. S-25 deg. N). We also show that a local warming signal that exceeds past variability is emerging at present, or will likely emerge in the next two decades, in many tropical countries. Further, for most countries worldwide, a mean global warming of 1 deg. C is sufficient for a significant temperature change, which is less than the total warming projected for any economically plausible emission scenario. The most strongly affected countries emit small amounts of CO 2 per capita and have therefore contributed little to the changes in climate that they are beginning to experience.

  1. Variation in sensitivity of large benthic Foraminifera to the combined effects of ocean warming and local impacts.

    Science.gov (United States)

    Prazeres, Martina; Roberts, T Edward; Pandolfi, John M

    2017-03-23

    Large benthic foraminifera (LBF) are crucial marine calcifiers in coral reefs, and sensitive to environmental changes. Yet, many species successfully colonise a wide range of habitats including highly fluctuating environments. We tested the combined effects of ocean warming, local impacts and different light levels on populations of the common LBF Amphistegina lobifera collected along a cross-shelf gradient of temperature and nutrients fluctuations. We analysed survivorship, bleaching frequency, chlorophyll a content and fecundity. Elevated temperature and nitrate significantly reduced survivorship and fecundity of A. lobifera across populations studied. This pattern was exacerbated when combined with below optimum light levels. Inshore populations showed a consistent resistance to increased temperature and nitrate levels, but all populations studied were significantly affected by light reduction. These findings demonstrated the capacity of some populations of LBF to acclimate to local conditions; nonetheless improvements in local water quality can ultimately ameliorate effects of climate change in local LBF populations.

  2. Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Baath, Erland

    2007-01-01

    Arctic soil carbon (C) stocks are threatened by the rapidly advancing global warming. In addition to temperature, increasing amounts of leaf litter fall following from the expansion of deciduous shrubs and trees in northern ecosystems may alter biogeochemical cycling of C and nutrients. Our aim w...... on C and N transformations during field incubation suggest that microbial activity is an important control on the carbon balance of arctic soils under climate change.......Arctic soil carbon (C) stocks are threatened by the rapidly advancing global warming. In addition to temperature, increasing amounts of leaf litter fall following from the expansion of deciduous shrubs and trees in northern ecosystems may alter biogeochemical cycling of C and nutrients. Our aim...

  3. Effect of warming rate on the critical thermal maxima of crabs, shrimp and fish

    OpenAIRE

    Vinagre, Catarina; Leal, Inês; Mendonça, Vanessa; Flores, Augusto Alberto Valero

    2015-01-01

    he threat of global warming has prompted numerous recent studies on the thermal tolerance of marine species. A widely used method to determine the upper thermal limit has been the Critical Thermal Maximum (CTMax), a dynamic method, meaning that temperature is increased gradually until a critical point is reached. This method presents several advantages over static methods, however, there is one main issue that hinders interpretation and comparison of CTMax results: the rate at which the tempe...

  4. Methane Cycling in a Warming Wetland

    Science.gov (United States)

    Noyce, G. L.; Megonigal, P.; Rich, R.; Kirwan, M. L.; Herbert, E. R.

    2017-12-01

    Coastal wetlands are global hotspots of carbon (C) storage, but the future of these systems is uncertain. In June 2016, we initiated an in-situ, active, whole-ecosystem warming experiment in the Smithsonian's Global Change Research Wetland to quantify how warming and elevated CO2 affect the stability of coastal wetland soil C pools and contemporary rates of C sequestration. Transects are located in two plant communities, dominated by C3 sedges or C4 grasses. The experiment has a gradient design with air and soil warming treatments ranging from ambient to +5.1 °C and heated plots consistently maintain their target temperature year-round. In April 2017, an elevated CO2 treatment was crossed with temperature in the C3community. Ongoing measurements include soil elevation, C fluxes, porewater chemistry and redox potential, and above- and below-ground growth and biomass. In both years, warming increased methane (CH4) emissions (measured at 3-4 week intervals) from spring through fall at the C3 site, but had little effect on emissions from the C4 site. Winter (Dec-Mar) emissions showed no treatment effect. Stable isotope analysis of dissolved CH4 and DIC also indicated that warming had differing effects on CH4 pathways in the two vegetation communities. To better understand temperature effects on rates of CH4 production and oxidation, 1 m soil cores were collected from control areas of the marsh in summer 2017 and incubated at temperatures ranging from 4 °C to 35 °C. Warming increased CH4 production and oxidation rates in surface samples and oxidation rates in the rooting zone samples from both sites, but temperature responses in deep (1 m) soil samples were minimal. In the surface and rooting zone samples, production rates were also consistently higher in C3 soils compared to C4 soils, but, contrary to our expectations, the temperature response was stronger in the C4 soils. However, oxidation in C3 rooting zone samples did have a strong temperature response. The

  5. Unexpected Impacts of Global warming on Extreme Warm Spells

    Science.gov (United States)

    Sardeshmukh, P. D.; Compo, G. P.; McColl, C.; Penland, C.

    2017-12-01

    It is generally presumed that the likelihood of extreme warm spells around the globe has increased, and will continue to increase, due to global warming. However, we find that this is generally not true in three very different types of global observational datasets and uncoupled atmospheric model simulations of the 1959 to 2012 period with prescribed observed global SSTs, sea ice, and radiative forcing changes. While extreme warm spells indeed became more common in many regions, in many other regions their likelihood remained almost the same or even decreased from the first half to the second half of this period. Such regions of unexpected changes covered nearly 40 percent of the globe in both winter and summer. The basic reason for this was a decrease of temperature variability in such regions that offset or even negated the effect of the mean temperature shift on extreme warm spell probabilities. The possibility of such an impact on extreme value probabilities was highlighted in a recent paper by Sardeshmukh, Compo, and Penland (Journal of Climate 2015). The consistency of the changes in extreme warm spell probabilities among the different observational datasets and model simulations examined suggests that they are robust regional aspects of global warming associated with atmospheric circulation changes. This highlights the need for climate models to represent not just the mean regional temperature signals but also the changes in subseasonal temperature variability associated with global warming. However, current climate models (both CMIP3 and CMIP5) generally underestimate the magnitude of the changes in the atmospheric circulation and associated temperature variability. A likely major cause of this is their continuing underestimation of the magnitude of the spatial variation of tropical SST trends. By generating an overly spatially bland tropical SST warming in response to changes in radiative forcing, the models spuriously mute tropically

  6. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application.

    Science.gov (United States)

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2018-01-01

    Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long-term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long-term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high-temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (R s ), and metabolic quotient (qCO 2 ) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO 2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N 2 O emissions, possibly due to accelerated N-cycling at elevated soil temperature and to biochar-induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar-C into soil was estimated to offset warming-induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N 2 O emissions under warming limit the GHG mitigation potential of biochar. © 2017 John Wiley & Sons Ltd.

  7. Additive and Synergistic Impacts of Fishing and Warming on the Growth of a Temperate Marine Fish

    Science.gov (United States)

    Morrongiello, J.

    2016-02-01

    Fishing and climate change are having profound impacts on the trajectory and variability of marine populations. However, despite the wealth of work undertaken in marine environments on the causes of longer-term biological change, the effects of these two drivers have traditionally been considered in isolation or just additively. Such an approach obviously overlooks the potential for significant synergistic or antagonistic interactions between fishing and climate to occur. Indeed, it is increasingly becoming acknowledged that the direction and magnitude of biological responses to natural environmental variation and climate change can be mediated by other anthropogenic disturbances such as fishing, and vice versa. Somatic growth is an ideal candidate with which to explore the impacts of fishing and environmental variability due to its strong biological relevance and its heightened sensitivity to natural and anthropogenic drivers. I developed 19-year growth biochronologies (1980-1999) for three south-east Australian populations of a site-attached temperate reef fish, purple wrasse (Notolabrus fucicola) using individual-based growth information naturally archived in otoliths. A commercial wrasse fishery began in the early 1990s; before this there was negligible recreational or commercial fishing. The growth of older fish was proportionally higher and that of the youngest fish proportionally lower after the onset of commercial fishing; 2-year olds grew 7.4% slower, but 5-year-olds grew 10.3% and 10-year-olds 26% faster in the latter period. These results are consistent with a density dependent response to harvesting. Average growth rates across all ages increased by 6.6%.oC-1, reflecting either a direct or indirect temperature effect in this global marine 'hotspot'. Finally, the distribution of individual thermal reaction norms significantly changed post fishing, showing that fishing and temperature can have a synergetic impact on marine populations via within

  8. Ecosystem responses to warming and watering in typical and desert steppes

    OpenAIRE

    Zhenzhu Xu; Yanhui Hou; Lihua Zhang; Tao Liu; Guangsheng Zhou

    2016-01-01

    Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two ...

  9. Ecosystem responses to warming and watering in typical and desert steppes

    Science.gov (United States)

    Xu, Zhenzhu; Hou, Yanhui; Zhang, Lihua; Liu, Tao; Zhou, Guangsheng

    2016-10-01

    Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two years, whereas warming manipulation had no significant effect. The soil microbial biomass carbon (MBC) and the soil respiration (SR) were increased by watering in both steppes, but the SR was significantly decreased by warming in the desert steppe only. The inorganic nitrogen components varied irregularly, with generally lower levels in the desert steppe. The belowground traits of soil total organic carbon (TOC) and the MBC were more closely associated with the ANPP in the desert than in the typical steppes. The results showed that the desert steppe with lower productivity may respond strongly to precipitation changes, particularly with warming, highlighting the positive effect of adding water with warming. Our study implies that the habitat- and year-specific responses to warming and watering should be considered when predicting an ecosystem’s functional responses under climate change scenarios.

  10. Marine-ecosystem analysis for the Kori nuclear power plant

    International Nuclear Information System (INIS)

    Lee, J.H.; Kim, Y.H.

    1979-01-01

    The effects of radioactive effluents and warm water discharged from the plant on aquatic ecosystem is one of the primary considerations in evaluating the impact due to the operation of the nuclear power plant. Biological alteration of aquatic ecosystems may be resulted from radioactive effluents, thermal pollution and chemical releases; there is also the possible synergistic effect, that is, the combination of the above stresses, which may cause an effect greater than that of the sum of the individual effects. This report deals with species diversity and seasonal vegetation of phytoplankton, marine algae and microorganisms, radioactive contamination of marine organisms, and lateral distribution of sea water temperature from discharge point. The present investigation is designed to provide a partial baseline information for environmental safety against Kori nuclear power plant. (author)

  11. Resting eggs in free living marine and estuarine copepods

    DEFF Research Database (Denmark)

    Holm, Mark Wejlemann; Kiørboe, Thomas; Brun, Philipp Georg

    2018-01-01

    Marine free living copepods can survive harsh periods and cope with seasonal fluctuations in environmental conditions using resting eggs (embryonic dormancy). Laboratory experiments show that temperature is the common driver for resting egg production. Hence, we hypothesize (i) that seasonal...... temperature variation, rather than variation in food abundance is the main driver for the occurrence of the resting eggs strategy in marine and estuarine copepod species; and (ii) that the thermal boundaries of the distribution determine where resting eggs are produced and whether they are produced to cope...... with warm or cold periods. We compile literature information on the occurrence of resting egg production and relate this to spatio-temporal patterns in sea surface temperature and chlorophyll a concentration obtained from satellite observations. We find that the production of resting eggs has been reported...

  12. Marine algal toxins: origins, health effects, and their increased occurrence

    International Nuclear Information System (INIS)

    Van Dolah, Frances M.

    2000-01-01

    Certain marine algae produce potent toxins that impact human health through the consumption of contaminated shellfish and finfish and through water or aerosol exposure. Over the past three decades, the frequency and global distribution of toxic algal incidents appear to have increased, and human intoxications from novel algal sources have occurred. This increase is of particular concern, since it parallels recent evidence of large-scale ecologic disturbances that coincide with trends in global warming. The extent to which human activities have contributed to their increase therefore comes into question. This review summarizes the origins and health effects of marine algal toxins, as well as changes in their current global distribution, and examines possible causes for the recent increase in their occurrence. (Author)

  13. Marine Oil-Degrading Microorganisms and Biodegradation Process of Petroleum Hydrocarbon in Marine Environments: A Review.

    Science.gov (United States)

    Xue, Jianliang; Yu, Yang; Bai, Yu; Wang, Liping; Wu, Yanan

    2015-08-01

    Due to the toxicity of petroleum compounds, the increasing accidents of marine oil spills/leakages have had a significant impact on our environment. Recently, different remedial techniques for the treatment of marine petroleum pollution have been proposed, such as bioremediation, controlled burning, skimming, and solidifying. (Hedlund and Staley in Int J Syst Evol Microbiol 51:61-66, 2001). This review introduces an important remedial method for marine oil pollution treatment-bioremediation technique-which is considered as a reliable, efficient, cost-effective, and eco-friendly method. First, the necessity of bioremediation for marine oil pollution was discussed. Second, this paper discussed the species of oil-degrading microorganisms, degradation pathways and mechanisms, the degradation rate and reaction model, and the factors affecting the degradation. Last, several suggestions for the further research in the field of marine oil spill bioremediation were proposed.

  14. The inhibition of marine nitrification by ocean disposal of carbon dioxide

    International Nuclear Information System (INIS)

    Huesmann, M.H.; Skillman, A.D.; Crecelius, E.A.

    2002-01-01

    In an attempt to reduce the threat of global warming, it has been proposed that the rise of atmospheric carbon dioxide concentrations be reduced by the ocean disposal of CO 2 from the flue gases of fossil fuel-fired power plants. The release of large amounts of CO 2 into mid or deep ocean waters will result in large plumes of acidified seawater with pH values ranging from 6 to 8. In an effort to determine whether these CO 2 -induced pH changes have any effect on marine nitrification processes, surficial (euphotic zone) and deep (aphotic zone) seawater samples were sparged with CO 2 for varying time durations to achieve a specified pH reduction, and the rate of microbial ammonia oxidation was measured spectrophotometrically as a function of pH using an inhibitor technique. For both seawater samples taken from either the euphotic or aphotic zone, the nitrification rates dropped drastically with decreasing pH. Relative to nitrification rates in the original seawater at pH 8, nitrification rates were reduced by ca. 50% at pH 7 and more than 90% at pH 6.5. Nitrification was essentially completely inhibited at pH 6. These findings suggest that the disposal of CO 2 into mid or deep oceans will most likely result in a drastic reduction of ammonia oxidation rates within the pH plume and the concomitant accumulation of ammonia instead of nitrate. It is unlikely that ammonia will reach the high concentration levels at which marine aquatic organisms are known to be negatively affected. However, if the ammonia-rich seawater from inside the pH plume is upwelled into the euphotic zone, it is likely that changes in phytoplankton abundance and community structure will occur. Finally, the large-scale inhibition of nitrification and the subsequent reduction of nitrite and nitrate concentrations could also result in a decrease of denitrification rates which, in turn, could lead to the buildup of nitrogen and unpredictable eutrophication phenomena. Clearly, more research on the

  15. Global warming and South Indian monsoon rainfall-lessons from the Mid-Miocene.

    Science.gov (United States)

    Reuter, Markus; Kern, Andrea K; Harzhauser, Mathias; Kroh, Andreas; Piller, Werner E

    2013-04-01

    Precipitation over India is driven by the Indian monsoon. Although changes in this atmospheric circulation are caused by the differential seasonal diabatic heating of Asia and the Indo-Pacific Ocean, it is so far unknown how global warming influences the monsoon rainfalls regionally. Herein, we present a Miocene pollen flora as the first direct proxy for monsoon over southern India during the Middle Miocene Climate Optimum. To identify climatic key parameters, such as mean annual temperature, warmest month temperature, coldest month temperature, mean annual precipitation, mean precipitation during the driest month, mean precipitation during the wettest month and mean precipitation during the warmest month the Coexistence Approach is applied. Irrespective of a ~ 3-4 °C higher global temperature during the Middle Miocene Climate Optimum, the results indicate a modern-like monsoonal precipitation pattern contrasting marine proxies which point to a strong decline of Indian monsoon in the Himalaya at this time. Therefore, the strength of monsoon rainfall in tropical India appears neither to be related to global warming nor to be linked with the atmospheric conditions over the Tibetan Plateau. For the future it implies that increased global warming does not necessarily entail changes in the South Indian monsoon rainfall.

  16. Global warming and allergy in Asia Minor.

    Science.gov (United States)

    Bajin, Munir Demir; Cingi, Cemal; Oghan, Fatih; Gurbuz, Melek Kezban

    2013-01-01

    The earth is warming, and it is warming quickly. Epidemiological studies have demonstrated that global warming is correlated with the frequency of pollen-induced respiratory allergy and allergic diseases. There is a body of evidence suggesting that the prevalence of allergic diseases induced by pollens is increasing in developed countries, a trend that is also evident in the Mediterranean area. Because of its mild winters and sunny days with dry summers, the Mediterranean area is different from the areas of central and northern Europe. Classical examples of allergenic pollen-producing plants of the Mediterranean climate include Parietaria, Olea and Cupressaceae. Asia Minor is a Mediterranean region that connects Asia and Europe, and it includes considerable coastal areas. Gramineae pollens are the major cause of seasonal allergic rhinitis in Asia Minor, affecting 1.3-6.4 % of the population, in accordance with other European regions. This article emphasizes the importance of global climate change and anticipated increases in the prevalence and severity of allergic disease in Asia Minor, mediated through worsening air pollution and altered local and regional pollen production, from an otolaryngologic perspective.

  17. Impacts of Ocean Warming on China's Fisheries Catches: An Application of “Mean Temperature of the Catch” Concept

    Directory of Open Access Journals (Sweden)

    Cui Liang

    2018-02-01

    Full Text Available Ocean warming can strongly impact marine fisheries; notably, it can cause the “mean temperature of the catch” (MTC to increase, an indicator of the tropicalization of fisheries catches. In this contribution, we explore MTC changes in three large marine ecosystems (LMEs along China's coasts, i.e., the Yellow Sea, East China Sea, and South China Sea LMEs, and their relationships to shifts of sea surface temperature (SST. The results show that, while the MTCs began to increase in 1962 in the East China Sea and in 1968 in the Yellow Sea, there was no detectable increase in the South China Sea. There also was a strong relationship between MTC and SST in the Yellow and East China Seas from 1950 to 2010, especially when taking a 3-year time-lag into account. The lack of change of the MTC in the South China Sea is attributed to the relatively small increase in SST over the time period considered, and the fact that the MTC of tropical ecosystems such as the South China Sea is not predicted to increase in the first place, given that their fauna cannot be replaced by another, adapted to higher temperature. Overall, these results suggest that ocean warming is already having an impact on China's marine fisheries, and that policies to curtail greenhouse gas emissions are urgently needed to minimize the increase of these impacts on fisheries.

  18. Biodiversity: invasions by marine life on plastic debris.

    Science.gov (United States)

    Barnes, David K A

    2002-04-25

    Colonization by alien species poses one of the greatest threats to global biodiversity. Here I investigate the colonization by marine organisms of drift debris deposited on the shores of 30 remote islands from the Arctic to the Antarctic (across all oceans) and find that human litter more than doubles the rafting opportunities for biota, particularly at high latitudes. Although the poles may be protected from invasion by freezing sea surface temperatures, these may be under threat as the fastest-warming areas anywhere are at these latitudes.

  19. Trends in global warming and evolution of nucleoproteins from influenza A viruses since 1918.

    Science.gov (United States)

    Yan, S; Wu, G

    2010-12-01

    Global warming affects not only the environment where we live, but also all living species to different degree, including influenza A virus. We recently conducted several studies on the possible impact of global warming on the protein families of influenza A virus. More studies are needed in order to have a full picture of the impact of global warming on living organisms, especially its effect on viruses. In this study, we correlate trends in global warming with evolution of the nucleoprotein from influenza A virus and then analyse the trends with respect to northern/southern hemispheres, virus subtypes and sampling species. The results suggest that global warming may have an impact on the evolution of the nucleoprotein from influenza A virus. © 2010 Blackwell Verlag GmbH.

  20. Implications of global warming on human health

    International Nuclear Information System (INIS)

    Singh, R.K.; Syam, P.V.S.

    1997-01-01

    Due to the build up of green house gases in atmosphere, less heat escapes through the atmosphere promoting global warming. This may result in world wide droughts, sea-level rise inundating islands and coastal countries, cataclysmic hurricanes etc. Human health as a result of these changes, will be affected both physiologically and psychologically. Physiological effects may be more pronounced in cases occurring due to changes in rainfall and temperature patterns, food production amounts, water availability, etc. Psychological impact may be more in cases of catastrophes like floods, hurricanes or famine. In this paper, an attempt has been made to highlight the implications of global warming on human health due to temperature change. Food production changes and ultra-violet radiation effects and cataclysmic disaster effects. (author)

  1. Summarizing metocean operating conditions as a climatology of marine hazards

    Science.gov (United States)

    Reid, Heather; Finnis, Joel

    2018-03-01

    Marine occupations are plagued by some of the highest accident and mortality rates of any occupation, due in part to the variety and severity of environmental hazards presented by the ocean environment. In order to better study and communicate the potential impacts of these hazards on occupational health and safety, a semi-objective, hazard-focused climatology of a particularly dangerous marine environment (Northwestern Atlantic) has been developed. Specifically, climate has been summarized as the frequency with which responsible government agencies are expected to issue relevant warnings or watches, couching results in language relevant to marine stakeholders. Applying cluster analysis to warning/watch frequencies identified seven distinct `hazard climatologies', ranging from near-Arctic conditions to areas dominated by calm seas and warm waters. Spatial and temporal variability in these clusters reflects relevant annual cycles, such as the advance/retreat of sea ice and shifts in the Atlantic storm track; the clusters also highlight regions and seasons with comparable operational risks. Our approach is proposed as an effective means to summarize and communicate marine risk with stakeholders, and a potential framework for describing climate change impacts.

  2. New climatic targets against global warming: will the maximum 2 °C temperature rise affect estuarine benthic communities?

    Science.gov (United States)

    Crespo, Daniel; Grilo, Tiago Fernandes; Baptista, Joana; Coelho, João Pedro; Lillebø, Ana Isabel; Cássio, Fernanda; Fernandes, Isabel; Pascoal, Cláudia; Pardal, Miguel Ângelo; Dolbeth, Marina

    2017-06-20

    The Paris Agreement signed by 195 countries in 2015 sets out a global action plan to avoid dangerous climate change by limiting global warming to remain below 2 °C. Under that premise, in situ experiments were run to test the effects of 2 °C temperature increase on the benthic communities in a seagrass bed and adjacent bare sediment, from a temperate European estuary. Temperature was artificially increased in situ and diversity and ecosystem functioning components measured after 10 and 30 days. Despite some warmness effects on the analysed components, significant impacts were not verified on macro and microfauna structure, bioturbation or in the fluxes of nutrients. The effect of site/habitat seemed more important than the effects of the warmness, with the seagrass habitat providing more homogenous results and being less impacted by warmness than the adjacent bare sediment. The results reinforce that most ecological responses to global changes are context dependent and that ecosystem stability depends not only on biological diversity but also on the availability of different habitats and niches, highlighting the role of coastal wetlands. In the context of the Paris Agreement it seems that estuarine benthic ecosystems will be able to cope if global warming remains below 2 °C.

  3. Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System.

    Science.gov (United States)

    Xiu, Peng; Chai, Fei; Curchitser, Enrique N; Castruccio, Frederic S

    2018-02-12

    Coastal upwelling ecosystems are among the most productive ecosystems in the world, meaning that their response to climate change is of critical importance. Our understanding of climate change impacts on marine ecosystems is largely limited to the open ocean, mainly because coastal upwelling is poorly reproduced by current earth system models. Here, a high-resolution model is used to examine the response of nutrients and plankton dynamics to future climate change in the California Current System (CCS). The results show increased upwelling intensity associated with stronger alongshore winds in the coastal region, and enhanced upper-ocean stratification in both the CCS and open ocean. Warming of the open ocean forces isotherms downwards, where they make contact with water masses with higher nutrient concentrations, thereby enhancing the nutrient flux to the deep source waters of the CCS. Increased winds and eddy activity further facilitate upward nutrient transport to the euphotic zone. However, the plankton community exhibits a complex and nonlinear response to increased nutrient input, as the food web dynamics tend to interact differently. This analysis highlights the difficulty in understanding how the marine ecosystem responds to a future warming climate, given to range of relevant processes operating at different scales.

  4. Local warming: daily temperature change influences belief in global warming.

    Science.gov (United States)

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  5. The effects of the Indo-Pacific warm pool on the stratosphere

    Science.gov (United States)

    Zhou, Xin; Li, Jianping; Xie, Fei; Ding, Ruiqiang; Li, Yanjie; Zhao, Sen; Zhang, Jiankai; Li, Yang

    2017-03-01

    Sea surface temperature (SST) in the Indo-Pacific warm pool (IPWP) plays a key role in influencing East Asian climate, and even affects global-scale climate change. This study defines IPWP Niño and IPWP Niña events to represent the warm and cold phases of IPWP SST anomalies, respectively, and investigates the effects of these events on stratospheric circulation and temperature. Results from simulations forced by observed SST anomalies during IPWP Niño and Niña events show that the tropical lower stratosphere tends to cool during IPWP Niño events and warm during IPWP Niña events. The responses of the northern and southern polar vortices to IPWP Niño events are fairly symmetric, as both vortices are significantly warmed and weakened. However, the responses of the two polar vortices to IPWP Niña events are of opposite sign: the northern polar vortex is warmed and weakened, but the southern polar vortex is cooled and strengthened. These features are further confirmed by composite analysis using reanalysis data. A possible dynamical mechanism connecting IPWP SST to the stratosphere is suggested, in which IPWP Niño and Niña events excite teleconnections, one similar to the Pacific-North America pattern in the Northern Hemisphere and a Rossby wave train in the Southern Hemisphere, which project onto the climatological wave in the mid-high latitudes, intensifying the upward propagation of planetary waves into the stratosphere and, in turn, affecting the polar vortex.

  6. Effects of different re-warm up activities in football players' performance.

    Directory of Open Access Journals (Sweden)

    Eduardo Abade

    Full Text Available Warm up routines are commonly used to optimize football performance and prevent injuries. Yet, official pre-match protocols may require players to passively rest for approximately 10 to 15 minutes between the warm up and the beginning of the match. Therefore, the aim of this study was to explore the effect of different re-warm up activities on the physical performance of football players. Twenty-Two Portuguese elite under-19 football players participated in the study conducted during the competitive season. Different re-warm up protocols were performed 6 minutes after the same standardized warm up in 4 consecutive days in a crossover controlled approach: without, eccentric, plyometric and repeated changes of direction. Vertical jump and Sprint performances were tested immediately after warm up and 12 minutes after warm up. Results showed that repeated changes of direction and plyometrics presented beneficial effects to jump and sprint. Different practical implications may be taken from the eccentric protocol since a vertical jump impairment was observed, suggesting a possibly harmful effect. The absence of re-warm up activities may be detrimental to players' physical performance. However, the inclusion of re-warm up prior to match is a complex issue, since the manipulation of volume, intensity and recovery may positively or negatively affect the subsequent performance. In fact, this exploratory study shows that eccentric exercise may be harmful for physical performance when performed prior a football match. However, plyometric and repeated changes of direction exercises seem to be simple, quick and efficient activities to attenuate losses in vertical jump and sprint capacity after warm up. Coaches should aim to develop individual optimal exercise modes in order to optimize physical performance after re warm activities.

  7. Food enrichment with marine phospholipid emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    marine PL emulsions with and without addition of fish oil. The oxidative stability of marine PL emulsions was significantly influenced by the chemical composition of marine PL used for emulsions preparation. For instance, emulsions with good oxidative stability could be obtained when using raw materials...... with high purity, low fish oil content and high PL, cholesterol and α-tocopherol content. In addition, non-enzymatic browning reactions may also affect the oxidative stability of the marine PL emulsion. These reactions included Strecker degradation and pyrrolization, and their occurrence were due......Many studies have shown that marine phospholipids (PL) provide more advantages than fish oil. They seem to have better bioavailability, better resistance towards oxidation and higher content of eicosapentaenoic acids and docosahexaenoic acids than fish oil, which essentially contains triglycerides...

  8. Cumulative human impacts on marine predators.

    Science.gov (United States)

    Maxwell, Sara M; Hazen, Elliott L; Bograd, Steven J; Halpern, Benjamin S; Breed, Greg A; Nickel, Barry; Teutschel, Nicole M; Crowder, Larry B; Benson, Scott; Dutton, Peter H; Bailey, Helen; Kappes, Michelle A; Kuhn, Carey E; Weise, Michael J; Mate, Bruce; Shaffer, Scott A; Hassrick, Jason L; Henry, Robert W; Irvine, Ladd; McDonald, Birgitte I; Robinson, Patrick W; Block, Barbara A; Costa, Daniel P

    2013-01-01

    Stressors associated with human activities interact in complex ways to affect marine ecosystems, yet we lack spatially explicit assessments of cumulative impacts on ecologically and economically key components such as marine predators. Here we develop a metric of cumulative utilization and impact (CUI) on marine predators by combining electronic tracking data of eight protected predator species (n=685 individuals) in the California Current Ecosystem with data on 24 anthropogenic stressors. We show significant variation in CUI with some of the highest impacts within US National Marine Sanctuaries. High variation in underlying species and cumulative impact distributions means that neither alone is sufficient for effective spatial management. Instead, comprehensive management approaches accounting for both cumulative human impacts and trade-offs among multiple stressors must be applied in planning the use of marine resources.

  9. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement.

    Science.gov (United States)

    García, Eliseba; Clemente, Sabrina; Hernández, José Carlos

    2015-09-01

    Ocean warming and acidification both impact marine ecosystems. All organisms have a limited body temperature range, outside of which they become functionally constrained. Beyond the absolute extremes of this range, they cannot survive. It is hypothesized that some stressors can present effects that interact with other environmental variables, such as ocean acidification (OA) that have the potential to narrow the thermal range where marine species are functional. An organism's response to ocean acidification can therefore be highly dependent on thermal conditions. This study evaluated the combined effects of predicted ocean warming conditions and acidification, on survival, development, and settlement, of the sea urchin Paracentrotus lividus. Nine combined treatments of temperature (19.0, 20.5 and 22.5 °C) and pH (8.1, 7.7 and 7.4 units) were carried out. All of the conditions tested were either within the current natural ranges of seawater pH and temperature or are within the ranges that have been predicted for the end of the century, in the sampling region (Canary Islands). Our results indicated that the negative effects of low pH on P. lividus larval development and settlement will be mitigated by a rise in seawater temperature, up to a thermotolerance threshold. Larval development and settlement performance of the sea urchin P. lividus was enhanced by a slight increase in temperature, even under lowered pH conditions. However, the species did show negative responses to the levels of ocean warming and acidification that have been predicted for the turn of the century. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Who decides who has won the bet? Total and Anthropogenic Warming Indices

    Science.gov (United States)

    Haustein, K.; Allen, M. R.; Otto, F. E. L.; Schmidt, A.; Frame, D. J.; Forster, P.; Matthews, D.

    2016-12-01

    An extension of the idea of betting markets as a means of revealing opinions about future climate are climate policies indexed to geophysical indicators: for example, to ensure net zero global carbon dioxide emissions by the time anthropogenic warming reaches 1.5 degrees above pre-industrial, given about 1 degree of warming already, emissions must fall, on average, by 20% of their current value for every tenth of a degree of anthropogenic warming from now on. In principle, policies conditioned on some measure of attributable warming are robust to uncertainty in the global climate response: the risk of a higher or lower response than expected is borne by those affected by climate change mitigation policy rather than those affected by climate change impacts, as is the case with emission targets for specific years based on "current understanding" of the response. To implement any indexed policy, or to agree payout terms for any bet on future climate, requires consensus on the definition of the index: how is it calculated, and who is responsible for releasing it? The global mean surface temperature of the current decade relative to pre-industrial may vary by 0.1 degree or more depending on precisely what is measured, what is defined as pre-industrial, and the treatment of regions with sparse data coverage in earlier years. Indices defined using different conventions, however, are all expected to evolve very similarly over the coming decades, so agreeing on a conservative, traceable index such as HadCRUT is more important than debating the "true" global temperature. A more important question is whether indexed policies and betting markets should focus on total warming, including natural and anthropogenic drivers and internal variability, or an Anthropogenic Warming Index (AWI) representing an unbiased estimate of warming attributable to human influence to date. We propose a simple AWI based solely on observed temperatures and global natural and anthropogenic forcing

  11. Diversity in thermal affinity among key piscivores buffers impacts of ocean warming on predator-prey interactions.

    Science.gov (United States)

    Selden, Rebecca L; Batt, Ryan D; Saba, Vincent S; Pinsky, Malin L

    2018-01-01

    Asymmetries in responses to climate change have the potential to alter important predator-prey interactions, in part by altering the location and size of spatial refugia for prey. We evaluated the effect of ocean warming on interactions between four important piscivores and four of their prey in the U.S. Northeast Shelf by examining species overlap under historical conditions (1968-2014) and with a doubling in CO 2 . Because both predator and prey shift their distributions in response to changing ocean conditions, the net impact of warming or cooling on predator-prey interactions was not determined a priori from the range extent of either predator or prey alone. For Atlantic cod, an historically dominant piscivore in the region, we found that both historical and future warming led to a decline in the proportion of prey species' range it occupied and caused a potential reduction in its ability to exert top-down control on these prey. In contrast, the potential for overlap of spiny dogfish with prey species was enhanced by warming, expanding their importance as predators in this system. In sum, the decline in the ecological role for cod that began with overfishing in this ecosystem will likely be exacerbated by warming, but this loss may be counteracted by the rise in dominance of other piscivores with contrasting thermal preferences. Functional diversity in thermal affinity within the piscivore guild may therefore buffer against the impact of warming on marine ecosystems, suggesting a novel mechanism by which diversity confers resilience. © 2017 John Wiley & Sons Ltd.

  12. Seasonal variation of marine organic aerosols in the North Pacific Ocean

    Science.gov (United States)

    Fu, P.; Kawamura, K.

    2017-12-01

    Atmospheric aerosols were collected in the marine boundary layer during five marine cruises in the northern Pacific Ocean from October 1996 to July 1997. Organic molecular compositions of the marine aerosols were measured using gas chromatography/mass spectrometry (GC/MS). Higher concentrations of levoglucosan and its isomers, the biomass-burning tracers, were observed in the coastal regions than those in the central north Pacific. Seasonal trends of biomass burning tracers were found to be higher in fall-winter-spring than in summer, suggesting an enhanced influence of continental aerosols to the marine atmosphere during cold seasons when the westerlies prevail. However, the atmospheric levels of secondary organic aerosol (SOA) tracers from the photooxidation of isoprene and monoterpenes were higher in warm seasons than cold seasons, which are in accordance with the enhanced emissions of biogenic volatile organic compounds (BVOCs) in summer. Stable C isotope ratios of total carbon (δ13CTC) in the marine aerosols ranged from -28.5‰ to -23.6‰ (mean -26.4‰), suggesting an important input of terrestrial/continental aerosol particles. Stable N isotope ratios (2.6‰ to 12.9‰, mean 7.1‰) were found to be higher in the coastal regions than those in the open oceans, suggesting an enhanced emission of marine aerosols in the open oceans. The fluorescence properties of the water-soluble organic carbon (WSOC) in the marine aerosols conform the importance of marine emitted organics in the open ocean, especially during the high biological activity periods.

  13. An Integrated Assessment Model for Helping the United States Sea Scallop (Placopecten magellanicus) Fishery Plan Ahead for Ocean Acidification and Warming.

    Science.gov (United States)

    Cooley, Sarah R; Rheuban, Jennie E; Hart, Deborah R; Luu, Victoria; Glover, David M; Hare, Jonathan A; Doney, Scott C

    2015-01-01

    Ocean acidification, the progressive change in ocean chemistry caused by uptake of atmospheric CO2, is likely to affect some marine resources negatively, including shellfish. The Atlantic sea scallop (Placopecten magellanicus) supports one of the most economically important single-species commercial fisheries in the United States. Careful management appears to be the most powerful short-term factor affecting scallop populations, but in the coming decades scallops will be increasingly influenced by global environmental changes such as ocean warming and ocean acidification. In this paper, we describe an integrated assessment model (IAM) that numerically simulates oceanographic, population dynamic, and socioeconomic relationships for the U.S. commercial sea scallop fishery. Our primary goal is to enrich resource management deliberations by offering both short- and long-term insight into the system and generating detailed policy-relevant information about the relative effects of ocean acidification, temperature rise, fishing pressure, and socioeconomic factors on the fishery using a simplified model system. Starting with relationships and data used now for sea scallop fishery management, the model adds socioeconomic decision making based on static economic theory and includes ocean biogeochemical change resulting from CO2 emissions. The model skillfully reproduces scallop population dynamics, market dynamics, and seawater carbonate chemistry since 2000. It indicates sea scallop harvests could decline substantially by 2050 under RCP 8.5 CO2 emissions and current harvest rules, assuming that ocean acidification affects P. magellanicus by decreasing recruitment and slowing growth, and that ocean warming increases growth. Future work will explore different economic and management scenarios and test how potential impacts of ocean acidification on other scallop biological parameters may influence the social-ecological system. Future empirical work on the effect of ocean

  14. Impacts of Global Warming and Sea Level Rise on Service Life of Chloride-Exposed Concrete Structures

    Directory of Open Access Journals (Sweden)

    Xiao-Jian Gao

    2017-03-01

    Full Text Available Global warming will increase the rate of chloride ingress and the rate of steel corrosion of concrete structures. Furthermore, in coastal (atmospheric marine zones, sea level rise will reduce the distance of concrete structures from the coast and increase the surface chloride content. This study proposes a probabilistic model for analyzing the effects of global warming and sea level rise on the service life of coastal concrete structures. First, in the corrosion initiation stage, an improved chloride diffusion model is proposed to determine chloride concentration. The Monte Carlo method is employed to calculate the service life in the corrosion initiation stage; Second, in the corrosion propagation stage, a numerical model is proposed to calculate the rate of corrosion, probability of corrosion cracking, and service life. Third, overall service life is determined as the sum of service life in the corrosion initiation and corrosion propagation stages. After considering the impacts of global warming and sea level rise, the analysis results show that for concrete structures having a service life of 50 years, the service life decreases by about 5%.

  15. Herbivores rescue diversity in warming tundra by modulating trait-dependent species losses and gains.

    Science.gov (United States)

    Kaarlejärvi, Elina; Eskelinen, Anu; Olofsson, Johan

    2017-09-04

    Climate warming is altering the diversity of plant communities but it remains unknown which species will be lost or gained under warming, especially considering interactions with other factors such as herbivory and nutrient availability. Here, we experimentally test effects of warming, mammalian herbivory and fertilization on tundra species richness and investigate how plant functional traits affect losses and gains. We show that herbivory reverses the impact of warming on diversity: in the presence of herbivores warming increases species richness through higher species gains and lower losses, while in the absence of herbivores warming causes higher species losses and thus decreases species richness. Herbivores promote gains of short-statured species under warming, while herbivore removal and fertilization increase losses of short-statured and resource-conservative species through light limitation. Our results demonstrate that both rarity and traits forecast species losses and gains, and mammalian herbivores are essential for preventing trait-dependent extinctions and mitigate diversity loss under warming and eutrophication.Warming can reduce plant diversity but it is unclear which species will be lost or gained under interacting global changes. Kaarlejärvi et al. manipulate temperature, herbivory and nutrients in a tundra system and find that herbivory maintains diversity under warming by reducing species losses and promoting gains.

  16. Ocean deoxygenation in a warming world.

    Science.gov (United States)

    Keeling, Ralph E; Körtzinger, Arne; Gruber, Nicolas

    2010-01-01

    Ocean warming and increased stratification of the upper ocean caused by global climate change will likely lead to declines in dissolved O2 in the ocean interior (ocean deoxygenation) with implications for ocean productivity, nutrient cycling, carbon cycling, and marine habitat. Ocean models predict declines of 1 to 7% in the global ocean O2 inventory over the next century, with declines continuing for a thousand years or more into the future. An important consequence may be an expansion in the area and volume of so-called oxygen minimum zones, where O2 levels are too low to support many macrofauna and profound changes in biogeochemical cycling occur. Significant deoxygenation has occurred over the past 50 years in the North Pacific and tropical oceans, suggesting larger changes are looming. The potential for larger O2 declines in the future suggests the need for an improved observing system for tracking ocean 02 changes.

  17. National action strategy on global warming

    International Nuclear Information System (INIS)

    1990-11-01

    A document prepared by a committee of Canadian environmental ministries proposes a strategic framework for a national action plan concerning global warming. The strategy would be carried out jointly by governments and all other sectors of the economy, taking into account the present state of scientific knowledge on global warming. Within this framework, the governments in cooperation with interested parties would take certain measures in their respective areas of competence. The main recommendations of the document include the following. The action strategy should comprise 3 elements: limiting emissions of greenhouse gases; forecasting climatic changes which Canada could undergo due to global warming and preparing for such changes; and improving scientific knowledge and the capacity to predict climatic changes. Limitations on this strategy should take into account such matters as the interaction of greenhouse gases with other pollutants, the importance of the international context, the need to adapt to new discoveries, and the importance of regional differences. Implementation of the strategy should incorporate widespread consultation of all affected sectors, sustained work on establishing international conventions and protocols on reducing greenhouse gas emissions, objectives and schedules for such reductions, and stepwise actions to control emissions in order to enable an adequate evaluation of the consequences and effectiveness of such measures. 10 figs., 2 tabs

  18. Climate change under a scenario near 1.5 °C of global warming: monsoon intensification, ocean warming and steric sea level rise

    Directory of Open Access Journals (Sweden)

    J. Schewe

    2011-03-01

    Full Text Available We present climatic consequences of the Representative Concentration Pathways (RCPs using the coupled climate model CLIMBER-3α, which contains a statistical-dynamical atmosphere and a three-dimensional ocean model. We compare those with emulations of 19 state-of-the-art atmosphere-ocean general circulation models (AOGCM using MAGICC6. The RCPs are designed as standard scenarios for the forthcoming IPCC Fifth Assessment Report to span the full range of future greenhouse gas (GHG concentrations pathways currently discussed. The lowest of the RCP scenarios, RCP3-PD, is projected in CLIMBER-3α to imply a maximal warming by the middle of the 21st century slightly above 1.5 °C and a slow decline of temperatures thereafter, approaching today's level by 2500. We identify two mechanisms that slow down global cooling after GHG concentrations peak: The known inertia induced by mixing-related oceanic heat uptake; and a change in oceanic convection that enhances ocean heat loss in high latitudes, reducing the surface cooling rate by almost 50%. Steric sea level rise under the RCP3-PD scenario continues for 200 years after the peak in surface air temperatures, stabilizing around 2250 at 30 cm. This contrasts with around 1.3 m of steric sea level rise by 2250, and 2 m by 2500, under the highest scenario, RCP8.5. Maximum oceanic warming at intermediate depth (300–800 m is found to exceed that of the sea surface by the second half of the 21st century under RCP3-PD. This intermediate-depth warming persists for centuries even after surface temperatures have returned to present-day values, with potential consequences for marine ecosystems, oceanic methane hydrates, and ice-shelf stability. Due to an enhanced land-ocean temperature contrast, all scenarios yield an intensification of monsoon rainfall under global warming.

  19. Intensified Arctic warming under greenhouse warming by vegetation–atmosphere–sea ice interaction

    International Nuclear Information System (INIS)

    Jeong, Jee-Hoon; Kug, Jong-Seong; Linderholm, Hans W; Chen, Deliang; Kim, Baek-Min; Jun, Sang-Yoon

    2014-01-01

    Observations and modeling studies indicate that enhanced vegetation activities over high latitudes under an elevated CO 2 concentration accelerate surface warming by reducing the surface albedo. In this study, we suggest that vegetation-atmosphere-sea ice interactions over high latitudes can induce an additional amplification of Arctic warming. Our hypothesis is tested by a series of coupled vegetation-climate model simulations under 2xCO 2 environments. The increased vegetation activities over high latitudes under a 2xCO 2 condition induce additional surface warming and turbulent heat fluxes to the atmosphere, which are transported to the Arctic through the atmosphere. This causes additional sea-ice melting and upper-ocean warming during the warm season. As a consequence, the Arctic and high-latitude warming is greatly amplified in the following winter and spring, which further promotes vegetation activities the following year. We conclude that the vegetation-atmosphere-sea ice interaction gives rise to additional positive feedback of the Arctic amplification. (letter)

  20. Liquid Film Migration in Warm Formed Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, M. J.; Whitney, M. A.; Wells, M. A.; Jin, H.; Winkler, S.

    2017-10-01

    Warm forming has previously proven to be a promising manufacturing route to improve formability of Al brazing sheets used in automotive heat exchanger production; however, the impact of warm forming on subsequent brazing has not previously been studied. In particular, the interaction between liquid clad and solid core alloys during brazing through the process of liquid film migration (LFM) requires further understanding. Al brazing sheet comprised of an AA3003 core and AA4045 clad alloy, supplied in O and H24 tempers, was stretched between 0 and 12 pct strain, at room temperature and 523K (250 °C), to simulate warm forming. Brazeability was predicted through thermal and microstructure analysis. The rate of solid-liquid interactions was quantified using thermal analysis, while microstructure analysis was used to investigate the opposing processes of LFM and core alloy recrystallization during brazing. In general, liquid clad was consumed relatively rapidly and LFM occurred in forming conditions where the core alloy did not recrystallize during brazing. The results showed that warm forming could potentially impair brazeability of O temper sheet by extending the regime over which LFM occurs during brazing. No change in microstructure or thermal data was found for H24 sheet when the forming temperature was increased, and thus warm forming was not predicted to adversely affect the brazing performance of H24 sheet.

  1. Global warming-setting the stages

    International Nuclear Information System (INIS)

    1994-01-01

    Most of us have heard or read about global warming. However, the messages we receive are often in conflict, raising more questions than answer. Is global warming a good or a bad thing? has it already started or is it part of our future? Are we, or are we not doing anything about it? Should we be concerned? This primer on Global Warming is designed to clear up some of this confusion by providing basic scientific information on global warming issue. It is clear that there is still much to learn about global warming. However, it is also clear that there is a lot that we already know - and that dose provide cause for concern. We must understand the global warming issue if we are to make wise decisions and take responsible actions in response to the challenges and opportunities posed by global warming. Chapter 1 of 'the primer on global Warming' set the stage with a brief overview of science of global warming within the context of climate change. In addition, it introduces the specific issues that surround the global warming problem. As far as the science of global warming is concerned the following questions are discussed. What is global climate? Is climate change natural? What causes climate to vary on a global scale? How does the composition of the atmosphere relate to climate change. but there are also certain issues discussed here which surround the global warming such as: If climate varies naturally, why is there a concern about 'global warming'? What are the potential consequences of 'global warning'. What human activities contribute to 'global warming'. (Author)

  2. How does the dengue vector mosquito Aedes albopictus respond to global warming?

    Science.gov (United States)

    Jia, Pengfei; Chen, Xiang; Chen, Jin; Lu, Liang; Liu, Qiyong; Tan, Xiaoyue

    2017-03-11

    Global warming has a marked influence on the life cycle of epidemic vectors as well as their interactions with human beings. The Aedes albopictus mosquito as the vector of dengue fever surged exponentially in the last decade, raising ecological and epistemological concerns of how climate change altered its growth rate and population dynamics. As the global warming pattern is considerably uneven across four seasons, with a confirmed stronger effect in winter, an emerging need arises as to exploring how the seasonal warming effects influence the annual development of Ae. albopictus. The model consolidates a 35-year climate dataset and designs fifteen warming patterns that increase the temperature of selected seasons. Based on a recently developed mechanistic population model of Ae. albopictus, the model simulates the thermal reaction of blood-fed adults by systematically increasing the temperature from 0.5 to 5 °C at an interval of 0.5 °C in each warming pattern. The results show the warming effects are different across seasons. The warming effects in spring and winter facilitate the development of the species by shortening the diapause period. The warming effect in summer is primarily negative by inhibiting mosquito development. The warming effect in autumn is considerably mixed. However, these warming effects cannot carry over to the following year, possibly due to the fact that under the extreme weather in winter the mosquito fully ceases from development and survives in terms of diapause eggs. As the historical pattern of global warming manifests seasonal fluctuations, this study provides corroborating and previously ignored evidence of how such seasonality affects the mosquito development. Understanding this short-term temperature-driven mechanism as one chain of the transmission events is critical to refining the thermal reaction norms of the epidemic vector under global warming as well as developing effective mosquito prevention and control strategies.

  3. Impacts of marine instability across the East Antarctic Ice Sheet on Southern Ocean dynamics

    Directory of Open Access Journals (Sweden)

    S. J. Phipps

    2016-09-01

    Full Text Available Recent observations and modelling studies have demonstrated the potential for rapid and substantial retreat of large sectors of the East Antarctic Ice Sheet (EAIS. This has major implications for ocean circulation and global sea level. Here we examine the effects of increasing meltwater from the Wilkes Basin, one of the major marine-based sectors of the EAIS, on Southern Ocean dynamics. Climate model simulations reveal that the meltwater flux rapidly stratifies surface waters, leading to a dramatic decrease in the rate of Antarctic Bottom Water (AABW formation. The surface ocean cools but, critically, the Southern Ocean warms by more than 1 °C at depth. This warming is accompanied by a Southern Ocean-wide “domino effect”, whereby the warming signal propagates westward with depth. Our results suggest that melting of one sector of the EAIS could result in accelerated warming across other sectors, including the Weddell Sea sector of the West Antarctic Ice Sheet. Thus, localised melting of the EAIS could potentially destabilise the wider Antarctic Ice Sheet.

  4. [The innovation of warm disease theory in the Ming Dynasty before Wen yi lun On Pestilence].

    Science.gov (United States)

    Zhang, Zhi-bin

    2008-10-01

    Some doctors of the Ming dynasty raised subversive doubts against the traditional viewpoints of "exogenous cold disease is warm-heat" before the emergence of Wen yi lun (On Pestilence), holding that warm-heat disease "is contracted in different seasons instead of being transformed from cold to warm and/or heat". The conception of the separation of warm-heat disease and exogenous cold disease had changed from obscure to clear. As the idea became clear, the recognition on the new affection of warm, heat, summer-heat, pestilent pathogen was formed, and the idea that the pathogens of summer-heat and warm entered the human body through the mouth and nostrils was put forward. The six-channel syndrome differentiation of warm disease and the five sweat-resolving methods in pestilence raised by the doctors of this period are the aspects of the differential diagnosis of syndrome and treatment in warm diseases, and deserve to be paid attention to.

  5. Interactive effects of warming and increased precipitation on community structure and composition in an annual forb dominated desert steppe.

    Directory of Open Access Journals (Sweden)

    Yanhui Hou

    Full Text Available To better understand how warming, increased precipitation and their interactions influence community structure and composition, a field experiment simulating hydrothermal interactions was conducted at an annual forb dominated desert steppe in northern China over 2 years. Increased precipitation increased species richness while warming significantly decreased species richness, and their effects were additive rather than interactive. Although interannual variations in weather conditions may have a major affect on plant community composition on short term experiments, warming and precipitation treatments affected individual species and functional group composition. Warming caused C4 grasses such as Cleistogenes squarrosa to increase while increased precipitation caused the proportions of non-perennial C3 plants like Artemisia capillaris to decrease and perennial C4 plants to increase.

  6. Livers from fasted rats acquire resistance to warm and cold ischemia injury.

    Science.gov (United States)

    Sumimoto, R; Southard, J H; Belzer, F O

    1993-04-01

    Successful liver transplantation is dependent upon many factors, one of which is the quality of the donor organ. Previous studies have suggested that the donor nutritional status may affect the outcome of liver transplantation and starvation, due to prolonged stay in the intensive care unit, may adversely affect the liver. In this study we have used the orthotopic rat liver transplant model to measure how fasting the donor affects the outcome of liver transplantation. Rat livers were preserved with UW solution either at 37 degrees C (warm ischemia for 45-60 min) or at 4 degrees C (cold ischemia for 30 or 44 hr). After preservation the livers were orthotopically transplanted and survival (for 7 days) was measured, as well as liver functions 6 hr after transplantation. After 45 min of warm ischemia 50% (3 of 6) animals survived when the liver was obtained from a fed donor about 80% (4 of 5) survived when the liver was obtained from a three-day-fasted donor. After 60 min warm ischemia no animal survived (0 of 8, fed group). However, if the donor was fasted for 3 days 89% (8 of 9) of the animals survived for 7 days. Livers cold-stored for 30 hr were 50% viable (3 of 6) and fasting for 1-3 days did not affect this outcome. However, if the donor was fasted for 4 days 100% (9 of 9) survival was obtained. After 44-hr preservation only 29% (2/7) of the recipients survived for 7 days. If the donor was fasted for 4 days, survival increased to 83% (5/6). Liver functions, bile production, and serum enzymes were better in livers from the fasted rats than from the fed rats. Fasting caused a 95% decrease in liver glycogen content. Even with this low concentration of glycogen, liver viability (animal survival) after warm or cold ischemia was not affected, and livers with a low glycogen content were fully viable. Thus liver glycogen does not appear to be important in liver preservation. This study shows that fasting the donor does not cause injury to the liver after warm or cold

  7. Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations

    Science.gov (United States)

    Nuijens, Louise; Emanuel, Kerry; Masunaga, Hirohiko; L'Ecuyer, Tristan

    2017-11-01

    Space-borne observations reveal that 20-40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative-convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depth—similar to Large-Eddy Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of

  8. Warming up, turning sour, losing breath: ocean biogeochemistry under global change.

    Science.gov (United States)

    Gruber, Nicolas

    2011-05-28

    In the coming decades and centuries, the ocean's biogeochemical cycles and ecosystems will become increasingly stressed by at least three independent factors. Rising temperatures, ocean acidification and ocean deoxygenation will cause substantial changes in the physical, chemical and biological environment, which will then affect the ocean's biogeochemical cycles and ecosystems in ways that we are only beginning to fathom. Ocean warming will not only affect organisms and biogeochemical cycles directly, but will also increase upper ocean stratification. The changes in the ocean's carbonate chemistry induced by the uptake of anthropogenic carbon dioxide (CO(2)) (i.e. ocean acidification) will probably affect many organisms and processes, although in ways that are currently not well understood. Ocean deoxygenation, i.e. the loss of dissolved oxygen (O(2)) from the ocean, is bound to occur in a warming and more stratified ocean, causing stress to macro-organisms that critically depend on sufficient levels of oxygen. These three stressors-warming, acidification and deoxygenation-will tend to operate globally, although with distinct regional differences. The impacts of ocean acidification tend to be strongest in the high latitudes, whereas the low-oxygen regions of the low latitudes are most vulnerable to ocean deoxygenation. Specific regions, such as the eastern boundary upwelling systems, will be strongly affected by all three stressors, making them potential hotspots for change. Of additional concern are synergistic effects, such as ocean acidification-induced changes in the type and magnitude of the organic matter exported to the ocean's interior, which then might cause substantial changes in the oxygen concentration there. Ocean warming, acidification and deoxygenation are essentially irreversible on centennial time scales, i.e. once these changes have occurred, it will take centuries for the ocean to recover. With the emission of CO(2) being the primary driver

  9. Greenhouse gases and global warming

    International Nuclear Information System (INIS)

    1995-01-01

    From previous articles we have learned about the complexities of our environment, its atmosphere and its climate system. we have also learned that climate change and, therefore global warm and cool periods are naturally occurring phenomena. Moreover, all scientific evidence suggests that global warming, are likely to occur again naturally in the future. However, we have not yet considered the role of the rates of climate change in affecting the biosphere. It appears that how quickly the climate changes may be more important than the change itself. In light of this concern, let us now consider the possibility that, is due to human activity. We may over the next century experience global warming at rates and magnitudes unparalleled in recent geologic history. The following questions are answered; What can we learn from past climates? What do we know about global climates over the past 100 years? What causes temperature change? What are the greenhouse gases? How much have concentration of greenhouse gases increased in recent years? Why are increases in concentrations of greenhouse of concern? What is the e nhanced greenhouse effect ? How can human activity impact the global climate? What are some reasons for increased concentrations of greenhouse gases? What are fossil fuel and how do they transform into greenhouse gases? Who are the biggest emitters of greenhouse gases? Why are canada per capita emissions of greenhouse gases relatively high? (Author)

  10. How much might additional half a degree from a global warming of 1.5°C affects the extreme precipitation change in China?

    Science.gov (United States)

    Li, W.; Jiang, Z.

    2017-12-01

    In order to strengthen the global respond to the dangerous of global warming, Paris Agreement sets out two long-term warming goals: limiting global warming to well below 2˚C and purse effort to below 1.5˚C above pre-industrial levels. However, future climate change risks in those two warming targets show significant regional differences. This article aims to study the intensity and frequency of extreme precipitation change over China under those two global warming targets by using CMIP5 models under RCP4.5 and RCP8.5 scenario. Focus is put on the effects of the additional half degree in changing the extreme precipitation. Results show that the changes of extreme precipitation are independent of the RCP scenarios when global warming reaches the same threshold. Intensity of extreme precipitation averaged over China increase by around 6% and 11% when global warming reaches 1.5˚C and 2˚C, respectively. The additional half a degree increase makes the intensity of extreme precipitation averaged over China to increase by 4.5%, which translates to an increase close to the Clausius-Clapeyron scaling. Return period decreases by 5 years for the extra half degree warming when the 20-year return values are considered at the reference level.

  11. The present effect of global warming on U.S. industry

    International Nuclear Information System (INIS)

    Bendel, W.B.

    1993-01-01

    This paper will discuss how global warming issues are currently affecting U.S. industry. Global climate models are projecting global temperature increases in the 1.5-4.5 degrees C range within the next 50-60 years. This increase is based on the assumption that CO 2 emissions into the atmosphere will continue to increase 1-2% per year, resulting in a doubling of preindustrial CO 2 levels by mid twenty-first century. These projections may cause U.S. industry to readjust its thinking with respect to the benefits of pollution prevention as they relate to global warming, corporate image enhancement, global competitiveness and risk assessment or balance. Real or perceived impacts of global warming are already influencing U.S. competitiveness within the global economy because Japan and the European countries are taking the global warming threat more seriously than is the U.S. Mitigation of CO 2 emissions through carbon taxes or permitting will be discussed. Options available to U.S. industry to deal with the current uncertainties of global warming will be presented. Examples of how specific companies are coping with this issue will be given. Finally, recommendations are presented for proactive planning to determine which segments, divisions or facilities in a multinational company would be most sensitive to CO 2 stabilization regulations

  12. Simulated Warming Differentially Affects the Growth and Competitive Ability of Centaurea maculosa Populations from Home and Introduced Ranges

    OpenAIRE

    He, Wei-Ming; Li, Jing-Ji; Peng, Pei-Hao

    2012-01-01

    Climate warming may drive invasions by exotic plants, thereby raising concerns over the risks of invasive plants. However, little is known about how climate warming influences the growth and competitive ability of exotic plants from their home and introduced ranges. We conducted a common garden experiment with an invasive plant Centaurea maculosa and a native plant Poa pratensis, in which a mixture of sand and vermiculite was used as a neutral medium, and contrasted the total biomass, competi...

  13. Marine and land temperature data sets: A comparison and a look at recent trends

    International Nuclear Information System (INIS)

    Jones, P.D.; Wigley, T.M.L.; Farmer, G.

    1990-01-01

    Comparisons are made among the various data sets of marine and land temperatures. Emphasis in the analyses is placed on the first intercomparison of the two marine data sets, the United Kingdom Meteorological Office (UKMO) and the Comprehensive Ocean-Atmosphere Data Set (COADS). The results of the analyses show that the two data sets are not the same, as some authors have assumed. Important differences are noted prior to 1940, with hemispheric averages differing by up to 0.2 C for some decades during the nineteenth century. Patterns of regional temperature change over the two major periods of global warming this century, 1920-39 and 1967-86, are shown

  14. CAGE BREEDING OF WARM WATER FRESHWATER FISH SPECIES

    Directory of Open Access Journals (Sweden)

    Roman Safner

    2008-10-01

    Full Text Available In the 1970s, Croatia became actively involved in the contemporary trend of breeding fish in floating cages. In addition to various species of marine fishes, breeding was attempted with trout, carp, catfish, cisco and salmon. Of the above freshwater fish species, specific standards were established only for the cage breeding of rainbow trout. Cage breeding of the remaining species remained at the level of occasional attempts, with more of an experimental than a commercial character. The regular attempts to master this technique for cage breeding of warm water freshwater fish species were aimed at achieving the known benefits of such breeding, such as simplicity of implementing technological measures, easier establishment of the breeding system, simpler manipulation, the possibility of denser colonies per unit volume with a high level of production, easier adaptations to market conditions and fewer initial structural investments. Despite the many advantages, the main reasons for the lack of greater implementation of the cage breeding technology for warm water species of freshwater fish include problems in obtaining the appropriate category and quantity of healthy fry, the specificity and applicability of physical and chemical properties of the recipients and human error. In evaluating the advantages and disadvantages, the final decision on the justification of cage breeding for individual warm water freshwater species must be based on both biological and economic factors. Based on the knowledge of cage breeding acquired to date, the rule for virtually all intensive breeding systems is that it is only recommended for those species with high market demand and a high market price. The technology that demands nutrition with highly concentrated feed and other production expenditures is costly, and is therefore not profitable with less expensive fish species. Furthermore, production must be market oriented, i.e. the appropriate market research measures

  15. Effects of experimental warming and nitrogen addition on soil respiration and CH4 fluxes from crop rotations of winter wheat–soybean/fallow

    DEFF Research Database (Denmark)

    Liu, L; Hu, C; Yang, P

    2015-01-01

    Soil respiration and CH4 emissions play a significant role in the global carbon balance. However, in situ studies in agricultural soils on responses of soil respiration and CH4 fluxes to climate warming are still sparse, especially from long-term studies with year-round heating. A warming...... by affecting soil NH4 concentration. Across years, CH4 emissions were negatively correlated with soil temperature in N1 treatment. Soil respiration showed clear seasonal fluctuations, with the largest emissions during summer and smallest in winter. Warming and nitrogen fertilization had no significant effects...... on total cumulative soil CO2 fluxes. Soil respiration was positively correlated with microbial biomass C, and microbial biomass C was not affected significantly by warming or nitrogen addition. The lack of significant effects of warming on soil respiration may have resulted from: (1) warming-induced soil...

  16. Do Americans Understand That Global Warming Is Harmful to Human Health? Evidence From a National Survey.

    Science.gov (United States)

    Maibach, Edward W; Kreslake, Jennifer M; Roser-Renouf, Connie; Rosenthal, Seth; Feinberg, Geoff; Leiserowitz, Anthony A

    2015-01-01

    Global warming has significant negative consequences for human health, with some groups at greater risk than others. The extent to which the public is aware of these risks is unclear; the limited extant research has yielded discrepant findings. This paper describes Americans' awareness of the health effects of global warming, levels of support for government funding and action on the issue, and trust in information sources. We also investigate the discrepancy in previous research findings between assessments based on open- versus closed-ended questions. A nationally representative survey of US adults (N = 1275) was conducted online in October 2014. Measures included general attitudes and beliefs about global warming, affective assessment of health effects, vulnerable populations and specific health conditions (open- and closed-ended), perceived risk, trust in sources, and support for government response. Most respondents (61%) reported that, before taking the survey, they had given little or no thought to how global warming might affect people's health. In response to a closed-ended question, many respondents (64%) indicated global warming is harmful to health, yet in response to an open-ended question, few (27%) accurately named one or more specific type of harm. In response to a closed-ended question, 33% indicated some groups are more affected than others, yet on an open-ended question only 25% were able to identify any disproportionately affected populations. Perhaps not surprising given these findings, respondents demonstrated only limited support for a government response: less than 50% of respondents said government should be doing more to protect against health harms from global warming, and about 33% supported increased funding to public health agencies for this purpose. Respondents said their primary care physician is their most trusted source of information on this topic, followed by the Centers for Disease Control and Prevention, the World Health

  17. Does proximity to urban centres affect the dietary regime of marine benthic filter feeders?

    Science.gov (United States)

    Puccinelli, Eleonora; Noyon, Margaux; McQuaid, Christopher D.

    2016-02-01

    Threats to marine ecosystems include habitat destruction and degradation of water quality, resulting from land- and ocean-based human activities. Anthropogenic input causing modification of water quality, can affect primary productivity and thus food availability and quality for higher trophic levels. This is especially important for sedentary benthic intertidal communities, which rely on local food availability. We investigated the effect of urbanization on the dietary regime of four species of intertidal filter feeders (three barnacles and one mussel) at sites close to high-density cities and at sites far from heavily urbanized areas using fatty acid and stable isotope techniques. δ15N was significantly higher at urbanized sites compared to their corresponding control sites for all species with few exceptions, while no effect on δ13C was recorded. Barnacle fatty acid profiles were not affected by cities, while mussels from sites close to cities had fatty acid signatures with a higher proportion of polyunsaturated fatty acids (PUFA). We suggest that the enrichment in δ15N at urbanised sites reflects the influence of anthropogenically derived nitrogen directly linked to wastewater input from domestic and industrial sewage. Linked to this, the high proportion of PUFA in mussels at urbanized sites may reflect the influence of increased nitrogen concentrations on primary production and enhanced growth of large phytoplankton cells. The results indicate that anthropogenic effects can strongly influence the diets of benthic organisms, but these effects differ among taxa. Changes in the diet of such habitat forming species can affect their fitness and survival with potential effects on the populations associated with them.

  18. Global Warming: A Reduced Threat?.

    Science.gov (United States)

    Michaels, Patrick J.; Stooksbury, David E.

    1992-10-01

    One popular and apocalyptic vision of the world influenced by increasing concentrations of infrared-absorbing trace gases is that of ecological disaster brought about by rapidly rising temperatures, sea level, and evaporation rates. This vision developed from a suite of climate models that have since considerably changed in both their dynamics and their estimates of prospective warming. Observed temperatures indicate that much more warming should already have taken place than predicted by earlier models in the Northern Hemisphere, and that night, rather than day, readings in that hemisphere show a relative warming. A high-latitude polar-night warming or a general night warming could be either benign or beneficial. A large number of plant species show both increased growth and greater water-use efficiency under enhanced carbon dioxide.An extensive body of evidence now indicates that anthropo-generated sulfate emissions are mitigating some of the warming, and that increased cloudiness as a result of these emissions will further enhance night, rather than day, warming. The sulfate emissions, though, are not sufficient to explain all of the night warming. However, the sensitivity of climate to anthropogenerated aerosols, and the general lack of previously predicted warming, could drastically alter the debate on global warming in favor of less expensive policies.

  19. Warm-Up Exercises May Not Be So Important for Enhancing Submaximal Running Performance.

    Science.gov (United States)

    Takizawa, Kazuki; Yamaguchi, Taichi; Shibata, Keisuke

    2018-05-01

    Takizawa, K, Yamaguchi, T, and Shibata, K. Warm-up exercises may not be so important for enhancing submaximal running performance. J Strength Cond Res 32(5): 1383-1390, 2018-The purpose of this study was to determine an appropriate warm-up intensity for enhancing performance in submaximal running at 90% vV[Combining Dot Above]O2max (it assumes 3,000-5,000 m in track events). Seven trained male university athletes took part in this study (age: 21.3 ± 2.1 years, height: 169.3 ± 4.7 cm, body mass: 58.4 ± 5.6 kg, V[Combining Dot Above]O2max: 73.33 ± 5.46 ml·kg·min). Each subject ran on a treadmill at 90% vV[Combining Dot Above]O2max until exhaustion after 1 of 4 warm-up treatments. The 4 warm-up treatments were no warm-up, 15 minutes running at 60% vV[Combining Dot Above]O2max, at 70% vV[Combining Dot Above]O2max, and at 80% vV[Combining Dot Above]O2max. The running performance was evaluated by time to exhaustion (TTE). V[Combining Dot Above]O2, and vastus lateralis muscle temperature were also measured. There were no significant differences in TTE among the warm-up exercises (p > 0.05). V[Combining Dot Above]O2 in no warm-up showed slower reaction than the other warm-up exercises. Regarding, the vastus lateralis muscle temperature immediately after warm-up, no warm-up was significantly (p warm-up exercises. Our results suggested that submaximal running performance was not affected by the presence or absence of a warm-up or by warm-up intensity, although physiological changes occurred.

  20. Terrestrial P and Reactive N and Marine Productivity in the Late Devonian Appalachian Basin

    Science.gov (United States)

    Tuite, M. L.; Macko, S. A.

    2009-12-01

    A causal link between the Late Devonian emergence of forest ecosystems and episodic black shale deposition has been proposed by several authors. Most attribute increases in epicontinental basin productivity to elevated rates of terrestrial phosphorus weathering facilitated by the co-evolution of root systems and soils. Two reasons to suspect that an increase in the P weathering flux was not the primary cause of organic-rich shale deposition are as follows. First, most Late Devonian black shales were deposited during sea level transgressions, periods when riverine fluxes of sediment and mineral nutrients such as P to marine basins were diminished. Second, Late Devonian forests were restricted to warm, moist lowlands where P was sequestered in soils as inorganic, occluded forms. However, the export flux of reactive N from these forests to adjacent epeiric seas by riverine and atmospheric deposition was enhanced by the warm, wet climate and expanding areal extent of forests. Abundant terrestrial reactive N primed the marine eutrophication pump by extending the residence time of P in the photic zone, permitting extensive growth of primary biomass. The consequent flux of organic matter to the sea floor created anoxic bottom waters that, in turn, allowed for the remobilization of P into the water column. Based on abundance and isotopic analyses of organic and inorganic C, N, P, and S from terrestrial and marine environments within and adjacent to the Late Devonian Appalachian Basin, this latter scenario is supported.

  1. Molecular biology in marine science: Scientific questions, technological approaches, and practical implications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report describes molecular techniques that could be invaluable in addressing process-oriented problems in the ocean sciences that have perplexed oceanographers for decades, such as understanding the basis for biogeochemical processes, recruitment processes, upper-ocean dynamics, biological impacts of global warming, and ecological impacts of human activities. The coupling of highly sophisticated methods, such as satellite remote sensing, which permits synoptic monitoring of chemical, physical, and biological parameters over large areas, with the power of modern molecular tools for ``ground truthing`` at small scales could allow scientists to address questions about marine organisms and the ocean in which they live that could not be answered previously. Clearly, the marine sciences are on the threshold of an exciting new frontier of scientific discovery and economic opportunity.

  2. Characterizing changes in soil bacterial community structure in response to short-term warming

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Jinbo [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; School of Marine Sciences, Ningbo University, Ningbo China; Sun, Huaibo [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; Peng, Fei [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou China; Zhang, Huayong [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; Xue, Xian [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou China; Gibbons, Sean M. [Argonne National Laboratory Biosciences Division, Argonne IL USA; Graduate Program in Biophysical Sciences, University of Chicago, Chicago IL USA; Gilbert, Jack A. [Argonne National Laboratory Biosciences Division, Argonne IL USA; Department of Ecology and Evolution, University of Chicago, Chicago IL USA; Chu, Haiyan [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China

    2014-02-18

    High altitude alpine meadows are experiencing considerably greater than average increases in soil surface temperature, potentially as a result of ongoing climate change. The effects of warming on plant productivity and soil edaphic variables have been established previously, but the influence of warming on soil microbial community structure has not been well characterized. Here, the impact of 15 months of soil warming (both + 1 and + 2 degrees C) on bacterial community structure was examined in a field experiment on a Tibetan plateau alpine meadow using bar-coded pyrosequencing. Warming significantly changed (P < 0.05) the structure of the soil bacterial community, but the alpha diversity was not dramatically affected. Changes in the abundance of the Actinobacteria and Alphaproteobacteria were found to contribute the most to differences between ambient (AT) and artificially warmed conditions. A variance partitioning analysis (VPA) showed that warming directly explained 7.15% variation in bacterial community structure, while warming-induced changes in soil edaphic and plant phenotypic properties indirectly accounted for 28.3% and 20.6% of the community variance, respectively. Interestingly, certain taxa showed an inconsistent response to the two warming treatments, for example Deltaproteobacteria showed a decreased relative abundance at + 1 degrees C, but a return to AT control relative abundance at + 2 degrees C. This suggests complex microbial dynamics that could result from conditional dependencies between bacterial taxa.

  3. Seasonal variability in irradiance affects herbicide toxicity to the marine flagellate Dunaliella tertiolecta

    Directory of Open Access Journals (Sweden)

    Sascha eSjollema

    2014-06-01

    Full Text Available Photosynthetically Active Radiation (PAR and Ultraviolet Radiation (UVR of the solar spectrum affect microalgae directly and modify the toxicity of phytotoxic compounds present in water. As a consequence seasonal variable PAR and UVR levels are likely to modulate the toxic pressure of contaminants in the field. Therefore the present study aimed to determine the toxicity of two model contaminants, the herbicides diuron and Irgarol®1051, under simulated irradiance conditions mimicking different seasons. Irradiance conditions of spring and autumn were simulated with a set of Light Emitting Diodes (LEDs. Toxicity of both herbicides was measured individually and in a mixture by determining the inhibition of photosystem II efficiency (ΦPSII of the marine flagellate Dunaliella teriolecta using Pulse Amplitude Modulation (PAM fluorometry. Toxicity of the single herbicides was higher under simulated spring irradiance than under autumn irradiance and this effect was also observed for mixtures of the herbicides. This irradiance dependent toxicity indicates that herbicide toxicity in the field is seasonally variable. Consequently toxicity tests under standard light conditions may overestimate or underestimate the toxic effect of phytotoxic compounds.

  4. Antimicrobial peptides in marine invertebrate health and disease.

    Science.gov (United States)

    Destoumieux-Garzón, Delphine; Rosa, Rafael Diego; Schmitt, Paulina; Barreto, Cairé; Vidal-Dupiol, Jeremie; Mitta, Guillaume; Gueguen, Yannick; Bachère, Evelyne

    2016-05-26

    Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as 'marine invertebrates'. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remarkably, species of corals (Cnidaria) living in non-exploited ecosystems also suffer from devastating infectious diseases that display intriguing similarities with those affecting farmed animals. Infectious diseases affecting wild and farmed animals that are present in marine environments are predicted to increase in the future. This paper summarizes the role of the main pathogens and their interaction with host immunity, with a specific focus on antimicrobial peptides (AMPs) and pathogen resistance against AMPs. We provide a detailed review of penaeid shrimp AMPs and their role at the interface between the host and its resident/pathogenic microbiota. We also briefly describe the relevance of marine invertebrate AMPs in an applied context.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  5. Coastal marine contamination in Colombia

    International Nuclear Information System (INIS)

    Garay T, Jesus A; Marin Z, Bienvenido; Velez G, Ana Maria

    2002-01-01

    The paper tries about the problem of the marine contamination and their marked influence in the health of the coastal ecosystems, of their narrow relationship with the growing increase of the populations that they inhabit the coastal areas and of equal it forms, with the increment of the domestic, agricultural and industrial activities that, for the wrong handling and inadequate control of the solid and liquid waste, they affect the marine environment with significant implications at ecological, socioeconomic level and of health. Another component of the environmental problem of the marine ecosystems in the country, resides in that don't exist in general normative on the chemical quality and sanitary for its marine waters, that which limits the categorization of this agreement ecosystems with its environmental quality, conditioning this the lack of adequate mechanisms to mitigate the causes that originate the deterioration of the quality of the Colombian coasts

  6. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming

    Science.gov (United States)

    Kroeker, Kristy J; Kordas, Rebecca L; Crim, Ryan; Hendriks, Iris E; Ramajo, Laura; Singh, Gerald S; Duarte, Carlos M; Gattuso, Jean-Pierre

    2013-01-01

    Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait-based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi-species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single-species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature. PMID:23505245

  7. Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems

    Science.gov (United States)

    Mostofa, Khan M. G.; Liu, Cong-Qiang; Zhai, WeiDong; Minella, Marco; Vione, Davide; Gao, Kunshan; Minakata, Daisuke; Arakaki, Takemitsu; Yoshioka, Takahito; Hayakawa, Kazuhide; Konohira, Eiichi; Tanoue, Eiichiro; Akhand, Anirban; Chanda, Abhra; Wang, Baoli; Sakugawa, Hiroshi

    2016-03-01

    Ocean acidification, a complex phenomenon that lowers seawater pH, is the net outcome of several contributions. They include the dissolution of increasing atmospheric CO2 that adds up with dissolved inorganic carbon (dissolved CO2, H2CO3, HCO3-, and CO32-) generated upon mineralization of primary producers (PP) and dissolved organic matter (DOM). The aquatic processes leading to inorganic carbon are substantially affected by increased DOM and nutrients via terrestrial runoff, acidic rainfall, increased PP and algal blooms, nitrification, denitrification, sulfate reduction, global warming (GW), and by atmospheric CO2 itself through enhanced photosynthesis. They are consecutively associated with enhanced ocean acidification, hypoxia in acidified deeper seawater, pathogens, algal toxins, oxidative stress by reactive oxygen species, and thermal stress caused by longer stratification periods as an effect of GW. We discuss the mechanistic insights into the aforementioned processes and pH changes, with particular focus on processes taking place with different timescales (including the diurnal one) in surface and subsurface seawater. This review also discusses these collective influences to assess their potential detrimental effects to marine organisms, and of ecosystem processes and services. Our review of the effects operating in synergy with ocean acidification will provide a broad insight into the potential impact of acidification itself on biological processes. The foreseen danger to marine organisms by acidification is in fact expected to be amplified by several concurrent and interacting phenomena.

  8. Active Movement Warm-Up Routines

    Science.gov (United States)

    Walter, Teri; Quint, Ashleigh; Fischer, Kim; Kiger, Joy

    2011-01-01

    This article presents warm-ups that are designed to physiologically and psychologically prepare students for vigorous physical activity. An active movement warm-up routine is made up of three parts: (1) active warm-up movement exercises, (2) general preparation, and (3) the energy system. These warm-up routines can be used with all grade levels…

  9. Global change in the trophic functioning of marine food webs.

    Directory of Open Access Journals (Sweden)

    Aurore Maureaud

    Full Text Available The development of fisheries in the oceans, and other human drivers such as climate warming, have led to changes in species abundance, assemblages, trophic interactions, and ultimately in the functioning of marine food webs. Here, using a trophodynamic approach and global databases of catches and life history traits of marine species, we tested the hypothesis that anthropogenic ecological impacts may have led to changes in the global parameters defining the transfers of biomass within the food web. First, we developed two indicators to assess such changes: the Time Cumulated Indicator (TCI measuring the residence time of biomass within the food web, and the Efficiency Cumulated Indicator (ECI quantifying the fraction of secondary production reaching the top of the trophic chain. Then, we assessed, at the large marine ecosystem scale, the worldwide change of these two indicators over the 1950-2010 time-periods. Global trends were identified and cluster analyses were used to characterize the variability of trends between ecosystems. Results showed that the most common pattern over the study period is a global decrease in TCI, while the ECI indicator tends to increase. Thus, changes in species assemblages would induce faster and apparently more efficient biomass transfers in marine food webs. Results also suggested that the main driver of change over that period had been the large increase in fishing pressure. The largest changes occurred in ecosystems where 'fishing down the marine food web' are most intensive.

  10. Spectral Dependence of MODIS Cloud Droplet Effective Radius Retrievals for Marine Boundary Layer Clouds

    Science.gov (United States)

    Zhang, Zhibo; Platnick, Steven E.; Ackerman, Andrew S.; Cho, Hyoun-Myoung

    2014-01-01

    Low-level warm marine boundary layer (MBL) clouds cover large regions of Earth's surface. They have a significant role in Earth's radiative energy balance and hydrological cycle. Despite the fundamental role of low-level warm water clouds in climate, our understanding of these clouds is still limited. In particular, connections between their properties (e.g. cloud fraction, cloud water path, and cloud droplet size) and environmental factors such as aerosol loading and meteorological conditions continue to be uncertain or unknown. Modeling these clouds in climate models remains a challenging problem. As a result, the influence of aerosols on these clouds in the past and future, and the potential impacts of these clouds on global warming remain open questions leading to substantial uncertainty in climate projections. To improve our understanding of these clouds, we need continuous observations of cloud properties on both a global scale and over a long enough timescale for climate studies. At present, satellite-based remote sensing is the only means of providing such observations.

  11. A Pliocene marine diatom δ18O record of terrestrial-marine feedbacks and orbitally-paced cryogenic brine formation in the McMurdo Dry Valleys

    Science.gov (United States)

    Dodd, J. P.; Abbott, T.; Gibbons, J. A.

    2017-12-01

    Orbital frequencies are well documented in a number of terrestrial and marine climate records throughout the Cenozoic; however, assessing the feedbacks and timing of terrestrial-marine systems on glacial-interglacial timescales is often challenging. This is particularly the case in high-latitude, near-shore environments where traditional proxy records like benthic foraminifera are absent. Here we present oxygen isotope (δ18O and δ17O) values from marine diatom silica in the mid-Pliocene (3.5 - 4.7Ma) section of the AND-1B core from McMurdo Sound, Antarctica. Diatom silica δ18O values range between +28.1 and +36.4‰ VSMOW. Over a range of temperatures (0 to 10°C) that reflect both growth and shallow (fall on a mixing line between marine and meteoric waters, which also supports our cryogenic brine hypothesis. The AND-1B δ18O values have an inverse relationship with the stacked benthic foraminifera δ18O record where lower δ18O values in the AND-1B diatom silica correspond with colder intervals, and we interpret variations in the diatom δ18O values as increased brine flux from the MDV to McMurdo Sound. Currently, subsurface brines in the MDV are hydrologically connected with McMurdo Sound. Density-driven transport of these brines from the MDV to the marine costal environments during the warm mid-Pliocene indicate a potentially overlooked terrestrial source of hypersaline waters. Although the lateral extent of these brines is not known, mixing between the terrestrial cryogenic brines and seawater may represent a significant flux of hypersaline water to the marine environment during warmer-than-present global conditions.

  12. Temperature adaptation of bacterial communities in experimentally warmed forest soils.

    Science.gov (United States)

    Rousk, Johannes; Frey, Serita D; Bååth, Erland

    2012-10-01

    A detailed understanding of the influence of temperature on soil microbial activity is critical to predict future atmospheric CO 2 concentrations and feedbacks to anthropogenic warming. We investigated soils exposed to 3-4 years of continuous 5 °C-warming in a field experiment in a temperate forest. We found that an index for the temperature adaptation of the microbial community, T min for bacterial growth, increased by 0.19 °C per 1 °C rise in temperature, showing a community shift towards one adapted to higher temperature with a higher temperature sensitivity (Q 10(5-15 °C) increased by 0.08 units per 1 °C). Using continuously measured temperature data from the field experiment we modelled in situ bacterial growth. Assuming that warming did not affect resource availability, bacterial growth was modelled to become 60% higher in warmed compared to the control plots, with the effect of temperature adaptation of the community only having a small effect on overall bacterial growth (bacterial growth, most likely due to substrate depletion because of the initially higher growth in warmed plots. When this was factored in, the result was similar rates of modelled in situ bacterial growth in warmed and control plots after 3 years, despite the temperature difference. We conclude that although temperature adaptation for bacterial growth to higher temperatures was detectable, its influence on annual bacterial growth was minor, and overshadowed by the direct temperature effect on growth rates. © 2012 Blackwell Publishing Ltd.

  13. Differential behavioural responses to venlafaxine exposure route, warming and acidification in juvenile fish (Argyrosomus regius).

    Science.gov (United States)

    Maulvault, Ana Luísa; Santos, Lúcia H M L M; Paula, José Ricardo; Camacho, Carolina; Pissarra, Vasco; Fogaça, Fabiola; Barbosa, Vera; Alves, Ricardo; Ferreira, Pedro Pousão; Barceló, Damià; Rodriguez-Mozaz, Sara; Marques, António; Diniz, Mário; Rosa, Rui

    2018-09-01

    Antidepressants, such as venlafaxine (VFX), which are considered emerging environmental pollutants, are increasingly more present in the marine environment, and recent evidence suggest that they might have adverse effects on fish behaviour. Furthermore, altered environmental conditions associated to climate change (e.g. warming and acidification) can also have a determinant role on fish behaviour, fitness and survival. Yet, the underlying interactions between these environmental stressors (pharmaceuticals exposure and climate change) are still far from being fully understood. The aim of this study was to assess behavioural responses (in juvenile meagre (Argyrosomus regius) exposed to VFX via water ([VFX] ~20μgL -1 ) and via dietary sources ([VFX] ~160μgkg -1 dry weight), as well as to increased temperature (ΔT°C=+5°C) and high CO 2 levels (ΔpCO 2 ~1000μatm; equivalent to ΔpH=-0.4units). Overall, VFX bioaccumulation in fish plasma was enhanced under the combination of warming and acidification. VFX triggered fish exploration, whereas fish activity and shoal cohesion were reduced. Acidification alone decreased fish exploration and shoal cohesion, and reversed fish preference to turn leftwards compared to control conditions. Such alterations were further enhanced by VFX exposure. The combination of warming and acidification also reduced shoal cohesion and loss of lateralization, regardless of VFX exposure. The distinct behaviour observed when VFX contamination, acidification and warming acted alone or in combination highlighted the need to consider the likely interactive effects of seawater warming and acidification in future research regarding the toxicological aspects of chemical contaminants. Copyright © 2018. Published by Elsevier B.V.

  14. Warm Mix Asphalt

    Science.gov (United States)

    2009-04-17

    State of Alaska State of Alaska - Warm Mix Project Warm Mix Project: Location - Petersburg, Alaska which is Petersburg, Alaska which is located in the heart of Southeast Alaska located in the heart of Southeast Alaska's Inside Passage at the tip of M...

  15. Effects of global warming on ancient mammalian communities and their environments.

    Directory of Open Access Journals (Sweden)

    Larisa R G DeSantis

    2009-06-01

    Full Text Available Current global warming affects the composition and dynamics of mammalian communities and can increase extinction risk; however, long-term effects of warming on mammals are less understood. Dietary reconstructions inferred from stable isotopes of fossil herbivorous mammalian tooth enamel document environmental and climatic changes in ancient ecosystems, including C(3/C(4 transitions and relative seasonality.Here, we use stable carbon and oxygen isotopes preserved in fossil teeth to document the magnitude of mammalian dietary shifts and ancient floral change during geologically documented glacial and interglacial periods during the Pliocene (approximately 1.9 million years ago and Pleistocene (approximately 1.3 million years ago in Florida. Stable isotope data demonstrate increased aridity, increased C(4 grass consumption, inter-faunal dietary partitioning, increased isotopic niche breadth of mixed feeders, niche partitioning of phylogenetically similar taxa, and differences in relative seasonality with warming.Our data show that global warming resulted in dramatic vegetation and dietary changes even at lower latitudes (approximately 28 degrees N. Our results also question the use of models that predict the long term decline and extinction of species based on the assumption that niches are conserved over time. These findings have immediate relevance to clarifying possible biotic responses to current global warming in modern ecosystems.

  16. Does terrestrial epidemiology apply to marine systems?

    Science.gov (United States)

    McCallum, Hamish I.; Kuris, Armand M.; Harvell, C. Drew; Lafferty, Kevin D.; Smith, Garriet W.; Porter, James

    2004-01-01

    Most of epidemiological theory has been developed for terrestrial systems, but the significance of disease in the ocean is now being recognized. However, the extent to which terrestrial epidemiology can be directly transferred to marine systems is uncertain. Many broad types of disease-causing organism occur both on land and in the sea, and it is clear that some emergent disease problems in marine environments are caused by pathogens moving from terrestrial to marine systems. However, marine systems are qualitatively different from terrestrial environments, and these differences affect the application of modelling and management approaches that have been developed for terrestrial systems. Phyla and body plans are more diverse in marine environments and marine organisms have different life histories and probably different disease transmission modes than many of their terrestrial counterparts. Marine populations are typically more open than terrestrial ones, with the potential for long-distance dispersal of larvae. Potentially, this might enable unusually rapid propagation of epidemics in marine systems, and there are several examples of this. Taken together, these differences will require the development of new approaches to modelling and control of infectious disease in the ocean.

  17. Evaluation of thermal optical analysis method of elemental carbon for marine fuel exhaust.

    Science.gov (United States)

    Lappi, Maija K; Ristimäki, Jyrki M

    2017-12-01

    The awareness of black carbon (BC) as the second largest anthropogenic contributor in global warming and an ice melting enhancer has increased. Due to prospected increase in shipping especially in the Arctic reliability of BC emissions and their invented amounts from ships is gaining more attention. The International Maritime Organization (IMO) is actively working toward estimation of quantities and effects of BC especially in the Arctic. IMO has launched work toward constituting a definition for BC and agreeing appropriate methods for its determination from shipping emission sources. In our study we evaluated the suitability of elemental carbon (EC) analysis by a thermal-optical transmittance (TOT) method to marine exhausts and possible measures to overcome the analysis interferences related to the chemically complex emissions. The measures included drying with CaSO 4, evaporation at 40-180ºC, H 2 O treatment, and variation of the sampling method (in-stack and diluted) and its parameters (e.g., dilution ratio, Dr). A reevaluation of the nominal organic carbon (OC)/EC split point was made. Measurement of residual carbon after solvent extraction (TC-C SOF ) was used as a reference, and later also filter smoke number (FSN) measurement, which is dealt with in a forthcoming paper by the authors. Exhaust sources used for collecting the particle sample were mainly four-stroke marine engines operated with variable loads and marine fuels ranging from light to heavy fuel oils (LFO and HFO) with a sulfur content range of carbon (PyC) from OC, affecting the accuracy of EC determination. Thus, uncertainty remained regarding the EC results from HFO fuels. The work supports one part of the decision making in black carbon (BC) determination methodology. If regulations regarding BC emissions from marine engines will be implemented in the future, a well-defined and at best unequivocal method of BC determination is required for coherent and comparable emission inventories and

  18. SEA-LEVEL RISE. Sea-level rise due to polar ice-sheet mass loss during past warm periods.

    Science.gov (United States)

    Dutton, A; Carlson, A E; Long, A J; Milne, G A; Clark, P U; DeConto, R; Horton, B P; Rahmstorf, S; Raymo, M E

    2015-07-10

    Interdisciplinary studies of geologic archives have ushered in a new era of deciphering magnitudes, rates, and sources of sea-level rise from polar ice-sheet loss during past warm periods. Accounting for glacial isostatic processes helps to reconcile spatial variability in peak sea level during marine isotope stages 5e and 11, when the global mean reached 6 to 9 meters and 6 to 13 meters higher than present, respectively. Dynamic topography introduces large uncertainties on longer time scales, precluding robust sea-level estimates for intervals such as the Pliocene. Present climate is warming to a level associated with significant polar ice-sheet loss in the past. Here, we outline advances and challenges involved in constraining ice-sheet sensitivity to climate change with use of paleo-sea level records. Copyright © 2015, American Association for the Advancement of Science.

  19. Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions

    Directory of Open Access Journals (Sweden)

    Victoria L. SCAVEN, Nicole E. RAFFERTY

    2013-06-01

    Full Text Available Growing concern about the influence of climate change on flowering plants, pollinators, and the mutualistic interactions between them has led to a recent surge in research. Much of this research has addressed the consequences of warming for phenological and distributional shifts. In contrast, relatively little is known about the physiological responses of plants and insect pollinators to climate warming and, in particular, how these responses might affect plant-pollinator interactions. Here, we summarize the direct physiological effects of temperature on flowering plants and pollinating insects to highlight ways in which plant and pollinator responses could affect floral resources for pollinators, and pollination success for plants, respectively. We also consider the overall effects of these responses on plant-pollinator interaction networks. Plant responses to warming, which include altered flower, nectar, and pollen production, could modify floral resource availability and reproductive output of pollinating insects. Similarly, pollinator responses, such as altered foraging activity, body size, and life span, could affect patterns of pollen flow and pollination success of flowering plants. As a result, network structure could be altered as interactions are gained and lost, weakened and strengthened, even without the gain or loss of species or temporal overlap. Future research that addresses not only how plant and pollinator physiology are affected by warming but also how responses scale up to affect interactions and networks should allow us to better understand and predict the effects of climate change on this important ecosystem service [Current Zoolo­gy 59 (3: 418–426, 2013].

  20. How warm days increase belief in global warming

    Science.gov (United States)

    Zaval, Lisa; Keenan, Elizabeth A.; Johnson, Eric J.; Weber, Elke U.

    2014-02-01

    Climate change judgements can depend on whether today seems warmer or colder than usual, termed the local warming effect. Although previous research has demonstrated that this effect occurs, studies have yet to explain why or how temperature abnormalities influence global warming attitudes. A better understanding of the underlying psychology of this effect can help explain the public's reaction to climate change and inform approaches used to communicate the phenomenon. Across five studies, we find evidence of attribute substitution, whereby individuals use less relevant but available information (for example, today's temperature) in place of more diagnostic but less accessible information (for example, global climate change patterns) when making judgements. Moreover, we rule out alternative hypotheses involving climate change labelling and lay mental models. Ultimately, we show that present temperature abnormalities are given undue weight and lead to an overestimation of the frequency of similar past events, thereby increasing belief in and concern for global warming.

  1. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming.

    Science.gov (United States)

    Xu, Xia; Shi, Zheng; Li, Dejun; Zhou, Xuhui; Sherry, Rebecca A; Luo, Yiqi

    2015-10-01

    Soil respiration is recognized to be influenced by temperature, moisture, and ecosystem production. However, little is known about how plant community structure regulates responses of soil respiration to climate change. Here, we used a 13-year field warming experiment to explore the mechanisms underlying plant community regulation on feedbacks of soil respiration to climate change in a tallgrass prairie in Oklahoma, USA. Infrared heaters were used to elevate temperature about 2 °C since November 1999. Annual clipping was used to mimic hay harvest. Our results showed that experimental warming significantly increased soil respiration approximately from 10% in the first 7 years (2000-2006) to 30% in the next 6 years (2007-2012). The two-stage warming stimulation of soil respiration was closely related to warming-induced increases in ecosystem production over the years. Moreover, we found that across the 13 years, warming-induced increases in soil respiration were positively affected by the proportion of aboveground net primary production (ANPP) contributed by C3 forbs. Functional composition of the plant community regulated warming-induced increases in soil respiration through the quantity and quality of organic matter inputs to soil and the amount of photosynthetic carbon (C) allocated belowground. Clipping, the interaction of clipping with warming, and warming-induced changes in soil temperature and moisture all had little effect on soil respiration over the years (all P > 0.05). Our results suggest that climate warming may drive an increase in soil respiration through altering composition of plant communities in grassland ecosystems. © 2015 John Wiley & Sons Ltd.

  2. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming.

    Science.gov (United States)

    Kroeker, Kristy J; Kordas, Rebecca L; Crim, Ryan; Hendriks, Iris E; Ramajo, Laura; Singh, Gerald S; Duarte, Carlos M; Gattuso, Jean-Pierre

    2013-06-01

    Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait-based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi-species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single-species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature. © 2013 Blackwell Publishing Ltd.

  3. Refrigeration and global warming

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Some aspects of global warming in general, and the implications for refrigerants and refrigerator efficiency in particular, are briefly considered in a question and answer format. The concepts of Global Warming Potential (GWP) and Total Equivalent Warming Impact (TEWI) are explained. GWP is an index which allows a simple comparison to be make between the warming effects of different gases on a kg to kg basis relative to carbon. The GWP depends both on the lifetime of a substance in the atmosphere and its infra-red absorption capacity. The overall warming effect of operating a refrigeration system for its entire life is measured by its TEWI. Chloroflourocarbons (CFCs) which have been widely used as refrigerants are powerful greenhouse gases with high GWPs. Because of the bank of CFCs in refrigerating systems, their levels in the atmosphere are still increasing and it will be some time before refrigerant changes will be effective in reducing the warming effects of refrigerant releases. Hydrocarbons, hydroflourocarbons and ammonia all have a part to play as substitute refrigerants. Refrigerator efficiency is very important in terms of reducing CO 2 emissions. (UK)

  4. Status of marine biodiversity of the China seas.

    Directory of Open Access Journals (Sweden)

    J Y Liu

    Full Text Available China's seas cover nearly 5 million square kilometers extending from the tropical to the temperate climate zones and bordering on 32,000 km of coastline, including islands. Comprehensive systematic study of the marine biodiversity within this region began in the early 1950s with the establishment of the Qingdao Marine Biological Laboratory of the Chinese Academy of Sciences. Since that time scientists have carried out intensive multidisciplinary research on marine life in the China seas and have recorded 22,629 species belonging to 46 phyla. The marine flora and fauna of the China seas are characterized by high biodiversity, including tropical and subtropical elements of the Indo-West Pacific warm-water fauna in the South and East China seas, and temperate elements of North Pacific temperate fauna mainly in the Yellow Sea. The southern South China Sea fauna is characterized by typical tropical elements paralleled with the Philippine-New Guinea-Indonesia Coral triangle typical tropical faunal center. This paper summarizes advances in studies of marine biodiversity in China's seas and discusses current research mainly on characteristics and changes in marine biodiversity, including the monitoring, assessment, and conservation of endangered species and particularly the strengthening of effective management. Studies of (1 a tidal flat in a semi-enclosed embayment, (2 the impact of global climate change on a cold-water ecosystem, (3 coral reefs of Hainan Island and Xisha-Nansha atolls, (4 mangrove forests of the South China Sea, (5 a threatened seagrass field, and (6 an example of stock enhancement practices of the Chinese shrimp fishery are briefly introduced. Besides the overexploitation of living resources (more than 12.4 million tons yielded in 2007, the major threat to the biodiversity of the China seas is environmental deterioration (pollution, coastal construction, particularly in the brackish waters of estuarine environments, which are

  5. Marine mollusca of oxygen isotope stages of the last 2 million years in New Zealand. Part 1, Revised generic positions and recognition of warm-water and cool-water migrants

    International Nuclear Information System (INIS)

    Beu, A.G.

    2004-01-01

    Warm-water molluscs were transported to Wanganui Basin from the northeastern North Island during Pleistocene time as planktotrophic larvae. This is not possible at present, so their occurrence in Wanganui Basin correlates with breaches of the Auckland isthmus during high sea levels. The end of Nukumaruan time is clearly defined by the extinction of 29 genera of molluscs (most only locally) during this stage, including 15 at the end. The extinction likely was caused by the initial closure of the Auckland isthmus. Migrants to Wanganui from the northeastern North Island indicate that breaches of the isthmus during interglacials commenced in oxygen isotope stage (OIS) 25, just before the mid-Pleistocene transition (MPT). Appearances of taxa from Australia at Wanganui during OIS 17-9 therefore indicate that warm-water taxa were transported to New Zealand during interglacial maxima after the MPT. The migrants provide the first molluscan biostratigraphy at the OIS scale. The Castlecliffian/Nukumaruan boundary, at the base of Ototoka tephra at Ototoka Beach, Wanganui, falls within OIS 57, with an age of c. 1.63 Ma. It is also dated at 1.63 Ma by the position with respect to the geomagnetic polarity time-scale of three chemically indistinguishable tephra in ODP core 1123. This paper presents the first results of a reassessment of the taxonomy and time ranges of the fossil marine molluscan fauna that occupied New Zealand during the last 2 m.y. (latest Pliocene-Holocene). Time ranges are compiled in oxygen isotope stages rather than in the traditional 'local' (or regional) stages in use in New Zealand. This should provide precision in time ranges of the order of 40,000-100,000 yr, rather than the 0.34-1.3 m.y. duration of New Zealand local stages of the latest Neogene (Nukumaruan, Castlecliffian, and Haweran Stages). The reassessment is aimed also, though, at providing evidence from Mollusca of climate change over this period. Much useful information on paleoclimates can be

  6. Marine disease impacts, diagnosis, forecasting, management and policy

    Science.gov (United States)

    Lafferty, Kevin D.; Hofmann, Eileen E.

    2016-01-01

    As Australians were spending millions of dollars in 2014 to remove the coral-eating crown of thorns sea star from the Great Barrier Reef, sea stars started washing up dead for free along North America's Pacific Coast. Because North American sea stars are important and iconic predators in marine communities, locals and marine scientists alike were alarmed by what proved to be the world's most widespread marine mass mortality in geographical extent and species affected, especially given its mysterious cause. Investigative research using modern diagnostic techniques implicated a never-before-seen virus [1]. The virus inspired international attention to marine diseases, including this theme issue.

  7. Spaceborne Sensors Track Marine Debris Circulation in the Gulf of Mexico

    Science.gov (United States)

    Reahard, Ross; Mitchell, Brandie; Lee, Lucas; Pezold, Blaise; Brook, Chris; Mallett, Candis; Barrett, Shelby; Albin, Aaron

    2011-01-01

    Marine debris is a problem for coastal areas throughout the world, including the Gulf of Mexico. To aid the NOAA Marine Debris Program in monitoring marine debris dispersal and regulating marine debris practices, sea surface height and height anomaly data provided by the Colorado Center for Astrodynamics Research at the University of Colorado, Boulder, were utilized to help assess trash and other discarded items that routinely wash ashore in southeastern Texas, at Padre Island National Seashore. These data were generated from the NASA radar altimeter satellites TOPEX/Poseidon, Jason 1, and Jason 2, as well as the European altimeter satellites ERS-1, ERS-2 (European Remote Sensing Satellite), and ENVISAT (Environmental Satellite). Sea surface temperature data from MODIS were used to study of the dynamics of the Loop Current. Sea surface height and MODIS data analysis were used to show that warm water in the core of eddies, which periodically separate from the Loop Current, can be as high as 30 cm above the surrounding water. These eddies are known to directly transfer marine debris to the western continental shelf and the elevated area of water can be tracked using satellite radar altimeter data. Additionally, using sea surface height, geostrophic velocity, and particle path data, foretracking and backtracking simulations were created. These simulation runs demonstrated that marine debris on Padre Island National Seashore may arise from a variety of sources, such as commercial fishing/shrimping, the oil and gas industry, recreational boaters, and from rivers that empty into the Gulf of Mexico.

  8. Global warming potential of pavements

    Energy Technology Data Exchange (ETDEWEB)

    Santero, Nicholas J [Department of Civil and Environmental Engineering, 407 McLaughlin Hall, University of California, Berkeley, CA 94720-1712 (United States); Horvath, Arpad, E-mail: njsantero@cal.berkeley.ed, E-mail: horvath@ce.berkeley.ed [Department of Civil and Environmental Engineering, 215B McLaughlin Hall, University of California, Berkeley, CA 94720-1712 (United States)

    2009-09-15

    Pavements comprise an essential and vast infrastructure system supporting our transportation network, yet their impact on the environment is largely unquantified. Previous life-cycle assessments have only included a limited number of the applicable life-cycle components in their analysis. This research expands the current view to include eight different components: materials extraction and production, transportation, onsite equipment, traffic delay, carbonation, lighting, albedo, and rolling resistance. Using global warming potential as the environmental indicator, ranges of potential impact for each component are calculated and compared based on the information uncovered in the existing research. The relative impacts between components are found to be orders of magnitude different in some cases. Context-related factors, such as traffic level and location, are also important elements affecting the impacts of a given component. A strategic method for lowering the global warming potential of a pavement is developed based on the concept that environmental performance is improved most effectively by focusing on components with high impact potentials. This system takes advantage of the fact that small changes in high-impact components will have more effect than large changes in low-impact components.

  9. Global warming potential of pavements

    International Nuclear Information System (INIS)

    Santero, Nicholas J; Horvath, Arpad

    2009-01-01

    Pavements comprise an essential and vast infrastructure system supporting our transportation network, yet their impact on the environment is largely unquantified. Previous life-cycle assessments have only included a limited number of the applicable life-cycle components in their analysis. This research expands the current view to include eight different components: materials extraction and production, transportation, onsite equipment, traffic delay, carbonation, lighting, albedo, and rolling resistance. Using global warming potential as the environmental indicator, ranges of potential impact for each component are calculated and compared based on the information uncovered in the existing research. The relative impacts between components are found to be orders of magnitude different in some cases. Context-related factors, such as traffic level and location, are also important elements affecting the impacts of a given component. A strategic method for lowering the global warming potential of a pavement is developed based on the concept that environmental performance is improved most effectively by focusing on components with high impact potentials. This system takes advantage of the fact that small changes in high-impact components will have more effect than large changes in low-impact components.

  10. Global warming impacts on the biogeochemical functioning of two arctic Cryo-sols in the Salluit region, Nunavik, Canada

    International Nuclear Information System (INIS)

    Fouche, Julien

    2014-01-01

    Increased organic matter decomposition rate in Arctic Cryo-sols due to warming and to permafrost thawing can lead to the release of greenhouse gases, thus potentially creating a positive feedback on climate change. We aim to assess the interactions between the thermal regime, the hydric behaviour and the biogeochemical functioning of two different permafrost-affected soils (i.e. Cryo-sols), one being developed in frozen peat (Histic Cryo-sol: H), the other being developed in post-glacial marine clays (Turbic Cryo-sol: T), both in natural conditions and under an experimental warming. Profiles were instrumented in Salluit (Nunavik, Canada; 62 deg. 14'N, 75 deg. 38'W) and monitored during summers 2010 and 2011. Both thermal monitoring and modeling results stressed differences between sites due to the insulating properties of dried peat in summer the active layer at the H site is thinner than at the T site. The induced warming increased CO 2 fluxes in both soils; this impact was however more striking at H even if ecosystem respiration (ER) was lower than at T. Temperature sensitivity of ER (Q 10 ), which decreased with warming, was higher at T than at H. We highlighted that diurnal ER cycles showed hysteretic loops as a function of soil surface temperatures. Linear models performed to explain ER variance were improved when we added daily minimum temperature and thaw front depth at H. In contrast at T, adding wind speed and solar radiation in models improved the ER variance explanation. We showed three specific CO 2 flux dynamics related to northern ecosystems: 1) the large difference of ER depending on soil properties and soil solution composition; 2) environmental variables strongly alter CO 2 fluxes and 3) the diurnal Q 10 variations and the inter annual variability of basal respiration. Our results support the assumption that organic matter decomposition might be the major source of CO 2 at H while plant-derived processes dominated ER at T. Finally, the

  11. Ecology of conflict: marine food supply affects human-wildlife interactions on land.

    Science.gov (United States)

    Artelle, Kyle A; Anderson, Sean C; Reynolds, John D; Cooper, Andrew B; Paquet, Paul C; Darimont, Chris T

    2016-05-17

    Human-wildlife conflicts impose considerable costs to people and wildlife worldwide. Most research focuses on proximate causes, offering limited generalizable understanding of ultimate drivers. We tested three competing hypotheses (problem individuals, regional population saturation, limited food supply) that relate to underlying processes of human-grizzly bear (Ursus arctos horribilis) conflict, using data from British Columbia, Canada, between 1960-2014. We found most support for the limited food supply hypothesis: in bear populations that feed on spawning salmon (Oncorhynchus spp.), the annual number of bears/km(2) killed due to conflicts with humans increased by an average of 20% (6-32% [95% CI]) for each 50% decrease in annual salmon biomass. Furthermore, we found that across all bear populations (with or without access to salmon), 81% of attacks on humans and 82% of conflict kills occurred after the approximate onset of hyperphagia (July 1(st)), a period of intense caloric demand. Contrary to practices by many management agencies, conflict frequency was not reduced by hunting or removal of problem individuals. Our finding that a marine resource affects terrestrial conflict suggests that evidence-based policy for reducing harm to wildlife and humans requires not only insight into ultimate drivers of conflict, but also management that spans ecosystem and jurisdictional boundaries.

  12. Comparison of Effects Produced by Physiological Versus Traditional Vocal Warm-up in Contemporary Commercial Music Singers.

    Science.gov (United States)

    Portillo, María Priscilla; Rojas, Sandra; Guzman, Marco; Quezada, Camilo

    2018-03-01

    The present study aimed to observe whether physiological warm-up and traditional singing warm-up differently affect aerodynamic, electroglottographic, acoustic, and self-perceived parameters of voice in Contemporary Commercial Music singers. Thirty subjects were asked to perform a 15-minute session of vocal warm-up. They were randomly assigned to one of two types of vocal warm-up: physiological (based on semi-occluded exercises) or traditional (singing warm-up based on open vowel [a:]). Aerodynamic, electroglottographic, acoustic, and self-perceived voice quality assessments were carried out before (pre) and after (post) warm-up. No significant differences were found when comparing both types of vocal warm-up methods, either in subjective or in objective measures. Furthermore, the main positive effect observed in both groups when comparing pre and post conditions was a better self-reported quality of voice. Additionally, significant differences were observed for sound pressure level (decrease), glottal airflow (increase), and aerodynamic efficiency (decrease) in the traditional warm-up group. Both traditional and physiological warm-ups produce favorable voice sensations. Moreover, there are no evident differences in aerodynamic and electroglottographic variables when comparing both types of vocal warm-ups. Some changes after traditional warm-up (decreased intensity, increased airflow, and decreased aerodynamic efficiency) could imply an early stage of vocal fatigue. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  13. Amplification of global warming through pH dependence of DMS production simulated with a fully coupled Earth system model

    Science.gov (United States)

    Schwinger, Jörg; Tjiputra, Jerry; Goris, Nadine; Six, Katharina D.; Kirkevåg, Alf; Seland, Øyvind; Heinze, Christoph; Ilyina, Tatiana

    2017-08-01

    We estimate the additional transient surface warming ΔTs caused by a potential reduction of marine dimethyl sulfide (DMS) production due to ocean acidification under the high-emission scenario RCP8.5 until the year 2200. Since we use a fully coupled Earth system model, our results include a range of feedbacks, such as the response of marine DMS production to the additional changes in temperature and sea ice cover. Our results are broadly consistent with the findings of a previous study that employed an offline model set-up. Assuming a medium (strong) sensitivity of DMS production to pH, we find an additional transient global warming of 0.30 K (0.47 K) towards the end of the 22nd century when DMS emissions are reduced by 7.3 Tg S yr-1 or 31 % (11.5 Tg S yr-1 or 48 %). The main mechanism behind the additional warming is a reduction of cloud albedo, but a change in shortwave radiative fluxes under clear-sky conditions due to reduced sulfate aerosol load also contributes significantly. We find an approximately linear relationship between reduction of DMS emissions and changes in top of the atmosphere radiative fluxes as well as changes in surface temperature for the range of DMS emissions considered here. For example, global average Ts changes by -0. 041 K per 1 Tg S yr-1 change in sea-air DMS fluxes. The additional warming in our model has a pronounced asymmetry between northern and southern high latitudes. It is largest over the Antarctic continent, where the additional temperature increase of 0.56 K (0.89 K) is almost twice the global average. We find that feedbacks are small on the global scale due to opposing regional contributions. The most pronounced feedback is found for the Southern Ocean, where we estimate that the additional climate change enhances sea-air DMS fluxes by about 9 % (15 %), which counteracts the reduction due to ocean acidification.

  14. Amplification of global warming through pH dependence of DMS production simulated with a fully coupled Earth system model

    Directory of Open Access Journals (Sweden)

    J. Schwinger

    2017-08-01

    Full Text Available We estimate the additional transient surface warming ΔTs caused by a potential reduction of marine dimethyl sulfide (DMS production due to ocean acidification under the high-emission scenario RCP8.5 until the year 2200. Since we use a fully coupled Earth system model, our results include a range of feedbacks, such as the response of marine DMS production to the additional changes in temperature and sea ice cover. Our results are broadly consistent with the findings of a previous study that employed an offline model set-up. Assuming a medium (strong sensitivity of DMS production to pH, we find an additional transient global warming of 0.30 K (0.47 K towards the end of the 22nd century when DMS emissions are reduced by 7.3 Tg S yr−1 or 31 % (11.5 Tg S yr−1 or 48 %. The main mechanism behind the additional warming is a reduction of cloud albedo, but a change in shortwave radiative fluxes under clear-sky conditions due to reduced sulfate aerosol load also contributes significantly. We find an approximately linear relationship between reduction of DMS emissions and changes in top of the atmosphere radiative fluxes as well as changes in surface temperature for the range of DMS emissions considered here. For example, global average Ts changes by −0. 041 K per 1 Tg S yr−1 change in sea–air DMS fluxes. The additional warming in our model has a pronounced asymmetry between northern and southern high latitudes. It is largest over the Antarctic continent, where the additional temperature increase of 0.56 K (0.89 K is almost twice the global average. We find that feedbacks are small on the global scale due to opposing regional contributions. The most pronounced feedback is found for the Southern Ocean, where we estimate that the additional climate change enhances sea–air DMS fluxes by about 9 % (15 %, which counteracts the reduction due to ocean acidification.

  15. Marine oils: Complex, confusing, confounded?

    Directory of Open Access Journals (Sweden)

    Benjamin B. Albert

    2016-09-01

    Full Text Available Marine oils gained prominence following the report that Greenland Inuits who consumed a high-fat diet rich in long-chain n-3 polyunsaturated fatty acids (PUFAs also had low rates of cardiovascular disease. Marine n-3 PUFAs have since become a billion dollar industry, which will continue to grow based on current trends. However, recent systematic reviews question the health benefits of marine oil supplements, particularly in the prevention of cardiovascular disease. Marine oils constitute an extremely complex dietary intervention for a number of reasons: i the many chemical compounds they contain; ii the many biological processes affected by n-3 PUFAs; iii their tendency to deteriorate and form potentially toxic primary and secondary oxidation products; and iv inaccuracy in the labelling of consumer products. These complexities may confound the clinical literature, limiting the ability to make substantive conclusions for some key health outcomes. Thus, there is a pressing need for clinical trials using marine oils whose composition has been independently verified and demonstrated to be minimally oxidised. Without such data, it is premature to conclude that n-3 PUFA rich supplements are ineffective.

  16. Water- and plant-mediated responses of ecosystem carbon fluxes to warming and nitrogen addition on the Songnen grassland in northeast China.

    Directory of Open Access Journals (Sweden)

    Li Jiang

    Full Text Available Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition.In-situ canopy CO(2 exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO(2 exchange (NEE and increased ecosystem respiration (ER; but had no significant impacts on gross ecosystem productivity (GEP. N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland.Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland.

  17. A combination of quantitative marinating and Maillard reaction to enhance volatile flavor in Chinese marinated chicken.

    Science.gov (United States)

    Wei, Xiuli; Wang, Chunqing; Zhang, Chunhui; Li, Xia; Wang, Jinzhi; Li, Hai; Tang, Chunhong

    2017-02-01

    A combination of quantitative marinating and Maillard reaction was investigated by adding d-xylose, l-cysteine and thiamine to the marinated brine of quantitative marinating, which was expected to enhance the volatile flavor of Chinese marinated chicken. Response surface methodology was used to optimize parameters, in which response was sensory evaluation scores of marinated chicken. A Box-Behnken center design was applied to the optimized added contents. The optimized contents were d-xylose (1-5‰), l-cysteine (1-5‰) and thiamine (1-3‰). Analysis of variance indicated that a second-order polynomial equation could predict the experimental data well (R 2  = 0.94), and sensory evaluation scores were significantly affected by the added amount of d-xylose, l-cysteine and thiamine. The optimal conditions that maximized the sensory evaluation score of Chinese marinated chicken were found to be 4.96‰ d-xylose, 2.28‰ l-cysteine and 2.66‰ thiamine (w/w). Given these optimal conditions, a number of meat-like flavor compounds such as 2-pentyl-furan, benzothiazole and 4-methyl-5-thiazoleethanol were identified by gas chromatographic-mass spectrometric analysis. Our results suggested that a combination of quantitative marinating and Maillard reaction might be a promising method to enhance the volatile flavor, especially meat-like flavor, of Chinese marinated chicken. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Peranan Environmental Accounting Terhadap Global Warming

    OpenAIRE

    Martusa, Riki

    2009-01-01

    This article explores about is global warming. The distortion of nature causes global warming. Industrial sector is one of global warming incurred. Some nations create a group to cope this matter. They try to reduce carbon emission as one of global warming causes by controlling industrial carbon emission through financial reporting. This article explores normatively roles of environmental accounting in cope with global warming.  

  19. Interactive effects of global climate change and pollution on marine microbes: the way ahead.

    Science.gov (United States)

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Angela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-06-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future.

  20. Fungi regulate response of N2O production to warming and grazing in a Tibetan grassland

    Science.gov (United States)

    Zhong, Lei; Wang, Shiping; Xu, Xingliang; Wang, Yanfen; Rui, Yichao; Zhou, Xiaoqi; Shen, Qinhua; Wang, Jinzhi; Jiang, Lili; Luo, Caiyun; Gu, Tianbao; Ma, Wenchao; Chen, Guanyi

    2018-03-01

    Lack of understanding of the effects of warming and winter grazing on soil fungal contribution to nitrous oxide (N2O) production has limited our ability to predict N2O fluxes under changes in climate and land use management, because soil fungi play an important role in driving terrestrial N cycling. Here, we examined the effects of 10 years' warming and winter grazing on soil N2O emissions potential in an alpine meadow. Our results showed that soil bacteria and fungi contributed 46 % and 54 % to nitrification, and 37 % and 63 % to denitrification, respectively. Neither warming nor winter grazing affected the activity of enzymes responsible for overall nitrification and denitrification. However, warming significantly increased the enzyme activity of bacterial nitrification and denitrification to 53 % and 55 %, respectively. Warming significantly decreased enzyme activity of fungal nitrification and denitrification to 47 % and 45 %, respectively, while winter grazing had no such effect. We conclude that soil fungi could be the main source for N2O production potential in the Tibetan alpine grasslands. Warming and winter grazing may not affect the potential for soil N2O production potential, but climate warming can alter biotic pathways responsible for N2O production. These findings indicate that characterizing how fungal nitrification/denitrification contributes to N2O production, as well as how it responds to environmental and land use changes, can advance our understanding of N cycling. Therefore, our results provide some new insights about ecological controls on N2O production and lead to refine greenhouse gas flux models.

  1. Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming

    Directory of Open Access Journals (Sweden)

    J. J. Fürst

    2015-05-01

    Full Text Available Continuing global warming will have a strong impact on the Greenland ice sheet in the coming centuries. During the last decade (2000–2010, both increased melt-water runoff and enhanced ice discharge from calving glaciers have contributed 0.6 ± 0.1 mm yr−1 to global sea-level rise, with a relative contribution of 60 and 40% respectively. Here we use a higher-order ice flow model, spun up to present day, to simulate future ice volume changes driven by both atmospheric and oceanic temperature changes. For these projections, the flow model accounts for runoff-induced basal lubrication and ocean warming-induced discharge increase at the marine margins. For a suite of 10 atmosphere and ocean general circulation models and four representative concentration pathway scenarios, the projected sea-level rise between 2000 and 2100 lies in the range of +1.4 to +16.6 cm. For two low emission scenarios, the projections are conducted up to 2300. Ice loss rates are found to abate for the most favourable scenario where the warming peaks in this century, allowing the ice sheet to maintain a geometry close to the present-day state. For the other moderate scenario, loss rates remain at a constant level over 300 years. In any scenario, volume loss is predominantly caused by increased surface melting as the contribution from enhanced ice discharge decreases over time and is self-limited by thinning and retreat of the marine margin, reducing the ice–ocean contact area. As confirmed by other studies, we find that the effect of enhanced basal lubrication on the volume evolution is negligible on centennial timescales. Our projections show that the observed rates of volume change over the last decades cannot simply be extrapolated over the 21st century on account of a different balance of processes causing ice loss over time. Our results also indicate that the largest source of uncertainty arises from the surface mass balance and the underlying climate change

  2. Acclimation and soil moisture constrain sugar maple root respiration in experimentally warmed soil.

    Science.gov (United States)

    Jarvi, Mickey P; Burton, Andrew J

    2013-09-01

    The response of root respiration to warmer soil can affect ecosystem carbon (C) allocation and the strength of positive feedbacks between climatic warming and soil CO2 efflux. This study sought to determine whether fine-root (maple (Acer saccharum Marsh.)-dominated northern hardwood forest would adjust to experimentally warmed soil, reducing C return to the atmosphere at the ecosystem scale to levels lower than that would be expected using an exponential temperature response function. Infrared heating lamps were used to warm the soil (+4 to +5 °C) in a mature sugar maple forest in a fully factorial design, including water additions used to offset the effects of warming-induced dry soil. Fine-root-specific respiration rates, root biomass, root nitrogen (N) concentration, soil temperature and soil moisture were measured from 2009 to 2011, with experimental treatments conducted from late 2010 to 2011. Partial acclimation of fine-root respiration to soil warming occurred, with soil moisture deficit further constraining specific respiration rates in heated plots. Fine-root biomass and N concentration remained unchanged. Over the 2011 growing season, ecosystem root respiration was not significantly greater in warmed soil. This result would not be predicted by models that allow respiration to increase exponentially with temperature and do not directly reduce root respiration in drier soil.

  3. Personal efficacy, the information environment, and attitudes toward global warming and climate change in the United States.

    Science.gov (United States)

    Kellstedt, Paul M; Zahran, Sammy; Vedlitz, Arnold

    2008-02-01

    Despite the growing scientific consensus about the risks of global warming and climate change, the mass media frequently portray the subject as one of great scientific controversy and debate. And yet previous studies of the mass public's subjective assessments of the risks of global warming and climate change have not sufficiently examined public informedness, public confidence in climate scientists, and the role of personal efficacy in affecting global warming outcomes. By examining the results of a survey on an original and representative sample of Americans, we find that these three forces-informedness, confidence in scientists, and personal efficacy-are related in interesting and unexpected ways, and exert significant influence on risk assessments of global warming and climate change. In particular, more informed respondents both feel less personally responsible for global warming, and also show less concern for global warming. We also find that confidence in scientists has unexpected effects: respondents with high confidence in scientists feel less responsible for global warming, and also show less concern for global warming. These results have substantial implications for the interaction between scientists and the public in general, and for the public discussion of global warming and climate change in particular.

  4. Marine complex adaptive systems

    NARCIS (Netherlands)

    Bigagli, Emanuele

    2017-01-01

    Anthropogenic and climate-related stressors challenge the health of nearly every part of the global oceans. They affect the capacity of oceans to regulate global weather and climate, as well as ocean productivity and food services, and result in the loss or degradation of marine habitats and

  5. Salinity changes and anoxia resulting from enhanced run-off during the late Permian global warming and mass extinction event

    Directory of Open Access Journals (Sweden)

    E. E. van Soelen

    2018-04-01

    Full Text Available The late Permian biotic crisis had a major impact on marine and terrestrial environments. Rising CO2 levels following Siberian Trap volcanic activity were likely responsible for expanding marine anoxia and elevated water temperatures. This study focuses on one of the stratigraphically most expanded Permian–Triassic records known, from Jameson Land, East Greenland. High-resolution sampling allows for a detailed reconstruction of the changing environmental conditions during the extinction event and the development of anoxic water conditions. Since very little is known about how salinity was affected during the extinction event, we especially focus on the aquatic palynomorphs and infer changes in salinity from changes in the assemblage and morphology. The start of the extinction event, here defined by a peak in spore : pollen, indicating disturbance and vegetation destruction in the terrestrial environment, postdates a negative excursion in the total organic carbon, but predates the development of anoxia in the basin. Based on the newest estimations for sedimentation rates, the marine and terrestrial ecosystem collapse took between 1.6 and 8 kyr, a much shorter interval than previously estimated. The palynofacies and palynomorph records show that the environmental changes can be explained by enhanced run-off and increased primary productivity and water column stratification. A lowering in salinity is supported by changes in the acritarch morphology. The length of the processes of the acritarchs becomes shorter during the extinction event and we propose that these changes are evidence for a reduction in salinity in the shallow marine setting of the study site. This inference is supported by changes in acritarch distribution, which suggest a change in palaeoenvironment from open marine conditions before the start of the extinction event to more nearshore conditions during and after the crisis. In a period of sea-level rise, such a reduction

  6. Salinity changes and anoxia resulting from enhanced run-off during the late Permian global warming and mass extinction event

    Science.gov (United States)

    van Soelen, Elsbeth E.; Twitchett, Richard J.; Kürschner, Wolfram M.

    2018-04-01

    The late Permian biotic crisis had a major impact on marine and terrestrial environments. Rising CO2 levels following Siberian Trap volcanic activity were likely responsible for expanding marine anoxia and elevated water temperatures. This study focuses on one of the stratigraphically most expanded Permian-Triassic records known, from Jameson Land, East Greenland. High-resolution sampling allows for a detailed reconstruction of the changing environmental conditions during the extinction event and the development of anoxic water conditions. Since very little is known about how salinity was affected during the extinction event, we especially focus on the aquatic palynomorphs and infer changes in salinity from changes in the assemblage and morphology. The start of the extinction event, here defined by a peak in spore : pollen, indicating disturbance and vegetation destruction in the terrestrial environment, postdates a negative excursion in the total organic carbon, but predates the development of anoxia in the basin. Based on the newest estimations for sedimentation rates, the marine and terrestrial ecosystem collapse took between 1.6 and 8 kyr, a much shorter interval than previously estimated. The palynofacies and palynomorph records show that the environmental changes can be explained by enhanced run-off and increased primary productivity and water column stratification. A lowering in salinity is supported by changes in the acritarch morphology. The length of the processes of the acritarchs becomes shorter during the extinction event and we propose that these changes are evidence for a reduction in salinity in the shallow marine setting of the study site. This inference is supported by changes in acritarch distribution, which suggest a change in palaeoenvironment from open marine conditions before the start of the extinction event to more nearshore conditions during and after the crisis. In a period of sea-level rise, such a reduction in salinity can only be

  7. Canada and global warming: Meeting the challenge

    International Nuclear Information System (INIS)

    1991-01-01

    Canada accounts for ca 2% of total world emissions of greenhouse gases. Carbon dioxide emissions are by far the largest greenhouse gas source in Canada, primarily from energy consumption. On a per capita basis, Canada ranks second among industrialized countries in terms of energy related carbon dioxide emissions. Canada's northern geography and climate, its export-oriented economy with energy-intensive resource industries, and its relatively small population dispersed over a wide land mass contribute to this high per-capita value. The effects of global warming induced by greenhouse gases are outlined, including a reduction in water supplies, droughts affecting agriculture and forestry, and large-scale thawing of permafrost. A national strategy to respond to global warming has been developed which includes limiting and reducing greenhouse gas emissions, preparing for potential climatic changes, and improving scientific understanding and predictive capabilities with respect to climate change. Details of this strategy are outlined, including provincial and territorial strategies in partnership with the national strategy. 11 figs., 2 tabs

  8. Anthropogenic warming exacerbates European soil moisture droughts

    Science.gov (United States)

    Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E. F.; Marx, A.

    2018-05-01

    Anthropogenic warming is anticipated to increase soil moisture drought in the future. However, projections are accompanied by large uncertainty due to varying estimates of future warming. Here, using an ensemble of hydrological and land-surface models, forced with bias-corrected downscaled general circulation model output, we estimate the impacts of 1-3 K global mean temperature increases on soil moisture droughts in Europe. Compared to the 1.5 K Paris target, an increase of 3 K—which represents current projected temperature change—is found to increase drought area by 40% (±24%), affecting up to 42% (±22%) more of the population. Furthermore, an event similar to the 2003 drought is shown to become twice as frequent; thus, due to their increased occurrence, events of this magnitude will no longer be classified as extreme. In the absence of effective mitigation, Europe will therefore face unprecedented increases in soil moisture drought, presenting new challenges for adaptation across the continent.

  9. Marine Heat Waves Hazard 3D Maps and the Risk for Low Motility Organisms in a Warming Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Giovanni Galli

    2017-05-01

    Full Text Available Frequency and severity of heat waves is expected to increase as a consequence of climate change with important impacts on human and ecosystems health. However, while many studies explored the projected occurrence of hot extremes on terrestrial systems, few studies dealt with marine systems, so that both the expected change in marine heat waves occurrence and the effects on marine organisms and ecosystems remain less understood and surprisingly poorly quantified. Here we: (i assess how much more frequent, severe, and depth-penetrating marine heat waves will be in the Mediterranean area in the next decades by post-processing the output of an ocean general circulation model; and (ii show that heat waves increase will impact on many species that live in shallow waters and have reduced motility, and related economic activities. This information is made available also as a dataset of temperature threshold exceedance indexes that can be used in combination with biological information to produce risk assessment maps for target species or biomes across the whole Mediterranean Sea. As case studies we compared projected heat waves occurrence with thermotolerance thresholds of low motility organisms. Results suggest a deepening of the survival horizon for red coral (Corallium rubrum, a commercially exploited benthic species already subjected to heat-related mass mortality events and coralligenous reefs as well as a reduction of suitable farming sites for the mussel Mythilus galloprovincialis. In recent years Mediterranean circalittoral ecosystems (coralligenous have been severely and repeatedly impacted by marine heat waves. Our results support that equally deleterious events are expected in the near future also for other ecologically important habitats (e.g., seagrass meadows and aquaculture activities (bivalvae, and point at the need for mitigation strategies.

  10. Ocean acidification and warming in the Norwegian and Barents Seas: impacts on marine ecosystems and human uses

    OpenAIRE

    Koenigstein, Stefan; Gößling-Reisemann, Stefan

    2014-01-01

    This report synthesizes the results about the impacts of climate change and ocean acidification on marine ecosystems and ecosystem services in Norway, from interviews and a workshop with stakeholders in 2013.

  11. 75 FR 77617 - Notice Requesting Nominations for the Marine Protected Areas Federal Advisory Committee

    Science.gov (United States)

    2010-12-13

    ... stakeholder interest affected by MPAs. Nominees also will be evaluated based on the following factors: marine..., resource managers, and people representing other interests or organizations involved with or affected by... managers, and other interested people and organizations through a Marine Protected Areas Federal Advisory...

  12. Sudden Stratospheric Warming Compendium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sudden Stratospheric Warming Compendium (SSWC) data set documents the stratospheric, tropospheric, and surface climate impacts of sudden stratospheric warmings. This...

  13. Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts

    Energy Technology Data Exchange (ETDEWEB)

    Aptroot, A. [ABL Herbarium, G.v.d. Veenstraat 107, NL-3762 XK Soest (Netherlands)]. E-mail: andreaptroot@wanadoo.nl; Herk, C.M. van [Lichenologisch Onderzoeksbureau Nederland, Goudvink 47, NL-3766 WK Soest (Netherlands)]. E-mail: lonsoest@wxs.nl

    2007-03-15

    Increasing evidence suggests that lichens are responding to climate change in Western Europe. More epiphytic species appear to be increasing, rather than declining, as a result of global warming. Many terricolous species, in contrast, are declining. Changes to epiphytic floras are markedly more rapid in formerly heavily polluted, generally built-up or open rural areas, as compared to forested regions. Both the distribution (southern) and ecology (warmth-loving) of the newly established or increasing species seem to be determined by global warming. Epiphytic temperate to boreo-montane species appear to be relatively unaffected. Vacant niches caused by other environmental changes are showing the most pronouced effects of global warming. Species most rapidly increasing in forests, although taxonomically unrelated, all contain Trentepohlia as phycobiont in addition to having a southern distribution. This suggests that in this habitat, Trentepohlia algae, rather than the different lichen symbioses, are affected by global warming. - Epiphytic and terricolous lichens in Western Europe respond to global warming through their Trentepohlia algae.

  14. Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts

    International Nuclear Information System (INIS)

    Aptroot, A.; Herk, C.M. van

    2007-01-01

    Increasing evidence suggests that lichens are responding to climate change in Western Europe. More epiphytic species appear to be increasing, rather than declining, as a result of global warming. Many terricolous species, in contrast, are declining. Changes to epiphytic floras are markedly more rapid in formerly heavily polluted, generally built-up or open rural areas, as compared to forested regions. Both the distribution (southern) and ecology (warmth-loving) of the newly established or increasing species seem to be determined by global warming. Epiphytic temperate to boreo-montane species appear to be relatively unaffected. Vacant niches caused by other environmental changes are showing the most pronouced effects of global warming. Species most rapidly increasing in forests, although taxonomically unrelated, all contain Trentepohlia as phycobiont in addition to having a southern distribution. This suggests that in this habitat, Trentepohlia algae, rather than the different lichen symbioses, are affected by global warming. - Epiphytic and terricolous lichens in Western Europe respond to global warming through their Trentepohlia algae

  15. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    Science.gov (United States)

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.

  16. Military Implications of Global Warming.

    Science.gov (United States)

    1999-05-20

    U.S. environmental issues also have important global implications. This paper analyzes current U.S. Policy as it pertains to global warming and climate...for military involvement to reduce global warming . Global warming and other environmental issues are important to the U.S. military. As the United

  17. Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi.

    Science.gov (United States)

    Arnold, Hayley E; Kerrison, Philip; Steinke, Michael

    2013-04-01

    The production of the marine trace gas dimethyl sulfide (DMS) provides 90% of the marine biogenic sulfur in the atmosphere where it affects cloud formation and climate. The effects of increasing anthropogenic CO2 and the resulting warming and ocean acidification on trace gas production in the oceans are poorly understood. Here we report the first measurements of DMS-production and data on growth, DMSP and DMS concentrations in pH-stated cultures of the phytoplankton haptophyte Emiliania huxleyi. Four different environmental conditions were tested: ambient, elevated CO2 (+CO2 ), elevated temperature (+T) and elevated temperature and CO2 (+TCO2 ). In comparison to the ambient treatment, average DMS production was about 50% lower in the +CO2 treatment. Importantly, temperature had a strong effect on DMS production and the impacts outweighed the effects of a decrease in pH. As a result, the +T and +TCO2 treatments showed significantly higher DMS production of 36.2 ± 2.58 and 31.5 ± 4.66 μmol L(-1) cell volume (CV) h(-1) in comparison with the +CO2 treatment (14.9 ± 4.20 μmol L(-1) CV h(-1) ). As the cultures were aerated with an air/CO2 mixture, DMS was effectively removed from the incubation bottles so that concentration remained relatively low (3.6-6.1 mmol L(-1) CV). Intracellular DMSP has been shown to increase in E. huxleyi as a result of elevated temperature and/or elevated CO2 and our results are in agreement with this finding: the ambient and +CO2 treatments showed 125 ± 20.4 and 162 ± 27.7 mmol L(-1) CV, whereas +T and +TCO2 showed significantly increased intracellular DMSP concentrations of 195 ± 15.8 and 211 ± 28.2 mmol L(-1) CV respectively. Growth was unaffected by the treatments, but cell diameter decreased significantly under elevated temperature. These results indicate that DMS production is sensitive to CO2 and temperature in E. huxleyi. Hence, global environmental change that manifests in ocean acidification and warming may not result in

  18. Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century

    Science.gov (United States)

    BERDALET, ELISA; FLEMING, LORA E.; GOWEN, RICHARD; DAVIDSON, KEITH; HESS, PHILIPP; BACKER, LORRAINE C.; MOORE, STEPHANIE K.; HOAGLAND, PORTER; ENEVOLDSEN, HENRIK

    2015-01-01

    Microalgal blooms are a natural part of the seasonal cycle of photosynthetic organisms in marine ecosystems. They are key components of the structure and dynamics of the oceans and thus sustain the benefits that humans obtain from these aquatic environments. However, some microalgal blooms can cause harm to humans and other organisms. These harmful algal blooms (HABs) have direct impacts on human health and negative influences on human wellbeing, mainly through their consequences to coastal ecosystem services (fisheries, tourism and recreation) and other marine organisms and environments. HABs are natural phenomena, but these events can be favoured by anthropogenic pressures in coastal areas. Global warming and associated changes in the oceans could affect HAB occurrences and toxicity as well, although forecasting the possible trends is still speculative and requires intensive multidisciplinary research. At the beginning of the 21st century, with expanding human populations, particularly in coastal and developing countries, mitigating HABs impacts on human health and wellbeing is becoming a more pressing public health need. The available tools to address this global challenge include maintaining intensive, multidisciplinary and collaborative scientific research, and strengthening the coordination with stakeholders, policymakers and the general public. Here we provide an overview of different aspects of the HABs phenomena, an important element of the intrinsic links between oceans and human health and wellbeing. PMID:26692586

  19. Testing the Millennial-Scale Holocene Solar-Climate Connection in the Indo-Pacific Warm Pool

    Science.gov (United States)

    Khider, D.; Emile-Geay, J.; McKay, N.; Jackson, C. S.; Routson, C.

    2016-12-01

    The existence of 1000 and 2500-year periodicities found in reconstructions of total solar irradiance (TSI) and a number of Holocene climate records has led to the hypothesis of a causal relationship. However, attributing Holocene millennial-scale variability to solar forcing requires a mechanism by which small changes in total irradiance can influence a global climate response. One possible amplifier within the climate system is the ocean. If this is the case, then we need to know more about where and how this may be occurring. On the other hand, the similarity in spectral peaks could be merely coincidental, and this should be made apparent by a lack of coherence in how that power and phasing are distributed in time and space. The plausibility of the solar forcing hypothesis is assessed through a Bayesian model of the age uncertainties affecting marine sedimentary records that is propagated through spectral analysis of the climate and forcing signals at key frequencies. Preliminary work on Mg/Ca and alkenone records from the Indo-Pacific Warm Pool suggests that despite large uncertainties in the location of the spectral peaks within each individual record arising from age model uncertainty, sea surface variability on timescales of 1025±36 years and 2427±133 years (±standard error of the mean of the median periodicity in each record) are present in at least 95% and 70% of the ensemble spectra, respectively. However, we find a long phase delay between the peak in forcing and the maximum response in at least one of the records, challenging the solar forcing hypothesis and requiring further investigation between low- and high-latitude signals. Remarkably, all records suggest a periodicity near 1470±85 years, reminiscent of the cycles characteristic of Marine Isotope Stage 3; these cycles are absent from existing records of TSI, further questioning the millennial solar-climate connection.

  20. Warm measurements of CBA superconducting magnets

    International Nuclear Information System (INIS)

    Engelmann, R.; Herrera, J.; Kahn, S.; Kirk, H.; Willen, E.; Yamin, P.

    1983-01-01

    We present results on magnetic field measurements of CBA dipole magnets in the warm (normal conductor) and cryogenic (superconducting) states. We apply two methods for the warm measurements, a dc and ac method. We find a good correlation between warm and cryogenic measurements which lends itself to a reliable diagnosis of magnet field errors using warm measurements early in the magnet assembly process. We further find good agreement between the two warm measurement methods, both done at low currents

  1. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    International Nuclear Information System (INIS)

    Sejas, Sergio A; Albert, Oriene S; Cai, Ming; Deng, Yi

    2014-01-01

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heat flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Therefore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea. (letter)

  2. Competition magnifies the impact of a pesticide in a warming world by reducing heat tolerance and increasing autotomy.

    Science.gov (United States)

    Op de Beeck, Lin; Verheyen, Julie; Stoks, Robby

    2018-02-01

    There is increasing concern that standard laboratory toxicity tests may be misleading when assessing the impact of toxicants, because they lack ecological realism. Both warming and biotic interactions have been identified to magnify the effects of toxicants. Moreover, while biotic interactions may change the impact of toxicants, toxicants may also change the impact of biotic interactions. However, studies looking at the impact of biotic interactions on the toxicity of pesticides and vice versa under warming are very scarce. Therefore, we tested how warming (+4 °C), intraspecific competition (density treatment) and exposure to the pesticide chlorpyrifos, both in isolation and in combination, affected mortality, cannibalism, growth and heat tolerance of low- and high-latitude populations of the damselfly Ischnura elegans. Moreover, we addressed whether toxicant exposure, potentially in interaction with competition and warming, increased the frequency of autotomy, a widespread antipredator mechanism. Competition increased the toxicity of chlorpyrifos and made it become lethal. Cannibalism was not affected by chlorpyrifos but increased at high density and under warming. Chlorpyrifos reduced heat tolerance but only when competition was high. This is the first demonstration that a biotic interaction can be a major determinant of 'toxicant-induced climate change sensitivity'. Competition enhanced the impact of chlorpyrifos under warming for high-latitude larvae, leading to an increase in autotomy which reduces fitness in the long term. This points to a novel pathway how transient pesticide pulses may cause delayed effects on populations in a warming world. Our results highlight that the interplay between biotic interactions and toxicants have a strong relevance for ecological risk assessment in a warming polluted world. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. An analysis of the factors affecting Marine Corps officer retention

    OpenAIRE

    Theilmann, Robert J.

    1990-01-01

    Approved for public release; distribution unlimited. This thesis examines factors which influence the retention of male, company-grade Marine Corps officers (grades O-1 to O-3) who are within their initial period of obligated service. Data used combined responses from the 1985 DoD Survey of Officer and Enlisted Personnel and the respondents' 1989 status from the officer master fine maintained by the Defense Manpower Data Center (DMDC). Logit regression was used to measure the relative impo...

  4. Long-term soil warming and Carbon Cycle Feedbacks to the Climate System

    Energy Technology Data Exchange (ETDEWEB)

    Melillo, Jerry M.

    2014-04-30

    The primary objective of the proposed research was to quantify and explain the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem. The research was done at an established soil warming experiment at the Harvard Forest in central Massachusetts – Barre Woods site established in 2001. In the field, a series of plant and soil measurements were made to quantify changes in C storage in the ecosystem and to provide insights into the possible relationships between C-storage changes and nitrogen (N) cycling changes in the warmed plots. Field measurements included: 1) annual woody increment; 2) litterfall; 3) carbon dioxide (CO2) efflux from the soil surface; 4) root biomass and respiration; 5) microbial biomass; and 6) net N mineralization and net nitrification rates. This research was designed to increase our understanding of how global warming will affect the capacity of temperate forest ecosystems to store C. The work explored how soil warming changes the interactions between the C and N cycles, and how these changes affect land-atmosphere feedbacks. This core research question framed the project – What are the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem? A second critical question was addressed in this research – What are the effects of a sustained in situ 5{degrees}C soil temperature increase on nitrogen (N) cycling in a northeastern deciduous forest ecosystem?

  5. Strong delayed interactive effects of metal exposure and warming

    DEFF Research Database (Denmark)

    Debecker, Sara; Dinh, Khuong Van; Stoks, Robby

    2017-01-01

    ’ ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and lowlatitude populations. By integrating these mechanisms...... into a single study, we could identify two novel patterns. First, during exposure zinc did not affect survival, whereas it induced mild to moderate postexposure mortality in the larval stage and at metamorphosis, and very strongly reduced adult lifespan. This severe delayed effect across metamorphosis...... was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies...

  6. Origin of path independence between cumulative CO2 emissions and global warming

    Science.gov (United States)

    Seshadri, Ashwin K.

    2017-11-01

    Observations and GCMs exhibit approximate proportionality between cumulative carbon dioxide (CO2) emissions and global warming. Here we identify sufficient conditions for the relationship between cumulative CO2 emissions and global warming to be independent of the path of CO2 emissions; referred to as "path independence". Our starting point is a closed form expression for global warming in a two-box energy balance model (EBM), which depends explicitly on cumulative emissions, airborne fraction and time. Path independence requires that this function can be approximated as depending on cumulative emissions alone. We show that path independence arises from weak constraints, occurring if the timescale for changes in cumulative emissions (equal to ratio between cumulative emissions and emissions rate) is small compared to the timescale for changes in airborne fraction (which depends on CO2 uptake), and also small relative to a derived climate model parameter called the damping-timescale, which is related to the rate at which deep-ocean warming affects global warming. Effects of uncertainties in the climate model and carbon cycle are examined. Large deep-ocean heat capacity in the Earth system is not necessary for path independence, which appears resilient to climate modeling uncertainties. However long time-constants in the Earth system carbon cycle are essential, ensuring that airborne fraction changes slowly with timescale much longer than the timescale for changes in cumulative emissions. Therefore path independence between cumulative emissions and warming cannot arise for short-lived greenhouse gases.

  7. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects

    Science.gov (United States)

    Chen, Xing; Jeong, Su-Jong

    2018-02-01

    To meet the growing demand for food, land is being managed to be more productive using agricultural intensification practices, such as the use of irrigation. Understanding the specific environmental impacts of irrigation is a critical part of using it as a sustainable way to provide food security. However, our knowledge of irrigation effects on climate is still limited to daytime effects. This is a critical issue to define the effects of irrigation on warming related to greenhouse gases (GHGs). This study shows that irrigation led to an increasing temperature (0.002 °C year-1) by enhancing nighttime warming (0.009 °C year-1) more than daytime cooling (-0.007 °C year-1) during the dry season from 1961-2004 over the North China Plain (NCP), which is one of largest irrigated areas in the world. By implementing irrigation processes in regional climate model simulations, the consistent warming effect of irrigation on nighttime temperatures over the NCP was shown to match observations. The intensive nocturnal warming is attributed to energy storage in the wetter soil during the daytime, which contributed to the nighttime surface warming. Our results suggest that irrigation could locally amplify the warming related to GHGs, and this effect should be taken into account in future climate change projections.

  8. Plastic and marine turtles: a review and call for research

    OpenAIRE

    Nelms, SE; Duncan, EM; Broderick, AC; Galloway, TSG; Godfrey, MH; Hamann, M; Lindeque, PK; Godley, BJ

    2016-01-01

    Plastic debris is now ubiquitous in the marine environment affecting a wide range of taxa, from microscopic zooplankton to large vertebrates. Its persistence and dispersal throughout marine ecosystems has meant that sensitivity toward the scale of threat is growing, particularly for species of conservation concern, such as marine turtles. Their use of a variety of habitats, migratory behaviour, and complex life histories leave them subject to a host of anthropogenic stressors, including expos...

  9. G-warm inflation

    Science.gov (United States)

    Herrera, Ramón

    2017-05-01

    A warm inflationary universe in the context of Galileon model or G-model is studied. Under a general formalism we study the inflationary dynamics and the cosmological perturbations considering a coupling of the form G(phi,X)=g(phi) X. As a concrete example, we consider an exponential potential together with the cases in which the dissipation and Galilean coefficients are constants. Also, we study the weak regime given by the condition RR+3gHdot phi. Additionally, we obtain constraints on the parameters during the evolution of G-warm inflation, assuming the condition for warm inflation in which the temperature T>H, the conditions or the weak and strong regimes, together with the consistency relation r=r(ns) from Planck data.

  10. Impacts of 1, 1.5, and 2 Degree Warming on Arctic Terrestrial Snow and Sea Ice

    Science.gov (United States)

    Derksen, C.; Mudryk, L.; Howell, S.; Flato, G. M.; Fyfe, J. C.; Gillett, N. P.; Sigmond, M.; Kushner, P. J.; Dawson, J.; Zwiers, F. W.; Lemmen, D.; Duguay, C. R.; Zhang, X.; Fletcher, C. G.; Dery, S. J.

    2017-12-01

    The 2015 Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC) established the global temperature goal of "holding the increase in the global average temperature to below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels." In this study, we utilize multiple gridded snow and sea ice products (satellite retrievals; assimilation systems; physical models driven by reanalyses) and ensembles of climate model simulations to determine the impacts of observed warming, and project the relative impacts of the UNFCC future warming targets on Arctic seasonal terrestrial snow and sea ice cover. Observed changes during the satellite era represent the response to approximately 1°C of global warming. Consistent with other studies, analysis of the observational record (1970's to present) identifies changes including a shorter snow cover duration (due to later snow onset and earlier snow melt), significant reductions in spring snow cover and summer sea ice extent, and the loss of a large proportion of multi-year sea ice. The spatial patterns of observed snow and sea ice loss are coherent across adjacent terrestrial/marine regions. There are strong pattern correlations between snow and temperature trends, with weaker association between sea ice and temperature due to the additional influence of dynamical effects such wind-driven redistribution of sea ice. Climate model simulations from the Coupled Model Inter-comparison Project Phase 5(CMIP-5) multi-model ensemble, large initial condition ensembles of the Community Earth System Model (CESM) and Canadian Earth System Model (CanESM2) , and warming stabilization simulations from CESM were used to identify changes in snow and ice under further increases to 1.5°C and 2°C warming. The model projections indicate these levels of warming will be reached over the coming 2-4 decades. Warming to 1.5°C results in an increase in the

  11. Impact and prevention on global warming

    International Nuclear Information System (INIS)

    Park, Heon Ryeol

    2003-11-01

    This book deals with impact and prevention on global warming with eight chapters, which introduce the change after the earth was born and natural environment, how is global atmospheric environment under the control of radiant energy? What does global warming look with the earth history like? What's the status of global warming so far? How does climate change happen? What is the impact by global warming and climate change and for preservation of global environment of 21 century with consumption of energy, measure and prospect on global warming. It has reference, index and three appendixes.

  12. Cenozoic planktonic marine diatom diversity and correlation to climate change.

    Directory of Open Access Journals (Sweden)

    David Lazarus

    Full Text Available Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂(18O (climate and carbon cycle records (∂(13C, and 20-0 Ma pCO2. Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p.9, detrended r>.6, all p<.001, but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.

  13. Response of microbial communities to experimental warming and precipitation decrease in Rzecin peatland (Poland)

    Science.gov (United States)

    Basińska, Anna M.; Gąbka, Maciej; Reczuga, Monika; Łuców, Dominika; Stróżecki, Marcin; Samson, Mateusz; Józefczyk, Damian; Chojnicki, Bogdan; Urbaniak, Marek; Leśny, Jacek; Olejnik, Janusz; Gilbert, Daniel; Silvennoinen, Hanna; Juszczak, Radosław; Lamentowicz, Mariusz

    2017-04-01

    In the last decade researchers are intensively testing the consequences of different climate change scenarios. Due to high biodiversity, huge amount of stored carbon and their sensitivity to environmental changes, peatlands became important for the temperature increase and drought experiments. Analyses showed that mosses, vascular plants and microbial communities were affected by warming or drought, but still not all effects are clear. Studying the response of microbial groups and indicators (e.g. mixotrophic species of testate amoeba) to warming in combination with decrease of precipitation will allow to better understand the future environmental changes. To recognize the inflow of organic matter and the carbon fixing processes in disturbed environment, we need to analyse the structure and biomass of main groups living in peatlands and the response of those groups to disturbances. The Polish - Norway "WETMAN" project was designed to recognize biotic and abiotic components of ecosystem response to active warming and decrease of precipitation. In this study we present the response of microbial communities and chosen testate amoeba species (TA) to different treatments: warming, warming and decreased precipitation and only decreased precipitation, in relation to control plots. The microbial biomass of upper and lower Sphagnum segments were analysed separately. Particular microbial groups were positively correlated with manipulations e. g. microalgae and rotifers, and other were negatively affected by combination of drought and warming e.g. cyanobacteria and testate amoeba. The structure of community was modified by manipulations, and differed in the case of upper and lower segment of Sphagnum. RDA analyses showed that different factors were crucial for the biomass of microbial groups in upper (conductivity, temperature and phosphorus) and lower (nitrates and sodium) segment. Considering higher taxonomic resolution we found that at the beginning of the experiment TA

  14. Global warming on trial

    International Nuclear Information System (INIS)

    Broeker, W.S.

    1992-01-01

    Jim Hansen, a climatologist at NASA's Goddard Space Institute, is convinced that the earth's temperature is rising and places the blame on the buildup of greenhouse gases in the atmosphere. Unconvinced, John Sununu, former White House chief of staff, doubts that the warming will be great enough to produce serious threat and fears that measures to reduce the emissions would throw a wrench into the gears that drive the Unites States' troubled economy. During his three years at the White House, Sununu's view prevailed, and although his role in the debate has diminished, others continue to cast doubt on the reality of global warming. A new lobbying group called the Climate Council has been created to do just this. Burning fossil fuels is not the only problem; a fifth of emissions of carbon dioxide now come from clearing and burning forests. Scientists are also tracking a host of other greenhouse gases that emanate from a variety of human activities; the warming effect of methane, chlorofluorocarbons and nitrous oxide combined equals that of carbon dioxide. Although the current warming from these gases may be difficult to detect against the background noise of natural climate variation, most climatologists are certain that as the gases continue to accumulate, increases in the earth's temperature will become evident even to skeptics. If the reality of global warming were put on trial, each side would have trouble making its case. Jim Hansen's side could not prove beyond a reasonable doubt that carbon dioxide and other greenhouse gases have warmed the planet. But neither could John Sununu's side prove beyond a reasonable doubt that the warming expected from greenhouse gases has not occurred. To see why each side would have difficulty proving its case, this article reviews the arguments that might be presented in such a hearing

  15. Mesoamerican Nephropathy or Global Warming Nephropathy?

    Science.gov (United States)

    Roncal-Jimenez, Carlos A; García-Trabanino, Ramon; Wesseling, Catharina; Johnson, Richard J

    2016-01-01

    An epidemic of chronic kidney disease (CKD) of unknown cause has emerged along the Pacific Coast of Central America. The disease primarily affects men working manually outdoors, and the major group affected is sugarcane workers. The disease presents with an asymptomatic rise in serum creatinine that progresses to end-stage renal disease over several years. Renal biopsies show chronic tubulointerstitial disease. While the cause remains unknown, recent studies suggest that it is driven by recurrent dehydration in the hot climate. Potential mechanisms include the development of hyperosmolarity with the activation of the aldose reductase-fructokinase pathway in the proximal tubule leading to local injury and inflammation, and the possibility that renal injury may be the consequence of repeated uricosuria and urate crystal formation as a consequence of both increased generation and urinary concentration, similar to a chronic tumor lysis syndrome. The epidemic is postulated to be increasing due to the effects of global warming. An epidemic of CKD has led to the death of more than 20,000 lives in Central America. The cause is unknown, but appears to be due to recurrent dehydration. Potential mechanisms for injury are renal damage as a consequence of recurrent hyperosmolarity and/or injury to the tubules from repeated episodes of uricosuria. The epidemic of CKD in Mesoamerica may be due to chronic recurrent dehydration as a consequence of global warming and working conditions. This entity may be one of the first major diseases attributed to climate change and the greenhouse effect. © 2016 S. Karger AG, Basel.

  16. Review on methodology for LCIA of marine eutrophication

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred

    As part of the ongoing EU FP7 project LC-Impact (www.lc-impact.eu) new life cycle impact assessment (LCIA) methods are going to be developed and tested on industry cases. Among the life cycle assessment (LCA) impact categories in focus are aquatic eutrophication. As related to especially the marine...... concentration and the potentially affected fraction of species in the marine ecosystem. This poster will present a review of the very limited existing attempts on how to include marine eutrophication in LCA and discuss alternative methodologies on how to model the environmental mechanism of this impact category....

  17. Hazards of decreasing marine oxygen: the near-term and millennial-scale benefits of meeting the Paris climate targets

    Science.gov (United States)

    Battaglia, Gianna; Joos, Fortunat

    2018-06-01

    Ocean deoxygenation is recognized as key ecosystem stressor of the future ocean and associated climate-related ocean risks are relevant for current policy decisions. In particular, benefits of reaching the ambitious 1.5 °C warming target mentioned by the Paris Agreement compared to higher temperature targets are of high interest. Here, we model oceanic oxygen, warming and their compound hazard in terms of metabolic conditions on multi-millennial timescales for a range of equilibrium temperature targets. Scenarios where radiative forcing is stabilized by 2300 are used in ensemble simulations with the Bern3D Earth System Model of Intermediate Complexity. Transiently, the global mean ocean oxygen concentration decreases by a few percent under low forcing and by 40 % under high forcing. Deoxygenation peaks about a thousand years after stabilization of radiative forcing and new steady-state conditions are established after AD 8000 in our model. Hypoxic waters expand over the next millennium and recovery is slow and remains incomplete under high forcing. Largest transient decreases in oxygen are projected for the deep sea. Distinct and near-linear relationships between the equilibrium temperature response and marine O2 loss emerge. These point to the effectiveness of the Paris climate target in reducing marine hazards and risks. Mitigation measures are projected to reduce peak decreases in oceanic oxygen inventory by 4.4 % °C-1 of avoided equilibrium warming. In the upper ocean, the decline of a metabolic index, quantified by the ratio of O2 supply to an organism's O2 demand, is reduced by 6.2 % °C-1 of avoided equilibrium warming. Definitions of peak hypoxia demonstrate strong sensitivity to additional warming. Volumes of water with less than 50 mmol O2 m-3, for instance, increase between 36 % and 76 % °C-1 of equilibrium temperature response. Our results show that millennial-scale responses should be considered in assessments of ocean deoxygenation and associated

  18. Can air pollutant controls change global warming?

    International Nuclear Information System (INIS)

    Strefler, Jessica; Luderer, Gunnar; Kriegler, Elmar; Meinshausen, Malte

    2014-01-01

    Highlights: • Air pollution policies do not affect long-term climate targets. • Reduction of aerosols counteracts a fraction of the reduction of Kyoto forcing. • Air pollution policies may affect the rate of climate change in the short term. • There is no tradeoff between clean air and climate policies. - Abstract: In this paper we analyze the interaction between climate and air pollution policies using the integrated assessment model REMIND coupled to the reduced-form climate model MAGICC. Since overall, aerosols tend to cool the atmosphere, there is a concern that a reduction of pollutant emissions could accelerate global warming and offset the climate benefits of carbon dioxide emission reductions. We investigate scenarios which independently reduce emissions from either large-scale sources, such as power plants, or small-scale sources, such as cooking and heating stoves. Large-scale sources are likely to be easier to control, but their aerosol emissions are characterized by a relatively high sulfur content, which tends to result in atmospheric cooling. Pollution from small-scale sources, by contrast, is characterized by a high share of carbonaceous aerosol, which is an important contributor to global warming. We find that air pollution policies can significantly reduce aerosol emissions when no climate policies are in place. Stringent climate policies lead to a large reduction of fossil fuel use, and therefore result in a concurrent reduction of air pollutant emissions. These reductions partly reduce aerosol masking, thus initially counteracting the reduction of greenhouse gas forcing, however not overcompensating it. If climate policies are in place, air pollution policies have almost no impacts on medium- and long-term radiative forcing. Therefore there is no conflict of objectives between clean air and limiting global warming. We find that the stringency of air pollution policies may influence the rate of global temperature change in the first decade

  19. Factors affecting virus dynamics and microbial host-virus interactions in marine environments

    NARCIS (Netherlands)

    Mojica, K.D.A.; Brussaard, C.P.D.

    2014-01-01

    Marine microorganisms constitute the largest percentage of living biomass and serve as the major driving force behind nutrient and energy cycles. While viruses only comprise a small percentage of this biomass (i.e., 5%), they dominate in numerical abundance and genetic diversity. Through host

  20. Sea-level response to abrupt ocean warming of Antarctic ice shelves

    Science.gov (United States)

    Pattyn, Frank

    2016-04-01

    Antarctica's contribution to global sea-level rise increases steadily. A fundamental question remains whether the ice discharge will lead to marine ice sheet instability (MISI) and collapse of certain sectors of the ice sheet or whether ice loss will increase linearly with the warming trends. Therefore, we employ a newly developed ice sheet model of the Antarctic ice sheet, called f.ETISh (fast Elementary Thermomechanical Ice Sheet model) to simulate ice sheet response to abrupt perturbations in ocean and atmospheric temperature. The f.ETISh model is a vertically integrated hybrid (SSA/SIA) ice sheet model including ice shelves. Although vertically integrated, thermomechanical coupling is ensured through a simplified representation of ice sheet thermodynamics based on an analytical solution of the vertical temperature profile, including strain heating and horizontal advection. The marine boundary is represented by a flux condition either coherent with power-law basal sliding (Pollard & Deconto (2012) based on Schoof (2007)) or according to Coulomb basal friction (Tsai et al., 2015), both taking into account ice-shelf buttressing. Model initialization is based on optimization of the basal friction field. Besides the traditional MISMIP tests, new tests with respect to MISI in plan-view models have been devised. The model is forced with stepwise ocean and atmosphere temperature perturbations. The former is based on a parametrised sub-shelf melt (limited to ice shelves), while the latter is based on present-day mass balance/surface temperature and corrected for elevation changes. Surface melting is introduced using a PDD model. Results show a general linear response in mass loss to ocean warming. Nonlinear response due to MISI occurs under specific conditions and is highly sensitive to the basal conditions near the grounding line, governed by both the initial conditions and the basal sliding/deformation model. The Coulomb friction model leads to significantly higher

  1. 76 FR 68429 - Availability of Seats for Olympic Coast National Marine Sanctuary Advisory Council

    Science.gov (United States)

    2011-11-04

    ... Olympic Coast National Marine Sanctuary Advisory Council AGENCY: Office of National Marine Sanctuaries... applications for the following vacant seats on the Olympic Coast National Marine Sanctuary Advisory Council... in the area affected by the sanctuary. Applicants who are chosen as members should expect to serve...

  2. 77 FR 16813 - Availability of Seat for Olympic Coast National Marine Sanctuary Advisory Council

    Science.gov (United States)

    2012-03-22

    ... Olympic Coast National Marine Sanctuary Advisory Council AGENCY: Office of National Marine Sanctuaries... applications for the following vacant seat on the Olympic Coast National Marine Sanctuary Advisory Council... resources; and possibly the length of residence in the area affected by the sanctuary. Applicants who are...

  3. 75 FR 66064 - Availability of Seats for Olympic Coast National Marine Sanctuary Advisory Council

    Science.gov (United States)

    2010-10-27

    ... Olympic Coast National Marine Sanctuary Advisory Council AGENCY: Office of National Marine Sanctuaries... applications for the following vacant seats on the Olympic Coast National Marine Sanctuary Advisory Council... in the area affected by the sanctuary. Applicants who are chosen as members should expect to serve...

  4. Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest - no indications for thermal adaptations.

    Science.gov (United States)

    Schindlbacher, Andreas; Schnecker, Jörg; Takriti, Mounir; Borken, Werner; Wanek, Wolfgang

    2015-11-01

    Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0-10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long-term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 μmol m(-2)  s(-1) , control: 2.34 ± 0.29 μmol m(-2)  s(-1) ; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass-specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long-term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C-rich calcareous temperate forest soils. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  5. Marine Protected Dramas: The Flaws of the Brazilian National System of Marine Protected Areas

    Science.gov (United States)

    Gerhardinger, Leopoldo C.; Godoy, Eduardo A. S.; Jones, Peter J. S.; Sales, Gilberto; Ferreira, Beatrice P.

    2011-04-01

    This article discusses the current problems and issues associated with the implementation of a National System of Marine Protected Areas in Brazil. MPA managers and higher governmental level authorities were interviewed about their perceptions of the implementation of a national MPA strategy and the recent changes in the institutional arrangement of government marine conservation agencies. Interviewees' narratives were generally pessimistic and the National System was perceived as weak, with few recognizable marine conservation outcomes on the ground. The following major flaws were identified: poor inter-institutional coordination of coastal and ocean governance; institutional crisis faced by the national government marine conservation agency; poor management within individual MPAs; problems with regional networks of marine protected areas; an overly bureaucratic management and administrative system; financial shortages creating structural problems and a disconnect between MPA policy and its delivery. Furthermore, a lack of professional motivation and a pessimistic atmosphere was encountered during many interviews, a malaise which we believe affects how the entire system is able to respond to crises. Our findings highlight the need for a better understanding of the role of `leadership' in the performance of socio-ecological systems (such as MPA networks), more effective official evaluation mechanisms, more localized audits of (and reforms if necessary to) Brazil's federal biodiversity conservation agency (ICMBio), and the need for political measures to promote state leadership and support. Continuing to focus on the designation of more MPAs whilst not fully addressing these issues will achieve little beyond fulfilling, on paper, Brazil's international marine biodiversity commitments.

  6. Marine Renewable Energy Seascape

    Directory of Open Access Journals (Sweden)

    Alistair G.L. Borthwick

    2016-03-01

    Full Text Available Energy production based on fossil fuel reserves is largely responsible for carbon emissions, and hence global warming. The planet needs concerted action to reduce fossil fuel usage and to implement carbon mitigation measures. Ocean energy has huge potential, but there are major interdisciplinary problems to be overcome regarding technology, cost reduction, investment, environmental impact, governance, and so forth. This article briefly reviews ocean energy production from offshore wind, tidal stream, ocean current, tidal range, wave, thermal, salinity gradients, and biomass sources. Future areas of research and development are outlined that could make exploitation of the marine renewable energy (MRE seascape a viable proposition; these areas include energy storage, advanced materials, robotics, and informatics. The article concludes with a sustainability perspective on the MRE seascape encompassing ethics, legislation, the regulatory environment, governance and consenting, economic, social, and environmental constraints. A new generation of engineers is needed with the ingenuity and spirit of adventure to meet the global challenge posed by MRE.

  7. Little effects on soil organic matter chemistry of density fractions after seven years of forest soil warming.

    Science.gov (United States)

    Schnecker, Jörg; Borken, Werner; Schindlbacher, Andreas; Wanek, Wolfgang

    2016-12-01

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and thereby increase the soil CO 2 efflux. Elevated decomposition rates might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. To investigate the effect of soil warming on functionally different soil organic matter pools, we here investigated the chemical and isotopic composition of bulk soil and three density fractions (free particulate organic matter, fPOM; occluded particulate organic matter, oPOM; and mineral associated organic matter, MaOM) of a C-rich soil from a long-term warming experiment in a spruce forest in the Austrian Alps. At the time of sampling, the soil in this experiment had been warmed during the snow-free period for seven consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO 2 release from the soil continued to be elevated by the warming treatment. Our results, which included organic carbon content, total nitrogen content, δ 13 C, Δ 14 C, δ 15 N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. Surprisingly, the differences in the three density fractions were mostly small and the direction of warming induced change was variable with fraction and soil depth. Warming led to reduced N content in topsoil oPOM and subsoil fPOM and to reduced relative abundance of N-bearing compounds in subsoil MaOM. Further, warming increased the δ 13 C of MaOM at both sampling depths, reduced the relative abundance of carbohydrates while it increased the relative abundance of lignins in subsoil oPOM. As the size of the functionally different SOM pools did not significantly change, we assume that the few and small

  8. Bet hedging in a warming ocean: predictability of maternal environment shapes offspring size variation in marine sticklebacks.

    Science.gov (United States)

    Shama, Lisa N S

    2015-12-01

    Bet hedging at reproduction is expected to evolve when mothers are exposed to unpredictable cues for future environmental conditions, whereas transgenerational plasticity (TGP) should be favoured when cues reliably predict the environment offspring will experience. Since climate predictions forecast an increase in both temperature and climate variability, both TGP and bet hedging are likely to become important strategies to mediate climate change effects. Here, the potential to produce variably sized offspring in both warming and unpredictable environments was tested by investigating whether stickleback (Gasterosteus aculeatus) mothers adjusted mean offspring size and within-clutch variation in offspring size in response to experimental manipulation of maternal thermal environment and predictability (alternating between ambient and elevated water temperatures). Reproductive output traits of F1 females were influenced by both temperature and environmental predictability. Mothers that developed at ambient temperature (17 °C) produced larger, but fewer eggs than mothers that developed at elevated temperature (21 °C), implying selection for different-sized offspring in different environments. Mothers in unpredictable environments had smaller mean egg sizes and tended to have greater within-female egg size variability, especially at 21 °C, suggesting that mothers may have dynamically modified the variance in offspring size to spread the risk of incorrectly predicting future environmental conditions. Both TGP and diversification influenced F2 offspring body size. F2 offspring reared at 21 °C had larger mean body sizes if their mother developed at 21 °C, but this TGP benefit was not present for offspring of 17 °C mothers reared at 17 °C, indicating that maternal TGP will be highly relevant for ocean warming scenarios in this system. Offspring of variable environment mothers were smaller but more variable in size than offspring from constant environment

  9. Citizen scientists reveal: Marine litter pollutes Arctic beaches and affects wild life.

    Science.gov (United States)

    Bergmann, Melanie; Lutz, Birgit; Tekman, Mine B; Gutow, Lars

    2017-12-15

    Recent data indicate accumulation areas of marine litter in Arctic waters and significant increases over time. Beaches on remote Arctic islands may be sinks for marine litter and reflect pollution levels of the surrounding waters particularly well. We provide the first quantitative data from surveys carried out by citizen scientists on six beaches of Svalbard. Litter quantities recorded by cruise tourists varied from 9-524gm -2 and were similar to those from densely populated areas. Plastics accounted for >80% of the overall litter, most of which originated from fisheries. Photographs provided by citizens show deleterious effects of beach litter on Arctic wildlife, which is already under strong pressure from global climate change. Our study highlights the potential of citizen scientists to provide scientifically valuable data on the pollution of sensitive remote ecosystems. The results stress once more that current legislative frameworks are insufficient to tackle the pollution of Arctic ecosystems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Respiratory control in aquatic insects dictates their vulnerability to global warming.

    Science.gov (United States)

    Verberk, Wilco C E P; Bilton, David T

    2013-10-23

    Forecasting species responses to climatic warming requires knowledge of how temperature impacts may be exacerbated by other environmental stressors, hypoxia being a principal example in aquatic systems. Both stressors could interact directly as temperature affects both oxygen bioavailability and ectotherm oxygen demand. Insufficient oxygen has been shown to limit thermal tolerance in several aquatic ectotherms, although, the generality of this mechanism has been challenged for tracheated arthropods. Comparing species pairs spanning four different insect orders, we demonstrate that oxygen can indeed limit thermal tolerance in tracheates. Species that were poor at regulating oxygen uptake were consistently more vulnerable to the synergistic effects of warming and hypoxia, demonstrating the importance of respiratory control in setting thermal tolerance limits.

  11. Middle Holocene marine flooding and human response in the south Yangtze coastal plain, East China

    Science.gov (United States)

    Wang, Zhanghua; Ryves, David B.; Lei, Shao; Nian, Xiaomei; Lv, Ye; Tang, Liang; Wang, Long; Wang, Jiehua; Chen, Jie

    2018-05-01

    Coastal flooding catastrophes have affected human societies on coastal plains around the world on several occasions in the past, and are threatening 21st century societies under global warming and sea-level rise. However, the role of coastal flooding in the interruption of the Neolithic Liangzhu culture in the lower Yangtze valley, East China coast has been long contested. In this study, we used a well-dated Neolithic site (the Yushan site) close to the present coastline to demonstrate a marine drowning event at the terminal stage of the Liangzhu culture and discuss its linkage to relative sea-level rise. We analysed sedimentology, chronology, organic elemental composition, diatoms and dinoflagellate cysts for several typical profiles at the Yushan site. The field and sedimentary data provided clear evidence of a palaeo-typhoon event that overwhelmed the Yushan site at ∼2560 BCE, which heralded a period of marine inundation and ecological deterioration at the site. We also infer an acceleration in sea-level rise at 2560-2440 BCE from the sedimentary records at Yushan, which explains the widespread signatures of coastal flooding across the south Yangtze coastal plain at that time. The timing of this mid-Holocene coastal flooding coincided with the sudden disappearance of the advanced and widespread Liangzhu culture along the lower Yangtze valley. We infer that extreme events and flooding accompanying accelerated sea-level rise were major causes of vulnerability for prehistoric coastal societies.

  12. A critical review of records of alien marine species from the Maltese Islands and surrounding waters (Central Mediterranean

    Directory of Open Access Journals (Sweden)

    M. SCIBERRAS

    2007-06-01

    Full Text Available An updated list of alien marine species recorded from the Maltese Islands and surrounding waters, compiled from scientific and ‘grey’ literature and from authenticated unpublished reports to the authors, is presented. The listed species are classified in one of four categories as regards establishment status: established, casual, invasive and questionable. Doubtful records are listed as ‘?’. A total of 48 species, including nine dubious ones, are included in the list. Of the accepted records, 64% are established, of which 15.4% are invasive, 18% are casual and 18% are questionable. The most represented groups are molluscs (14 species, fish (13 species and macrophytes (10 species. Six species are classified as invasive in Maltese waters: Lophocladia lallemandii, Womersleyella setacea, Caulerpa racemosa var. cylindracea, Percnon gibbesi, Fistularia commersonii and Sphoeroides pachygaster; impacts of some of these species on local ecosystems are discussed. Since the early 1900s, there has been an increasing trend in the number of alien marine species reported from the Maltese Islands. Transportation via shipping and in connection with aquaculture, as well as the range expansion of Lessepsian immigrants, appear to be the most common vectors for entry, accounting for 20%, 11% and 32% respectively of the alien species included in this review. The general warming trend of Mediterranean waters and increasing marine traffic may be facilitating the spread of warm-water Atlantic and Indo-Pacific species to the central Mediterranean, including the Maltese Islands.

  13. A Contribution by Ice Nuclei to Global Warming

    Science.gov (United States)

    Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Hou, Arthur Y.; Xie, Shaocheng; Lang, Stephen; Li, Xiaowen; Starr, David O.; Li, Xiaofan

    2009-01-01

    Ice nuclei (IN) significantly affect clouds via supercooled droplets, that in turn modulate atmospheric radiation and thus climate change. Since the IN effect is relatively strong in stratiform clouds but weak in convective ones, the overall effect depends on the ratio of stratiform to convective cloud amount. In this paper, 10 years of TRMM (Tropical Rainfall Measuring Mission) satellite data are analyzed to confirm that stratiform precipitation fraction increases with increasing latitude, which implies that the IN effect is stronger at higher latitudes. To quantitatively evaluate the IN effect versus latitude, large-scale forcing data from ten field campaigns are used to drive a CRM (cloud-resolving model) to generate longterm cloud simulations. As revealed in the simulations, the increase in the net downward radiative flux at the TOA (top of the atmosphere) from doubling the current IN concentrations is larger at higher latitude, which is attributed to the meridional tendency in the stratiform precipitation fraction. Surface warming from doubling the IN concentrations, based on the radiative balance of the globe, is compared with that from anthropogenic COZ . It is found that the former effect is stronger than the latter in middle and high latitudes but not in the Tropics. With regard to the impact of IN on global warming, there are two factors to consider: the radiative effect from increasing the IN concentration and the increase in IN concentration itself. The former relies on cloud ensembles and thus varies mainly with latitude. In contrast, the latter relies on IN sources (e.g., the land surface distribution) and thus varies not only with latitude but also longitude. Global desertification and industrialization provide clues on the geographic variation of the increase in IN concentration since pre-industrial times. Thus, their effect on global warming can be inferred and then be compared with observations. A general match in geographic and seasonal

  14. Acting green elicits a literal warm glow

    Science.gov (United States)

    Taufik, Danny; Bolderdijk, Jan Willem; Steg, Linda

    2015-01-01

    Environmental policies are often based on the assumption that people only act environmentally friendly if some extrinsic reward is implicated, usually money. We argue that people might also be motivated by intrinsic rewards: doing the right thing (such as acting environmentally friendly) elicits psychological rewards in the form of positive feelings, a phenomenon known as warm glow. Given the fact that people's psychological state may affect their thermal state, we expected that this warm glow could express itself quite literally: people who act environmentally friendly may perceive the temperature to be higher. In two studies, we found that people who learned they acted environmentally friendly perceived a higher temperature than people who learned they acted environmentally unfriendly. The underlying psychological mechanism pertains to the self-concept: learning you acted environmentally friendly signals to yourself that you are a good person. Together, our studies show that acting environmentally friendly can be psychologically rewarding, suggesting that appealing to intrinsic rewards can be an alternative way to encourage pro-environmental actions.

  15. Relating large-scale subsidence to convection development in Arctic mixed-phase marine stratocumulus

    Science.gov (United States)

    Young, Gillian; Connolly, Paul J.; Dearden, Christopher; Choularton, Thomas W.

    2018-02-01

    Large-scale subsidence, associated with high-pressure systems, is often imposed in large-eddy simulation (LES) models to maintain the height of boundary layer (BL) clouds. Previous studies have considered the influence of subsidence on warm liquid clouds in subtropical regions; however, the relationship between subsidence and mixed-phase cloud microphysics has not specifically been studied. For the first time, we investigate how widespread subsidence associated with synoptic-scale meteorological features can affect the microphysics of Arctic mixed-phase marine stratocumulus (Sc) clouds. Modelled with LES, four idealised scenarios - a stable Sc, varied droplet (Ndrop) or ice (Nice) number concentrations, and a warming surface (representing motion southwards) - were subjected to different levels of subsidence to investigate the cloud microphysical response. We find strong sensitivities to large-scale subsidence, indicating that high-pressure systems in the ocean-exposed Arctic regions have the potential to generate turbulence and changes in cloud microphysics in any resident BL mixed-phase clouds.Increased cloud convection is modelled with increased subsidence, driven by longwave radiative cooling at cloud top and rain evaporative cooling and latent heating from snow growth below cloud. Subsidence strengthens the BL temperature inversion, thus reducing entrainment and allowing the liquid- and ice-water paths (LWPs, IWPs) to increase. Through increased cloud-top radiative cooling and subsequent convective overturning, precipitation production is enhanced: rain particle number concentrations (Nrain), in-cloud rain mass production rates, and below-cloud evaporation rates increase with increased subsidence.Ice number concentrations (Nice) play an important role, as greater concentrations suppress the liquid phase; therefore, Nice acts to mediate the strength of turbulent overturning promoted by increased subsidence. With a warming surface, a lack of - or low - subsidence

  16. Methods of patient warming during abdominal surgery.

    Directory of Open Access Journals (Sweden)

    Li Shao

    Full Text Available BACKGROUND: Keeping abdominal surgery patients warm is common and warming methods are needed in power outages during natural disasters. We aimed to evaluate the efficacy of low-cost, low-power warming methods for maintaining normothermia in abdominal surgery patients. METHODS: Patients (n = 160 scheduled for elective abdominal surgery were included in this prospective clinical study. Five warming methods were applied: heated blood transfusion/fluid infusion vs. unheated; wrapping patients vs. not wrapping; applying moist dressings, heated or not; surgical field rinse heated or not; and applying heating blankets or not. Patients' nasopharyngeal and rectal temperatures were recorded to evaluate warming efficacy. Significant differences were found in mean temperatures of warmed patients compared to those not warmed. RESULTS: When we compared temperatures of abdominal surgery patient groups receiving three specific warming methods with temperatures of control groups not receiving these methods, significant differences were revealed in temperatures maintained during the surgeries between the warmed groups and controls. DISCUSSION: The value of maintaining normothermia in patients undergoing abdominal surgery under general anesthesia is accepted. Three effective economical and practically applicable warming methods are combined body wrapping and heating blanket; combined body wrapping, heated moist dressings, and heating blanket; combined body wrapping, heated moist dressings, and warmed surgical rinse fluid, with or without heating blanket. These methods are practically applicable when low-cost method is indeed needed.

  17. Global warming and obesity: a systematic review.

    Science.gov (United States)

    An, R; Ji, M; Zhang, S

    2018-02-01

    Global warming and the obesity epidemic are two unprecedented challenges mankind faces today. A literature search was conducted in the PubMed, Web of Science, EBSCO and Scopus for articles published until July 2017 that reported findings on the relationship between global warming and the obesity epidemic. Fifty studies were identified. Topic-wise, articles were classified into four relationships - global warming and the obesity epidemic are correlated because of common drivers (n = 21); global warming influences the obesity epidemic (n = 13); the obesity epidemic influences global warming (n = 13); and global warming and the obesity epidemic influence each other (n = 3). We constructed a conceptual model linking global warming and the obesity epidemic - the fossil fuel economy, population growth and industrialization impact land use and urbanization, motorized transportation and agricultural productivity and consequently influences global warming by excess greenhouse gas emission and the obesity epidemic by nutrition transition and physical inactivity; global warming also directly impacts obesity by food supply/price shock and adaptive thermogenesis, and the obesity epidemic impacts global warming by the elevated energy consumption. Policies that endorse deployment of clean and sustainable energy sources, and urban designs that promote active lifestyles, are likely to alleviate the societal burden of global warming and obesity. © 2017 World Obesity Federation.

  18. Ice nuclei in marine air: biogenic particles or dust?

    Directory of Open Access Journals (Sweden)

    S. M. Burrows

    2013-01-01

    Full Text Available Ice nuclei impact clouds, but their sources and distribution in the atmosphere are still not well known. Particularly little attention has been paid to IN sources in marine environments, although evidence from field studies suggests that IN populations in remote marine regions may be dominated by primary biogenic particles associated with sea spray. In this exploratory model study, we aim to bring attention to this long-neglected topic and identify promising target regions for future field campaigns. We assess the likely global distribution of marine biogenic ice nuclei using a combination of historical observations, satellite data and model output. By comparing simulated marine biogenic immersion IN distributions and dust immersion IN distributions, we predict strong regional differences in the importance of marine biogenic IN relative to dust IN. Our analysis suggests that marine biogenic IN are most likely to play a dominant role in determining IN concentrations in near-surface-air over the Southern Ocean, so future field campaigns aimed at investigating marine biogenic IN should target that region. Climate-related changes in the abundance and emission of biogenic marine IN could affect marine cloud properties, thereby introducing previously unconsidered feedbacks that influence the hydrological cycle and the Earth's energy balance. Furthermore, marine biogenic IN may be an important aspect to consider in proposals for marine cloud brightening by artificial sea spray production.

  19. Increasing occurrence of cold and warm extremes during the recent global warming slowdown.

    Science.gov (United States)

    Johnson, Nathaniel C; Xie, Shang-Ping; Kosaka, Yu; Li, Xichen

    2018-04-30

    The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.

  20. Competition between core and periphery-based processes in warm convective clouds – from invigoration to suppression

    OpenAIRE

    G. Dagan; I. Koren; O. Altaratz

    2015-01-01

    How do changes in the amount and properties of aerosol affect warm clouds? Recent studies suggest that they have opposing effects. Some suggest that an increase in aerosol loading leads to enhanced evaporation and therefore smaller clouds, whereas other studies suggest clouds' invigoration. In this study, using an axisymmetric bin-microphysics cloud model, we propose a theoretical scheme that analyzes the evolution of key processes in warm clouds, under different aerosol loa...

  1. G-warm inflation

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Ramón, E-mail: ramon.herrera@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Casilla 4059, Valparaíso (Chile)

    2017-05-01

    A warm inflationary universe in the context of Galileon model or G-model is studied. Under a general formalism we study the inflationary dynamics and the cosmological perturbations considering a coupling of the form G (φ, X )= g (φ) X . As a concrete example, we consider an exponential potential together with the cases in which the dissipation and Galilean coefficients are constants. Also, we study the weak regime given by the condition R <1+3 gH φ-dot , and the strong regime in which 1< R +3 gH φ-dot . Additionally, we obtain constraints on the parameters during the evolution of G-warm inflation, assuming the condition for warm inflation in which the temperature T > H , the conditions or the weak and strong regimes, together with the consistency relation r = r ( n {sub s} ) from Planck data.

  2. [Research advances in ecological stoichiometry of marine plankton].

    Science.gov (United States)

    Chen, Lei; Li, Chao-Lun

    2014-10-01

    Ecological stoichiometry can be simply defined as: The biology of elements from molecules to the biosphere, which spans all levels of the environment and of the life. It's a new idea to build a unified theory and becomes an inevitable trend to develop the ecological science. Marine ecosystems, which contribute to 50% of the biosphere biomass, are the important component of the global biogeochemical cycles. Marine zooplankton plays an important role in the material circulation and energy flow of marine ecosystems and serves as a connecting link between the preceding and the following in a more precise understanding of the key elemental cycles. However, research on ecological stoichiometry of marine plankton is fragmentary and rare. This article summarized the ecological phenomena and mechanisms of limiting elements affecting marine plankton, the response of biochemical substances to nutrition limitation, and the food chain transmission and feedback of nutrition limitation. Meanwhile, we also put forward some perspectives for future research of ecological stoichiometry of plankton in China' s seas.

  3. A novel approach to the assess biotic oxygen consumption in marine sediment communities

    Science.gov (United States)

    Baranov, Victor; Queiros, Ana; Widdicombe, Stephen; Stephens, Nick; Lessin, Gennadi; Krause, Stefan; Lewandowski, Joerg

    2016-04-01

    Bioturbation , the mixing of the sediment matrix by burrowing animals impacts sediment metabolism, including respiration through redistribution of particulate organics, changes in bacterial biota diversity and acitivity, as well as via burrowing fauna's own metabolism. Bioturbation, reflecting faunal activity, is also a proxy for the general sedimentary ecosystem health, and can be impacted by many of emerging marine environmental issues such as ocean acidification, warming and the occurrence of heat waves. Sedimentary oxygen consumption is often taken as a proxy for the activity of bioturbating fauna, but determining baselines can be difficult because of the confounding effects of other fauna and microbes present in sediments, as well as irnorganic processes that consume oxygen. Limitations therefore exist in current methodologies, and numerous confounding factors are hampering progress in this area. Here, we present novel method for the assessment of sediment respiration which is expected to be affected only by the biogenic oxygen consumption (namely aerobic respiration). As long as tracer reduction "immune" to inorganic oxygen consumption, so that measurements using this method can be used, alongside traditional methods, to decouple biological respiration from inorganic oxygen consumption reactions. The tracer is easily detectable, non-toxic and can be applied in systems with constant oxygen supply. The latter allow for incubation without the need to to work with unsealed experimental units, bringing procedural advantage over traditional methods. Consequently assessed bioturbating fauna is not exposed to hypoxia and additional stress. Here, we had applied system for the first time to investigate impacts of a common North-Atlantic bioturbator, the brittle star Amphiura filiformis, - on respiration of marine sediments. Two series of experiments were conducted with animals and sediment collected from Cawsand Bay, Plymouth, UK Preliminary results show that tracer

  4. The Pelagos Sanctuary for Mediterranean marine mammals: Marine Protected Area (MPA) or marine polluted area? The case study of the striped dolphin (Stenella coeruleoalba).

    Science.gov (United States)

    Fossi, Maria Cristina; Panti, Cristina; Marsili, Letizia; Maltese, Silvia; Spinsanti, Giacomo; Casini, Silvia; Caliani, Ilaria; Gaspari, Stefania; Muñoz-Arnanz, Juan; Jimenez, Begoña; Finoia, Maria Grazia

    2013-05-15

    The concurrence of man-made pressures on cetaceans in the Mediterranean Sea is potentially affecting population stability and marine biodiversity. This needs to be proven for the only pelagic marine protected area in the Mediterranean Sea: the Pelagos Sanctuary for Mediterranean Marine Mammals. Here we applied a multidisciplinary tool, using diagnostic markers elaborated in a statistical model to rank toxicological stress in Mediterranean cetaceans. As a case study we analyzed persistent, bioaccumulative and toxic chemicals combined with a wide range of diagnostic markers of exposure to anthropogenic contaminants and genetic variation as marker of genetic erosion in striped dolphin (Stenella coeruleoalba) skin biopsies. Finally, a statistical model was applied to obtain a complete toxicological profile of the striped dolphin in the Pelagos Sanctuary and other Mediterranean areas (Ionian Sea and Strait of Gibraltar). Here we provide the first complete evidence of the toxicological stress in cetaceans living in Pelagos Sanctuary. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Mechanisms of microbial destabilization of soil C shifts over decades of warming

    Science.gov (United States)

    DeAngelis, K.; Pold, G.; Chowdhury, P. R.; Schnabel, J.; Grandy, S.; Melillo, J. M.

    2017-12-01

    species. Together, these data suggest that after decades of warming both direct kinetic effects and indirect effects of altered substrate availability are affecting microbial ecology and evolution in ways that conspire to destabilize soil organic matter.

  6. Authropogenic Warming in North Alaska?.

    Science.gov (United States)

    Michaels, Patrick J.; Sappington, David E.; Stooksbury, David E.

    1988-09-01

    Using permafrost boreholes, Lachenbruch and Marshall recently reported evidence for a 2°-4°C warming in North Alaska occurring at some undetermined time during the last century. Popular accounts suggest their findings are evidence for anthropogenic warming caused by trace gases. Analyses of North Alaskan 1000-500 mb thickness onwards back to 1948 indicate that the warming was prior to that date. Relatively sparse thermometric data for the early twentieth century from Jones et al. are too noisy to support any trend since the data record begins in 1910, or to apply to any subperiod of climatic significance. Any warming detected from the permafrost record therefore occurred before the major emissions of thermally active trace gases.

  7. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma).

    Science.gov (United States)

    Wolfe, Kennedy; Dworjanyn, Symon A; Byrne, Maria

    2013-09-01

    Co-occurring ocean warming, acidification and reduced carbonate mineral saturation have significant impacts on marine biota, especially calcifying organisms. The effects of these stressors on development and calcification in newly metamorphosed juveniles (ca. 0.5 mm test diameter) of the intertidal sea urchin Heliocidaris erythrogramma, an ecologically important species in temperate Australia, were investigated in context with present and projected future conditions. Habitat temperature and pH/pCO2 were documented to place experiments in a biologically and ecologically relevant context. These parameters fluctuated diurnally up to 10 °C and 0.45 pH units. The juveniles were exposed to three temperature (21, 23 and 25 °C) and four pH (8.1, 7.8, 7.6 and 7.4) treatments in all combinations, representing ambient sea surface conditions (21 °C, pH 8.1; pCO2 397; ΩCa 4.7; ΩAr 3.1), near-future projected change (+2-4 °C, -0.3-0.5 pH units; pCO2 400-1820; ΩCa 5.0-1.6; ΩAr 3.3-1.1), and extreme conditions experienced at low tide (+4 °C, -0.3-0.7 pH units; pCO2 2850-2967; ΩCa 1.1-1.0; ΩAr 0.7-0.6). The lowest pH treatment (pH 7.4) was used to assess tolerance levels. Juvenile survival and test growth were resilient to current and near-future warming and acidification. Spine development, however, was negatively affected by near-future increased temperature (+2-4 °C) and extreme acidification (pH 7.4), with a complex interaction between stressors. Near-future warming was the more significant stressor. Spine tips were dissolved in the pH 7.4 treatments. Adaptation to fluctuating temperature-pH conditions in the intertidal may convey resilience to juvenile H. erythrogramma to changing ocean conditions, however, ocean warming and acidification may shift baseline intertidal temperature and pH/pCO2 to levels that exceed tolerance limits. © 2013 John Wiley & Sons Ltd.

  8. The Role of Affective and Cognitive Individual Differences in Social Perception.

    Science.gov (United States)

    Aquino, Antonio; Haddock, Geoffrey; Maio, Gregory R; Wolf, Lukas J; Alparone, Francesca R

    2016-06-01

    Three studies explored the connection between social perception processes and individual differences in the use of affective and cognitive information in relation to attitudes. Study 1 revealed that individuals high in need for affect (NFA) accentuated differences in evaluations of warm and cold traits, whereas individuals high in need for cognition (NFC) accentuated differences in evaluations of competent and incompetent traits. Study 2 revealed that individual differences in NFA predicted liking of warm or cold targets, whereas individual differences in NFC predicted perceptions of competent or incompetent targets. Furthermore, the effects of NFA and NFC were independent of structural bases and meta-bases of attitudes. Study 3 revealed that differences in the evaluation of warm and cold traits mediated the effects of NFA and NFC on liking of targets. The implications for social perception processes and for individual differences in affect-cognition are discussed. © 2016 by the Society for Personality and Social Psychology, Inc.

  9. Responses of Ecosystem CO2 Fluxes to Short-Term Experimental Warming and Nitrogen Enrichment in an Alpine Meadow, Northern Tibet Plateau

    Science.gov (United States)

    Shi, Peili; Jiang, Jing; Song, Minghua; Xiong, Dingpeng; Ma, Weiling; Fu, Gang; Zhang, Xianzhou; Shen, Zhenxi

    2013-01-01

    Over the past decades, the Tibetan Plateau has experienced pronounced warming, yet the extent to which warming will affect alpine ecosystems depends on how warming interacts with other influential global change factors, such as nitrogen (N) deposition. A long-term warming and N manipulation experiment was established to investigate the interactive effects of warming and N deposition on alpine meadow. Open-top chambers were used to simulate warming. N addition, warming, N addition × warming, and a control were set up. In OTCs, daytime air and soil temperature were warmed by 2.0°C and 1.6°C above ambient conditions, but soil moisture was decreased by 4.95 m3 m−3. N addition enhanced ecosystem respiration (Reco); nevertheless, warming significantly decreased Reco. The decline of Reco resulting from warming was cancelled out by N addition in late growing season. Our results suggested that N addition enhanced Reco by increasing soil N availability and plant production, whereas warming decreased Reco through lowering soil moisture, soil N supply potential, and suppression of plant activity. Furthermore, season-specific responses of Reco indicated that warming and N deposition caused by future global change may have complicated influence on carbon cycles in alpine ecosystems. PMID:24459432

  10. Assessment of auditory impression of the coolness and warmness of automotive HVAC noise.

    Science.gov (United States)

    Nakagawa, Seiji; Hotehama, Takuya; Kamiya, Masaru

    2017-07-01

    Noise induced by a heating, ventilation and air conditioning (HVAC) system in a vehicle is an important factor that affects the comfort of the interior of a car cabin. Much effort has been devoted to reduce noise levels, however, there is a need for a new sound design that addresses the noise problem from a different point of view. In this study, focusing on the auditory impression of automotive HVAC noise concerning coolness and warmness, psychoacoustical listening tests were performed using a paired comparison technique under various conditions of room temperature. Five stimuli were synthesized by stretching the spectral envelopes of recorded automotive HVAC noise to assess the effect of the spectral centroid, and were presented to normal-hearing subjects. Results show that the spectral centroid significantly affects the auditory impression concerning coolness and warmness; a higher spectral centroid induces a cooler auditory impression regardless of the room temperature.

  11. Strong Delayed Interactive Effects of Metal Exposure and Warming: Latitude-Dependent Synergisms Persist Across Metamorphosis.

    Science.gov (United States)

    Debecker, Sara; Dinh, Khuong V; Stoks, Robby

    2017-02-21

    As contaminants are often more toxic at higher temperatures, predicting their impact under global warming remains a key challenge for ecological risk assessment. Ignoring delayed effects, synergistic interactions between contaminants and warming, and differences in sensitivity across species' ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and low-latitude populations. By integrating these mechanisms into a single study, we could identify two novel patterns. First, during exposure zinc did not affect survival, whereas it induced mild to moderate postexposure mortality in the larval stage and at metamorphosis, and very strongly reduced adult lifespan. This severe delayed effect across metamorphosis was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies. These results highlight that a more complete life-cycle approach that incorporates the possibility of delayed interactions between contaminants and warming in a geographical context is crucial for a more realistic risk assessment in a warming world.

  12. The present and future of microplastic pollution in the marine environment

    International Nuclear Information System (INIS)

    Ivar do Sul, Juliana A.; Costa, Monica F.

    2014-01-01

    Recently, research examining the occurrence of microplastics in the marine environment has substantially increased. Field and laboratory work regularly provide new evidence on the fate of microplastic debris. This debris has been observed within every marine habitat. In this study, at least 101 peer-reviewed papers investigating microplastic pollution were critically analysed (Supplementary material). Microplastics are commonly studied in relation to (1) plankton samples, (2) sandy and muddy sediments, (3) vertebrate and invertebrate ingestion, and (4) chemical pollutant interactions. All of the marine organism groups are at an eminent risk of interacting with microplastics according to the available literature. Dozens of works on other relevant issues (i.e., polymer decay at sea, new sampling and laboratory methods, emerging sources, externalities) were also analysed and discussed. This paper provides the first in-depth exploration of the effects of microplastics on the marine environment and biota. The number of scientific publications will increase in response to present and projected plastic uses and discard patterns. Therefore, new themes and important approaches for future work are proposed. Highlights: • >100 works on microplastic marine pollution were reviewed and discussed. • Microplastics (fibres, fragments, pellets) are widespread in oceans and sediments. • Microplastics interact with POPs and contaminate the marine biota when ingested. • The marine food web might be affected by microplastic biomagnification. • Urgently needed integrated approaches are suggested to different stakeholders. -- Microplastics, which are ubiquitous in marine habitats, affect all facets of the environment and continuously cause unexpected consequences for the environment and its biota

  13. Responses of lichen communities to 18 years of natural and experimental warming.

    Science.gov (United States)

    Alatalo, Juha M; Jägerbrand, Annika K; Chen, Shengbin; Molau, Ulf

    2017-07-01

    Climate change is expected to have major impacts on high alpine and arctic ecosystems in the future, but empirical data on the impact of long-term warming on lichen diversity and richness are sparse. This study report the effects of 18 years of ambient and experimental warming on lichens and vascular plant cover in two alpine plant communities, a dry heath with sparse canopy cover (54 %) and a mesic meadow with a more developed (67 %) canopy cover, in sub-arctic Sweden. The effects of long-term passive experimental warming using open top chambers (OTCs) on lichens and total vascular plant cover, and the impact of plant cover on lichen community parameters, were analysed. Between 1993 and 2013, mean annual temperature increased about 2 °C. Both site and experimental warming had a significant effect on cover, species richness, effective number of species evenness of lichens, and total plant canopy cover. Lichen cover increased in the heath under ambient conditions, and remained more stable under experimental warming. The negative effect on species richness and effective number of species was driven by a decrease in lichens under experimental warming in the meadow. Lichen cover, species richness, effective number of species evenness were negatively correlated with plant canopy cover. There was a significant negative impact on one species and a non-significant tendency of lower abundance of the most common species in response to experimental warming. The results from the long-term warming study imply that arctic and high alpine lichen communities are likely to be negatively affected by climate change and an increase in plant canopy cover. Both biotic and abiotic factors are thus important for future impacts of climate change on lichens. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. Likely impact of global warming on developing countries

    International Nuclear Information System (INIS)

    Topping, J.

    1992-01-01

    Over the last couple of years there has been mounting evidence that the human costs of rapid global warming are likely to be concentrated especially in developing countries and that some countries may be gravely affected. Climate impacts research has until recently been focused principally on a handful of more affluent countries, but studies of climate impacts on developing countries are now under way and preliminary results are likely to be available for many areas of the world within the next year

  15. Marine Corps Readiness: The Costs of First-Term Dependency

    Science.gov (United States)

    2000-01-01

    Marines always get the job done, and the Marines are the masters of unfailing alchemy which converts unoriented youths into proud, self-reliant...tempo, marriage, stress, pregnancy, divorce, finances , dependent 27 services, substance abuse, and other factors as they affect individual enlistees...especially in localities with high off base housing costs. Finances and housing problems are at the root of many other problems which service

  16. How Will Climate Warming Affect Non-Native Pumpkinseed Lepomis gibbosus Populations in the U.K.?

    Directory of Open Access Journals (Sweden)

    Grzegorz Zięba

    Full Text Available Of the non-native fishes introduced to the U.K., the pumpkinseed is one of six species predicted to benefit from the forecasted climate warming conditions. To demonstrate the potential response of adults and their progeny to a water temperature increase, investigations of parental pumpkinseed acclimatization, reproduction and YOY over-wintering were carried out in outdoor experimental ponds under ambient and elevated water temperature regimes. No temperature effects were observed on either adult survivorship and growth, and none of the assessed reproductive activity variables (total spawning time, spawning season length, number of spawning bouts appeared to be responsible for the large differences observed in progeny number and biomass. However, it was demonstrated in a previous study [Zięba G. et al., 2010] that adults in the heated ponds began spawning earlier than those of the ambient ponds. Ambient ponds produced 2.8× more progeny than the heated ponds, but these progeny were significantly smaller, probably due to their late hatching date, and subsequently suffered very high mortality over the first winter. Pumpkinseed in the U.K. will clearly benefit from climate warming through earlier seasonal reproduction, resulting in larger progeny going into winter, and as a result, higher over-winter survivorship would be expected relative to that which occurs under the present climatic regime.

  17. Channel Response To Global Warming In East-Central North America: Using The Hypsithermal As A Guide

    Science.gov (United States)

    Springer, G. S.; Rowe, H. D.; Cocina, F. G.

    2006-12-01

    Average global temperatures during the mid-Holocene Hypsithermal Interval were as much as 2° C warmer than present. The Hypsithermal is recorded in sediments of a West Virginia, USA cave as less negative values of &δ13C. The sediments were deposited by floodwaters of the adjacent Greenbrier River. Bat bones and other evidence of subaerial exposure between floods are found throughout silt-dominated sediments, except during the Hypsithermal. Sediments of the Hypsithermal are primarily clays containing occasional marine fossils and insoluble particles liberated from the host limestone during a period of sustained backflooding. Blockage of three widely separated outlets is required for backflooding, which would have occurred if the riverbed aggraded during the Hypsithermal. Warm, dry periods, such as Hypsithermal, are known to produce aggradation of channel beds. The riverbed may have risen as much as 4 m in this case, which is the maximum height of clay above the present bedrock-floored riverbed. Global warming may return the Earth to Hypsithermal conditions and lead to renewed channel infilling. Aggradation of the magnitude inferred here would leave regional floodplains and towns susceptible to frequent flooding. Societal and economic costs associated with living in close association with streams and rivers would significantly increase and channel infrastructure would be disrupted. Global warming has the potential to fundamentally alter society's relationship to the physical properties of river channels in Eastern North America.

  18. Predicting the impacts of anthropogenic disturbances on marine populations

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; van Beest, Floris; Grimm, Volker

    Marine ecosystems are increasingly exposed to anthropogenic disturbances that cause animals to change behavior and move away from potential foraging grounds. Here we present a process-based modeling framework for assessing population consequences of such sub-lethal behavioral effects. It builds...... on how disturbances influence animal movements, and how this in turn affect their foraging and energetics. The animals’ tendency to move away from disturbances is directly related to the experienced noise level. The reduced foraging in noisy areas affects the animals’ energy budget, fitness...... that determine animal fitness, are expected to have high predictive power in novel environments, making them ideal tools for marine management....

  19. Soil warming increased whole-tree water use of Pinus cembra at the treeline in the Central Tyrolean Alps.

    Science.gov (United States)

    Wieser, Gerhard; Grams, Thorsten E E; Matyssek, Rainer; Oberhuber, Walter; Gruber, Andreas

    2015-03-01

    This study quantified the effect of soil warming on sap flow density (Qs) of Pinus cembra L. at the treeline in the Central Tyrolean Alps. To enhance soil temperature we installed a transparent roof construction above the forest floor around six trees. Six other trees served as controls in the absence of any manipulation. Roofing enhanced growing season mean soil temperature by 1.6, 1.3 and 1.0 °C at 5, 10 and 20 cm soil depth, respectively, while soil water availability was not affected. Sap flow density (using Granier-type thermal dissipation probes) and environmental parameters were monitored throughout three growing seasons. During the first year of treatment, no warming effect was detected on Qs. However, soil warming caused Qs to increase significantly by 11 and 19% above levels in control trees during the second and third year, respectively. This effect appeared to result from warming-induced root production, a reduction in viscosity and perhaps an increase also in root hydraulic conductivity. Hardly affected were leaf-level net CO2 uptake rate and conductance for water vapour, so that water-use efficiency stayed unchanged as confirmed by needle δ(13)C analysis. We conclude that tree water loss will increase with soil warming, which may alter the water balance within the treeline ecotone of the Central Austrian Alps in a future warming environment. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Developing a module for estimating climate warming effects on hydropower pricing in California

    International Nuclear Information System (INIS)

    Guégan, Marion; Uvo, Cintia B.; Madani, Kaveh

    2012-01-01

    Climate warming is expected to alter hydropower generation in California through affecting the annual stream-flow regimes and reducing snowpack. On the other hand, increased temperatures are expected to increase hydropower demand for cooling in warm periods while decreasing demand for heating in winter, subsequently altering the annual hydropower pricing patterns. The resulting variations in hydropower supply and pricing regimes necessitate changes in reservoir operations to minimize the revenue losses from climate warming. Previous studies in California have only explored the effects of hydrological changes on hydropower generation and revenues. This study builds a long-term hydropower pricing estimation tool, based on artificial neural network (ANN), to develop pricing scenarios under different climate warming scenarios. Results suggest higher average hydropower prices under climate warming scenarios than under historical climate. The developed tool is integrated with California's Energy-Based Hydropower Optimization Model (EBHOM) to facilitate simultaneous consideration of climate warming on hydropower supply, demand and pricing. EBHOM estimates an additional 5% drop in annual revenues under a dry warming scenario when climate change impacts on pricing are considered, with respect to when such effects are ignored, underlining the importance of considering changes in hydropower demand and pricing in future studies and policy making. - Highlights: ► Addressing the major gap in previous climate change and hydropower studies in California. ► Developing an ANN-based long-term hydropower price estimation tool. ► Estimating climate change effects on hydropower demand and pricing in California. ► Investigating the sensitivity of hydropower operations to future price changes. ► Underlining the importance of consideration of climate change impacts on electricity pricing.

  1. Marine Biodiversity in Temperate Western Australia: Multi-Taxon Surveys of Minden and Roe Reefs

    Directory of Open Access Journals (Sweden)

    Zoe Richards

    2016-03-01

    Full Text Available A growing body of evidence indicates that temperate marine ecosystems are being tropicalised due to the poleward extension of tropical species. Such climate mediated changes in species distribution patterns have the potential to profoundly alter temperate communities, as this advance can serve to push temperate taxa, many of which are southern Australian endemics, southward. These changes can lead to cascading effects for the biodiversity and function of coastal ecosystems, including contraction of ranges/habitats of sensitive cool water species. Hence there is growing concern for the future of Australia’s temperate marine biodiversity. Here we examine the diversity and abundance of marine flora and fauna at two reefs near Perth’s metropolitan area—Minden Reef and Roe Reef. We report the presence of 427 species of marine flora and fauna from eight taxon groups occurring in the Perth metropolitan area; at least three species of which appear to be new to science. Our data also extends the known range of 15 species, and in numerous instances, thousands of kilometres south from the Kimberley or Pilbara and verifies that tropicalisation of reef communities in the Perth metropolitan area is occurring. We report the presence of 24 species endemic to south-west Australia that may be at risk of range contractions with continued ocean warming. The results of these surveys add to our knowledge of local nearshore marine environments in the Perth metropolitan area and support the growing body of evidence that indicates a diverse and regionally significant marine fauna occurs in temperate Western Australia. Regular, repeated survey work across seasons is important in order to thoroughly document the status of marine biodiversity in this significant transition zone.

  2. Soil warming alters nitrogen cycling in a New England forest: implications for ecosystem function and structure.

    Science.gov (United States)

    Butler, S M; Melillo, J M; Johnson, J E; Mohan, J; Steudler, P A; Lux, H; Burrows, E; Smith, R M; Vario, C L; Scott, L; Hill, T D; Aponte, N; Bowles, F

    2012-03-01

    Global climate change is expected to affect terrestrial ecosystems in a variety of ways. Some of the more well-studied effects include the biogeochemical feedbacks to the climate system that can either increase or decrease the atmospheric load of greenhouse gases such as carbon dioxide and nitrous oxide. Less well-studied are the effects of climate change on the linkages between soil and plant processes. Here, we report the effects of soil warming on these linkages observed in a large field manipulation of a deciduous forest in southern New England, USA, where soil was continuously warmed 5°C above ambient for 7 years. Over this period, we have observed significant changes to the nitrogen cycle that have the potential to affect tree species composition in the long term. Since the start of the experiment, we have documented a 45% average annual increase in net nitrogen mineralization and a three-fold increase in nitrification such that in years 5 through 7, 25% of the nitrogen mineralized is then nitrified. The warming-induced increase of available nitrogen resulted in increases in the foliar nitrogen content and the relative growth rate of trees in the warmed area. Acer rubrum (red maple) trees have responded the most after 7 years of warming, with the greatest increases in both foliar nitrogen content and relative growth rates. Our study suggests that considering species-specific responses to increases in nitrogen availability and changes in nitrogen form is important in predicting future forest composition and feedbacks to the climate system.

  3. A New Wave of Permafrost Warming in the Alaskan Interior?

    Science.gov (United States)

    Romanovsky, V. E.; Nicolsky, D.; Cable, W.; Kholodov, A. L.; Panda, S. K.

    2017-12-01

    The impact of climate warming on permafrost and the potential of climate feedbacks resulting from permafrost thawing have recently received a great deal of attention. Ground temperatures are a primary indicator of permafrost stability. Many of the research sites in our permafrost network are located along the North American Arctic Permafrost-Ecological Transect that spans all permafrost zones in Alaska. Most of the sites in Alaska show substantial warming of permafrost since the 1980s. The magnitude of warming has varied with location, but was typically from 0.5 to 3°C. However, this warming was not linear in time and not spatially uniform. In some regions this warming even may be reversed and a slight recent cooling of permafrost has been observed recently at some locations. The Interior of Alaska is one of such regions where a slight permafrost cooling was observed starting in the late 1990s that has continued through the 2000s and in the beginning of the 2010s. The cooling has followed the substantial increase in permafrost temperatures documented for the Interior during the 1980s and 1990s. Permafrost temperatures at 15 m depth increased here by 0.3 to 0.6°C between 1983 and 1996. In most locations they reached their maximum in the second half of the 1990s. Since then, the permafrost temperatures started to decrease slowly and by 2013 this decrease at some locations was as much as 0.3°C at 15 m depth. There are some indications that the warming trend in the Alaskan Interior permafrost resumed during the last four years. By 2016, new record highs for the entire period of measurements of permafrost temperatures at 15 m depth were recorded at several locations. The latest observed permafrost warming in the Interior was combined with higher than normal summer precipitations. This combination has triggered near-surface permafrost degradation in many locations with adverse consequences for the ground surface stability affecting ecosystems and infrastructure. In

  4. Fewer bacteria in warm water

    International Nuclear Information System (INIS)

    Bagh, Lene

    1999-01-01

    There has been many suggestions to how the ideal warm water system should be. Particularly whether warm water containers or heat exchangers in larger houses are the best solutions in order to maintain a water quality with low levels of bacteria. In an investigation made by Statens Byggeforskningsinstitutt (Denmark) regarding ''Bacterial growth in warm water installations with heat exchangers'' there were used several heat exchangers made by Gjelsted and Lund of three of which had HWAT heating cables. The bacterial content was low from these exchangers compared to exchangers with circulation. The article presents promising results from a study where the method was investigated over a longer period in two new larger warm water systems. Some energy conservation aspects are discussed

  5. Evaluation of mangrove ecosystem of India for assessing its vulnerability to projected climatic changes

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.; Komarpant, D.S.

    Mangrove habitats of ecological and socio-economic significance, forms thrust area under coastal zone management programme of the country. Global warming is expected to result in the global sea level rise affecting various marine habitats in the low...

  6. Thermal-Work Strain and Energy Expenditure during Marine Rifle Squad Operations in Afghanistan (August 2013)

    Science.gov (United States)

    2015-08-10

    28th and 29th as well as non-mission activities on the 30th and 31st of August 2013. The environmental conditions the Marines operated in were warm and...expenditure in healthy individuals. The American Journal of Clinical Nutrition , 51(2): 241-247. 12. Minard D, Belding HS, and Kingston JR (1957...expenditure in free-living humans by using doubly labeled water. The Journal of Nutrition , 118(11): 1278-1289. 18. Tharion WJ, Lieberman HR

  7. Ocean acidification and marine microorganisms: responses and consequences

    Directory of Open Access Journals (Sweden)

    Surajit Das

    2015-10-01

    Full Text Available Ocean acidification (OA is one of the global issues caused by rising atmospheric CO2. The rising pCO2 and resulting pH decrease has altered ocean carbonate chemistry. Microbes are key components of marine environments involved in nutrient cycles and carbon flow in marine ecosystems. However, these marine microbes and the microbial processes are sensitive to ocean pH shift. Thus, OA affects the microbial diversity, primary productivity and trace gases emission in oceans. Apart from that, it can also manipulate the microbial activities such as quorum sensing, extracellular enzyme activity and nitrogen cycling. Short-term laboratory experiments, mesocosm studies and changing marine diversity scenarios have illustrated undesirable effects of OA on marine microorganisms and ecosystems. However, from the microbial perspective, the current understanding on effect of OA is based mainly on limited experimental studies. It is challenging to predict response of marine microbes based on such experiments for this complex process. To study the response of marine microbes towards OA, multiple approaches should be implemented by using functional genomics, new generation microscopy, small-scale interaction among organisms and/or between organic matter and organisms. This review focuses on the response of marine microorganisms to OA and the experimental approaches to investigate the effect of changing ocean carbonate chemistry on microbial mediated processes.

  8. ENSO related decadal scale climate variability from the Indo-Pacific Warm Pool

    NARCIS (Netherlands)

    Brijker, J.M.; Jung, S.J.A.; Ganssen, G.M.; Bickert, T.; Kroon, D.

    2006-01-01

    The El Niño-Southern Oscillation (ENSO) is a climatic phenomenon that affects socio-economical welfare in vast areas in the world. A continuous record of Holocene ENSO related climate variability of the Indo-Pacific Warm pool (IPWP) is constructed on the basis of stable oxygen isotopes in shells of

  9. Recently amplified arctic warming has contributed to a continual global warming trend

    Science.gov (United States)

    Huang, Jianbin; Zhang, Xiangdong; Zhang, Qiyi; Lin, Yanluan; Hao, Mingju; Luo, Yong; Zhao, Zongci; Yao, Yao; Chen, Xin; Wang, Lei; Nie, Suping; Yin, Yizhou; Xu, Ying; Zhang, Jiansong

    2017-12-01

    The existence and magnitude of the recently suggested global warming hiatus, or slowdown, have been strongly debated1-3. Although various physical processes4-8 have been examined to elucidate this phenomenon, the accuracy and completeness of observational data that comprise global average surface air temperature (SAT) datasets is a concern9,10. In particular, these datasets lack either complete geographic coverage or in situ observations over the Arctic, owing to the sparse observational network in this area9. As a consequence, the contribution of Arctic warming to global SAT changes may have been underestimated, leading to an uncertainty in the hiatus debate. Here, we constructed a new Arctic SAT dataset using the most recently updated global SATs2 and a drifting buoys based Arctic SAT dataset11 through employing the `data interpolating empirical orthogonal functions' method12. Our estimate of global SAT rate of increase is around 0.112 °C per decade, instead of 0.05 °C per decade from IPCC AR51, for 1998-2012. Analysis of this dataset shows that the amplified Arctic warming over the past decade has significantly contributed to a continual global warming trend, rather than a hiatus or slowdown.

  10. Climatic warming destabilizes forest ant communities.

    Science.gov (United States)

    Diamond, Sarah E; Nichols, Lauren M; Pelini, Shannon L; Penick, Clint A; Barber, Grace W; Cahan, Sara Helms; Dunn, Robert R; Ellison, Aaron M; Sanders, Nathan J; Gotelli, Nicholas J

    2016-10-01

    How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable.

  11. The effects of warming and nitrogen addition on soil nitrogen cycling in a temperate grassland, northeastern China.

    Directory of Open Access Journals (Sweden)

    Lin-Na Ma

    Full Text Available Both climate warming and atmospheric nitrogen (N deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood.A field manipulation experiment was conducted to examine the effects of warming and N addition on soil N cycling in a temperate grassland of northeastern China from 2007 to 2009. Soil samples were incubated at a constant temperature and moisture, from samples collected in the field. The results showed that both warming and N addition significantly stimulated soil net N mineralization rate and net nitrification rate. Combined warming and N addition caused an interactive effect on N mineralization, which could be explained by the relative shift of soil microbial community structure because of fungal biomass increase and strong plant uptake of added N due to warming. Irrespective of strong intra- and inter-annual variations in soil N mineralization, the responses of N mineralization to warming and N addition did not change during the three growing seasons, suggesting independence of warming and N responses of N mineralization from precipitation variations in the temperate grassland.Interactions between climate warming and N deposition on soil N cycling were significant. These findings will improve our understanding on the response of soil N cycling to the simultaneous climate change drivers in temperate grassland ecosystem.

  12. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    Science.gov (United States)

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period – a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI – high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to

  13. Warm natural inflation

    International Nuclear Information System (INIS)

    Mishra, Hiranmaya; Mohanty, Subhendra; Nautiyal, Akhilesh

    2013-01-01

    In warm inflation models there is the requirement of generating large dissipative couplings of the inflation with radiation, while at the same Âătime, not de-stabilising the flatness of the inflation potential due to radiative corrections. One way to achieve this without fine tuning unrelated couplings is by supersymmetry. In this talk we will discuss warm inflation with Pseudo-Nambu-Goldstone Bosons (PNGB). In this case inflation and other light fields are PNGB. So, the radiative corrections to the potential are suppressed and the thermal Âăcorrections are small as long as the temperature is below the symmetry breaking scale. In such models it is possible to fulfill the contrary requirements of an inflation potential which is stable under radiative corrections and the generation of a large dissipative coupling of the inflation field with other light fields. This warm inflation model with PNGB gives the observed CMB-anisotropy amplitude and spectral index having the symmetry breaking scale at the GUT scale. (author)

  14. Artificial asymmetric warming reduces nectar yield in a Tibetan alpine species of Asteraceae.

    Science.gov (United States)

    Mu, Junpeng; Peng, Youhong; Xi, Xinqiang; Wu, Xinwei; Li, Guoyong; Niklas, Karl J; Sun, Shucun

    2015-11-01

    Asymmetric warming is one of the distinguishing features of global climate change, in which winter and night-time temperatures are predicted to increase more than summer and diurnal temperatures. Winter warming weakens vernalization and hence decreases the potential to flower for some perennial herbs, and night warming can reduce carbohydrate concentrations in storage organs. This study therefore hypothesized that asymmetric warming should act to reduce flower number and nectar production per flower in a perennial herb, Saussurea nigrescens, a key nectar plant for pollinators in Tibetan alpine meadows. A long-term (6 years) warming experiment was conducted using open-top chambers placed in a natural meadow and manipulated to achieve asymmetric increases in temperature, as follows: a mean annual increase of 0·7 and 2·7 °C during the growing and non-growing seasons, respectively, combined with an increase of 1·6 and 2·8 °C in the daytime and night-time, respectively, from June to August. Measurements were taken of nectar volume and concentration (sucrose content), and also of leaf non-structural carbohydrate content and plant morphology. Six years of experimental warming resulted in reductions in nectar volume per floret (64·7 % of control), floret number per capitulum (8·7 %) and capitulum number per plant (32·5 %), whereas nectar concentration remained unchanged. Depletion of leaf non-structural carbohydrates was significantly higher in the warmed than in the ambient condition. Overall plant density was also reduced by warming, which, when combined with reductions in flower development and nectar volumes, led to a reduction of ∼90 % in nectar production per unit area. The negative effect of asymmetric warming on nectar yields in S. nigrescens may be explained by a concomitant depletion of leaf non-structural carbohydrates. The results thus highlight a novel aspect of how climate change might affect plant-pollinator interactions and plant

  15. Marine methane cycle simulations for the period of early global warming

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, S.; Maltrud, M.; Reagan, M.T.; Moridis, G.J.; Cameron-Smith, P.J.

    2011-01-02

    Geochemical environments, fates, and effects are modeled for methane released into seawater by the decomposition of climate-sensitive clathrates. A contemporary global background cycle is first constructed, within the framework of the Parallel Ocean Program. Input from organics in the upper thermocline is related to oxygen levels, and microbial consumption is parameterized from available rate measurements. Seepage into bottom layers is then superimposed, representing typical seabed fluid flow. The resulting CH{sub 4} distribution is validated against surface saturation ratios, vertical sections, and slope plume studies. Injections of clathrate-derived methane are explored by distributing a small number of point sources around the Arctic continental shelf, where stocks are extensive and susceptible to instability during the first few decades of global warming. Isolated bottom cells are assigned dissolved gas fluxes from porous-media simulation. Given the present bulk removal pattern, methane does not penetrate far from emission sites. Accumulated effects, however, spread to the regional scale following the modeled current system. Both hypoxification and acidification are documented. Sensitivity studies illustrate a potential for material restrictions to broaden the perturbations, since methanotrophic consumers require nutrients and trace metals. When such factors are considered, methane buildup within the Arctic basin is enhanced. However, freshened polar surface waters act as a barrier to atmospheric transfer, diverting products into the deep return flow. Uncertainties in the logic and calculations are enumerated including those inherent in high-latitude clathrate abundance, buoyant effluent rise through the column, representation of the general circulation, and bacterial growth kinetics.

  16. Marine methane cycle simulations for the period of early global warming

    Science.gov (United States)

    Elliott, Scott; Maltrud, Mathew; Reagan, Matthew; Moridis, George; Cameron-Smith, Philip

    2011-03-01

    Geochemical environments, fates, and effects are modeled for methane released into seawater by the decomposition of climate-sensitive clathrates. A contemporary global background cycle is first constructed, within the framework of the Parallel Ocean Program. Input from organics in the upper thermocline is related to oxygen levels, and microbial consumption is parameterized from available rate measurements. Seepage into bottom layers is then superimposed, representing typical seabed fluid flow. The resulting CH4 distribution is validated against surface saturation ratios, vertical sections, and slope plume studies. Injections of clathrate-derived methane are explored by distributing a small number of point sources around the Arctic continental shelf, where stocks are extensive and susceptible to instability during the first few decades of global warming. Isolated bottom cells are assigned dissolved gas fluxes from porous-media simulation. Given the present bulk removal pattern, methane does not penetrate far from emission sites. Accumulated effects, however, spread to the regional scale following the modeled current system. Both hypoxification and acidification are documented. Sensitivity studies illustrate a potential for material restrictions to broaden the perturbations, since methanotrophic consumers require nutrients and trace metals. When such factors are considered, methane buildup within the Arctic basin is enhanced. However, freshened polar surface waters act as a barrier to atmospheric transfer, diverting products into the deep return flow. Uncertainties in the logic and calculations are enumerated including those inherent in high-latitude clathrate abundance, buoyant effluent rise through the column, representation of the general circulation, and bacterial growth kinetics.

  17. Daily ocean monitoring since the 1860s shows record warming of northern European seas

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Schiedek, D.

    2007-01-01

    Ocean temperatures in most parts of the world are increasing and are expected to continue to rise during the 21st century. A major challenge to ecologists and marine resource managers is to understand and predict how these global changes will affect species and ecosystems at local scales where...... the ability of local species to adapt and is consequently leading to major changes in the structure, function and services of these ecosystems....... temperature more directly affects biological responses and species interactions. Here, we investigate historical variability in regional sea surface temperature in two large heavily exploited marine ecosystems and compare these variations with expected rates of temperature change for the 21st century. We use...

  18. Climate change, global warming and coral reefs: modelling the effects of temperature.

    Science.gov (United States)

    Crabbe, M James C

    2008-10-01

    Climate change and global warming have severe consequences for the survival of scleractinian (reef-building) corals and their associated ecosystems. This review summarizes recent literature on the influence of temperature on coral growth, coral bleaching, and modelling the effects of high temperature on corals. Satellite-based sea surface temperature (SST) and coral bleaching information available on the internet is an important tool in monitoring and modelling coral responses to temperature. Within the narrow temperature range for coral growth, corals can respond to rate of temperature change as well as to temperature per se. We need to continue to develop models of how non-steady-state processes such as global warming and climate change will affect coral reefs.

  19. 77 FR 15647 - Special Local Regulation for Marine Events; Temporary Change of Dates for Recurring Marine Events...

    Science.gov (United States)

    2012-03-16

    ... typically comprise marine events include sailing regattas, power boat races, swim races and holiday parades... and responsibilities between the Federal Government and Indian tribes. Energy Effects We have analyzed... Affect Energy Supply, Distribution, or Use. We have determined that it is not a ``significant energy...

  20. Legal and institutional tools to mitigate plastic pollution affecting marine species: Argentina as a case study

    International Nuclear Information System (INIS)

    González Carman, Victoria; Machain, Natalia; Campagna, Claudio

    2015-01-01

    Highlights: • Plastic pollution in Argentina harms vulnerable marine species of turtles and mammals. • One tool to advance their conservation is policy. • The legal and institutional framework pertinent to plastic pollution is explored. • Laws and agencies are in place, yet implementation and enforcement is deficient. • Interventions to mitigate plastic pollution and protect marine species are advanced. - Abstract: Plastics are the most common form of debris found along the Argentine coastline. The Río de la Plata estuarine area is a relevant case study to describe a situation where ample policy exists against a backdrop of plastics disposed by populated coastal areas, industries, and vessels; with resultant high impacts of plastic pollution on marine turtles and mammals. Policy and institutions are in place but the impact remains due to ineffective waste management, limited public education and awareness, and weaknesses in enforcement of regulations. This context is frequently repeated all over the world. We list possible interventions to increase the effectiveness of policy that require integrating efforts among governments, the private sector, non-governmental organizations and the inhabitants of coastal cities to reduce the amount of plastics reaching the Río de la Plata and protect threatened marine species. What has been identified for Argentina applies to the region and globally

  1. Global warming 2007. An update to global warming: the balance of evidence and its policy implications.

    Science.gov (United States)

    Keller, Charles F

    2007-03-09

    In the four years since my original review (Keller[25]; hereafter referred to as CFK03), research has clarified and strengthened our understanding of how humans are warming the planet. So many of the details highlighted in the IPCC's Third Assessment Report[21] and in CFK03 have been resolved that I expect many to be a bit overwhelmed, and I hope that, by treating just the most significant aspects of the research, this update may provide a road map through the expected maze of new information. In particular, while most of CFK03 remains current, there are important items that have changed: Most notable is the resolution of the conundrum that mid-tropospheric warming did not seem to match surface warming. Both satellite and radiosonde (balloon-borne sensors) data reduction showed little warming in the middle troposphere (4-8 km altitude). In the CFK03 I discussed potential solutions to this problem, but at that time there was no clear resolution. This problem has now been solved, and the middle troposphere is seen to be warming apace with the surface. There have also been advances in determinations of temperatures over the past 1,000 years showing a cooler Little Ice Age (LIA) but essentially the same warming during medieval times (not as large as recent warming). The recent uproar over the so-called "hockey stick" temperature determination is much overblown since at least seven other groups have made relatively independent determinations of northern hemisphere temperatures over the same time period and derived essentially the same results. They differ on how cold the LIA was but essentially agree with the Mann's hockey stick result that the Medieval Warm Period was not as warm as the last 25 years. The question of the sun's influence on climate continues to generate controversy. It appears there is a growing consensus that, while the sun was a major factor in earlier temperature variations, it is incapable of having caused observed warming in the past quarter

  2. Adaptation and evolution in marine environments. Vol. 2. The impacts of global change on biodiversity

    Energy Technology Data Exchange (ETDEWEB)

    Verde, Cinzia; Di Prisco, Guido (eds.) [CNR, Napoli (Italy). Inst. of Protein Biochemistry

    2013-02-01

    Offers a regionally focussed approach. Describes research on adaptive evolution. State-of-the-art content. The second volume of ''Adaptation and Evolution in Marine Environments - The Impacts of Global Change on Biodiversity'' from the series ''From Pole to Pole'' integrates the marine biology contribution of the first tome to the IPY 2007-2009, presenting overviews of organisms (from bacteria and ciliates to higher vertebrates) thriving on polar continental shelves, slopes and deep sea. The speed and extent of warming in the Arctic and in regions of Antarctica (the Peninsula, at the present) are greater than elsewhere. Changes impact several parameters, in particular the extent of sea ice; organisms, ecosystems and communities that became finely adapted to increasing cold in the course of millions of years are now becoming vulnerable, and biodiversity is threatened. Investigating evolutionary adaptations helps to foresee the impact of changes in temperate areas, highlighting the invaluable contribution of polar marine research to present and future outcomes of the IPY in the Earth system scenario.

  3. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Elberling, Bo; Cooper, Elisabeth J.

    2013-01-01

    octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme...... winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering...... events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas...

  4. Integration at the Round Table: Marine Spatial Planning in Multi-Stakeholder Settings

    OpenAIRE

    Olsen, Erik; Fluharty, David; Hoel, Alf Håkon; Hostens, Kristian; Maes, Frank; Pecceu, Ellen

    2014-01-01

    Marine spatial planning (MSP) is often considered as a pragmatic approach to implement an ecosystem based management in order to manage marine space in a sustainable way. This requires the involvement of multiple actors and stakeholders at various governmental and societal levels. Several factors affect how well the integrated management of marine waters will be achieved, such as different governance settings (division of power between central and local governments), economic activities (and ...

  5. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems.

    Science.gov (United States)

    Hicks Pries, Caitlin E; van Logtestijn, Richard S P; Schuur, Edward A G; Natali, Susan M; Cornelissen, Johannes H C; Aerts, Rien; Dorrepaal, Ellen

    2015-12-01

    Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte-dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year-round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock-dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (permafrost ecosystems. © 2015 John Wiley & Sons Ltd.

  6. Anthropogenic impacts on marine ecosystems in Antarctica.

    Science.gov (United States)

    Aronson, Richard B; Thatje, Sven; McClintock, James B; Hughes, Kevin A

    2011-03-01

    Antarctica is the most isolated continent on Earth, but it has not escaped the negative impacts of human activity. The unique marine ecosystems of Antarctica and their endemic faunas are affected on local and regional scales by overharvesting, pollution, and the introduction of alien species. Global climate change is also having deleterious impacts: rising sea temperatures and ocean acidification already threaten benthic and pelagic food webs. The Antarctic Treaty System can address local- to regional-scale impacts, but it does not have purview over the global problems that impinge on Antarctica, such as emissions of greenhouse gases. Failure to address human impacts simultaneously at all scales will lead to the degradation of Antarctic marine ecosystems and the homogenization of their composition, structure, and processes with marine ecosystems elsewhere. © 2011 New York Academy of Sciences.

  7. STREPTOCOCCUS: A WORLDWIDE FISH HEALTH PROBLEM

    Science.gov (United States)

    Streptococcus iniae and S. agalactiae are important emergent pathogens that affect many fish species worldwide, especially in warm-water regions. In marine and freshwater systems, these Gram-positive bacteria cause significant economic losses, estimated at hundreds of millions of dollars annually. ...

  8. Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim

    Science.gov (United States)

    Hu, Xiaoming; Sejas, Sergio A.; Cai, Ming; Taylor, Patrick C.; Deng, Yi; Yang, Song

    2018-05-01

    The global-mean surface temperature has experienced a rapid warming from the 1980s to early-2000s but a muted warming since, referred to as the global warming hiatus in the literature. Decadal changes in deep ocean heat uptake are thought to primarily account for the rapid warming and subsequent slowdown. Here, we examine the role of ocean heat uptake in establishing the fast warming and warming hiatus periods in the ERA-Interim through a decomposition of the global-mean surface energy budget. We find the increase of carbon dioxide alone yields a nearly steady increase of the downward longwave radiation at the surface from the 1980s to the present, but neither accounts for the fast warming nor warming hiatus periods. During the global warming hiatus period, the transfer of latent heat energy from the ocean to atmosphere increases and the total downward radiative energy flux to the surface decreases due to a reduction of solar absorption caused primarily by an increase of clouds. The reduction of radiative energy into the ocean and the surface latent heat flux increase cause the ocean heat uptake to decrease and thus contribute to the slowdown of the global-mean surface warming. Our analysis also finds that in addition to a reduction of deep ocean heat uptake, the fast warming period is also driven by enhanced solar absorption due predominantly to a decrease of clouds and by enhanced longwave absorption mainly attributed to the air temperature feedback.

  9. Tropical forest soil microbes and climate warming: An Andean-Amazon gradient and `SWELTR'

    Science.gov (United States)

    Nottingham, A.; Turner, B. L.; Fierer, N.; Whitaker, J.; Ostle, N. J.; McNamara, N. P.; Bardgett, R.; Silman, M.; Bååth, E.; Salinas, N.; Meir, P.

    2017-12-01

    Climate warming predicted for the tropics in the coming century will result in average temperatures under which no closed canopy forest exists today. There is, therefore, great uncertainty associated with the direction and magnitude of feedbacks between tropical forests and our future climate - especially relating to the response of soil microbes and the third of global soil carbon contained in tropical forests. While warming experiments are yet to be performed in tropical forests, natural temperature gradients are powerful tools to investigate temperature effects on soil microbes. Here we draw on studies from a 3.5 km elevation gradient - and 20oC mean annual temperature gradient - in Peruvian tropical forest, to investigate how temperature affects the structure of microbial communities, microbial metabolism, enzymatic activity and soil organic matter cycling. With decreased elevation, soil microbial diversity increased and community composition shifted, from taxa associated with oligotrophic towards copiotrophic traits. A key role for temperature in shaping these patterns was demonstrated by a soil translocation experiment, where temperature-manipulation altered the relative abundance of specific taxa. Functional implications of these community composition shifts were indicated by changes in enzyme activities, the temperature sensitivity of bacterial and fungal growth rates, and the presence of temperature-adapted iso-enzymes at different elevations. Studies from a Peruvian elevation transect indicated that soil microbial communities are adapted to long-term (differences with elevation) and short-term (translocation responses) temperature changes. These findings indicate the potential for adaptation of soil microbes in tropical soils to future climate warming. However, in order to evaluate the sensitivity of these processes to climate warming in lowland forests, in situ experimentation is required. Finally, we describe SWELTR (Soil Warming Experiment in Lowland

  10. The global warming problem

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this chapter, a discussion is presented of the global warming problem and activities contributing to the formation of acid rain, urban smog and to the depletion of the ozone layer. Globally, about two-thirds of anthropogenic carbon dioxide emissions arise from fossil-fuel burning; the rest arise primarily from deforestation. Chlorofluorocarbons are the second largest contributor to global warming, accounting for about 20% of the total. The third largest contributor is methane, followed by ozone and nitrous oxide. A study of current activities in the US that contribute to global warming shows the following: electric power plants account for about 33% of carbon dioxide emissions; motor vehicles, planes and ships (31%); industrial plants (24%); commercial and residential buildings (11%)

  11. Self-interacting warm dark matter

    International Nuclear Information System (INIS)

    Hannestad, Steen; Scherrer, Robert J.

    2000-01-01

    It has been shown by many independent studies that the cold dark matter scenario produces singular galactic dark halos, in strong contrast with observations. Possible remedies are that either the dark matter is warm so that it has significant thermal motion or that the dark matter has strong self-interactions. We combine these ideas to calculate the linear mass power spectrum and the spectrum of cosmic microwave background (CMB) fluctuations for self-interacting warm dark matter. Our results indicate that such models have more power on small scales than is the case for the standard warm dark matter model, with a CMB fluctuation spectrum which is nearly indistinguishable from standard cold dark matter. This enhanced small-scale power may provide better agreement with the observations than does standard warm dark matter. (c) 2000 The American Physical Society

  12. 75 FR 33502 - Special Local Regulation for Marine Events; Temporary Change of Dates for Recurring Marine Events...

    Science.gov (United States)

    2010-06-14

    ... activities that typically comprise marine events include sailing regattas, power boat races, swim races and... distribution of power and responsibilities between the Federal Government and Indian tribes. Energy Effects We... Affect Energy Supply, Distribution, or Use. We have determined that it is not a ``significant energy...

  13. More, smaller bacteria in response to ocean's warming?

    KAUST Repository

    Moran, Xose Anxelu G.

    2015-06-10

    Heterotrophic bacteria play a major role in organic matter cycling in the ocean. Although the high abundances and relatively fast growth rates of coastal surface bacterioplankton make them suitable sentinels of global change, past analyses have largely overlooked this functional group. Here, time series analysis of a decade of monthly observations in temperate Atlantic coastal waters revealed strong seasonal patterns in the abundance, size and biomass of the ubiquitous flow-cytometric groups of low (LNA) and high nucleic acid (HNA) content bacteria. Over this relatively short period, we also found that bacterioplankton cells were significantly smaller, a trend that is consistent with the hypothesized temperature-driven decrease in body size. Although decadal cell shrinking was observed for both groups, it was only LNA cells that were strongly coherent, with ecological theories linking temperature, abundance and individual size on both the seasonal and interannual scale. We explain this finding because, relative to their HNA counterparts, marine LNA bacteria are less diverse, dominated by members of the SAR11 clade. Temperature manipulation experiments in 2012 confirmed a direct effect of warming on bacterial size. Concurrent with rising temperatures in spring, significant decadal trends of increasing standing stocks (3% per year) accompanied by decreasing mean cell size (-1% per year) suggest a major shift in community structure, with a larger contribution of LNA bacteria to total biomass. The increasing prevalence of these typically oligotrophic taxa may severely impact marine foodwebs and carbon fluxes by an overall decrease in the efficiency of the biological pump. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Greenhouse Warming Research

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    2016-01-01

    The changing greenhouse effect caused by natural and anthropogenic causes is explained and efforts to model the behavior of the near-surface constituents of the Earth's land, ocean and atmosphere are discussed. Emissions of various substances and other aspects of human activity influence...... the greenhouse warming, and the impacts of the warming may again impact the wellbeing of human societies. Thus physical modeling of the near-surface ocean-soil-atmosphere system cannot be carried out without an idea of the development of human activities, which is done by scenario analysis. The interactive...

  15. Book Review: Marine Protected Areas in International Law: an Arctic Perspective

    Directory of Open Access Journals (Sweden)

    Davina Oktivana

    2017-10-01

    Full Text Available Marine biodiversity has always become an interesting topic in the development of the law of the sea subject. Despite of human dependence on marine resources, human intervention has been proven as the major threats to the sustainability of marine biodiversity and marine environment protection. Human activities, such an over-exploitation, shipping pollution, the use endangered fishing tools and above all, climate change, have changes the ecosystems extensively. One of the significant measures to prevent broaden the catastrophe is the establishment of Marine Protected Areas (MPAs, which has been accepted as a tool for protection and conservation of marine biodiversity. The book provides a comprehensive observation and analysis of the MPAs' concept and its implementation, specifically in the Arctic. This book is based on Ingvild Ulrikke Jakobsen's PhD thesis at the University of Tromsø, Norwegia. Her concerned particularly based on the development of human activities in the Arctic, that will definitely affect the fragile marine environment and there is an increasing need to ensure environmental protection and conservation of marine biodiversity and ecosystems in Arctic.

  16. Pathways of warm water to the Northeast Greenland outlet glaciers

    Science.gov (United States)

    Schaffer, Janin; Timmermann, Ralph; Kanzow, Torsten; Arndt, Jan Erik; Mayer, Christoph; Schauer, Ursula

    2015-04-01

    The ocean plays an important role in modulating the mass balance of the Greenland Ice Sheet by delivering heat to the marine-terminating outlet glaciers surrounding the Greenland coast. The warming and accumulation of Atlantic Water in the subpolar North Atlantic has been suggested to be a potential driver of the glaciers' retreat over the last decades. The shelf regions thus play a critical role for the transport of Atlantic Water towards the glaciers, but also for the transfer of freshwater towards the deep ocean. A key region for the mass balance of the Greenland Ice Sheet is the Northeast Greenland Ice Stream. This large ice stream drains the second-largest basin of the Greenland Ice Sheet and feeds three outlet glaciers. The largest one is Nioghalvfjerdsfjorden (79°N-Glacier) featuring an 80 km long floating ice tongue. Both the ocean circulation on the continental shelf off Northeast Greenland and the circulation in the cavity below the ice tongue are weakly constrained so far. In order to study the relevant processes of glacier-ocean interaction we combine observations and model work. Here we focus on historic and recent hydrographic observations and on the complex bathymetry in the Northeast Greenland shelf region, which is thought to steer the flux of warm Atlantic water onto the continental shelf and into the sub-ice cavity beneath the 79°N-Glacier. We present a new global topography data set, RTopo-2, which includes the most recent surveys on the Northeast Greenland continental shelf and provides a detailed bathymetry for all around Greenland. In addition, RTopo-2 contains ice and bedrock surface topographies for Greenland and Antarctica. Based on the updated ocean bathymetry and a variety of hydrographic observations we show the water mass distribution on the continental shelf off Northeast Greenland. These maps enable us to discuss possible supply pathways of warm modified Atlantic waters on the continental shelf and thus potential ways of heat

  17. Warming and nitrogen fertilization effects on winter wheat yields in northern China varied between four years

    DEFF Research Database (Denmark)

    Liu, Liting; Hu, Chunsheng; Olesen, Jørgen E

    2013-01-01

    per m2. This suggests that the wheat yield loss may be related to reduction of spike number, which was affected by decreased soil water content under warming. Warming tended to give larger yield reductions at higher nitrogen fertilizer rates, and this may be related to larger water consumption...... with both higher nitrogen and temperature leading to water shortages. These effects indicate that wheat yield loss from warming was primarily associated with more severe water shortage from greater evapotranspiration under warming. The large crop canopy in the fertilized plot may further have enhanced......). The volumetric water content decreased significantly before heading by 9.3, 3.9, 2.4 and 1.2 vol% in the soil depth of 0.10, 0.20, 0.40, 0.60 m in N2 and by 5.9, 1.4, 1.3 and 1.2 vol% in N1 from heating compared with no heating. The duration of the entire growth period was shortened by on average 7 days...

  18. Physiological responses to ocean acidification and warming synergistically reduce condition of the common cockle Cerastoderma edule.

    Science.gov (United States)

    Ong, E Z; Briffa, M; Moens, T; Van Colen, C

    2017-09-01

    The combined effect of ocean acidification and warming on the common cockle Cerastoderma edule was investigated in a fully crossed laboratory experiment. Survival of the examined adult organisms remained high and was not affected by elevated temperature (+3 °C) or lowered pH (-0.3 units). However, the morphometric condition index of the cockles incubated under high pCO 2 conditions (i.e. combined warming and acidification) was significantly reduced after six weeks of incubation. Respiration rates increased significantly under low pH, with highest rates measured under combined warm and low pH conditions. Calcification decreased significantly under low pH while clearance rates increased significantly under warm conditions and were generally lower in low pH treatments. The observed physiological responses suggest that the reduced food intake under hypercapnia is insufficient to support the higher energy requirements to compensate for the higher costs for basal maintenance and growth in future high pCO 2 waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Impact of the Atlantic Warm Pool on precipitation and temperature in Florida during North Atlantic cold spells

    Energy Technology Data Exchange (ETDEWEB)

    Donders, Timme H. [Utrecht University, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht (Netherlands); TNO Geological Survey of the Netherlands, Utrecht (Netherlands); Boer, Hugo Jan de; Dekker, Stefan C. [Utrecht University, Department of Environmental Sciences, Faculty of Geosciences, P.O. Box 80115, Utrecht (Netherlands); Finsinger, Walter; Wagner-Cremer, Friederike [Utrecht University, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht (Netherlands); Grimm, Eric C. [Research and Collections Center, Illinois State Museum, Springfield, IL (United States); Reichart, Gert Jan [Utrecht University, Geochemistry, Department of Earth Sciences, Faculty of Geosciences, P.O. Box 80021, Utrecht (Netherlands)

    2011-01-15

    Recurrent phases of increased pine at Lake Tulane, Florida have previously been related to strong stadials terminated by so-called Heinrich events. The climatic significance of these pine phases has been interpreted in different ways. Using a pollen-climate inference model, we quantified the climate changes and consistently found that mean summer precipitation (P{sub JJA}) increased (0.5-0.9 mm/day) and mean November temperature increased (2.0-3.0 C) during pine phases coeval with Heinrich events and the Younger Dryas. Marine sea surface temperature records indicate that potential sources for these moisture and heat anomalies are in the Gulf of Mexico and the western tropical Atlantic. We explain this low latitude warming by an increased Loop Current facilitated by persistence of the Atlantic Warm Pool during summer. This hypothesis is supported by a climate model sensitivity analysis. A positive heat anomaly in the Gulf of Mexico and equatorial Atlantic best approximates the pollen-inferred climate reconstructions from Lake Tulane during the (stadials around) Heinrich events and the Younger Dryas. (orig.)

  20. Trace Elements in Marine Sediment and Organisms in the Gulf of Thailand

    Science.gov (United States)

    Worakhunpiset, Suwalee

    2018-01-01

    This review summarizes the findings from studies of trace element levels in marine sediment and organisms in the Gulf of Thailand. Spatial and temporal variations in trace element concentrations were observed. Although trace element contamination levels were low, the increased urbanization and agricultural and industrial activities may adversely affect ecosystems and human health. The periodic monitoring of marine environments is recommended in order to minimize human health risks from the consumption of contaminated marine organisms. PMID:29677146

  1. Frequency of Deep Convective Clouds and Global Warming

    Science.gov (United States)

    Aumann, Hartmut H.; Teixeira, Joao

    2008-01-01

    This slide presentation reviews the effect of global warming on the formation of Deep Convective Clouds (DCC). It concludes that nature responds to global warming with an increase in strong convective activity. The frequency of DCC increases with global warming at the rate of 6%/decade. The increased frequency of DCC with global warming alone increases precipitation by 1.7%/decade. It compares the state of the art climate models' response to global warming, and concludes that the parametrization of climate models need to be tuned to more closely emulate the way nature responds to global warming.

  2. Uses of warmed water in agriculture. Final report

    International Nuclear Information System (INIS)

    Garrett, R.E.

    1978-11-01

    Energy in the form of warmed water is available from condenser cooling water from fossil fuel or nuclear-electric power-generating facilities, geothermal power plants, geothermal fluids, or spent steam and cooling water from industrial processes. A re-analysis of the characteristics of possible agricultural uses of warmed water has revealed the need to decouple considerations of warmed water sources from those of warmed water users. Conflicting objectives and managerial requirements seem to preclude an integrated system approach. Rather an interface must be established with separate costs and benefits identified for a reliable warmed water source and for its various potential uses. These costs and benefits can be utilized as a basis for decisions separately by the energy supplier and the prospective energy users. A method of classifying uses of warmed water according to need, volume, objective, temperature, and quality is presented and preliminary classifications are discussed for several potential agricultural uses of warmed water. Specific uses for soil warming, space heating in greenhouses, and irrigation are noted. Specific uses in aquaculture for catfish, lobster, and prawn production are discussed. Warmed water use in animal shelters is mentioned. Low-quality heat is required for methane generation from biomass and warmed water heating could be utilized in this industry. 53 references

  3. Towards Arctic Resource Governance of Marine Invasive Species

    DEFF Research Database (Denmark)

    Kourantidou, Melina; Kaiser, Brooks; Fernandez, Linda

    2015-01-01

    Scientific and policy-oriented publications highlighting the magnitude of uncertainty in the changing Arctic and the possibilities for effective regional governance are proliferating, yet it remains a challenging task to examine Arctic marine biodiversity. Limited scientific data are currently...... available. Through analysis of marine invasions in the Arctic, we work to identify and assess patterns in the knowledge gaps regarding invasive species in the Arctic that affect the ability to generate improved governance outcomes. These patterns are expected to depend on multiple aspects of scientific...... research into invasive species threats in the Arctic, including the ways in which known marine invasions are related to different stakeholder groups and existing disparate national and international experiences with invasive species. Stakeholdergroups include dominant industries (fishing, shipping, tourism...

  4. Autumn photosynthetic decline and growth cessation in seedlings of white spruce are decoupled under warming and photoperiod manipulations.

    Science.gov (United States)

    Stinziano, Joseph R; Way, Danielle A

    2017-08-01

    Climate warming is expected to increase the seasonal duration of photosynthetic carbon fixation and tree growth in high-latitude forests. However, photoperiod, a crucial cue for seasonality, will remain constant, which may constrain tree responses to warming. We investigated the effects of temperature and photoperiod on weekly changes in photosynthetic capacity, leaf biochemistry and growth in seedlings of a boreal evergreen conifer, white spruce [Picea glauca (Moench) Voss]. Warming delayed autumn declines in photosynthetic capacity, extending the period when seedlings had high carbon uptake. While photoperiod was correlated with photosynthetic capacity, short photoperiods did not constrain the maintenance of high photosynthetic capacity under warming. Rubisco concentration dynamics were affected by temperature but not photoperiod, while leaf pigment concentrations were unaffected by treatments. Respiration rates at 25 °C were stimulated by photoperiod, although respiration at the growth temperatures was increased in warming treatments. Seedling growth was stimulated by increased photoperiod and suppressed by warming. We demonstrate that temperature is a stronger control on the seasonal timing of photosynthetic down-regulation than is photoperiod. Thus, while warming can stimulate carbon uptake in boreal conifers, the extra carbon may be directed towards respiration rather than biomass, potentially limiting carbon sequestration under climate change. © 2017 John Wiley & Sons Ltd.

  5. Differential responses of invasive and native plants to warming with simulated changes in diurnal temperature ranges.

    Science.gov (United States)

    Chen, Bao-Ming; Gao, Yang; Liao, Hui-Xuan; Peng, Shao-Lin

    2017-07-01

    Although many studies have documented the effects of global warming on invasive plants, little is known about whether the effects of warming on plant invasion differ depending on the imposed change in different diurnal temperature ranges (DTR). We tested the impact of warming with DTR change on seed germination and seedling growth of eight species in the family Asteraceae. Four of these are invasive ( Eupatorium catarium , Mikania micrantha , Biodens pilosa var. radiate , Ageratum conyzoides ) in China, and four are native ( Sonchus arvensis , Senecios candens , Pterocypsela indica , Eupatorium fortunei ). Four temperature treatments were set in growth chambers (three warming by 3 °C with different DTRs and control), and experiments were run to mimic wintertime and summertime conditions. The control treatment ( T c ) was set to the mean temperature for the corresponding time of year, and the three warming treatments were symmetric (i.e. equal night-and-day) (DTR sym ), asymmetric warming with increased (DTR inc ) and decreased (DTR dec ) DTR. The warming treatments did not affect seed germination of invasive species under any of the conditions, but DTR sym and DTR inc increased seed germination of natives relative to the control, suggesting that warming may not increase success of these invasive plant species via effects on seed germination of invasive plants relative to native plants. The invasive plants had higher biomass and greater stem allocation than the native ones under all of the warming treatments. Wintertime warming increased the biomass of the invasive and wintertime DTR sym and DTR inc increased that of the native plants, whereas summertime asymmetric warming decreased the biomass of the invasives but not the natives. Therefore, warming may not facilitate invasion of these invasive species due to the suppressive effects of summertime warming (particularly the asymmetric warming) on growth. Compared with DTR sym , DTR dec decreased the biomass of

  6. Histopathology of Marine and Freshwater Fish Lymphocytosis Disease Virus (LCDV)

    International Nuclear Information System (INIS)

    Hossain, M.; Myung-Joo, Oh

    2011-01-01

    Lymphocytosis disease (LCD) in fishes is caused by the agent called lymphocytosis disease virus (LCDV). LCDV is a chronic and benign virus. The disease affects 96 species of marine and fresh water fishes ranged among 34 families in the world. Affected fish with LCD has a typical external symptom with clusters consisted of enormously hypertrophied dermal cells on the skin and fins. The hypertrophied cells, generally named lymphocytosis cells, have a thick hyaline capsule, an enlarged nucleus and prominent basophilic cytoplasmic inclusions. Among the four species of fishes, olive flounder Paralichthys olivaceus, and rockfish Sebastes schlegeli were marine cultured fish, and gourami Trichogaster leeri and painted glass fish Channa baculis were freshwater ornamental fish. Although LCD causes low mortality, the disfigurement of infected fish can make them unsellable. Thus LCD has resulted in an important economic loss in the aquaculture industry. This study of histopathology may be adequate for a presumptive diagnosis of lymphocytosis diseases both in marine and freshwater fish species. (author)

  7. Trends in global warming and evolution of matrix protein 2 family from influenza A virus.

    Science.gov (United States)

    Yan, Shao-Min; Wu, Guang

    2009-12-01

    The global warming is an important factor affecting the biological evolution, and the influenza is an important disease that threatens humans with possible epidemics or pandemics. In this study, we attempted to analyze the trends in global warming and evolution of matrix protein 2 family from influenza A virus, because this protein is a target of anti-flu drug, and its mutation would have significant effect on the resistance to anti-flu drugs. The evolution of matrix protein 2 of influenza A virus from 1959 to 2008 was defined using the unpredictable portion of amino-acid pair predictability. Then the trend in this evolution was compared with the trend in the global temperature, the temperature in north and south hemispheres, and the temperature in influenza A virus sampling site, and species carrying influenza A virus. The results showed the similar trends in global warming and in evolution of M2 proteins although we could not correlate them at this stage of study. The study suggested the potential impact of global warming on the evolution of proteins from influenza A virus.

  8. Ocean acidification and global warming impair shark hunting behaviour and growth.

    Science.gov (United States)

    Pistevos, Jennifer C A; Nagelkerken, Ivan; Rossi, Tullio; Olmos, Maxime; Connell, Sean D

    2015-11-12

    Alterations in predation pressure can have large effects on trophically-structured systems. Modification of predator behaviour via ocean warming has been assessed by laboratory experimentation and metabolic theory. However, the influence of ocean acidification with ocean warming remains largely unexplored for mesopredators, including experimental assessments that incorporate key components of the assemblages in which animals naturally live. We employ a combination of long-term laboratory and mesocosm experiments containing natural prey and habitat to assess how warming and acidification affect the development, growth, and hunting behaviour in sharks. Although embryonic development was faster due to temperature, elevated temperature and CO2 had detrimental effects on sharks by not only increasing energetic demands, but also by decreasing metabolic efficiency and reducing their ability to locate food through olfaction. The combination of these effects led to considerable reductions in growth rates of sharks held in natural mesocosms with elevated CO2, either alone or in combination with higher temperature. Our results suggest a more complex reality for predators, where ocean acidification reduces their ability to effectively hunt and exert strong top-down control over food webs.

  9. Effect of prior warm-up duration on the time limit at peak speed in untrained men.

    Science.gov (United States)

    da Cruz, Victor H; Peserico, Cecília S; Machado, Fabiana A

    2017-10-01

    The peak speed (Vpeak) and its time limit (tlim) are variables used to prescribe training loads and the intervals durations during interval training, respectively. The aim of this study was to test different warm-up durations (5, 10 and 15 minutes), adapted from the protocol proposed by Billat et al.,1 to determine tlim in untrained men. Fifteen untrained men were submitted to the following laboratory evaluations: 1) an incremental running exercise test on a treadmill starting with a speed of 8 km/h, after a warm-up of walking at 6 km/h for three minutes, and increased by 1 km/h between each successive 3-minute stage until volitional exhaustion to determine Vpeak; 2) three rectangular tests, performed in randomized order, with warm-up durations of 5, 10, and 15 minutes at 60% of Vpeak to determine the tlim5, tlim10, and tlim15; after the warm-up the tests were performed at the speed of the individual Vpeak until volitional exhaustion. It was demonstrated that the duration of the warm-up affected the test duration (tlim). Significant differences were observed between tlim5 and tlim15, and between tlim10 and tlim15. However, tlim15 and tlim10 did not differ. Additionally, duration of the warm-up did not influence other variables (HRmax, RPEmax and post lactate concentrations). Therefore, it was concluded that the duration of the warm-up in tlim tests modifies the test duration in untrained men.

  10. Comparing demersal fish assemblage between periods of contrasting climate and fishing pressure

    NARCIS (Netherlands)

    Hofstede, ter R.; Rijnsdorp, A.D.

    2011-01-01

    Fish communities are dynamic and their structure is known to change over time. Traditionally, these changes were considered to be fisheries-induced, but recent analyses also suggest that global warming could affect the distribution, abundance, and assemblage composition of marine fish. However,

  11. Force majeure: Will climate change affect our ability to attain Good Environmental Status for marine biodiversity?

    Science.gov (United States)

    Elliott, Michael; Borja, Ángel; McQuatters-Gollop, Abigail; Mazik, Krysia; Birchenough, Silvana; Andersen, Jesper H; Painting, Suzanne; Peck, Myron

    2015-06-15

    The EU Marine Strategy Framework Directive (MSFD) requires that Good Environmental Status (GEnS), is achieved for European seas by 2020. These may deviate from GEnS, its 11 Descriptors, targets and baselines, due to endogenic managed pressures (from activities within an area) and externally due to exogenic unmanaged pressures (e.g. climate change). Conceptual models detail the likely or perceived changes expected on marine biodiversity and GEnS Descriptors in the light of climate change. We emphasise that marine management has to accommodate 'shifting baselines' caused by climate change particularly during GEnS monitoring, assessment and management and 'unbounded boundaries' given the migration and dispersal of highly-mobile species. We suggest climate change may prevent GEnS being met, but Member States may rebut legal challenges by claiming that this is outside its control, force majeure or due to 'natural causes' (Article 14 of the MSFD). The analysis is relevant to management of other global seas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Permafrost degradation and associated ground settlement estimation under 2 °C global warming

    Science.gov (United States)

    Guo, Donglin; Wang, Huijun

    2017-10-01

    Global warming of 2 °C above preindustrial levels has been considered to be the threshold that should not be exceeded by the global mean temperature to avoid dangerous interference with the climate system. However, this global mean target has different implications for different regions owing to the globally nonuniform climate change characteristics. Permafrost is sensitive to climate change; moreover, it is widely distributed in high-latitude and high-altitude regions where the greatest warming is predicted. Permafrost is expected to be severely affected by even the 2 °C global warming, which, in turn, affects other systems such as water resources, ecosystems, and infrastructures. Using air and soil temperature data from ten coupled model intercomparison project phase five models combined with observations of frozen ground, we investigated the permafrost thaw and associated ground settlement under 2 °C global warming. Results show that the climate models produced an ensemble mean permafrost area of 14.01 × 106 km2, which compares reasonably with the area of 13.89 × 106 km2 (north of 45°N) in the observations. The models predict that the soil temperature at 6 m depth will increase by 2.34-2.67 °C on area average relative to 1990-2000, and the increase intensifies with increasing latitude. The active layer thickness will also increase by 0.42-0.45 m, but dissimilar to soil temperature, the increase weakens with increasing latitude due to the distinctly cooler permafrost at higher latitudes. The permafrost extent will obviously retreat north and decrease by 24-26% and the ground settlement owing to permafrost thaw is estimated at 3.8-15 cm on area average. Possible uncertainties in this study may be mostly attributed to the less accurate ground ice content data and coarse horizontal resolution of the models.

  13. Culture time of vitrified/warmed zygotes before microinjection affects the production efficiency of CRISPR-Cas9-mediated knock-in mice.

    Science.gov (United States)

    Nakagawa, Yoshiko; Sakuma, Tetsushi; Nishimichi, Norihisa; Yokosaki, Yasuyuki; Takeo, Toru; Nakagata, Naomi; Yamamoto, Takashi

    2017-05-15

    Robust reproductive engineering techniques are required for the efficient and rapid production of genetically modified mice. We have reported the efficient production of genome-edited mice using reproductive engineering techniques, such as ultra-superovulation, in vitro fertilization (IVF) and vitrification/warming of zygotes. We usually use vitrified/warmed fertilized oocytes created by IVF for microinjection because of work efficiency and flexible scheduling. Here, we investigated whether the culture time of zygotes before microinjection influences the efficiency of producing knock-in mice. Knock-in mice were generated using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system and single-stranded oligodeoxynucleotide (ssODN) or PITCh (Precise Integration into Target Chromosome) system, a method of integrating a donor vector assisted by microhomology-mediated end-joining. The cryopreserved fertilized oocytes were warmed, cultured for several hours and microinjected at different timings. Microinjection was performed with Cas9 protein, guide RNA(s), and an ssODN or PITCh donor plasmid for the ssODN knock-in and the PITCh knock-in, respectively. Different production efficiencies of knock-in mice were observed by changing the timing of microinjection. Our study provides useful information for the CRISPR-Cas9-based generation of knock-in mice. © 2017. Published by The Company of Biologists Ltd.

  14. Cenozoic planktonic marine diatom diversity and correlation to climate change

    Science.gov (United States)

    Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas

    2014-01-01

    Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂18O (climate) and carbon cycle records (∂13C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p2 were only moderately higher than today. Diversity is strongly correlated to both ∂13C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all p<.001), but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.

  15. In situ observation of plutonium transfer processes in the marine environment

    International Nuclear Information System (INIS)

    Guary, J.-C.; Fraizier, Andre

    1975-09-01

    A preliminary observation of plutonium transfer processes in the marine environment was carried out and showed that concentration of the radionuclide was lower when marine organisms stood at a higher trophic level. This observation supplemented by an investigation on contamination pathways showed that plutonium was not concentrated along the food chain and its uptake occured preferentially by direct contact of species with seawater, a process chiefly affecting producers and primary consumers. It appeared that the marine sediment was not a significant vector of plutonium transfer in burrowing species [fr

  16. Optimal carbon emissions trajectories when damages depend on the rate or level of global warming

    International Nuclear Information System (INIS)

    Peck, S.C.; Teisberg, T.J.

    1994-01-01

    The authors extend earlier work with the Carbon Emissions Trajectory Assessment model (CETA) to consider a number of issues relating to the nature of optimal carbon emissions trajectories. They first explore model results when warming costs are associated with the rate of temperature rise, rather than with its level, as in earlier work. It is found that optimal trajectories are more strongly affected by the degree of non-linearity in the warming cost function than by whether the cost function is driven by the warming level or the warming rate. The authors briefly explore the implications of simple uncertainty and risk aversion for optimal emissions trajectories to be somewhat lower, but that the effect is not noticeable in the near term and not dramatic in the long term; the long term effect on the shadow price of carbon is more marked, however. Finally, they experiment with scaling up the warming cost functions until optimal policies are approximately the same as a policy of stabilising emissions at the 1990 level. Based on the results of this experiment, it is concluded that damages would have to be very high to justify anything like a stabilization policy; and even in this case, a policy allowing intertemporal variation in emissions would be better. 18 refs., 15 figs

  17. Free boundary models for mosquito range movement driven by climate warming.

    Science.gov (United States)

    Bao, Wendi; Du, Yihong; Lin, Zhigui; Zhu, Huaiping

    2018-03-01

    As vectors, mosquitoes transmit numerous mosquito-borne diseases. Among the many factors affecting the distribution and density of mosquitoes, climate change and warming have been increasingly recognized as major ones. In this paper, we make use of three diffusive logistic models with free boundary in one space dimension to explore the impact of climate warming on the movement of mosquito range. First, a general model incorporating temperature change with location and time is introduced. In order to gain insights of the model, a simplified version of the model with the change of temperature depending only on location is analyzed theoretically, for which the dynamical behavior is completely determined and presented. The general model can be modified into a more realistic one of seasonal succession type, to take into account of the seasonal changes of mosquito movements during each year, where the general model applies only for the time period of the warm seasons of the year, and during the cold season, the mosquito range is fixed and the population is assumed to be in a hibernating status. For both the general model and the seasonal succession model, our numerical simulations indicate that the long-time dynamical behavior is qualitatively similar to the simplified model, and the effect of climate warming on the movement of mosquitoes can be easily captured. Moreover, our analysis reveals that hibernating enhances the chances of survival and successful spreading of the mosquitoes, but it slows down the spreading speed.

  18. Mitigation of global warming through renewable biomass

    International Nuclear Information System (INIS)

    Dhillon, R.S.; Wuehlisch, George von

    2013-01-01

    Rising level of atmospheric CO 2 and consequent global warming is evident. Global surface temperature have already increased by 0.8 °C over the 20th century and is projected to increase by 1.4–5.8 °C during the twenty-first century. The global warming will continue till atmospheric concentrations of the major greenhouse gases are stabilized. Among them, CO 2 is mainly responsible and is expected to account for about 60% of the warming over the next century. This study reviews advances on causes and consequences of global climate change and its impact on nature and society. Renewable biomass has tremendous potential to mitigate the global warming. Renewable biomass is expected to play a multifunctional role including food production, source of energy and fodder, biodiversity conservation, yield of goods and services to the society as well as mitigation of the impact of climate change. The review highlights the different management and research strategies in forestry, agriculture, agroforestry and grasslands to mitigate the global warming. -- Highlights: ► Rising level of atmospheric CO 2 and consequent global warming is evident. ► CO 2 is mainly responsible for global warming. ► Global temperature is predicted to increase by 1.4–5.8 °C during 21st century. ► Renewable biomass has great potential to mitigate the global warming

  19. Combined ice core and climate-model evidence for the collapse of the West Antarctic Ice Sheet during Marine Isotope Stage 5e.

    Science.gov (United States)

    Steig, Eric J.; Huybers, Kathleen; Singh, Hansi A.; Steiger, Nathan J.; Frierson, Dargan M. W.; Popp, Trevor; White, James W. C.

    2015-04-01

    It has been speculated that collapse of the West Antarctic Ice Sheet explains the very high eustatic sea level rise during the last interglacial period, marine isotope stage (MIS) 5e, but the evidence remains equivocal. Changes in atmospheric circulation resulting from a collapse of the West Antarctic Ice Sheet (WAIS) would have significant regional impacts that should be detectable in ice core records. We conducted simulations using general circulation models (GCMs) at varying levels of complexity: a gray-radiation aquaplanet moist GCM (GRaM), the slab ocean version of GFDL-AM2 (also as an aquaplanet), and the fully-coupled version of NCAR's CESM with realistic topography. In all the experiments, decreased elevation from the removal of the WAIS leads to greater cyclonic circulation over the West Antarctic region. This creates increased advection of relatively warm marine air from the Amundsen-Bellingshausen Seas towards the South Pole, and increased cold-air advection from the East Antarctic plateau towards the Ross Sea and coastal Marie Byrd Land. The result is anomalous warming in some areas of the East Antarctic interior, and significant cooling in Marie Byrd Land. Comparison of ice core records shows good agreement with the model predictions. In particular, isotope-paleotemperature records from ice cores in East Antarctica warmed more between the previous glacial period (MIS 6) and MIS 5e than coastal Marie Byrd Land. These results add substantial support to other evidence for WAIS collapse during the last interglacial period.

  20. Plant volatiles in extreme terrestrial and marine environments.

    Science.gov (United States)

    Rinnan, Riikka; Steinke, Michael; McGenity, Terry; Loreto, Francesco

    2014-08-01

    This review summarizes the current understanding on plant and algal volatile organic compound (VOC) production and emission in extreme environments, where temperature, water availability, salinity or other environmental factors pose stress on vegetation. Here, the extreme environments include terrestrial systems, such as arctic tundra, deserts, CO₂ springs and wetlands, and marine systems such as sea ice, tidal rock pools and hypersaline environments, with mangroves and salt marshes at the land-sea interface. The emission potentials at fixed temperature and light level or actual emission rates for phototrophs in extreme environments are frequently higher than for organisms from less stressful environments. For example, plants from the arctic tundra appear to have higher emission potentials for isoprenoids than temperate species, and hypersaline marine habitats contribute to global dimethyl sulphide (DMS) emissions in significant amounts. DMS emissions are more widespread than previously considered, for example, in salt marshes and some desert plants. The reason for widespread VOC, especially isoprenoid, emissions from different extreme environments deserves further attention, as these compounds may have important roles in stress resistance and adaptation to extremes. Climate warming is likely to significantly increase VOC emissions from extreme environments both by direct effects on VOC production and volatility, and indirectly by altering the composition of the vegetation. © 2014 John Wiley & Sons Ltd.

  1. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia.

    Science.gov (United States)

    Liu, Hongyan; Park Williams, A; Allen, Craig D; Guo, Dali; Wu, Xiuchen; Anenkhonov, Oleg A; Liang, Eryuan; Sandanov, Denis V; Yin, Yi; Qi, Zhaohuan; Badmaeva, Natalya K

    2013-08-01

    Forests around the world are subject to risk of high rates of tree growth decline and increased tree mortality from combinations of climate warming and drought, notably in semi-arid settings. Here, we assess how climate warming has affected tree growth in one of the world's most extensive zones of semi-arid forests, in Inner Asia, a region where lack of data limits our understanding of how climate change may impact forests. We show that pervasive tree growth declines since 1994 in Inner Asia have been confined to semi-arid forests, where growing season water stress has been rising due to warming-induced increases in atmospheric moisture demand. A causal link between increasing drought and declining growth at semi-arid sites is corroborated by correlation analyses comparing annual climate data to records of tree-ring widths. These ring-width records tend to be substantially more sensitive to drought variability at semi-arid sites than at semi-humid sites. Fire occurrence and insect/pathogen attacks have increased in tandem with the most recent (2007-2009) documented episode of tree mortality. If warming in Inner Asia continues, further increases in forest stress and tree mortality could be expected, potentially driving the eventual regional loss of current semi-arid forests. © 2013 John Wiley & Sons Ltd.

  2. Responses of Winter Wheat Yields to Warming-Mediated Vernalization Variations Across Temperate Europe

    Directory of Open Access Journals (Sweden)

    Xiuchen Wu

    2017-10-01

    Full Text Available Rapid climate warming, with much higher warming rates in winter and spring, could affect the vernalization fulfillment, a critical process for induction of crop reproductive growth and consequent grain filling in temperate winter crops. However, regional observational evidence of the effects of historical warming-mediated vernalization variations on temperate winter crop yields is lacking. Here, we statistically quantified the interannual sensitivity of winter wheat yields to vernalization degree days (VDD during 1975–2009 and its spatial relationship with multi-year mean VDD over temperate Europe (TE, using EUROSTAT crop yield statistics, observed and simulated crop phenology data and gridded daily climate data. Our results revealed a pervasively positive interannual sensitivity of winter wheat yields to variations in VDD (γVDD over TE, with a mean γVDD of 2.8 ± 1.5 kg ha−1 VDD−1. We revealed a significant (p < 0.05 negative exponential relationship between γVDD and multi-year mean VDD for winter wheat across TE, with higher γVDD in winter wheat planting areas with lower multi-year mean VDD. Our findings shed light on potential vulnerability of winter wheat yields to warming-mediated vernalization variations over TE, particularly considering a likely future warmer climate.

  3. Marine N2O Emissions From Nitrification and Denitrification Constrained by Modern Observations and Projected in Multimillennial Global Warming Simulations

    Science.gov (United States)

    Battaglia, G.; Joos, F.

    2018-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas (GHG) and ozone destructing agent; yet global estimates of N2O emissions are uncertain. Marine N2O stems from nitrification and denitrification processes which depend on organic matter cycling and dissolved oxygen (O2). We introduce N2O as an obligate intermediate product of denitrification and as an O2-dependent by-product from nitrification in the Bern3D ocean model. A large model ensemble is used to probabilistically constrain modern and to project marine N2O production for a low (Representative Concentration Pathway (RCP)2.6) and high GHG (RCP8.5) scenario extended to A.D. 10,000. Water column N2O and surface ocean partial pressure N2O data serve as constraints in this Bayesian framework. The constrained median for modern N2O production is 4.5 (±1σ range: 3.0 to 6.1) Tg N yr-1, where 4.5% stems from denitrification. Modeled denitrification is 65.1 (40.9 to 91.6) Tg N yr-1, well within current estimates. For high GHG forcing, N2O production decreases by 7.7% over this century due to decreasing organic matter export and remineralization. Thereafter, production increases slowly by 21% due to widespread deoxygenation and high remineralization. Deoxygenation peaks in two millennia, and the global O2 inventory is reduced by a factor of 2 compared to today. Net denitrification is responsible for 7.8% of the long-term increase in N2O production. On millennial timescales, marine N2O emissions constitute a small, positive feedback to climate change. Our simulations reveal tight coupling between the marine carbon cycle, O2, N2O, and climate.

  4. The responses of microbial temperature relationships to seasonal change and winter warming in a temperate grassland.

    Science.gov (United States)

    Birgander, Johanna; Olsson, Pål Axel; Rousk, Johannes

    2018-01-18

    Microorganisms dominate the decomposition of organic matter and their activities are strongly influenced by temperature. As the carbon (C) flux from soil to the atmosphere due to microbial activity is substantial, understanding temperature relationships of microbial processes is critical. It has been shown that microbial temperature relationships in soil correlate with the climate, and microorganisms in field experiments become more warm-tolerant in response to chronic warming. It is also known that microbial temperature relationships reflect the seasons in aquatic ecosystems, but to date this has not been investigated in soil. Although climate change predictions suggest that temperatures will be mostly affected during winter in temperate ecosystems, no assessments exist of the responses of microbial temperature relationships to winter warming. We investigated the responses of the temperature relationships of bacterial growth, fungal growth, and respiration in a temperate grassland to seasonal change, and to 2 years' winter warming. The warming treatments increased winter soil temperatures by 5-6°C, corresponding to 3°C warming of the mean annual temperature. Microbial temperature relationships and temperature sensitivities (Q 10 ) could be accurately established, but did not respond to winter warming or to seasonal temperature change, despite significant shifts in the microbial community structure. The lack of response to winter warming that we demonstrate, and the strong response to chronic warming treatments previously shown, together suggest that it is the peak annual soil temperature that influences the microbial temperature relationships, and that temperatures during colder seasons will have little impact. Thus, mean annual temperatures are poor predictors for microbial temperature relationships. Instead, the intensity of summer heat-spells in temperate systems is likely to shape the microbial temperature relationships that govern the soil-atmosphere C

  5. IAEA reference materials for quality assurance of marine radioactivity measurements

    International Nuclear Information System (INIS)

    Povinec, P.P.; Pham, M.K.

    2001-01-01

    The IAEA's Marine Environment Laboratory has been assisting laboratories in Analytical Quality Control Services (AQCS) for the analysis of radionuclides in the marine environment since the early seventies. AQCS through world-wide and regional intercomparison exercises and the provision of reference methods and reference materials (RM) have been recognized as an important component of quality assurance/quality control. A total of 43 intercomparison exercises were organized and 37 RM were produced for marine radioactivity studies. All important marine matrices were covered, e.g., seawater, marine sediments of different chemical compositions, fish, shellfish and seaplants. RM were prepared from samples collected at contaminated sites (e.g., the Irish Sea, the Baltic Sea, the Arabian Sea, Mururoa and Bikini Atolls, etc.) as well as from sites affected only by global fallout (e.g., the Pacific Ocean). Available RM are listed in the IAEA biennial catalogue and can be purchased at a minimal price. An overview of prepared RM for radionuclides in marine matrices is presented and discussed in more detail. (author)

  6. Pufferfish mortality associated with novel polar marine toxins in Hawaii

    Science.gov (United States)

    Work, Thierry M.; Moeller, Perer D. R.; Beauchesne, Kevin R.; Dagenais, Julie; Breeden, Renee; Rameyer, Robert; Walsh, Willliam A.; Abecassis, Melanie; Kobayashi, Donald R.; Conway, Carla M.; Winton, James

    2017-01-01

    Fish die-offs are important signals in tropical marine ecosystems. In 2010, a mass mortality of pufferfish in Hawaii (USA) was dominated by Arothron hispidus showing aberrant neurological behaviors. Using pathology, toxinology, and field surveys, we implicated a series of novel, polar, marine toxins as a likely cause of this mass mortality. Our findings are striking in that (1) a marine toxin was associated with a kill of a fish species that is itself toxic; (2) we provide a plausible mechanism to explain clinical signs of affected fish; and (3) this epizootic likely depleted puffer populations. Whilst our data are compelling, we did not synthesize the toxin de novo, and we were unable to categorically prove that the polar toxins caused mortality or that they were metabolites of an undefined parent compound. However, our approach does provide a template for marine fish kill investigations associated with marine toxins and inherent limitations of existing methods. Our study also highlights the need for more rapid and cost-effective tools to identify new marine toxins, particularly small, highly polar molecules.

  7. International Laboratory of Marine Radioactivity. Biennial Report 1981-1982

    International Nuclear Information System (INIS)

    1983-12-01

    The Biennial Report covers the activities at the International Laboratory of Marine Radioactivity during the years 1981-82. It contains 34 short reports grouped under the headings: supporting activities - analytical methods development, intercalibration and maintenance services; studies for assessing the impacts of radionuclide releases into the marine environment; studies for obtaining scientific bases for evaluating deep-sea radioactive waste disposal; studies on processes affecting the fate of marine pollutants; and special missions. Details are also presented of the general aspects of the laboratory operations, staff list of the Monaco Laboratory, list of publications, meetings and conferences attended and reports and papers presented, oceanographic cruises and membership of regular committees, working groups and international programmes

  8. Oceanographic and climatic factors differentially affect reproduction performance of Antarctic skuas

    NARCIS (Netherlands)

    Hahn, S.M.; Reinhardt, K.; Ritz, M.S.; Janicke, T.; Montalti, D.; Peter, H.-U.

    2007-01-01

    We studied how environmental conditions affect reproduction in sympatric skua species that differ in their reliance on marine resources: the exclusively marine foraging south polar skua Catharacta maccormicki, the terrestrially foraging brown skua C. antarctica lonnbergi and mixed species pairs with

  9. Polar Frontal Migration in the Warm Late Pliocene: Diatom Evidence from The Wilkes Land Margin, East Antarctic

    Science.gov (United States)

    Riesselman, C. R.; Taylor-Silva, B.; Patterson, M. O.

    2017-12-01

    The Late Pliocene is the most recent interval in Earth's history to sustain global temperatures within the range of warming predicted for the 21st century. Published global reconstructions and climate models find an average +2° C summer SST anomaly relative to modern during the 3.3-3.0 Ma PRISM interval, when atmospheric CO2 concentrations last reached 400 ppm. Here, we present a new diatom-based reconstruction of Pliocene interglacial sea surface conditions from IODP Site U1361, on the East Antarctic continental rise. U1361 biogenic silica concentrations document the alternation of diatom-rich and diatom-poor lithologies; we interpret 8 diatom-rich mudstones within this sequence to record interglacial periods between 3.8 and 2.8 Ma. We find that open-ocean conditions in the mid-Pliocene became increasingly influenced by sea ice from 3.6-3.2 Ma, prior to the onset of Northern Hemisphere glaciation. This cooling trend was interrupted by a temporary southward migration of the Antarctic Polar Front, bathing U1361 in warmer subantarctic waters during a single interglacial, marine isotope stage KM3 (3.17-3.15 Ma), that corresponds to a maximum in summer insolation at 65°S. Following this interval of transient warmth, interglacial periods became progressively cooler starting at 3 Ma, coinciding with a transition from obliquity to precession as the dominant orbital driver of Antarctic ice sheet fluctuations. Building on the identification of a single outlier interglacial within the PRISM interval, we have revisited older reconstructions to explore the response of the Southern Ocean/cryosphere system to peak late Pliocene warmth. By applying a modern chronostratigraphic framework to those low-resolution "mean interglacial" records, we identify the same frontal migration in 4 other cores in the Pacific sector of the Southern Ocean, documenting a major migration of the polar front during a key interval of warm climate. These new results suggest that increased summer

  10. Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    K. E. Altieri

    2012-04-01

    Full Text Available Atmospheric water soluble organic nitrogen (WSON is a subset of the complex organic matter in aerosols and rainwater, which impacts cloud condensation processes and aerosol chemical and optical properties and may play a significant role in the biogeochemical cycle of N. However, its sources, composition, connections to inorganic N, and variability are largely unknown. Rainwater samples were collected on the island of Bermuda (32.27° N, 64.87° W, which experiences both anthropogenic and marine influenced air masses. Samples were analyzed by ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to chemically characterize the WSON. Elemental compositions of 2281 N containing compounds were determined over the mass range m/z+ 50 to 500. The five compound classes with the largest number of elemental formulas identified, in order from the highest number of formulas to the lowest, contained carbon, hydrogen, oxygen, and nitrogen (CHON+, CHON compounds that contained sulfur (CHONS+, CHON compounds that contained phosphorus (CHONP+, CHON compounds that contained both sulfur and phosphorus (CHONSP+, and compounds that contained only carbon, hydrogen, and nitrogen (CHN+. Compared to rainwater collected in the continental USA, average O:C ratios of all N containing compound classes were lower in the marine samples whereas double bond equivalent values were higher, suggesting a reduced role of secondary formation mechanisms. Despite their prevalence in continental rainwater, no organonitrates or nitrooxy-organosulfates were detected, but there was an increased presence of organic S and organic P containing compounds in the marine rainwater. Cluster analysis showed a clear chemical distinction between samples collected during the cold season (October to March which have anthropogenic air mass origins and samples collected during the warm season (April to September with remote

  11. The response of vegetation structure to active warming and precipitation reduction of the Sphagnum peatland

    Science.gov (United States)

    Łuców, Dominika; Basińska, Anna; Chojnicki, Bogdan; Gąbka, Maciej; Józefczyk, Damian; Juszczak, Radosław; Leśny, Jacek; Olejnik, Janusz; Reczuga, Monika; Samson, Mateusz; Silvennoinen, Hanna; Stróżecki, Marcin; Urbaniak, Marek; Zielińska, Małgorzata; Lamentowicz, Mariusz

    2017-04-01

    The recent climate change (e.g. increased temperature and decreased precipitation) is expected to affect biodiversity and vegetation structure of the European peatlands, as well as carbon fluxes. Our experimental study carried out in Western Poland, tests the hypothesis that the increased temperature, in particular in combination with rainfall reduction affects vegetation structure of the Sphagnum peatland, through changes in moss and vascular plants abundance. The innovative climate manipulation system was installed on the Rzecin peatland in 2014. The field site consists of four blocks: "drought" "warming and drought" "warming" and "control". The air and peat temperatures were increased in 2015 and 2016 by about 0.2 oC and 1.0 oC, respectively, using infrared radiators. Precipitation was reduced by automatic curtain operated only during the nights by about 37 % in both years. Data resulting from the analyses of digital pictures as well as Point Intercept method were used to identify changes in vegetation structure as a response to warming and drought. We observed increase in abundance of vascular plant and decrease in abundance of mosses during the very dry 2015 vegetation season. It appeared that Carex spp. (C. limosa and C. rostrata) abundance responded positively to warming, while Sphagnum spp. (S. angustifolium and S. teres) responded negatively. The "warming" block was characterized by an increase in abundance of Carex spp. by 8.3 % to 16.7 % and decreased abundance of Sphagnum spp. from 25 % to 19.4 %, whereas in the block of "warming and drought" 11.4 % to by 18.3 and 38 % to 26.9 %, respectively in the August 2015. However, we observed decrease in Sphagnum spp. abundance in the treatment with rainfall reduction in wetter 2016, and their increase in the control. Our results show how considerable changes in vegetation structure can be expected under the stress of warming and modified rainfall conditions, even after a short-term manipulation. However, it is

  12. Global warming: the complete briefing

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, J

    1994-01-01

    The science of global warming, its impacts, and what action might be taken, are described in this book, in a way which the intelligent non-scientist can understand. It also examines ethical and moral issues of concern about global warming, considering mankind as stewards of the earth. Chapter headings of the book are: global warming and climate change; the greenhouse effect; the greenhouse gases; climates of the past; modelling the climate; climate change and business-as-usual; the impacts of climate change; why should we be concerned ; weighing the uncertainty; action to slow and stabilize climate change; energy and transport for the future; and the global village.

  13. Experimental climate warming decreases photosynthetic efficiency of lichens in an arid South African ecosystem.

    Science.gov (United States)

    Maphangwa, Khumbudzo Walter; Musil, Charles F; Raitt, Lincoln; Zedda, Luciana

    2012-05-01

    Elevated temperatures and diminished precipitation amounts accompanying climate warming in arid ecosystems are expected to have adverse effects on the photosynthesis of lichen species sensitive to elevated temperature and/or water limitation. This premise was tested by artificially elevating temperatures (increase 2.1-3.8°C) and reducing the amounts of fog and dew precipitation (decrease 30.1-31.9%), in an approximation of future climate warming scenarios, using transparent hexagonal open-top warming chambers placed around natural populations of four lichen species (Xanthoparmelia austroafricana, X. hyporhytida , Xanthoparmelia. sp., Xanthomaculina hottentotta) at a dry inland site and two lichen species (Teloschistes capensis and Ramalina sp.) at a humid coastal site in the arid South African Succulent Karoo Biome. Effective photosynthetic quantum yields ([Formula: see text]) were measured hourly throughout the day at monthly intervals in pre-hydrated lichens present in the open-top warming chambers and in controls which comprised demarcated plots of equivalent open-top warming chamber dimensions constructed from 5-cm-diameter mesh steel fencing. The cumulative effects of the elevated temperatures and diminished precipitation amounts in the open-top warming chambers resulted in significant decreases in lichen [Formula: see text]. The decreases were more pronounced in lichens from the dry inland site (decline 34.1-46.1%) than in those from the humid coastal site (decline 11.3-13.7%), most frequent and prominent in lichens at both sites during the dry summer season, and generally of greatest magnitude at or after the solar noon in all seasons. Based on these results, we conclude that climate warming interacting with reduced precipitation will negatively affect carbon balances in endemic lichens by increasing desiccation damage and reducing photosynthetic activity time, leading to increased incidences of mortality.

  14. Warm Bodies: A Student Perspective.

    Science.gov (United States)

    Schario, Tracy A.

    A participant in forensic tournament competition presents her perspective as well as overall student reaction to the function of "warm bodies," competitors who are entered in a tournament by the coach or tournament director only to meet qualifying requirements. Overall, participants in an informal survey believed that the warm body…

  15. Warm Absorber Diagnostics of AGN Dynamics

    Science.gov (United States)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  16. Strengthened currents override the effect of warming on lobster larval dispersal and survival

    NARCIS (Netherlands)

    Cetina-Heredia, Paulina; Roughan, Moninya; van Sebille, Erik; Feng, Ming; Coleman, Melinda A.

    2015-01-01

    Human-induced climate change is projected to increase ocean temperature and modify circulation patterns, with potential widespread implications for the transport and survival of planktonic larvae of marine organisms. Circulation affects the dispersal of larvae, whereas temperature impacts larval

  17. The Frustrating Lives of Climate Scientists - 45 Years of Warm, Cold, Wet and Dry

    Science.gov (United States)

    Toon, O. B.; Hartwick, V.; Urata, R. A.

    2016-12-01

    Mariner 9 arrived at Mars in November 1971, where it revealed giant volcanoes and dry river valleys some of which originated from rainfall or runoff. Some geologists think there were oceans, tidal waves, craters that filled to their rims and then overflowed or didn't overflow, and river deltas reaching into the ancient seas and lakes. Climate scientists have stumbled through a 45 year-long chain of failed explanations for these geologic data. CO2 in greater abundance than now is likely involved, but not sufficient. Adding CH4 , CO2 clouds, or SO2 have faltered on further study. Three ideas are still being kicked around, two of which are able to make Mars warm, but may have geologic issues. First, is the idea of adding H2 to the CO2, which warms sufficiently in climate models. However, the large quantities needed are a challenge to outgassing models. Second, is impacts, the largest of which would mobilize most of the water in the regolith. Geologists object that the water from impacts would not last long enough to carve rivers. However, no one has explored the concurrent generation of the regolith by these impacts, which would create a loose, easily erodible surface. Are the rivers all in ancient regolith? If some rivers are in bedrock it would be harder to explain by impacts. Finally, impacts may triggered water/cloud greenhouses. Such a climate state would be long lasting, requires only a modest background atmosphere of carbon dioxide, and would fade away when the carbon dioxide dropped below a few hundred mbar. However, not all climate models have been able to produce such water driven greenhouse warming. In this talk I will outline the history of these climate models, point to evidence that might discriminate between them, describe how the water greenhouse models work or don't work, and suggest some new projects that might be done to decide just how warm and wet Mars may have been.

  18. Scaled biotic disruption during early Eocene global warming events

    Directory of Open Access Journals (Sweden)

    S. J. Gibbs

    2012-11-01

    Full Text Available Late Paleocene and early Eocene hyperthermals are transient warming events associated with massive perturbations of the global carbon cycle, and are considered partial analogues for current anthropogenic climate change. Because the magnitude of carbon release varied between the events, they are natural experiments ideal for exploring the relationship between carbon cycle perturbations, climate change and biotic response. Here we quantify marine biotic variability through three million years of the early Eocene that include five hyperthermals, utilizing a method that allows us to integrate the records of different plankton groups through scenarios ranging from background to major extinction events. Our long time-series calcareous nannoplankton record indicates a scaling of biotic disruption to climate change associated with the amount of carbon released during the various hyperthermals. Critically, only the three largest hyperthermals, the Paleocene–Eocene Thermal Maximum (PETM, Eocene Thermal Maximum 2 (ETM2 and the I1 event, show above-background variance, suggesting that the magnitude of carbon input and associated climate change needs to surpass a threshold value to cause significant biotic disruption.

  19. Allergy and sensitization during childhood associated with prenatal and lactational exposure to marine pollutants

    DEFF Research Database (Denmark)

    Grandjean, Philippe; Poulsen, Lars K; Heilmann, Carsten

    2010-01-01

    Breast-feeding may affect the risk of developing allergy during childhood and may also cause exposure to immunotoxicants, such as polychlorinated biphenyls (PCBs), which are of concern as marine pollutants in the Faroe Islands and the Arctic region.......Breast-feeding may affect the risk of developing allergy during childhood and may also cause exposure to immunotoxicants, such as polychlorinated biphenyls (PCBs), which are of concern as marine pollutants in the Faroe Islands and the Arctic region....

  20. Effects of global warming on fish reproductive endocrine axis, with special emphasis in pejerrey Odontesthes bonariensis.

    Science.gov (United States)

    Miranda, Leandro Andrés; Chalde, Tomás; Elisio, Mariano; Strüssmann, Carlos Augusto

    2013-10-01

    The ongoing of global warming trend has led to an increase in temperature of several water bodies. Reproduction in fish, compared with other physiological processes, only occurs in a bounded temperature range; therefore, small changes in water temperature could significantly affect this process. This review provides evidence that fish reproduction may be directly affected by further global warming and that abnormal high water temperature impairs the expression of important genes throughout the brain-pituitary-gonad axis. In all fishes studied, gonads seem to be the organ more readily damaged by heat treatments through the inhibition of the gene expression and subsequent synthesis of different gonadal steroidogenic enzymes. In view of the feedback role of sex steroids upon the synthesis and release of GnRH and GtHs in fish, it is possible that the inhibition observed at brain and pituitary levels in treated fish is consequence of the sharp decrease in plasma steroids levels. Results of in vitro studies on the inhibition of pejerrey gonad aromatase expression by high temperature corroborate that ovary functions are directly disrupted by high temperature independently of the brain-pituitary axis. For the reproductive responses obtained in laboratory fish studies, it is plausible to predict changes in the timing and magnitude of reproductive activity or even the total failure of spawning season may occur in warm years, reducing annual reproductive output and affecting future populations. Copyright © 2013 Elsevier Inc. All rights reserved.