WorldWideScience

Sample records for warmer climate growth

  1. Potential Costs of Acclimatization to a Warmer Climate: Growth of a Reef Coral with Heat Tolerant vs. Sensitive Symbiont Types

    OpenAIRE

    Jones, Alison; Berkelmans, Ray

    2010-01-01

    One of the principle ways in which reef building corals are likely to cope with a warmer climate is by changing to more thermally tolerant endosymbiotic algae (zooxanthellae) genotypes. It is highly likely that hosting a more heat-tolerant algal genotype will be accompanied by tradeoffs in the physiology of the coral. To better understand one of these tradeoffs, growth was investigated in the Indo-Pacific reef-building coral Acropora millepora in both the laboratory and the field. In the Kepp...

  2. Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types.

    Directory of Open Access Journals (Sweden)

    Alison Jones

    Full Text Available One of the principle ways in which reef building corals are likely to cope with a warmer climate is by changing to more thermally tolerant endosymbiotic algae (zooxanthellae genotypes. It is highly likely that hosting a more heat-tolerant algal genotype will be accompanied by tradeoffs in the physiology of the coral. To better understand one of these tradeoffs, growth was investigated in the Indo-Pacific reef-building coral Acropora millepora in both the laboratory and the field. In the Keppel Islands in the southern Great Barrier Reef this species naturally harbors nrDNA ITS1 thermally sensitive type C2 or thermally tolerant type D zooxanthellae of the genus Symbiodinium and can change dominant type following bleaching. We show that under controlled conditions, corals with type D symbionts grow 29% slower than those with type C2 symbionts. In the field, type D colonies grew 38% slower than C2 colonies. These results demonstrate the magnitude of trade-offs likely to be experienced by this species as they acclimatize to warmer conditions by changing to more thermally tolerant type D zooxanthellae. Irrespective of symbiont genotype, corals were affected to an even greater degree by the stress of a bleaching event which reduced growth by more than 50% for up to 18 months compared to pre-bleaching rates. The processes of symbiont change and acute thermal stress are likely to act in concert on coral growth as reefs acclimatize to more stressful warmer conditions, further compromising their regeneration capacity following climate change.

  3. Potential Costs of Acclimatization to a Warmer Climate: Growth of a Reef Coral with Heat Tolerant vs. Sensitive Symbiont Types

    Science.gov (United States)

    Jones, Alison; Berkelmans, Ray

    2010-01-01

    One of the principle ways in which reef building corals are likely to cope with a warmer climate is by changing to more thermally tolerant endosymbiotic algae (zooxanthellae) genotypes. It is highly likely that hosting a more heat-tolerant algal genotype will be accompanied by tradeoffs in the physiology of the coral. To better understand one of these tradeoffs, growth was investigated in the Indo-Pacific reef-building coral Acropora millepora in both the laboratory and the field. In the Keppel Islands in the southern Great Barrier Reef this species naturally harbors nrDNA ITS1 thermally sensitive type C2 or thermally tolerant type D zooxanthellae of the genus Symbiodinium and can change dominant type following bleaching. We show that under controlled conditions, corals with type D symbionts grow 29% slower than those with type C2 symbionts. In the field, type D colonies grew 38% slower than C2 colonies. These results demonstrate the magnitude of trade-offs likely to be experienced by this species as they acclimatize to warmer conditions by changing to more thermally tolerant type D zooxanthellae. Irrespective of symbiont genotype, corals were affected to an even greater degree by the stress of a bleaching event which reduced growth by more than 50% for up to 18 months compared to pre-bleaching rates. The processes of symbiont change and acute thermal stress are likely to act in concert on coral growth as reefs acclimatize to more stressful warmer conditions, further compromising their regeneration capacity following climate change. PMID:20454653

  4. Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types.

    Science.gov (United States)

    Jones, Alison; Berkelmans, Ray

    2010-05-03

    One of the principle ways in which reef building corals are likely to cope with a warmer climate is by changing to more thermally tolerant endosymbiotic algae (zooxanthellae) genotypes. It is highly likely that hosting a more heat-tolerant algal genotype will be accompanied by tradeoffs in the physiology of the coral. To better understand one of these tradeoffs, growth was investigated in the Indo-Pacific reef-building coral Acropora millepora in both the laboratory and the field. In the Keppel Islands in the southern Great Barrier Reef this species naturally harbors nrDNA ITS1 thermally sensitive type C2 or thermally tolerant type D zooxanthellae of the genus Symbiodinium and can change dominant type following bleaching. We show that under controlled conditions, corals with type D symbionts grow 29% slower than those with type C2 symbionts. In the field, type D colonies grew 38% slower than C2 colonies. These results demonstrate the magnitude of trade-offs likely to be experienced by this species as they acclimatize to warmer conditions by changing to more thermally tolerant type D zooxanthellae. Irrespective of symbiont genotype, corals were affected to an even greater degree by the stress of a bleaching event which reduced growth by more than 50% for up to 18 months compared to pre-bleaching rates. The processes of symbiont change and acute thermal stress are likely to act in concert on coral growth as reefs acclimatize to more stressful warmer conditions, further compromising their regeneration capacity following climate change.

  5. Enhanced growth of Juniperus thurifera under a warmer climate is explained by a positive carbon gain under cold and drought.

    Science.gov (United States)

    Gimeno, Teresa E; Camarero, J Julio; Granda, Elena; Pías, Beatriz; Valladares, Fernando

    2012-03-01

    Juniperus thurifera L. is an endemic conifer of the western Mediterranean Basin where it is subjected to a severe climatic stress characterized by low winter temperatures and summer drought. Given the trend of increased warming-induced drought stress in this area and the climatic sensitivity of this species, we expect a negative impact of climate change on growth and ecophysiological performance of J. thurifera in the harsh environments where it dominates. To evaluate this, we measured long- and short-term radial growth using dendrochronology, photosynthesis and water-use efficiency in males, females and juveniles in three sites in Central Spain. Climate was monitored and completed with historical records. Mean annual temperature has increased +0.2 °C per decade in the study area, and the main warming trends corresponded to spring (+0.2 °C per decade) and summer (+0.3 °C per decade). Radial growth and maximum photosynthesis peaked in spring and autumn. Positive photosynthetic rates were maintained all year long, albeit at reduced rates in winter and summer. Radial growth was enhanced by wet conditions in the previous autumn and by warm springs and high precipitation in summer of the year of tree-ring formation. Cloud cover during the summer increased growth, while cloudy winters led to impaired carbon gain and reduced growth in the long term. We argue that maintenance of carbon gain under harsh conditions (low winter temperatures and dry summer months) and plastic xylogenesis underlie J. thurifera's ability to profit from changing climatic conditions such as earlier spring onset and erratic summer rainfall. Our results highlight that not only the magnitude but also the sign of the impact of climate change on growth and persistence of Mediterranean trees is species specific.

  6. Precipitation variability increases in a warmer climate.

    Science.gov (United States)

    Pendergrass, Angeline G; Knutti, Reto; Lehner, Flavio; Deser, Clara; Sanderson, Benjamin M

    2017-12-21

    Understanding changes in precipitation variability is essential for a complete explanation of the hydrologic cycle's response to warming and its impacts. While changes in mean and extreme precipitation have been studied intensively, precipitation variability has received less attention, despite its theoretical and practical importance. Here, we show that precipitation variability in most climate models increases over a majority of global land area in response to warming (66% of land has a robust increase in variability of seasonal-mean precipitation). Comparing recent decades to RCP8.5 projections for the end of the 21 st century, we find that in the global, multi-model mean, precipitation variability increases 3-4% K -1 globally, 4-5% K -1 over land and 2-4% K -1 over ocean, and is remarkably robust on a range of timescales from daily to decadal. Precipitation variability increases by at least as much as mean precipitation and less than moisture and extreme precipitation for most models, regions, and timescales. We interpret this as being related to an increase in moisture which is partially mitigated by weakening circulation. We show that changes in observed daily variability in station data are consistent with increased variability.

  7. Building when the climate gets warmer

    International Nuclear Information System (INIS)

    Brunner, C. U.; Steinemann, U.; Nipkow, J.

    2007-01-01

    This final report for the Swiss Federal Office of Energy (SFOE), takes a look at how the building process will have to take account of climate change with higher summer temperatures in Switzerland. The authors consider the situation as being in strong contrast to the past in Switzerland, when attention was devoted to energy demand in buildings during the winter. Today there is a new focus with the anticipation of increasingly frequent, extended hot spells in summer. The goal of this investigation is to analyse and present economic measures to assure a high level of summer comfort with a reduced demand for electricity under these changing conditions. Strategies with respect to construction, technology and operation are addressed. The current spread of technically questionable and inefficient room air conditioning units in residential and commercial buildings is considered as being strongly reminiscent of a dangerous, analogous case in the past, when small electric heaters became widespread. A largely untapped potential exists for increasing the efficiency of air conditioning and chiller technologies for both central systems and room units by the careful use of small temperature differences. Several new and unconventional solution paths are discussed, including high-efficiency room air conditioners, solar cooling equipment, balanced mechanical ventilation, phase-change materials, thermal storage, etc., all aimed at reducing electricity consumption. The expected additional electricity demand of around 1.9 TWh annually for ventilation and air conditioning is commented on.

  8. Intensification of extreme European summer precipitation in a warmer climate

    DEFF Research Database (Denmark)

    Christensen, O. B.; Christensen, J. H.

    2004-01-01

    Heavy and/or extended precipitation episodes with subsequent surface runoff can inflict catastrophic property damage and loss of human life. Thus, it is important to determine how the character of such events could change in response to greenhouse gas-induced global warming. Impacts of climate...... warming on severe precipitation events in Europe on a diurnal time scale were investigated with a high-resolution regional climate model for two of the greenhouse gas emission scenarios constructed by the Intergovernmental Panel on Climate Change (IPCC; Nakicenovic, N., et al., 2000, IPCC special report...... models both originating from fully transient climate change simulations. Here, we show that although the summer time precipitation decreases over a substantial part of Europe in the scenarios analysed, an increase in the amount of precipitation exceeding the present-day 99th and in most cases even the 95...

  9. Teleconnections in a warmer climate: the pliocene perspective

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Sonali P. [Columbia University, Deptartment of Earth and Environmental Sciences and the NASA Goddard Institute for Space Studies, New York, NY (United States); Chandler, Mark A.; Sohl, Linda E.; Jonas, Jeff; Lerner, Jean [Columbia University, Center for Climate Systems Research, New York, NY (United States); Rind, David [National Aeronautics and Space Administration, Goddard Institute for Space Studies, New York, NY (United States)

    2011-11-15

    Migrations toward altered sea surface temperature (SST) patterns in the Indo-Pacific region are present in the recent observational record and in future global warming projections. These SSTs are in the form of ''permanent'' El Nino-like (herein termed ''El Padre'') and Indian Ocean Dipole (IOD)-like patterns. The Early Pliocene Warm Period, which bears similarity to future warming projections, may have also exhibited these Indo-Pacific SST patterns, as suggested by regional terrestrial paleo-climatic data and general circulation model studies. The ability to corroborate this assessment with paleo-data reconstructions is an advantage of the warm Pliocene period that is not afforded by future warming scenarios. Thus, the Pliocene period provides us with a warm-climate perspective and test bed for understanding potential changes to future atmospheric interactions given these altered SST states. This study specifically assesses how atmospheric teleconnections from El Padre/IOD SST patterns are generated and propagate to create the regional climate signals of the Pliocene period, as these signals may be representative of future regional climatic changes as well. To do this, we construct a holistic diagnostic rubric that allows us to examine atmospheric teleconnections, both energetically and dynamically, as produced by a general circulation model. We incorporate KE', a diagnostic adapted from the eddy kinetic energy generation field, to assess the available energy transferred to these teleconnections. Using this methodology, we found that relative to our Modern Control experiments, weaker atmospheric teleconnections prevail under warm Pliocene conditions, although pathways of propagation still appear directed toward the southwestern United States from our tropical Pacific sector forcing. Propagation directly emanating from the Indian Ocean forcing sector appears to be largely blocked, although indirect teleconnective

  10. Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans

    Science.gov (United States)

    Cunning, R.; Gillette, P.; Capo, T.; Galvez, K.; Baker, A. C.

    2015-03-01

    The growth and survival of reef corals are influenced by their symbiotic algal partners ( Symbiodinium spp.), which may be flexible in space and time. Tradeoffs among partnerships exist such that corals with thermotolerant symbionts (e.g., clade D) resist bleaching but grow more slowly, making the long-term ecosystem-level impacts of different host-symbiont associations uncertain. However, much of this uncertainty is due to limited data regarding these tradeoffs and particularly how they are mediated by the environment. To address this knowledge gap, we measured growth and survival of Pocillopora damicornis with thermally sensitive (clade C) or tolerant (clade D) symbionts at three temperatures over 18-55 weeks. Warming reduced coral growth overall, but altered the tradeoffs associated with symbiont type. While clade D corals grew 35-40 % slower than clade C corals at cooler temperatures (26 °C), warming of 1.5-3 °C reduced and eliminated this growth disadvantage. These results suggest that although warmer oceans will negatively impact corals, clade D may enhance survival at no cost to growth relative to clade C. Understanding these genotype-environment interactions can help improve modeling efforts and conservation strategies for reefs under global climate change.

  11. WARMER URBAN CLIMATES FOR DEVELOPMENT OF GREEN SPACES IN NORTHERN SIBERIAN CITIES

    Directory of Open Access Journals (Sweden)

    Igor Esau

    2016-01-01

    Full Text Available Modern human societies have accumulated considerable power to modify their environment and the earth’s system climate as the whole. The most significant environmental changes are found in the urbanized areas. This study considers coherent changes in vegetation productivity and land surface temperature (LST around four northern West Siberian cities, namely, Tazovsky, Nadym, Noyabrsk and Megion. These cities are located in tundra, forest-tundra, northern taiga and middle taiga bioclimatic zones correspondingly. Our analysis of 15 years (2000–2014 Moderate Resolution Imaging Spectroradiometer (MODIS data revealed significantly (1.3 °C to 5.2 °C warmer seasonally averaged LST within the urbanized territories than those of the surrounding landscapes. The magnitude of the urban LST anomaly corresponds to climates found 300–600 km to the South. In the climate change perspective, this magnitude corresponds to the expected regional warming by the middle or the end of the 21st century. Warmer urban climates, and specifically warmer upper soil layers, can support re-vegetation of the disturbed urban landscapes with more productive trees and tall shrubs. This afforestation is welcome by the migrant city population as it is more consistent with their traditional ecological knowledge. Survival of atypical, southern plant species encourages a number of initiatives and investment to introduce even broader spectrum of temperate blossoming trees and shrubs in urban landscapes. The unintended changes of the urban micro-climates in combination with knowledgeable urban planning could transform the Siberian pioneer settlements into places of belonging.

  12. Adapting to warmer climate through prolonged maize grain filling period in the US Midwest

    Science.gov (United States)

    Zhu, P.; Zhuang, Q.; Jin, Z.

    2017-12-01

    Climate warming is expected to negatively impact the US food productivity. How to adapt to the future warmer environment and meet the rising food requirement becomes unprecedented urgent. Continuous satellite observational data provides an opportunity to examine the historic responses of crop plants to climate variation. Here 16 years crop growing phases information across US Midwest is generated based on satellite observations. We found a prolonged grain-filling period during 2000-2015, which could partly explain the increasing trend in Midwest maize yield. This longer grain-filling period might be resulted from the adoption of longer maturity group varieties or more resistant varieties to temperature variation. Other management practice changes like advance in planting date could be also an effective way of adapting future warmer climate through lowering the possibility of exposure to heat and drought stresses. If the progress in breeding technology enables the maize grain-filling period to prolong with the current rate, the maize grain filling length could be longer and maize yield in Midwest could adapt to future climate despite of the warming.

  13. Life on a warmer earth: possible climatic consequences of man made global warming

    Energy Technology Data Exchange (ETDEWEB)

    Flohn, H

    1981-01-01

    The interaction between energy and climate is explored, including the impact on global climate of three main energy sources: solar, nuclear and fossil fuels. The global warming problem is introduced. Comprehensive analogies with warmer times are made. From the best models available, the future global average surface temperature is found and modified, describing the global warming effects caused by greenhouse effect caused by gases other than carbon dioxide, released into the atmosphere by man, i.e. nitrous oxide, methane, ammonia, and the chlorofluoromethanes. Paleoclimatic scenarios are reviewed, showing possible effects of global warming. An 800 to 1100 ppm CO/sub 2/ concentration causes irreversible Arctic melting, leading to displacement of present climatic zones by 400 to 800 km.

  14. Tracking an atmospheric river in a warmer climate: from water vapor to economic impacts

    Science.gov (United States)

    Dominguez, Francina; Dall'erba, Sandy; Huang, Shuyi; Avelino, Andre; Mehran, Ali; Hu, Huancui; Schmidt, Arthur; Schick, Lawrence; Lettenmaier, Dennis

    2018-03-01

    Atmospheric rivers (ARs) account for more than 75 % of heavy precipitation events and nearly all of the extreme flooding events along the Olympic Mountains and western Cascade Mountains of western Washington state. In a warmer climate, ARs in this region are projected to become more frequent and intense, primarily due to increases in atmospheric water vapor. However, it is unclear how the changes in water vapor transport will affect regional flooding and associated economic impacts. In this work we present an integrated modeling system to quantify the atmospheric-hydrologic-hydraulic and economic impacts of the December 2007 AR event that impacted the Chehalis River basin in western Washington. We use the modeling system to project impacts under a hypothetical scenario in which the same December 2007 event occurs in a warmer climate. This method allows us to incorporate different types of uncertainty, including (a) alternative future radiative forcings, (b) different responses of the climate system to future radiative forcings and (c) different responses of the surface hydrologic system. In the warming scenario, AR integrated vapor transport increases; however, these changes do not translate into generalized increases in precipitation throughout the basin. The changes in precipitation translate into spatially heterogeneous changes in sub-basin runoff and increased streamflow along the entire Chehalis main stem. Economic losses due to stock damages increase moderately, but losses in terms of business interruption are significant. Our integrated modeling tool provides communities in the Chehalis region with a range of possible future physical and economic impacts associated with AR flooding.

  15. Tracking an atmospheric river in a warmer climate: from water vapor to economic impacts

    Directory of Open Access Journals (Sweden)

    F. Dominguez

    2018-03-01

    Full Text Available Atmospheric rivers (ARs account for more than 75 % of heavy precipitation events and nearly all of the extreme flooding events along the Olympic Mountains and western Cascade Mountains of western Washington state. In a warmer climate, ARs in this region are projected to become more frequent and intense, primarily due to increases in atmospheric water vapor. However, it is unclear how the changes in water vapor transport will affect regional flooding and associated economic impacts. In this work we present an integrated modeling system to quantify the atmospheric–hydrologic–hydraulic and economic impacts of the December 2007 AR event that impacted the Chehalis River basin in western Washington. We use the modeling system to project impacts under a hypothetical scenario in which the same December 2007 event occurs in a warmer climate. This method allows us to incorporate different types of uncertainty, including (a alternative future radiative forcings, (b different responses of the climate system to future radiative forcings and (c different responses of the surface hydrologic system. In the warming scenario, AR integrated vapor transport increases; however, these changes do not translate into generalized increases in precipitation throughout the basin. The changes in precipitation translate into spatially heterogeneous changes in sub-basin runoff and increased streamflow along the entire Chehalis main stem. Economic losses due to stock damages increase moderately, but losses in terms of business interruption are significant. Our integrated modeling tool provides communities in the Chehalis region with a range of possible future physical and economic impacts associated with AR flooding.

  16. Subtropical Low Cloud Response to a Warmer Climate in an Superparameterized Climate Model: Part I. Regime Sorting and Physical Mechanisms

    Directory of Open Access Journals (Sweden)

    Peter N Blossey

    2009-07-01

    Full Text Available The subtropical low cloud response to a climate with SST uniformly warmed by 2 K is analyzed in the SP- CAM superparameterized climate model, in which each grid column is replaced by a two-dimensional cloud-resolving model (CRM. Intriguingly, SP-CAM shows substantial low cloud increases over the subtropical oceans in the warmer climate. The paper aims to understand the mechanism for these increases. The subtropical low cloud increase is analyzed by sorting grid-column months of the climate model into composite cloud regimes using percentile ranges of lower tropospheric stability (LTS. LTS is observed to be well correlated to subtropical low cloud amount and boundary layer vertical structure. The low cloud increase in SP-CAM is attributed to boundary-layer destabilization due to increased clear-sky radiative cooling in the warmer climate. This drives more shallow cumulus convection and a moister boundary layer, inducing cloud increases and further increasing the radiative cooling. The boundary layer depth does not change substantially, due to compensation between increased radiative cooling (which promotes more turbulent mixing and boundary-layer deepening and slight strengthening of the boundary-layer top inversion (which inhibits turbulent entrainment and promotes a shallower boundary layer. The widespread changes in low clouds do not appear to be driven by changes in mean subsidence.
    In a companion paper we use column-mode CRM simulations based on LTS-composite profiles to further study the low cloud response mechanisms and to explore the sensitivity of low cloud response to grid resolution in SP-CAM.

  17. Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate

    Science.gov (United States)

    Fadhel, Sherien; Rico-Ramirez, Miguel Angel; Han, Dawei

    2018-05-01

    The widely used design storms in urban drainage networks has different drawbacks. One of them is that the shape of the rainfall temporal pattern is fixed regardless of climate change. However, previous studies have shown that the temporal pattern may scale with temperature due to climate change, which consequently affects peak flow. Thus, in addition to the scaling of the rainfall volume, the scaling relationship for the rainfall temporal pattern with temperature needs to be investigated by deriving the scaling values for each fraction within storm events, which is lacking in many parts of the world including the UK. Therefore, this study analysed rainfall data from 28 gauges close to the study area with a 15-min resolution as well as the daily temperature data. It was found that, at warmer temperatures, the rainfall temporal pattern becomes less uniform, with more intensive peak rainfall during higher intensive times and weaker rainfall during less intensive times. This is the case for storms with and without seasonal separations. In addition, the scaling values for both the rainfall volume and the rainfall fractions (i.e. each segment of rainfall temporal pattern) for the summer season were found to be higher than the corresponding results for the winter season. Applying the derived scaling values for the temporal pattern of the summer season in a hydrodynamic sewer network model produced high percentage change of peak flow between the current and future climate. This study on the scaling of rainfall fractions is the first in the UK, and its findings are of importance to modellers and designers of sewer systems because it can provide more robust scenarios for flooding mitigation in urban areas.

  18. Growth Rate Potential of Juvenile Sockeye Salmon in Warmer and Cooler Years on the Eastern Bering Sea Shelf

    Directory of Open Access Journals (Sweden)

    Edward V. Farley

    2009-01-01

    Full Text Available A spatially explicit bioenergetics model was used to predict juvenile sockeye salmon Oncorhynchus nerka growth rate potential (GRP on the eastern Bering Sea shelf during years with cooler and warmer spring sea surface temperatures (SSTs. Annual averages of juvenile sockeye salmon GRP were generally lower among years with cooler SSTs and generally higher in offshore than nearshore regions of the eastern Bering Sea shelf during years with warmer SSTs. Juvenile sockeye salmon distribution was significantly (P<.05 related to GRP and their prey densities were positively related to spring SST (P<.05. Juvenile sockeye salmon GRP was more sensitive to changes in prey density and observed SSTs during years when spring SSTs were warmer (2002, 2003, and 2005. Our results suggest that the pelagic productivity on the eastern Bering Sea shelf was higher during years with warmer spring SSTs and highlight the importance of bottom-up control on the eastern Bering Sea ecosystem.

  19. A warmer policy for a colder climate: Can China both reduce poverty and cap carbon emissions?

    International Nuclear Information System (INIS)

    Glomsrød, Solveig; Wei, Taoyuan; Aamaas, Borgar; Lund, Marianne T.; Samset, Bjørn H.

    2016-01-01

    Reducing global carbon dioxide (CO_2) emissions is often thought to be at odds with economic growth and poverty reduction. Using an integrated assessment modeling approach, we find that China can cap CO_2 emissions at 2015 level while sustaining economic growth and reducing the urban-rural income gap by a third by 2030. As a result, the Chinese economy becomes less dependent on exports and investments, as household consumption emerges as a driver behind economic growth, in line with current policy priorities. The resulting accumulated greenhouse gas emissions reduction 2016–2030 is about 60 billion ton (60 Mg) CO_2e. A CO_2 tax combined with income re-distribution initially leads to a modest warming due to reduction in sulfur dioxide (SO_2) emissions. However, the net effect is eventually cooling when the effect of reduced CO_2 emissions dominates due to the long-lasting climate response of CO_2. The net reduction in global temperature for the remaining part of this century is about 0.03 ± 0.02 °C, corresponding in magnitude to the cooling from avoiding one year of global CO_2 emissions. - Highlights: • China can cap CO_2-emissions at 2015 level without harming economic growth. • Poverty reduction is compatible with policy to cap CO_2 emissions. • Rural poverty reduction financed by CO_2 tax revenue increases domestic consumption. • One year of the global emissions is avoided. • The global mean temperature is reduced by 0.03 (± 0.02) °C.

  20. A warmer policy for a colder climate: Can China both reduce poverty and cap carbon emissions?

    Energy Technology Data Exchange (ETDEWEB)

    Glomsrød, Solveig; Wei, Taoyuan, E-mail: taoyuan.wei@cicero.uio.no; Aamaas, Borgar; Lund, Marianne T.; Samset, Bjørn H.

    2016-10-15

    Reducing global carbon dioxide (CO{sub 2}) emissions is often thought to be at odds with economic growth and poverty reduction. Using an integrated assessment modeling approach, we find that China can cap CO{sub 2} emissions at 2015 level while sustaining economic growth and reducing the urban-rural income gap by a third by 2030. As a result, the Chinese economy becomes less dependent on exports and investments, as household consumption emerges as a driver behind economic growth, in line with current policy priorities. The resulting accumulated greenhouse gas emissions reduction 2016–2030 is about 60 billion ton (60 Mg) CO{sub 2}e. A CO{sub 2} tax combined with income re-distribution initially leads to a modest warming due to reduction in sulfur dioxide (SO{sub 2}) emissions. However, the net effect is eventually cooling when the effect of reduced CO{sub 2} emissions dominates due to the long-lasting climate response of CO{sub 2}. The net reduction in global temperature for the remaining part of this century is about 0.03 ± 0.02 °C, corresponding in magnitude to the cooling from avoiding one year of global CO{sub 2} emissions. - Highlights: • China can cap CO{sub 2}-emissions at 2015 level without harming economic growth. • Poverty reduction is compatible with policy to cap CO{sub 2} emissions. • Rural poverty reduction financed by CO{sub 2} tax revenue increases domestic consumption. • One year of the global emissions is avoided. • The global mean temperature is reduced by 0.03 (± 0.02) °C.

  1. Air quality in Europe during the summer of 2003 as a prototype of air quality in a warmer climate

    International Nuclear Information System (INIS)

    Vautard, R.; Beekmann, M.; Desplat, J.; Morel, S.; Hodzic, A.

    2007-01-01

    The extremely warm summer of 2003, with its August heat wave, is taken as a prototype of future summer weather in Europe. The stagnant circulation led to accumulation of heat and pollutants, increased forest fires, and induced high ozone and particulate matter levels. After a description of the meteorological conditions encountered, we review here the effects of the heat-wave meteorology on photochemistry, wild fires, and particulate matter, at the continental and urban scales. We discuss the extent to which this special summer can be taken for projecting air quality in a future warmer climate, especially in the perspective of changes in regional and global emissions. For ozone, the effect of regional reduction of emissions will dominate over summer climate change, but the increase in baseline ozone should significantly raise the mean ozone levels. (authors)

  2. Methane Feedbacks to the Global Climate System in a Warmer World

    Science.gov (United States)

    Dean, Joshua F.; Middelburg, Jack J.; Röckmann, Thomas; Aerts, Rien; Blauw, Luke G.; Egger, Matthias; Jetten, Mike S. M.; de Jong, Anniek E. E.; Meisel, Ove H.; Rasigraf, Olivia; Slomp, Caroline P.; in't Zandt, Michiel H.; Dolman, A. J.

    2018-03-01

    Methane (CH4) is produced in many natural systems that are vulnerable to change under a warming climate, yet current CH4 budgets, as well as future shifts in CH4 emissions, have high uncertainties. Climate change has the potential to increase CH4 emissions from critical systems such as wetlands, marine and freshwater systems, permafrost, and methane hydrates, through shifts in temperature, hydrology, vegetation, landscape disturbance, and sea level rise. Increased CH4 emissions from these systems would in turn induce further climate change, resulting in a positive climate feedback. Here we synthesize biological, geochemical, and physically focused CH4 climate feedback literature, bringing together the key findings of these disciplines. We discuss environment-specific feedback processes, including the microbial, physical, and geochemical interlinkages and the timescales on which they operate, and present the current state of knowledge of CH4 climate feedbacks in the immediate and distant future. The important linkages between microbial activity and climate warming are discussed with the aim to better constrain the sensitivity of the CH4 cycle to future climate predictions. We determine that wetlands will form the majority of the CH4 climate feedback up to 2100. Beyond this timescale, CH4 emissions from marine and freshwater systems and permafrost environments could become more important. Significant CH4 emissions to the atmosphere from the dissociation of methane hydrates are not expected in the near future. Our key findings highlight the importance of quantifying whether CH4 consumption can counterbalance CH4 production under future climate scenarios.

  3. Methane feedbacks to the global climate system in a warmer world

    NARCIS (Netherlands)

    Dean, Joshua F.; Middelburg, Jack J.; Röckmann, Thomas; Aerts, Rien; Blauw, Luke G.; Egger, Matthias; Jetten, Mike S.M.; de Jong, Anniek E.E.; Meisel, Ove H.; Rasigraf, Olivia; Slomp, Caroline P.; in't Zandt, Michiel H.; Dolman, A. J.

    Methane (CH4) is produced in many natural systems that are vulnerable to change under a warming climate, yet current CH4 budgets, as well as future shifts in CH4 emissions, have high uncertainties. Climate change has the potential to increase CH4 emissions from critical systems such as wetlands,

  4. Future wheat yields in Western Australia under a warmer and drier climate

    International Nuclear Information System (INIS)

    Farre, Imma; Foster, Ian; Charles, Steve

    2007-01-01

    Full text: Full text: Climate change projections for the mid 21st century for southern Western Australia indicate an increase in temperatures, a decrease in rainfall and higher C02 concentrations. These changes could have adverse impacts on some agricultural systems, but they may also offer new opportunities (i.e. in areas where the risk of waterlogging may be reduced). In this paper we studied the potential impacts of climate change on wheat production by combining three modelling systems. Daily climate data for current and future conditions from the CCAM climate model was statistically downscaled to individual locations in the Western Australia wheatbelt. This climate data was then input to the APSIM-Wheat simulation model to evaluate yields and phenology under current and future climate for several soil types. The aim was to investigate the usefulness of such a modelling cascade in defining key risks to wheat cropping from projected climate change. In an earlier stage of the project, we compared climate simulation from several climate models (CSIRO Mk3, CCAM, ECHAM and HADCM), and selected the CCAM model as best representing the climate of southern Western Australia. This was used for a more detailed study of the impacts on wheat cropping. The APSIM model simulates crop development, yield, water uptake and nitrogen accumulation in response to temperature, radiation, C02 level, water and nitrogen supply. It offers a framework for investigating interactions and testing some simple adaptation options. The CCAM model simulated total annual rainfall reductions of 5-11% for 2050 across the locations studied (consistent with other model projections). Total annual rainfall reductions tended to be higher in the high-rainfall locations than in the low- or medium-rainfall locations. The highest seasonal rainfall reduction was predicted for April-June, resulting in later sowing opportunities and decreasing expected yields. The impacts of climate change varied depending on

  5. Health effects of a warmer climate - a knowledge review; Haelsopaaverkan av ett varmare klimat - en kunskapsoeversikt

    Energy Technology Data Exchange (ETDEWEB)

    Rockloev, Joacim; Hurtig, Anna-Karin; Forsberg, Bertil [Umeaa Univ. (SE). Dept. of Public Health and Clinical Medicine

    2008-01-15

    Global warming has caused changes that can already be seen and that motivates considerations of the possible adaptation measures needed to protect people and public health. Expert bodies such as the United Nations International Panel on Climate Change (IPCC) now conduct model simulations on how the world's climate is expected to change depending on, for example, the emission of greenhouse gases. The Swedish SMHI has provided scenarios for how the future climate in Sweden may develop. These assume an increase in the winter temperature of 3-8 deg C in winter and 1-5 deg C during summer, compared to the period 1961-1990. In addition, these scenarios indicate increased precipitation especially in northern Sweden, a greater risk of drought in Skaane during summer, as well as an increased risk of extreme events such as storms, heavy rainfall and heat waves. The climate change may affect health and its determinants in a number of different ways. The effects may be direct, as in extreme weather conditions, and also indirect, such as the influence of changes in climate and the environment on the spread of infectious diseases as well as the far-reaching effects of changes in other parts of the world. The aim of this overview report is to briefly present our current understanding of how health risks and public health may be affected. The presentations of potential consequences are partly built using knowledge of the associations between climate and health in various regions to draw analogies for areas expected to undergo changes that will make their climate more similar to current conditions in other regions. Distribution of vector-borne diseases can be determined by the type of climate a certain mosquito can survive. In the future we may face outbreaks of diseases that are new to us. Another way of making predictions is to use the observations of how health effects relate to weather variations in one place, for example, temperature fluctuations. In this regard we already

  6. Health effects of a warmer climate - a knowledge review; Haelsopaaverkan av ett varmare klimat - en kunskapsoeversikt

    Energy Technology Data Exchange (ETDEWEB)

    Rockloev, Joacim; Hurtig, Anna-Karin; Forsberg, Bertil (Umeaa Univ. (SE). Dept. of Public Health and Clinical Medicine)

    2008-01-15

    Global warming has caused changes that can already be seen and that motivates considerations of the possible adaptation measures needed to protect people and public health. Expert bodies such as the United Nations International Panel on Climate Change (IPCC) now conduct model simulations on how the world's climate is expected to change depending on, for example, the emission of greenhouse gases. The Swedish SMHI has provided scenarios for how the future climate in Sweden may develop. These assume an increase in the winter temperature of 3-8 deg C in winter and 1-5 deg C during summer, compared to the period 1961-1990. In addition, these scenarios indicate increased precipitation especially in northern Sweden, a greater risk of drought in Skaane during summer, as well as an increased risk of extreme events such as storms, heavy rainfall and heat waves. The climate change may affect health and its determinants in a number of different ways. The effects may be direct, as in extreme weather conditions, and also indirect, such as the influence of changes in climate and the environment on the spread of infectious diseases as well as the far-reaching effects of changes in other parts of the world. The aim of this overview report is to briefly present our current understanding of how health risks and public health may be affected. The presentations of potential consequences are partly built using knowledge of the associations between climate and health in various regions to draw analogies for areas expected to undergo changes that will make their climate more similar to current conditions in other regions. Distribution of vector-borne diseases can be determined by the type of climate a certain mosquito can survive. In the future we may face outbreaks of diseases that are new to us. Another way of making predictions is to use the observations of how health effects relate to weather variations in one place, for example, temperature fluctuations. In this regard we

  7. Life on a warmer earth: possible climatic consequences of man-made global warming. [Monograph

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    A summary of research conducted by the International Institute for Applied Systems Analysis (IIASA) and published by H. Flohn in 1977 updates the original data to March 1980. The work explores the interaction between energy and climate, including the impact on the global climate of three main energy sources: solar, nuclear, and fossil fuels. Its findings describe the global warming effects caused by carbon dioxide released by burning fossil fuels and by other trace gases released into the atmosphere. The approach is paleoclimatic in that it gains insights into what global warming will produce by considering what is known about past periods of the earth's history when the global average surface temperature was higher than it is now. Although paleoclimatic knowledge is limited, no complete model of the climatic system is available. This research uses both approaches, combining the two to some extent. 10 figures.

  8. Projections of European summer tourism demand at a +2 degrees warmer climate.

    Science.gov (United States)

    Grillakis, Manolis; Koutroulis, Aristeidis; Tsanis, Ioannis; Jacob, Daniela

    2015-04-01

    Tourism is a billion euros industry for Europe and especially for the southern countries for which summer tourism is an important contribution to their GDP. It is highly dependent on the climate and any future changes will alter the favorability of European destinations. The impact of a potential global temperature increase of 1.5 and 2 degrees on European tourism was investigated in the frame of IMPACT2C FP7 project. Climate information from four ENSEMBLES and five Euro-CORDEX RCMs were used to estimate the Tourism Climatic Index (TCI) under the A1B, RCP4.5 and RCP8.5 scenarios. The monthly averages of the historical TCI estimates were correlated to the recorded monthly averages of overnight stays for all considered NUTS3 regions in Europe. The correlation proved to be significantly high for the majority of these regions with higher values for the European South, while the lowest correlation was attained for Sweden Denmark and Austria. The correlation estimates was then used to provide information about the change in tourism activity due to changes in the future climate favorability through the TCI. The results show that for the May to October "summer tourism" season, and under +1.5 and +2 degrees climate the potential overnight stays are projected to increase in average in almost the entire European domain, except Cyprus which exhibits a consistent decrease, robust across all scenarios. In contrast, for the peak of the summer season between June and August, it is projected that the European south will potentially exhibit decrease in the overnight stays to as high as 20% and for some cases to even higher than 30% (Greece). Key strength of the results are the correlation of measured tourism indicators to a conceptual index, which gives the ability to quantify the change in the tourism indicator, rather than investigating the coarser concept of climate risk.

  9. Carbon assimilation and transfer through kelp forests in the NE Atlantic is diminished under a warmer ocean climate.

    Science.gov (United States)

    Pessarrodona, Albert; Moore, Pippa J; Sayer, Martin D J; Smale, Dan A

    2018-06-03

    Global climate change is affecting carbon cycling by driving changes in primary productivity and rates of carbon fixation, release and storage within Earth's vegetated systems. There is, however, limited understanding of how carbon flow between donor and recipient habitats will respond to climatic changes. Macroalgal-dominated habitats, such as kelp forests, are gaining recognition as important carbon donors within coastal carbon cycles, yet rates of carbon assimilation and transfer through these habitats are poorly resolved. Here, we investigated the likely impacts of ocean warming on coastal carbon cycling by quantifying rates of carbon assimilation and transfer in Laminaria hyperborea kelp forests-one of the most extensive coastal vegetated habitat types in the NE Atlantic-along a latitudinal temperature gradient. Kelp forests within warm climatic regimes assimilated, on average, more than three times less carbon and donated less than half the amount of particulate carbon compared to those from cold regimes. These patterns were not related to variability in other environmental parameters. Across their wider geographical distribution, plants exhibited reduced sizes toward their warm-water equatorward range edge, further suggesting that carbon flow is reduced under warmer climates. Overall, we estimated that Laminaria hyperborea forests stored ~11.49 Tg C in living biomass and released particulate carbon at a rate of ~5.71 Tg C year -1 . This estimated flow of carbon was markedly higher than reported values for most other marine and terrestrial vegetated habitat types in Europe. Together, our observations suggest that continued warming will diminish the amount of carbon that is assimilated and transported through temperate kelp forests in NE Atlantic, with potential consequences for the coastal carbon cycle. Our findings underline the need to consider climate-driven changes in the capacity of ecosystems to fix and donate carbon when assessing the impacts of

  10. Preparing for a warmer world: Towards a global governance system to protect climate refugees

    NARCIS (Netherlands)

    Biermann, F.; Boas, I.J.C.

    2010-01-01

    Climate change threatens to cause the largest refugee crisis in human history. Millions of people, largely in Africa and Asia, might be forced to leave their homes to seek refuge in other places or countries over the course of the century. Yet the current institutions, organizations, and funding

  11. Predicting Summer Dryness Under a Warmer Climate: Modeling Land Surface Processes in the Midwestern United States

    Science.gov (United States)

    Winter, J. M.; Eltahir, E. A.

    2009-12-01

    One of the most significant impacts of climate change is the potential alteration of local hydrologic cycles over agriculturally productive areas. As the world’s food supply continues to be taxed by its burgeoning population, a greater percentage of arable land will need to be utilized and land currently producing food must become more efficient. This study seeks to quantify the effects of climate change on soil moisture in the American Midwest. A series of 24-year numerical experiments were conducted to assess the ability of Regional Climate Model Version 3 coupled to Integrated Biosphere Simulator (RegCM3-IBIS) and Biosphere-Atmosphere Transfer Scheme 1e (RegCM3-BATS1e) to simulate the observed hydroclimatology of the midwestern United States. Model results were evaluated using NASA Surface Radiation Budget, NASA Earth Radiation Budget Experiment, Illinois State Water Survey, Climate Research Unit Time Series 2.1, Global Soil Moisture Data Bank, and regional-scale estimations of evapotranspiration. The response of RegCM3-IBIS and RegCM3-BATS1e to a surrogate climate change scenario, a warming of 3oC at the boundaries and doubling of CO2, was explored. Precipitation increased significantly during the spring and summer in both RegCM3-IBIS and RegCM3-BATS1e, leading to additional runoff. In contrast, enhancement of evapotranspiration and shortwave radiation were modest. Soil moisture remained relatively unchanged in RegCM3-IBIS, while RegCM3-BATS1e exhibited some fall and winter wetting.

  12. Feedback mechanisms of shallow convective clouds in a warmer climate as demonstrated by changes in buoyancy

    Science.gov (United States)

    Dagan, G.; Koren, I.; Altaratz, O.; Feingold, G.

    2018-05-01

    Cloud feedbacks could influence significantly the overall response of the climate system to global warming. Here we study the response of warm convective clouds to a uniform temperature change under constant relative humidity (RH) conditions. We show that an increase in temperature drives competing effects at the cloud scale: a reduction in the thermal buoyancy term and an increase in the humidity buoyancy term. Both effects are driven by the increased contrast in the water vapor content between the cloud and its environment, under warming with constant RH. The increase in the moisture content contrast between the cloud and its environment enhances the evaporation at the cloud margins, increases the entrainment, and acts to cool the cloud. Hence, there is a reduction in the thermal buoyancy term, despite the fact that theoretically this term should increase.

  13. Building when the climate gets warmer; Bauen, wenn das Klima waermer wird - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, C. U. [Energieplaner, CUB Architektur Energie Umwelt, Zuerich (Switzerland); Steinemann, U. [Ingenieurbuero Urs Steinemann, Wollerau (Switzerland); Nipkow, J. [Arena, Arbeitsgemeinschaft Energie-Alternativen, Zuerich (Switzerland)

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE), takes a look at how the building process will have to take account of climate change with higher summer temperatures in Switzerland. The authors consider the situation as being in strong contrast to the past in Switzerland, when attention was devoted to energy demand in buildings during the winter. Today there is a new focus with the anticipation of increasingly frequent, extended hot spells in summer. The goal of this investigation is to analyse and present economic measures to assure a high level of summer comfort with a reduced demand for electricity under these changing conditions. Strategies with respect to construction, technology and operation are addressed. The current spread of technically questionable and inefficient room air conditioning units in residential and commercial buildings is considered as being strongly reminiscent of a dangerous, analogous case in the past, when small electric heaters became widespread. A largely untapped potential exists for increasing the efficiency of air conditioning and chiller technologies for both central systems and room units by the careful use of small temperature differences. Several new and unconventional solution paths are discussed, including high-efficiency room air conditioners, solar cooling equipment, balanced mechanical ventilation, phase-change materials, thermal storage, etc., all aimed at reducing electricity consumption. The expected additional electricity demand of around 1.9 TWh annually for ventilation and air conditioning is commented on.

  14. Mixed precipitation occurrences over southern Québec, Canada, under warmer climate conditions using a regional climate model

    Science.gov (United States)

    Matte, Dominic; Thériault, Julie M.; Laprise, René

    2018-05-01

    Winter weather events with temperatures near 0°C are often associated with freezing rain. They can have major impacts on the society by causing power outages and disruptions to the transportation networks. Despite the catastrophic consequences of freezing rain, very few studies have investigated how their occurrences could evolve under climate change. This study aims to investigate the change of freezing rain and ice pellets over southern Québec using regional climate modeling at high resolution. The fifth-generation Canadian Regional Climate Model with climate scenario RCP 8.5 at 0.11° grid mesh was used. The precipitation types such as freezing rain, ice pellets or their combination are diagnosed using five methods (Cantin and Bachand, Bourgouin, Ramer, Czys and, Baldwin). The occurrences of the diagnosed precipitation types for the recent past (1980-2009) are found to be comparable to observations. The projections for the future scenario (2070-2099) suggested a general decrease in the occurrences of mixed precipitation over southern Québec from October to April. This is mainly due to a decrease in long-duration events (≥6 h ). Overall, this study contributes to better understand how the distribution of freezing rain and ice pellets might change in the future using high-resolution regional climate model.

  15. Prolonged limitation of tree growth due to warmer spring in semi-arid mountain forests of Tianshan, northwest China

    International Nuclear Information System (INIS)

    Wu Xiuchen; Liu Hongyan; Wang Yufu; Deng Minghua

    2013-01-01

    Based on radial tree growth measurements in nine plots of area 625 m 2 (369 trees in total) and climate data, we explored the possibly changing effects of climate on regional tree growth in the temperate continental semi-arid mountain forests in the Tianshan Mountains in northwest China during 1933–2005. Tree growth in our study region is generally limited by the soil water content of pre- and early growing season (February–July). Remarkably, moving correlation functions identified a clear temporal change in the relationship between tree growth and mean April temperature. Tree growth showed a significant (p < 0.05) and negative relationship to mean April temperature since approximately the beginning of the 1970s, which indicated that the semi-arid mountain forests are suffering a prolonged growth limitation in recent years accompanying spring warming. This prolonged limitation of tree growth was attributed to the effects of soil water limitation in early spring (March–April) caused by the rapid spring warming. Warming-induced prolonged drought stress contributes, to a large part, to the marked reduction of regional basal area increment (BAI) in recent years and a much slower growth rate in young trees. Our results highlight that the increasing water limitation induced by spring warming on tree growth most likely aggravated the marked reduction in tree growth. This work provides a better understanding of the effects of spring warming on tree growth in temperate continental semi-arid forests. (letter)

  16. Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds

    Science.gov (United States)

    Martin Wilmking; Glenn P. Juday; Valerie A. Barber; Harold S.J. Zald

    2004-01-01

    Northern and high-latitude alpine treelines are generally thought to be limited by available warmth. Most studies of tree-growth-climate interaction at treeline as well as climate reconstructions using dendrochronology report positive growth response of treeline trees to warmer temperatures. However, population-wide responses of treeline trees to climate remain largely...

  17. Potential benefits of early vigor and changes in phenology in wheat to adapt to warmer and drier climates

    NARCIS (Netherlands)

    Ludwig, F.; Asseng, S.

    2010-01-01

    Developing crop cultivars with novel traits could help agriculture adapt to climate change. As introducing new traits into crops is expensive and time consuming, it is helpful to develop methods which can test whether a potential new plant trait increases or maintains production in future climates.

  18. Life on a warmer earth: Possible climatic consequences of man-made global warming. Executive report 3

    Energy Technology Data Exchange (ETDEWEB)

    Flohn, H

    1981-01-01

    This Executive Report derives from IIASA Research Report RR-80-30, Possible Climatic Consequences of a Man-Made Global Warming, by H. Flohn and published separately. It is based on research undertaken to explore the interaction between energy and climate, including the impact on the global climate of three main energy sources: solar, nuclear, and fossil fuels. Its findings describe the global warming effects caused by carbon dioxide released by burning fossil fuels and by other trace gases released into the atmosphere. The approach is paleoclimatic; it provides insight into what global warming will produce by considering what is known about past periods of the earth's history when the global average surface temperature was higher than it is now. The purpose of this report is to put the research findings into layman's language and add related information to provide a general introduction to the global warming problem. Information is presented under the following chapter titles: the scenario in brief; the climatic system; changes in ice cover; changes in atmosphere and oceans; man's effect on climate; taking the earth's temperature; what a hotter earth might mean; beyond immediate prospects; and, today's mixed signals. (JGB)

  19. Climate threats on growth of rear-edge European beech peripheral populations in Spain

    NARCIS (Netherlands)

    Dorado-Liñán, I.; Akhmetzyanov, L.; Menzel, A.

    2017-01-01

    European beech (Fagus sylvatica L.) forests in the Iberian Peninsula are a clear example of a temperate forest tree species at the rear edge of its large distribution area in Europe. The expected drier and warmer climate may alter tree growth and species distribution. Consequently, the peripheral

  20. Projected drought risk in 1.5°C and 2°C warmer climates

    Science.gov (United States)

    Lehner, F.; Coats, S.; Stocker, T. F.; Pendergrass, A. G.; Sanderson, B. M.; Raible, C.; Smerdon, J. E.

    2017-12-01

    The large socioeconomic costs of droughts make them a crucial target for impact assessments of climate change scenarios. Using multiple drought metrics and a set of simulations with the Community Earth System Model (CESM) targeting 1.5°C and 2°C above preindustrial global mean temperatures, we investigate changes in aridity and the risk of consecutive drought years. The latter metric is motivated by recent droughts in California and the US Southwest in general, where consecutive years of moderate precipitation deficit can quickly lead to significant drought and elevated pressure on water resources. If warming is limited to 2°C, these simulations suggest little change in drought risk for the U.S. Southwest and Central Plains compared to present day, an interesting result that arises from a delicate balance between increases in evaporative demand and precipitation in CESM in that region. In the Mediterranean, central Europe, and a number of other regions across the globe, however, drought risk increases significantly for both 1.5°C and 2°C warming targets, and the additional 0.5°C of the 2°C climate leads to significantly higher drought risk. Our study suggests that limiting anthropogenic warming to 1.5°C rather than 2°C, as aspired to by the Paris Climate Agreement, may have benefits for future drought risk but that such benefits may be regional and in some cases highly uncertain. We will therefore also discuss the robustness of results across different drought metrics as well as the model uncertainties associated with drought projections for low warming targets.

  1. Climate threats on growth of rear-edge European beech peripheral populations in Spain

    Science.gov (United States)

    Dorado-Liñán, I.; Akhmetzyanov, L.; Menzel, A.

    2017-12-01

    European beech ( Fagus sylvatica L.) forests in the Iberian Peninsula are a clear example of a temperate forest tree species at the rear edge of its large distribution area in Europe. The expected drier and warmer climate may alter tree growth and species distribution. Consequently, the peripheral populations will most likely be the most threatened ones. Four peripheral beech forests in the Iberian Peninsula were studied in order to assess the climate factors influencing tree growth for the last six decades. The analyses included an individual tree approach in order to detect not only the changes in the sensitivity to climate but also the potential size-mediated sensitivity to climate. Our results revealed a dominant influence of previous and current year summer on tree growth during the last six decades, although the analysis in two equally long periods unveiled changes and shifts in tree sensitivity to climate. The individual tree approach showed that those changes in tree response to climate are not size dependent in most of the cases. We observed a reduced negative effect of warmer winter temperatures at some sites and a generalized increased influence of previous year climatic conditions on current year tree growth. These results highlight the crucial role played by carryover effects and stored carbohydrates for future tree growth and species persistence.

  2. Elevated CO2, warmer temperatures and soil water deficit affect plant growth, physiology and water use of cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    Changes in temperature, atmospheric [CO2] and precipitation under the scenarios of projected climate change present a challenge to crop production, and may have significant impacts on the physiology, growth and yield of cotton (Gossypium hirsutum L.). A glasshouse experiment explored the early growt...

  3. Modeling lodgepole pine radial growth relative to climate and genetics using universal growth-trend response functions.

    Science.gov (United States)

    McLane, Sierra C; LeMay, Valerie M; Aitken, Sally N

    2011-04-01

    Forests strongly affect Earth's carbon cycles, making our ability to forecast forest-productivity changes associated with rising temperatures and changes in precipitation increasingly critical. In this study, we model the influence of climate on annual radial growth using lodgepole pine (Pinus contorta) trees grown for 34 years in a large provenance experiment in western Canada. We use a random-coefficient modeling approach to build universal growth-trend response functions that simultaneously incorporate the impacts of different provenance and site climates on radial growth trends under present and future annual (growth-year), summer, and winter climate regimes. This approach provides new depth to traditional quantitative genetics population response functions by illustrating potential changes in population dominance over time, as well as indicating the age and size at which annual growth begins declining for any population growing in any location under any present or future climate scenario within reason, given the ages and climatic conditions sampled. Our models indicate that lodgepole pine radial-growth levels maximize between 3.9 degrees and 5.1 degrees C mean growth-year temperature. This translates to productivity declining by the mid-21st century in southern and central British Columbia (BC), while increasing beyond the 2080s in northern BC and Yukon, as temperatures rise. Relative to summer climate indices, productivity is predicted to decline continuously through the 2080s in all locations, while relative to winter climate variables, the opposite trend occurs, with the growth increases caused by warmer winters potentially offsetting the summer losses. Trees from warmer provenances, i.e., from the center of the species range, perform best in nearly all of our present and future climate-scenario models. We recommend that similar models be used to analyze population growth trends relative to annual and intra-annual climate in other large-scale provenance

  4. Climate changes, economy and growth: political relationships

    International Nuclear Information System (INIS)

    Alex, Bastien

    2017-03-01

    The author addresses the relationships which may exist between climate change and economic growth, by discussing and criticising some common ideas, and the role of the economic parameter in the position of states within negotiations. These common ideas are: the struggle against climate change impedes economic growth, and green economy provides new growth levers. The author also discusses the fact that some countries may feel they have to slow down their growth because emerging countries are facing a strong development and thus have a strong impact on climate changes. He also outlines that political forces which are presently in power, tend to have a critical approach and speech on mitigation measures

  5. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions.

    Directory of Open Access Journals (Sweden)

    Helder Fraga

    Full Text Available The Iberian viticultural regions are convened according to the Denomination of Origin (DO and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

  6. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions.

    Science.gov (United States)

    Fraga, Helder; Malheiro, Aureliano C; Moutinho-Pereira, José; Cardoso, Rita M; Soares, Pedro M M; Cancela, Javier J; Pinto, Joaquim G; Santos, João A

    2014-01-01

    The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

  7. On climate change and economic growth

    International Nuclear Information System (INIS)

    Fankhauser, Samuel; Tol, Richard S.J.

    2005-01-01

    The economic impact of climate change is usually measured as the extent to which the climate of a given period affects social welfare in that period. This static approach ignores the dynamic effects through which climate change may affect economic growth and hence future welfare. In this paper we take a closer look at these dynamic effects, in particular saving and capital accumulation. With a constant savings rate, a lower output due to climate change will lead to a proportionate reduction in investment which in turn will depress future production (capital accumulation effect) and, in almost all cases, future consumption per capita. If the savings rate is endogenous, forward looking agents would change their savings behavior to accommodate the impact of future climate change. This suppresses growth prospects in absolute and per capita terms (savings effect). In an endogenous growth context, these two effects may be exacerbated through changes in labour productivity and the rate of technical progress. Simulations using a simple climate-economy model suggest that the capital accumulation effect is important, especially if technological change is endogenous, and may be larger than the direct impact of climate change. The savings effect is less pronounced. The dynamic effects are more important, relative to the direct effects, if climate change impacts are moderate overall. This suggests that they are more of a concern in developed countries, which are believed to be less vulnerable to climate change. The magnitude of dynamic effects is not sensitive to the choice of discount rate

  8. Forest structure, stand composition, and climate-growth response in montane forests of Jiuzhaigou National Nature Reserve, China.

    Directory of Open Access Journals (Sweden)

    Mark W Schwartz

    Full Text Available Montane forests of western China provide an opportunity to establish baseline studies for climate change. The region is being impacted by climate change, air pollution, and significant human impacts from tourism. We analyzed forest stand structure and climate-growth relationships from Jiuzhaigou National Nature Reserve in northwestern Sichuan province, along the eastern edge of the Tibetan plateau. We conducted a survey to characterize forest stand diversity and structure in plots occurring between 2050 and 3350 m in elevation. We also evaluated seedling and sapling recruitment and tree-ring data from four conifer species to assess: 1 whether the forest appears in transition toward increased hardwood composition; 2 if conifers appear stressed by recent climate change relative to hardwoods; and 3 how growth of four dominant species responds to recent climate. Our study is complicated by clear evidence of 20(th century timber extraction. Focusing on regions lacking evidence of logging, we found a diverse suite of conifers (Pinus, Abies, Juniperus, Picea, and Larix strongly dominate the forest overstory. We found population size structures for most conifer tree species to be consistent with self-replacement and not providing evidence of shifting composition toward hardwoods. Climate-growth analyses indicate increased growth with cool temperatures in summer and fall. Warmer temperatures during the growing season could negatively impact conifer growth, indicating possible seasonal climate water deficit as a constraint on growth. In contrast, however, we found little relationship to seasonal precipitation. Projected warming does not yet have a discernible signal on trends in tree growth rates, but slower growth with warmer growing season climates suggests reduced potential future forest growth.

  9. A hypothesis and a case-study projection of an influence of MJO modulation on boreal-summer tropical cyclogenesis in a warmer climate with a global non-hydrostatic model: a transition toward the central Pacific?

    Directory of Open Access Journals (Sweden)

    KAZUYOSHI eOOUCHI

    2014-02-01

    Full Text Available The eastward shift of the enhanced activity of tropical cyclone to the central Pacific is a robust projection result for a future warmer climate, and is shared by most of the state-of-the-art climate models. The shift has been argued to originate from the underlying El-Ñino like sea-surface temperature (SST forcing. This study explores the possibility that the change of the activity of the Madden-Julian Oscillation (MJO can be an additional, if not alternative, contributor to the shift, using the dataset of Yamada et al. (2010 from a global non-hydrostatic 14-km grid mesh time-slice experiment for a boreal-summer case. Within the case-study framework, we develop the hypothesis that an eastward shift of the high-activity area of the MJO, as manifested itself as the significant intra-seasonal modulation of the enhanced precipitation, is associated with the increased tropical cyclogenesis potential over the North central Pacific by regulating cyclonic relative vorticity and vertical shear. In contrast, the North Indian Ocean and maritime continent undergo relatively diminished genesis potential. An implication is that uncertainty in the future tropical cyclogenesis in some part of the Pacific and other ocean basins could be reduced if projection of the MJO and its connection with the underlying SST environment can be better understood and constrained by the improvement of climate models.

  10. Economic Growth, Climate Change, and Obesity.

    Science.gov (United States)

    Minos, Dimitrios; Butzlaff, Iris; Demmler, Kathrin Maria; Rischke, Ramona

    2016-12-01

    Human and planetary health as well as economic growth are firmly interlinked and subject to complex interaction effects. In this paper, we provide an overview of interlinkages between economic growth, climate change, and obesity focusing on recent advances in the literature. In addition to empirical findings, we discuss different theoretical frameworks used to conceptualize these complex links and highlight policy options and challenges. We conclude that policies addressing both climate change and obesity simultaneously are particularly promising and often suitable for ensuring sustainable development.

  11. Urban climate modifies tree growth in Berlin

    Science.gov (United States)

    Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans

    2018-05-01

    Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees ( Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.

  12. Urban climate modifies tree growth in Berlin

    Science.gov (United States)

    Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans

    2017-12-01

    Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees (Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.

  13. Climate Change, Growth, and Poverty in Ethiopia

    Science.gov (United States)

    2013-06-01

    intergration Tests 8 Empirical Strategy 8 Discussion of Estimation Results 9 Climate Change and Economic Growth...production and marketing (Parry, 2007; Barrios et al , 2004), the impact of which can easily be transmitted to Ethiopia through trade channels with...Ethiopia and other developing countries to depend particularly on expensive cereal imports, worsening the trade balance in these countries However

  14. Revisions of the Fish Invasiveness Screening Kit (FISK) for its application in warmer climatic zones, with particular reference to peninsular Florida.

    Science.gov (United States)

    Lawson, Larry L; Hill, Jeffrey E; Vilizzi, Lorenzo; Hardin, Scott; Copp, Gordon H

    2013-08-01

    The initial version (v1) of the Fish Invasiveness Scoring Kit (FISK) was adapted from the Weed Risk Assessment of Pheloung, Williams, and Halloy to assess the potential invasiveness of nonnative freshwater fishes in the United Kingdom. Published applications of FISK v1 have been primarily in temperate-zone countries (Belgium, Belarus, and Japan), so the specificity of this screening tool to that climatic zone was not noted until attempts were made to apply it in peninsular Florida. To remedy this shortcoming, the questions and guidance notes of FISK v1 were reviewed and revised to improve clarity and extend its applicability to broader climatic regions, resulting in changes to 36 of the 49 questions. In addition, upgrades were made to the software architecture of FISK to improve overall computational speed as well as graphical user interface flexibility and friendliness. We demonstrate the process of screening a fish species using FISK v2 in a realistic management scenario by assessing the Barcoo grunter Scortum barcoo (Terapontidae), a species whose management concerns are related to its potential use for aquaponics in Florida. The FISK v2 screening of Barcoo grunter placed the species into the lower range of medium risk (score = 5), suggesting it is a permissible species for use in Florida under current nonnative species regulations. Screening of the Barcoo grunter illustrates the usefulness of FISK v2 as a proactive tool serving to inform risk management decisions, but the low level of confidence associated with the assessment highlighted a dearth of critical information on this species. © 2012 Society for Risk Analysis.

  15. Impact of Climate Trends and Drought Events on the Growth of Oaks (Quercus robur L. and Quercus petraea (Matt. Liebl. within and beyond Their Natural Range

    Directory of Open Access Journals (Sweden)

    Diana Perkins

    2018-02-01

    Full Text Available Due to predicted climate change, it is important to know to what extent trees and forests will be impacted by chronic and episodic drought stress. As oaks play an important role in European forestry, this study focuses on the growth response of sessile oak (Quercus petraea (Matt. Liebl. and pedunculate oak (Quercus robur (L. under contrasting climatic conditions. Analyses cover both site conditions of their natural occurrence (Southern Germany and Northeast Italy and site conditions beyond their natural range (South Africa. The sites beyond their natural range represent possible future climate conditions. Tree-ring series from three different sites were compared and analysed using dendrochronological methods. The long-term growth development of oak trees appears to be similar across the sites, yet the growth level over time is higher in the drier and warmer climate than in the temperate zone. When compared with previous growth periods, growth models reveal that oak trees grew more than expected during the last decades. A recent setback in growth can be observed, although growth is still higher than the model predicts. By focusing on the short-term reactions of the trees, distinct drought events and periods were discovered. In each climatic region, similar growth reactions developed after drought periods. A decline in growth rate occurred in the second or third year after the drought event. Oaks in South Africa are currently exposed to a warmer climate with more frequent drought events. This climatic condition is a future prediction also for Europe. In view of this climate change, we discuss the consequences of the long- and short- term growth behaviour of oaks grown in the climate of South Africa for a tree species selection that naturally occurs in Europe.

  16. Climate challenge 2012: growth and climate change - Socio-economical impacts of climate change. Conference proceedings

    International Nuclear Information System (INIS)

    Orange-Louboutin, Mylene; Robinet, Olivier; Delalande, Daniel; Reysset, Bertrand; De Perthuis, Christian; Le Treut, Herve; Cottenceau, Jean-Baptiste; Ayong, Alain; Daubaire, Aurelien; Gaudin, Thomas

    2012-01-01

    The contributions of this conference session proposed comments and discussion on the relationship between climate change and 'green' growth, on the status of scientific knowledge on climate change (from global to local), on the way to perform carbon print assessment and to decide which actions to implement, on the costs and opportunity of impacts of climate change, on the economy of adaptation, on the benefits and costs of the adaptation policy, and on impacts of climate change on employment in quantitative terms and in terms of profession types

  17. Seasonally warmer and humid climates in a lower paleolatitude position of southern Brazil (Paraná Basin): new findings of the Lueckisporites virkkiae zone (late Cisuralian-Guadalupian) in the Serra do Rio do Rastro and neighboring localities

    Science.gov (United States)

    di Pasquo, Mercedes; Souza, Paulo A.; Kavali, Pauline Sabina; Felix, Cristina

    2018-03-01

    First palynological information from surface samples of the Serra Alta and Rio do Rasto formations (Passa Dois Group, Paraná Basin), exposed in the Serra do Rio do Rastro (White's Column) and Urubici regions in Santa Catarina State (Brazil) is presented. The Serra Alta Formation is transitionally deposited over the Irati Formation, which is constrained to the late Artinskian/Kungurian by different paleontological and radiometric data. Twelve productive samples (of forty) yielded fairly well preserved palynomorphs, dominated by striate and non striate bisaccate and asaccate pollen grains and subordinated trilete and monolete spores, monosaccate pollen grains and Botryococcus. Diagnostic species of the Lueckisporites virkkiae Zone (Artinskian-Guadalupian) in the Paraná Basin are recorded along with few species of Guadalupian-Lopingian age (e.g. Cladaitina veteadensis, Guttulapollenites hannonicus, Lophotriletes parryensis, Protohaploxypinus microcorpus, Staurosaccites quadrifidus, Weylandites cincinnatus). They support a Kungurian-?Roadian age for the Serra Alta, and a Capitanian (?Lopingian) age for the Rio do Rasto formations. Four samples from the Sete Quedas outcrop yielded scarce and poorly preserved specimens of Lueckisporites likely due to weathering. A statistic comparison among our assemblages and selected Permian palynozones and palynofloras from South America supports a closer correlation with the La Veteada Formation (Guadalupian-Lopingian) from western Argentina due to common occurrence of all the species, and with the Striatites Zone (late Artinskian-Kungurian) of the Chacoparaná Basin, and the I-S Zone Melo Formation in Uruguay. The botanical affinities of the palynomorphs from both assemblages indicate the presence of spores of hygro-mesophytic affinities along with meso-xerophyle pollen grains, which is in agreement with seasonally warmer and humid climates favored by a lower paleolatitude position. The presence of pyrite in some of the miospore

  18. Budgets and balances in a warmer world

    International Nuclear Information System (INIS)

    Boer, G.J.

    1994-01-01

    Potential climate warming is studied by performing the open-quotes first standard CO2 experimentclose quotes which consists of coupling a comparatively sophisticated atmospheric general circulation model to a thermodynamically, but not dynamically, active ocean/ice model. The differences in the equilibrium climates simulated for the current or 1xCO2 case and for the new equilibrium climate that results with twice that amount of CO2 are investigated. Results indicate that although the dynamical consequences of greenhouse gas warming are not as marked nor statistically significant as the thermodynamical changes, they display an intriguing rearrangement of flow structures which take advantage of the altered thermodynamic structures in the atmosphere that occur. Since the overall forcing does not change appreciably, the poleward transport of energy remains the same but this is accomplished by an increase in latent energy transport associated with a warmer and moister lower troposphere which balances a decrease in internal and potential energy transport associated with weaker temperature gradients in this region

  19. Climatic limits on foliar growth during major droughts in the southwestern USA

    Science.gov (United States)

    Weiss, Jeremy L.; Betancourt, Julio L.; Overpeck, Jonathan T.

    2012-09-01

    Pronounced droughts during the 1950s and 2000s in the American Southwest provide an opportunity to compare mesoscale ecosystem responses to anomalously dry conditions before and during the regional warming that started in the late 1970s. This year-round warming has produced fewer cool season freezes, losses in regional snowpack, an 8-10 day advance in spring onset, and hotter summers, all of which should affect vegetation differently across seasons and elevations. Here, we examine indices that represent climatic limits on foliar growth for both drought periods and evaluate these indices for areas that experienced tree mortality during the 2000s drought. Relative to the 1950s drought, warmer conditions during the 2000s drought decreased the occurrence of temperatures too low for foliar growth at lower elevations in winter and higher elevations in summer. Higher vapor pressure deficits (VPDs), largely driven by warmer temperatures in the more recent drought, were more limiting to foliar growth from spring through summer at lower and middle elevations. At many locations where tree mortality occurred during the 2000s drought, low-temperature constraints on foliar growth were extremely unlimiting, whereas VPD constraints were extremely limiting from early spring through late autumn. Our analysis shows that in physiographically complex regions such as the Southwest, seasonality and elevational gradients are important for understanding vegetative responses to warming. It also suggests that continued warming will both increase the degree to which VPD limits foliar growth during future droughts and expand its reach to higher elevations and other seasons.

  20. [Responses of Pinus sylvestris var. mongolica radial growth to climate warming in Great Xing' an Mountins: a case study in Mangui].

    Science.gov (United States)

    Zhang, Xing-Liang; He, Xing-Yuan; Chen, Zhen-Ju; Cui, Ming-Xing; Li, Na

    2011-12-01

    Based on the theory and methodology of dendrochronology, the tree ring width chronology of Pinus sylvestris var. mongolica in Mangui of Great Xing' an Mountains was developed, and the relationships between the standardized tree ring width chronology and local climate factors (temperature and precipitation) as well as the effects of climate factors on the P. sylvestris var. mongolica radial growth were analyzed. In this region, the mean monthly temperature in April-August of current year was the main factor limiting the radial growth, and the increasing mean monthly temperature from April to August had negative effects to the radial growth. The simulation of the variations of the radial growth by the mean monthly temperature change in April-August showed that the radial growth of P. sylvestris var. mongolica would present a declining trend accompanied with the warmer and drier regional climate condition.

  1. Life on a warmer earth

    Energy Technology Data Exchange (ETDEWEB)

    Flohn, H

    1981-01-01

    This nontechnical report explores the interaction between energy and climate, particularly the impacts of fossil fuel use. Nuclear energy and solar energy are also discussed, and the expected global warming effects caused by CO/sub 2/ released by burning fossil fuels and other trace gases are described. (JMT)

  2. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics

    Science.gov (United States)

    Itter, Malcolm S.; Finley, Andrew O.; D'Amato, Anthony W.; Foster, Jane R.; Bradford, John B.

    2017-01-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics—changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly

  3. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics.

    Science.gov (United States)

    Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B

    2017-06-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly

  4. Wild apple growth and climate change in southeast Kazakhstan

    Science.gov (United States)

    Irina P. Panyushkina; Nurjan S. Mukhamadiev; Ann M. Lynch; Nursagim A. Ashikbaev; Alexis H. Arizpe; Christopher D. O' Connor; Danyar Abjanbaev; Gulnaz Z. Mengdbayeva; Abay O. Sagitov

    2017-01-01

    Wild populations of Malus sieversii [Ldb.] M. Roem are valued genetic and watershed resources in Inner Eurasia. These populations are located in a region that has experienced rapid and on-going climatic change over the past several decades. We assess relationships between climate variables and wild apple radial growth with dendroclimatological techniques to understand...

  5. Winter climate limits subantarctic low forest growth and establishment.

    Directory of Open Access Journals (Sweden)

    Melanie A Harsch

    Full Text Available Campbell Island, an isolated island 600 km south of New Zealand mainland (52 °S, 169 °E is oceanic (Conrad Index of Continentality  =  -5 with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6 °C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C, dry winters (total winter precipitation <400 mm. Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally.

  6. Winter Climate Limits Subantarctic Low Forest Growth and Establishment

    Science.gov (United States)

    Harsch, Melanie A.; McGlone, Matt S.; Wilmshurst, Janet M.

    2014-01-01

    Campbell Island, an isolated island 600 km south of New Zealand mainland (52°S, 169°E) is oceanic (Conrad Index of Continentality  = −5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6°C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally. PMID:24691026

  7. Winter climate limits subantarctic low forest growth and establishment.

    Science.gov (United States)

    Harsch, Melanie A; McGlone, Matt S; Wilmshurst, Janet M

    2014-01-01

    Campbell Island, an isolated island 600 km south of New Zealand mainland (52 °S, 169 °E) is oceanic (Conrad Index of Continentality  =  -5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6 °C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally.

  8. Western forests, fire risk, and climate change.

    Science.gov (United States)

    Valerie. Rapp

    2004-01-01

    Climate warming may first show up in forests as increased growth, which occurs as warmer temperatures, increased carbon dioxide, and more precipitation encourage higher rates of photosynthesis. The second way that climate change may show up in forests is through changes in disturbance regimes—the long-term patterns of fire, drought, insects, and diseases that are basic...

  9. Western forest, fire risk, and climate change

    Science.gov (United States)

    Valerie Rapp

    2004-01-01

    Climate warming may first show up in forests as increased growth, which occurs as warmer temperatures, increased carbon dioxide, and more precipitation encourage higher rates of photosynthesis. The second way that climate change may show up in forests is through changes in disturbance regimes—the long-term patterns of fire, drought, insects, and diseases that are basic...

  10. Climate sensitivity of shrub growth across the tundra biome

    DEFF Research Database (Denmark)

    Myers-Smith, Isla H.; Elmendorf, Sarah C.; Beck, Pieter S.A.

    2015-01-01

    Rapid climate warming in the tundra biome has been linked to increasing shrub dominance1–4. Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost2,5–8, yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting...... of multi-decadal time series of annual shrub growth provide an underused resource to explore climate–growth relationships. Here, we analyse circumpolar data from 37 Arctic and alpine sites in 9 countries, including 25 species, and 42,000 annual growth records from 1,821 individuals. Our analyses...... demonstrate that the sensitivity of shrub growth to climate was: (1) heterogeneous, with European sites showing greater summer temperature sensitivity than North American sites, and (2) higher at sites with greater soil moisture and for taller shrubs (for example, alders and willows) growing at their northern...

  11. Possible changes in climate constraints and consequences on tree growth

    International Nuclear Information System (INIS)

    Breda, Nathalie; Granier, Andre; Aussenac, Gilbert

    2000-01-01

    The probable consequences of changes in the major climate variables (rainfall, temperature, potential evapotranspiration) on growth and die back of forest trees are analysed for the range of variations forecasted by global climate change models. The sensitivity of phenology (temperature effects) and levels of water constraints during the growing season (change in rainfall and potential evapotranspiration) are developed. On the basis of the relations established by a retrospective dendro-climatological approach between radial increment and climate, the consequences of climate variations on the radial increment of beech and on oak mortality are discussed. (authors)

  12. Impacts of simulated climate change and fungal symbionts on survival and growth of a foundation species in sand dunes.

    Science.gov (United States)

    Emery, Sarah M; Rudgers, Jennifer A

    2013-12-01

    For many ecosystems, one of the primary avenues of climate impact may be through changes to foundation species, which create habitats and sustain ecosystem services. For plants, microbial symbionts can often act as mutualists under abiotic stress and may mediate foundational plant responses to climate change. We manipulated the presence of endophytes in Ammophila breviligulata, a foundational sand dune species, to evaluate their potential to influence plant responses to climate change. We simulated projected climate change scenarios for temperature and precipitation using a growth chamber experiment. A 5 °C increase in temperature relative to current climate in northern Michigan reduced A. breviligulata survival by 45 %. Root biomass of A. breviligulata, which is critical to dune stabilization, was also strongly reduced by temperature. Plants inoculated with the endophyte had 14 % higher survival than endophyte-free plants. Contrary to our prediction, endophyte symbiosis did not alter the magnitude or direction of the effects of climate manipulations on A. breviligulata survival. However, in the absence of the endophyte, an increase in temperature increased the number of sand grains bound by roots by 80 %, while in symbiotic plants sand adherence did not significantly respond to temperature. Thus, plant-endophyte symbiosis actually negated the benefits in ecosystem function gained under a warmer climate. This study suggests that heat stress related to climate change in the Great Lakes may compromise the ability of A. breviligulata to stabilize dune ecosystems and reduce carbon storage and organic matter build-up in these early-successional systems due to reduced plant survival and root growth.

  13. Contrasting environmental drivers of adult and juvenile growth in a marine fish: implications for the effects of climate change.

    Science.gov (United States)

    Ong, Joyce Jia Lin; Rountrey, Adam Nicholas; Meeuwig, Jessica Jane; Newman, Stephen John; Zinke, Jens; Meekan, Mark Gregory

    2015-06-08

    Many marine fishes have life history strategies that involve ontogenetic changes in the use of coastal habitats. Such ontogenetic shifts may place these species at particular risk from climate change, because the successive environments they inhabit can differ in the type, frequency and severity of changes related to global warming. We used a dendrochronology approach to examine the physical and biological drivers of growth of adult and juvenile mangrove jack (Lutjanus argentimaculatus) from tropical north-western Australia. Juveniles of this species inhabit estuarine environments and adults reside on coastal reefs. The Niño-4 index, a measure of the status of the El Niño-Southern Oscillation (ENSO) had the highest correlation with adult growth chronologies, with La Niña years (characterised by warmer temperatures and lower salinities) having positive impacts on growth. Atmospheric and oceanographic phenomena operating at ocean-basin scales seem to be important correlates of the processes driving growth in local coastal habitats. Conversely, terrestrial factors influencing precipitation and river runoff were positively correlated with the growth of juveniles in estuaries. Our results show that the impacts of climate change on these two life history stages are likely to be different, with implications for resilience and management of populations.

  14. Is Climate Simulation in Growth Chambers Necessary?

    Science.gov (United States)

    Z.M. Wang; K.H. Johnsen; M.J. Lechowicz

    1999-01-01

    In the expression of their genetic potential as phenotypes, trees respond to environmental cues such as photoperiod, temperature and soil and atmospheric water. However, growth chamber experiments often utilize simple and standard environmental conditions that might not provide these important environmental signals. We conducted a study to compare seedling growth in...

  15. Temperature Impacts the Development and Survival of Common Cutworm (Spodoptera litura: Simulation and Visualization of Potential Population Growth in India under Warmer Temperatures through Life Cycle Modelling and Spatial Mapping.

    Directory of Open Access Journals (Sweden)

    Babasaheb B Fand

    Full Text Available The common cutworm, Spodoptera litura, has become a major pest of soybean (Glycine max throughout its Indian range. With a changing climate, there is the potential for this insect to become an increasingly severe pest in certain regions due to increased habitat suitability. To examine this possibility, we developed temperature-based phenology model for S. litura, by constructing thermal reaction norms for cohorts of single life stages, at both constant and fluctuating temperatures within the ecologically relevant range (15-38°C for its development. Life table parameters were estimated stochastically using cohort updating and rate summation approach. The model was implemented in the geographic information system to examine the potential future pest status of S. litura using temperature change projections from SRES A1B climate change scenario for the year 2050. The changes were visualized by means of three spatial indices demonstrating the risks for establishment, number of generations per year and pest abundance according to the temperature conditions. The results revealed that the development rate as a function of temperature increased linearly for all the immature stages of S. litura until approximately 34-36°C, after which it became non-linear. The extreme temperature of 38°C was found lethal to larval and pupal stages of S. litura wherein no development to the next stage occurred. Females could lay no eggs at the extreme low (15°C and high (> 35°C test temperatures, demonstrating the importance of optimum temperature in determining the suitability of climate for the mating and reproduction in S. litura. The risk mapping predicts that due to temperature increase under future climate change, much of the soybean areas in Indian states like Madhya Pradesh, Maharashtra and Rajasthan, will become suitable for S. litura establishment and increased pest activity, indicating the expansion of the suitable and favourable areas over time. This has

  16. Climate Change, Economic Growth, and Health

    NARCIS (Netherlands)

    Ikefuji, M.; Magnus, J.R.; Sakamoto, H.

    2010-01-01

    This paper studies the interplay between climate, health, and the economy in a stylized world with four heterogeneous regions, labeled ‘West’ (cold and rich), ‘China’ (cold and poor), ‘India’ (warm and poor), and ‘Africa’ (warm and very poor). We introduce health impacts into a simple integrated

  17. Tree growth and climate in the Pacific Northwest, North America: a broad-scale analysis of changing growth environments

    Science.gov (United States)

    Whitney L. Albright; David L. Peterson

    2013-01-01

    Climate change in the 21st century will affect tree growth in the Pacific Northwest region of North America, although complex climate–growth relationships make it difficult to identify how radial growth will respond across different species distributions. We used a novel method to examine potential growth responses to climate change at a broad geographical scale with a...

  18. Linking wood anatomy and xylogenesis allows pinpointing of climate and drought influences on growth of coexisting conifers in continental Mediterranean climate.

    Science.gov (United States)

    Pacheco, Arturo; Camarero, J Julio; Carrer, Marco

    2016-04-01

    Forecasted warmer and drier conditions will probably lead to reduced growth rates and decreased carbon fixation in long-term woody pools in drought-prone areas. We therefore need a better understanding of how climate stressors such as drought constrain wood formation and drive changes in wood anatomy. Drying trends could lead to reduced growth if they are more intense in spring, when radial growth rates of conifers in continental Mediterranean climates peak. Since tree species from the aforementioned areas have to endure dry summers and also cold winters, we chose two coexisting species: Aleppo pine (Pinus halepensisMill., Pinaceae) and Spanish juniper (Juniperus thuriferaL., Cupressaceae) (10 randomly selected trees per species), to analyze how growth (tree-ring width) and wood-anatomical traits (lumen transversal area, cell-wall thickness, presence of intra-annual density fluctuations-IADFs-in the latewood) responded to climatic variables (minimum and maximum temperatures, precipitation, soil moisture deficit) calculated for different time intervals. Tree-ring width and mean lumen area showed similar year-to-year variability, which indicates that they encoded similar climatic signals. Wet and cool late-winter to early-spring conditions increased lumen area expansion, particularly in pine. In juniper, cell-wall thickness increased when early summer conditions became drier and the frequency of latewood IADFs increased in parallel with late-summer to early-autumn wet conditions. Thus, latewood IADFs of the juniper capture increased water availability during the late growing season, which is reflected in larger tracheid lumens. Soil water availability was one of the main drivers of wood formation and radial growth for the two species. These analyses allow long-term (several decades) growth and wood-anatomical responses to climate to be inferred at intra-annual scales, which agree with the growing patterns already described by xylogenesis approaches for the same

  19. More Intense Mega Heat Waves in the Warmer World

    Science.gov (United States)

    Choi, G.; Robinson, D. A.

    2017-12-01

    In this study, changes in the occurrences of heat waves on the globe since the mid- 20th century and the synoptic characteristics of mega heat waves at regional scales in the warmer climate are examined. The NCEP-NCAR reanalysis surface data show that there have been no obvious linear changes in the heat wave frequencies at the continental scales since the mid-20th century, but amplified interdecadal variations led to unprecedented intense heat waves in the recent decades at the regional scales. Such mega heat waves have been more frequently observed in the poleward subtropical climate belts as well as in the interior region of continents. According to the analyses of upper tropospheric data, the occurrences of more intense mega heat waves since the late 20th century may be associated with the expansion of subtropical high pressures. These results suggest that populous cities near the subtropical climate zones should provide proactive mega heat wave warning systems for residents due to their vulnerability to the sudden attack of human lives harvest by mega heat waves in the warmer 21st century.

  20. Global climate change and California agriculture

    International Nuclear Information System (INIS)

    Lewis, L.; Rains, W.; Kennedy, L.

    1991-01-01

    This paper has highlighted some of the impacts that a warmer climate may have on agriculture in California. Because of the state's diverse geomorphology it is difficult to predict what crops will grow in which locations under future climate regimes. However, the potential interactions between warmer temperatures, higher CO 2 concentrations, and the factors that affect plant and animal growth may have major consequences for the competitive position of the state's agriculture. Forward-thinking research and public policies are required to assure that responses to climate change will optimize production systems under future constraints

  1. Assessing forest vulnerability to climate warming using a process-based model of tree growth: bad prospects for rear-edges.

    Science.gov (United States)

    Sánchez-Salguero, Raúl; Camarero, Jesus Julio; Gutiérrez, Emilia; González Rouco, Fidel; Gazol, Antonio; Sangüesa-Barreda, Gabriel; Andreu-Hayles, Laia; Linares, Juan Carlos; Seftigen, Kristina

    2017-07-01

    Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought-prone areas, tree populations located at the driest and southernmost distribution limits (rear-edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear-edges of the continuous distributions of these tree species. We used tree-ring width data from a network of 110 forests in combination with the process-based Vaganov-Shashkin-Lite growth model and climate-growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO 2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear-edge. By contrast, growth of high-elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of -10.7% and -16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear-edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear-edge stands. Our modeling

  2. Geographical differences in maternal basking behaviour and offspring growth rate in a climatically widespread viviparous reptile.

    Science.gov (United States)

    Cadby, Chloé D; Jones, Susan M; Wapstra, Erik

    2014-04-01

    In reptiles, the thermal environment during embryonic development affects offspring phenotypic traits and potentially offspring fitness. In viviparous species, mothers can potentially manipulate the embryonic thermal environment through their basking behaviour and, thus, may be able to manipulate offspring phenotype and increase offspring fitness. One way in which mothers can maximise offspring phenotype (and thus potentially affect offspring fitness) is by fine-tuning their basking behaviour to the environment in order to buffer the embryo from deleterious developmental temperatures. In widespread species, it is unclear whether populations that have evolved under different climatic conditions will exhibit different maternal behaviours and/or thermal effects on offspring phenotype. To test this, we provided extended or reduced basking opportunity to gravid spotted skinks (Niveoscincus ocellatus) and their offspring from two populations at the climatic extremes of the species' distribution. Gravid females fine-tuned their basking behaviour to the basking opportunity, which allowed them to buffer their embryos from potentially negative thermal effects. This fine-tuning of female basking behaviour appears to have led to the expression of geographical differences in basking behaviour, with females from the cold alpine regions being more opportunistic in their basking behaviour than females from the warmer regions. However, those differences in maternal behaviour did not preclude the evolution of geographic differences in thermal effects: offspring growth varied between populations, potentially suggesting local adaptation to basking conditions. Our results demonstrate that maternal effects and phenotypic plasticity can play a significant role in allowing species to cope in changing environmental conditions, which is particularly relevant in the context of climate change.

  3. Wild Apple Growth and Climate Change in Southeast Kazakhstan

    Directory of Open Access Journals (Sweden)

    Irina P. Panyushkina

    2017-10-01

    Full Text Available Wild populations of Malus sieversii [Ldb.] M. Roem are valued genetic and watershed resources in Inner Eurasia. These populations are located in a region that has experienced rapid and on-going climatic change over the past several decades. We assess relationships between climate variables and wild apple radial growth with dendroclimatological techniques to understand the potential of a changing climate to influence apple radial growth. Ring-width chronologies spanning 48 to 129 years were developed from 12 plots in the Trans-Ili Alatau and Jungar Alatau ranges of Tian Shan Mountains, southeastern Kazakhstan. Cluster analysis of the plot-level chronologies suggests different temporal patterns of growth variability over the last century in the two mountain ranges studied. Changes in the periodicity of annual ring-width variability occurred ca. 1970 at both mountain ranges, with decadal-scale variability supplanted by quasi-biennial variation. Seascorr correlation analysis of primary and secondary weather variables identified negative growth associations with spring precipitation and positive associations with cooler fall-winter temperatures, but the relative importance of these relationships varied spatially and temporally, with a shift in the relative importance of spring precipitation ca. 1970 at Trans-Ili Alatau. Altered apple tree radial growth patterns correspond to altered climatology in the Lake Balkhash Basin driven by unprecedented intensified Arctic Oscillations after the late 1970s.

  4. The time scales of the climate-economy feedback and the climatic cost of growth

    International Nuclear Information System (INIS)

    Hallegatte, Stephane

    2005-04-01

    This paper is based on the perception that the inertia of climate and socio-economic systems are key parameters in the climate change issue. In a first part, it develops and implements a new approach based on a simple integrated model with a particular focus on an innovative transient impact and adaptation modelling. In a second part, a climate-economy feedback is defined and characterized. It is found that: (i) it has a 70-year characteristic time, which is long when compared to the system's other time-scales, and it cannot act as a natural damping process of climate change; (ii) mitigation has to be anticipated since the feedback of an emission reduction on the economy is significant only after a 20-year delay and really efficient after a one-century delay; (iii) the IPCC methodology, that neglects the feedback from impacts to emissions, is acceptable up to 2100, whatever is the level of impacts. This analysis allows also to define a climatic cost of growth as the additional climate change damages due to the additional emissions linked to economic growth. Usefully, this metric for climate change damages is particularly independent of the baseline scenario. (orig.)

  5. The time scales of the climate-economy feedback and the climatic cost of growth

    Energy Technology Data Exchange (ETDEWEB)

    Hallegatte, Stephane [CIRED - CNRM, Nogent-sur-Marne (France)

    2005-04-01

    This paper is based on the perception that the inertia of climate and socio-economic systems are key parameters in the climate change issue. In a first part, it develops and implements a new approach based on a simple integrated model with a particular focus on an innovative transient impact and adaptation modelling. In a second part, a climate-economy feedback is defined and characterized. It is found that: (i) it has a 70-year characteristic time, which is long when compared to the system's other time-scales, and it cannot act as a natural damping process of climate change; (ii) mitigation has to be anticipated since the feedback of an emission reduction on the economy is significant only after a 20-year delay and really efficient after a one-century delay; (iii) the IPCC methodology, that neglects the feedback from impacts to emissions, is acceptable up to 2100, whatever is the level of impacts. This analysis allows also to define a climatic cost of growth as the additional climate change damages due to the additional emissions linked to economic growth. Usefully, this metric for climate change damages is particularly independent of the baseline scenario. (orig.)

  6. Elevated temperature is more effective than elevated [CO2 ] in exposing genotypic variation in Telopea speciosissima growth plasticity: implications for woody plant populations under climate change.

    Science.gov (United States)

    Huang, Guomin; Rymer, Paul D; Duan, Honglang; Smith, Renee A; Tissue, David T

    2015-10-01

    Intraspecific variation in phenotypic plasticity is a critical determinant of plant species capacity to cope with climate change. A long-standing hypothesis states that greater levels of environmental variability will select for genotypes with greater phenotypic plasticity. However, few studies have examined how genotypes of woody species originating from contrasting environments respond to multiple climate change factors. Here, we investigated the main and interactive effects of elevated [CO2 ] (CE ) and elevated temperature (TE ) on growth and physiology of Coastal (warmer, less variable temperature environment) and Upland (cooler, more variable temperature environment) genotypes of an Australian woody species Telopea speciosissima. Both genotypes were positively responsive to CE (35% and 29% increase in whole-plant dry mass and leaf area, respectively), but only the Coastal genotype exhibited positive growth responses to TE . We found that the Coastal genotype exhibited greater growth response to TE (47% and 85% increase in whole-plant dry mass and leaf area, respectively) when compared with the Upland genotype (no change in dry mass or leaf area). No intraspecific variation in physiological plasticity was detected under CE or TE , and the interactive effects of CE and TE on intraspecific variation in phenotypic plasticity were also largely absent. Overall, TE was a more effective climate factor than CE in exposing genotypic variation in our woody species. Our results contradict the paradigm that genotypes from more variable climates will exhibit greater phenotypic plasticity in future climate regimes. © 2015 John Wiley & Sons Ltd.

  7. Green growth in the post-Copenhagen climate

    International Nuclear Information System (INIS)

    Sterner, Thomas; Damon, Maria

    2011-01-01

    Global climate change stands out from most environmental problems because it will span generations and force us to think in new ways about intergenerational fairness. It involves the delicate problem of complex coordination between countries on a truly global scale. As long as fossil fuels are too cheap, climate change policy will engage all major economies. The costs are high enough to make efficiency a priority, which means striving toward a single market for carbon-plus tackling the thorny issues of fairness. Hopes for a grand deal were mercilessly shattered at Copenhagen in December 2009 and in other recent UNFCCC meetings, with the result that 'green growth' is promoted as an alternative path. Indeed, green growth is clearly the goal, but it is no magic bullet. The world economy will require clear and rather tough policy instruments for growth to be green-and it is naive to think otherwise. Growth, green or not, will boost demand for energy and coal is normally the cheapest source. The magnitude of the challenge is greater if we also consider the problems related to nuclear (fission) energy and, in some instances, to bioenergy (such as its competition for land that may be essential for the poor). This paper discusses some necessary ingredients for a long-term global climate strategy. As we wait for the final (and maybe elusive) worldwide treaty, we must find a policy that makes sense and is not only compatible with, but facilitates the development of such a treaty. - Highlights: → Climate mitigation will be expensive so we must use market based instruments to deal with it efficiently. → All countries need to be involved but many will hesitate. → MBIs require us to deal with problems of fairness in allocation. → Some countries see grandfathering as fair others prefer equal per capita allocation. → Green growth is a necessity but no panacea.

  8. Epidemic malaria and warmer temperatures in recent decades in an East African highland

    NARCIS (Netherlands)

    Alonso, David; Bouma, Menno J.; Pascual, Mercedes

    2011-01-01

    Climate change impacts on malaria are typically assessed with scenarios for the long-term future. Here we focus instead on the recent past (1970-2003) to address whether warmer temperatures have already increased the incidence of malaria in a highland region of East Africa. Our analyses rely on a

  9. Climate change and economic growth: a heterogeneous panel data approach.

    Science.gov (United States)

    Sequeira, Tiago Neves; Santos, Marcelo Serra; Magalhães, Manuela

    2018-05-31

    Climate change is a global phenomenon. Its impact on economic growth must therefore be analyzed in accordance with its (time-varying) common effects. We present an econometric analysis that evaluates this effect taking into account its global nature. Contrary to previous evidence that ignores the global effects, we obtain that the rising temperature has not decreased growth in real GDP per capita in the second half of the twentieth century for the world countries. However, we obtain a negative effect of rising temperatures and a positive effect of rising precipitation in poor countries. This positive effect of rising precipitation is also confirmed for hot and temperate countries.

  10. Low climate stabilisation under diverse growth and convergence scenarios

    International Nuclear Information System (INIS)

    Markandya, A.; González-Eguino, M.; Criqui, P.; Mima, S.

    2014-01-01

    In the last decade a number of papers have analysed the consequences of achieving the greenhouse gas concentration levels necessary to maintain global temperature increases below 2 °C above preindustrial levels. Most models and scenarios assume that future trends in global GDP will be similar to the growth experienced in the past century, which would imply multiplying current output by about 19 times in the 21st century. However, natural resource and environmental constraints suggest that future global economic growth may not be so high. Furthermore, the environmental implications of such growth depend on how it is distributed across countries. This paper studies the implications on GHG abatement policies of low global GDP growth and high convergence levels in GDP per capita across countries. A partial equilibrium model (POLES) of the world's energy system is used to provide detailed projections up to 2050 for the different regions of the world. The results suggest that while low stabilisation could be technically feasible and economically viable for the world in all the scenarios considered, it is more likely to occur with more modest global growth. However, that will imply higher global abatement costs relative to GDP. Convergence in living standards on the other hand places greater pressures in terms of the required reduction in emissions. In general we find that there are major differences between regions in terms of the size and the timing of abatement costs and economic impact. - Highlights: • We study the implications of GDP growth and convergence on climate stabilisation. • A partial equilibrium model (POLES) of the world's energy system is used. • Low climate stabilisation is technically feasible and economically viable. • Low stabilisation is more likely to occur with more modest global growth. • Convergence places pressure in terms of the required reduction in emissions

  11. Growth-climate relationships across topographic gradients in the northern Great Lakes

    Science.gov (United States)

    S.F. Dymond; A.W. D' Amato; Randy Kolka; P.V. Bolstad; Stephen Sebestyen; J.B. Bradford

    2016-01-01

    Climatic conditions exert important control over the growth, productivity, and distribution of forests, and characterizing these relationships is essential for understanding how forest ecosystems will respond to climate change. We used dendrochronological methods to develop climate–growth relationships for two dominant species, Populus tremuloides...

  12. Will the warmer temperature bring the more intensity precipitation?

    Science.gov (United States)

    Yutong, Z., II; Wang, T.

    2017-12-01

    Will the warmer temperature bring the more intensity precipitation?Over the past several decades, changes in climate are amplified over the Tibetan Plateau(TP), with warming trend almost being twice as large as the global average. In sharp contrast, there is a large spatial discrepancy of the variations in precipitation extremes, with increasing trends found in the southern and decreasing trends in central TP. These features motivate are urgent need for an observation-based understanding of how precipitation extremes respond to climate change. Here we examine the relation between precipitation intensity with atmospheric temperature, dew point temperature (Td) and convective available potential energy (CAPE) in Tibet Plateau. Owing to the influences of the westerlies and Indian monsoon on Tibetan climate, the stations can be divided into three sub-regions in TP: the westerlies region (north of 35°N, N = 28), the monsoon region (south of 30°N in TP, N = 31), and the transition region (located between 30°N and 35°N, N = 48). We found that the intensity precipitation does not follow the C-C relation and there is a mix of positive and negative slope. To better understand why different scaling occurs with temperature in district region, using the dew point temperature replace the temperature, although there is significant variability in relative humidity values, at most stations, there appears to be a general increase in relative humidity associated. It is likely that the observed rise in relative humidity can assist in explaining the negative scaling of extreme precipitation at westerlies domain and monsoon domain, with the primary reason why precipitation extremes expected to increase follows from the fact that a warmer atmosphere can "hold" more moisture. This suggests that not only on how much the moisture the atmosphere can hold, but on how much moisture exits in atmosphere. To understand the role of dynamic on extreme precipitation, we repeat the precipitation

  13. Will seabass (Dicentrarchus labrax) quality change in a warmer ocean?

    Science.gov (United States)

    Barbosa, Vera; Maulvault, Ana Luísa; Alves, Ricardo N; Anacleto, Patrícia; Pousão-Ferreira, Pedro; Carvalho, Maria Luísa; Nunes, Maria Leonor; Rosa, Rui; Marques, António

    2017-07-01

    The impacts of climate change on seafood quality, safety and human health are still unknown. The present study investigated the effect of warming on fatty acids and elements content in two tissues (muscle and liver) of the relevant commercial seabass species (Dicentrarchus labrax). After exposing fish to increased seawater temperature for a period of 60days, higher saturated fatty acid (SFA) levels were observed in fish muscle (2.16% increase); whereas lower SFA levels were observed in fish liver (5.42% decrease). On the other hand, monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) contents decreased in both muscle (1.77% and 0.39%, respectively) and liver (10.54% and 8.11%, respectively) of fish subjected to warmer conditions. Additionally, warming promoted changes in fish elemental profiles, leading to significantly higher levels of Cl in the muscle and lower levels of Rb in the liver. Overall, data showed that fatty acids and elemental contents were affected by temperature, though representing small implications to human health. Moreover, this preliminary study highlights the importance of conducting further seafood risk-benefit assessments under climate change contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Table of Policy Options for Smart Growth Fixes for Climate Adaptation and Resilience

    Science.gov (United States)

    Sortable table of policy options discussed in the publication Smart Growth Fixes for Climate Adaptation and Resilience, which can help local governments prepare for climate change while gaining other environmental, economic, health, and social benefits

  15. Maize growth and yield in Peshawar under changing climate

    International Nuclear Information System (INIS)

    Shah, A.; Akmal, M.; Asim, M.

    2012-01-01

    Global climate change is consequence of accumulating greenhouse gases (Carbon) at lower atmosphere which might affects crops growth and yield. Maize is an important summer cereals, grown on considerable area in Pakistan every year. We, therefore, study the delay sowing response with changing climate on maize. Field experiment was conducted at Agronomy Research Farm, Agricultural University Peshawar, Pakistan in a randomized complete block design. Sowing was done from June 8 to July 24, 2010 with ten days intervals. Mazie (cv. Azam) was planted in rows at 0.75 m distance in NS orientations. Crop was raised under the uniform recommended cultural practices. Data regarding days to emergence, tasseling and maturity showed a consecutive decrease when so wing was delayed form June 08 onwards. However, the crop life cycle (i.e. vegetative and reproductive durations) initially remained uniform but expanded for late sowing dates (July). Delay sowing showed an increase in the leaf area index with an abrupt decline for the late sown crop. Nonetheless, plant stand at harvest remained static during the growth for all sowing dates. A stable to moderate reduction was noticed in ear length (cm) when sowings was delayed from Jun 08 onwards. Grain rows cob/-1 did not influence by the delay sowing in the season. Moreover, delay sowing did not show any significant (P<0.05) change for the grain number. However, thousand grains weight was initially remained stable but declined (P<0.05) by delay in sowing. Biological yield, dry matter and grains yield (g m/sup -2/) revealed almost a similar decreasing trend when sowing was delayed. Dry matter to grain yield relationship was linear (r/sup 2/ = 0.95) and revealed a mean loss of 1.65 g m/sup 2/ when sowing delayed from June 08 to July 24 in the season. Radiation use efficiency (RUE), the growth function, was also declined by the delay in sowing. We inferred that losses in leaf area indices, ear length and grain weights were basis of the

  16. Projected Impact of Urban Growth on Climate Change

    Science.gov (United States)

    Amato, Federico; Murgante, Beniamino; Martellozzo, Federico

    2017-04-01

    Human activities on land use such as intensive agricultural techniques and urbanization are generating a number of social and economic benefit for contemporary society. Besides, these phenomena are one of the most significant causes of Land Degradation. Firstly, intensive agriculture is on the one hand creating an advantage in the short-period in terms of food production, while on the other is producing serious long-period problems in terms of loss of ecosystem services, including some important for agriculture itself. Secondly, the rapid growth of urban areas in recent decades is generating deep environmental issues. The World Urbanization Prospect by the United Nations (UN) shows that more than half of the world's population today (54%) lives in urban areas. This figure was only 30% in 1950, and estimates are that it will rise to 66% by 2050. Urban growth is responsible for the increase of air pollution, waste production, energy consumption, and land take. Moreover, the expansion of urban areas is making the problem of urban heat islands more relevant, and studies are proving how land cover changes are among the main factors that affect local microclimates. Consequently, territorial planning will play an important role in the fight to mitigate the effects of climate change, as land cover has a significant impact on the energy exchanges between the earth and the atmosphere. This study couples urban growth simulation models based on cellular automata to multiple linear regression techniques that are used to formulate equations for predicting the effects of simulated urban development on soil surface temperature. The proposed methodology is applied to the case study of the Italian national territory, considering various alternative scenarios of land use changes and of their impact on local surface temperatures. The results show that the areas with the greatest urban pressure might be subject to significant climatic changes due to the increased impact of urban heat

  17. The Future of Tourism: Can Tourism Growth and Climate Policy be Reconciled? A Climate Change Mitigation Perspective

    NARCIS (Netherlands)

    Gössling, S.; Hall, C.M.; Peeters, P.M.; Scott, D.

    2010-01-01

    Tourism is an increasingly significant contributor to greenhouse gas (GHG) emissions. Emissions growth in the sector is in substantial conflict with global climate policy goals that seek to mitigate climate change through deep emission reductions. This article discusses the role of various tourism

  18. Reduced Urban Heat Island intensity under warmer conditions

    Science.gov (United States)

    Scott, Anna A.; Waugh, Darryn W.; Zaitchik, Ben F.

    2018-06-01

    The Urban Heat Island (UHI), the tendency for urban areas to be hotter than rural regions, represents a significant health concern in summer as urban populations are exposed to elevated temperatures. A number of studies suggest that the UHI increases during warmer conditions, however there has been no investigation of this for a large ensemble of cities. Here we compare urban and rural temperatures in 54 US cities for 2000–2015 and show that the intensity of the Urban Heat Island, measured here as the differences in daily-minimum or daily-maximum temperatures between urban and rural stations or ΔT, in fact tends to decrease with increasing temperature in most cities (38/54). This holds when investigating daily variability, heat extremes, and variability across climate zones and is primarily driven by changes in rural areas. We relate this change to large-scale or synoptic weather conditions, and find that the lowest ΔT nights occur during moist weather conditions. We also find that warming cities have not experienced an increasing Urban Heat Island effect.

  19. Climate forcing growth rates: doubling down on our Faustian bargain

    Science.gov (United States)

    Hansen, James; Kharecha, Pushker; Sato, Makiko

    2013-03-01

    Rahmstorf et al 's (2012) conclusion that observed climate change is comparable to projections, and in some cases exceeds projections, allows further inferences if we can quantify changing climate forcings and compare those with projections. The largest climate forcing is caused by well-mixed long-lived greenhouse gases. Here we illustrate trends of these gases and their climate forcings, and we discuss implications. We focus on quantities that are accurately measured, and we include comparison with fixed scenarios, which helps reduce common misimpressions about how climate forcings are changing. Annual fossil fuel CO2 emissions have shot up in the past decade at about 3% yr-1, double the rate of the prior three decades (figure 1). The growth rate falls above the range of the IPCC (2001) 'Marker' scenarios, although emissions are still within the entire range considered by the IPCC SRES (2000). The surge in emissions is due to increased coal use (blue curve in figure 1), which now accounts for more than 40% of fossil fuel CO2 emissions. Figure 1. Figure 1. CO2 annual emissions from fossil fuel use and cement manufacture, an update of figure 16 of Hansen (2003) using data of British Petroleum (BP 2012) concatenated with data of Boden et al (2012). The resulting annual increase of atmospheric CO2 (12-month running mean) has grown from less than 1 ppm yr-1 in the early 1960s to an average ~2 ppm yr-1 in the past decade (figure 2). Although CO2 measurements were not made at sufficient locations prior to the early 1980s to calculate the global mean change, the close match of global and Mauna Loa data for later years suggests that Mauna Loa data provide a good approximation of global change (figure 2), thus allowing a useful estimate of annual global change beginning with the initiation of Mauna Loa measurements in 1958 by Keeling et al (1973). Figure 2. Figure 2. Annual increase of CO2 based on data from the NOAA Earth System Research Laboratory (ESRL 2012). CO2 change

  20. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types.

    Science.gov (United States)

    Smith, Nicholas G; Dukes, Jeffrey S

    2017-11-01

    While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process-level differences in acclimation capacity among plant types. We assessed short-term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and foliar dark respiration (R d ) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C 3 and C 4 ), and climate of origin (tropical and nontropical) grown under fertilized, well-watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C 3 species tending to preferentially accelerate CO 2 -limited photosynthetic processes and respiration and C 4 species tending to preferentially accelerate light-limited photosynthetic processes under warmer conditions. R d acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. R d acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting. © 2017 John Wiley & Sons Ltd.

  1. Global drought and severe drought-affected populations in 1.5 and 2 °C warmer worlds

    Science.gov (United States)

    Liu, Wenbin; Sun, Fubao; Lim, Wee Ho; Zhang, Jie; Wang, Hong; Shiogama, Hideo; Zhang, Yuqing

    2018-03-01

    The 2015 Paris Agreement proposed a more ambitious climate change mitigation target on limiting global warming to 1.5 °C instead of 2 °C above preindustrial levels. Scientific investigations on environmental risks associated with these warming targets are necessary to inform climate policymaking. Based on the Coupled Model Intercomparison Project phase 5 (CMIP5) climate models, we present the first risk-based assessment of changes in global drought and the impact of severe drought on populations from additional 1.5 and 2 °C warming conditions. Our results highlight the risk of drought on a global scale and in several hotspot regions such as the Amazon, northeastern Brazil, southern Africa and Central Europe at both 1.5 and 2 °C global warming relative to the historical period, showing increases in drought durations from 2.9 to 3.2 months. Correspondingly, more total and urban populations would be exposed to severe droughts globally (+132.5 ± 216.2 million and +194.5 ± 276.5 million total population and +350.2 ± 158.8 million and +410.7 ± 213.5 million urban populations in 1.5 and 2 °C warmer worlds) and regionally (e.g., East Africa, West Africa and South Asia). Less rural populations (-217.7 ± 79.2 million and -216.2 ± 82.4 million rural populations in 1.5 and 2 °C warmer worlds) would be exposed to severe drought globally under climate warming, population growth and especially the urbanization-induced population migration. By keeping global warming at 1.5 °C above the preindustrial levels instead of 2 °C, there is a decrease in drought risks (i.e., less drought duration, less drought intensity and severity but relatively more frequent drought) and the affected total, urban and rural populations would decrease globally and in most regions. While challenging for both East Africa and South Asia, the benefits of limiting warming to below 1.5 °C in terms of global drought risk and impact reduction are significant.

  2. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees.

    Science.gov (United States)

    Kerhoulas, Lucy P; Kane, Jeffrey M

    2012-01-01

    Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables

  3. Pan-Tropical Analysis of Climate Effects on Seasonal Tree Growth

    Science.gov (United States)

    Wagner, Fabien; Rossi, Vivien; Aubry-Kientz, Mélaine; Bonal, Damien; Dalitz, Helmut; Gliniars, Robert; Stahl, Clément; Trabucco, Antonio; Hérault, Bruno

    2014-01-01

    Climate models predict a range of changes in tropical forest regions, including increased average temperatures, decreased total precipitation, reduced soil moisture and alterations in seasonal climate variations. These changes are directly related to the increase in anthropogenic greenhouse gas concentrations, primarily CO2. Assessing seasonal forest growth responses to climate is of utmost importance because woody tissues, produced by photosynthesis from atmospheric CO2, water and light, constitute the main component of carbon sequestration in the forest ecosystem. In this paper, we combine intra-annual tree growth measurements from published tree growth data and the corresponding monthly climate data for 25 pan-tropical forest sites. This meta-analysis is designed to find the shared climate drivers of tree growth and their relative importance across pan-tropical forests in order to improve carbon uptake models in a global change context. Tree growth reveals significant intra-annual seasonality at seasonally dry sites or in wet tropical forests. Of the overall variation in tree growth, 28.7% was explained by the site effect, i.e. the tree growth average per site. The best predictive model included four climate variables: precipitation, solar radiation (estimated with extrasolar radiation reaching the atmosphere), temperature amplitude and relative soil water content. This model explained more than 50% of the tree growth variations across tropical forests. Precipitation and solar radiation are the main seasonal drivers of tree growth, causing 19.8% and 16.3% of the tree growth variations. Both have a significant positive association with tree growth. These findings suggest that forest productivity due to tropical tree growth will be reduced in the future if climate extremes, such as droughts, become more frequent. PMID:24670981

  4. Change in Vegetation Growth and Its Feedback to Climate in the Tibet Plateau

    Science.gov (United States)

    Piao, S.

    2015-12-01

    Vegetation growth is strongly influenced by climate and climate change and can affect the climate system through a number of bio-physical processes. As a result, monitoring, understanding and predicting the response of vegetation growth to global change has been a central activity in Earth system science during the past two decades. The Tibetan Plateau (TP) has experienced a pronounced warming over recent decades. The warming rate of the TP over the period 1960-2009 was about twice the global average warming rate, yet with heterogeneous patterns. In this study, we use satellite derived NDVI data to investigate spatio-temporal change in vegetation growth over the last three decades.

  5. Policy Case Study – Food Labelling: Climate for Sustainable Growth

    OpenAIRE

    Cosbey, Aaron; Marcu, Andrei; Belis, David; Stoefs, Wijnand; Tuokko, Katja

    2015-01-01

    This study, which is part of the project entitled “Climate for Sustainable Growth“, focuses on one particular policy tool used in the agricultural sector, food labelling. It reviews food carbon labelling when put in place with clear objectives to address climate change. This study examines whether food carbon labels, as climate mitigation tools, are put in place in a sustainable way, by identifying their impacts on the three dimensions of sustainable development: 1) economic 2) social and ...

  6. Parthenium weed (Parthenium hysterophorus L.) and climate change: the effect of CO2 concentration, temperature, and water deficit on growth and reproduction of two biotypes.

    Science.gov (United States)

    Nguyen, Thi; Bajwa, Ali Ahsan; Navie, Sheldon; O'Donnell, Chris; Adkins, Steve

    2017-04-01

    Climate change will have a considerable impact upon the processes that moderate weed invasion, in particular to that of parthenium weed (Parthenium hysterophorus L.). This study evaluated the performance of two Australian biotypes of parthenium weed under a range of environmental conditions including soil moisture (100 and 50% of field capacity), atmospheric carbon dioxide (CO 2 ) concentration (390 and 550 ppm), and temperature (35/20 and 30/15 °C/day/night). Measurements were taken upon growth, reproductive output, seed biology (fill, viability and dormancy) and soil seed longevity. Parthenium weed growth and seed output were significantly increased under the elevated CO 2 concentration (550 ppm) and in the cooler (30/15 °C) and wetter (field capacity) conditions. However, elevated CO 2 concentration could not promote growth or seed output when the plants were grown under the warmer (35/20 °C) and wetter conditions. Warm temperatures accelerated the growth of parthenium weed, producing plants with greater height biomass but with a shorter life span. Warm temperatures also affected the reproductive output by promoting both seed production and fill, and promoting seed longevity. Dryer soil conditions (50% of field capacity) also promoted the reproductive output, but did not retain high seed fill or promote seed longevity. Therefore, the rising temperatures, the increased atmospheric CO 2 concentration and the longer periods of drought predicted under climate change scenarios are likely to substantially enhance the growth and reproductive output of these two Australian parthenium weed biotypes. This may facilitate the further invasion of this noxious weed in tropical and sub-tropical natural and agro-ecosystems.

  7. Composition and carbon dynamics of forests in northeastern North America in a future, warmer world

    International Nuclear Information System (INIS)

    Mohan, J.E.; Georgia Univ., Athens, GA; Cox, R.M.; Iverson, L.R.

    2009-01-01

    This article provided a synthesis of modelling and scientific DNA which indicated that tree migrations since the last glaciation period were slower than current and predicted climatic warming trends. Air pollution is now offsetting carbon dioxide (CO 2 ) gains in biomass and will predispose many trees to other stresses. Nitrogen and sulfate deposition in the northeastern United States is changing forest nutrient availability, and is reducing the reproductive success and frost hardiness of some species. Acid deposition is also causing physical damage to leaves and changing the behaviour of pests and diseases. It is expected that the interacting stresses will cause declines in tree populations as well as ecosystem disturbances during the transition to warmer climates. Modelling studies have predicted that the warmer climates will increase habitats for most tree species in the northeastern United States. Species with declining habitats in the United States and Canada may migrate northwards. Paleo-ecological studies suggest that local edaphic factors will negatively impact current and future recruitment successes, but may also combine with climatic effect to cause sudden large shifts in vegetation. 83 refs., 2 tabs., 3 figs

  8. Climate constraints on the carbon intensity of economic growth

    International Nuclear Information System (INIS)

    Rozenberg, Julie; Narloch, Ulf; Hallegatte, Stephane; Davis, Steven J

    2015-01-01

    Development and climate goals together constrain the carbon intensity of production. Using a simple and transparent model that represents committed CO 2 emissions (future emissions expected to come from existing capital), we explore the carbon intensity of production related to new capital required for different temperature targets across several thousand scenarios. Future pathways consistent with the 2 °C target which allow for continued gross domestic product growth require early action to reduce carbon intensity of new production, and either (i) a short lifetime of energy and industry capital (e.g. early retrofit of coal power plants), or (ii) large negative emissions after 2050 (i.e. rapid development and dissemination of carbon capture and sequestration). To achieve the 2 °C target, half of the scenarios indicate a carbon intensity of new production between 33 and 73 g CO 2 /$—much lower than the global average today, at 360 g CO 2 /$. The average lifespan of energy capital (especially power plants), and industry capital, are critical because they commit emissions far into the future and reduce the budget for new capital emissions. Each year of lifetime added to existing, carbon intensive capital, decreases the carbon intensity of new production required to meet a 2 °C carbon budget by 1.0–1.5 g CO 2 /$, and each year of delaying the start of mitigation decreases the required CO 2 intensity of new production by 20–50 g CO 2 /$. Constraints on the carbon intensity of new production under a 3 °C target are considerably relaxed relative to the 2 °C target, but remain daunting in comparison to the carbon intensity of the global economy today. (letter)

  9. Climate-growth relationships of Abies spectabilis in a central Himalayan treeline ecotone

    Science.gov (United States)

    Schwab, Niels; Kaczka, Ryszard J.; Schickhoff, Udo

    2017-04-01

    Climate warming is expected to induce treelines to advance to higher elevations. Empirical studies in diverse mountain ranges, however, give evidence of both advancing alpine treelines as well as rather insignificant responses. The large spectrum of responses is not fully understood. In the framework of investigating the sensitivity and response of a near-natural treeline ecotone in Rolwaling Himal, Nepal, to climate warming we present results from dendroclimatological analyses of Abies spectabilis (Himalayan Fir) increment cores. Tree ring width was measured and cross-dated. After standardization, the chronology was correlated with temperature and precipitation variables. Preliminary results point to positive correlations with autumn temperature and precipitation. We will present improved climate-growth relationships. The resulting climate - tree growth relationships may be used as an indication of future growth patterns and treeline dynamics under climate change conditions.

  10. Growth-climate relationships across topographic gradients in the northern Great Lakes

    Science.gov (United States)

    Dymond, S.F.; D'Amato, A.W.; Kolka, R.K.; Bolstad, P.V.; Sebestyen, S.D.; Bradford, John B.

    2016-01-01

    Climatic conditions exert important control over the growth, productivity, and distribution of forests, and characterizing these relationships is essential for understanding how forest ecosystems will respond to climate change. We used dendrochronological methods to develop climate–growth relationships for two dominant species, Populus tremuloides (quaking aspen) and Pinus resinosa (red pine), in the upper Great Lakes region to understand how climate and water availability influence annual forest productivity. Trees were sampled along a topographic gradient at the Marcell Experimental Forest (Minnesota, USA) to assess growth response to variations in temperature and different water availability metrics (precipitation, potential evapotranspiration (PET), cumulative moisture index (CMI), and soil water storage). Climatic variables were able to explain 33–58% of the variation in annual growth (as measured by ring-width increment) for quaking aspen and 37–74% of the variation for red pine. Climate–growth relationships were influenced by topography for quaking aspen but not for red pine. Annual ring growth for quaking aspen decreased with June CMI on ridges, decreased with temperature in the November prior to the growing season on sideslopes, and decreased with June PET on toeslopes. Red pine growth increased with increasing July PET across all topographic positions. These results indicate the sensitivity of both quaking aspen and red pine to local climate and show several vulnerabilities of these species to shifts in water supply and temperature because of climate change.

  11. Assessment of irrigated maize yield response to climate change scenarios in Portugal

    NARCIS (Netherlands)

    Yang, Chenyao; Fraga, Helder; Ieperen, van W.; Andrade Santos, João

    2017-01-01

    Maize is an important crop for the Portuguese agricultural sector. Future climate change, with warmer and dryer conditions in this Mediterranean environment, will challenge this high-water demanding crop. The present study aims at assessing the response of maize yield, growth cycle, seasonal water

  12. Phenology and growth of European trees in relation to climate change

    NARCIS (Netherlands)

    Kramer, K.

    1996-01-01

    Research topics

    The relationships between climate and both phenology and growth of some important European tree species were studied to evaluate the potential impacts of climate change on trees and forests in Europe. In order to make such assessments, insight is

  13. Climate-growth relationships for largemouth bass (Micropterus salmoides) across three southeastern USA states

    Science.gov (United States)

    Andrew L. Rypel

    2009-01-01

    The role of climate variability in the ecology of freshwater fishes is of increasing interest. However, there are relatively few tools available for examining how freshwater fish populations respond to climate variations. Here, I apply tree-ring techniques to incremental growth patterns in largemouth bass (Micropterus salmoides Lacepe`de) otoliths to explore...

  14. Spatiotemporal variability of stone pine (Pinus pinea L.) growth response to climate across the Iberian Peninsula

    Czech Academy of Sciences Publication Activity Database

    Natalini, F.; Alejano, R.; Vazquez-Pique, J.; Pardos, M.; Calama, R.; Büntgen, Ulf

    2016-01-01

    Roč. 40, dec (2016), s. 72-84 ISSN 1125-7865 Institutional support: RVO:67179843 Keywords : tree-rings * genetically depauperate * mediterranean climate * phenotypic plasticity * cambial activity * fagus-sylvatica * spain * drought * widespread * halepensis * Climate change * Dendroecology * Growth plasticity * Mediterranean * Tree rings * Drought Subject RIV: EH - Ecology, Behaviour Impact factor: 2.259, year: 2016

  15. Assessing climate change effects on European crop yields using the Crop Growth

    NARCIS (Netherlands)

    Supit, I.; Diepen, van C.A.; Wit, de A.J.W.; Wolf, J.; Kabat, P.; Baruth, B.; Ludwig, F.

    2012-01-01

    Climate change impacts on potential and rainfed crop yields on the European continent were studied using output of three General Circulation Models and the Crop Growth Monitoring System in combination with a weather generator. Climate change impacts differ per crop type and per CO2 emission

  16. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth.

    Science.gov (United States)

    Charney, Noah D; Babst, Flurin; Poulter, Benjamin; Record, Sydne; Trouet, Valerie M; Frank, David; Enquist, Brian J; Evans, Margaret E K

    2016-09-01

    Predicting long-term trends in forest growth requires accurate characterisation of how the relationship between forest productivity and climatic stress varies across climatic regimes. Using a network of over two million tree-ring observations spanning North America and a space-for-time substitution methodology, we forecast climate impacts on future forest growth. We explored differing scenarios of increased water-use efficiency (WUE) due to CO2 -fertilisation, which we simulated as increased effective precipitation. In our forecasts: (1) climate change negatively impacted forest growth rates in the interior west and positively impacted forest growth along the western, southeastern and northeastern coasts; (2) shifting climate sensitivities offset positive effects of warming on high-latitude forests, leaving no evidence for continued 'boreal greening'; and (3) it took a 72% WUE enhancement to compensate for continentally averaged growth declines under RCP 8.5. Our results highlight the importance of locally adapted forest management strategies to handle regional differences in growth responses to climate change. © 2016 John Wiley & Sons Ltd/CNRS.

  17. Tropical cyclones in a stabilized 1.5 and 2 degree warmer world.

    Science.gov (United States)

    Wehner, M. F.; Stone, D. A.; Loring, B.; Krishnan, H.

    2017-12-01

    We present an ensemble of very high resolution global climate model simulations of a stabilized 1.5oC and 2oC warmer climate as envisioned by the Paris COP21 agreement. The resolution of this global climate model (25km) permits simulated tropical cyclones up to Category Five on the Saffir-Simpson scale Projected changes in tropical cyclones are significant. Tropical cyclones in the two stabilization scenarios are less frequent but more intense than in simulations of the present. Output data from these simulations is freely available to all interested parties and should prove a useful resource to those interested in studying the impacts of stabilized global warming.

  18. Climate Response of Tree Radial Growth at Different Timescales in the Qinling Mountains.

    Directory of Open Access Journals (Sweden)

    Changfeng Sun

    Full Text Available The analysis of the tree radial growth response to climate is crucial for dendroclimatological research. However, the response relationships between tree-ring indices and climatic factors at different timescales are not yet clear. In this study, the tree-ring width of Huashan pine (Pinus armandii from Huashan in the Qinling Mountains, north-central China, was used to explore the response differences of tree growth to climatic factors at daily, pentad (5 days, dekad (10 days and monthly timescales. Correlation function and linear regression analysis were applied in this paper. The tree-ring width showed a more sensitive response to daily and pentad climatic factors. With the timescale decreasing, the absolute value of the maximum correlation coefficient between the tree-ring data and precipitation increases as well as temperature (mean, minimum and maximum temperature. Compared to the other three timescales, pentad was more suitable for analysing the response of tree growth to climate. Relative to the monthly climate data, the association between the tree-ring data and the pentad climate data was more remarkable and accurate, and the reconstruction function based on the pentad climate was also more reliable and stable. We found that the major climatic factor limiting Huashan pine growth was the precipitation of pentads 20-35 (from April 6 to June 24 rather than the well-known April-June precipitation. The pentad was also proved to be a better timescale for analysing the climate and tree growth in the western and eastern Qinling Mountains. The formation of the earlywood density of Chinese pine (Pinus tabulaeformis from Shimenshan in western Qinling was mainly affected by the maximum temperature of pentads 28-32 (from May 16 to June 9. The maximum temperature of pentads 28-33 (from May 16 to June 14 was the major factor affecting the ring width of Chinese pine from Shirenshan in eastern Qinling.

  19. Variations in the Sensitivity of Shrub Growth to Climate Change along Arctic Environmental and Biotic Gradients

    Science.gov (United States)

    Beck, P. S. A.; Myers-Smith, I. H.; Elmendorf, S.; Georges, D.

    2015-12-01

    Despite evidence of rapid shrub expansion at many Arctic sites and the profound effects this has on ecosystem structure, biogeochemical cycling, and land-atmosphere feedbacks in the Arctic, the drivers of shrub growth remain poorly understood. The compilation of 41,576 annual shrub growth measurements made around the Arctic, allowed for the first systematic evaluation of the climate sensitivity of Arctic shrub growth, i.e. the strength of the relationship between annual shrub growth and monthly climate variables. The growth measurements were taken on 1821 plants of 25 species at 37 arctic and alpine sites, either as annual ring widths or as stem increments. We evaluated climate sensitivity of shrub growth for each genus-by-site combination in this data set based on the performance and parameters of linear mixed models that used CRU TS3.21 climate data as predictors of shrub growth between 1950 and 2010. 76% of genus-by-site combinations showed climate sensitive growth, but climate-growth relationships varied with soil moisture, species canopy height, and geographic position within the species ranges. Shrubs growing at sites with more soil moisture showed greater climate sensitivity, suggesting that water availability might limit shrub growth if continued warming isn't matched by a steady increase in soil moisture. Tall shrub species growing at their northern range limit were particularly climate sensitive causing climate sensitivity of shrubs to peak at the transition between Low and High Arctic, where carbon storage in permafrost is greatest. Local and regional studies have documented matching spatial and temporal patterns in dendrochronological measurements and satellite observations of vegetation indices both in boreal and Arctic regions. Yet the circumarctic comparison of patterns in dendrochronological and remote sensing data sets yielded poor levels of agreement. In much of the Arctic, steep environmental gradients generate fine spatial patterns of vegetation

  20. Climate, Tree Growth, Forest Drought Stress, and Tree Mortality in Forests of Western North America: Long-Term Patterns and Recent Trends

    Science.gov (United States)

    Allen, C. D.; Williams, P.

    2012-12-01

    Ongoing climate changes are increasingly affecting the world's forests, particularly including high latitude and high elevation coniferous forests. Although forest growth has improved in some regions due to greater growing season length and warmth (perhaps along with increased atmospheric CO2 or N), large growth declines or increased mortality from droughts or hotter temperatures also are being observed. We present and interpret information on regional variation in climate-tree growth relationships and trends, and on patterns and trends of climate-related forest disturbances, from western North America. From 235 tree-ring chronologies in the Southwest US we show that tree-ring growth records from warmer southwestern sites are more sensitive to temperature than tree-ring growth records from cooler southwestern sites. Assessment of 59 tree-ring records from 11 species in the Cascade Mountains of the Pacific Northwest shows that trees growing in cool places respond positively to increased temperature and trees in warm places respond negatively, implying that trees historically not sensitive to temperature may become sensitive as mean temperatures warm. An analysis of 59 white spruce populations in Alaska supports the hypothesis that warming has caused tree growth to lose sensitivity to cold temperatures. Comparing ring widths to temperature during just the coldest 50% of years during the 20th century, tree growth was sensitive to cold temperatures, and this effect was strongest at the coldest sites; whereas during the warmest 50% of years, trees were not at all sensitive to cold temperatures, even at the cold sites. Drought and vapor pressure deficit are among the variables that emerge as being increasingly important to these Alaska boreal forests as mean temperatures rise. Most recently, from 346 tree-ring chronologies in the Southwest US we establish a tree-ring-based Forest Drought Stress Index (FDSI) for the three most widespread conifer species (Pinus edulis

  1. Climate is a stronger driver of tree and forest growth rates than soil and disturbance

    NARCIS (Netherlands)

    Toledo, M.; Poorter, L.; Peña-Claros, M.; Alarcón, A.; Balcázar, J.; Leaño, C.; Licona, J.C.; Llanque, O.; Vroomans, V.; Zuidema, P.; Bongers, F.

    2011-01-01

    1. Essential resources such as water, nutrients and light vary over space and time and plant growth rates are expected to vary accordingly. We examined the effects of climate, soil and logging disturbances on diameter growth rates at the tree and stand level, using 165 1-ha permanent sample plots

  2. The Impact of Urban Growth and Climate Change on Heat Stress in an Australian City

    Science.gov (United States)

    Chapman, S.; Mcalpine, C. A.; Thatcher, M. J.; Salazar, A.; Watson, J. R.

    2017-12-01

    Over half of the world's population lives in urban areas. Most people will therefore be exposed to climate change in an urban environment. One of the climate risks facing urban residents is heat stress, which can lead to illness and death. Urban residents are at increased risk of heat stress due to the urban heat island effect. The urban heat island is a modification of the urban environment and increases temperatures on average by 2°C, though the increase can be much higher, up to 8°C when wind speeds and cloud cover are low. The urban heat island is also expected to increase in the future due to urban growth and intensification, further exacerbating urban heat stress. Climate change alters the urban heat island due to changes in weather (wind speed and cloudiness) and evapotranspiration. Future urban heat stress will therefore be affected by urban growth and climate change. The aim of this study was to examine the impact of urban growth and climate change on the urban heat island and heat stress in Brisbane, Australia. We used CCAM, the conformal cubic atmospheric model developed by the CSIRO, to examine temperatures in Brisbane using scenarios of urban growth and climate change. We downscaled the urban climate using CCAM, based on bias corrected Sea Surface Temperatures from the ACCESS1.0 projection of future climate. We used Representative Concentration Pathway (RCP) 8.5 for the periods 1990 - 2000, 2049 - 2060 and 2089 - 2090 with current land use and an urban growth scenario. The present day climatology was verified using weather station data from the Australian Bureau of Meteorology. We compared the urban heat island of the present day with the urban heat island with climate change to determine if climate change altered the heat island. We also calculated heat stress using wet-bulb globe temperature and apparent temperature for the climate change and base case scenarios. We found the urban growth scenario increased present day temperatures by 0.5°C in the

  3. The influence of recent climate change on tree height growth differs with species and spatial environment.

    Science.gov (United States)

    Messaoud, Yassine; Chen, Han Y H

    2011-02-16

    Tree growth has been reported to increase in response to recent global climate change in controlled and semi-controlled experiments, but few studies have reported response of tree growth to increased temperature and atmospheric carbon dioxide (CO₂) concentration in natural environments. This study addresses how recent global climate change has affected height growth of trembling aspen (Populus tremuloides Michx) and black spruce (Picea mariana Mill B.S.) in their natural environments. We sampled 145 stands dominated by aspen and 82 dominated by spruce over the entire range of their distributions in British Columbia, Canada. These stands were established naturally after fire between the 19th and 20th centuries. Height growth was quantified as total heights of sampled dominant and co-dominant trees at breast-height age of 50 years. We assessed the relationships between 50-year height growth and environmental factors at both spatial and temporal scales. We also tested whether the tree growth associated with global climate change differed with spatial environment (latitude, longitude and elevation). As expected, height growth of both species was positively related to temperature variables at the regional scale and with soil moisture and nutrient availability at the local scale. While height growth of trembling aspen was not significantly related to any of the temporal variables we examined, that of black spruce increased significantly with stand establishment date, the anomaly of the average maximum summer temperature between May-August, and atmospheric CO₂ concentration, but not with the Palmer Drought Severity Index. Furthermore, the increase of spruce height growth associated with recent climate change was higher in the western than in eastern part of British Columbia. This study demonstrates that the response of height growth to recent climate change, i.e., increasing temperature and atmospheric CO₂ concentration, did not only differ with tree species, but

  4. Growth trends and climate responses of Norway spruce along elevational gradients in East-Central Europe

    Czech Academy of Sciences Publication Activity Database

    Ponočná, T.; Spyt, B.; Kaczka, R. J.; Büntgen, Ulf; Treml, V.

    2016-01-01

    Roč. 30, č. 5 (2016), s. 1633-1646 ISSN 0931-1890 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : abies l. karst. * tree-ring chronologies * basal area increment * radial growth * forest growth * altitudinal gradient * sudetes mountains * northern europe * tatra mountains * alps * climate change * mountain forests * picea abies * radial growth * rree rings * trend preservation Subject RIV: GK - Forestry Impact factor: 1.842, year: 2016

  5. Radial growth of Qilian juniper on the Northeast Tibetan Plateau and potential climate associations.

    Directory of Open Access Journals (Sweden)

    Chun Qin

    Full Text Available There is controversy regarding the limiting climatic factor for tree radial growth at the alpine treeline on the northeastern Tibetan Plateau. In this study, we collected 594 increment cores from 331 trees, grouped within four altitude belts spanning the range 3550 to 4020 m.a.s.l. on a single hillside. We have developed four equivalent ring-width chronologies and shown that there are no significant differences in their growth-climate responses during 1956 to 2011 or in their longer-term growth patterns during the period AD 1110-2011. The main climate influence on radial growth is shown to be precipitation variability. Missing ring analysis shows that tree radial growth at the uppermost treeline location is more sensitive to climate variation than that at other elevations, and poor tree radial growth is particularly linked to the occurrence of serious drought events. Hence water limitation, rather than temperature stress, plays the pivotal role in controlling the radial growth of Sabina przewalskii Kom. at the treeline in this region. This finding contradicts any generalisation that tree-ring chronologies from high-elevation treeline environments are mostly indicators of temperature changes.

  6. Radial growth of Qilian juniper on the Northeast Tibetan Plateau and potential climate associations.

    Science.gov (United States)

    Qin, Chun; Yang, Bao; Melvin, Thomas M; Fan, Zexin; Zhao, Yan; Briffa, Keith R

    2013-01-01

    There is controversy regarding the limiting climatic factor for tree radial growth at the alpine treeline on the northeastern Tibetan Plateau. In this study, we collected 594 increment cores from 331 trees, grouped within four altitude belts spanning the range 3550 to 4020 m.a.s.l. on a single hillside. We have developed four equivalent ring-width chronologies and shown that there are no significant differences in their growth-climate responses during 1956 to 2011 or in their longer-term growth patterns during the period AD 1110-2011. The main climate influence on radial growth is shown to be precipitation variability. Missing ring analysis shows that tree radial growth at the uppermost treeline location is more sensitive to climate variation than that at other elevations, and poor tree radial growth is particularly linked to the occurrence of serious drought events. Hence water limitation, rather than temperature stress, plays the pivotal role in controlling the radial growth of Sabina przewalskii Kom. at the treeline in this region. This finding contradicts any generalisation that tree-ring chronologies from high-elevation treeline environments are mostly indicators of temperature changes.

  7. Relationships between climate and growth of Gymnocypris selincuoensis in the Tibetan Plateau.

    Science.gov (United States)

    Tao, Juan; Chen, Yifeng; He, Dekui; Ding, Chengzhi

    2015-04-01

    The consequences of climate change are becoming increasingly evident in the Tibetan Plateau, represented by glaciers retreating and lakes expanding, but the biological response to climate change by plateau-lake ecosystems is poorly known. In this study, we applied dendrochronology methods to develop a growth index chronology with otolith increment widths of Selincuo naked carp (Gymnocypris selincuoensis), which is an endemic species in Lake Selincuo (4530 m), and investigated the relationships between fish growth and climate variables (regional and global) in the last three decades. A correlation analysis and principle component regression analysis between regional climate factors and the growth index chronology indicated that the growth of G. selincuoensis was significantly and positively correlated with length of the growing season and temperature-related variables, particularly during the growing season. Most of global climate variables, which are relevant to the Asian monsoon and the midlatitude westerlies, such as El Nino Southern Oscillation Index, the Arctic Oscillation, North Atlantic Oscillation, and North America Pattern, showed negative but not significant correlations with the annual growth of Selincuo naked carp. This may have resulted from the high elevation of the Tibetan Plateau and the high mountains surrounding this area. In comparison, the Pacific Decade Oscillation (PDO) negatively affected the growth of G. selincuoensis. The reason maybe that enhancement of the PDO can lead to cold conditions in this area. Taken together, the results indicate that the Tibetan Plateau fish has been affected by global climate change, particularly during the growing season, and global climate change likely has important effects on productivity of aquatic ecosystems in this area.

  8. Water temperature and fish growth: otoliths predict growth patterns of a marine fish in a changing climate.

    Science.gov (United States)

    Rountrey, Adam N; Coulson, Peter G; Meeuwig, Jessica J; Meekan, Mark

    2014-08-01

    Ecological modeling shows that even small, gradual changes in body size in a fish population can have large effects on natural mortality, biomass, and catch. However, efforts to model the impact of climate change on fish growth have been hampered by a lack of long-term (multidecadal) data needed to understand the effects of temperature on growth rates in natural environments. We used a combination of dendrochronology techniques and additive mixed-effects modeling to examine the sensitivity of growth in a long-lived (up to 70 years), endemic marine fish, the western blue groper (Achoerodus gouldii), to changes in water temperature. A multi-decadal biochronology (1952-2003) of growth was constructed from the otoliths of 56 fish collected off the southwestern coast of Western Australia, and we tested for correlations between the mean index chronology and a range of potential environmental drivers. The chronology was significantly correlated with sea surface temperature in the region, but common variance among individuals was low. This suggests that this species has been relatively insensitive to past variations in climate. Growth increment and age data were also used in an additive mixed model to predict otolith growth and body size later this century. Although growth was relatively insensitive to changes in temperature, the model results suggested that a fish aged 20 in 2099 would have an otolith about 10% larger and a body size about 5% larger than a fish aged 20 in 1977. Our study shows that species or populations regarded as relatively insensitive to climate change could still undergo significant changes in growth rate and body size that are likely to have important effects on the productivity and yield of fisheries. © 2014 John Wiley & Sons Ltd.

  9. Climate indices strongly influence old-growth forest carbon exchange

    Science.gov (United States)

    Sonia Wharton; Matthias Falk

    2016-01-01

    We present a decade and a half (1998–2013) of carbon dioxide fluxes from an old-growth stand in the American Pacific Northwest to identify ecosystem-level responses to Pacific teleconnection patterns, including the El Niño/Southern Oscillation (ENSO). This study provides the longest, continuous record of old-growth eddy flux data to date from one of the longest running...

  10. Climate-driven speedup of alpine treeline forest growth in the Tianshan Mountains, Northwestern China.

    Science.gov (United States)

    Qi, Zhaohuan; Liu, Hongyan; Wu, Xiuchen; Hao, Qian

    2015-02-01

    Forest growth is sensitive to interannual climatic change in the alpine treeline ecotone (ATE). Whether the alpine treeline ecotone shares a similar pattern of forest growth with lower elevational closed forest belt (CFB) under changing climate remains unclear. Here, we reported an unprecedented acceleration of Picea schrenkiana forest growth since 1960s in the ATE of Tianshan Mountains, northwestern China by a stand-total sampling along six altitudinal transects with three plots in each transect: one from the ATE between the treeline and the forest line, and the other two from the CFB. All the sampled P. schrenkiana forest patches show a higher growth speed after 1960 and, comparatively, forest growth in the CFB has sped up much slower than that in the ATE. The speedup of forest growth at the ATE is mainly accounted for by climate factors, with increasing temperature suggested to be the primary driver. Stronger water deficit as well as more competition within the CFB might have restricted forest growth there more than that within the ATE, implying biotic factors were also significant for the accelerated forest growth in the ATE, which should be excluded from simulations and predictions of warming-induced treeline dynamics. © 2014 John Wiley & Sons Ltd.

  11. Tree growth-climate relationships in a forest-plot network on Mediterranean mountains.

    Science.gov (United States)

    Fyllas, Nikolaos M; Christopoulou, Anastasia; Galanidis, Alexandros; Michelaki, Chrysanthi Z; Dimitrakopoulos, Panayiotis G; Fulé, Peter Z; Arianoutsou, Margarita

    2017-11-15

    In this study we analysed a novel tree-growth dataset, inferred from annual ring-width measurements, of 7 forest tree species from 12 mountain regions in Greece, in order to identify tree growth - climate relationships. The tree species of interest were: Abies cephalonica, Abies borisii-regis, Picea abies, Pinus nigra, Pinus sylvestris, Fagus sylvatica and Quercus frainetto growing across a gradient of climate conditions with mean annual temperature ranging from 5.7 to 12.6°C and total annual precipitation from 500 to 950mm. In total, 344 tree cores (one per tree) were analysed across a network of 20 study sites. We found that water availability during the summer period (May-August) was a strong predictor of interannual variation in tree growth for all study species. Across species and sites, annual tree growth was positively related to summer season precipitation (P SP ). The responsiveness of annual growth to P SP was tightly related to species and site specific measurements of instantaneous photosynthetic water use efficiency (WUE), suggesting that the growth of species with efficient water use is more responsive to variations in precipitation during the dry months of the year. Our findings support the importance of water availability for the growth of mountainous Mediterranean tree species and highlight that future reductions in precipitation are likely to lead to reduced tree-growth under climate change conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The Impact of Climate Change on the Balanced-Growth-Equivalent: An Application of FUND

    OpenAIRE

    David Anthoff; Richard S. J. Tol

    2008-01-01

    The Stern Review added balanced growth equivalents (BGE) to the economic climate change research agenda. We first propose rigorous definitions of the BGE for multiple regions and under uncertainty. We show that the change in the BGE is independent of the assumed scenario of per capita income. For comparable welfare economic assumptions as the Stern Review, we calculate lower changes in BGE between a business as usual scenario and one without climate impacts with the model FUND than the Stern ...

  13. Big emitters: how growth in consumption drives climate change

    Energy Technology Data Exchange (ETDEWEB)

    Satterthwaite, David

    2009-12-15

    It seems obvious that the more people there are on the planet, the more the pressure on planetary resources and the larger the emissions of greenhouse gases. So it also seems obvious that population growth must be a major driver of global warming. But it is just as obvious that very poor households contribute very little to greenhouse gas emissions. So if most of the world's population growth is among very poor households, population growth is not the culprit. The greatest human driver of global warming is the number of consumers on the planet and their consumption level. Individuals and households contribute to global warming by consuming goods and services that cause greenhouse gas emissions – for instance, by owning a refrigerator or a car. Through this they are responsible for all the fossil fuels that go into making, distributing, advertising, selling, using and disposing of it.

  14. Global water resources: vulnerability from climate change and population growth.

    Science.gov (United States)

    Vörösmarty, C J; Green, P; Salisbury, J; Lammers, R B

    2000-07-14

    The future adequacy of freshwater resources is difficult to assess, owing to a complex and rapidly changing geography of water supply and use. Numerical experiments combining climate model outputs, water budgets, and socioeconomic information along digitized river networks demonstrate that (i) a large proportion of the world's population is currently experiencing water stress and (ii) rising water demands greatly outweigh greenhouse warming in defining the state of global water systems to 2025. Consideration of direct human impacts on global water supply remains a poorly articulated but potentially important facet of the larger global change question.

  15. Diverse growth trends and climate responses across Eurasia's boreal forest

    Czech Academy of Sciences Publication Activity Database

    Hellmann, L.; Agafonov, L.; Ljungqvist, F. C.; Churakova (Sidorova), O.; Duethorn, E.; Esper, J.; Hulsmann, L.; Kirdyanov, A. V.; Moiseev, P.; Myglan, V. S.; Nikolaev, A. N.; Reinig, F.; Schweingruber, F. H.; Solomina, O.; Tegel, W.; Büntgen, Ulf

    2016-01-01

    Roč. 11, č. 7 (2016), č. článku 074021. ISSN 1748-9326 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : 20th-century summer warmth * tree-ring chronology * scots pine * 2 millennia * temperature variability * northern-hemisphere * central siberia * worlds forests * white spruce * carbon-cycle * boreal forest * climate variability * dendroecology * Eurasia * forest productivity * global warming * high northern latitudes Subject RIV: EH - Ecology, Behaviour Impact factor: 4.404, year: 2016

  16. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.

    Directory of Open Access Journals (Sweden)

    M Irfan Ashraf

    Full Text Available Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model. Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2 5-year(-1 and volume: 0.0008 m(3 5-year(-1. Model variability described by root mean squared error (RMSE in basal area prediction was 40.53 cm(2 5-year(-1 and 0.0393 m(3 5-year(-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence

  17. Climate and growth influences on wood formation and utilisation ...

    African Journals Online (AJOL)

    Wood is produced by a complex sequence of interactions between gene–protein expression and the local environment. It is produced by the vascular cambium, an essentially two-dimensional surface of meristematic cells covering the tree stem. The growth of any individual cambial cell is dependent on its immediate ...

  18. Growth and reproduction respond differently to climate in three Neotropical tree species.

    Science.gov (United States)

    Alfaro-Sánchez, Raquel; Muller-Landau, Helene C; Wright, S Joseph; Camarero, J Julio

    2017-06-01

    The response of tropical forests to anthropogenic climate change is critically important to future global carbon budgets, yet remains highly uncertain. Here, we investigate how precipitation, temperature, solar radiation and dry- and wet-season lengths are related to annual tree growth, flower production, and fruit production in three moist tropical forest tree species using long-term datasets from tree rings and litter traps in central Panama. We also evaluated how growth, flower, and fruit production were interrelated. We found that growth was positively correlated with wet-season precipitation in all three species: Jacaranda copaia (r = 0.63), Tetragastris panamensis (r = 0.39) and Trichilia tuberculata (r = 0.39). Flowering and fruiting in Jacaranda were negatively related to current-year dry-season rainfall and positively related to prior-year dry-season rainfall. Flowering in Tetragastris was negatively related to current-year annual mean temperature while Trichilia showed no significant relationships of reproduction with climate. Growth was significantly related to reproduction only in Tetragastris, where it was positively related to previous year fruiting. Our results suggest that tree growth in moist tropical forest tree species is generally reduced by drought events such as those associated with strong El Niño events. In contrast, interannual variation in reproduction is not generally associated with growth and has distinct and species-specific climate responses, with positive effects of El Niño events in some species. Understanding these contrasting climate effects on tree growth and reproduction is critical to predicting changes in tropical forest dynamics and species composition under climate change.

  19. Araucaria growth response to solar and climate variability in South Brazil

    Science.gov (United States)

    Prestes, Alan; Klausner, Virginia; Rojahn da Silva, Iuri; Ojeda-González, Arian; Lorensi, Caren

    2018-05-01

    In this work, the Sun-Earth-climate relationship is studied using tree growth rings of Araucaria angustifolia (Bertol.) O. Kuntze collected in the city of Passo Fundo, located in the state of Rio Grande do Sul (RS), Brazil. These samples were previously studied by Rigozo et al. (2008); however, their main interest was to search for the solar periodicities in the tree-ring width mean time series without interpreting the rest of the periodicities found. The question arises as to what are the drivers related to those periodicities. For this reason, the classical method of spectral analysis by iterative regression and wavelet methods are applied to find periodicities and trends present in each tree-ring growth, in Southern Oscillation Index (SOI), and in annual mean temperature anomaly between the 24 and 44° S. In order to address the aforementioned question, this paper discusses the correlation between the growth rate of the tree rings with temperature and SOI. In each tree-ring growth series, periods between 2 and 7 years were found, possibly related to the El Niño/La Niña phenomena, and a ˜ 23-year period was found, which may be related to temperature variation. These novel results might represent the tree-ring growth response to local climate conditions during its lifetime, and to nonlinear coupling between the Sun and the local climate variability responsible to the regional climate variations.

  20. Will a warmer and wetter future cause extinction of native Hawaiian forest birds?

    Science.gov (United States)

    Liao, Wei; Timm, Oliver Elison; Zhang, Chunxi; Atkinson, Carter T.; LaPointe, Dennis; Samuel, Michael D.

    2015-01-01

    Isolation of the Hawaiian archipelago produced a highly endemic and unique avifauna. Avian malaria (Plasmodium relictum), an introduced mosquito-borne pathogen, is a primary cause of extinctions and declines of these endemic honeycreepers. Our research assesses how global climate change will affect future malaria risk and native bird populations. We used an epidemiological model to evaluate future bird-mosquito-malaria dynamics in response to alternative climate projections from the Coupled Model Intercomparison Project (CMIP). Climate changes during the second half of the century accelerate malaria transmission and cause a dramatic decline in bird abundance. Different temperature and precipitation patterns produce divergent trajectories where native birds persist with low malaria infection under a warmer and dryer projection (RCP4.5), but suffer high malaria infection and severe reductions under hot and dry (RCP8.5) or warm and wet (A1B) futures. We conclude that future global climate change will cause significant decreases in the abundance and diversity of remaining Hawaiian bird communities. Because these effects appear unlikely before mid-century, natural resource managers have time to implement conservation strategies to protect this unique avifauna from further decimation. Similar climatic drivers for avian and human malaria suggest that mitigation strategies for Hawai'i have broad application to human health.

  1. Linkages between Alaskan sockeye salmon abundance, growth at sea, and climate, 1955-2002

    Science.gov (United States)

    Ruggerone, G.T.; Nielsen, J.L.; Bumgarner, J.

    2007-01-01

    We tested the hypothesis that increased growth of salmon during early marine life contributed to greater survival and abundance of salmon following the 1976/1977 climate regime shift and that this, in turn, led to density-dependent reductions in growth during late marine stages. Annual measurements of Bristol Bay (Bering Sea) and Chignik (Gulf of Alaska) sockeye salmon scale growth from 1955 to 2002 were used as indices of body growth. During the first and second years at sea, growth of both stocks tended to be higher after the 1976-1977 climate shift, whereas growth during the third year and homeward migration was often below average. Multiple regression models indicated that return per spawner of Bristol Bay sockeye salmon and adult abundance of western and central Alaska sockeye salmon were positively correlated with growth during the first 2 years at sea and negatively correlated with growth during later life stages. After accounting for competition between Bristol Bay sockeye and Asian pink salmon, age-specific adult length of Bristol Bay salmon increased after the 1976-1977 regime shift, then decreased after the 1989 climate shift. Late marine growth and age-specific adult length of Bristol Bay salmon was exceptionally low after 1989, possibly reducing their reproductive potential. These findings support the hypothesis that greater marine growth during the first 2 years at sea contributed to greater salmon survival and abundance, which in turn led to density-dependent growth during later life stages when size-related mortality was likely lower. Our findings provide new evidence supporting the importance of bottom-up control in marine ecosystems and highlight the complex dynamics of species interactions that continually change as salmon grow and mature in the ocean. ?? 2007 Elsevier Ltd. All rights reserved.

  2. Assessment of Mould Growth for Library Buildings in Tropical Climates

    Directory of Open Access Journals (Sweden)

    Ngah Abdul Wahab S.

    2014-01-01

    Full Text Available This paper attempt to give a brief insight into the importance of studying mould growth in library building that relates to human health and causes of material deterioration to library materials. It’s significant to conduct this research because no similar study has carried out for a library building in Malaysia. Recent literature on the topics reviews to gain insight into developing a theoretical framework and research method. Likewise, the study also supports through pilot study questionnaires with 30 respondents from two different university libraries. The finding revealed to further investigation and mould growth assessment to be conducted that useful in protecting library materials and users health effects through environmental control.

  3. Interactive effects of ozone and climate on water use, soil moisture content and streamflow in a southern Appalachian forest in the USA

    Science.gov (United States)

    S.B. McLaughlin; S.D. Wullschleger; G. Sun; M. Nosal

    2007-01-01

    Documentation of the degree and direction of effects of ozone on transpiration of canopies of mature forest trees is critically needed to model ozone effects on forest water use and growth in a warmer future climate.Patterns of sap flow in stems and soil moisture in the rooting zones of mature trees, coupled with late-season...

  4. Disentangling the climate-driven bimodal growth pattern in coastal and continental Mediterranean pine stands.

    Science.gov (United States)

    Pacheco, Arturo; Camarero, J Julio; Ribas, Montse; Gazol, Antonio; Gutierrez, E; Carrer, Marco

    2018-02-15

    Mediterranean climate promotes two distinct growth peaks separated by summer quiescence in trees. This bimodal pattern has been associated to favourable growing conditions during spring and autumn when mild temperatures and soil-water availability enhance cambial activity. Climatic models predict progressive warming and drying for the Mediterranean Basin, which could shorten or shift the spring and autumn growing seasons. We explored this idea by comparing two sites with different Mediterranean climate types (continental/dry and coastal/wet) and studied how climate drives the bimodal growth pattern in Aleppo pine (Pinus halepensis). Specifically we investigated the intra-annual changes in wood anatomy and the corresponding formation of density fluctuations (IADF). Trees on both sites were analyzed by dendrometer monitoring and by developing chronologies of wood anatomical traits. Radial-increment dynamics followed a similar bimodal pattern in both sites but coastal trees showed higher increments during the spring and autumn growth peaks, especially in autumn. The summer rest of cambium activity occurs almost one month earlier in the coastal than in the inland site. Lumen area and cell-wall thickness were significantly smaller in the continental site, while the increment rate of cell-wall thickness during an IADF event was much higher in the coastal pines. The accumulated soil moisture deficit was the main climatic constraint of tracheid enlargement in continental pines. Intra-annual density fluctuations were more frequent in the coastal trees where wood anatomy features recover to average values after such events, meanwhile inland trees presented a much lower recovery rate. Growth bimodality and the formation of density fluctuations were linked, but mild climate of the coastal site allows a longer growing season, which explains why trees in this area showed higher and more variable growth rates. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The Effect of No Agricultural Productivity Growth on Future Land Use and Climate through Biogeophysical Mechanisms

    Science.gov (United States)

    Davies-Barnard, T.; Valdes, P. J.; Singarayer, J. S.; Jones, C.

    2012-12-01

    Future land use and the consequent land cover change will have a significant impact on future climate through biogeophysical (albedo, surface roughness and latent heat transfer, etc.) as well as biogeochemical (greenhouse gas emissions etc.) mechanisms. One of the major determinants of the extent of land use induced land cover change is the agricultural productivity growth within the socio-economic models used for developing the RCP scenarios. There are considerable uncertainties in the size of agricultural productivity under climate change, as yields are projected to vary spatially in signal and strength. Previous climate modeling work has considered the impacts to the carbon cycle of different levels of agricultural productivity growth, but has failed to consider the biogeophysical effects of the land use induced land cover change on climate. Here we examine the climate impacts of the assumption of agricultural productivity growth and business as usual land use. The effects are considered through the biogeophysical land use induced land cover change, using the Hadley Centre climate model HadGEM2. The model simulations use the set biogeochemical climate forcing of the RCP 4.5 scenario, but the biogeophysical land use change specification is altered over a 100 year simulation. Simulations are run with combinations of no land use change; standard RCP 4.5 land use change; business as usual land use change; and zero agricultural productivity growth. The key effect of no agricultural productivity growth is that more cropland is required to feed the same population, necessitating cropland expansion. The expansion of cropland and consequent deforestation increases the albedo and gives an extensive cooling effect in the northern hemisphere (up to 2°C). Differences in global mean temperature between the zero agricultural productivity growth with business as usual land use change specified run and the standard RCP 4.5 run are -0.2°C by 2040 and -0.7°C by 2100. There is

  6. The effect of the pathway to a two degrees warmer world on the regional temperature change of Europe

    Directory of Open Access Journals (Sweden)

    Cathrine Fox Maule

    2017-08-01

    Full Text Available The purpose of this study is to investigate if the pathway to reach a 2 degree warmer world influences the regional climate in Europe at the time of 2 degrees of global warming above the pre-industrial level. We have investigated this using climate change data from ensembles of both Global Climate Models and Regional Climate Models. We compare the change of regional temperature in Europe to the global temperature change for different emission scenarios, following the IPCC Representative Concentration Pathways (RCP, to see if the pathway has any influence. We find that there is a small but significant difference in the regional temperature change, but the effect is small compared to internal variability on the timescales involved in reaching +2 degrees for the investigated emission scenarios. From an adaptation point of view, reaching +2 degrees as slowly as possible will obviously allow for a longer time period to implement adaptation measures to mitigate the effect of climate change.

  7. The impact of climate change on the balanced growth equivalent: An application of FUND

    NARCIS (Netherlands)

    Anthoff, D.; Tol, R.S.J.

    2009-01-01

    The Stern Review added balanced growth equivalents (BGE) to the economic climate change research agenda. We first propose rigorous definitions of the BGE for multiple regions and under uncertainty. We show that the change in the BGE is independent of the assumed scenario of per capita income. For

  8. The growth of finfish in global open-ocean aquaculture under climate change.

    Science.gov (United States)

    Klinger, Dane H; Levin, Simon A; Watson, James R

    2017-10-11

    Aquaculture production is projected to expand from land-based operations to the open ocean as demand for seafood grows and competition increases for inputs to land-based aquaculture, such as freshwater and suitable land. In contrast to land-based production, open-ocean aquaculture is constrained by oceanographic factors, such as current speeds and seawater temperature, which are dynamic in time and space, and cannot easily be controlled. As such, the potential for offshore aquaculture to increase seafood production is tied to the physical state of the oceans. We employ a novel spatial model to estimate the potential of open-ocean finfish aquaculture globally, given physical, biological and technological constraints. Finfish growth potential for three common aquaculture species representing different thermal guilds-Atlantic salmon ( Salmo salar ), gilthead seabream ( Sparus aurata ) and cobia ( Rachycentron canadum )-is compared across species and regions and with climate change, based on outputs of a high-resolution global climate model. Globally, there are ample areas that are physically suitable for fish growth and potential expansion of the nascent aquaculture industry. The effects of climate change are heterogeneous across species and regions, but areas with existing aquaculture industries are likely to see increases in growth rates. In areas where climate change results in reduced growth rates, adaptation measures, such as selective breeding, can probably offset potential production losses. © 2017 The Author(s).

  9. Fine-scale variability in growth-climate relationships of Douglas-fir, North Cascade Range, Washington.

    Science.gov (United States)

    Michael J. Case; David L. Peterson

    2005-01-01

    Information about the sensitivity to climate of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) is valuable because it will allow forest managers to maximize growth, better understand how carbon sequestration may change over time, and better model and predict future ecosystem responses to climatic change. We examined the effects of climatic...

  10. Are whooping cranes destined for extinction? Climate change imperils recruitment and population growth.

    Science.gov (United States)

    Butler, Matthew J; Metzger, Kristine L; Harris, Grant M

    2017-04-01

    Identifying climatic drivers of an animal population's vital rates and locating where they operate steers conservation efforts to optimize species recovery. The population growth of endangered whooping cranes ( Grus americana ) hinges on juvenile recruitment. Therefore, we identify climatic drivers (solar activity [sunspots] and weather) of whooping crane recruitment throughout the species' life cycle (breeding, migration, wintering). Our method uses a repeated cross-validated absolute shrinkage and selection operator approach to identify drivers of recruitment. We model effects of climate change on those drivers to predict whooping crane population growth given alternative scenarios of climate change and solar activity. Years with fewer sunspots indicated greater recruitment. Increased precipitation during autumn migration signified less recruitment. On the breeding grounds, fewer days below freezing during winter and more precipitation during breeding suggested less recruitment. We predicted whooping crane recruitment and population growth may fall below long-term averages during all solar cycles when atmospheric CO 2 concentration increases, as expected, to 500 ppm by 2050. Species recovery during a typical solar cycle with 500 ppm may require eight times longer than conditions without climate change and the chance of population decline increases to 31%. Although this whooping crane population is growing and may appear secure, long-term threats imposed by climate change and increased solar activity may jeopardize its persistence. Weather on the breeding grounds likely affects recruitment through hydrological processes and predation risk, whereas precipitation during autumn migration may influence juvenile mortality. Mitigating threats or abating climate change should occur within ≈30 years or this wild population of whooping cranes may begin declining.

  11. Influence of ecohydrologic feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    Science.gov (United States)

    van Walsum, P. E. V.; Supit, I.

    2012-06-01

    Hydrologic climate change modelling is hampered by climate-dependent model parameterizations. To reduce this dependency, we extended the regional hydrologic modelling framework SIMGRO to host a two-way coupling between the soil moisture model MetaSWAP and the crop growth simulation model WOFOST, accounting for ecohydrologic feedbacks in terms of radiation fraction that reaches the soil, crop coefficient, interception fraction of rainfall, interception storage capacity, and root zone depth. Except for the last, these feedbacks are dependent on the leaf area index (LAI). The influence of regional groundwater on crop growth is included via a coupling to MODFLOW. Two versions of the MetaSWAP-WOFOST coupling were set up: one with exogenous vegetation parameters, the "static" model, and one with endogenous crop growth simulation, the "dynamic" model. Parameterization of the static and dynamic models ensured that for the current climate the simulated long-term averages of actual evapotranspiration are the same for both models. Simulations were made for two climate scenarios and two crops: grass and potato. In the dynamic model, higher temperatures in a warm year under the current climate resulted in accelerated crop development, and in the case of potato a shorter growing season, thus partly avoiding the late summer heat. The static model has a higher potential transpiration; depending on the available soil moisture, this translates to a higher actual transpiration. This difference between static and dynamic models is enlarged by climate change in combination with higher CO2 concentrations. Including the dynamic crop simulation gives for potato (and other annual arable land crops) systematically higher effects on the predicted recharge change due to climate change. Crop yields from soils with poor water retention capacities strongly depend on capillary rise if moisture supply from other sources is limited. Thus, including a crop simulation model in an integrated

  12. Projected Regional Climate in 2025 Due to Urban Growth

    Science.gov (United States)

    Shepherd, J. Marshall; Manyin, Michael; Messen, Dmitry

    2005-01-01

    By 2025, 60 to 80 percent of the world s population will live in urban environments. Additionally, the following facts published by the United Nations further illustrates how cities will evolve in the future. Urban areas in the developing world are growing very rapidly. The urban growth rate will continue to be particularly rapid in the urban areas of less developed regions, averaging 2.4 per cent per year during 2000-2030, consistent with a doubling time of 29 years. The urbanization process will continue worldwide. The concentration of population in cities is expected to continue so that, by 2030, 84 percent of the inhabitants of more developed countries will be urban dwellers. Urbanization impacts the whole hierarchy of human settlements. In 2000,24.8 per cent of the world population lived in urban settlements with fewer than 500,000 inhabitants and by 2015 that proportion will likely rise to 27.1 per cent.

  13. Assessing climate change effects on long-term forest development: adjusting growth, phenology, and seed production in a gap model

    NARCIS (Netherlands)

    Meer, van der P.J.; Jorritsma, I.T.M.; Kramer, K.

    2002-01-01

    The sensitivity of forest development to climate change is assessed using a gap model. Process descriptions in the gap model of growth, phenology, and seed production were adjusted for climate change effects using a detailed process-based growth modeland a regression analysis. Simulation runs over

  14. Vulnerability of white spruce tree growth in interior Alaska in response to climate variability: dendrochronological, demographic, and experimental perspectives

    Science.gov (United States)

    A.D. McGuire; R.W. Ruess; A. Lloyd; J. Yarie; J.S. Clein; G.P. Juday

    2010-01-01

    This paper integrates dendrochronological, demographic, and experimental perspectives to improve understanding of the response of white spruce (Picea glauca (Moench) Voss) tree growth to climatic variability in interior Alaska. The dendrochronological analyses indicate that climate warming has led to widespread declines in white spruce growth...

  15. The uncertainty of future water supply adequacy in megacities: Effects of population growth and climate change

    Science.gov (United States)

    Alarcon, T.; Garcia, M. E.; Small, D. L.; Portney, K.; Islam, S.

    2013-12-01

    Providing water to the expanding population of megacities, which have over 10 million people, with a stressed and aging water infrastructure creates unprecedented challenges. These challenges are exacerbated by dwindling supply and competing demands, altered precipitation and runoff patterns in a changing climate, fragmented water utility business models, and changing consumer behavior. While there is an extensive literature on the effects of climate change on water resources, the uncertainty of climate change predictions continues to be high. This hinders the value of these predictions for municipal water supply planning. The ability of water utilities to meet future water needs will largely depend on their capacity to make decisions under uncertainty. Water stressors, like changes in demographics, climate, and socioeconomic patterns, have varying degrees of uncertainty. Identifying which stressors will have a greater impact on water resources, may reduce the level of future uncertainty for planning and managing water utilities. Within this context, we analyze historical and projected changes of population and climate to quantify the relative impacts of these two stressors on water resources. We focus on megacities that rely primarily on surface water resources to evaluate (a) population growth pattern from 1950-2010 and projected population for 2010-2060; (b) climate change impact on projected climate change scenarios for 2010-2060; and (c) water access for 1950-2010; projected needs for 2010-2060.

  16. The analysis of Last Interglacial (MIS 5e) relative sea-level indicators: Reconstructing sea-level in a warmer world

    NARCIS (Netherlands)

    Rovere, A.; Raymo, M.E.; Vacchi, M.; Lorscheid, T; Stocchi, P.; Gómez-Pujolf, L.; Harris, D.L.; Casella, E.; O'Leary, M.J.; Hearty, P.J.

    2016-01-01

    The Last Interglacial (MIS 5e, 128–116 ka) is among the most studied past periods in Earth's history. The climate at that time was warmer than today, primarily due to different orbital conditions, with smaller ice sheets and higher sea-level. Field evidence for MIS 5e sea-level was reported from

  17. Global drought and severe drought-affected populations in 1.5 and 2 °C warmer worlds

    Directory of Open Access Journals (Sweden)

    W. Liu

    2018-03-01

    Full Text Available The 2015 Paris Agreement proposed a more ambitious climate change mitigation target on limiting global warming to 1.5 °C instead of 2 °C above preindustrial levels. Scientific investigations on environmental risks associated with these warming targets are necessary to inform climate policymaking. Based on the Coupled Model Intercomparison Project phase 5 (CMIP5 climate models, we present the first risk-based assessment of changes in global drought and the impact of severe drought on populations from additional 1.5 and 2 °C warming conditions. Our results highlight the risk of drought on a global scale and in several hotspot regions such as the Amazon, northeastern Brazil, southern Africa and Central Europe at both 1.5 and 2 °C global warming relative to the historical period, showing increases in drought durations from 2.9 to 3.2 months. Correspondingly, more total and urban populations would be exposed to severe droughts globally (+132.5 ± 216.2 million and +194.5 ± 276.5 million total population and +350.2 ± 158.8 million and +410.7 ± 213.5 million urban populations in 1.5 and 2 °C warmer worlds and regionally (e.g., East Africa, West Africa and South Asia. Less rural populations (−217.7 ± 79.2 million and −216.2 ± 82.4 million rural populations in 1.5 and 2 °C warmer worlds would be exposed to severe drought globally under climate warming, population growth and especially the urbanization-induced population migration. By keeping global warming at 1.5 °C above the preindustrial levels instead of 2 °C, there is a decrease in drought risks (i.e., less drought duration, less drought intensity and severity but relatively more frequent drought and the affected total, urban and rural populations would decrease globally and in most regions. While challenging for both East Africa and South Asia, the benefits of limiting warming to below 1.5 °C in terms of global drought risk

  18. Climate Change Adaptation. Challenges and Opportunities for a Smart Urban Growth

    Directory of Open Access Journals (Sweden)

    Adriana Galderisi

    2014-04-01

    Full Text Available Climate change is one of the main environmental issues challenging cities in the 21th century. At present, more than half of the world population lives in cities and the latter are responsible for 60% to 80% of global energy consumption and greenhouse gas (GHG emissions, which are the main causes of the change in climate conditions. In the meantime, they are seriously threatened by the heterogeneous climate-related phenomena, very often exacerbated by the features of the cities themselves. In the last decade, international and European efforts have been mainly focused on mitigation rather than on adaptation strategies. Europe is one of the world leaders in global mitigation policies, while the issue of adaptation has gained growing importance in the last years. As underlined by the EU Strategy on adaptation to climate change, even though climate change mitigation still remains a priority for the global community, large room has to be devoted to adaptation measures, in order to effectively face the unavoidable impacts and related economic, environmental and social costs of climate change (EC, 2013. Thus, measures for adaptation to climate change are receiving an increasing financial support and a growing number of European countries are implementing national and urban adaptation strategies to deal with the actual and potential climate change impacts. According to the above considerations, this paper explores strengths and weaknesses of current adaptation strategies in European cities. First the main suggestions of the European Community to improve urban adaptation to climate change are examined; then, some recent Adaptation Plans are analyzed, in order to highlight challenges and opportunities arising from the adaptation processes at urban level and to explore the potential of Adaptation Plans to promote a smart growth in the European cities.

  19. Stand competition determines how different tree species will cope with a warming climate.

    Directory of Open Access Journals (Sweden)

    Laura Fernández-de-Uña

    Full Text Available Plant-plant interactions influence how forests cope with climate and contribute to modulate species response to future climate scenarios. We analysed the functional relationships between growth, climate and competition for Pinus sylvestris, Quercus pyrenaica and Quercus faginea to investigate how stand competition modifies forest sensitivity to climate and simulated how annual growth rates of these species with different drought tolerance would change throughout the 21st century. Dendroecological data from stands subjected to thinning were modelled using a novel multiplicative nonlinear approach to overcome biases related to the general assumption of a linear relationship between covariates and to better mimic the biological relationships involved. Growth always decreased exponentially with increasing competition, which explained more growth variability than climate in Q. faginea and P. sylvestris. The effect of precipitation was asymptotic in all cases, while the relationship between growth and temperature reached an optimum after which growth declined with warmer temperatures. Our growth projections indicate that the less drought-tolerant P. sylvestris would be more negatively affected by climate change than the studied sub-Mediterranean oaks. Q. faginea and P. sylvestris mean growth would decrease under all the climate change scenarios assessed. However, P. sylvestris growth would decline regardless of the competition level, whereas this decrease would be offset by reduced competition in Q. faginea. Conversely, Q. pyrenaica growth would remain similar to current rates, except for the warmest scenario. Our models shed light on the nature of the species-specific interaction between climate and competition and yield important implications for management. Assuming that individual growth is directly related to tree performance, trees under low competition would better withstand the warmer conditions predicted under climate change scenarios but in

  20. Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability.

    Directory of Open Access Journals (Sweden)

    Camilo Mora

    2015-06-01

    Full Text Available Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under "business as usual" (representative concentration pathway [RCP] 8.5, suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation. Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world's terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world's population highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5, underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people.

  1. Anthropogenic nitrogen deposition alters growth responses of European beech (Fagus sylvativa L.) to climate change.

    Science.gov (United States)

    Hess, Carsten; Niemeyer, Thomas; Fichtner, Andreas; Jansen, Kirstin; Kunz, Matthias; Maneke, Moritz; von Wehrden, Henrik; Quante, Markus; Walmsley, David; von Oheimb, Goddert; Härdtle, Werner

    2018-02-01

    Global change affects the functioning of forest ecosystems and the services they provide, but little is known about the interactive effects of co-occurring global change drivers on important functions such as tree growth and vitality. In the present study we quantified the interactive (i.e. synergistic or antagonistic) effects of atmospheric nitrogen (N) deposition and climatic variables (temperature, precipitation) on tree growth (in terms of tree-ring width, TRW), taking forest ecosystems with European beech (Fagus sylvatica L.) as an example. We hypothesised that (i) N deposition and climatic variables can evoke non-additive responses of the radial increment of beech trees, and (ii) N loads have the potential to strengthen the trees' sensitivity to climate change. In young stands, we found a synergistic positive effect of N deposition and annual mean temperature on TRW, possibly linked to the alleviation of an N shortage in young stands. In mature stands, however, high N deposition significantly increased the trees' sensitivity to increasing annual mean temperatures (antagonistic effect on TRW), possibly due to increased fine root dieback, decreasing mycorrhizal colonization or shifts in biomass allocation patterns (aboveground vs. belowground). Accordingly, N deposition and climatic variables caused both synergistic and antagonistic effects on the radial increment of beech trees, depending on tree age and stand characteristics. Hence, the nature of interactions could mediate the long-term effects of global change drivers (including N deposition) on forest carbon sequestration. In conclusion, our findings illustrate that interaction processes between climatic variables and N deposition are complex and have the potential to impair growth and performance of European beech. This in turn emphasises the importance of multiple-factor studies to foster an integrated understanding and models aiming at improved projections of tree growth responses to co-occurring drivers

  2. Growth of and partitioning between shoot and storage root of carrot in a northern climate

    Directory of Open Access Journals (Sweden)

    T. SUOJALA

    2008-12-01

    Full Text Available Matching the growth pattern of a vegetable cultivar with the seasonal changes in climate is a prerequisite for successful yield production in a northern climate. This paper describes the growth characteristics of two carrot cultivars in relation to climatic conditions in two years, with special reference to the factors associated with high yield. Cv. Fontana produced twice as large a leaf area and shoot weight as cv. Panther. Increased partitioning to shoot in the former cultivar also resulted in a higher root yield. Uniformity in relative growth rates during the period of analysis suggests that intervarietal differences in the shoot to root ratio and in the yield potential appear very early. Nearly half of the root weight at final harvest was gained after mid-August, when temperature and daily irradiance began to decrease. A large leaf area may ensure better utilisation of diminishing growth resources at the end of the growing season. In the more favourable growing season, 1997, plants invested more in leaf production than they did in 1996: shoot fresh and dry weights were considerably higher but leaf area was not much higher.;

  3. Influences of climate on the radial growth of lodgepole pine in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Chhin, S.; Lieffers, V.J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Renewable Resources; Hogg, E.H. [Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB (Canada); Huang, S. [Alberta Sustainable Resource Development, Edmonton, AB (Canada). Forest Management Branch

    2008-02-15

    The forests of the Cordilleran region were used to document past relationships between tree growth and climate. Radial growth and climate relationships of lodgepole pines were examined across a network of 17 sites in Alberta over a distance of 1100 km. Pine sites were selected from a permanent plot database covering the predominant latitudinal and elevational range of lodgepole pines. An average of 21 dominant and co-dominant trees were sampled in a 50 m buffer zone. Ring-width series were detrended in 3 stages using negative exponential curves, linear regression, and low frequency standardized series (LFS). Each LFS series was detrended with a cubic-smoothing spline. Autocorrelation in each series was removed via autoregressive (AR) modelling resulting in high frequency residual series. High frequency residual (HFR) site chronologies were constructed by averaging HFR series developed at each site. Primary climate variables included mean daily minimum and maximum temperatures for each month and total monthly precipitation. Relationships between the different chronology types were then examined. Results of the study demonstrated that cool and moist conditions during the later summer months led to improved radial growth levels during the following years. Warm, dry winters and warm conditions during the autumn of the year in which the ring was formed also promoted tree growth. Results suggested that climatic warming and drying have opposing effects. It was concluded that future impacts on lodgepole pine radial growth will depend on the pattern and magnitude of changes in temperature and precipitation in each season. 55 refs., 3 tabs., 8 figs.

  4. Effects of climate change on long-term population growth of pronghorn in an arid environment

    Science.gov (United States)

    Gedir, Jay V.; Cain, James W.; Harris, Grant; Turnbull, Trey T.

    2015-01-01

    Climate often drives ungulate population dynamics, and as climates change, some areas may become unsuitable for species persistence. Unraveling the relationships between climate and population dynamics, and projecting them across time, advances ecological understanding that informs and steers sustainable conservation for species. Using pronghorn (Antilocapra americana) as an ecological model, we used a Bayesian approach to analyze long-term population, precipitation, and temperature data from 18 populations in the southwestern United States. We determined which long-term (12 and 24 months) or short-term (gestation trimester and lactation period) climatic conditions best predicted annual rate of population growth (λ). We used these predictions to project population trends through 2090. Projections incorporated downscaled climatic data matched to pronghorn range for each population, given a high and a lower atmospheric CO2 concentration scenario. Since the 1990s, 15 of the pronghorn populations declined in abundance. Sixteen populations demonstrated a significant relationship between precipitation and λ, and in 13 of these, temperature was also significant. Precipitation predictors of λ were highly seasonal, with lactation being the most important period, followed by early and late gestation. The influence of temperature on λ was less seasonal than precipitation, and lacked a clear temporal pattern. The climatic projections indicated that all of these pronghorn populations would experience increased temperatures, while the direction and magnitude of precipitation had high population-specific variation. Models predicted that nine populations would be extirpated or approaching extirpation by 2090. Results were consistent across both atmospheric CO2 concentration scenarios, indicating robustness of trends irrespective of climatic severity. In the southwestern United States, the climate underpinning pronghorn populations is shifting, making conditions increasingly

  5. Adaptive and plastic responses of Quercus petraea populations to climate across Europe

    DEFF Research Database (Denmark)

    Sáenz-Romero, Cuauhtémoc; Lamy, Jean-Baptiste; Ducousso, Alexis

    2017-01-01

    geographically diverse populations. The tests were planted on 23 field sites in six European countries, in order to expose them to a wide range of climates, including sites reflecting future warmer and drier climates. By assessing tree height and survival, our objectives were twofold: (i) to identify the source......How temperate forests will respond to climate change is uncertain; projections range from severe decline to increased growth. We conducted field tests of sessile oak (Quercus petraea), a widespread keystone European forest tree species, including more than 150 000 trees sourced from 116...... of differential population responses to climate (genetic differentiation due to past divergent climatic selection vs. plastic responses to ongoing climate change) and (ii) to explore which climatic variables (temperature or precipitation) trigger the population responses. Tree growth and survival were modeled...

  6. Contrasting growth forecasts across the geographical range of Scots pine due to altitudinal and latitudinal differences in climatic sensitivity.

    Science.gov (United States)

    Matías, Luis; Linares, Juan C; Sánchez-Miranda, Ángela; Jump, Alistair S

    2017-10-01

    Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of a species' geographical distribution, where differences in growth or population dynamics may result in range expansions or contractions. Understanding population responses to different climatic drivers along wide latitudinal and altitudinal gradients is necessary in order to gain a better understanding of plant responses to ongoing increases in global temperature and drought severity. We selected Scots pine (Pinus sylvestris L.) as a model species to explore growth responses to climatic variability (seasonal temperature and precipitation) over the last century through dendrochronological methods. We developed linear models based on age, climate and previous growth to forecast growth trends up to year 2100 using climatic predictions. Populations were located at the treeline across a latitudinal gradient covering the northern, central and southernmost populations and across an altitudinal gradient at the southern edge of the distribution (treeline, medium and lower elevations). Radial growth was maximal at medium altitude and treeline of the southernmost populations. Temperature was the main factor controlling growth variability along the gradients, although the timing and strength of climatic variables affecting growth shifted with latitude and altitude. Predictive models forecast a general increase in Scots pine growth at treeline across the latitudinal distribution, with southern populations increasing growth up to year 2050, when it stabilizes. The highest responsiveness appeared at central latitude, and moderate growth increase is projected at the northern limit. Contrastingly, the model forecasted growth declines at lowland-southern populations, suggesting an upslope range displacement over the coming decades. Our results give insight into the geographical responses of tree species to climate change

  7. A 2 °C warmer world is not safe for ecosystem services in the European Alps.

    Science.gov (United States)

    Elkin, Ché; Gutiérrez, Alvaro G; Leuzinger, Sebastian; Manusch, Corina; Temperli, Christian; Rasche, Livia; Bugmann, Harald

    2013-06-01

    Limiting the increase in global average temperature to 2 °C is the objective of international efforts aimed at avoiding dangerous climate impacts. However, the regional response of terrestrial ecosystems and the services that they provide under such a scenario are largely unknown. We focus on mountain forests in the European Alps and evaluate how a range of ecosystem services (ES) are projected to be impacted in a 2 °C warmer world, using four novel regional climate scenarios. We employ three complementary forest models to assess a wide range of ES in two climatically contrasting case study regions. Within each climate scenario we evaluate if and when ES will deviate beyond status quo boundaries that are based on current system variability. Our results suggest that the sensitivity of mountain forest ES to a 2 °C warmer world depends heavily on the current climatic conditions of a region, the strong elevation gradients within a region, and the specific ES in question. Our simulations project that large negative impacts will occur at low and intermediate elevations in initially warm-dry regions, where relatively small climatic shifts result in negative drought-related impacts on forest ES. In contrast, at higher elevations, and in regions that are initially cool-wet, forest ES will be comparatively resistant to a 2 °C warmer world. We also found considerable variation in the vulnerability of forest ES to climate change, with some services such as protection against rockfall and avalanches being sensitive to 2 °C global climate change, but other services such as carbon storage being reasonably resistant. Although our results indicate a heterogeneous response of mountain forest ES to climate change, the projected substantial reduction of some forest ES in dry regions suggests that a 2 °C increase in global mean temperature cannot be seen as a universally 'safe' boundary for the maintenance of mountain forest ES. © 2013 Blackwell Publishing Ltd.

  8. Disentangling the effects of climate, species, and management on growth and mortality of southeast Asian mangroves

    Science.gov (United States)

    Baker, Patrick; Bunyavejchewin, Sarayudh; Robinson, Andrew

    2013-04-01

    Mangrove forests are one of the most biologically important ecosystems of the littoral tropics. They provide a wide range of ecosystem services including tsunami protection, food production, and waste processing. They are also rapidly disappearing due to increasing rates of clearance for development and aquaculture. It remains unclear how mangroves will respond to changing climatic conditions. Here we discuss the results of a long-term study that explored the interacting effects of climate, species, and management practices on annual variability of growth and mortality of mangroves in peninsular Thailand. The 15-year study period included the extreme 1997-98 ENSO event that led to widespread drought-induced mortality and forest fires across the region, but which appeared to have little impact on the mangroves. Our results provide an important, and much-needed, framework for conservation and forest management planning in these mangrove forests given future concerns and uncertainty about climate change in the tropics.

  9. Tree growth response to climate change at the deciduous-boreal forest ecotone, Ontario, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Goldblum, D. [Wisconsin-Whitewater Univ., Whitewater, WI (United States). Dept. of Geography and Geology; Rigg, L.S. [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Geography

    2005-11-01

    Recent interest in the impact that future climate change may have on forest communities can be attributed to the fact that migration of tree species has been slow with respect to past climate changes and also because of the high degree of habitat fragmentation that has occurred in the recent past. For that reason, this study examined the implications of climate change on the future of sugar maple, white spruce and balsam fir. These trees represent the 3 dominant forest species at the deciduous-boreal forest ecotone in Ontario, Canada. The analysis was based on the responses of individual species to past monthly temperature and precipitation conditions as well as simulated monthly temperature and precipitation conditions in the study area for the 2080s. The sensitivity of the tree species to past climate with predicted conditions for the 2080 period was also considered. In particular, tree-ring analysis was used to compare local species-specific growth responses with instrumental climate records since 1900 to determine which climate variables control growth rates of these 3 species. Present temperature and precipitation averages were compared with general circulation model (GCM) predictions of monthly temperature and monthly precipitation to evaluate the potential benefit or harm to the dominant tree species over the next 80 years. It was concluded that sugar maple may persist in the medium term up to several centuries, as existing trees pass through their natural life-span without reproductive replacement. However, with extreme climate change, over many centuries, even the sugar maple at this northern range limit might be in jeopardy. White spruce is likely to benefit less, and the dominant balsam fir is likely to experience a decrease in growth potential. These projected changes would enhance the future status of sugar maple at its northern limit and facilitate range expansion northward in response to global warming. Although the study concerns only a small area

  10. Effects of Population Growth and Climate Variability on Sustainable Groundwater in Mali, West Africa

    Directory of Open Access Journals (Sweden)

    Alexandra Lutz

    2010-12-01

    Full Text Available Groundwater is increasingly relied on as a source of potable water in developing countries, but factors such as population growth, development, and climate variability, pose potential challenges for ongoing sustainable supply. The effect of these factors on the groundwater system was considered in four scenarios using a numerical model to represent the Bani area of Mali, West Africa. By 2040, population growth, climate variability, and development as urbanization, agriculture, and industry creates scenarios in which groundwater extraction is an increasingly larger percentage of the groundwater system. Consumption from agriculture and industry increases extraction rates from less than 1 to 3.8% of mean annual precipitation, which will likely affect the groundwater system. For instance, concentrated pumping in local areas may result in water level declines. The results of this study contribute to an ongoing evaluation of sustainable groundwater resources in West Africa.

  11. Impact of population growth and population ethics on climate change mitigation policy.

    Science.gov (United States)

    Scovronick, Noah; Budolfson, Mark B; Dennig, Francis; Fleurbaey, Marc; Siebert, Asher; Socolow, Robert H; Spears, Dean; Wagner, Fabian

    2017-11-14

    Future population growth is uncertain and matters for climate policy: higher growth entails more emissions and means more people will be vulnerable to climate-related impacts. We show that how future population is valued importantly determines mitigation decisions. Using the Dynamic Integrated Climate-Economy model, we explore two approaches to valuing population: a discounted version of total utilitarianism (TU), which considers total wellbeing and is standard in social cost of carbon dioxide (SCC) models, and of average utilitarianism (AU), which ignores population size and sums only each time period's discounted average wellbeing. Under both approaches, as population increases the SCC increases, but optimal peak temperature decreases. The effect is larger under TU, because it responds to the fact that a larger population means climate change hurts more people: for example, in 2025, assuming the United Nations (UN)-high rather than UN-low population scenario entails an increase in the SCC of 85% under TU vs. 5% under AU. The difference in the SCC between the two population scenarios under TU is comparable to commonly debated decisions regarding time discounting. Additionally, we estimate the avoided mitigation costs implied by plausible reductions in population growth, finding that large near-term savings ($billions annually) occur under TU; savings under AU emerge in the more distant future. These savings are larger than spending shortfalls for human development policies that may lower fertility. Finally, we show that whether lowering population growth entails overall improvements in wellbeing-rather than merely cost savings-again depends on the ethical approach to valuing population. Copyright © 2017 the Author(s). Published by PNAS.

  12. Explaining the dependence of climatic response of tree radial growth on permafrost

    Science.gov (United States)

    Bryukhanova, Marina; Benkova, Anna; von Arx, Georg; Fonti, Patrick; Simanko, Valentina; Kirdyanov, Alexander; Shashkin, Alexander

    2015-04-01

    In northern regions of Siberia it is infrequent to have long-term observations of the variability of soil features, phenological data, duration of the growing season, which can be used to infer the influence of the environment on tree growth and productivity. The best way to understand tree-growth and tree responses to environmental changes is to make use of mechanistic models, allowing to combine already available experiment/field data with other parameters based on biological principles of tree growth. The goal of our study is to estimate which tree species (deciduous, conifer deciduous or conifer evergreen) is more plastic under possible climate changes in permafrost zone. The studied object is located in the northern part of central Siberia, Russia (64°N, 100°E). The study plot was selected within a post-fire succession and representatives for 100 years old even aged mixed forest of Larix gmelinii (Rupr.) Rupr. and Betula pubescens Ehrh. with few exemplars of Spruce (Picea obovata Ledeb.). To understand physiological response of larch, birch and spruce trees to climatic changes the ecological-physiological process-based model of tree photosynthesis (Benkova and Shashkin 2003) was applied. Multiparametric tree-ring chronologies were analyzed and correlated with climatic parameters over the last 77 years. This work is supported by the Ministry of Education and Science of the Russian Federation (Grant from the President of RF for Young Scientists MK-1589.2014.4).

  13. Impact of choice of future climate change projection on growth chamber experimental outcomes: a preliminary study in potato

    Science.gov (United States)

    Leisner, Courtney P.; Wood, Joshua C.; Vaillancourt, Brieanne; Tang, Ying; Douches, Dave S.; Robin Buell, C.; Winkler, Julie A.

    2017-11-01

    Understanding the impacts of climate change on agriculture is essential to ensure adequate future food production. Controlled growth experiments provide an effective tool for assessing the complex effects of climate change. However, a review of the use of climate projections in 57 previously published controlled growth studies found that none considered within-season variations in projected future temperature change, and few considered regional differences in future warming. A fixed, often arbitrary, temperature perturbation typically was applied for the entire growing season. This study investigates the utility of employing more complex climate change scenarios in growth chamber experiments. A case study in potato was performed using three dynamically downscaled climate change projections for the mid-twenty-first century that differ in terms of the timing during the growing season of the largest projected temperature changes. The climate projections were used in growth chamber experiments for four elite potato cultivars commonly planted in Michigan's major potato growing region. The choice of climate projection had a significant influence on the sign and magnitude of the projected changes in aboveground biomass and total tuber count, whereas all projections suggested an increase in total tuber weight and a decrease in specific gravity, a key market quality trait for potato, by mid-century. These results demonstrate that the use of more complex climate projections that extend beyond a simple incremental change can provide additional insights into the future impacts of climate change on crop production and the accompanying uncertainty.

  14. Quantifying climate-growth relationships at the stand level in a mature mixed-species conifer forest.

    Science.gov (United States)

    Teets, Aaron; Fraver, Shawn; Weiskittel, Aaron R; Hollinger, David Y

    2018-03-11

    A range of environmental factors regulate tree growth; however, climate is generally thought to most strongly influence year-to-year variability in growth. Numerous dendrochronological (tree-ring) studies have identified climate factors that influence year-to-year variability in growth for given tree species and location. However, traditional dendrochronology methods have limitations that prevent them from adequately assessing stand-level (as opposed to species-level) growth. We argue that stand-level growth analyses provide a more meaningful assessment of forest response to climate fluctuations, as well as the management options that may be employed to sustain forest productivity. Working in a mature, mixed-species stand at the Howland Research Forest of central Maine, USA, we used two alternatives to traditional dendrochronological analyses by (1) selecting trees for coring using a stratified (by size and species), random sampling method that ensures a representative sample of the stand, and (2) converting ring widths to biomass increments, which once summed, produced a representation of stand-level growth, while maintaining species identities or canopy position if needed. We then tested the relative influence of seasonal climate variables on year-to-year variability in the biomass increment using generalized least squares regression, while accounting for temporal autocorrelation. Our results indicate that stand-level growth responded most strongly to previous summer and current spring climate variables, resulting from a combination of individualistic climate responses occurring at the species- and canopy-position level. Our climate models were better fit to stand-level biomass increment than to species-level or canopy-position summaries. The relative growth responses (i.e., percent change) predicted from the most influential climate variables indicate stand-level growth varies less from to year-to-year than species-level or canopy-position growth responses. By

  15. Population differentiation in tree-ring growth response of white fir (Abies concolor) to climate: Implications for predicting forest responses to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Deborah Bowne [Univ. of California, Berkeley, CA (United States)

    1993-01-01

    Forest succession models and correlative models have predicted 200--650 kilometer shifts in the geographic range of temperate forests and forest species as one response to global climate change. Few studies have investigated whether population differences may effect the response of forest species to climate change. This study examines differences in tree-ring growth, and in the phenotypic plasticity of tree-ring growth in 16-year old white fir, Abies concolor, from ten populations grown in four common gardens in the Sierra Nevada of California. For each population, tree-ring growth was modelled as a function of precipitation and degree-day sums. Tree-ring growth under three scenarios of doubled CO2 climates was estimated.

  16. Major Changes in Growth Rate and Growth Variability of Beech (Fagus sylvatica L. Related to Soil Alteration and Climate Change in Belgium

    Directory of Open Access Journals (Sweden)

    Nicolas Latte

    2016-08-01

    Full Text Available Global change—particularly climate change, forest management, and atmospheric deposition—has significantly altered forest growing conditions in Europe. The influences of these changes on beech growth (Fagus sylvatica L. were investigated for the past 80 years in Belgium, using non-linear mixed effects models on ring-width chronologies of 149 mature and dominant beech trees (87–186 years old. The effects of the developmental stage (i.e., increasing tree size were filtered out in order to focus on time-dependent growth changes. Beech radial growth was divided into a low-frequency signal (=growth rate, mainly influenced by forest management and atmospheric deposition, and into a high-frequency variability (≈mean sensitivity, mainly influenced by climate change. Between 1930 and 2008, major long-term and time-dependent changes were highlighted. The beech growth rate has decreased by about 38% since the 1950–1960s, and growth variability has increased by about 45% since the 1970–1980s. Our results indicate that (1 before the 1980s, beech growth rate was not predominantly impacted by climate change but rather by soil alteration (i.e., soil compaction and/or nitrogen deposition; and (2 since the 1980s, climate change induced more frequent and intense yearly growth reductions that amplified the growth rate decrease. The highlighted changes were similar in the two ecoregions of Belgium, although more pronounced in the lowlands than in the uplands.

  17. Anthropogenic nitrogen deposition ameliorates the decline in tree growth caused by a drier climate.

    Science.gov (United States)

    Ibáñez, Inés; Zak, Donald R; Burton, Andrew J; Pregitzer, Kurt S

    2018-02-01

    Most forest ecosystems are simultaneously affected by concurrent global change drivers. However, when assessing these effects, studies have mainly focused on the responses to single factors and have rarely evaluated the joined effects of the multiple aspects of environmental change. Here, we analyzed the combined effects of anthropogenic nitrogen (N) deposition and climatic conditions on the radial growth of Acer saccharum, a dominant tree species in eastern North American forests. We capitalized on a long-term N deposition study, replicated along a latitudinal gradient, that has been taking place for more than 20 yr. We analyzed tree radial growth as a function of anthropogenic N deposition (ambient and experimental addition) and of summer temperature and soil water conditions. Our results reveal that experimental N deposition enhances radial growth of this species, an effect that was accentuated as temperature increased and soil water became more limiting. The spatial and temporal extent of our data also allowed us to assert that the positive effects of growing under the experimental N deposition are likely due to changes in the physiological performance of this species, and not due to the positive correlation between soil N and soil water holding capacity, as has been previously speculated in other studies. Our simulations of tree growth under forecasted climate scenarios specific for this region also revealed that although anthropogenic N deposition may enhance tree growth under a large array of environmental conditions, it will not mitigate the expected effects of growing under the considerably drier conditions characteristic of our most extreme climatic scenario. © 2018 by the Ecological Society of America.

  18. Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Bond-Lamberty, Benjamin; Rocha, Adrian; Calvin, Katherine V.; Holmes, Bruce; Wang, Chuankuan; Goulden, Michael L.

    2014-01-01

    How will regional growth and mortality change with even relatively small climate shifts, even independent of catastrophic disturbances? This question is particularly acute for the North American boreal forest, which is carbon-dense and subject The goals of this study were to combine dendrochronological sampling, inventory records, and machine-learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999-2012 inventory period, mean DBH increased even as stand density and basal area declined significantly from 41.3 to 37.5 m2 ha-1. Tree mortality averaged 1.4±0.6% yr-1, with most mortality occurring in medium-sized trees. A combined tree ring chronology constructed from 2001, 2004, and 2012 sampling showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current- and previous-year data exerted significant effects. Models based on these variables explained 23-44% of the ring-width variability. There have been at least one, and probably two, significant recruitment episodes since stand initiation, and we infer that past climate extremes led to significant NOBS mortality still visible in the current forest structure. These results imply that a combination of successional and demographic processes, along with mortality driven by abiotic factors, continue to affect the stand, with significant implications for our understanding of previous work at NOBS and the sustainable management of regional forests.

  19. RELATIONSHIP BETWEEN CLIMATE VARIABLES, TRUNK GROWTH RATE AND WOOD DENSITY OF Eucalyptus grandis W. Mill ex Maiden TREES

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Sette Jr

    2016-04-01

    Full Text Available ABSTRACT Climatic conditions stimulates the cambial activity of plants, and cause significant changes in trunk diameter growth and wood characteristics. The objective of this study was to evaluate the influence of climate variables in the diameter growth rate of the stem and the wood density of Eucalyptus grandis trees in different classes of the basal area. A total of 25 Eucalyptus trees at 22 months of age were selected according to the basal area distribution. Dendrometer bands were installed at the height of 1.30 meters (DBH to monitor the diameter growth every 14 days, for 26 months. After measuring growth, the trees were felled and wood discs were removed at the DBH level to determine the radial density profile through x-ray microdensitometry and then re-scale the average values every 14 days. Climatic variables for the monitoring period were obtained and grouped every 14 days. The effect of the climate variables was determined by maximum and minimum growth periods in assessing trunk growth. These growth periods were related with precipitation, average temperature and relative air humidity. The re-scaled wood density values, calculated using the radial growth of the tree trunks measured accurately with steel dendrometers, enabled the determination of the relationship of small changes in wood density and the effect of the climatic variations and growth rate of eucalyptus tree trunks. A high sensitivity of the wood density to variation in precipitation levels was found.

  20. Six Degrees. Our Future on a Hotter Planet; Zes graden. Onze toekomst op een warmere planeet

    Energy Technology Data Exchange (ETDEWEB)

    Lynas, M.

    2008-07-01

    This grade-by-grade guide describes the effects of global warming at 1, 2, 3, 4, 5 and 6C. The author presents scientific scenarios in a row. How can we imagine a warmer climate? Already 1C warming will be a plague for granaries in the USA and tropical cyclones will happen in the Mediterranean Sea. Beyond 2C global warming is irreversible. 3C will burn the Amazon area. Then methane will burst out of the Siberian permafrost and later from the deep sea. At 6C we will be in hell. So we must prevent global warming above 2C. Now we are already at 0.75 C and the thermal inertia of the planet will double that anyway. Serious action is absolutely required. Action that goes far beyond any current policy. [Dutch] Deze graad-voor-graad-gids beschrijft de gevolgen van de opwarming bij 1, 2, 3, 4, 5 en 6C. De auteur zet als eerste alle wetenschappelijke scenario's op een rij. Wat moeten we ons voorstellen bij een warmer klimaat? Al bij 1C teisteren extreme droogtes graanschuur Amerika en verschijnen tropische orkanen in de Middellandse Zee. Voorbij de 2C wordt de opwarming onomkeerbaar. Bij 3C verbrandt het Amazonegebied. Daarna barst methaan uit de Siberische permafrost en later uit de diepzee. Bij 6C betreden we de hel. We moeten dus voorkomen dat de opwarming boven de 2C uitkomt. Nu zitten we al op 0,75C en de thermische traagheid van de planeet gaat dat sowieso nog verdubbelen. Drastische actie is absoluut vereist. Actie die veel verder gaat dan alle huidige beleid.

  1. Climate-Induced Larch Growth Response Within the Central Siberian Permafrost Zone

    Science.gov (United States)

    Kharuk, Viacheslav I.; Ranson, Kenneth J.; Im, Sergei T.; Petrov, Il'ya A.

    2015-01-01

    Aim: estimation of larch (Larix gmelinii) growth response to current climate changes. Location: permafrost area within the northern part of Central Siberia (approximately 65.8 deg N, 98.5 deg E). Method: analysis of dendrochronological data, climate variables, drought index SPEI, GPP (gross primary production) and EVI vegetation index (both Aqua/MODIS satellite derived), and soil water content anomalies (GRACE satellite measurements of equivalent water thickness anomalies, EWTA). Results: larch tree ring width (TRW) correlated with previous year August precipitation (r = 0.63), snow accumulation (r = 0.61), soil water anomalies (r = 0.79), early summer temperatures and water vapor pressure (r = 0.73 and r = 0.69, respectively), May and June drought index (r = 0.68-0.82). There are significant positive trends of TRW since late 1980s and GPP since the year 2000. Mean TRW increased by about 50%, which is similar to post-Little Ice Age warming. TRW correlated with GPP and EVI of larch stands (r = 0.68-0.69). Main conclusions: within the permafrost zone of central Siberia larch TRW growth is limited by early summer temperatures, available water from snowmelt, water accumulated within soil in the previous year, and permafrost thaw water. Water stress is one of the limiting factors of larch growth. Larch TRW growth and GPP increased during recent decades.

  2. Water and growth: An econometric analysis of climate and policy impacts

    Science.gov (United States)

    Khan, Hassaan Furqan; Morzuch, Bernard J.; Brown, Casey M.

    2017-06-01

    Water-related hazards such as floods, droughts, and disease cause damage to an economy through the destruction of physical capital including property and infrastructure, the loss of human capital, and the interruption of economic activities, like trade and education. The question for policy makers is whether the impacts of water-related risk accrue to manifest as a drag on economic growth at a scale suggesting policy intervention. In this study, the average drag on economic growth from water-related hazards faced by society at a global level is estimated. We use panel regressions with various specifications to investigate the relationship between economic growth and hydroclimatic variables at the country-river basin level. In doing so, we make use of surface water runoff variables never used before. The analysis of the climate variables shows that water availability and water hazards have significant effects on economic growth, providing further evidence beyond earlier studies finding that precipitation extremes were at least as important or likely more important than temperature effects. We then incorporate a broad set of variables representing the areas of infrastructure, institutions, and information to identify the characteristics of a region that determine its vulnerability to water-related risks. The results identify water scarcity, governance, and agricultural intensity as the most relevant measures affecting vulnerabilities to climate variability effects.

  3. Regional tree growth and inferred summer climate in the Winnipeg River basin, Canada, since AD 1783

    Science.gov (United States)

    St. George, Scott; Meko, David M.; Evans, Michael N.

    2008-09-01

    A network of 54 ring-width chronologies is used to estimate changes in summer climate within the Winnipeg River basin, Canada, since AD 1783. The basin drains parts of northwestern Ontario, northern Minnesota and southeastern Manitoba, and is a key area for hydroelectric power production. Most chronologies were developed from Pinus resinosa and P. strobus, with a limited number of Thuja occidentalis, Picea glauca and Pinus banksiana. The dominant pattern of regional tree growth can be recovered using only the nine longest chronologies, and is not affected by the method used to remove variability related to age or stand dynamics from individual trees. Tree growth is significantly, but weakly, correlated with both temperature (negatively) and precipitation (positively) during summer. Simulated ring-width chronologies produced by a process model of tree-ring growth exhibit similar relationships with summer climate. High and low growth across the region is associated with cool/wet and warm/dry summers, respectively; this relationship is supported by comparisons with archival records from early 19th century fur-trading posts. The tree-ring record indicates that summer droughts were more persistent in the 19th and late 18th century, but there is no evidence that drought was more extreme prior to the onset of direct monitoring.

  4. Climate-induced seasonal changes in smallmouth bass growth rate potential at the southern range extent

    Science.gov (United States)

    Middaugh, Christopher R.; Kessinger, Brin; Magoulick, Daniel D.

    2018-01-01

    Temperature increases due to climate change over the coming century will likely affect smallmouth bass (Micropterus dolomieu) growth in lotic systems at the southern extent of their native range. However, the thermal response of a stream to warming climate conditions could be affected by the flow regime of each stream, mitigating the effects on smallmouth bass populations. We developed bioenergetics models to compare change in smallmouth bass growth rate potential (GRP) from present to future projected monthly stream temperatures across two flow regimes: runoff and groundwater-dominated. Seasonal differences in GRP between stream types were then compared. The models were developed for fourteen streams within the Ozark–Ouachita Interior Highlands in Arkansas, Oklahoma and Missouri, USA, which contain smallmouth bass. In our simulations, smallmouth bass mean GRP during summer months decreased by 0.005 g g−1 day−1 in runoff streams and 0.002 g g−1 day−1 in groundwater streams by the end of century. Mean GRP during winter, fall and early spring increased under future climate conditions within both stream types (e.g., 0.00019 g g−1 day−1 in runoff and 0.0014 g g−1 day−1 in groundwater streams in spring months). We found significant differences in change in GRP between runoff and groundwater streams in three seasons in end-of-century simulations (spring, summer and fall). Potential differences in stream temperature across flow regimes could be an important habitat component to consider when investigating effects of climate change as fishes from various flow regimes that are relatively close geographically could be affected differently by warming climate conditions.

  5. Thermal physiology of native cool-climate, and non-native warm-climate Pumpkinseed sunfish raised in a common environment.

    Science.gov (United States)

    Rooke, Anna C; Burness, Gary; Fox, Michael G

    2017-02-01

    Contemporary evolution of thermal physiology has the potential to help limit the physiological stress associated with rapidly changing thermal environments; however it is unclear if wild populations can respond quickly enough for such changes to be effective. We used native Canadian Pumpkinseed (Lepomis gibbosus) sunfish, and non-native Pumpkinseed introduced into the milder climate of Spain ~100 years ago, to assess genetic differences in thermal physiology in response to the warmer non-native climate. We compared temperature performance reaction norms of two Canadian and two Spanish Pumpkinseed populations born and raised within a common environment. We found that Canadian Pumpkinseed had higher routine metabolic rates when measured at seasonally high temperatures (15°C in winter, 30°C in summer), and that Spanish Pumpkinseed had higher critical thermal maxima when acclimated to 30°C in the summer. Growth rates were not significantly different among populations, however Canadian Pumpkinseed tended to have faster growth at the warmest temperatures measured (32°C). The observed differences in physiology among Canadian and Spanish populations at the warmest acclimation temperatures are consistent with the introduced populations being better suited to the warmer non-native climate than native populations. The observed differences could be the result of either founder effects, genetic drift, and/or contemporary adaptive evolution in the warmer non-native climate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Impact of Population Growth and Climate Change on the Freshwater Resources of Lamu Island, Kenya

    Directory of Open Access Journals (Sweden)

    Cornelius Okello

    2015-03-01

    Full Text Available Demand for freshwater is rising with factors, such as population growth, land use change and climate variations, rendering water availability in the future uncertain. Groundwater resources are being increasingly exploited to meet this growing demand. The aim of this study is to identify the influence of population growth induced by land use change and climate change on the future state of freshwater resources of Lamu Island in Kenya where a major port facility is under construction. The results of this study show that the “no industrial development” population scenario (assuming the port was not constructed would be expected to reach ~50,000 people by 2050, while the projected population upon completion is expected to reach 1.25 million in the same year when the Lamu Port-South Sudan-Ethiopia Transport Corridor Program (LAPSSET port reaches its full cargo-handling capacity. The groundwater abstraction in 2009 was 0.06 m3 daily per capita, while the demand is expected to raise to 0.1 m3 by 2050 according to the “LAPSSET development” projection. The modelling results show that the Shela aquifer in Lamu, which is the main source of water on the island, will not experience stress by 2065 for the “no industrial development” population scenario, whereas for the “LAPSSET development projection” population scenario, it will occur sooner (between 2020 and 2028. The modelling results show that the Representative Concentration Pathways (RCP climate change scenarios will have a smaller impact on the effective water volume reserves than Special Report on Emissions Scenarios (SRES for the “no industrial development”, while the impact is expected to be similar for the “LAPSSET development”, suggesting that population growth exacerbated by land use change will be a more significant driving force than climate change in affecting freshwater availability.

  7. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles.

    Science.gov (United States)

    Cheng, Guo; He, Yan-Nan; Yue, Tai-Xin; Wang, Jun; Zhang, Zhen-Wen

    2014-09-02

    Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two "Cabernet Sauvignon (Vitis vinifera L.V)" vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012). The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C) days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3'5'-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of high-quality wine grapes

  8. Effects of Climatic Conditions and Soil Properties on Cabernet Sauvignon Berry Growth and Anthocyanin Profiles

    Directory of Open Access Journals (Sweden)

    Guo Cheng

    2014-09-01

    Full Text Available Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two “Cabernet Sauvignon (Vitis vinifera L.V” vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012. The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3′5′-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of

  9. Height-growth response to climatic changes differs among populations of Douglas-fir: A novel analysis of historic data

    Science.gov (United States)

    Laura P. Leites; Andrew P. Robinson; Gerald E. Rehfeldt; John D. Marshall; Nicholas L. Crookston

    2012-01-01

    Projected climate change will affect existing forests, as substantial changes are predicted to occur during their life spans. Species that have ample intraspecific genetic differentiation, such as Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), are expected to display population-specific growth responses to climate change. Using a mixed-effects modeling approach,...

  10. Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir

    Science.gov (United States)

    Kevin Ford; Connie Harrington; Sheel Bansal; Peter J. Gould; Brad St. Clair

    2016-01-01

    Under climate change, the reduction of frost risk, onset of warm temperatures and depletion of soil moisture are all likely to occur earlier in the year in many temperate regions. The resilience of tree species will depend on their ability to track these changes in climate with shifts in phenology that lead to earlier growth initiation in the spring. Exposure to warm...

  11. Increasing Dengue Incidence in Singapore over the Past 40 Years: Population Growth, Climate and Mobility.

    Directory of Open Access Journals (Sweden)

    Claudio Jose Struchiner

    Full Text Available In Singapore, the frequency and magnitude of dengue epidemics have increased significantly over the past 40 years. It is important to understand the main drivers for the rapid increase in dengue incidence. We studied the relative contributions of putative drivers for the rise of dengue in Singapore: population growth, climate parameters and international air passenger arrivals from dengue endemic countries, for the time period of 1974 until 2011. We used multivariable Poisson regression models with the following predictors: Annual Population Size; Aedes Premises Index; Mean Annual Temperature; Minimum and Maximum Temperature Recorded in each year; Annual Precipitation and Annual Number of Air Passengers arriving from dengue-endemic South-East Asia to Singapore. The relative risk (RR of the increase in dengue incidence due to population growth over the study period was 42.7, while the climate variables (mean and minimum temperature together explained an RR of 7.1 (RR defined as risk at the end of the time period relative to the beginning and goodness of fit associated with the model leading to these estimates assessed by pseudo-R2 equal to 0.83. Estimating the extent of the contribution of these individual factors on the increasing dengue incidence, we found that population growth contributed to 86% while the residual 14% was explained by increase in temperature. We found no correlation with incoming air passenger arrivals into Singapore from dengue endemic countries. Our findings have significant implications for predicting future trends of the dengue epidemics given the rapid urbanization with population growth in many dengue endemic countries. It is time for policy-makers and the scientific community alike to pay more attention to the negative impact of urbanization and urban climate on diseases such as dengue.

  12. Climate effects on cork growth in Cork oak plantations in Sicily (Italy

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Cork oak (Quercus suber L. is usually dominant in silvopastoral systems in many areas of Sicily, where the trees are debarked periodically for cork production. In spite of the importance of cork and cork oak stands in Sicilian forests and the potential economic scenarios, few research works have been carried out on these systems. Given the importance of cork thickness in cork quality evaluation, the main objective of this work is to study cork growth in cork oak productive stands spread on the north (Nebrodi Mountains and south-east (Iblei Mountains of Sicily. Image analysis techniques were used on cork surfaces of transverse sections of planks to measure cork rings. Dendrochronological analysis was applied to study annual fluctuation on rings growth in relation to various climate parameters in a cork cycle production. Results showed that rainfall, summer drought and temperature are determining factors in controlling cork growth. In siliceous areas of Nebrodi Mountains correlation between cork growth index and rainfall indicates that the rain period from May to September strongly influences phellogen activity. Temperature and water stress indices, on the other hand, show a negative correlation with cork growth. In clay and evolved soils of volcanic plateau of Iblei Mountains January precipitation shows a positive correlation with cork growth index. Also absolute minimum temperature in June and absolute maximum temperature in September show a positive correlation when temperature possibly has influence on phellogen activity during growing season.

  13. Interspecific variation in growth responses to tree size, competition and climate of western Canadian boreal mixed forests.

    Science.gov (United States)

    Jiang, Xinyu; Huang, Jian-Guo; Cheng, Jiong; Dawson, Andria; Stadt, Kenneth J; Comeau, Philip G; Chen, Han Y H

    2018-08-01

    Tree growth of boreal forest plays an important role on global carbon (C) cycle, while tree growth in the western Canadian boreal mixed forests has been predicted to be negatively affected by regional drought. Individual tree growth can be controlled by many factors, such as competition, climate, tree size and age. However, information about contributions of different factors to tree growth is still limited in this region. In order to address this uncertainty, tree rings of two dominant tree species, trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench.) Voss), were sampled from boreal mixed forest stands distributed across Alberta, Canada. Tree growth rates over different time intervals (10years interval, 1998-2007; 20years interval, 1988-2007; 30years interval, 1978-2007) were calculated to study the effects of different factors (tree size, competition, climate, and age) on tree growth. Results indicated that tree growth of two species were both primarily affected by competition or tree size, while climatic indices showed less effects on tree growth. Growth of trembling aspen was significantly affected by inter- and intraspecific competition, while growth of white spruce was primarily influenced by tree size, followed by competition. Positive relationship was found between growth of white spruce and competition index of coniferous group, suggesting an intraspecific mutualism mechanism within coniferous group. Our results further suggested that competition driven succession was the primary process of forest composition shift in the western Canadian boreal mixed forest. Although drought stress increased tree mortality, decline of stem density under climate change released competition stress of surviving trees, which in turn sustained growth of surviving trees. Therefore, climatic indices showed fewer effects on growth of dominant tree species compared to other factors in our study. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Climate Reconstruction on the Growth of Teak in Umphang Wildlife Sanctuary, Thailand

    Directory of Open Access Journals (Sweden)

    Pichit Lumyai

    2017-11-01

    Full Text Available Teak is an example of proxy data that can be used to indirectly deduce past climatic conditions. The objective of this study was to investigate the relationship between teak growth and climate data in western Thailand. Dendrochronological techniques were used to analyze 52 sample cores from Umphang Wildlife Sanctuary. The crossdated ring width data could be extended back 127 years (1886-2012. The relationship between ring-width index and climatic data indicated a positive correlation (p<0.01 with the current year total rainfall in March and June. Thus, only March and June data were used to reconstruct the annual ring width index which indicated a downward trend in the reconstructed rainfall. Considering the March and June average total rainfall, a wet period occurred in 1887-1895 and this gradually decreased to a stable pattern in 1927-1945 with a further decline to another stable level in 1957-1964. Similarly, the dry periods occurring in 1896-1926, 1946-1955, 1965-1981 and 1982-2012 could explain the high fluctuations in rainfall. Periods of 2.2-2.7 and 25.2 years were found to be common with the variations in the El Niño-Southern Oscillation. In conclusion, teak growth information can be used to monitor global warming events.

  15. Evaluation of growth and flowering potential of rosa hybrida cultivars under Faisalabad climatic conditions

    International Nuclear Information System (INIS)

    Nadeem, M.; Khan, M.A.; Riaz, A.

    2011-01-01

    Exotic cultivars of hybrid roses respond uncertainly to new habitat. It is necessary to explore the potential of the introduced cultivars to judge the suitability in a new habitat. In the present study, nine Rosa hybrida cultivars including Autumn Sunset, Ice Berg, Paradise, Angel Face, Louise Odier, Casino, Grand Margina, Handel and Gruss-an-Teplitz were evaluated for growth and yield attributed under the climatic conditions of Faisalabad. Results indicated that there was decreasing trend in the growth and flowering of the bushes as the temperature increased above 32 degree C and humidity decreased to 29 %. Number of flowers per bush and diameter of flower decreased as the temperature increased and humidity decreased in contrast to increment in height of the plant and num ber of primary branches per plant in succeeding months. Interaction between yield traits and months was also significant. Overall, significant variations were observed in each cultivar for length and number of petals per flower, number of prickles, fragrance, flower persistence life and color, bush shape and overall performance with respect to climatic conditions of Faisalabad. It is concluded that the cultivars 'Autumn Sunset' and Gruss-an-Teplitz performed better in climatic conditions of Faisalabad. (author)

  16. Future climate effects on suitability for growth of oil palms in Malaysia and Indonesia.

    Science.gov (United States)

    Paterson, R Russell M; Kumar, Lalit; Taylor, Subhashni; Lima, Nelson

    2015-09-24

    The production of palm oil (PO) is highly profitable. The economies of the principal producers, Malaysia and Indonesia, and others, benefit considerably. Climate change (CC) will most likely have an impact on the distribution of oil palms (OP) (Elaeis guineensis). Here we present modelled CC projections with respect to the suitability of growing OP, in Malaysia and Indonesia. A process-oriented niche model of OP was developed using CLIMEX to estimate its potential distribution under current and future climate scenarios. Two Global Climate Models (GCMs), CSIRO-Mk3.0 and MIROC-H, were used to explore the impacts of CC under the A1B and A2 scenarios for 2030, 2070 and 2100. Decreases in climatic suitability for OP in the region were gradual by 2030 but became more pronounced by 2100. These projections imply that OP growth will be affected severely by CC, with obvious implications to the economies of (a) Indonesia and Malaysia and (b) the PO industry, but with potential benefits towards reducing CC. A possible remedial action is to concentrate research on development of new varieties of OP that are less vulnerable to CC.

  17. School climate and bullying victimization: a latent class growth model analysis.

    Science.gov (United States)

    Gage, Nicholas A; Prykanowski, Debra A; Larson, Alvin

    2014-09-01

    Researchers investigating school-level approaches for bullying prevention are beginning to discuss and target school climate as a construct that (a) may predict prevalence and (b) be an avenue for school-wide intervention efforts (i.e., increasing positive school climate). Although promising, research has not fully examined and established the social-ecological link between school climate factors and bullying/peer aggression. To address this gap, we examined the association between school climate factors and bullying victimization for 4,742 students in Grades 3-12 across 3 school years in a large, very diverse urban school district using latent class growth modeling. Across 3 different models (elementary, secondary, and transition to middle school), a 3-class model was identified, which included students at high-risk for bullying victimization. Results indicated that, for all students, respect for diversity and student differences (e.g., racial diversity) predicted within-class decreases in reports of bullying. High-risk elementary students reported that adult support in school was a significant predictor of within-class reduction of bullying, and high-risk secondary students report peer support as a significant predictor of within-class reduction of bullying. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  18. To support growth, to limit emissions: is China a model in terms of climate policy?

    International Nuclear Information System (INIS)

    Voita, Thibault

    2012-05-01

    The objective of this paper is to discuss how China has been able to adapt its economic policy to the challenges of climate change without forgetting its final objective of economic growth for the country. The author first describes some characteristics of the Chinese decision political system in the field of industrial and energy policy towards a low carbon economy: articulation between central power and local authorities, and complexity of decision processes at the central level. The author then shows how this system has changed to integrate policies of struggle against climate change, used them as an opportunity towards a low carbon economy, and put them at the service of the national industrial policy. Then, based on several case studies of actual projects (electric vehicles, gas liquefaction, local energy policies), the author proposes an assessment of the system efficiency, and tries to see whether one can talk of a Chinese political model regarding the policy of struggle against climate change. He notably discusses the efficiency of these policies in terms of relationship between industrial independence and climate policy

  19. Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia.

    Science.gov (United States)

    Sánchez-Salguero, Raúl; Camarero, J Julio; Carrer, Marco; Gutiérrez, Emilia; Alla, Arben Q; Andreu-Hayles, Laia; Hevia, Andrea; Koutavas, Athanasios; Martínez-Sancho, Elisabet; Nola, Paola; Papadopoulos, Andreas; Pasho, Edmond; Toromani, Ervin; Carreira, José A; Linares, Juan C

    2017-11-21

    Warmer and drier climatic conditions are projected for the 21st century; however, the role played by extreme climatic events on forest vulnerability is still little understood. For example, more severe droughts and heat waves could threaten quaternary relict tree refugia such as Circum-Mediterranean fir forests (CMFF). Using tree-ring data and a process-based model, we characterized the major climate constraints of recent (1950-2010) CMFF growth to project their vulnerability to 21st-century climate. Simulations predict a 30% growth reduction in some fir species with the 2050s business-as-usual emission scenario, whereas growth would increase in moist refugia due to a longer and warmer growing season. Fir populations currently subjected to warm and dry conditions will be the most vulnerable in the late 21st century when climatic conditions will be analogous to the most severe dry/heat spells causing dieback in the late 20th century. Quantification of growth trends based on climate scenarios could allow defining vulnerability thresholds in tree populations. The presented predictions call for conservation strategies to safeguard relict tree populations and anticipate how many refugia could be threatened by 21st-century dry spells.

  20. Difference in tree growth responses to climate at the upper treeline: Qilian Juniper in the Anyemaqen Mountains.

    Science.gov (United States)

    Peng, Jianfeng; Gou, Xiaohua; Chen, Fahu; Li, Jinbao; Liu, Puxing; Zhang, Yong; Fang, Keyan

    2008-08-01

    Three ring-width chronologies were developed from Qilian Juniper (Sabina przewalskii Kom.) at the upper treeline along a west-east gradient in the Anyemaqen Mountains. Most chronological statistics, except for mean sensitivity (MS), decreased from west to east. The first principal component (PC1) loadings indicated that stands in a similar climate condition were most important to the variability of radial growth. PC2 loadings decreased from west to east, suggesting the difference of tree-growth between eastern and western Anyemaqen Mountains. Correlations between standard chronologies and climatic factors revealed different climatic influences on radial growth along a west-east gradient in the study area. Temperature of warm season (July-August) was important to the radial growth at the upper treeline in the whole study area. Precipitation of current May was an important limiting factor of tree growth only in the western (drier) upper treeline, whereas precipitation of current September limited tree growth in the eastern (wetter) upper treeline. Response function analysis results showed that there were regional differences between tree growth and climatic factors in various sampling sites of the whole study area. Temperature and precipitation were the important factors influencing tree growth in western (drier) upper treeline. However, tree growth was greatly limited by temperature at the upper treeline in the middle area, and was more limited by precipitation than temperature in the eastern (wetter) upper treeline.

  1. Developing countries are combating climate change. Actions in developing countries that slow growth in carbon emissions

    International Nuclear Information System (INIS)

    Reid, Walter V.; Goldemberg, Jose

    1998-01-01

    The role of developing countries in helping to solve the problem of climate change is increasingly a focus of political controversy. With levels of greenhouse gas emissions projected to exceed those of developed countries by 2020, some industrialized countries are calling on developing countries to take stronger action to meet the commitments they have made in the Framework Convention on Climate Change (FCCC). This review of recent policy changes in developing countries, however, suggests that they are already taking little appreciated steps that reduce rates of growth in carbon emissions. Indeed, since the 1992 signing of the FCCC, carbon emission savings in developing countries may be greater than those attained by industrialized countries. A major source of these gains can be attributed to energy price reforms that are likely to have led to substantial gains in production and end-use efficiency. (author)

  2. Relating annual increments of the endangered Blanding's turtle plastron growth to climate.

    Science.gov (United States)

    Richard, Monik G; Laroque, Colin P; Herman, Thomas B

    2014-05-01

    This research is the first published study to report a relationship between climate variables and plastron growth increments of turtles, in this case the endangered Nova Scotia Blanding's turtle (Emydoidea blandingii). We used techniques and software common to the discipline of dendrochronology to successfully cross-date our growth increment data series, to detrend and average our series of 80 immature Blanding's turtles into one common chronology, and to seek correlations between the chronology and environmental temperature and precipitation variables. Our cross-dated chronology had a series intercorrelation of 0.441 (above 99% confidence interval), an average mean sensitivity of 0.293, and an average unfiltered autocorrelation of 0.377. Our master chronology represented increments from 1975 to 2007 (33 years), with index values ranging from a low of 0.688 in 2006 to a high of 1.303 in 1977. Univariate climate response function analysis on mean monthly air temperature and precipitation values revealed a positive correlation with the previous year's May temperature and current year's August temperature; a negative correlation with the previous year's October temperature; and no significant correlation with precipitation. These techniques for determining growth increment response to environmental variables should be applicable to other turtle species and merit further exploration.

  3. Climate change. Climate in Medieval time.

    Science.gov (United States)

    Bradley, Raymond S; Hughes, Malcolm K; Diaz, Henry F

    2003-10-17

    Many papers have referred to a "Medieval Warm Period." But how well defined is climate in this period, and was it as warm as or warmer than it is today? In their Perspective, Bradley et al. review the evidence and conclude that although the High Medieval (1100 to 1200 A.D.) was warmer than subsequent centuries, it was not warmer than the late 20th century. Moreover, the warmest Medieval temperatures were not synchronous around the globe. Large changes in precipitation patterns are a particular characteristic of "High Medieval" time. The underlying mechanisms for such changes must be elucidated further to inform the ongoing debate on natural climate variability and anthropogenic climate change.

  4. [Growth response of Abies fargesii to climate in Shennongjia Mount of Hubei Province, Southeastern China].

    Science.gov (United States)

    Hou, Xin-yuan; Shi, Jiang-feng; Li, Ling-ling; Lu, Hua-yu

    2015-03-01

    A well-replicated Abies fargesii tree-ring width chronology in the Shennongjia Mount was developed to investigate its radial growth response to climate variables (e.g., monthly mean tempe- rature and total precipitation) and other growing season indicators (e.g., cumulative temperature, continuous days, initial and final dates). Correlation analyses showed that the tree-ring width was positively correlated to the mean temperatures of February, April and September, and negatively correlated to the total precipitation of September, prior September and prior December. The analyses between the chronology and other growing season parameters showed that tree growth responded positively to the cumulative temperature and continuous days of the growing season. The correlation was the highest when the growing season was defined as the days above the temperature threshold of 9.0 °C. Defined this way, the growing season typically started in late-May and ended in mid-September, lasting about 120 days. Correlation analyses were also conducted between the tree-ring growth and the initial and final dates of the growing season. Results showed that correlation was the highest for initial dates defined at 9.0 °C (with the coefficient of -0.25 and p-value close to 0.05), and for final dates defined at 9.3 °C (with the coefficient of 0.33 and p-value less than 0.05). All these results indicated that the sensitive temperature threshold for photosynthesis of A. fargesii was around 9.0 °C. The year 1978 marked an abrupt shift of climate in southeast China. We compared A. fargesii growth between pre-1978 and post-1978 periods. Results showed that as temperature rose, the growing season was lengthened with both earlier initial dates and later final dates. Longer growing season increased the A. fargesii growth in the Shennongjia Mount, southeastern China.

  5. Green Growth - an Illusion? Energy and Climate Risk: Rethinking our Developmental Models

    International Nuclear Information System (INIS)

    Dessus, B.

    2011-01-01

    The years go by and international conferences come and go, with their quota of cries of alarm and calls to action to counter climate change. But in reality few large-scale programmes have been launched anywhere in the world involving concrete action to bring down greenhouse gas emissions. As one who has campaigned for many years for policies of energy consumption control, Benjamin Dessus shows here that the energy challenge is as great as it has ever been in a world of expanding populations in which most peoples aspire to reach the developmental level of the northern countries, despite the fact that our climate probably cannot support such a state of affairs. He argues here against a certain number of common suppositions, such as the idea of focussing exclusively on CO 2 in the fight against global warming, the need for a continuous economic growth on the order of 2% per annum or excessive faith in market mechanisms to bring down greenhouse gas emissions. He also stresses the ambiguities of so-called 'green' growth and compares different energy conservation scenarios. In this way, he shows that, against a relatively dominant line of reasoning based largely on (at times near-utopian) technological solutions and the continuation of sustained economic growth, there are more effective paths based on individual/collective energy sobriety and a serious slowdown of economic growth in the most developed countries, if not indeed a total halt to that growth (though these are more ambitious in that they require a revolution in the behaviour of the most affluent peoples). He concludes by proposing some courses of action for implementing such a programme in a country like France, showing the extent to which modern modes of life are going to have to change and how urgent it now is to debate these matters, if such change is to be achieved without - excessive - pain. (author)

  6. Influence of feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    Science.gov (United States)

    van Walsum, P. E. V.

    2011-11-01

    Climate change impact modelling of hydrologic responses is hampered by climate-dependent model parameterizations. Reducing this dependency was one of the goals of extending the regional hydrologic modelling system SIMGRO with a two-way coupling to the crop growth simulation model WOFOST. The coupling includes feedbacks to the hydrologic model in terms of the root zone depth, soil cover, leaf area index, interception storage capacity, crop height and crop factor. For investigating whether such feedbacks lead to significantly different simulation results, two versions of the model coupling were set up for a test region: one with exogenous vegetation parameters, the "static" model, and one with endogenous simulation of the crop growth, the "dynamic" model WOFOST. The used parameterization methods of the static/dynamic vegetation models ensure that for the current climate the simulated long-term average of the actual evapotranspiration is the same for both models. Simulations were made for two climate scenarios. Owing to the higher temperatures in combination with a higher CO2-concentration of the atmosphere, a forward time shift of the crop development is simulated in the dynamic model; the used arable land crop, potatoes, also shows a shortening of the growing season. For this crop, a significant reduction of the potential transpiration is simulated compared to the static model, in the example by 15% in a warm, dry year. In consequence, the simulated crop water stress (the unit minus the relative transpiration) is lower when the dynamic model is used; also the simulated increase of crop water stress due to climate change is lower; in the example, the simulated increase is 15 percentage points less (of 55) than when a static model is used. The static/dynamic models also simulate different absolute values of the transpiration. The difference is most pronounced for potatoes at locations with ample moisture supply; this supply can either come from storage release of a

  7. Study on the Future Climate Change and Its Influence on the Growth Stage and Yield of Wheat in Weifang City

    Institute of Scientific and Technical Information of China (English)

    Jing; YUAN; Jianping; XU; Lijuan; SUN; Xiuzhen; ZHANG; Xiaoli; WANG

    2015-01-01

    In order to study the trend of climate change in the future in Weifang,and analyze the impact of climate change on the local wheat production,the air temperature and precipitation in Weifang from 2021 to 2050 were simulated by using the regional climate model PRECIS.And then put the meteorological data into the crop model to simulate the growth of wheat under climate change conditions in the future.The results showed that there would be a trend of rising temperature and increasing precipitation in Weifang in the future.Climate warming would result in growth period of wheat to be ahead of schedule and yield reduction.If taking into account the effect of CO2,the yield of wheat would increase.

  8. Sapling growth of Eucalyptus tereticornis under various edapho-climatic regions of Tamil Nadu

    Energy Technology Data Exchange (ETDEWEB)

    Krishnaswami, S; Rai, R S.V.; Srinivasan, V M

    1982-01-01

    Girth at b.h. (o.b.) was measured in 2-4 yr old plantations at 6 sites on various soil types with annual rainfalls of 70-100 cm. Best average growth at 2x2-m spacing (over 29 cm girth at 4 yr old) was on sandy river banks with 90 cm rainfall and the worst (20-21 cm at 4 yr old) on poor gravelly and lateritic soils with low rainfall. It is suggested that strains should be selected to suit different local soil and climatic conditions. (Refs. 8).

  9. Interactive effects of ozone and climate on tree growth and water use in a southern Appalachian forest in the USA

    Science.gov (United States)

    S.B. McLaughlin; S.D. Wullschleger; G. Sun

    2007-01-01

    A lack of data on responses of mature tree growth and water use to ambient ozone (O3) concentrations has been a major limitation in efforts to understand and model responses of forests to current and future changes in climate.Here, hourly to seasonal patterns of stem growth and sap flow velocity were...

  10. Species-specific growth responses to climate variations in understory trees of a Central African rain forest

    NARCIS (Netherlands)

    Couralet, C.; Sterck, F.J.; Sass-Klaassen, U.; Acker, Van J.; Beekman, H.

    2010-01-01

    Basic knowledge of the relationships between tree growth and environmental variables is crucial for understanding forest dynamics and predicting vegetation responses to climate variations. Trees growing in tropical areas with a clear seasonality in rainfall often form annual growth rings. In the

  11. Macrophyte growth module for the SWAT model – impact of climate change and management on stream ecology

    DEFF Research Database (Denmark)

    Lu, Shenglan; Trolle, Dennis; Erfurt, Jytte

    To access how multiple stressors affect the water quantity and quality and stream ecology at catchment scale under various management and climate change scenarios, we implemented macrophyte growth modules for the Soil and Water Assessment Tool version 2012 (SWAT). The macrophyte growth module...

  12. Severe Autumn storms in future Western Europe with a warmer Atlantic Ocean

    Science.gov (United States)

    Baatsen, Michiel; Haarsma, Reindert J.; Van Delden, Aarnout J.; de Vries, Hylke

    2015-08-01

    Simulations with a very high resolution (~25 km) global climate model indicate that more severe Autumn storms will impact Europe in a warmer future climate. The observed increase is mainly attributed to storms with a tropical origin, especially in the later part of the twentyfirst century. As their genesis region expands, tropical cyclones become more intense and their chances of reaching Europe increase. This paper investigates the properties and evolution of such storms and clarifies the future changes. The studied tropical cyclones feature a typical evolution of tropical development, extratropical transition and a re-intensification. A reduction of the transit area between regions of tropical and extratropical cyclogenesis increases the probability of re-intensification. Many of the modelled storms exhibit hybrid properties in a considerable part of their life cycle during which they exhibit the hazards of both tropical and extratropical systems. In addition to tropical cyclones, other systems such as cold core extratropical storms mainly originating over the Gulf Stream region also increasingly impact Western Europe. Despite their different history, all of the studied storms have one striking similarity: they form a warm seclusion. The structure, intensity and frequency of storms in the present climate are compared to observations using the MERRA and IBTrACS datasets. Damaging winds associated with the occurrence of a sting jet are observed in a large fraction of the cyclones during their final stage. Baroclinic instability is of great importance for the (re-)intensification of the storms. Furthermore, so-called atmospheric rivers providing tropical air prove to be vital for the intensification through diabatic heating and will increase considerably in strength in the future, as will the associated flooding risks.

  13. Radial growth of two dominant montane conifer tree species in response to climate change in North-Central China.

    Science.gov (United States)

    Jiang, Yuan; Zhang, Wentao; Wang, Mingchang; Kang, Muyi; Dong, Manyu

    2014-01-01

    North-Central China is a region in which the air temperature has clearly increased for several decades. Picea meyeri and Larix principis-rupprechtii are the most dominant co-occurring tree species within the cold coniferous forest belt ranging vertically from 1800 m to 2800 m a.s.l. in this region. Based on a tree-ring analysis of 292 increment cores sampled from 146 trees at different elevations, this study aimed to examine if the radial growth of the two species in response to climate is similar, whether the responses are consistent along altitudinal gradients and which species might be favored in the future driven by the changing climate. The results indicated the following: (1) The two species grew in different rhythms at low and high elevation respectively; (2) Both species displayed inconsistent relationships between radial growth and climate data along altitudinal gradients. The correlation between radial growth and the monthly mean temperature in the spring or summer changed from negative at low elevation into positive at high elevation, whereas those between the radial growth and the total monthly precipitation displayed a change from positive into negative along the elevation gradient. These indicate the different influences of the horizontal climate and vertical mountainous climate on the radial growth of the two species; (3) The species-dependent different response to climate in radial growth appeared mainly in autumn of the previous year. The radial growth of L. principis-rupprechtii displayed negative responses both to temperature and to precipitation in the previous September, October or November, which was not observed in the radial growth of P. meyeri. (4) The radial growth of both species will tend to be increased at high elevation and limited at low elevation, and L. principis-rupprechtii might be more favored in the future, if the temperature keeps rising.

  14. Radial growth of two dominant montane conifer tree species in response to climate change in North-Central China.

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    Full Text Available North-Central China is a region in which the air temperature has clearly increased for several decades. Picea meyeri and Larix principis-rupprechtii are the most dominant co-occurring tree species within the cold coniferous forest belt ranging vertically from 1800 m to 2800 m a.s.l. in this region. Based on a tree-ring analysis of 292 increment cores sampled from 146 trees at different elevations, this study aimed to examine if the radial growth of the two species in response to climate is similar, whether the responses are consistent along altitudinal gradients and which species might be favored in the future driven by the changing climate. The results indicated the following: (1 The two species grew in different rhythms at low and high elevation respectively; (2 Both species displayed inconsistent relationships between radial growth and climate data along altitudinal gradients. The correlation between radial growth and the monthly mean temperature in the spring or summer changed from negative at low elevation into positive at high elevation, whereas those between the radial growth and the total monthly precipitation displayed a change from positive into negative along the elevation gradient. These indicate the different influences of the horizontal climate and vertical mountainous climate on the radial growth of the two species; (3 The species-dependent different response to climate in radial growth appeared mainly in autumn of the previous year. The radial growth of L. principis-rupprechtii displayed negative responses both to temperature and to precipitation in the previous September, October or November, which was not observed in the radial growth of P. meyeri. (4 The radial growth of both species will tend to be increased at high elevation and limited at low elevation, and L. principis-rupprechtii might be more favored in the future, if the temperature keeps rising.

  15. Sugar beet growth in a changing climate: past, present and future trends in southwest Germany

    Science.gov (United States)

    Kremer, Pascal; Fuchs, Hans-Joachim; Lang, Christian

    2017-04-01

    In the study, single factors and their impact on sugar beet cultivation against the background of past and projected climate change are being analyzed. The database consists of climate data by the German Weather Service and 1x1 km interpolated INTERMET raster data. Impact models were run to assess possible future trends using climate projection data of the REgional MOdel (REMO), emission scenario A1B, Run 1, data stream 2 for Germany, daily resolution, without bias correction, 10x10 km raster (n=150) (MPI on behalf of UBA 2006). Compared periods were: B:1971 2000; K:2021-2050; L:2071-2100. Agronomic data were collected from the field books of regional trials from 1974 2014 (n=448). Moreover, a business survey of regional farmers was carried out and evaluated. Impact models to predict timing for sowing, the date of field emergence and row closure, were derived from these data. The ontogenesis was simulated using a linear, temperature-based leaf-growth model. Sowing shifted forward by 7,3 days in regional field trials from 1974 2014. Progress-oriented, risk-tolerant farmers start sowing 10-14 days earlier compared to 1980. Recently, sowing is being conducted on average on 21 March in southwest Germany. For period K, 17 March, and for period L, 2 March is being projected as the average future sowing date while the same late frost risk applies compared to present climatic conditions. Shifting forward the sowing date with spring warming and, thus, exploiting the associated yield potential is the most promising agronomic adaptation strategy to the projected climate change on the farm level. In connection to earlier sowing, the field emergence tendentially shifted forward by 14 days in the field trials. Assuming sowing on 15 March, projection results show an advance of field emergence form 7 April in period B to 3 April in period L. Row closure in field trials in average shifted forward by 19,6 days. For period L, 29 May and thus, an earlier row closure of 9 days compared

  16. Climate Responses in Growth and Wood Anatomy of Imoprtant Forest Tree Species in Denmark

    DEFF Research Database (Denmark)

    Huang, Weiwei

    and high temperatures on the development of Danish tree species are scarcely investigated. Through a dendroecological approach this dissertation assessed the growth responses related to increment, xylem anatomy and wood property of eight different important tree species, namely Picea abies (L.) Karst......., Picea sitchensis (Bong.) Carr., Abies alba Mill., Abies grandis (Dougl.) Lindl., Pseudotsuga mensiesii (Mirb.) Franco, Larix kaempferi (Lamb.) Carr., Quercus robur L. and Fagus sylvatica L., to long-term drought and high temperatures, aiming at identifying a species portfolio matching future climate...... intolerant species, mainly due to their low drought tolerance (both species) and susceptibility to high autumn temperature (only P. abies). Overall, this dissertation improves the understanding of how drought and high temperatures have impacted and will influence the growth of tree species in Danish forest...

  17. Post-1980 shifts in the sensitivity of boreal tree growth to North Atlantic Ocean dynamics and seasonal climate. Tree growth responses to North Atlantic Ocean dynamics

    Science.gov (United States)

    Ols, Clémentine; Trouet, Valerie; Girardin, Martin P.; Hofgaard, Annika; Bergeron, Yves; Drobyshev, Igor

    2018-06-01

    The mid-20th century changes in North Atlantic Ocean dynamics, e.g. slow-down of the Atlantic meridional overturning thermohaline circulation (AMOC), have been considered as early signs of tipping points in the Earth climate system. We hypothesized that these changes have significantly altered boreal forest growth dynamics in northeastern North America (NA) and northern Europe (NE), two areas geographically adjacent to the North Atlantic Ocean. To test our hypothesis, we investigated tree growth responses to seasonal large-scale oceanic and atmospheric indices (the AMOC, North Atlantic Oscillation (NAO), and Arctic Oscillation (AO)) and climate (temperature and precipitation) from 1950 onwards, both at the regional and local levels. We developed a network of 6876 black spruce (NA) and 14437 Norway spruce (NE) tree-ring width series, extracted from forest inventory databases. Analyses revealed post-1980 shifts from insignificant to significant tree growth responses to summer oceanic and atmospheric dynamics both in NA (negative responses to NAO and AO indices) and NE (positive response to NAO and AMOC indices). The strength and sign of these responses varied, however, through space with stronger responses in western and central boreal Quebec and in central and northern boreal Sweden, and across scales with stronger responses at the regional level than at the local level. Emerging post-1980 associations with North Atlantic Ocean dynamics synchronized with stronger tree growth responses to local seasonal climate, particularly to winter temperatures. Our results suggest that ongoing and future anomalies in oceanic and atmospheric dynamics may impact forest growth and carbon sequestration to a greater extent than previously thought. Cross-scale differences in responses to North Atlantic Ocean dynamics highlight complex interplays in the effects of local climate and ocean-atmosphere dynamics on tree growth processes and advocate for the use of different spatial scales in

  18. Assessing the impacts of climate change and nitrogen deposition on Norway spruce growth in Austria with BIOME-BGC

    Energy Technology Data Exchange (ETDEWEB)

    Eastaugh, Chris S.; Potzelsberger, Elisabeth; Hasenaueur, Hubert

    2011-03-15

    The purpose of this study is to determine if the climate change has had an apparent impact in Austrian forests. This research has been conducted on Norway spruce forests as this is the predominant species in Austria. Growth data between regions which have different temperature and precipitation trendsw was then compared, with results showing increased productivity in all regions thus implying that growth of the forest is driven by other factors than climate. This conclusion is consistent with previous studies supporting that forest growth is mainly driven by increasing nitrogen deposition.

  19. As Bad as it Gets: How Climate Damage Functions Affect Growth and the Social Cost of Carbon

    OpenAIRE

    Bretschger, Lukas; Pattakou, Aimilia

    2017-01-01

    The paper analyzes the effects of varying climate impacts on the social cost of carbon and economic growth. We use polynomial damage functions in a model of an endogenously growing two-sector economy. The framework includes nonrenewable natural resources which cause greenhouse gas emissions; pollution stock harms capital and reduces economic growth. We find a big effect of the selected damage function on the social cost of carbon and a significant impact on the growth rate. In our calibration...

  20. Growth-climate relationships vary with height along the stem in lodgepole pine.

    Science.gov (United States)

    Chhin, Sophan; Hogg, E H Ted; Lieffers, Victor J; Huang, Shongming

    2010-03-01

    This study tests the hypothesis that ring growth in the upper stem portion of trees is affected by climatic conditions differently than rings formed at breast height (1.3 m). A total of 389 trees from a network of 65 lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) sites in Alberta were examined using detailed stem analysis in order to examine interannual patterns of basal area increment and volume increment at different positions along the stem. Growth at lower sections of the bole was mainly driven by temperature and moisture conditions in the seasons prior to the growing season in the year of ring formation, while upper stem growth was more related to conditions during the year of growth, i.e., temperature in the early summer, or moisture in late winter to early spring. This translates into increased allocation of wood to the lower stem when prior late summer conditions are cool and wet, prior winters are mild (warm with little snow) and early summer conditions in the year of ring formation are hot and dry.

  1. Proposal for new climate agreements: Economic growth determines the emission quota

    International Nuclear Information System (INIS)

    Kallbekken, Steffen; Tjernshaugen, Andreas

    2002-01-01

    Long-term obligations to curb the emission of climate gases involve economic uncertainty because it is difficult to determine the cost of future reductions. This may be the principle reason why the USA and the developing countries are reluctant to accept binding demands on their emissions of climate gases. For example, the commitments of the Kyoto Protocol were agreed upon more than ten years before they shall be put to force. Over such a long time span it is impossible to predict the development of the economy as well as the gas emissions. Usually economical development leads to increased gas emission. If a country commits itself to a quantified limit on its emission, and the economical development turns out to be much faster than predicted, then living up to the commitments may be very expensive. The same is true if the economic growth occurs in the polluting sectors to a larger degree than expected. Many heads of state thus fear that binding emission targets may restrain economic growth

  2. Predicting tree biomass growth in the temperate-boreal ecotone: is tree size, age, competition or climate response most important?

    Science.gov (United States)

    Foster, Jane R.; Finley, Andrew O.; D'Amato, Anthony W.; Bradford, John B.; Banerjee, Sudipto

    2016-01-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species likeAcer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth

  3. Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important?

    Science.gov (United States)

    Foster, Jane R; Finley, Andrew O; D'Amato, Anthony W; Bradford, John B; Banerjee, Sudipto

    2016-06-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests' ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals' size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92-95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses

  4. Using dendrometer and dendroclimatology data to predict the growth response of Douglas-fir to climate change in the Pacific Northwest, USA

    Science.gov (United States)

    Altered seasonal climate patterns towards hotter, drier summers through the 21st century resulting from global climate change could affect the growth of coniferous forests in the Pacific Northwest (PNW) region of North America. The seasonal effects of temperature, precipitation,...

  5. Alien species in a warmer world: risks and opportunities

    Czech Academy of Sciences Publication Activity Database

    Pyšek, Petr; Jarošík, Vojtěch

    2009-01-01

    Roč. 24, č. 12 (2009), s. 686-693 ISSN 0169-5347 Grant - others:Evropská komise(XE) GOCE-CT-2003-506675 Institutional research plan: CEZ:AV0Z60050516 Keywords : biological invasions * climate change * novel communities Subject RIV: EF - Botanics Impact factor: 11.564, year: 2009

  6. Food security in the face of climate change, population growth, and resource constraints: implications for Bangladesh.

    Science.gov (United States)

    Faisal, Islam M; Parveen, Saila

    2004-10-01

    Ensuring food security has been one of the major national priorities of Bangladesh since its independence in 1971. Now, this national priority is facing new challenges from the possible impacts of climate change in addition to the already existing threats from rapid population growth, declining availability of cultivable land, and inadequate access to water in the dry season. In this backdrop, this paper has examined the nature and magnitude of these threats for the benchmark years of 2030 and 2050. It has been shown that the overall impact of climate change on the production of food grains in Bangladesh would probably be small in 2030. This is due to the strong positive impact of CO2 fertilization that would compensate for the negative impacts of higher temperature and sea level rise. In 2050, the negative impacts of climate change might become noticeable: production of rice and wheat might drop by 8% and 32%, respectively. However, rice would be less affected by climate change compared to wheat, which is more sensitive to a change in temperature. Based on the population projections and analysis of future agronomic innovations, this study further shows that the availability of cultivable land alone would not be a constraint for achieving food self-sufficiency, provided that the productivity of rice and wheat grows at a rate of 10% or more per decade. However, the situation would be more critical in terms of water availability. If the dry season water availability does not decline from the 1990 level of about 100 Bm3, there would be just enough water in 2030 for meeting both the agricultural and nonagricultural needs. In 2050, the demand for irrigation water to maintain food self-sufficiency would be about 40% to 50% of the dry season water availability. Meeting such a high agricultural water demand might cause significant negative impacts on the domestic and commercial water supply, fisheries, ecosystems, navigation, and salinity management.

  7. Grassland Growth in Response to Climate Variability in the Upper Indus Basin, Pakistan

    Directory of Open Access Journals (Sweden)

    Sawaid Abbas

    2015-08-01

    Full Text Available Grasslands in the upper Indus basin provide a resource base for nomadic livestock grazing which is one of the major traditional livelihood practices in the area. The study presents climate patterns, grassland phenology, productivity and spatio-temporal climate controls on grassland growth using satellite data over the upper Indus basin of the Himalayan region, Pakistan. Phenology and productivity metrics of the grasses were estimated using a combination of derivative and threshold methods applied on fitted seasonal vegetation indices data over the period of 2001–2011. Satellite based rainfall and land surface temperature data are considered as representative explanatory variables to climate variability. The results showed distinct phenology and productivity patterns across four bioclimatic regions: (i humid subtropical region (HSR—late start and early end of season with short length of season and low productivity (ii temperate region (TR—early start and late end of season with higher length of season and moderate productivity (iii sub alpine region (SAR—late start and late end of season with very high length of season and the most productive grasses, and (iv alpine region (AR—late start and early end of season with small length of season and least productive grasses. Grassland productivity is constrained by temperature in the alpine region and by rainfall in the humid sub-tropical region. Spring temperature, winter and summer rainfall has shown significant and varied impact on phenology across different altitudes. The productivity is being influenced by summer and annual rainfall in humid subtropical regions, spring temperature in alpine and sub-alpine regions and both temperature and rainfall are contributing in temperate regions. The results revealing a strong relationship between grassland dynamics and climate variability put forth strong signals for drawing more scientific management of rangelands in the area.

  8. High resolution crop growth simulation for identification of potential adaptation strategies under climate change

    Science.gov (United States)

    Kim, K. S.; Yoo, B. H.

    2016-12-01

    Impact assessment of climate change on crop production would facilitate planning of adaptation strategies. Because socio-environmental conditions would differ by local areas, it would be advantageous to assess potential adaptation measures at a specific area. The objectives of this study was to develop a crop growth simulation system at a very high spatial resolution, e.g., 30 m, and to assess different adaptation options including shift of planting date and use of different cultivars. The Decision Support System for Agrotechnology Transfer (DSSAT) model was used to predict yields of soybean and maize in Korea. Gridded data for climate and soil were used to prepare input data for the DSSAT model. Weather input data were prepared at the resolution of 30 m using bilinear interpolation from gridded climate scenario data. Those climate data were obtained from Korean Meteorology Administration. Spatial resolution of temperature and precipitation was 1 km whereas that of solar radiation was 12.5 km. Soil series data at the 30 m resolution were obtained from the soil database operated by Rural Development Administration, Korea. The SOL file, which is a soil input file for the DSSAT model was prepared using physical and chemical properties of a given soil series, which were available from the soil database. Crop yields were predicted by potential adaptation options based on planting date and cultivar. For example, 10 planting dates and three cultivars were used to identify ideal management options for climate change adaptation. In prediction of maize yield, combination of 20 planting dates and two cultivars was used as management options. Predicted crop yields differed by site even within a relatively small region. For example, the maximum of average yields for 2001-2010 seasons differed by sites In a county of which areas is 520 km2 (Fig. 1). There was also spatial variation in the ideal management option in the region (Fig. 2). These results suggested that local

  9. Phenology and growth adjustments of oil palm (Elaeis guineensis) to photoperiod and climate variability.

    Science.gov (United States)

    Legros, S; Mialet-Serra, I; Caliman, J-P; Siregar, F A; Clément-Vidal, A; Dingkuhn, M

    2009-11-01

    Oil palm flowering and fruit production show seasonal maxima whose causes are unknown. Drought periods confound these rhythms, making it difficult to analyse or predict dynamics of production. The present work aims to analyse phenological and growth responses of adult oil palms to seasonal and inter-annual climatic variability. Two oil palm genotypes planted in a replicated design at two sites in Indonesia underwent monthly observations during 22 months in 2006-2008. Measurements included growth of vegetative and reproductive organs, morphology and phenology. Drought was estimated from climatic water balance (rainfall - potential evapotranspiration) and simulated fraction of transpirable soil water. Production history of the same plants for 2001-2005 was used for inter-annual analyses. Drought was absent at the equatorial Kandista site (0 degrees 55'N) but the Batu Mulia site (3 degrees 12'S) had a dry season with variable severity. Vegetative growth and leaf appearance rate fluctuated with drought level. Yield of fruit, a function of the number of female inflorescences produced, was negatively correlated with photoperiod at Kandista. Dual annual maxima were observed supporting a recent theory of circadian control. The photoperiod-sensitive phases were estimated at 9 (or 9 + 12 x n) months before bunch maturity for a given phytomer. The main sensitive phase for drought effects was estimated at 29 months before bunch maturity, presumably associated with inflorescence sex determination. It is assumed that seasonal peaks of flowering in oil palm are controlled even near the equator by photoperiod response within a phytomer. These patterns are confounded with drought effects that affect flowering (yield) with long time-lag. Resulting dynamics are complex, but if the present results are confirmed it will be possible to predict them with models.

  10. Recognizing Non-Stationary Climate Response in Tree Growth for Southern Coastal Alaska, USA

    Science.gov (United States)

    Wiles, G. C.; Jarvis, S. K.; D'Arrigo, R.; Vargo, L. J.; Appleton, S. N.

    2012-12-01

    Stationarity in growth response of trees to climate over time is assumed in dendroclimatic studies. Recent studies of Alaskan yellow-cedar (Chamaecyparis nootkatensis (D. Don) Spach) have identified warming-induced early loss of insulating snowpack and frost damage as a mechanism that can lead to decline in tree growth, which for this species is documented over the last century. A similar stress may be put on temperature-sensitive mountain hemlock (Tsuga mertensiana (Bong.) Carrière) trees at low elevations, which in some cases show a decline in tree growth with warming temperatures. One of the challenges of using tree-ring based SAT, SST, PDO and PNA-related reconstructions for southern coastal Alaska has been understanding the response of tree-ring chronologies to the warming temperatures over the past 50 years. Comparisons of tree growth with long meteorological records from Sitka Alaska that extend back to 1830 suggest many mountain hemlock sites at low elevations are showing decreasing ring-widths, at mid elevations most sites show a steady increasing growth tracking warming, and at treeline a release is documented. The recognition of this recent divergence or decoupling of tree-ring and temperature trends allows for divergence-free temperature reconstructions using trees from moderate elevations. These reconstructions now provide a better perspective for comparing recent warming to Medieval warming and a better understanding of forest dynamics as biomes shift in response to the transition from the Little Ice Age to contemporary warming. Reconstructed temperatures are consistent with well-established, entirely independent tree-ring dated ice advances of land-terminating glaciers along the Gulf of Alaska providing an additional check for stationarity in the reconstructed interval.

  11. Warmer weather linked to tick attack and emergence of severe rickettsioses.

    Directory of Open Access Journals (Sweden)

    Philippe Parola

    Full Text Available The impact of climate on the vector behaviour of the worldwide dog tick Rhipicephalus sanguineus is a cause of concern. This tick is a vector for life-threatening organisms including Rickettsia rickettsii, the agent of Rocky Mountain spotted fever, R. conorii, the agent of Mediterranean spotted fever, and the ubiquitous emerging pathogen R. massiliae. A focus of spotted fever was investigated in France in May 2007. Blood and tissue samples from two patients were tested. An entomological survey was organised with the study of climatic conditions. An experimental model was designed to test the affinity of Rh. sanguineus for biting humans in variable temperature conditions. Serological and/or molecular tools confirmed that one patient was infected by R. conorii, whereas the other was infected by R. massiliae. Dense populations of Rh. sanguineus were found. They were infected with new genotypes of clonal populations of either R. conorii (24/133; 18% or R. massiliae (13/133; 10%. April 2007 was the warmest since 1950, with summer-like temperatures. We show herein that the human affinity of Rh. sanguineus was increased in warmer temperatures. In addition to the originality of theses cases (ophthalmic involvements, the second reported case of R. massiliae infection, we provide evidence that this cluster of cases was related to a warming-mediated increase in the aggressiveness of Rh. sanguineus, leading to increased human attacks. From a global perspective, we predict that as a result of globalisation and warming, more pathogens transmitted by the brown dog tick may emerge in the future.

  12. Early kit mortality and growth in farmed mink are affected by litter size rather than nest climate.

    Science.gov (United States)

    Schou, T M; Malmkvist, J

    2017-09-01

    We investigated the effects of nest box climate on early mink kit mortality and growth. We hypothesised that litters in warm nest boxes experience less hypothermia-induced mortality and higher growth rates during the 1st week of life. This study included data from 749, 1-year-old breeding dams with access to nesting materials. Kits were weighed on days 1 and 7, dead kits were collected daily from birth until day 7 after birth, and nest climate was measured continuously from days 1 to 6. We tested the influences of the following daily temperature (T) and humidity (H) parameters on the number of live-born kit deaths and kit growth: T mean, T min, T max, T var (fluctuation) and H mean. The nest microclimate experienced by the kits was buffered against the ambient climate, with higher temperatures and reduced climate fluctuation. Most (77.0%) live-born kit deaths in the 1st week occurred on days 0 and 1. Seven of 15 climate parameters on days 1 to 3 had significant effects on live-born kit mortality. However, conflicting effects among days, marginal effects and late effects indicated that climate was not the primary cause of kit mortality. Five of 30 climate parameters had significant effects on kit growth. Few and conflicting effects indicated that the climate effect on growth was negligible. One exception was that large nest temperature fluctuations on day 1 were associated with reduced deaths of live-born kit (P<0.001) and increased kit growth (P=0.003). Litter size affected kit vitality; larger total litter size at birth was associated with greater risks of kit death (P<0.001) and reduced growth (P<0.001). The number of living kits in litters had the opposite effect, as kits in large liveborn litters had a reduced risk of death (P<0.001) and those with large mean litter size on days 1 to 7 had increased growth (P=0.026). Nest box temperature had little effect on early kit survival and growth, which could be due to dams' additional maternal behaviour. Therefore, we

  13. Seasonal Differences in Climatic Controls of Vegetation Growth in the Beijing-Tianjin Sand Source Region of China.

    Science.gov (United States)

    Wang, H.

    2017-12-01

    Seasonal differences in climatic controls of vegetation growth in the Beijing-Tianjin Sand Source Region of China Bin He1 , Haiyan Wan11 State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China Corresponding author: Bin He, email addresses: hebin@bnu.edu.cnPhone:+861058806506, Address: Beijing Normal University, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China. Email addresses of co-authors: wanghaiyan@mail.bnu.edu.cnABSTRACTLaunched in 2000, the Beiing-Tainjin Sand Source Controlling Project (BTSSCP) is an ecological restoration project intended to prevent desertification in China. Evidence from multiple sources has confirmed increases in vegetation growth in the BTSSCP region since the initiation of the project. Precipitation and related soil moisture conditions typically are considered to be the main drivers of vegetation growth in this arid region. However, by investigating the relationships between vegetation growth and corresponding climatic factors, we identified seasonal variation in the climatic constraints of vegetation growth. In spring, vegetation growth is stimulated mainly by elevated temperature, whereas precipitation is the lead driver of summer greening. In autumn, positive effects of both temperature and precipitation on vegetation growth were observed. Furthermore, strong biosphere-atmosphere interactions were observed in this region. Spring warming promotes vegetation growth, but also reduces soil moisture. Summer greening has a strong cooling effect on land surface temperature. These results indicate that 1) precipitation-based projections of vegetation growth may be misleading; and 2) the ecological and environment consequences of ecological projects should be comprehensively evaluated. KEYWORDS: vegetation growth, climatic drivers, seasonal variation, BTSSCP

  14. Different parts, different stories: climate sensitivity of growth is stronger in root collars vs. stems in tundra shrubs.

    Science.gov (United States)

    Ropars, Pascale; Angers-Blondin, Sandra; Gagnon, Marianne; Myers-Smith, Isla H; Lévesque, Esther; Boudreau, Stéphane

    2017-08-01

    Shrub densification has been widely reported across the circumpolar arctic and subarctic biomes in recent years. Long-term analyses based on dendrochronological techniques applied to shrubs have linked this phenomenon to climate change. However, the multi-stemmed structure of shrubs makes them difficult to sample and therefore leads to non-uniform sampling protocols among shrub ecologists, who will favor either root collars or stems to conduct dendrochronological analyses. Through a comparative study of the use of root collars and stems of Betula glandulosa, a common North American shrub species, we evaluated the relative sensitivity of each plant part to climate variables and assessed whether this sensitivity is consistent across three different types of environments in northwestern Québec, Canada (terrace, hilltop and snowbed). We found that root collars had greater sensitivity to climate than stems and that these differences were maintained across the three types of environments. Growth at the root collar was best explained by spring precipitation and summer temperature, whereas stem growth showed weak and inconsistent responses to climate variables. Moreover, sensitivity to climate was not consistent among plant parts, as individuals having climate-sensitive root collars did not tend to have climate-sensitive stems. These differences in sensitivity of shrub parts to climate highlight the complexity of resource allocation in multi-stemmed plants. Whereas stem initiation and growth are driven by microenvironmental variables such as light availability and competition, root collars integrate the growth of all plant parts instead, rendering them less affected by mechanisms such as competition and more responsive to signals of global change. Although further investigations are required to determine the degree to which these findings are generalizable across the tundra biome, our results indicate that consistency and caution in the choice of plant parts are a key

  15. Climate-growth analysis for a Mexican dry forest tree shows strong impact of sea surface temperatures and predicts future growth declines

    NARCIS (Netherlands)

    Brienen, R.J.W.; Lebrija Trejos, E.E.; Zuidema, P.A.; Martínez- Ramos, M.

    2010-01-01

    Tropical forests will experience relatively large changes in temperature and rainfall towards the end of this century. Little is known about how tropical trees will respond to these changes. We used tree rings to establish climate-growth relations of a pioneer tree, Mimosa acantholoba, occurring in

  16. Climatic control on the growth of gigantic gypsum crystals within hypogenic caves (Naica mine, Mexico)?

    Science.gov (United States)

    Garofalo, Paolo S.; Fricker, Mattias B.; Günther, Detlef; Forti, Paolo; Mercuri, Anna-Maria; Loreti, Mara; Capaccioni, Bruno

    2010-01-01

    Three hypogenic caves within the Naica mine of Mexico ( Cueva de los Cristales — CLC, Ojo de la Reina — OR, and Cueva de las Velas — CLV) host spectacular gypsum crystals up to 11 m in length. These caves are close to another shallow cave of the area ( Cueva de las Espadas — CLE), with which they cover a 160 m-deep vertical section of the local drainage basin. Similar to other hypogenic caves, all these caves lack a direct connection with the land surface and should be unrelated with climate. A record of multi-technique fluid inclusion data and pollen spectra from cave and mine gypsum indicates surprisingly that climatic changes occurring at Naica could have controlled fluid composition in these caves, and hence crystal growth. Microthermometry and LA-ICP-Mass Spectrometry of fluid inclusions indicate that the shallow, chemically peculiar, saline fluid (up to 7.7 eq. wt.%NaCl) of CLE could have formed from evaporation, during a dry and hot climatic period. The fluid of the deep caves was instead of low salinity (˜ 3.5 eq. wt.% NaCl) and chemically homogeneous, and was poorly affected by evaporation. We propose that mixing of these two fluids, generated at different depths of the Naica drainage basin, determined the stable supersaturation conditions for the gigantic gypsum crystals to grow. Fluid mixing was controlled by the hydraulic communication between CLE and the other deep caves, and must have taken place during cycles of warm-dry and fresh-wet climatic periods, which are known to have occurred in the region. Pollen grains from a 35 ka-old gypsum crystal of CLC corresponds to a fairly homogenous catchment basin made of a mixed broadleaf wet forest, which suggests precipitation during a fresh-wet climatic period and confirms our interpretation of the fluid inclusion data. The unusual combination of geological and geochemical factors of Naica suggests that other hypogenic caves found elsewhere may not host similar crystals. However, this work shows that

  17. Sensitivity of tree ring growth to local and large-scale climate variability in a region of Southeastern Brazil

    Science.gov (United States)

    Venegas-González, Alejandro; Chagas, Matheus Peres; Anholetto Júnior, Claudio Roberto; Alvares, Clayton Alcarde; Roig, Fidel Alejandro; Tomazello Filho, Mario

    2016-01-01

    We explored the relationship between tree growth in two tropical species and local and large-scale climate variability in Southeastern Brazil. Tree ring width chronologies of Tectona grandis (teak) and Pinus caribaea (Caribbean pine) trees were compared with local (Water Requirement Satisfaction Index—WRSI, Standardized Precipitation Index—SPI, and Palmer Drought Severity Index—PDSI) and large-scale climate indices that analyze the equatorial pacific sea surface temperature (Trans-Niño Index-TNI and Niño-3.4-N3.4) and atmospheric circulation variations in the Southern Hemisphere (Antarctic Oscillation-AAO). Teak trees showed positive correlation with three indices in the current summer and fall. A significant correlation between WRSI index and Caribbean pine was observed in the dry season preceding tree ring formation. The influence of large-scale climate patterns was observed only for TNI and AAO, where there was a radial growth reduction in months preceding the growing season with positive values of the TNI in teak trees and radial growth increase (decrease) during December (March) to February (May) of the previous (current) growing season with positive phase of the AAO in teak (Caribbean pine) trees. The development of a new dendroclimatological study in Southeastern Brazil sheds light to local and large-scale climate influence on tree growth in recent decades, contributing in future climate change studies.

  18. Climate

    International Nuclear Information System (INIS)

    Fellous, J.L.

    2005-02-01

    This book starts with a series of about 20 preconceived ideas about climate and climatic change and analyses each of them in the light of the present day knowledge. Using this approach, it makes a status of the reality of the climatic change, of its causes and of the measures to be implemented to limit its impacts and reduce its most harmful consequences. (J.S.)

  19. [Impacts of climate warming on growth period and yield of rice in Northeast China during recent two decades].

    Science.gov (United States)

    Hou, Wen-jia; Geng, Ting; Chen, Qun; Chen, Chang-qing

    2015-01-01

    By using rice growth period, yield and climate observation data during the recent two decades, the impact of climate warming on rice in Northeast China was investigated by mathematical statistics methods. The results indicated that in the three provinces of Northeast China, the average, maximum and minimum temperatures in rice growing season were on the. rise, and the rainfall presented a downward trend during 1989-2009. Compared to 1990s, the rice whole growth periods of Heilongjiang, Jilin and Liaoning provinces in 2000s were prolonged 14 d, 4.5 d and 5.1 d, respectively. The increase of temperature in May, June and September could extend the rice growth period, while that in July would shorten the growth duration. The rice growth duration of registered varieties and experiment sites had a similar increasing trend in Northeast China except for the Heilongjiang Province, and the extension of registered varieties growth period was the main factor causing the prolonged growth period of rice at experiment sites. The change in daily average, minimum and maximum temperatures all could affect the rice yield in Northeast China. The increasing temperature significantly increased the rice yield in Heilongjiang Province, especially in the west region of Sanjiang Plain. Except for the south of Liaoning Province, rice yields in other regions of Northeast China were promoted by increasing temperature. Proper measures for breeding, cultivation and farming, could be adopted to fully improve the adaptation of rice to climate warming in Northeast China.

  20. Spatial variability in growth-increment chronologies of long-lived freshwater mussels: Implications for climate impacts and reconstructions

    Science.gov (United States)

    Black, Bryan A.; Dunham, Jason B.; Blundon, Brett W.; Raggon, Mark F.; Zima, Daniela

    2010-01-01

    Estimates of historical variability in river ecosystems are often lacking, but long-lived freshwater mussels could provide unique opportunities to understand past conditions in these environments. We applied dendrochronology techniques to quantify historical variability in growth-increment widths in valves (shells) of western pearlshell freshwater mussels (Margaritifera falcata). A total of 3 growth-increment chronologies, spanning 19 to 26 y in length, were developed. Growth was highly synchronous among individuals within each site, and to a lesser extent, chronologies were synchronous among sites. All 3 chronologies negatively related to instrumental records of stream discharge, while correlations with measures of water temperature were consistently positive but weaker. A reconstruction of stream discharge was performed using linear regressions based on a mussel growth chronology and the regional Palmer Drought Severity Index (PDSI). Models based on mussel growth and PDSI yielded similar coefficients of prediction (R2Pred) of 0.73 and 0.77, respectively, for predicting out-ofsample observations. From an ecological perspective, we found that mussel chronologies provided a rich source of information for understanding climate impacts. Responses of mussels to changes in climate and stream ecosystems can be very site- and process-specific, underscoring the complex nature of biotic responses to climate change and the need to understand both regional and local processes in projecting climate impacts on freshwater species.

  1. Tree- and Stand-Level Thinning Effects on Growth of European Beech (Fagus sylvatica L. on a Northeast- and a Southwest-Facing Slope in Southwest Germany

    Directory of Open Access Journals (Sweden)

    Daniela Diaconu

    2015-09-01

    Full Text Available Anticipated changes in climate and research findings on the drought sensitivity of beech have triggered controversial discussions about the future of European beech. We investigated the growth response of beech on the tree- and stand-level in mature stands to three different thinning intensities (no thinning, strong thinning, very strong thinning on a northeast- and southwest-facing slope in Southwest Germany. Linear mixed-effects models were formulated to describe effects on growth parameters on the tree- and stand-level (diameter, height, basal area, volume. At the stand-level, the stand basal area increment and stand volume increment were lower on the thinned plots. At the tree-level, the basal area increment significantly increased with increasing thinning intensity. The growth of individual trees was also influenced by initial tree size, the size-related rank of the tree within a stand, and by the aspect of the site. Our data indicate that growth of European beech is impaired on the southwest-facing slope with a warmer and drier climate and that a very strong thinning regime applied at advanced age can accelerate growth of European beech trees even on the warmer and drier site. Our findings, therefore, imply that in a warmer climate intensive thinning may also represent an important adaptive forest management measure in European beech stands.

  2. Topography and age mediate the growth responses of Smith fir to climate warming in the southeastern Tibetan Plateau

    Science.gov (United States)

    Liu, B.; Wang, Y.; Zhu, H.; Liang, E.; Camarero, J. J.

    2016-10-01

    The Tibetan Plateau holds some of the world's highest undisturbed natural treelines and timberlines. Such extreme environments constitute potentially valuable monitoring sites of the effects of climate warming on high-elevation forests. Here, we analyze a network of 21 Smith fir forests situated in the Sygera Mountains, southeastern Tibetan Plateau, using tree-ring width (TRW) and basal area increment (BAI) chronologies. Sampled sites encompassed a wide elevation gradient, from 3600 to 4400 m, including some treeline sites and diverse aspects and tree ages. In comparison with TRW series, BAI series better capture the long-term warming signal. Previous November and current April and summer temperatures are the dominant climatic factors controlling Smith fir radial growth. The mean inter-series correlations of TRW increased upwards, but the forest limit presented the highest potential to reconstruct past temperature variability. Moreover, the growth responses of young trees were less stable than those of trees older than 100 years. Climate warming is accelerating radial growth of Smith fir forest subjected to mesic conditions. Collectively, these findings confirm that the effects of site elevation and tree age should be considered when quantifying climate-growth relationships. The type of tree-ring data (BAI vs. TRW) is also relevant since BAI indices seem to be a better climatic proxy of low-frequency temperature signals than TRW indices. Therefore, site (e.g., elevation) and tree (e.g., age) features should be considered to properly evaluate the effects of climate warming on growth of high-elevation forests.

  3. Topography and age mediate the growth responses of Smith fir to climate warming in the southeastern Tibetan Plateau.

    Science.gov (United States)

    Liu, B; Wang, Y; Zhu, H; Liang, E; Camarero, J J

    2016-10-01

    The Tibetan Plateau holds some of the world's highest undisturbed natural treelines and timberlines. Such extreme environments constitute potentially valuable monitoring sites of the effects of climate warming on high-elevation forests. Here, we analyze a network of 21 Smith fir forests situated in the Sygera Mountains, southeastern Tibetan Plateau, using tree-ring width (TRW) and basal area increment (BAI) chronologies. Sampled sites encompassed a wide elevation gradient, from 3600 to 4400 m, including some treeline sites and diverse aspects and tree ages. In comparison with TRW series, BAI series better capture the long-term warming signal. Previous November and current April and summer temperatures are the dominant climatic factors controlling Smith fir radial growth. The mean inter-series correlations of TRW increased upwards, but the forest limit presented the highest potential to reconstruct past temperature variability. Moreover, the growth responses of young trees were less stable than those of trees older than 100 years. Climate warming is accelerating radial growth of Smith fir forest subjected to mesic conditions. Collectively, these findings confirm that the effects of site elevation and tree age should be considered when quantifying climate-growth relationships. The type of tree-ring data (BAI vs. TRW) is also relevant since BAI indices seem to be a better climatic proxy of low-frequency temperature signals than TRW indices. Therefore, site (e.g., elevation) and tree (e.g., age) features should be considered to properly evaluate the effects of climate warming on growth of high-elevation forests.

  4. Variations of Climate-Growth Response of Major Conifers at Upper Distributional Limits in Shika Snow Mountain, Northwestern Yunnan Plateau, China

    Directory of Open Access Journals (Sweden)

    Yun Zhang

    2017-10-01

    Full Text Available Improved understanding of climate-growth relationships of multiple species is fundamental to understanding and predicting the response of forest growth to future climate change. Forests are mainly composed of conifers in Northwestern Yunnan Plateau, but variations of growth response to climate conditions among the species are not well understood. To detect the growth response of multiple species to climate change, we developed residual chronologies of four major conifers, i.e., George’s fir (Abies georgei Orr, Likiang spruce (Picea likiangensis (Franch. E.Pritz., Gaoshan pine (Pinus densata Mast. and Chinese larch (Larix potaninii Batalin at the upper distributional limits in Shika Snow Mountain. Using the dendroclimatology method, we analyzed correlations between the residual chronologies and climate variables. The results showed that conifer radial growth was influenced by both temperature and precipitation in Shika Snow Mountain. Previous November temperature, previous July temperature, and current May precipitation were the common climatic factors that had consistent influences on radial growth of the four species. Temperature in the previous post-growing season (September–October and moisture conditions in the current growing season (June–August were the common climatic factors that had divergent impacts on the radial growth of the four species. Based on the predictions of climate models and our understanding of the growth response of four species to climate variables, we may understand the growth response to climate change at the species level. It is difficult to predict future forest growth in the study area, since future climate change might cause both increases and decreases for the four species and indirect effects of climate change on forests should be considered.

  5. Nitrogen deposition outweighs climatic variability in driving annual growth rate of canopy beech trees: Evidence from long-term growth reconstruction across a geographic gradient.

    Science.gov (United States)

    Gentilesca, Tiziana; Rita, Angelo; Brunetti, Michele; Giammarchi, Francesco; Leonardi, Stefano; Magnani, Federico; van Noije, Twan; Tonon, Giustino; Borghetti, Marco

    2018-07-01

    In this study, we investigated the role of climatic variability and atmospheric nitrogen deposition in driving long-term tree growth in canopy beech trees along a geographic gradient in the montane belt of the Italian peninsula, from the Alps to the southern Apennines. We sampled dominant trees at different developmental stages (from young to mature tree cohorts, with tree ages spanning from 35 to 160 years) and used stem analysis to infer historic reconstruction of tree volume and dominant height. Annual growth volume (G V ) and height (G H ) variability were related to annual variability in model simulated atmospheric nitrogen deposition and site-specific climatic variables, (i.e. mean annual temperature, total annual precipitation, mean growing period temperature, total growing period precipitation, and standard precipitation evapotranspiration index) and atmospheric CO 2 concentration, including tree cambial age among growth predictors. Generalized additive models (GAM), linear mixed-effects models (LMM), and Bayesian regression models (BRM) were independently employed to assess explanatory variables. The main results from our study were as follows: (i) tree age was the main explanatory variable for long-term growth variability; (ii) GAM, LMM, and BRM results consistently indicated climatic variables and CO 2 effects on G V and G H were weak, therefore evidence of recent climatic variability influence on beech annual growth rates was limited in the montane belt of the Italian peninsula; (iii) instead, significant positive nitrogen deposition (N dep ) effects were repeatedly observed in G V and G H ; the positive effects of N dep on canopy height growth rates, which tended to level off at N dep values greater than approximately 1.0 g m -2  y -1 , were interpreted as positive impacts on forest stand above-ground net productivity at the selected study sites. © 2018 John Wiley & Sons Ltd.

  6. Response of wheat restricted-tillering and vigorous growth traits to variables of climate change.

    Science.gov (United States)

    Dias de Oliveira, Eduardo A; Siddique, Kadambot H M; Bramley, Helen; Stefanova, Katia; Palta, Jairo A

    2015-02-01

    The response of wheat to the variables of climate change includes elevated CO2, high temperature, and drought which vary according to the levels of each variable and genotype. Independently, elevated CO2, high temperature, and terminal drought affect wheat biomass and grain yield, but the interactive effects of these three variables are not well known. The aim of this study was to determine the effects of elevated CO2 when combined with high temperature and terminal drought on the high-yielding traits of restricted-tillering and vigorous growth. It was hypothesized that elevated CO2 alone, rather than combined with high temperature, ameliorates the effects of terminal drought on wheat biomass and grain yield. It was also hypothesized that wheat genotypes with more sink capacity (e.g. high-tillering capacity and leaf area) have more grain yield under combined elevated CO2, high temperature, and terminal drought. Two pairs of sister lines with contrasting tillering and vigorous growth were grown in poly-tunnels in a four-factor completely randomized split-plot design with elevated CO2 (700 µL L(-1)), high day time temperature (3 °C above ambient), and drought (induced from anthesis) in all combinations to test whether elevated CO2 ameliorates the effects of high temperature and terminal drought on biomass accumulation and grain yield. For biomass and grain yield, only main effects for climate change variables were significant. Elevated CO2 significantly increased grain yield by 24-35% in all four lines and terminal drought significantly reduced grain yield by 16-17% in all four lines, while high temperature (3 °C above the ambient) had no significant effect. A trade-off between yield components limited grain yield in lines with greater sink capacity (free-tillering lines). This response suggests that any positive response to predicted changes in climate will not overcome the limitations imposed by the trade-off in yield components. © 2014 Commonwealth of

  7. The Growth of Bosnian Pine (Pinus hedreichii Christ.) at Tree-Line Locations from Kosovo and its Response to Climate

    OpenAIRE

    Bojaxhi, Faruk; Toromani, Elvin

    2016-01-01

    Background and Purpose: Pinus heldreichii Christ. is a sub-endemic species occurring at tree-line locations in Kosovo and covering an area of 2500 ha. In high elevation sites radial growth is mainly controlled by low temperatures. The main purpose of this study was the analysis of radial growth of P. heldreichii and its response to local climate conditions. Materials and Methods: Research sites comprise of three high elevation stands of P. heldreichii with specific site conditions. Core sa...

  8. Impact of Climate Change on Irrigation Demand and Crop Growth in a Mediterranean Environment of Turkey

    Directory of Open Access Journals (Sweden)

    Tomokazu Haraguchi

    2007-10-01

    Full Text Available A simulation study was carried out to describe effects of climate change on cropgrowth and irrigation water demand for a wheat-maize cropping sequence in aMediterranean environment of Turkey. Climate change scenarios were projected using dataof the three general circulation models—GCMs (CGCM2, ECHAM4 and MRI—for theperiod of 1990 to 2100 and one regional climate model—RCM—for the period of 2070 to2079. Potential impacts of climate change based on GCMs data were estimated for the A2scenario in the Special Report on Emission Scenarios (SRES. The forcing data for theboundary condition of the RCM were given by the MRI model. Daily CGCM2 and RCMdata were used for computations of water balance and crop development. Predictionsderived from the models about changes in irrigation and crop growth in this study coveredthe period of 2070 to 2079 relative to the baseline period of 1994 to 2003. The effects ofclimate change on water demand and on wheat and maize yields were predicted using thedetailed crop growth subroutine of the SWAP (Soil-Water-Atmosphere-Plant model. Precipitation was projected to decrease by about 163, 163 and 105 mm during the periodof 1990 to 2100 under the A2 scenario of the CGCM2, ECHAM4 and MRI models,respectively. The CGCM2, ECHAM4 and MRI models projected a temperature rise of 4.3,5.3 and 3.1 oC, respectively by 2100. An increase in temperature may result in a higherevaporative demand of the atmosphere. However, actual evapotranspiration (ETa fromwheat cropland under a doubling CO2 concentration for the period of 2070 to 2079 wasSensors 2007, 7 2298 predicted to decrease by about 28 and 8% relative to the baseline period based on the CGCM2 and RCM data, respectively. According to these models, irrigation demand by wheat would be higher for the same period due to a decrease in precipitation. Both ETa and irrigation water for maize cropland were projected to decrease by 24 and 15

  9. Climate control on tree growth at the upper and lower treelines: a case study in the qilian mountains, tibetan plateau.

    Directory of Open Access Journals (Sweden)

    Bao Yang

    Full Text Available It is generally hypothesized that tree growth at the upper treeline is normally controlled by temperature while that at the lower treeline is precipitation limited. However, uniform patterns of inter-annual ring-width variations along altitudinal gradients are also observed in some situations. How changing elevation influences tree growth in the cold and arid Qilian Mountains, on the northeastern Tibetan Plateau, is of considerable interest because of the sensitivity of the region's local climate to different atmospheric circulation patterns. Here, a network of four Qilian juniper (Sabina przewalskii Kom. ring-width chronologies was developed from trees distributed on a typical mountain slope at elevations ranging from 3000 to 3520 m above sea level (a.s.l.. The statistical characteristics of the four tree-ring chronologies show no significant correlation with increasing elevation. All the sampled tree growth was controlled by a common climatic signal (local precipitation across the investigated altitudinal gradient (520 m. During the common reliable period, covering the past 450 years, the four chronologies have exhibited coherent growth patterns in both the high- and low-frequency domains. These results contradict the notion of contrasting climate growth controls at higher and lower elevations, and specifically the assumption that inter-annual tree-growth variability is controlled by temperature at the upper treeline. It should be stressed that these results relate to the relatively arid conditions at the sampling sites in the Qilian Mountains.

  10. Feasible climate targets. The roles of economic growth, coalition development and expectations

    International Nuclear Information System (INIS)

    Blanford, Geoffrey J.; Richels, Richard G.; Rutherford, Thomas F.

    2009-01-01

    The analysis presented here follows the design specified by the Energy Modeling Forum (EMF) Transition Scenarios study on achieving climate stabilization goals with delayed participation by developing countries. We use the MERGE model to evaluate the core EMF scenarios for both the international and the US-specific studies. Our results indicate that a radiative forcing target equivalent to 450 ppmv CO 2 -e cannot be met even allowing for full participation and overshoot during the entire 21st century. With delayed participation of developing countries, a target of 550 ppmv CO 2 -e is only attainable with pessimistic assumptions about economic growth, and even then only at very high cost. A target of 650 ppmv CO 2 -e can be met with delayed participation for a more affordable cost. We highlight sensitivities to the core scenarios in two key dimensions: (1) the effect of the unfolding global financial crisis on the rate of economic growth and (2) the willingness of initially non-participating countries to agree at the beginning of the next commitment period (i.e. 2012) to join the coalition at a pre-specified date in the future. We find that while the recession does not fundamentally change the crucial role of developing country involvement, advance agreement on their part to future targets could substantially reduce costs for all countries. (author)

  11. Bioaccumulation and elimination of mercury in juvenile seabass (Dicentrarchus labrax) in a warmer environment

    Energy Technology Data Exchange (ETDEWEB)

    Maulvault, Ana Luísa, E-mail: aluisa@ipma.pt [Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Avenida de Brasília, 1449-006 Lisboa (Portugal); Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); MARE – Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais (Portugal); Custódio, Ana [Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Avenida de Brasília, 1449-006 Lisboa (Portugal); Instituto Superior de Agronomia (ISA), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa (Portugal); Anacleto, Patrícia [Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Avenida de Brasília, 1449-006 Lisboa (Portugal); Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); MARE – Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais (Portugal); and others

    2016-08-15

    , followed by the muscle and liver. • A warmer environment enhances MeHg bioaccumulation and hampers MeHg elimination. • Ocean warming may compromise seafood safety. • Research combining climate change and pollution effects should be strengthened.

  12. Long-term forest resilience to climate change indicated by mortality, regeneration, and growth in semiarid southern Siberia.

    Science.gov (United States)

    Xu, Chongyang; Liu, Hongyan; Anenkhonov, Oleg A; Korolyuk, Andrey Yu; Sandanov, Denis V; Balsanova, Larisa D; Naidanov, Bulat B; Wu, Xiuchen

    2017-06-01

    Several studies have documented that regional climate warming and the resulting increase in drought stress have triggered increased tree mortality in semiarid forests with unavoidable impacts on regional and global carbon sequestration. Although climate warming is projected to continue into the future, studies examining long-term resilience of semiarid forests against climate change are limited. In this study, long-term forest resilience was defined as the capacity of forest recruitment to compensate for losses from mortality. We observed an obvious change in long-term forest resilience along a local aridity gradient by reconstructing tree growth trend and disturbance history and investigating postdisturbance regeneration in semiarid forests in southern Siberia. In our study, with increased severity of local aridity, forests became vulnerable to drought stress, and regeneration first accelerated and then ceased. Radial growth of trees during 1900-2012 was also relatively stable on the moderately arid site. Furthermore, we found that smaller forest patches always have relatively weaker resilience under the same climatic conditions. Our results imply a relatively higher resilience in arid timberline forest patches than in continuous forests; however, further climate warming and increased drought could possibly cause the disappearance of small forest patches around the arid tree line. This study sheds light on climate change adaptation and provides insight into managing vulnerable semiarid forests. © 2016 John Wiley & Sons Ltd.

  13. Limited evidence for CO2 -related growth enhancement in northern Rocky Mountain lodgepole pine populations across climate gradients.

    Science.gov (United States)

    Reed, Charlotte C; Ballantyne, Ashley P; Cooper, Leila Annie; Sala, Anna

    2018-04-15

    Forests sequester large amounts of carbon annually and are integral in buffering against effects of global change. Increasing atmospheric CO 2 may enhance photosynthesis and/or decrease stomatal conductance (g s ) thereby enhancing intrinsic water-use efficiency (iWUE), having potential indirect and direct benefits to tree growth. While increasing iWUE has been observed in most trees globally, enhanced growth is not ubiquitous, possibly due to concurrent climatic constraints on growth. To investigate our incomplete understanding of interactions between climate and CO 2 and their impacts on tree physiology and growth, we used an environmental gradient approach. We combined dendrochronology with carbon isotope analysis (δ 13 C) to assess the covariation of basal area increment (BAI) and iWUE over time in lodgepole pine. Trees were sampled at 18 sites spanning two climatically distinct elevation transects on the lee and windward sides of the Continental Divide, encompassing the majority of lodgepole pine's northern Rocky Mountain elevational range. We analyzed BAI and iWUE from 1950 to 2015, and explored correlations with monthly climate variables. As expected, iWUE increased at all sites. However, concurrent growth trends depended on site climatic water deficit (CWD). Significant growth increases occurred only at the driest sites, where increases in iWUE were strongest, while growth decreases were greatest at sites where CWD has been historically lowest. Late summer drought of the previous year negatively affected growth across sites. These results suggest that increasing iWUE, if strong enough, may indirectly benefit growth at drier sites by effectively extending the growing season via reductions in g s . Strong growth decreases at high elevation windward sites may reflect increasing water stress as a result of decreasing snowpack, which was not offset by greater iWUE. Our results imply that increasing iWUE driven by decreasing g s may benefit tree growth in

  14. Possibilities and limitations of using historic provenance tests to infer forest species growth responses to climate change

    Science.gov (United States)

    Laura P. Leites; Gerald E. Rehfeldt; Andrew P. Robinson; Nicholas L. Crookston; Barry Jaquish

    2012-01-01

    Under projected changes in global climate, the growth and survival of existing forests will depend on their ability to adjust physiologically in response to environmental change. Quantifying their capacity to adjust and whether the response is species- or population-specific is important to guide forest management strategies. New analyses of historic provenance tests...

  15. Comparative genetic responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: clines in growth potential

    Science.gov (United States)

    Gerald E. Rehfeldt; Laura P. Leites; J. Bradley St Clair; Barry C. Jaquish; Cuauhtemoc Saenz-Romero; Javier Lopez-Upton; Dennis G. Joyce

    2014-01-01

    Height growth data were assembled from 10 Pinus ponderosa and 17 Pseudotsuga menziesii provenance tests. Data from the disparate studies were scaled according to climate similarities of the provenances to provide single datasets for 781 P. ponderosa and 1193 P. menziesii populations. Mixed effects models were used for two sub-specific varieties of each species to...

  16. Cuphea growth, yield, and oil characteristics as influenced by climate and soil environments across the Upper Midwest USA

    Science.gov (United States)

    Cuphea is a potential new oilseed crop rich in medium-chain fatty acids (C8:0 to C14:0) that may serve as a renewable, biodegradable source of oil for lubricants, motor oil, and aircraft fuel. Impacts of climate and soil environment on cuphea growth and development are not well understood. The objec...

  17. Pressure Infusion Cuff and Blood Warmer during Massive Transfusion: An Experimental Study About Hemolysis and Hypothermia.

    Science.gov (United States)

    Poder, Thomas G; Pruneau, Denise; Dorval, Josée; Thibault, Louis; Fisette, Jean-François; Bédard, Suzanne K; Jacques, Annie; Beauregard, Patrice

    2016-01-01

    Blood warmers were developed to reduce the risk of hypothermia associated with the infusion of cold blood products. During massive transfusion, these devices are used with compression sleeve, which induce a major stress to red blood cells. In this setting, the combination of blood warmer and compression sleeve could generate hemolysis and harm the patient. We conducted this study to compare the impact of different pressure rates on the hemolysis of packed red blood cells and on the outlet temperature when a blood warmer set at 41.5°C is used. Pressure rates tested were 150 and 300 mmHg. Ten packed red blood cells units were provided by Héma-Québec and each unit was sequentially tested. We found no increase in hemolysis either at 150 or 300 mmHg. By cons, we found that the blood warmer was not effective at warming the red blood cells at the specified temperature. At 150 mmHg, the outlet temperature reached 37.1°C and at 300 mmHg, the temperature was 33.7°C. To use a blood warmer set at 41.5°C in conjunction with a compression sleeve at 150 or 300 mmHg does not generate hemolysis. At 300 mmHg a blood warmer set at 41.5°C does not totally avoid a risk of hypothermia.

  18. Dynamic Response of Satellite-Derived Vegetation Growth to Climate Change in the Three North Shelter Forest Region in China

    Directory of Open Access Journals (Sweden)

    Bin He

    2015-08-01

    Full Text Available Since the late 1970s, the Chinese government has initiated ecological restoration programs in the Three North Shelter Forest System Project (TNSFSP area. Whether accelerated climate change will help or hinder these efforts is still poorly understood. Using the updated and extended AVHRR NDVI3g dataset from 1982 to 2011 and corresponding climatic data, we investigated vegetation variations in response to climate change. The results showed that the overall state of vegetation in the study region has improved over the past three decades. Vegetation cover significantly decreased in 23.1% and significantly increased in 21.8% of the study area. An increase in all three main vegetation types (forest, grassland, and cropland was observed, but the trend was only statistically significant in cropland. In addition, bare and sparsely vegetated areas, mainly located in the western part of the study area, have significantly expanded since the early 2000s. A moisture condition analysis indicated that the study area experienced significant climate variations, with warm-wet conditions in the western region and warm-dry conditions in the eastern region. Correlation analysis showed that variations in the Normalized Difference Vegetation Index (NDVI were positively correlated with precipitation and negatively correlated with temperature. Ultimately, climate change influenced vegetation growth by controlling the availability of soil moisture. Further investigation suggested that the positive impacts of precipitation on NDVI have weakened in the study region, whereas the negative impacts from temperature have been enhanced in the eastern study area. However, over recent years, the negative temperature impacts have been converted to positive impacts in the western region. Considering the variations in the relationship between NDVI and climatic variables, the warm–dry climate in the eastern region is likely harmful to vegetation growth, whereas the warm

  19. Impact of climate change on radial growth of Siberian spruce and Scots pine in North-western Russia

    Directory of Open Access Journals (Sweden)

    Lopatin E

    2007-01-01

    Full Text Available When adapting forest management practices to a changing environment, it is very important to understand the response of an unmanaged natural forest to climate change. The method used to identify major climatic factors influencing radial growth of Siberian spruce and Scots pine along a latitudinal gradient in north-western Russia is dendroclimatic analysis. A clear increasing long-term trend was identified in air temperature and precipitation. During the last 20 years, all meteorological stations experienced temperature increases, and 40 years ago precipitation began to increase. This is shown by the radial increment of Siberian spruce and Scots pine. Therefore, climate change could partly explain the increased forest productivity. The total variance explained by temperature varied from 22% to 41% and precipitation from 19% to 38%. The significant climatic parameters for radial increment in Komi Republic were identified, and the relation between temperature and precipitation in explained variance changes over time for Siberian spruce.

  20. Stronger sexual selection in warmer waters: the case of a sex role reversed pipefish.

    Directory of Open Access Journals (Sweden)

    Nuno M Monteiro

    Full Text Available In order to answer broader questions about sexual selection, one needs to measure selection on a wide array of phenotypic traits, simultaneously through space and time. Nevertheless, studies that simultaneously address temporal and spatial variation in reproduction are scarce. Here, we aimed to investigate the reproductive dynamics of a cold-water pipefish simultaneously through time (encompassing variation within each breeding cycle and as individuals grow and space (by contrasting populations experiencing distinct water temperature regimes in order to test hypothesized differences in sexual selection. Even though the sampled populations inhabited locations with very different water temperature regimes, they exhibited considerable similarities in reproductive parameters. The most striking was the existence of a well-defined substructure in reproductive activity, where larger individuals reproduce for longer periods, which seemed dependent on a high temperature threshold for breeding rather than on the low temperatures that vary heavily according to latitude. Furthermore, the perceived disparities among populations, such as size at first reproduction, female reproductive investment, or degree of sexual size dimorphism, seemed dependent on the interplay between seawater temperature and the operational sex ratio (OSR. Contrary to our expectations of an enhanced opportunity for sexual selection in the north, we found the opposite: higher female reproductive investment coupled with increased sexual size dimorphism in warmer waters, implying that a prolonged breeding season does not necessarily translate into reduced sexual selection pressure. In fact, if the limited sex has the ability to reproduce either continuously or recurrently during the entire breeding season, an increased opportunity for sexual selection might arise from the need to compete for available partners under strongly biased OSRs across protracted breeding seasons. A more general

  1. Evaluating Modeled Impact Metrics for Human Health, Agriculture Growth, and Near-Term Climate

    Science.gov (United States)

    Seltzer, K. M.; Shindell, D. T.; Faluvegi, G.; Murray, L. T.

    2017-12-01

    Simulated metrics that assess impacts on human health, agriculture growth, and near-term climate were evaluated using ground-based and satellite observations. The NASA GISS ModelE2 and GEOS-Chem models were used to simulate the near-present chemistry of the atmosphere. A suite of simulations that varied by model, meteorology, horizontal resolution, emissions inventory, and emissions year were performed, enabling an analysis of metric sensitivities to various model components. All simulations utilized consistent anthropogenic global emissions inventories (ECLIPSE V5a or CEDS), and an evaluation of simulated results were carried out for 2004-2006 and 2009-2011 over the United States and 2014-2015 over China. Results for O3- and PM2.5-based metrics featured minor differences due to the model resolutions considered here (2.0° × 2.5° and 0.5° × 0.666°) and model, meteorology, and emissions inventory each played larger roles in variances. Surface metrics related to O3 were consistently high biased, though to varying degrees, demonstrating the need to evaluate particular modeling frameworks before O3 impacts are quantified. Surface metrics related to PM2.5 were diverse, indicating that a multimodel mean with robust results are valuable tools in predicting PM2.5-related impacts. Oftentimes, the configuration that captured the change of a metric best over time differed from the configuration that captured the magnitude of the same metric best, demonstrating the challenge in skillfully simulating impacts. These results highlight the strengths and weaknesses of these models in simulating impact metrics related to air quality and near-term climate. With such information, the reliability of historical and future simulations can be better understood.

  2. Preparing for a Warmer World: Towards a Global Governance System to Protect Climate Refugees

    NARCIS (Netherlands)

    Biermann, F.; Boas, I.J.C.

    2010-01-01

    human history. Millions of people, largely in Africa and Asia, might be forced to leave their homes to seek refuge in other places or countries over the course of the century. Yet the current institutions, organizations, and funding mechanisms are not sufficiently equipped to deal with this looming

  3. Wildlife as reservoirs for vector borne diseases in a warmer Scandinavian climate

    DEFF Research Database (Denmark)

    Bødker, Rene; Kristensen, Birgit

    can be attributed global warming. Some of these new infections have important reservoirs in wild animals and this may affect prevention and control of outbreaks in humans and domestic animals. This may also put wild animals at risk of not just infections but also of control efforts targeted...... of the future risk of outbreaks in the Nordic countries. DTU Veterinary Institute is developing a system for continuous risk assessment of potential spread of exotic insect borne diseases of veterinary and human importance. Mathematical models for selected vector borne diseases are continuously updated...

  4. Breeding in a warmer world. Evolution of avian breeding time under climate change

    NARCIS (Netherlands)

    Gienapp, P.

    2005-01-01

    Het ziet ernaar uit dat de koolmees in Nederland zich niet op tijd zal kunnen aanpassen aan de gevolgen van de klimaatverandering, concludeert de bioloog Phillip Gienapp. Omdat het hoofdvoedsel van hun jongen uit rupsen bestaat, is het relatieve tijdstip van broeden ten opzichte van de rupsen

  5. Old Growth Conifer Watersheds in the Western Cascades, Oregon: Sentinels of Climate Change

    Science.gov (United States)

    Miles, K. M.

    2011-12-01

    In the Pacific Northwest, where the majority of precipitation falls during the winter, mountain snowpacks provide an important source of streamflow during the dry summer months when water demands are frequently highest. Increasing temperatures associated with climate change are expected to result in a decline in winter snowpacks in western North America, earlier snowmelt, and subsequently a shift in the timing of streamflows, with an increasing fraction of streamflows occurring earlier in the water year and drier conditions during the summer. Long-term records from headwater watersheds in old growth conifer forest at the H. J. Andrews Experimental Forest (HJ Andrews), Oregon, provide the opportunity to examine changes in climate, vegetation, and streamflow. Continuous streamflow records have been collected since 1953, 1964, and 1969 from three small (8.5-60 ha) watersheds (WS2, WS8, and WS9). Over the 40- to 50-year period of study, late winter to early summer monthly average minimum temperatures have increased by 1-2°C, and spring snow water equivalent at a nearby Snotel site has declined, but monthly precipitation has remained unchanged. Spring runoff ratios have declined in by amounts equivalent to 0.59-2.45 mm day-1 at WS2, WS8, and WS9, which are comparable to estimated rates of stand-level transpiration from trees in these watersheds. However, winter runoff ratios have not changed significantly at either WS2 or WS9, and have actually decreased at WS8 by 2.43 mm day-1 over the period of record. Furthermore, summer runoff ratios have not changed significantly at either WS8 or WS9, and have increased at WS2 by 0.34 mm day-1 over the period of record. These findings suggest that warming temperatures have resulted in a reduction in spring snowpacks and an earlier onset of evapotranspiration in the spring when soil moisture is abundant, but physiological responses of these conifer forests to water stress and water surplus may mitigate or exceed the expression of a

  6. Spatiotemporal Effects of Climate Variability and Urban Growth on the "Valle de Toluca" Aquifer (Mexico)

    Science.gov (United States)

    Mastachi-Loza, C. A.; Diaz-Delgado, C.; Esteller, M. V.; Gomez-Albores, M. A.; Becerril, R.; Ruiz-Gomez, M. D.

    2013-05-01

    Toluca city is located in the "Valle de Toluca" at the upper course of the Lerma river basin, is an important economic center which contributes with 1.2% of Gross National Product (GNP) since it is an industrial city, The city has grown due to the economic development sustained by the "Valle de Toluca" aquifer which provides water for human consumption, industrial facilities and crop irrigation. Recent studies have shown that in the last 50 years the annual precipitation rate in Toluca has increased 122 mm, whereas the daily minimum temperature has increased 1.1 °C and the daily maximum temperature has also increased 0.8 °C. These results show a general overview of the change in the climate conditions of the city; however they do not show the spatial distribution of the change. For this reason, the aim of this work was to evaluate the spatiotemporal change of precipitation rates and urban growth in order to determine their effects over the "Valle de Toluca" aquifer. In order to detect the urban growth, a supervised classification technique has been used taking into account Landsat TM satellite images between 1973, 1986, 2000 and 2005. A yearly spatiotemporal raster set of rainfall rates from 1980 to 2010 were obtained interpolating data from 812 climatologic stations. To evaluate the effect in annual precipitation rates and urban growth over the aquifer, we interpolate data from 38 piezometers from 1980 to 2010 to obtain a spatiotemporal raster set. The piezometric values correspond to the aquifer's upper level. The spatiotemporal raster sets were analyzed with the non-parametric Theil-Sen test to determine trends in piezometric levels and precipitation rates. Finally the urban growth, spatial-temporal trends of precipitation rates and piezometric levels were displayed in a GIS and then subjectively analyzed to figure out coincidences. An increase in annual precipitation rates (+87 mm) over Toluca's Valley during the last three decades was observed specially

  7. Are all temperate lakes eutrophying in a warmer world?

    Science.gov (United States)

    Paltsev, A.; Creed, I. F.

    2017-12-01

    Freshwater lakes are at risk of eutrophication due to climate change and intensification of human activities on the planet. In relatively undisturbed areas of the temperate forest biome, lakes are "sentinels" of the effects of rising temperatures. We hypothesise that rising temperatures are driving a shift from nutrient-poor oligotrophic states to nutrient-rich eutrophic states. To test this hypothesis, we examined a time series of satellite based chlorophyll-a (a proxy of algal biomass) of 12,000+ lakes over 30 years in the Canadian portion of the Laurentian Great Lakes basin. From the time series, non-stationary trends (detected by Mann-Kendall analysis) and stationary cycles (revealed through Morlet wavelet analysis) were removed, and the standard deviation (SD) of the remaining residuals was used as an indicator of lake stability. Four classes of lake stability were identified: (1) stable (SD is consistently low); (2) destabilizing (SD increases over time); (3) unstable (SD is consistently high); and (4) stabilizing lakes (SD decreases over time). Stable lakes were either oligotrophic or eutrophic indicating the presence of two stable states in the region. Destabilizing lakes were shifting from oligotrophic to lakes with a higher trophic status (indicating eutrophication), unstable lakes were mostly mesotrophic, and stabilizing lakes were shifting from eutrophic to the lakes with lower trophic status (indicating oligotrophication). In contrast to common expectations, while many lakes (2142) were shifting from oligotrophic to eutrophic states, more lakes (3199) were showing the opposite trend and shifting from eutrophic to oligotrophic states. This finding reveals a complexity of lake responses to rising temperatures and the need to improve understanding of why some lakes shift while others do not. Future work is focused on exploring the interactive effects of global, regional, and local drivers of lake trophic states.

  8. Major Changes in Growth Rate and Growth Variability of Beech (Fagus sylvatica L.) Related to Soil Alteration and Climate Change in Belgium

    OpenAIRE

    Latte, Nicolas; Perin, Jérôme; Kint, Vincent; Lebourgeois, François; Claessens, Hugues

    2016-01-01

    Global change-particularly climate change, forest management, and atmospheric deposition-has significantly altered forest growing conditions in Europe. The influences of these changes on beech growth (Fagus sylvatica L.) were investigated for the past 80 years in Belgium, using non-linear mixed effects models on ring-width chronologies of 149 mature and dominant beech trees (87-186 years old). The effects of the developmental stage (i.e., increasing tree size) were filtered out in order to fo...

  9. Climate, canopy disturbance, and radial growth averaging in a second-growth mixed-oak forest in West Virginia, USA

    Science.gov (United States)

    James S. Rentch; B. Desta Fekedulegn; Gary W. Miller

    2002-01-01

    This study evaluated the use of radial growth averaging as a technique of identifying canopy disturbances in a thinned 55-year-old mixed-oak stand in West Virginia. We used analysis of variance to determine the time interval (averaging period) and lag period (time between thinning and growth increase) that best captured the growth increase associated with different...

  10. Predicting climate change impacts on native and invasive tree species using radial growth and twenty-first century climate scenarios

    NARCIS (Netherlands)

    González-Muñoz, N.; Linares, J.C.; Castro-Díez, P.; Sass-Klaassen, U.G.W.

    2014-01-01

    The climatic conditions predicted for the twenty-first century may aggravate the extent and impacts of plant invasions, by favouring those invaders more adapted to altered conditions or by hampering the native flora. We aim to predict the fate of native and invasive tree species in the oak forests

  11. Climate impact on the tree growth, vigor and productivity in Siberia

    Science.gov (United States)

    Kharuk, V.; Im, S.; Petrov, I.; Dvinskaya, M.

    2017-12-01

    Changing climate has an impact on the Siberian taiga forests. We analyzed GPP and NPP trends, growth index, and stands mortality within the Central Siberia (48°- 75°N/80°-115°E). Considered forests included larch-dominant (Larix sibirica, L. dahurica) and "dark needle conifer" (DNC: Abies sibirica, Pinus sibirica, Picea obovata) stands. GPP and NPP trends calculated based on the Terra/MODIS products. Growth index calculations based on dendrochronology data. Water stress analysis based on the gravimetric and microwave satellite data and MERRA-2 database. Analyzed variables included precipitation, air temperature, VPD, drought index SPEI, and root zone wetness. We found positive GPP trends within majority (>90%) of larch-dominant and DNC ranges, whereas NPP trends are positive on the +10C°) temperatures and vegetation period length. During recent years larch experience water stress in the beginning of vegetation period. Tree decline and mortality observed within DNC stands, and that phenomenon regularly coincided with zones of negative NPP trends. Mortality correlated with VPD, SPEI, and root zone moisture content. Bark beetles (including aggressive species Polygraphus proximus, similar to Dendroctonus ponderosae in American forests) attacked water-stressed trees. Geographically, mortality began on the margins of the DNC range (e.g., within the forest-steppe ecotone) and on terrain features with maximal water stress risk (narrow-shaped hilltops, convex steep south facing slopes, shallow well-drained soils). Currently, Siberian pine and fir decline observed within southern range of these species. In addition, air temperature and aridity increase promotes Siberian silkmoth (Dendrolimus sibiricus) outbreak that occurred about one degree northward of formerly range. Observing and predicting aridity increase will lead to the replacement of Siberian pine and fir within southern range of these species with more tolerant species (e.g., Pinus sylvestris, Larix spp.).

  12. Growth, Flowering Time and Quality of Twelve Apple Varieties under Urmia Climate

    Directory of Open Access Journals (Sweden)

    Reza Rezaee

    2017-08-01

    Full Text Available Introduction: Apple is a major commercial fruit crop grown in Iran. The country produces approximately 1.6 - 2.7 million tonnes of apples and was one of the top 10 apple producing countries in the world during the last decade. West Azerbaijan province, with more than 50,000 hectare of apple orchards and by producing of approximately one million tonne of fresh apple, is one of the main regions of apple production in Iran. In this region, two common apple cultivars Red Delicious and Golden Delicious are dominant (>90%, which needs to be updated by new apple cultivars to satisfy different technical/management as well as worldwide marketing requirements. Apple cultivars evaluations was started in Iran since 1953 and a lot of apple collection were established, but and until new apple cultivar was not introduced to farmers, As a first step for introduction of alternative cultivars, in this study, vegetative growth, flowering time, fruit ripening time as well as fruit quality of 12 apple (Malus pumilla Mill cultivars were evaluated under Urmia climatic conditions. Therefore, the main objective of this study was to evaluate vegetative growth, quality and compatibility of some apple cultivars to allow selection of alternative cultivars for commercial apple production in the northwest province of Iran. Materials and methods: This experiment was conducted at the Kahriz Horticultural Research Station located in Urmia-Iran (latitude 44°07' E; 37º 53' N.; altitude, 1325 m above sea level. The experimental design was randomized complete blocks, with 12 treatments (cultivars and three replications. The apple cultivars including Golden Delicious, Red Delicious, Red Spur, Fuji, Delbar Stival, Golden Smothee, Jonagold, Gholab-Kohanz, Golab-Kermanshah, Mahali Shikhi and Shafie Abadi were grafted on MM 111 rootstock. Trees were 10-year-old with a planting distance of 3 x 4 m and were trained as modified leader system. Data collected for annual shoot growth, time

  13. The Growth of Bosnian Pine (Pinus hedreichii Christ. at Tree-Line Locations from Kosovo and its Response to Climate

    Directory of Open Access Journals (Sweden)

    Faruk Bojaxhi

    2016-12-01

    Full Text Available Background and Purpose: Pinus heldreichii Christ. is a sub-endemic species occurring at tree-line locations in Kosovo and covering an area of 2500 ha. In high elevation sites radial growth is mainly controlled by low temperatures. The main purpose of this study was the analysis of radial growth of P. heldreichii and its response to local climate conditions. Materials and Methods: Research sites comprise of three high elevation stands of P. heldreichii with specific site conditions. Core samples were collected from 98 healthy dominant and co-dominant trees at breast height using increment borer. They were prepared and cross-dated using standard dendrochronological methods, while tree-ring widths were measured to the nearest 0.001 mm using the TSAP software. The ARSTAN program was used to standardize the tree-ring widths and to calculate dendrochronological statistical parameters. The growth-climate relationship was investigated using bootstrapped correlation function analysing the residual chronologies of each sampled site as a dependent variable and the climatic data from May of the (n-1 year up to the October of the n year for the common period 1951-2013 as an independent variable. Results: The length of Bosnian pine chronologies ranged from 175 to 541 years. All chronologies had high values of first-order autocorrelation indicating that radial growth of P. heldreichii is affected by the climate conditions of the previous growing year. Koritnik chronology had the highest values of the mean sensitivity due to the influence of drought stress. This conclusion is also supported by the result of growth-climate relationship where radial growth is negatively correlated with June temperatures and positively associated with July and August precipitation. We found that radial growth of young trees from Koritnik site is limited by the combined effect of temperatures and summer drought stress. In high elevation sites, temperature is expected to control the

  14. Elevational shifts in thermal suitability for mountain pine beetle population growth in a changing climate

    Science.gov (United States)

    Barbara J. Bentz; Jacob P. Duncan; James A. Powell

    2016-01-01

    Future forests are being shaped by changing climate and disturbances. Climate change is causing large-scale forest declines globally, in addition to distributional shifts of many tree species. Because environmental cues dictate insect seasonality and population success, climate change is also influencing tree-killing bark beetles. The mountain pine beetle,...

  15. Changes in Vegetation Growth Dynamics and Relations with Climate over China’s Landmass from 1982 to 2011

    Directory of Open Access Journals (Sweden)

    Guang Xu

    2014-04-01

    Full Text Available Understanding how the dynamics of vegetation growth respond to climate change at different temporal and spatial scales is critical to projecting future ecosystem dynamics and the adaptation of ecosystems to global change. In this study, we investigated vegetated growth dynamics (annual productivity, seasonality and the minimum amount of vegetated cover in China and their relations with climatic factors during 1982–2011, using the updated Global Inventory Modeling and Mapping Studies (GIMMS third generation global satellite Advanced Very High Resolution Radiometer (AVHRR Normalized Difference Vegetation Index (NDVI dataset and climate data acquired from the National Centers for Environmental Prediction (NCEP. Major findings are as follows: (1 annual mean NDVI over China significantly increased by about 0.0006 per year from 1982 to 2011; (2 of the vegetated area in China, over 33% experienced a significant positive trend in vegetation growth, mostly located in central and southern China; about 21% experienced a significant positive trend in growth seasonality, most of which occurred in northern China (>35°N; (3 changes in vegetation growth dynamics were significantly correlated with air temperature and precipitation (p < 0.001 at a region scale; (4 at the country scale, changes in NDVI was significantly and positively correlated with annual air temperature (r = 0.52, p < 0.01 and not associated with annual precipitation (p > 0.1; (5 of the vegetated area, about 24% showed significant correlations between annual mean NDVI and air temperature (93% positive and remainder negative, and 12% showed significant correlations of annual mean NDVI with annual precipitation (65% positive and 35% negative. The spatiotemporal variations in vegetation growth dynamics were controlled primarily by temperature and secondly by precipitation. Vegetation growth was also affected by human activities; and (6 monthly NDVI was significantly correlated with the

  16. Laboratory Studies of the Role of Amines in Particle Formation, Growth and Climate

    Energy Technology Data Exchange (ETDEWEB)

    Finlayson-Pitts, Barbara J. [Univ. of California, Irvine, CA (United States)

    2015-02-07

    Organosulfur compounds have a variety of sources, particularly biological processes in the oceans. Their oxidation in air forms sulfur dioxide, which is further oxidized to sulfuric acid, as well as methanesulfonic acid (MSA). While sulfuric acid is a well known precursor to particles in air, MSA had not been regarded as a source of new particle formation. Laboratory studies were carried out under this project that showed MSA forms new particles quite efficiently in the presence of amines and water vapor. The data could be reproduced with a relatively simple kinetics model representing cluster formation and growth, which is promising for representing this chemistry in global climate models. The initial steps in the kinetics scheme are based on quantum chemical calculations of likely clusters. The organosulfur chemistry was introduced into an atmospheric model for southern California and used to predict the impact of going to a fossil-fuel free world in which anthropogenic emissions of SO2 are removed, but the natural processes remain.

  17. Nitrogen effects on growth and development of sunflower hybrids under agro-climatic conditions of malonate

    International Nuclear Information System (INIS)

    Nasim, W.; Ahmad, A.; Wajid, A.; Muhammad, D.

    2011-01-01

    The effect of nitrogen (N) on growth, development, yield and yield components of different sunflower (Helianthus annuus L.) hybrids was evaluated under agro-climatic conditions of Multan during spring 2008 and 2009. The experiment was laid out in a randomized complete block design with split plot arrangement having three replications, keeping cultivars in the main plots and N levels in the subplots. The net plot size was 4.2 m x 5 m. The results showed that, with increasing N rates, there was increment in the biomass, yield and yield components while the oil contents were adversely affected. However, there was high seed yield in 2008 as compared to 2009. Among sunflower hybrids, Hysun-38 gave more yield as compared to other sunflower hybrids (Hysun-33, Pioneer 64A93), while in case of N levels, 180 kg ha/sup -1/ provided higher yield than other N rates (0, 60, 120, 240 kg ha/sup -1/) in both years of study especially during 2008. (author)

  18. [Responses of Picea likiangensis radial growth to climate change in the Small Zhongdian area of Yunnan Province, Southwest China].

    Science.gov (United States)

    Zhao, Zhi-Jiang; Tan, Liu-Yi; Kang, Dong-Wei; Liu, Qi-Jing; Li, Jun-Qing

    2012-03-01

    Picea likiangensis (Franch. ) Pritz. primary forest is one of the dominant forest types in the Small Zhongdian area in Shangri-La County of Yunnan Province. In this paper, the responses of P. likiangensis tree-ring width to climate change were analyzed by dendrochronological methods, and the dendrochronology was built by using relatively conservative detrending negative exponential curves or linear regression. Correlation analysis and response function analysis were applied to explore the relationships between the residual chronology series (RES) and climatic factors at different time scales, and pointer year analysis was used to explain the reasons of producing narrow and wide rings. In the study area, the radial growth of P. likiangensis and the increasing air temperature from 1990 to 2008 had definite 'abruption'. The temperature and precipitation in previous year growth season were the main factors limiting the present year radial growth, and especially, the temperature in previous July played a negative feedback role in the radial growth, while the sufficient precipitation in previous July promoted the radial growth. The differences in the temperature variation and precipitation variation in previous year were the main reasons for the formation of narrow and wide rings. P. likiangensis radial growth was not sensitive to the variation of PDSI.

  19. Douglas-fir displays a range of growth responses to ...

    Science.gov (United States)

    Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) growth in the Pacific Northwest is affected by climatic, edaphic factors and Swiss needle cast (SNC) disease. We examine Douglas-fir growth responses to temperature, dewpoint deficit (DPD), soil moisture, and SNC using time series intervention analysis of intra-annual tree-ring width data collected at nine forest stands in western Oregon, USA. The effects of temperature and SNC were similar in importance on tree growth at all sites. Previous-year DPD during the annual drought period was a key factor limiting growth regionally. Winter temperature was more important at high elevation cool sites, whereas summer temperature was more important at warm and dry sites. Growth rate increased with summer temperature to an optimum (Topt) then decreased at higher temperatures. At drier sites, temperature and water affected growth interactively such that Topt decreased with decreasing summer soil moisture. With climate change, growth rates increased at high elevation sites and declined at mid-elevation inland sites since ~1990. Growth response to climate is masked by SNC regionally. We conclude that as temperature rises and precipitation patterns shift towards wetter winters and drier summers, Douglas-fir will experience greater temperature and water stress and an increase in severity of SNC. By the end of the 21st century, climate models predict hotter, drier summers and warmer, wetter winters in the Pac

  20. [Climate-growth relationships of Picea koraiensis and causes of its recent decline in Xiaoxing' an Mountains, China].

    Science.gov (United States)

    Yao, Qi-chao; Wang, Xiao-chun; Xiao, Xing-wei

    2015-07-01

    Two tree-ring width chronologies of Picea koraiensis at two altitudes in Fenglin National Nature Reserve of Xiaoxing'an Mountains, China were developed by using dendrochronological methods. To identify main limiting factors of P. koraiensis radial growth at the two altitudes, the relationships between the chronologies and local temperature, precipitation, Palmer drought severity index (PDSI), and large-scale climatic factors were investigated. Meanwhile, the reasons of P. koraiensis growth decline in recent years were also explored. Results showed that radial growth of P. koraiensis in Xiaoxing'an Mountains was mainly limited by temperatures, especially by the minimum temperature in growing season, while the limiting effect of precipitation was relatively weak. Climate responses of P. koraiensis growth at the different altitudes showed significant differences. Radial growths of P. koraiensis at the low altitude were positively correlated with precipitation in the current growth season (June-September) and whole year, and negatively correlated with soil temperatures at different depths, especially at 80 cm depth in growing season. Meanwhile, it was signi-ficantly positively correlated with PDSI in growing season. However, the relationships between radial growth of P. koraiensis at the high altitude and precipitation, air and soil temperatures, and PDSI were not significant as that at the low altitude. Growth decline of P. koraiensis in Xiaoxing'an Mountains could be related to the phase changes in Atlantic multidecadal oscillation (AMO) and Pacific decadal oscillation (PDO) and the significant global warming since 1980. The coupling effects of the above changes might result in increased soil evaporation and exacerbated warming and drying phenomena, consequently causing the growth decline of P. koraiensis at the low altitude.

  1. Adaptive and plastic responses of Quercus petraea populations to climate across Europe.

    Science.gov (United States)

    Sáenz-Romero, Cuauhtémoc; Lamy, Jean-Baptiste; Ducousso, Alexis; Musch, Brigitte; Ehrenmann, François; Delzon, Sylvain; Cavers, Stephen; Chałupka, Władysław; Dağdaş, Said; Hansen, Jon Kehlet; Lee, Steve J; Liesebach, Mirko; Rau, Hans-Martin; Psomas, Achilleas; Schneck, Volker; Steiner, Wilfried; Zimmermann, Niklaus E; Kremer, Antoine

    2017-07-01

    How temperate forests will respond to climate change is uncertain; projections range from severe decline to increased growth. We conducted field tests of sessile oak (Quercus petraea), a widespread keystone European forest tree species, including more than 150 000 trees sourced from 116 geographically diverse populations. The tests were planted on 23 field sites in six European countries, in order to expose them to a wide range of climates, including sites reflecting future warmer and drier climates. By assessing tree height and survival, our objectives were twofold: (i) to identify the source of differential population responses to climate (genetic differentiation due to past divergent climatic selection vs. plastic responses to ongoing climate change) and (ii) to explore which climatic variables (temperature or precipitation) trigger the population responses. Tree growth and survival were modeled for contemporary climate and then projected using data from four regional climate models for years 2071-2100, using two greenhouse gas concentration trajectory scenarios each. Overall, results indicated a moderate response of tree height and survival to climate variation, with changes in dryness (either annual or during the growing season) explaining the major part of the response. While, on average, populations exhibited local adaptation, there was significant clinal population differentiation for height growth with winter temperature at the site of origin. The most moderate climate model (HIRHAM5-EC; rcp4.5) predicted minor decreases in height and survival, while the most extreme model (CCLM4-GEM2-ES; rcp8.5) predicted large decreases in survival and growth for southern and southeastern edge populations (Hungary and Turkey). Other nonmarginal populations with continental climates were predicted to be severely and negatively affected (Bercé, France), while populations at the contemporary northern limit (colder and humid maritime regions; Denmark and Norway) will

  2. Early kit mortality and growth in farmed mink are affected by litter size rather than nest climate

    DEFF Research Database (Denmark)

    Schou, Toke Munk; Malmkvist, Jens

    2017-01-01

    increased growth (P=0.026). Nest box temperature had little effect on early kit survival and growth, which could be due to dams’ additional maternal behaviour. Therefore, we cannot confirm that temperature is the primary reason for kit mortality, under the conditions of plenty straw access for maternal nest......We investigated the effects of nest box climate on early mink kit mortality and growth. We hypothesised that litters in warm nest boxes experience less hypothermia-induced mortality and higher growth rates during the 1st week of life. This study included data from 749, 1-year-old breeding dams...... building. Instead, prenatal and/or parturient litter size is the primary factor influencing early kit vitality. The results indicate that the focus should be on litter size and dam welfare around the times of gestation and birth to increase early kit survival in farmed mink....

  3. Comparative seed germination traits in alpine and subalpine grasslands: higher elevations are associated with warmer germination temperatures.

    Science.gov (United States)

    Fernández-Pascual, E; Jiménez-Alfaro, B; Bueno, Á

    2017-01-01

    Seed germination traits in alpine grasslands are poorly understood, despite the sensitivity of these communities to climate change. We hypothesise that germination traits predict species occurrence along the alpine-subalpine elevation gradient. Phylogenetic comparative analyses were performed using fresh seeds of 22 species from alpine and subalpine grasslands (1600-2400 m) of the Cantabrian Mountains, Spain (43° N, 5° W). Laboratory experiments were conducted to characterise germinability, optimum germination temperature and effect of cold and warm stratification on dormancy breaking. Variability in these traits was reduced by phylogenetic principal component analysis (phyl.PCA). Phylogenetic generalised least squares regression (PGLS) was used to fit a model in which species average elevation was predicted from their position on the PCA axes. Most subalpine species germinated in snow-like conditions, whereas most alpine species needed accumulation of warm temperatures. Phylogenetic signal was low. PCA1 ordered species according to overall germinability, whilst PCA2 ordered them according to preference for warm or cold germination. PCA2 significantly predicted species occurrence in the alpine-subalpine gradient, as higher elevation species tended to have warmer germination preferences. Our results show that germination traits in high-mountain grasslands are closely linked to the alpine-subalpine gradient. Alpine species, especially those from stripped and wind-edge communities, prefer warmer germination niches, suggesting that summer emergence prevents frost damage during seedling establishment. In contrast, alpine snowfield and subalpine grassland plants have cold germination niches, indicating that winter emergence may occur under snow to avoid drought stress. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. DAILY STEM GROWTH PATTERN IN IRRIGATED APPLE ORCHARDS FROM ARGES COUNTY IN RELATION TO CLIMATE CHANGES

    Directory of Open Access Journals (Sweden)

    E. Chitu

    2012-01-01

    Full Text Available In terms of climate change manifested in the last 30 years in Romania (1982-2011, average data for 29 localities and characterized by a significant increase in maximum and minimum temperatures, especially in the summer months and increased rainfall deficit, fruit trees farm efficiency is becoming increasingly dependent on strict control of water management through irrigation systems. Thus, the maximum air temperatures experienced average growth trend per decade of 0.88°C, 0.82°C and 0.70°C in June, July and August, respectively, and minimum of 0.61°C, 0.67°C and 0.75°C, in the same months. In this context, ensuring continuous easily accessible soil water content to the root system of the trees, in correlation with plant consumption, has become the most widely used measure to mitigate the negative effects of rising temperatures and rainfall deficits. One of the most accurate methods of water stress early diagnosis and monitoring in a very short step of the fruit trees growth processes is the measurement of trunk diameter variations (SDV with electronic dendrometers. To highlight the advantages of applying the method to irrigated apple (Malus domestica Borkh. plantations from the southern Romania, we have organized two experiences with Redix and Braeburn cvs. grafted on M9 in 2009-2012 period. For measurements were used DEX 100 (Dynamax dendrometers and GP1 dataloggers (Delta-T Devices. It was found that all SDV-derived indices (maximum daily shrinkage (MDS, daily recovery (DR and daily growth (DG of the trees trunk between two successive days may be used for early diagnosis of water and temperature stress. DG was significantly negatively influenced by MDS in both cultivars and in all months of the year, except in September. The Redix cv. DG was inhibited only by the MDS values greater than 0.36 mm. DG is a much less sensitive indicator of water and heat trees stress than MDS. Emergence of water stress was highlighted by two indicators: soil

  5. Recent climatic drying leads to age-independent growth reductions of white spruce stands in western Canada.

    Science.gov (United States)

    Hogg, Edward H; Michaelian, Michael; Hook, Trisha I; Undershultz, Michael E

    2017-12-01

    Since 2001, climatic conditions have been notably drier than normal across large areas of the western Canadian interior, leading to widespread impacts on the forests of this region. This poses a major concern for the future, given climate change projections for continued warming and drying. We conducted tree-ring analysis in 75 pure stands of white spruce (Picea glauca) across Alberta and west-central Saskatchewan to examine the effects of recent climatic drying on the growth of this important boreal tree species. Allometric equations were used to calculate annual growth in aboveground tree biomass (G BM ) from ring width measurements. Results showed an increasing trend in G BM from the 1960s to the 1990s, followed by a sharp decline during the severe drought of 2001-2002. Of the 75 stands, only 18 recovered sufficiently to cause an increase in mean G BM from the predrought decade of 1991-2000 to the subsequent decade of 2001-2010. The remaining 57 stands exhibited a decline in mean G BM between these decades. Climatic drying was a major cause of the growth decline, as shown by the significant stand-level relationship between percentage change in decadal mean G BM and the change in decadal mean values of a climate moisture index from 1991-2000 to 2001-2010. Subsequent analyses of boreal stands sampled across Alberta during 2015 revealed that white spruce growth had declined even further as drought conditions intensified during 2014-2015. Overall, there was a 38% decrease in mean G BM between 1997 and 2015, but surprisingly, the percentage decrease was not significantly different for young, productive stands compared with older, less productive stands. Thus, stand ageing cannot explain the observed decline in white spruce growth during the past quarter century, suggesting that these forests are at risk if the trend towards more frequent, severe drought continues in the region. © 2017 Her Majesty the Queen in Right of Canada Global Change Biology ©2017 John Wiley

  6. Effect of warming and flow rate conditions of blood warmers on red blood cell integrity.

    Science.gov (United States)

    Poder, T G; Pruneau, D; Dorval, J; Thibault, L; Fisette, J-F; Bédard, S K; Jacques, A; Beauregard, P

    2016-11-01

    Fluid warmers are routinely used to reduce the risk of hypothermia and cardiac complications associated with the infusion of cold blood products. However, warming blood products could generate haemolysis. This study was undertaken to compare the impact of temperature of blood warmers on the per cent haemolysis of packed red blood cells (RBCs) heated at different flow rates as well as non-flow conditions. Infusion warmers used were calibrated at 41·5°C ± 0·5°C and 37·5°C ± 0·5°C. Cold RBC units stored at 4°C in AS-3 (n = 30), aged 30-39 days old, were divided into half units before being allocated under two different scenarios (i.e. infusion pump or syringe). Blood warmers were effective to warm cold RBCs to 37·5°C or 41·5°C when used in conjunction with an infusion pump at flow rate up to 600 ml/h. However, when the warmed blood was held in a syringe for various periods of time, such as may occur in neonatal transfusions, the final temperature was below the expected requirements with measurement as low as 33·1°C. Increasing the flow with an infusion pump increased haemolysis in RBCs from 0·2% to up to 2·1% at a flow rate of 600 ml/h regardless of the warming device used (P < 0·05). No relevant increase of haemolysis was observed using a syringe. The use of a blood warmer adjusted to 41·5°C is probably the best choice for reducing the risk of hypothermia for the patient without generating haemolysis. However, we should be cautious with the use of an infusion pump for RBC transfusion, particularly at high flow rates. © 2016 International Society of Blood Transfusion.

  7. Assessing the impacts of climate change and nitrogen deposition on Norway spruce (Picea abies L. Karst) growth in Austria with BIOME-BGC.

    Science.gov (United States)

    Eastaugh, Chris S; Pötzelsberger, Elisabeth; Hasenauer, Hubert

    2011-03-01

    The aim of this paper is to determine whether a detectable impact of climate change is apparent in Austrian forests. In regions of complex terrain such as most of Austria, climatic trends over the past 50 years show marked geographic variability. As climate is one of the key drivers of forest growth, a comparison of growth characteristics between regions with different trends in temperature and precipitation can give insights into the impact of climatic change on forests. This study uses data from several hundred climate recording stations, interpolated to measurement sites of the Austrian National Forest Inventory (NFI). Austria as a whole shows a warming trend over the past 50 years and little overall change in precipitation. The warming trends, however, vary considerably across certain regions and regional precipitation trends vary widely in both directions, which cancel out on the national scale These differences allow the delineation of 'climatic change zones' with internally consistent climatic trends that differ from other zones. This study applies the species-specific adaptation of the biogeochemical model BIOME-BGC to Norway spruce (Picea abies (L.) Karst) across a range of Austrian climatic change zones, using input data from a number of national databases. The relative influence of extant climate change on forest growth is quantified, and compared with the far greater impact of non-climatic factors. At the national scale, climate change is found to have negligible effect on Norway spruce productivity, due in part to opposing effects at the regional level. The magnitudes of the modeled non-climatic influences on aboveground woody biomass increment increases are consistent with previously reported values of 20-40 kg of added stem carbon sequestration per kilogram of additional nitrogen deposition, while climate responses are of a magnitude difficult to detect in NFI data.

  8. Seasonal response of biomass growth and allocation of a boreal bioenergy crop (Phalaris arundinacea L.) to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Chang Zhang

    2013-06-01

    in the growing season. Compared to CON, ET and ETC increased LMF and SMF, and decreased RMF over the whole growing season under NW and HW. Under LW, ET and ETC decreased LMF and increased RMF throughout the growing season, and increased SMF in early periods and then decreased later in the growing season. EC decreased the LMF and SMF and increased the RMF over the growing season but did not significantly affect the seasonal biomass allocation pattern between plant organs. The LMF was higher and the RMF was lower throughout the growing season in response to the higher groundwater level, while the effect of groundwater level on the SMF depended on the developmental phase of the plants. Our results show that climatic treatments affected biomass growth and biomass allocation to each of the three plant organs, while the direction and extent of climate-related changes in biomass growth and allocation depended on the availability of groundwater. The influence of groundwater level appeared to be crucial for the carbon gain regarding the production of RCG biomass for energy purposes and the concurrent sequestration of carbon in soils under changing climates in the mire sites used to cultivate RCG. (orig.)

  9. Reduce growth rate of light-duty vehicle travel to meet 2050 global climate goals

    Energy Technology Data Exchange (ETDEWEB)

    Sager, Jalel; Apte, Joshua S; Lemoine, Derek M; Kammen, Daniel M, E-mail: jalel.sager@berkeley.edu, E-mail: japte@berkeley.edu, E-mail: dlemoine@berkeley.edu, E-mail: daniel.kammen@gmail.com [Energy and Resources Group, University of California, Berkeley, CA (United States)

    2011-04-15

    Strong policies to constrain increasing global use of light-duty vehicles (cars and light trucks) should complement fuel efficiency and carbon intensity improvements in order to meet international greenhouse gas emission and climate targets for the year 2050.

  10. The Response of Tree-Ring Growth to Climate at Upper Timberline of Southern Aspect of Mt. Taibai

    Directory of Open Access Journals (Sweden)

    Qin Jin

    2016-01-01

    Full Text Available In recent years, the impact of climate change on vegetation in Qinling mountainous area has already been authenticated by numerous investigations, nevertheless, as the major ridge of Qinling Mountains as well as national natural conservation reserve, the ecology response of Mt. Taibai sub-alpine vegetation to climate change has not yet gained enough public attention.In this study, in accordance with the method of dendrochronology, response analysis was carried out to contrast characteristic parameters of tree-ring width chronologies for Larix chinensis from different elevations as well as their response pattern to climate change. The result showed that, Mean sensitivity, standard deviation and variance in first eigenvector are increasing with the rise of elevation, but the correlation coefficients (R1, R2, R3 were decreasing which indicated that the strength of the tree’s common or relative response to environment was decreasing with altitude. Precipitation had stronger correlation with the tree-ring radial growth than air temperature in both of the sites, during the growing season, trees in lower altitude had better correlation with temperature than in higher altitude, thus showing the different response to climate between the two different sites.

  11. Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia.

    Science.gov (United States)

    Fant, Charles; Schlosser, C Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John

    2016-01-01

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

  12. Germination and Seedling Growth of Water Primroses: A Cross Experiment between Two Invaded Ranges with Contrasting Climates

    Directory of Open Access Journals (Sweden)

    Morgane Gillard

    2017-09-01

    Full Text Available Aquatic ecosystems are vulnerable to biological invasions, and will also be strongly impacted by climate change, including temperature increase. Understanding the colonization dynamics of aquatic invasive plant species is of high importance for preservation of native biodiversity. Many aquatic invasive plants rely on clonal reproduction to spread, but mixed reproductive modes are common. Under future climate changes, these species may favor a sexual reproductive mode. The aim of this study was to test the germination capacity and the seedling growth of two water primrose species, Ludwigia hexapetala and Ludwigia peploides, both invasive in Europe and in the United States. We performed a reciprocal transplant of seeds of L. hexapetala and L. peploides from two invasive ranges into experimental gardens characterized by Oceanic and Mediterranean-type climates. Our results showed that higher temperatures increased or maintained germination percentages and velocity, decreased survivorship of germinants, but increased their production of biomass. The origin of the seeds had low impact on L. hexapetala responses to temperature, but greatly influenced those of L. peploides. The invasiveness of water primroses in ranges with Oceanic climates might increase with temperature. The recruitment from seed banks by these species should be considered by managers to improve the conservation of native aquatic and wetland plant species.

  13. Global warming: Climate scenarios and international agriculture

    International Nuclear Information System (INIS)

    Downing, T.E.; Parry, M.L.

    1991-01-01

    The potential impacts of climatic change on international agriculture are summarized, drawing on results from the Intergovernmental Panel on Climate Change impacts working group. The four different climate change scenarios used for investigating impacts: historical studies, artificial scenarios, analogues, and general circulation models, are briefly reviewed. Climate change will affect agriculture in three ways: direct effects of increased carbon dioxide concentration, effects of altered weather patterns, and secondary effects on social and economic situations. The effect of increased carbon dioxide concentration is uncertain, but potentially will enhance plant growth and water use efficiency. The sensitivity of grain maize to incremental changes in annual temperature is described, with the suitable zone expanding from the middle of Europe to southern Scandinavia. Potential damage from insect pests may increase under warmer climates, with northerly movement of insect breeding grounds. Temperature increases are likely to lengthen the growing season where temperature is a limiting factor, especially at higher lattitudes in the Northern Hemisphere. Higher temperatures, shorter periods of grain filling, and reduced winter chilling will reduce potential yields in current core grain-growing areas, and changing moisture regimes will shift agricultural patterns. The horn of Africa and parts of western Africa are likely to suffer enhanced food supply vulnerability. 16 refs., 4 figs

  14. The recent population expansion of boarfish, Capros aper (Linnaeus, 1758): Interactions of climate, growth and recruitment

    DEFF Research Database (Denmark)

    Coad, Julie Olivia; Hüssy, Karin; Farrell, E.D.

    2014-01-01

    The objectives of this study were to evaluate whether temperature changes in the Northeast Atlantic influence the growth and recruitment dynamics of boarfish, Capros aper. Two geographically separate areas were examined, 'north' at the northern distribution range west of Ireland and 'south......' on the main fishing grounds south of Ireland. No significant differences in length-at-age were observed between the two areas. Interannual otolith growth patterns were similar between the two areas with distinct years of faster and slower growth. In the 'north', no significant relationship between adult...... growth and temperature was observed, while growth in the 'south' was positively related to temperature up to approximately 16°C growth rates were suppressed in the years with temperatures above that. Recruitment showed a positive correlation with adult growth the previous year for the Spanish recruitment...

  15. Climate, streamflow, and legacy effects on growth of riparian Populus angustifolia in the arid San Luis Valley, Colorado

    Science.gov (United States)

    Andersen, Douglas

    2016-01-01

    Knowledge of the factors affecting the vigor of desert riparian trees is important for their conservation and management. I used multiple regression to assess effects of streamflow and climate (12–14 years of data) or climate alone (up to 60 years of data) on radial growth of clonal narrowleaf cottonwood (Populus angustifolia), a foundation species in the arid, Closed Basin portion of the San Luis Valley, Colorado. I collected increment cores from trees (14–90 cm DBH) at four sites along each of Sand and Deadman creeks (total N = 85), including both perennial and ephemeral reaches. Analyses on trees conditions was common. Models for trees farther from the channel or over a deep water table explained 23–71% of SGI variability, and 4 of 5 contained a streamflow variable. Analyses using solely climate variables over longer time periods explained 17–85% of SGI variability, and 10 of 12 included a variable indexing summer precipitation. Three large, abrupt shifts in recent decades from wet to dry conditions (indexed by a seasonal Palmer Drought Severity Index) coincided with dramatically reduced radial growth. Each shift was presumably associated with branch dieback that produced a legacy effect apparent in many SGI series: uncharacteristically low SGI in the year following the shift. My results suggest trees in locations distant from the active channel rely on the regional shallow unconfined aquifer, summer rainfall, or both to meet water demands. The landscape-level differences in the water supplies sustaining these trees imply variable effects from shifts in winter-versus monsoon-related precipitation, and from climate change versus streamflow or groundwater management.

  16. Mainstreaming Low-Carbon Climate-Resilient growth pathways into Development Finance Institutions' activities. A research project on the standards, tools and metrics to support transition to the low-carbon climate-resilient development models. Paper 1 - Climate and development finance institutions: linking climate finance, development finance and the transition to low-carbon, climate-resilient economic models

    International Nuclear Information System (INIS)

    Eschalier, Claire; Cochran, Ian; Deheza, Mariana; Risler, Ophelie; Forestier, Pierre

    2015-10-01

    Development finance institutions (DFIs) are in a position to be key actors in aligning development and the 2 deg. challenge. One of the principal challenges today is to scale-up the financial flows to the trillions of dollars per year necessary to achieve the 2 deg. C long-term objectives. Achieving this transition to a low-carbon, climate resilient (LCCR) economic model requires the integration or 'mainstreaming' of climate issues as a prism through which all investment decisions should be made. This paper presents an overview of the opportunities and challenges of linking a LCCR transition with the objectives of development finance. It first presents the two-fold challenge of climate change and development for countries around the world. Second, the paper explores the role of development finance institutions and their support for the transition to a low-carbon, climate-resilient economic model. Finally, it examines a necessary paradigm shift to integrate climate and development objectives to establish a 'LCCR development model' able to simultaneously tackling development priorities and needs for resilient, low-carbon growth. This will necessitate a move from focusing on a 'siloed' vision of climate finance to a means of aligning activities across the economy with the LCCR objectives to ensure that the majority of investments are coherent with this long-term transition. (authors)

  17. Growth-Climate Response of Young Turkey Oak (Quercus cerris L. Coppice Forest Stands along Longitudinal Gradient in Albania

    Directory of Open Access Journals (Sweden)

    Merita Stafasani

    2015-06-01

    Full Text Available Background and Purpose: Turkey oak (Quercus cerris L. is the most widespread species in Albania and less investigated from dendroclimatological point of view. Previous studies have reported that Q. cerris is sensitive to the environment when growing at different latitudes and ecological conditions. Based on this fact we have explored the response of different Q. cerris populations located along the longitudinal gradient. Materials and Methods: The stem discs were sampled from six sites (Kukes, Diber, Rreshen, Ulez, Elbasan, Belsh along longitudinal gradient ranging from north-east to central Albania. All oak forests stands grow under the influence of specific local Mediterranean climate. Tree-ring widths were measured to the nearest 0.001 mm using a linear table, LINTAB and the TSAP-Win program. Following the standard dendrochronological procedures residual tree-ring width chronologies were built for each site. Statistical parameters commonly used in dendrochronology were calculated for each site chronology. Relations between the tree-ring chronologies were explored using Hierarchical Factor Classification (HFC and Principal Component Analysis (PCA, while the radial growth-climate relationship was analyzed through correlation analysis using a 19-month window from April in the year prior to tree-ring formation (year t - 1 until October in the year of growth (year t. Results and Conclusions: The length of the site chronologies ranged from 16 to 36 years, with the Elbasan site chronology being the longest and the Belsh site chronology the shortest one. Trees at lower elevation were younger than trees at higher elevation. Statistical parameters (mean sensitivity (MS and auto correlation (AC of site chronologies were different among them and lower values of AC1 showed a weaker dependence of radial growth from climatic conditions of the previous growing year. Principal component analysis showed that Belsh, Rreshen and Elbasan site chronologies were

  18. Effects of post-glacial phylogeny and genetic diversity on the growth variability and climate sensitivity of European silver fir

    Czech Academy of Sciences Publication Activity Database

    Bošela, M.; Popa, I.; Gömöry, D.; Longauer, R.; Tobin, B.; Kyncl, J.; Kyncl, T.; Nechita, C.; Petras, R.; Sidor, C. G.; Šebeň, V.; Büntgen, Ulf

    2016-01-01

    Roč. 104, č. 3 (2016), s. 716-724 ISSN 0022-0477 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : abies-alba mill. * western carpathians * time-series * mitochondrial-dna * glacial refugia * forest decline * air-pollution * consequences * quaternary * drought * air pollution * dendroecology * drought * ecology * global warming * plant-climate interactions * post-glacial migration * radial growth * tree decline Subject RIV: EH - Ecology, Behaviour Impact factor: 5.813, year: 2016

  19. Evaluating the growth parameters of soybean in response to plant growth promoting fungi under Mazandaran climate conditions

    Directory of Open Access Journals (Sweden)

    mohammad yazdani

    2016-05-01

    Full Text Available Abstract In low-input cropping systems, the natural roles of microorganisms in maintaining soil fertility may be more important than conventional system. In order to investigate the effects of plant growth promoting fungi on improvement of growth and development in soybean (cv: JK an experiment was conducted at the research farm of Sari Agricultural Sciences and Natural Resources University during the 2011-2012 growing seasons. Treatments were arranged in a factorial experiment based a completely randomized block design with three replications. The first factor was six levels of fungi: inoculation T. harzianum and AMF genus Glumus: G. mosseae, G. intraradices, and co-inoculation of T. harzianum + G. mosseae, T. harzianum + G. intraradices and non-inoculation (control. The second factor was three levels of phosphorus (0, 70 and 140 kg.ha-1 from superphosphate trip. Results showed that inoculation of T. harzianum and G. mosseae significantly had maximum chlorophyll content up to 17% and 16% at reduced phosphorus dosage (70 kg.ha-1 and conventional phosphorus dosage as compared to the control respectively. The greatest effect was recorded at reduced phosphorus dosage (70 kg.ha-1 and conventional phosphorus dosage significant increase in terms of chlorophyll content. In addition, the dry weights and chlorophyll content of soybean plants in reduced phosphorous dosage (70 kg.ha-1 and co-inoculated with T. harzianum + G. mosseae as well as conventional phosphorous dosage were significantly higher than the non-inoculated plants. In this experiment, at reduce phosphate fertilizer (P0%: 0 treatment, not affected of plant growth promoting fungi compared to control. But, reduced phosphorous dosage (70 kg.ha-1 was more affected.

  20. Recent Trends of Tree Growth in Relation to Climate Change in Hungary

    OpenAIRE

    SOMOGYI, Zoltán

    2008-01-01

    The paper addresses two related issues. One is whether, and how, growth patterns of standmean height have changed in Hungary in the last few decades, and the other is whether recentlyobserved increases in mean annual temperature might have caused changes in growth trends. Changesin tree growth were investigated for beech (Fagus sylvatica), sessile oak (Quercus petraea) andTurkey oak (Quercus cerris) by comparing stand mean heights over age using data from the forestinventories of 1981 and 200...

  1. Our struggle for climate - a low carbon world with growth is possible

    International Nuclear Information System (INIS)

    Chalendar, Pierre-Andre de

    2015-01-01

    In order to avoid an irreversible climate catastrophe, and as the will and commitments of States are not enough, the mobilisation of companies and enterprises is essential. This book aims to show that enterprises, which have been for long considered as responsible of greenhouse gas emissions, are now at the forefront of the struggle against climate change. The author describes the various challenges faced by French companies regarding climate and the environment. He thinks that the world will always need more energy, more steel, more aluminium, more building materials, more cars, more chemistry, more machines, more tubes and cables. The solution is then a technological one to transform industrial activities for a low carbon or zero carbon and growing economy

  2. Mediterranean climate effects. II. Conifer growth phenology across a Sierra Nevada ecotone.

    Science.gov (United States)

    Royce, E B; Barbour, M G

    2001-05-01

    Growth and xylem water potential of the lower elevation conifers Pinus jeffreyi and Abies concolor and the higher elevation Pinus monticola and Abies magnifica were monitored in their montane Mediterranean habitat of the southernmost Sierra Nevada mountains of California. Measurements were made across the ecotone between the midmontane and upper montane forests and through light and heavy snowfall years.Radial stem growth, averaging ∼1.5 mm/yr, started 2 wk after snow melt, providing that maximum air temperatures had reached 21°C, and ended when predawn water potentials fell rapidly at the onset of the summer drought. Leader growth started on or after a fixed date, providing that minimum air temperatures were above -4°C for Pinus species or +2.5°C for Abies species. The cue for leader growth was inferred to be photoperiodic. Leader growth ended when either a determinate internode length of ∼1 mm was reached or predawn water potentials fell rapidly. Abies magnifica grew more rapidly than the low-elevation species, but had a shorter growth period; its annual leader growth, as a consequence, was only 35 mm/yr vs. 50 mm/yr for the low-elevation species. Needle growth was similarly determinate in the absence of early drought. This growth phenology contributes to determining species distribution across the ecotone.

  3. Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change

    Science.gov (United States)

    Bestion, Elvire; Teyssier, Aimeric; Richard, Murielle; Clobert, Jean; Cote, Julien

    2015-01-01

    Evidence has accumulated in recent decades on the drastic impact of climate change on biodiversity. Warming temperatures have induced changes in species physiology, phenology, and have decreased body size. Such modifications can impact population dynamics and could lead to changes in life cycle and demography. More specifically, conceptual frameworks predict that global warming will severely threaten tropical ectotherms while temperate ectotherms should resist or even benefit from higher temperatures. However, experimental studies measuring the impacts of future warming trends on temperate ectotherms' life cycle and population persistence are lacking. Here we investigate the impacts of future climates on a model vertebrate ectotherm species using a large-scale warming experiment. We manipulated climatic conditions in 18 seminatural populations over two years to obtain a present climate treatment and a warm climate treatment matching IPCC predictions for future climate. Warmer temperatures caused a faster body growth, an earlier reproductive onset, and an increased voltinism, leading to a highly accelerated life cycle but also to a decrease in adult survival. A matrix population model predicts that warm climate populations in our experiment should go extinct in around 20 y. Comparing our experimental climatic conditions to conditions encountered by populations across Europe, we suggest that warming climates should threaten a significant number of populations at the southern range of the distribution. Our findings stress the importance of experimental approaches on the entire life cycle to more accurately predict population and species persistence in future climates. PMID:26501958

  4. Rainbow trout adaptation to a warmer Patagonia and its potential to increase temperature tolerance in cultured stocks

    Directory of Open Access Journals (Sweden)

    Sonia Alejandra Crichigno

    2018-02-01

    Full Text Available The viability of rainbow trout Oncorhynchus mykiss (Walbaum, 1792 culture is being challenged progressively by global warming. Previous trials with Australian and Japanese rainbow trout lines suggested that improvements in thermal performance may be possible. Here, we hypothesized that strain-related differences in physiological response to temperature exist between a north Patagonian hatchery stock (CENSALBA, a Neotropical one (Criadero Boca de Río, and a thermal stream (Valcheta population of wild introduced rainbow trout. This was tested by comparing, at 20 °C, the thermal preference, specific metabolic rate, thermal tolerance, growth, and condition on juveniles of the three strains, and on a Valcheta stream male x CENSALBA female F1 cross. Preferred temperature (PT and loss of equilibrium temperature (LET, a measure of thermal tolerance of Valcheta stream and F1 were significantly higher than those of CENSALBA, and the average PTs of Valcheta stream and F1 were higher than the 95% confidence interval of available reference data for rainbow trout. These results suggest that the F1, reared under standard hatchery conditions and selected by growth and thermal preference, presents higher thermal preference and higher thermal tolerance than the current CENSALBA hatchery stock. Introduction of this naturally adapted strain to hatchery stocks would likely result in the improvement of their temperature resistance to warmer waters. Current studies on adults of this F1 generation are underway.

  5. The impact of atmospheric deposition and climate on forest growth in Europe using two empirical modelling approaches

    Science.gov (United States)

    Dobbertin, M.; Solberg, S.; Laubhann, D.; Sterba, H.; Reinds, G. J.; de Vries, W.

    2009-04-01

    growth models, values for the various models ranged between 16 and 24 kg (mean 19 kg) carbon uptake per kg nitrogen deposition. Both approaches, although being very different and using a different set of plots and different methods to estimate the N induced carbon uptake in stem wood resulted in very similar results. In summary, our results indicate a clear fertilization effect of N deposition on European forests, mainly on sites with high C/N soil ratios. It is in line with approaches focused on the fate of N in forest ecosystems and with results of N fertilizer experiments but much smaller than had recently been reported in other field studies (De Vries et al., 2008). Increasing temperature was also found to have a positive influence on forest growth, but this effect seemed to be less clear. References: De Vries W., Solberg S., Dobbertin M., Sterba H., Laubhahn D., Reinds G.J., Nabuurs G.-J., Gundersen P. (2008) Ecologically implausible carbon response. Nature, 451, E1-E3. Laubhann, D., Sterba H., Reinds, G.J., de Vries, W. The impact of atmospheric deposition and climate on forest growth in European monitoring plots: An individual tree growth model. Forest Ecol. Manage. (2009) doi:10.1016/j.foreco.2008.09.050. Solberg, S., Dobbertin, M., Reinds, G.J., Lange, H., Andreassen, K., Garcia Fernandez, P., Hildingsson, A., de Vries, W. Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: A stand growth approach. For. Ecol. Manage. (2009) doi:10.1016/j.foreco.2008.09.057.

  6. Photosynthetic oxygen production in a warmer ocean: the Sargasso Sea as a case study.

    Science.gov (United States)

    Richardson, Katherine; Bendtsen, Jørgen

    2017-09-13

    Photosynthetic O 2 production can be an important source of oxygen in sub-surface ocean waters especially in permanently stratified oligotrophic regions of the ocean where O 2 produced in deep chlorophyll maxima (DCM) is not likely to be outgassed. Today, permanently stratified regions extend across approximately 40% of the global ocean and their extent is expected to increase in a warmer ocean. Thus, predicting future ocean oxygen conditions requires a better understanding of the potential response of photosynthetic oxygen production to a warmer ocean. Based on our own and published observations of water column processes in oligotrophic regions, we develop a one-dimensional water column model describing photosynthetic oxygen production in the Sargasso Sea to quantify the importance of photosynthesis for the downward flux of O 2 and examine how it may be influenced in a warmer ocean. Photosynthesis is driven in the model by vertical mixing of nutrients (including eddy-induced mixing) and diazotrophy and is found to substantially increase the downward O 2 flux relative to physical-chemical processes alone. Warming (2°C) surface waters does not significantly change oxygen production at the DCM. Nor does a 15% increase in re-mineralization rate (assuming Q 10  = 2; 2°C warming) have significant effect on net sub-surface oxygen accumulation. However, changes in the relative production of particulate (POM) and dissolved organic material (DOM) generate relatively large changes in net sub-surface oxygen production. As POM/DOM production is a function of plankton community composition, this implies plankton biodiversity and food web structure may be important factors influencing O 2 production in a warmer ocean.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  7. In-line Microwave Warmer for Blood and Intravenous Fluids. Phase 2.

    Science.gov (United States)

    1988-02-15

    occuring in the battlefield often requires restoring normothermia and infusion of fluids, such as saline or blood, into the patient. These two...elevation is required to restore normal body temperature in response to hypothermic cardioplegic arrest induced prior to the operation. 6 1.2 System... Microfiltration Devices," Acta Annaesth Scand, 23:40- 45, 1979. [20] K Linko, K Hynynen, "Erythrocyte Damage Caused by the Haemotherm Microwave Blood Warmer

  8. [On academic thought and clinical application of LI Yan-Fang's middle-warmer energy method].

    Science.gov (United States)

    Li, Li-Jun

    2010-10-01

    The present paper introduces LI Yan-Fang's middle-warmer energy method from acupoint selection, needling methods, treatment principle and his clinical experiences in treatment of stroke and insomnia etc. The acupuncture prescription of this method consist of Shangwan (CV 13), Zhongwan (CV 12), Jianli (CV 11), Xiawan (CV 10), Shuifen (CV 9), Huangshu (KI 16) and Qihai (CV 6) etc as the main acupoints combined with strict manipulation and depth of needling to treat clinical diseases.

  9. The trilemma of growth. Growth of population, energy consumption and climatic change - three problems, no solution?; Das Trilemma des Wachstums. Bevoelkerungswachstum, Energieverbrauch und Klimawandel - drei Probleme, keine Loesung?

    Energy Technology Data Exchange (ETDEWEB)

    Klingholz, Reiner; Toepfer, Klaus

    2012-03-15

    The world has three big growth problems: The human race has doubled its number in the last 44 years. Their energy consumption has tripled over the same period. And also the emissions of greenhouse gases has grown faster than the number of people. If all the trends continue, they have the potential to disturb the ecological balance on the planet to such an extent that the living conditions of a growing part of humanity will be threatened. In a recent discussion paper by the Berlin Institute for population and development (Berlin, Federal Republic of Germany), the authors address the question of how to find a way out of this 'trilemma of growth'. The discussion paper provides concrete proposals for action for the implementation of the global energy turnaround. The education assumes an important role because it affects not only a moderating effect on the population growth. It also enables the handling of promising future technologies and facilitates the adjustment to the impending consequences of climate change.

  10. Chemical Hand Warmer Packet Ingestion: A Case of Elemental Iron Exposure.

    Science.gov (United States)

    Weiland, Jessica L; Sherrow, Leighanne K; Jayant, Deepak A; Katz, Kenneth D

    2017-09-01

    For individuals who work outdoors in the winter or play winter sports, chemical hand warmers are becoming increasingly more commonplace because of their convenience and effectiveness. A 32-year-old woman with a history of chronic pain and bipolar disorder presented to the emergency department complaining of a "warm sensation" in her mouth and epigastrium after reportedly ingesting the partial contents of a chemical hand warmer packet containing between 5 and 8 g of elemental iron. She had been complaining of abdominal pain for approximately 1 month and was prescribed unknown antibiotics the previous day. The patient denied ingestion of any other product or medication other than what was prescribed. A serum iron level obtained approximately 6 hours after ingestion measured 235 micrograms/dL (reference range 40-180 micrograms/dL). As the patient demonstrated no new abdominal complaints and no evidence of systemic iron toxicity, she was discharged uneventfully after education. However, the potential for significant iron toxicity exists depending on the extent of exposure to this or similar products. Treatment for severe iron toxicity may include fluid resuscitation, whole bowel irrigation, and iron chelation therapy with deferoxamine. Physicians should become aware of the toxicity associated with ingestion of commercially available hand warmers. Consultation with a medical toxicologist is recommended. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  11. Influence of weather and climate variables on the basal area growth of individual shortleaf pine trees

    Science.gov (United States)

    Pradip Saud; Thomas B. Lynch; Duncan S. Wilson; John Stewart; James M. Guldin; Bob Heinemann; Randy Holeman; Dennis Wilson; Keith Anderson

    2015-01-01

    An individual-tree basal area growth model previously developed for even-aged naturally occurring shortleaf pine trees (Pinus echinata Mill.) in western Arkansas and southeastern Oklahoma did not include weather variables. Individual-tree growth and yield modeling of shortleaf pine has been carried out using the remeasurements of over 200 plots...

  12. Canopy accession strategies and climate-growth relationships in Acer Rubrum.

    Science.gov (United States)

    Justin L. Hart; Megan L. Buchanan; Scott J. Torreano

    2012-01-01

    A pervasive pattern of forest composition change is occurring throughout the Central Hardwood Forest of the eastern US. Acer rubrum has invaded the understory of Quercus stands across a variety of site types. The proliferation of A. rubrum, and that of other shade-tolerant mesophytes, inhibits the regeneration of Quercus. Without alterations in disturbance or climate...

  13. Climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes

    Science.gov (United States)

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.

    2018-01-01

    The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20–25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.

  14. Linking two centuries of tree growth and glacier dynamics with climate changes in Kamchatka

    Czech Academy of Sciences Publication Activity Database

    Doležal, Jiří; Altman, Jan; Vetrova, V. P.; Hara, T.

    2014-01-01

    Roč. 124, 1-2 (2014), s. 207-220 ISSN 0165-0009 R&D Projects: GA ČR GA13-13368S Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : climate change * Little Ice Age * tree ring reconstruction Subject RIV: EH - Ecology, Behaviour Impact factor: 3.430, year: 2014

  15. Slow growth of a translocated beaver population partly due to a climatic shift in food quality

    NARCIS (Netherlands)

    Nolet, B.A.; Broftová, L.; Heitkönig, I.M.A.; Vorel, A.; Kostkan, V.

    2005-01-01

    In temperate regions climate change has led to advances in plant phenology which may disrupt the synchrony between food availability and reproductive requirements of higher trophic levels. Because leaf quality generally drops with leaf maturation, for herbivorous animals a stoichiometric effect of

  16. Climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes

    Science.gov (United States)

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.

    2018-03-01

    The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20-25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.

  17. Phenological cues drive an apparent trade-off between freezing tolerance and growth in the family Salicaceae.

    Science.gov (United States)

    Savage, Jessica A; Cavender-Bares, Jeannine

    2013-08-01

    With increasing concern about the ecological consequences of global climate change, there has been renewed interest in understanding the processes that determine species range limits. We tested a long-hypothesized trade-off between freezing tolerance and growth rate that is often used to explain species range limits. We grew 24 willow and poplar species (family Salicaceae) collected from across North America in a greenhouse common garden under two climate treatments. Maximum entropy models were used to describe species distributions and to estimate species-specific climate parameters. A range of traits related to freezing tolerance, including senescence, budburst, and susceptibility to different temperature minima during and after acclimation were measured. As predicted, species from colder climates exhibited higher freezing tolerance and slower growth rates than species from warmer climates under certain environmental conditions. However, the average relative growth rate (millimeters per meter per day) of northern species markedly increased when a subset of species was grown under a long summer day length (20.5 h), indicating that genetically based day-length cues are required for growth regulation in these species. We conclude that the observed relationship between freezing tolerance and growth rate is not driven by differences in species' intrinsic growth capacity but by differences in the environmental cues that trigger growth. We propose that the coordinated evolution of freezing tolerance and growth phenology could be important in circumscribing willow and poplar range limits and may have important implications for species' current and future distributions.

  18. The last interglacial climate

    DEFF Research Database (Denmark)

    Pedersen, Rasmus A.; Langen, Peter L.; Vinther, Bo M.

    2017-01-01

    The last interglacial climate was influenced by substantial changes in the annual insolation cycle that led to a warmer climate state with pronounced high northern latitude warming. We analyze the impact of the insolation changes 125,000 years before present using an equilibrium snapshot simulation...... with the EC-Earth coupled climate model at high spatial resolution. Using additional atmosphere-only simulations, we separate the direct impact from the changed insolation from the secondary contribution from changed sea surface conditions. These simulations are forced with a combination of last interglacial...

  19. Changes in European wind energy generation potential within a 1.5 °C warmer world

    Science.gov (United States)

    Hosking, J. Scott; MacLeod, D.; Phillips, T.; Holmes, C. R.; Watson, P.; Shuckburgh, E. F.; Mitchell, D.

    2018-05-01

    Global climate model simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) project were used to assess how wind power generation over Europe would change in a future world where global temperatures reach 1.5 °C above pre-industrial levels. Comparing recent historical (2006–2015) and future 1.5 °C forcing experiments highlights that the climate models demonstrate a northward shift in the Atlantic jet, leading to a significant (p < 0.01) increase in surface winds over the UK and Northern Europe and a significant (p < 0.05) reduction over Southern Europe. We use a wind turbine power model to transform daily near-surface (10 m) wind speeds into daily wind power output, accounting for sub-daily variability, the height of the turbine, and power losses due to transmission and distribution of electricity. To reduce regional model biases we use bias-corrected 10 m wind speeds. We see an increase in power generation potential over much of Europe, with the greatest increase in load factor over the UK of around four percentage points. Increases in variability are seen over much of central and northern Europe with the largest seasonal change in summer. Focusing on the UK, we find that wind energy production during spring and autumn under 1.5 °C forcing would become as productive as it is currently during the peak winter season. Similarly, summer winds would increase driving up wind generation to resemble levels currently seen in spring and autumn. We conclude that the potential for wind energy in Northern Europe may be greater than has been previously assumed, with likely increases even in a 1.5 °C warmer world. While there is the potential for Southern Europe to see a reduction in their wind resource, these decreases are likely to be negligible.

  20. Hydrological risks of a 2.0 oC warmer world: Assessing infrastructure exposure to the Paris Agreement.

    Science.gov (United States)

    Paltan, H.; Allen, M. R.; Haustein, K.; Dadson, S. J.

    2017-12-01

    The Conference of the Parties of the United Nations Framework Convention on Climate Change (UNFCC) in its Paris Agreement in December 2015 agreed to hold the increase in the global average temperature to well below 2.0 °C above pre- industrial levels. Nonetheless it is not yet clear how hydrological risks would change when this threshold is reached. In consequence, this may have important repercussions to existent or planned infrastructure as their functioning and the service they provide may be undermined if they do not adapt to shifts in water variability and, thus compromising global water security. In this study, we estimate the way in which hydrological risks will differ in a world 2 °C warmer. We used multi-ensembles outputs from 4 general circulation models (AOGCMs) participating in the HAPPI experimental protocol to generate global future river flows. From here we calculate extreme value probabilistics to calculate the increase in the frequency of the 100-year return period flow. Globally, we find that areas such as China and South Asia will be severly affecteed. Additional important changes are detected in Eastern Europe and in the area sorrounding the Gulf of California. Lastly, as a case study we show the implications of this climate target in the hydropower and transport infrastructure of Myanmar. We find that about 40% of mapped hydropower sites are in areas where the historical 100-year return period flow will significantly increase their frequency. We also find that about 30% of the roads and about 35% of the rail network of Myanmar are importantly exposed to such increases. We expect that this study is an initial step to analyse the propagation of hydrological risk associated with the Paris outcome; and thus, offer a tool to detect vulnerable population groups and economic sectors.

  1. Extreme Temperatures over India in the 1.5°C and 2°C warmer worlds

    Science.gov (United States)

    Thanigachalam, A.; Achutarao, K. M.

    2017-12-01

    n the summer of 2015 a heat wave claimed more than 2500 lives of southeastern India. Wehner et al., (2016) showed that the risk of this heat wave has increased due to anthropogenic forcings. Under the RCP 8.5 scenario, surface temperature over India shows a rate of increase of about 0.2°C/decade during the 21st Century (Basha et al., 2017). The extreme temperatures that have occurred in the recent past and further increases projected for the future have implications for human health and productivity. In light of the Paris accords, future stabilization of global mean temperature at the 1.5°C above pre-industrial aspirational target and the "not to be exceeded" 2°C target (still higher than current temperatures), the possibility of increases in extreme temperatures under these scenarios is very real. In this study we seek to understand the nature of extreme temperatures over India in the 1.5°C and 2°C worlds in comparison to the current climate. We make use of model output contributed under the Half a degree Additional warming, Prognosis and Projected Impacts project (HAPPI; Mitchell et al., 2017). The HAPPI database contains output from many atmospheric GCMs with multiple simulations ( 100 each) of historical (2005-2015), 1.5°C warmer decade, and 2°C warmer decade. The large number of ensembles provides an opportunity to study the extremes in temperature that occur over India and how they may change. In order to provide insights into the future comparable against current operational practices, we make use of definitions of "hot days", "heat waves", and "severe heat waves" used by the India Meteorological Department (IMD). We compare modelled data (and bias corrected model output where available) against observed daily temperatures from the IMD gridded (1°x1°) dataset available for 1951-2015 as also circulation features that lead to such events by comparing against reanalysis products. We also investigate the timing of such events in the future scenarios

  2. Assessing the Impact of Population Growth, Climate Change, and Land Use Change on Water Resources in India

    Science.gov (United States)

    Singh, N.; Cherkauer, K. A.

    2014-12-01

    India is poised to become the most populous country in the world by 2019 and reach a population of over 2 billion by 2050 based on current growth rates. It is also a region which will be under severe socio-economic and environmental stress if mitigation efforts are not adapted. In the past 10 years the population of India has grown by an average rate of 17 million people per year. In addition to unprecedented population growth, rapid urbanization and industrialization are straining the overburdened environmental system. This rapid growth in population, urbanization and industrialized will result in increased demand for food, requiring expansion of agricultural resources. Since total agricultural land in India has been relatively constant over the past 10 years the demand for additional food has to be partly met by enhanced production on existing land. Arable land in India has declined by around 3% according to FAOSTAT while the total agricultural area under irrigation has increased by about 9% thus further straining its water resources. In addition projections for future climate indicate that India is one of the regions where water resources are expected to be negatively impacted. Total agriculture water withdrawal in India increased by approximately 18 % from 2000-2010 while the total per capita water withdrawal increased by over 9% from 2000-2010. Total freshwater withdrawal as percentage of renewable water resources was around 40% in 2010. In addition, recent mandates of biofuel policies in India are also expected to impact its water resources. The combined impact of these various factors on future water availability in India could be one of the most severe globally due its unprecedented increase in population, food production and industrialization. In this study we assess the impact of land use and climate change on water resources over southern India in the face of a growing population and interest in development of national biofuel supplies. We use

  3. Topography- and Species-Dependent Climatic Responses in Radial Growth of Picea meyeri and Larix principis-rupprechtii in the Luyashan Mountains of North-Central China

    Directory of Open Access Journals (Sweden)

    Wentao Zhang

    2015-01-01

    Full Text Available Dendroecological techniques were used to examine the relationships between topographic aspects, climate factors and radial growth of Picea meyeri and Larix principis-rupprechtii in Luyashan Mountains, North-Central China. Four sites were selected at timberline and totally 67 trees and 134 cores were collected. Pearson correlation and regression surface analysis were conducted to reveal the growth-climate relationships. The results indicated that the two species both showed significant negative correlations with temperature during preceding November on the two topographic aspects. On both slope aspects, growth of P. meyeri exhibited significant negative correlations with precipitation in current June, whereas growth of L. principis-rupprechtii showed significant negative correlations with precipitation in preceding September. On north-facing slope, tree growth was limited by low temperature in early growing season, which not shown on south-facing slope. If climate warming continues, L. principis-rupprechtii may be more favored and a reverse between relationships with temperature and precipitation maybe occur in growth of trees. Treeline position on the north-facing slope may possess a greater potential for elevation shifting than the south-facing slope. Our results supply useful information for discussing the potential effect of future climate on the forest growth in North-Central China.

  4. Climate Change Indicators: Health and Society

    Science.gov (United States)

    ... chapter looks at some of the ways that climate change is affecting human health and society, including changes in Lyme disease, West ... health effects. Why does it matter? Changes in climate affect the ... to human health and welfare. Warmer average temperatures will likely lead ...

  5. Geoengineering: Direct Mitigation of Climate Warming

    Science.gov (United States)

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge With the concentrations of atmospheric greenhouse gases (GHGs) rising to levels unprecedented in the current glacial epoch, the earth’s climate system appears to be rapidly shifting into a warmer regime....

  6. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback

    Science.gov (United States)

    Jump, Alistair S.; Ruiz-Benito, Paloma; Greenwood, Sarah; Allen, Craig D.; Kitzberger, Thomas; Fensham, Rod; Martínez-Vilalta, Jordi; Lloret, Francisco

    2017-01-01

    Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This

  7. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback.

    Science.gov (United States)

    Jump, Alistair S; Ruiz-Benito, Paloma; Greenwood, Sarah; Allen, Craig D; Kitzberger, Thomas; Fensham, Rod; Martínez-Vilalta, Jordi; Lloret, Francisco

    2017-09-01

    Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This

  8. A Global Perspective on Warmer Droughts as a Key Driver of Forest Disturbances and Tree Mortality (Invited)

    Science.gov (United States)

    Allen, C. D.

    2013-12-01

    Recent global warming, in concert with episodic droughts, is causing elevated levels of both chronic and acute forest water stress across large regions. Such increases in water stress affect forest dynamics in multiple ways, including by amplifying the incidence and severity of many significant forest disturbances, particularly drought-induced tree mortality, wildfire, and outbreaks of damaging insects and diseases. Emerging global-scale patterns of drought-related forest die-off are presented, including a newly updated map overview of documented drought- and heat-induced tree mortality events from around the world, demonstrating the vulnerability of all major forest types to forest drought stress, even in typically wet environments. Comparative patterns of drought stress and associated forest disturbances are reviewed for several regions (southwestern Australia, Inner Asia, western North America, Mediterranean Basin), including interactions among climate and various disturbance processes. From the Southwest USA, research is presented that derives a tree-ring-based Forest Drought Stress Index (FDSI) for the most regionally-widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii), demonstrating recent escalation of FDSI to extreme levels relative to the past 1000 years, due to both drought and especially warming. This new work further highlights strong correlations between drought stress and amplified forest disturbances (fire, bark beetle outbreaks), and projects that by CE 2050 anticipated regional warming will cause mean FDSI values to reach historically unprecedented levels that may exceed thresholds for the survival of current tree species in large portions of their current range in the Southwest. Similar patterns of recent climate-amplified forest disturbance risk are apparent from a variety of relatively dry regions across this planet, and given climate projections for substantially warmer temperatures and greater drought stress

  9. Climate change and human health

    International Nuclear Information System (INIS)

    Sanderson, G.

    1991-01-01

    Changes in the earth's climate, stemming from the greenhouse effect, are highly likely to damage human health. As well as the disruptions to food and fresh water supplies, there is the prospect of major diseases flourishing in warmer conditions, in addition the decrease in the ozone layer is causing an increased incidence of skin cancer

  10. The Science of Climate Change

    Science.gov (United States)

    Oppenheimer, Michael; Anttila-Hughes, Jesse K.

    2016-01-01

    Michael Oppenheimer and Jesse Anttila-Hughes begin with a primer on how the greenhouse effect works, how we know that Earth is rapidly getting warmer, and how we know that the recent warming is caused by human activity. They explain the sources of scientific knowledge about climate change as well as the basis for the models scientists use to…

  11. Climate change

    International Nuclear Information System (INIS)

    2006-01-01

    This paper presented indicators of climate change for British Columbia (BC) with an emphasis on the coastal region. An overview of global effects of climate change was presented, as well as details of BC's current climate change action plan. Indicators examined in the paper for the BC coastal region included long-term trends in air temperature; long-term trends in precipitation; coastal ocean temperatures; sea levels on the BC coast; and the sensitivity of the BC coast to sea level rise and erosion. Data suggested that average air temperatures have become higher in many areas, and that Springtime temperatures have become warmer over the whole province. Winters have become drier in many areas of the province. Sea surface temperature has risen over the entire coast, with the North Coast and central Strait of Georgia showing the largest increases. Deep-water temperatures have also increased in 5 inlets on the South Coast. Results suggested that the direction and spatial pattern of the climate changes reported for British Columbia are consistent with broader trends in North America and the type of changes predicted by climate models for the region. Climate change will likely result in reduced snow-pack in southern BC. An earlier spring freshet on many snow-dominated river systems is anticipated as well as glacial retreat and disappearance. Warmer temperatures in some lakes and rivers are expected, as well as the increased frequency and severity of natural disturbances such as the pine mountain beetle. Large-scale shifts in ecosystems and the loss of certain ecosystems may also occur. BC's current climate plan includes cost effective actions that address GHG emissions and support efficient infrastructure and opportunities for innovation. Management programs for forest and agricultural lands have been initiated, as well as programs to reduce emissions from government operations. Research is also being conducted to understand the impacts of climate change on water

  12. Climate-driven ichthyoplankton drift model predicts growth of top predator young.

    Science.gov (United States)

    Myksvoll, Mari S; Erikstad, Kjell E; Barrett, Robert T; Sandvik, Hanno; Vikebø, Frode

    2013-01-01

    Climate variability influences seabird population dynamics in several ways including access to prey near colonies during the critical chick-rearing period. This study addresses breeding success in a Barents Sea colony of common guillemots Uria aalge where trophic conditions vary according to changes in the northward transport of warm Atlantic Water. A drift model was used to simulate interannual variations in transport of cod Gadus morhua larvae along the Norwegian coast towards their nursery grounds in the Barents Sea. The results showed that the arrival of cod larvae from southern spawning grounds had a major effect on the size of common guillemot chicks at fledging. Furthermore, the fraction of larvae from the south was positively correlated to the inflow of Atlantic Water into the Barents Sea thus clearly demonstrating the mechanisms by which climate-driven bottom-up processes influence interannual variations in reproductive success in a marine top predator.

  13. Climate-driven ichthyoplankton drift model predicts growth of top predator young.

    Directory of Open Access Journals (Sweden)

    Mari S Myksvoll

    Full Text Available Climate variability influences seabird population dynamics in several ways including access to prey near colonies during the critical chick-rearing period. This study addresses breeding success in a Barents Sea colony of common guillemots Uria aalge where trophic conditions vary according to changes in the northward transport of warm Atlantic Water. A drift model was used to simulate interannual variations in transport of cod Gadus morhua larvae along the Norwegian coast towards their nursery grounds in the Barents Sea. The results showed that the arrival of cod larvae from southern spawning grounds had a major effect on the size of common guillemot chicks at fledging. Furthermore, the fraction of larvae from the south was positively correlated to the inflow of Atlantic Water into the Barents Sea thus clearly demonstrating the mechanisms by which climate-driven bottom-up processes influence interannual variations in reproductive success in a marine top predator.

  14. Scariest thing about climate change: climate flips

    International Nuclear Information System (INIS)

    Beaulieu, P.

    1997-01-01

    The idea that an increase in greenhouse gases will cause the global average temperature to rise slowly over the next decades was discussed. Studies of ice core from Greenland have shown that in the past climate shifts seem to have happened quickly. Some scientists fear that increasingly frequent extreme weather events could be a sign that the climate system is nearing its threshold and a rapid climate flip may be just ahead. In the case of global climatic system, the danger is that stresses from greenhouse gas effects are pushing the present system over the threshold where it must flip into a new warmer system that will be stable, but different from the climate on which our agriculture, economy, settlements and lives depend. 4 refs

  15. Occurrence of annual growth rings in Rhizophora mangle in a region with low climate seasonality

    Directory of Open Access Journals (Sweden)

    BRUNNA T. SOUZA

    2016-01-01

    Full Text Available ABSTRACT The formation of annual growth rings has been confirmed for several mangrove species in the last decade, among which is the Rhizophora mangle. However, the record of annual rings for this species was made in a region with high hydric seasonality, a widely recognized induction factor of annual rings in tropical species. In this sense, the present study aimed to verify the occurrence of annual growth rings in R. mangle in the mangroves of Guaratiba (Rio de Janeiro, Southeastern Brazil, a region with low hydric seasonality. For this purpose, the crossdating technique was applied in ten trees collected with known age (seven years. The growth rings are characterized by alternating layers of low vessel density (earlywood and high vessel density (latewood. Multiple regression analysis indicated that growth rings width variation is driven by precipitation, water surplus, water deficit and water storage. Crossdating analysis confirmed the existence of annual growth rings in the R. mangle in Guaratiba. This discovery in a region with low hydric seasonality increases the dendrocronological potential of this species and suggests the importance of biological factors (eg. phenological behavior as complementary inductors for the formation of growth rings in this species.

  16. Recruitment success and growth variability of mugilids in a West African estuary impacted by climate change

    Science.gov (United States)

    Trape, S.; Durand, J.-D.; Vigliola, L.; Panfili, J.

    2017-11-01

    With the persistence of a drought since the late 1960s, some West African estuaries became permanently reversed in term of salinity gradient and hypersaline waters are present in their upstream part (salinity >60). To understand the mechanisms regulating fish recruitment intensity in these estuaries and evaluate the consequences of freshwater shortages on juvenile habitat quality, a growth study was conducted in the Saloum hypersaline estuary (Senegal). The Mugilidae fish family, highly representative of estuarine environments, was targeted and several species sampled (Chelon dumerili, Mugil bananensis and M. cf. curema sp. M). Juveniles were sampled monthly all the year round in three areas of the estuary exhibiting strongly contrasted habitat conditions. Otolith sections were used to estimate the ages, reconstruct growth trajectories, estimate the duration of the oceanic larval phase, and evaluate juvenile growth variability along the salinity gradient. Analyses revealed that the temporal recruitment variability of C. dumerili, with 2 annual cohorts, was not mainly induced by growth-selection mechanisms, but probably more by predation pressures. Juveniles exhibited significantly faster growth rates in the lower salinity suggesting that benthic food availability was a strong factor controlling habitat quality of early juveniles. Salinity had also a clear impact when reducing the growth in hypersaline conditions and/or selecting slower growing individuals. Moderate freshwater inputs positively affected the nursery function of the estuary for mugilids by enhancing the productivity of the first trophic levels. In a long term, the global change could have an impact of the mugilid fishery and its management.

  17. Post Milestone B Funding Climate and Cost Growth in Major Defense Acquisition Programs

    Science.gov (United States)

    2017-03-01

    passed MS B in bust periods than it was for those that passed in boom periods. This observation was reported by the first paper in this series...5. iii did not experience a boom funding climate after passing MS B. That would require far more resources than were available for this paper ...acquisition policy and process. The paper employs three acquisition policy and process bins: • McNamara-Clifford (Fiscal Year (FY) 1964–FY 1969) • Defense

  18. Impact of wind-driven rain on historic brick wall buildings in a moderately cold and humid climate: Numerical analyses of mould growth risk, indoor climate and energy consumption

    DEFF Research Database (Denmark)

    Masaru, Abuku; Janssen, Hans; Roels, Staf

    2009-01-01

    This paper gives an onset to whole building hygrothermal modelling in which the interaction between interior and exterior climates via building enclosures is simulated under a moderately cold and humid climate. The focus is particularly on the impact of wind-driven rain (WDR) oil the hygrothermal...... response, mould growth at interior wall surfaces, indoor climate and energy consumption. First the WDR load oil the facades of a 4 m x 4 m x 10 m tower is determined. Then the hygrothermal behaviour of the brick walls is analysed oil a horizontal slice through the tower. The simulations demonstrate...

  19. Warmer winters modulate life history and energy storage but do not affect sensitivity to a widespread pesticide in an aquatic insect.

    Science.gov (United States)

    Arambourou, Hélène; Stoks, Robby

    2015-10-01

    Despite the increased attention for the effects of pesticides under global warming no studies tested how winter warming affects subsequent sensitivity to pesticides. Winter warming is expected to cause delayed negative effects when it increases metabolic rates and thereby depletes energy reserves. Using a common-garden experiment, we investigated the combined effect of a 4 °C increase in winter temperature and subsequent exposure to chlorpyrifos in the aquatic larvae of replicated low- and high-latitude European populations of the damselfly Ischnura elegans. The warmer winter (8 °C) resulted in a higher winter survival and higher growth rates compared to the cold winter (4 °C) commonly experienced by European high-latitude populations. Low-latitude populations were better at coping with the warmer winter, indicating thermal adaptation to the local winter temperatures. Subsequent chlorpyrifos exposure at 20 °C induced strong negative effects on survival, growth rate, lipid content and acetylcholinesterase activity while phenoloxidase activity increased. These pesticide effects were not affected by winter warming. Our results suggest that for species where winter warming has positive effects on life history, no delayed effects on the sensitivity to subsequent pesticide exposure should be expected. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Separating Trends in Whitebark Pine Radial Growth Related to Climate and Mountain Pine Beetle Outbreaks in the Northern Rocky Mountains, USA

    Directory of Open Access Journals (Sweden)

    Saskia L. van de Gevel

    2017-06-01

    Full Text Available Drought and mountain pine beetle (Dendroctonus ponderosae Hopkins outbreaks have affected millions of hectares of high-elevation conifer forests in the Northern Rocky Mountains during the past century. Little research has examined the distinction between mountain pine beetle outbreaks and climatic influence on radial growth in endangered whitebark pine (Pinus albicaulis Engelm. ecosystems. We used a new method to explore divergent periods in whitebark pine radial growth after mountain pine beetle outbreaks across six sites in western Montana. We examined a 100-year history of mountain pine beetle outbreaks and climate relationships in whitebark pine radial growth to distinguish whether monthly climate variables or mountain pine outbreaks were the dominant influence on whitebark pine growth during the 20th century. High mortality of whitebark pines was caused by the overlapping effects of previous and current mountain pine beetle outbreaks and white pine blister rust infection. Wet conditions from precipitation and snowpack melt in the previous summer, current spring, and current summer benefit whitebark pine radial growth during the following growing season. Whitebark pine radial growth and climate relationships were strongest in sites less affected by the mountain pine beetle outbreaks or anthropogenic disturbances. Whitebark pine population resiliency should continue to be monitored as more common periods of drought will make whitebark pines more susceptible to mountain pine beetle attack and to white pine blister rust infection.

  1. Recent Trends of Tree Growth in Relation to Climate Change in Hungary

    Directory of Open Access Journals (Sweden)

    SOMOGYI, Zoltán

    2008-01-01

    Full Text Available The paper addresses two related issues. One is whether, and how, growth patterns of standmean height have changed in Hungary in the last few decades, and the other is whether recentlyobserved increases in mean annual temperature might have caused changes in growth trends. Changesin tree growth were investigated for beech (Fagus sylvatica, sessile oak (Quercus petraea andTurkey oak (Quercus cerris by comparing stand mean heights over age using data from the forestinventories of 1981 and 2001, and for sessile oak using stand mean height data from permanentsample plots since 1961. Tree growth was found to have accelerated for each species mentioned, withTurkey oak showing the largest acceleration. To study the second issue, stand mean height was relatedto elevation, wich in turn was related to mean annual temperature and precipitation. For theseanalyses, too, data of many thousands of stands in the forest inventory was used. Stand mean heightwas found to increase with decreasing elevation, i.e. with increasing mean annual temperature, foreach of the three species. As the annual precipitation and air humidity decreases with decreasingelevation, it was concluded that increases of mean annual temperature could positively have affectedtree growth in the last few decades. However, this effect is expected to be soon limited by wateravailability.

  2. Tree growth and its climate signal along latitudinal and altitudinal gradients: comparison of tree rings between Finland and the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    L. Lyu

    2017-06-01

    Full Text Available Latitudinal and altitudinal gradients can be utilized to forecast the impact of climate change on forests. To improve the understanding of how these gradients impact forest dynamics, we tested two hypotheses: (1 the change of the tree growth–climate relationship is similar along both latitudinal and altitudinal gradients, and (2 the time periods during which climate affects growth the most occur later towards higher latitudes and altitudes. To address this, we utilized tree-ring data from a latitudinal gradient in Finland and from two altitudinal gradients on the Tibetan Plateau. We analysed the latitudinal and altitudinal growth patterns in tree rings and investigated the growth–climate relationship of trees by correlating ring-width index chronologies with climate variables, calculating with flexible time windows, and using daily-resolution climate data. High latitude and altitude plots showed higher correlations between tree-ring chronologies and growing season temperature. However, the effects of winter temperature showed contrasting patterns for the gradients. The timing of the highest correlation with temperatures during the growing season at southern sites was approximately 1 month ahead of that at northern sites in the latitudinal gradient. In one out of two altitudinal gradients, the timing for the strongest negative correlation with temperature at low-altitude sites was ahead of treeline sites during the growing season, possibly due to differences in moisture limitation. Mean values and the standard deviation of tree-ring width increased with increasing mean July temperatures on both types of gradients. Our results showed similarities of tree growth responses to increasing seasonal temperature between latitudinal and altitudinal gradients. However, differences in climate–growth relationships were also found between gradients due to differences in other factors such as moisture conditions. Changes in the timing of the most

  3. Growth

    Science.gov (United States)

    John R. Jones; George A. Schier

    1985-01-01

    This chapter considers aspen growth as a process, and discusses some characteristics of the growth and development of trees and stands. For the most part, factors affecting growth are discussed elsewhere, particularly in the GENETICS AND VARIATION chapter and in chapters in PART 11. ECOLOGY. Aspen growth as it relates to wood production is examined in the WOOD RESOURCE...

  4. An Econometric Study of Economic Growth, Energy and Exports in Mauritius: Implications for Trade and Climate Policy

    Directory of Open Access Journals (Sweden)

    Riad Sultan

    2012-01-01

    Full Text Available While electricity from fossil fuels is among a major source of greenhouse gases and global warming, it is also a key resource in the industrial sector geared towards exports and economic growth. This study attempts to examine the export-GDP nexus and electricity-GDP nexus in addition to a supplementary hypothesis between exports and electricity in Mauritius for the period of 1970-2009. An augmented neo-classical aggregate production model is used. The ARDL bounds test and the Johansen cointegration test confirm the existence of a long-run relationship between these variables. The multivariate Granger-causality analysis indicates that electricity and exports Granger-cause economic growth in the long-run. Electricity remains a significant causal variable in the short-run and is also found to lead exports. The empirical findings suggest that conserving electricity as a climate policy may not be conducive for exports and economic growth. The use of renewable sources for electricity may be the right option.

  5. Effects of climate change and population growth on the transboundary Santa Cruz aquifer

    Science.gov (United States)

    Scott, Christopher A.; Megdal, Sharon; Oroz, Lucas Antonio; Callegary, James; Vandervoet, Prescott

    2012-01-01

    The USA and Mexico have initiated comprehensive assessment of 4 of the 18 aquifers underlying their 3000 km border. Binational management of groundwater is not currently proposed. University and agency researchers plus USA and Mexican federal, state, and local agency staff have collaboratively identified key challenges facing the Santa Cruz River Valley Aquifer located between the states of Arizona and Sonora. The aquifer is subject to recharge variability, which is compounded by climate change, and is experiencing growing urban demand for groundwater. In this paper, we briefly review past, current, and projected pressures on Santa Cruz groundwater. We undertake first-order approximation of the relative magnitude of climate change and human demand drivers on the Santa Cruz water balance. Global circulation model output for emissions scenarios A1B, B1, and A2 present mixed trends, with annual precipitation projected to vary by ±20% over the 21st century. Results of our analysis indicate that urban water use will experience greater percentage change than climate-induced recharge (which remains the largest single component of the water balance). In the Mexican portion of the Santa Cruz, up to half of future total water demand will need to be met from non-aquifer sources. In the absence of water importation and with agricultural water use and rights increasingly appropriated for urban demand, wastewater is increasingly seen as a resource to meet urban demand. We consider decision making on both sides of the border and conclude by identifying short- and longer-term opportunities for further binational collaboration on transboundary aquifer assessment.

  6. Climate sensitivity of Mediterranean pine growth reveals distinct east-west dipole

    Czech Academy of Sciences Publication Activity Database

    Seim, A.; Treydte, K.; Trouet, V.; Frank, D.; Fonti, P.; Tegel, W.; Panayotov, M.; Fernandez-Donado, L.; Krusic, P.; Büntgen, Ulf

    2015-01-01

    Roč. 35, č. 9 (2015), s. 2503-2513 ISSN 0899-8418 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : tree-ring width * scots pine * wood formation * ice core * variability * drought * precipitation * reconstructions * circulation * dynamics * climate dynamics * dendroclimatology * drought response * Mediterranean east-west dipole * palaeoclimatology * Pinus spp * principal component analysis * tree-ring width Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.609, year: 2015

  7. Climate-change adaptation on rangelands: Linking regional exposure with diverse adaptive capacity

    Science.gov (United States)

    David D. Briske; Linda A. Joyce; H. Wayne Polley; Joel R. Brown; Klaus Wolter; Jack A. Morgan; Bruce A. McCarl; Derek W. Bailey

    2015-01-01

    The ecological consequences of climate change are predicted to vary greatly throughout US rangelands. Projections show warming and drying in the southern Great Plains and the Southwest, warmer and drier summers with reduced winter snowpack in the Northwest, and warmer and wetter conditions in the northern Great Plains. Primarily through their combined effects on soil...

  8. Effects of climate change on growth of 0-group sole and plaice

    NARCIS (Netherlands)

    Teal, L.R.; Leeuw, de J.J.; Veer, van der H.W.; Rijnsdorp, A.D.

    2008-01-01

    The effect of rising seawater temperature on growth of 0-group sole Solea solea and plaice Pleuronectes platessa in the southeastern North Sea was investigated for the period 1970 to 2004 using annual autumn pre-recruit survey data and frequent surveys on a nursery ground. Autumn length showed an

  9. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem.

    Directory of Open Access Journals (Sweden)

    Brad Seely

    Full Text Available Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine for established stands due to increased moisture stress mortality.

  10. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem.

    Science.gov (United States)

    Seely, Brad; Welham, Clive; Scoullar, Kim

    2015-01-01

    Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine) for established stands due to increased moisture stress mortality.

  11. Icebreakers, Fillers y Warmers: actividades breves para la clase de inglés

    Directory of Open Access Journals (Sweden)

    Ramiro DURÁN MARTÍNEZ

    2009-11-01

    Full Text Available RESUMEN: En el siguiente artículo vamos a presentar diversos tipos de ejercicios de carácter breve que hemos utilizado en la clase de inglés con el objetivo de facilitar a los alumnos la práctica de la destreza oral. Estas actividades tienen distintos nombres dependiendo de la función que desempeñen: icebreakers, fillers y warmers. Se denominan icebreakers los ejercicios diseñados para romper la tensión que normalmente rodea las primeras sesiones de cualquier nueva actividad, como, por ejemplo, la primera clase de un curso de inglés. Cuando se habla de fillers se enfatiza su función comodín: tareas independientes que normalmente sirven para completar los últimos minutos del horario establecido para la clase de idiomas. El término warmer se aplica a las actividades que se llevan a cabo después de un período vacacional con el propósito de favorecer el reencuentro del alumno con el idioma que está estudiando. El principal objetivo de estos ejercicios es el desarrollo de la capacidad de los alumnos para expresarse de forma oral utilizando la lengua inglesa, concentrándose más en la práctica de la fluidez (fluency que en la precisión (accuracy. Por otra parte, sirven para favorecer la creación de vínculos de unión entre un grupo de estudiantes.ABSTRACT: In this paper, we are going to present a number of short activities that have been used in the English class in order to give students extra speaking practice. These activities were given different names depending on the role they play in the class: icebreakers, fillers and warmers. Icebreakers are fluency practice exercises produced to defuse the tension that the first sessions of every new activity imply: i.e. the first lesson of English. When talking about fillers, we refer to short independent activities that are used when the projected exercises have taken less time than expected. Warmers are also fluency practice activities devised to put students back in touch with the

  12. Can latent heat safely warm blood? – in vitro testing of a portable prototype blood warmer

    OpenAIRE

    McEwen, Mark P; Roxby, David

    2007-01-01

    Abstract Background Trauma/retrieval patients are often in shock and hypothermic. Treatment of such patients usually involves restoring their blood volume with transfusion of blood (stored at 2°C – 6°C) and/or crystalloids or colloids (stored at ambient temperature). Rapid infusion of these cold fluids can worsen or even induce hypothermia in these patients. Warming of intravenous fluids at accident sites has traditionally been difficult due to a lack of suitable portable fluid warmers that a...

  13. 'Intensity' targets. Pathway or roadblock to preventing climate change while enhancing economic growth?

    International Nuclear Information System (INIS)

    Dudek, D.; Golub, A.

    2003-12-01

    After establishing the operative definitions of greenhouse gas emissions 'intensity' targets and 'absolute' targets for greenhouse gas emissions limits, we identify examples of these approaches in current laws and policies. We focus in particular on the US experience with the sulfur dioxide emissions 'cap and trade' program as an example of the use of an 'absolute' target approach. We compare and contrast this example with 'performance standard' programs under the US Clean Air Act and the Corporate Average Fuel Economy standards for motor vehicles, which embody the emissions rate or 'intensity' concept. These case studies give us insights into the pros and cons of the intensity versus absolute approaches. Moving from retrospective to prospective, we consider the possible application of alternative absolute and intensity targets (IT) to global, national and firm-level emissions. We then identify criteria for evaluating the use of 'intensity' targets as a tool for achieving both environmental and economic goals. These include success in limiting climate change, achieving cost certainty and manageability, providing flexibility for public and private sector decision-makers in responding to new information, stimulating technological progress and sustaining a global climate regime

  14. Air pollution and urban climate in the Rhine--Westphalian industrial area and their influence on lichen growth on trees

    Energy Technology Data Exchange (ETDEWEB)

    Domroes, M

    1966-01-01

    Lichens on tree boles were examined on 25,114 trees along streets and areas in the central part of the Ruhr District and related to air pollution concentrations. The lichens were studied with regard to physiognomy, density, and exposition, and in relation to bark characteristics of tree species. Lichens were classified into the following areas: Lichen desert, transitional zone, or area of normal distribution. The lichens were sensitive to air pollution, especially sulfur dioxide emissions. The damaging influence of the town climate, especially aridity, was taken into consideration. Lichens were missing in all areas with a high degree of air pollution. These were areas of high density housing and of lower humidity than open country. Areas which had lower housing density and lower humidity also had increased lichen damage. Lichens were missing in the immediate neighborhood of factories or industrial areas outside towns. Lichen growth was reduced along busy roads.

  15. Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto

    2005-01-01

    Full Text Available The amount of carbon dioxide (CO2 of the Earths atmosphere is increasing, which has the potential of increasing greenhouse effect and air temperature in the future. Plants respond to environment CO2 and temperature. Therefore, climate change may affect agriculture. The purpose of this paper was to review the literature about the impact of a possible increase in atmospheric CO2 concentration and temperature on crop growth, development, and yield. Increasing CO2 concentration increases crop yield once the substrate for photosynthesis and the gradient of CO2 concentration between atmosphere and leaf increase. C3 plants will benefit more than C4 plants at elevated CO2. However, if global warming will take place, an increase in temperature may offset the benefits of increasing CO2 on crop yield.

  16. A model analysis of climate and CO2 controls on tree growth in a semi-arid woodland

    Science.gov (United States)

    Li, G.; Harrison, S. P.; Prentice, I. C.

    2015-03-01

    We used a light-use efficiency model of photosynthesis coupled with a dynamic carbon allocation and tree-growth model to simulate annual growth of the gymnosperm Callitris columellaris in the semi-arid Great Western Woodlands, Western Australia, over the past 100 years. Parameter values were derived from independent observations except for sapwood specific respiration rate, fine-root turnover time, fine-root specific respiration rate and the ratio of fine-root mass to foliage area, which were estimated by Bayesian optimization. The model reproduced the general pattern of interannual variability in radial growth (tree-ring width), including the response to the shift in precipitation regimes that occurred in the 1960s. Simulated and observed responses to climate were consistent. Both showed a significant positive response of tree-ring width to total photosynthetically active radiation received and to the ratio of modeled actual to equilibrium evapotranspiration, and a significant negative response to vapour pressure deficit. However, the simulations showed an enhancement of radial growth in response to increasing atmospheric CO2 concentration (ppm) ([CO2]) during recent decades that is not present in the observations. The discrepancy disappeared when the model was recalibrated on successive 30-year windows. Then the ratio of fine-root mass to foliage area increases by 14% (from 0.127 to 0.144 kg C m-2) as [CO2] increased while the other three estimated parameters remained constant. The absence of a signal of increasing [CO2] has been noted in many tree-ring records, despite the enhancement of photosynthetic rates and water-use efficiency resulting from increasing [CO2]. Our simulations suggest that this behaviour could be explained as a consequence of a shift towards below-ground carbon allocation.

  17. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa

    DEFF Research Database (Denmark)

    Brandt, Martin Stefan; Rasmussen, Kjeld; Peñuelas, Josep

    2017-01-01

    The rapidly growing human population in sub-Saharan Africa generates increasing demand for agricultural land and forest products, which presumably leads to deforestation. Conversely, a greening of African drylands has been reported, but this has been difficult to associate with changes in woody...... an increase in woody cover largely in drylands, and 11% had a decrease (2,150,000 km2), mostly in humid zones. Increases in woody cover were associated with low population growth, and were driven by increases in CO2 in the humid zones and by increases in precipitation in drylands, whereas decreases in woody...... cover were associated with high population growth. The spatially distinct pattern of these opposing trends reflects, first, the natural response of vegetation to precipitation and atmospheric CO2, and second, deforestation in humid areas, minor in size but important for ecosystem services...

  18. Tracking climate impacts on the migratory monarch butterfly

    Science.gov (United States)

    Zipkin, Elise F.; Ries, Leslie; Reeves, Rick; Regetz, James; Oberhauser, Karen S.

    2012-01-01

    Understanding the impacts of climate on migratory species is complicated by the fact that these species travel through several climates that may be changing in diverse ways throughout their complete migratory cycle. Most studies are not designed to tease out the direct and indirect effects of climate at various stages along the migration route. We assess the impacts of spring and summer climate conditions on breeding monarch butterflies, a species that completes its annual migration cycle over several generations. No single, broad-scale climate metric can explain summer breeding phenology or the substantial year-to-year fluctuations observed in population abundances. As such, we built a Poisson regression model to help explain annual arrival times and abundances in the Midwestern United States. We incorporated the climate conditions experienced both during a spring migration/breeding phase in Texas as well as during subsequent arrival and breeding during the main recruitment period in Ohio. Using data from a state-wide butterfly monitoring network in Ohio, our results suggest that climate acts in conflicting ways during the spring and summer seasons. High spring precipitation in Texas is associated with the largest annual population growth in Ohio and the earliest arrival to the summer breeding ground, as are intermediate spring temperatures in Texas. On the other hand, the timing of monarch arrivals to the summer breeding grounds is not affected by climate conditions within Ohio. Once in Ohio for summer breeding, precipitation has minimal impacts on overall abundances, whereas warmer summer temperatures are generally associated with the highest expected abundances, yet this effect is mitigated by the average seasonal temperature of each location in that the warmest sites receive no benefit of above average summer temperatures. Our results highlight the complex relationship between climate and performance for a migrating species and suggest that attempts to

  19. Review of scientific linkages and interactions between climate change and air quality, with implications for air quality management in South Africa

    CSIR Research Space (South Africa)

    Thambiran, Tirusha

    2010-04-01

    Full Text Available In recent years there has been considerable advancement in our scientific understanding of the linkages and interactions between climate change and air quality. A warmer, evolving climate is likely to have severe consequences for air quality due...

  20. Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981-2009 in China, and late rice was just opposite.

    Science.gov (United States)

    Tao, Fulu; Zhang, Zhao; Shi, Wenjiao; Liu, Yujie; Xiao, Dengpan; Zhang, Shuai; Zhu, Zhu; Wang, Meng; Liu, Fengshan

    2013-10-01

    Based on the crop trial data during 1981-2009 at 57 agricultural experimental stations across the North Eastern China Plain (NECP) and the middle and lower reaches of Yangtze River (MLRYR), we investigated how major climate variables had changed and how the climate change had affected crop growth and yield in a setting in which agronomic management practices were taken based on actual weather. We found a significant warming trend during rice growing season, and a general decreasing trend in solar radiation (SRD) in the MLRYR during 1981-2009. Rice transplanting, heading, and maturity dates were generally advanced, but the heading and maturity dates of single rice in the MLRYR (YZ_SR) and NECP (NE_SR) were delayed. Climate warming had a negative impact on growth period lengths at about 80% of the investigated stations. Nevertheless, the actual growth period lengths of YZ_SR and NE_SR, as well as the actual length of reproductive growth period (RGP) of early rice in the MLRYR (YZ_ER), were generally prolonged due to adoption of cultivars with longer growth period to obtain higher yield. In contrast, the actual growth period length of late rice in the MLRYR (YZ_LR) was shortened by both climate warming and adoption of early mature cultivars to prevent cold damage and obtain higher yield. During 1981-2009, climate warming and decrease in SRD changed the yield of YZ_ER by -0.59 to 2.4%; climate warming during RGP increased the yield of YZ_LR by 8.38-9.56%; climate warming and decrease in SRD jointly reduced yield of YZ_SR by 7.14-9.68%; climate warming and increase in SRD jointly increased the yield of NE_SR by 1.01-3.29%. Our study suggests that rice production in China has been affected by climate change, yet at the same time changes in varieties continue to be the major factor driving yield and growing period trends. © 2013 John Wiley & Sons Ltd.

  1. CLIMATE-TREE GROWTH RELATIONSHIPS OF Mimosa tenuiflora IN SEASONALLY DRY TROPICAL FOREST, BRAZIL

    Directory of Open Access Journals (Sweden)

    Patrícia Póvoa Mattos

    2015-03-01

    Full Text Available Mimosa tenuiflora is a native pioneer tree from the Caatinga used commercially as firewood due to its high calorific value. It is deciduous, its trunk does not reach large diameters and it has good regrowth capacity. This study intended to determine the annual increment in diameter of M. tenuiflora and its correlation with rainfall, as basis for fuel wood management. Disks from the stem base of M. tenuiflora trees were collected in 2008 in Sertânia and Serra Talhada, Pernambuco State, from regrowth of trees coppiced in 2003 and in Limoeiro do Norte, Ceará State, from a plantation established in 2002. The trees have well-defined annual growth rings, highly correlated with annual precipitation and are well-suited for dendrochronological investigations. Forest managers must consider the influence of previous drier years in the wood production when predicting fuel wood harvesting. The high growth correlation with the previous year’s rainfall in regions where the rains start after photoperiodic stimulation indicate the necessity of understanding the growth dynamics of the species under dry forest conditions through additional ecophysiology studies.

  2. Algal Growth and Waste Stabilization Ponds Performance Efficiency in a Sub-Tropical Climate

    International Nuclear Information System (INIS)

    Alamgir, A.; Khan, M. A.; Shaukat, S. S.

    2016-01-01

    Both irrigation and potable water are in diminutive supply in most of the developing countries particularly those situated in tropical and subtropical regions where, often untreated wastewater is utilized for the purpose of irrigation. Treated wastewater has proved to be a potential asset serving as an alternate source for the expansion of irrigated agriculture. Waste stabilization ponds (WSP) are considered as less costly and effective substitute for the wastewater water treatment in tropics. The principle of wastewater treatment in waste stabilization pond is based on the symbiotic relationship between bacteria and various algal species. In this study, an attempt was made to relate algal growth and different extrinsic factors using multiple regression models. The predominant algal species found in WSP systems were Chlorella, Euglena, Oscillatoria and Scenedesmus. The growth of individual algal species and overall algal growth was principally governed by temperature, total sunshine hours and Total Kjeldhal Nitrogen (TKN). The study suggested that algal bacterial symbiotic relationship works well and the dissolved oxygen production through algal photosynthesis was optimum to decompose heavy organic load resulting in oxygen-rich effluent (liquid fertilizer) which could be successfully exploited for unrestricted irrigation. (author)

  3. The growth and survival of plants in urban green roofs in a dry climate.

    Science.gov (United States)

    Razzaghmanesh, M; Beecham, S; Kazemi, F

    2014-04-01

    Green roofs as one of the components of water-sensitive urban design have become widely used in recent years. This paper describes performance monitoring of four prototype-scale experimental green roofs in a northern suburb of Adelaide, South Australia, undertaken over a 1-year period. Four species of indigenous Australian ground cover and grass species comprising Carpobrotus rossii, Lomandra longifolia 'Tanika,' Dianella caerula 'Breeze' and Myoporum parvifolium were planted in extensive and intensive green roof configurations using two different growing media. The first medium consisted of crushed brick, scoria, coir fibre and composted organics while the second comprised scoria, composted pine bark and hydro-cell flakes. Plant growth indices including vertical and horizontal growth rate, leaf succulence, shoot and root biomasses, water use efficiency and irrigation regimes were studied during a 12-month period. The results showed that the succulent species, C. rossii, can best tolerate the hot, dry summer conditions of South Australia, and this species showed a 100% survival rate and had the maximum horizontal growth rate, leaf succulence, shoot biomass and water use efficiency. All of the plants in the intensive green roofs with the crushed brick mix media survived during the term of this study. It was shown that stormwater can be used as a source of irrigation water for green roofs during 8 months of the year in Adelaide. However, supplementary irrigation is required for some of the plants over a full annual cycle. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Adaptability to climate change in forestry species: drought effects on growth and wood anatomy of ponderosa pines growing at different competition levels

    OpenAIRE

    Fernández, M.E.; Gyenge, J.E.; de Urquiza, M.M.; Varela, S.

    2012-01-01

    More stressful conditions are expected due to climatic change in several regions, including Patagonia, South-America. In this region, there are no studies about the impact of severe drought events on growth and wood characteristics of the most planted forestry species, Pinus ponderosa (Doug. ex-Laws). The objective of this study was to quantify the effect of a severe drought event on annual stem growth and functional wood anatomy of pines growing at different plantation densities aiming to un...

  5. Using Ensemble Short-Term Initialized Coupled NASA GEOS5 Climate Model Integrations to Study Convective Bias Growth

    Science.gov (United States)

    Cohen, Charlie; Robertson, Franklin; Molod, Andrea

    2014-01-01

    The representation of convective processes, particularly deep convection in the tropics, remains a persistent problem in climate models. In fact structural biases in the distribution of tropical rainfall in the CMIP5 models is hardly different than that of the CMIP3 versions. Given that regional climate change at higher latitudes is sensitive to the configuration of tropical forcing, this persistent bias is a major issue for the credibility of climate change projections. In this study we use model output from integrations of the NASA Global Earth Observing System Five (GEOS5) climate modeling system to study the evolution of biases in the location and intensity of convective processes. We take advantage of a series of hindcast experiments done in support of the US North American Multi-Model Ensemble (NMME) initiative. For these experiments a nine-month forecast using a coupled model configuration is made approximately every five days over the past 30 years. Each forecast is started with an updated analysis of the ocean, atmosphere and land states. For a given calendar month we have approximately 180 forecasts with daily means of various quantities. These forecasts can be averaged to essentially remove "weather scales" and highlight systematic errors as they evolve. Our primary question is to ask how the spatial structure of daily mean precipitation over the tropics evolves from the initial state and what physical processes are involved. Errors in parameterized convection, various water and energy fluxes and the divergent circulation are found to set up on fast time scales (order five days) compared to errors in the ocean, although SST changes can be non-negligible over that time. For the month of June the difference between forecast day five versus day zero precipitation looks quite similar to the difference between the June precipitation climatology and that from the Global Precipitation Climatology Project (GPCP). We focus much of our analysis on the influence of

  6. Relationships between climatic factors and the growth of kenaf (Hibiscus cannabinus L.)

    International Nuclear Information System (INIS)

    Rossini, F.; Cereti, C.F.; D'Antuono, L.F.

    1993-01-01

    Four varieties of kenaf were cultivated at Viterbo, Central Italy, in 1990-91, both in rainfed and in irrigated conditions. Total biomass was related to intercepted PAR. The lower biomass production of the rainfed crop was determined both by the lower interception of radiation (Lower LAI) and by the lower light use efficiency. Light use efficiency increased after flowerig. An underestimation of the intercepted radiation, due to the fact that only leaf interception was considered, could partially account for this fact. Under optimum water supply, the intercepted radiation was the main determinant of crop growth, whereas in water stress situation light use efficiency increased when water deficit decreased [it

  7. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa.

    Science.gov (United States)

    Brandt, Martin; Rasmussen, Kjeld; Peñuelas, Josep; Tian, Feng; Schurgers, Guy; Verger, Aleixandre; Mertz, Ole; Palmer, John R B; Fensholt, Rasmus

    2017-03-06

    The rapidly growing human population in sub-Saharan Africa generates increasing demand for agricultural land and forest products, which presumably leads to deforestation. Conversely, a greening of African drylands has been reported, but this has been difficult to associate with changes in woody vegetation. There is thus an incomplete understanding of how woody vegetation responds to socio-economic and environmental change. Here we used a passive microwave Earth observation data set to document two different trends in land area with woody cover for 1992-2011: 36% of the land area (6,870,000 km 2 ) had an increase in woody cover largely in drylands, and 11% had a decrease (2,150,000 km 2 ), mostly in humid zones. Increases in woody cover were associated with low population growth, and were driven by increases in CO 2 in the humid zones and by increases in precipitation in drylands, whereas decreases in woody cover were associated with high population growth. The spatially distinct pattern of these opposing trends reflects, first, the natural response of vegetation to precipitation and atmospheric CO 2 , and second, deforestation in humid areas, minor in size but important for ecosystem services, such as biodiversity and carbon stocks. This nuanced picture of changes in woody cover challenges widely held views of a general and ongoing reduction of the woody vegetation in Africa.

  8. Competition amplifies drought stress in forests across broad climatic and compositional gradients

    Science.gov (United States)

    Gleason, Kelly; Bradford, John B.; Bottero, Alessandra; D'Amato, Tony; Fraver, Shawn; Palik, Brian J.; Battaglia, Michael; Iverson, Louis R.; Kenefic, Laura; Kern, Christel C.

    2017-01-01

    Forests around the world are experiencing increasingly severe droughts and elevated competitive intensity due to increased tree density. However, the influence of interactions between drought and competition on forest growth remains poorly understood. Using a unique dataset of stand-scale dendrochronology sampled from 6405 trees, we quantified how annual growth of entire tree populations responds to drought and competition in eight, long-term (multi-decadal), experiments with replicated levels of density (e.g., competitive intensity) arrayed across a broad climatic and compositional gradient. Forest growth (cumulative individual tree growth within a stand) declined during drought, especially during more severe drought in drier climates. Forest growth declines were exacerbated by high density at all sites but one, particularly during periods of more severe drought. Surprisingly, the influence of forest density was persistent overall, but these density impacts were greater in the humid sites than in more arid sites. Significant density impacts occurred during periods of more extreme drought, and during warmer temperatures in the semi-arid sites but during periods of cooler temperatures in the humid sites. Because competition has a consistent influence over growth response to drought, maintaining forests at lower density may enhance resilience to drought in all climates.

  9. Time-dependent effects of climate and drought on tree growth in a Neotropical dry forest: Short-term tolerance vs. long-term sensitivity

    NARCIS (Netherlands)

    Mendivelso, H.A.; Camarero, J.J.; Gutierrez, E.; Zuidema, P.

    2014-01-01

    We analyzed the effects of climate and drought on radial growth using dendrochronology in seven deciduous tree species coexisting in a Bolivian tropical dry forest subjected to seasonal drought. Precipitation, temperature and a multiscalar drought index were related to tree-ring width data at

  10. Rank reversals in tree growth along tree size, competition and climatic gradients for four forest canopy dominant species in Central Spain

    NARCIS (Netherlands)

    Sánchez-Gómez, D.; Zavala, M.A.; Schalkwijk, D.B.V.; Urbieta, I.R.; Valladares, F.

    2008-01-01

    Interspecific differences in tree growth patterns with respect to biotic and abiotic factors are key for understanding forest structure and dynamics, and predicting potential changes under climate change. • Repeated observations from the Spanish Forest Inventory (SFI) were used to parameterize

  11. A likelihood-based time series modeling approach for application in dendrochronology to examine the growth-climate relations and forest disturbance history

    Science.gov (United States)

    A time series intervention analysis (TSIA) of dendrochronological data to infer the tree growth-climate-disturbance relations and forest disturbance history is described. Maximum likelihood is used to estimate the parameters of a structural time series model with components for ...

  12. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis.

    Science.gov (United States)

    Peterson, Megan L; Doak, Daniel F; Morris, William F

    2018-04-01

    Many predictions of how climate change will impact biodiversity have focused on range shifts using species-wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life-history plasticity vs. local adaptation to species-wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species' range-not only those at the trailing range edge-could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species' latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade-off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species' ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest

  13. Positive School Climate: What It Looks Like and How It Happens. Nurturing Positive School Climate for Student Learning and Professional Growth

    Science.gov (United States)

    Smith, Tami Kopischke; Connolly, Faith; Pryseski, Charlene

    2014-01-01

    The term "school climate" has been around for more than a hundred years to explore the idea of school environmental or contextual factors that might have an impact on student learning and academic success. During the past three decades there has been growing research to support the importance of a positive school climate in promoting…

  14. What would happen to Superstorm Sandy under the influence of a substantially warmer Atlantic Ocean?

    Science.gov (United States)

    Lau, William K. M.; Shi, J. J.; Tao, W. K.; Kim, K. M.

    2016-01-01

    Based on ensemble numerical simulations, we find that possible responses of Sandy-like superstorms under the influence of a substantially warmer Atlantic Ocean bifurcate into two groups. In the first group, storms are similar to present-day Sandy from genesis to extratropical transition, except they are much stronger, with peak Power Destructive Index (PDI) increased by 50-80%, heavy rain by 30-50%, and maximum storm size (MSS) approximately doubled. In the second group, storms amplify substantially over the interior of the Atlantic warm pool, with peak PDI increased by 100-160%, heavy rain by 70-180%, and MSS more than tripled compared to present-day Superstorm Sandy. These storms when exiting the warm pool, recurve northeastward out to sea, subsequently interact with the developing midlatitude storm by mutual counterclockwise rotation around each other and eventually amplify into a severe Northeastern coastal storm, making landfall over the extreme northeastern regions from Maine to Nova Scotia.

  15. Assessing Ecological Flow Needs and Risks for Springs and Baseflow Streams With Growth and Climate Change

    Science.gov (United States)

    Springer, A. E.; Stevens, L. E.

    2008-12-01

    Ecological flow needs assessments are beginning to become an important part of regulated river management, but are more challenging for unregulated rivers. Water needs for ecosystems are greater than just consumptive use by riparian and aquatic vegetation and include the magnitude, frequency, duration and timing of flows and the depth and annual fluctuations of groundwater levels of baseflow supported streams. An ecological flow needs assessment was adapted and applied to an unregulated, baseflow dependent river in the arid to semi-arid Southwestern U.S. A separate process was developed to determine groundwater sources potentially at risk from climate, land management, or groundwater use changes in a large regional groundwater basin in the same semi-arid region. In 2007 and 2008, workshops with ecological, cultural, and physical experts from agencies, universities, tribes, and other organizations were convened. Flow-ecology response functions were developed with either conceptual or actual information for a baseflow dependent river, and scoring systems were developed to assign values to categories of risks to groundwater sources in a large groundwater basin. A reduction of baseflow to the river was predicted to lead to a decline in cottonwood and willow tree abundance, decreases in riparian forest diversity, and increases in non-native tree species, such as tamarisk. These types of forest vegetation changes would likely cause reductions or loss of some bird species. Loss of riffle habitat through declines in groundwater discharge and the associated river levels would likely lead to declines in native fish and amphibian species. A research agenda was developed to develop techniques to monitor, assess and hopefully better manage the aquifers supporting the baseflow dependent river to prevent potential threshold responses of the ecosystems. The scoring system for categories of risk was applied to four systems (aquifers, springs, standing water bodies, and streams) in

  16. Water availability and demand in West Africa in the 21st century: impacts of climate change and population growth

    Science.gov (United States)

    Wisser, Dominik; Oyerinde, Ganiyu; Ibrahim, Moussa; Ibrahim, Boubacar

    2014-05-01

    The countries in West Africa are highly dependent on rainfed agriculture. Changes in the magnitude and timing of precipitation will affect the agricultural output and the economies as a whole. Irrigation is increasingly being considered an important adaptation option to help improve food security of the population that is expected to double in less than 50 years. West Africa is one of the regions where general circulation models (GCM) show the highest disagreements in the direction of future trends of precipitation, making assessments of water availability and the potential for irrigation a difficult task. We use output from a set of dynamically downscaled climate data sets from regional climate modes (RCM) from the CORDEX CMIP5 collection to drive WBMplus, a macroscale hydrological model and simultaneously calculate water demand (livestock, domestic, and irrigation) and availability for a set of land use, and socio economic scenarios around the 2050's for river basins in the ten countries participating in the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL) project. Contrary to earlier results from GCMs, the set of RCMs suggest a consistent increase (~5-10%) in annual precipitation for a majority of the land area in West Africa that translates to slight increases in river flow under natural conditions for most river basins and a opportunities for increasing irrigation during the dry season. However, water demand is projected to more than double for livestock and domestic needs as a result of population growth. Demand for irrigation will rise sharply if irrigation is expanded from the current area (representing less than 3% of all croplands in the region), closer to its potential which is multiple times higher than the existing area. The pressures on water resources in the region will therefore be dominated by pressures arising from increased demand rather than changes in the availability of water and can potentially lead to

  17. Influence of life history strategies on sensitivity, population growth and response to climate for sympatric alpine birds

    Directory of Open Access Journals (Sweden)

    Wilson Scott

    2012-06-01

    Full Text Available Abstract Background The life history strategy of a species can influence how populations of that species respond to environmental variation. In this study, we used a matrix modeling approach to examine how life history differences among sympatric rock and white-tailed ptarmigan affect the influence of demographic rates on population growth (λ and the potential response to a changing climate. Rock ptarmigan have a slower life history strategy than white-tailed ptarmigan in the study region with lower annual reproductive effort but higher adult survival. Results Based on data from a 5-year field study, deterministic estimates of λ indicated that populations were stable for rock ptarmigan (λ = 1.01, but declining for white-tailed ptarmigan (λ = 0.96. The demographic rates with the highest elasticity for rock ptarmigan were the survival of after-second year females, followed by juvenile survival and success of the first nest. For white-tailed ptarmigan, juvenile survival had the highest elasticity followed by success of the first nest and survival of second-year females. Incorporating stochasticity into the demographic rates led to a 2 and 4% drop in λ for rock and white-tailed ptarmigan respectively. Using data from the first three years we also found that population growth rates of both species were depressed following an increased frequency of severe years, but less so for rock ptarmigan which showed greater resilience under these conditions. Conclusions Our results provide evidence that populations of closely related species can vary in their response to environmental change as a consequence of life history differences. Rock ptarmigan, with a slower life history, are more responsive to demographic rates that influence survival and older life stages but this response is tempered by the extent of variability in each of the rates. Thus, predictions need to consider both aspects in modeling population response to a varying climate

  18. Among-tree variability and feedback effects result in different growth responses to climate change at the upper treeline in the Swiss Alps.

    Science.gov (United States)

    Jochner, Matthias; Bugmann, Harald; Nötzli, Magdalena; Bigler, Christof

    2017-10-01

    Upper treeline ecotones are important life form boundaries and particularly sensitive to a warming climate. Changes in growth conditions at these ecotones have wide-ranging implications for the provision of ecosystem services in densely populated mountain regions like the European Alps. We quantify climate effects on short- and long-term tree growth responses, focusing on among-tree variability and potential feedback effects. Although among-tree variability is thought to be substantial, it has not been considered systematically yet in studies on growth-climate relationships. We compiled tree-ring data including almost 600 trees of major treeline species ( Larix decidua , Picea abies , Pinus cembra , and Pinus mugo ) from three climate regions of the Swiss Alps. We further acquired tree size distribution data using unmanned aerial vehicles. To account for among-tree variability, we employed information-theoretic model selections based on linear mixed-effects models (LMMs) with flexible choice of monthly temperature effects on growth. We isolated long-term trends in ring-width indices (RWI) in interaction with elevation. The LMMs revealed substantial amounts of previously unquantified among-tree variability, indicating different strategies of single trees regarding when and to what extent to invest assimilates into growth. Furthermore, the LMMs indicated strongly positive temperature effects on growth during short summer periods across all species, and significant contributions of fall ( L. decidua ) and current year's spring ( L. decidua , P. abies ). In the longer term, all species showed consistently positive RWI trends at highest elevations, but different patterns with decreasing elevation. L. decidua exhibited even negative RWI trends compared to the highest treeline sites, whereas P. abies , P. cembra , and P. mugo showed steeper or flatter trends with decreasing elevation. This does not only reflect effects of ameliorated climate conditions on tree

  19. Economic Growth and Climate Change: A Cross-National Analysis of Territorial and Consumption-Based Carbon Emissions in High-Income Countries

    Directory of Open Access Journals (Sweden)

    Kyle W. Knight

    2014-06-01

    Full Text Available An important question in the literature on climate change and sustainability is the relation between economic growth and greenhouse gas emissions. While the “green growth” paradigm dominates in the policy arena, a growing number of scholars in wealthy countries are questioning the feasibility of achieving required emissions reductions with continued economic growth. This paper explores the relationship between economic growth and carbon dioxide emissions over the period 1991–2008 with a balanced data set of 29 high-income countries. We present a variety of models, with particular attention to the difference between territorial emissions and consumption-based (or carbon footprint emissions, which include the impact of international trade. The effect of economic growth is greater for consumption-based emissions than territorial emissions. We also find that over this period there is some evidence of decoupling between economic growth and territorial emissions, but no evidence of decoupling for consumption-based emissions.

  20. Characterizing the growth responses of three co-occurring northern conifer tree species to climate variation across a range of conditions

    Energy Technology Data Exchange (ETDEWEB)

    Green, S.; Miyamoto, Y. [Northern British Columbia Univ., Prince George, BC (Canada). Ecosystem Science and Management Program

    2006-07-01

    Climate is the key factor affecting tree growth. Trees regularly adapt to changing environmental conditions. Adjusting forest policies and practices under changing environments necessitates an understanding of species-specific tree responses to climate change. This paper discussed a study that examined the responses of 3 northern conifer tree species, notably the lodgepole pine, subalpine fir, and interior spruce. The purpose of the study was to characterize the climate sensitivities of each species growing under various environmental conditions, represented by mean annual temperatures and mean annual precipitations. The paper provided background information on climate change and tree species and discussed the objectives and implications of the study. Study methods were presented in detail and a geographical map showing the eight sampling sites located in central British Columbia and Yukon was also provided. Last, the paper provided the preliminary results and conclusions. It was found that the impacts of changing seasonal climates on tree growth will be species and site-specific. However, the magnitude of these differences were not completely analysed so that the impacts may be similar or significantly different among species or sites. 15 refs., 4 figs.

  1. Factors affecting cone production in Pinus pinaster Ait.: lack of growth-reproduction trade-offs but significant effects of climate and tree and stand characteristics

    Directory of Open Access Journals (Sweden)

    Felipe Bravo

    2017-10-01

    Full Text Available Aim of study: Our main goal is to determine the relationship between cone production and radial growth in Pinus pinaster Ait. under different climatic conditions across the Iberian Peninsula. Area of study: Coca Intensive Sampling Plateau, Northern Plateau (Spain. Material and methods: Cone counts were conducted on an intensive monitoring plot in Coca (North-Central Spain during the years 2000, 2006 and 2007. A ZIP (zero-inflated Poisson model was adjusted for simultaneously estimating the probability of obtaining crop cones and its amount. The Northern Atlantic Oscillation (NAO index was used as explanatory variable, together with a wide variety of tree and local stand variables. Climate (as evaluated by NAO, local stand density (here estimated from the six nearest trees, tree size and vigor, competition and growth efficiency significantly influenced both occurrence and intensity of cone production. Main results: ZIP models for predicting reproductive effort seems an adequate tool to predict reproductive responses to climatic fluctuations and the resulting future species distribution in the face of climate change, as well as to identify silviculture actions that would promote reproductive success in naturally-regenerated stands, list and discuss relevant results (including numeric values of experimental results. Research highlights: Climate, stand density and tree conditions (size and vigor, competition and growth efficiency influence significantly both cone occurrence and intensity of fruiting as shown by a ZIP model. As the climate variables included in the model (based on Northern Atlantic Oscillation, NAO are general and easily obtained, the proposed model has practical applicability to predicting Pinus pinaster cone production in the Iberian Peninsula.

  2. Factors affecting cone production in Pinus pinaster Ait.: lack of growth-reproduction trade-offs but significant effects of climate and tree and stand characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, F.; Maguire, D.A.; González-Martínez, S.G.

    2017-11-01

    Aim of study: Our main goal is to determine the relationship between cone production and radial growth in Pinus pinaster Ait. under different climatic conditions across the Iberian Peninsula. Area of study: Coca Intensive Sampling Plateau, Northern Plateau (Spain). Material and methods: Cone counts were conducted on an intensive monitoring plot in Coca (North-Central Spain) during the years 2000, 2006 and 2007. A ZIP (zero-inflated Poisson) model was adjusted for simultaneously estimating the probability of obtaining crop cones and its amount. The Northern Atlantic Oscillation (NAO) index was used as explanatory variable, together with a wide variety of tree and local stand variables. Climate (as evaluated by NAO), local stand density (here estimated from the six nearest trees), tree size and vigor, competition and growth efficiency significantly influenced both occurrence and intensity of cone production. Main results: ZIP models for predicting reproductive effort seems an adequate tool to predict reproductive responses to climatic fluctuations and the resulting future species distribution in the face of climate change, as well as to identify silviculture actions that would promote reproductive success in naturally-regenerated stands, list and discuss relevant results (including numeric values of experimental results). Research highlights: Climate, stand density and tree conditions (size and vigor, competition and growth efficiency) influence significantly both cone occurrence and intensity of fruiting as shown by a ZIP model. As the climate variables included in the model (based on Northern Atlantic Oscillation, NAO) are general and easily obtained, the proposed model has practical applicability to predicting Pinus pinaster cone production in the Iberian Peninsula.

  3. Factors affecting cone production in Pinus pinaster Ait.: lack of growth-reproduction trade-offs but significant effects of climate and tree and stand characteristics

    International Nuclear Information System (INIS)

    Bravo, F.; Maguire, D.A.; González-Martínez, S.G.

    2017-01-01

    Aim of study: Our main goal is to determine the relationship between cone production and radial growth in Pinus pinaster Ait. under different climatic conditions across the Iberian Peninsula. Area of study: Coca Intensive Sampling Plateau, Northern Plateau (Spain). Material and methods: Cone counts were conducted on an intensive monitoring plot in Coca (North-Central Spain) during the years 2000, 2006 and 2007. A ZIP (zero-inflated Poisson) model was adjusted for simultaneously estimating the probability of obtaining crop cones and its amount. The Northern Atlantic Oscillation (NAO) index was used as explanatory variable, together with a wide variety of tree and local stand variables. Climate (as evaluated by NAO), local stand density (here estimated from the six nearest trees), tree size and vigor, competition and growth efficiency significantly influenced both occurrence and intensity of cone production. Main results: ZIP models for predicting reproductive effort seems an adequate tool to predict reproductive responses to climatic fluctuations and the resulting future species distribution in the face of climate change, as well as to identify silviculture actions that would promote reproductive success in naturally-regenerated stands, list and discuss relevant results (including numeric values of experimental results). Research highlights: Climate, stand density and tree conditions (size and vigor, competition and growth efficiency) influence significantly both cone occurrence and intensity of fruiting as shown by a ZIP model. As the climate variables included in the model (based on Northern Atlantic Oscillation, NAO) are general and easily obtained, the proposed model has practical applicability to predicting Pinus pinaster cone production in the Iberian Peninsula.

  4. The geological and climatological case for a warmer and wetter early Mars

    Science.gov (United States)

    Ramirez, Ramses M.; Craddock, Robert A.

    2018-04-01

    The climate of early Mars remains a topic of intense debate. Ancient terrains preserve landscapes consistent with stream channels, lake basins and possibly even oceans, and thus the presence of liquid water flowing on the Martian surface 4 billion years ago. However, despite the geological evidence, determining how long climatic conditions supporting liquid water lasted remains uncertain. Climate models have struggled to generate sufficiently warm surface conditions given the faint young Sun—even assuming a denser early atmosphere. A warm climate could have potentially been sustained by supplementing atmospheric CO2 and H2O warming with either secondary greenhouse gases or clouds. Alternatively, the Martian climate could have been predominantly cold and icy, with transient warming episodes triggered by meteoritic impacts, volcanic eruptions, methane bursts or limit cycles. Here, we argue that a warm and semi-arid climate capable of producing rain is most consistent with the geological and climatological evidence.

  5. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth

  6. Climate change, fire management, and ecological services in the southwestern US

    Science.gov (United States)

    Hurteau, Matthew D.; Bradford, John B.; Fulé, Peter Z.; Taylor, Alan H.; Martin, Katherine L.

    2014-01-01

    The diverse forest types of the southwestern US are inseparable from fire. Across climate zones in California, Nevada, Arizona, and New Mexico, fire suppression has left many forest types out of sync with their historic fire regimes. As a result, high fuel loads place them at risk of severe fire, particularly as fire activity increases due to climate change. A legacy of fire exclusion coupled with a warming climate has led to increasingly large and severe wildfires in many southwest forest types. Climate change projections include an extended fire season length due to earlier snowmelt and a general drying trend due to rising temperatures. This suggests the future will be warmer and drier regardless of changes in precipitation. Hotter, drier conditions are likely to increase forest flammability, at least initially. Changes in climate alone have the potential to alter the distribution of vegetation types within the region, and climate-driven shifts in vegetation distribution are likely to be accelerated when coupled with stand-replacing fire. Regardless of the rate of change, the interaction of climate and fire and their effects on Southwest ecosystems will alter the provisioning of ecosystem services, including carbon storage and biodiversity. Interactions between climate, fire, and vegetation growth provide a source of great uncertainty in projecting future fire activity in the region, as post-fire forest recovery is strongly influenced by climate and subsequent fire frequency. Severe fire can be mitigated with fuels management including prescribed fire, thinning, and wildfire management, but new strategies are needed to ensure the effectiveness of treatments across landscapes. We review the current understanding of the relationship between fire and climate in the Southwest, both historical and projected. We then discuss the potential implications of climate change for fire management and examine the potential effects of climate change and fire on ecosystem

  7. Arctic Climate and Climate Change with a Focus on Greenland

    DEFF Research Database (Denmark)

    Stendel, Martin; Christensen, Jens Hesselbjerg; Petersen, Dorthe

    2008-01-01

    Paleoclimatic evidence suggests that the Arctic presently is warmer than during the last 125,000 years, and it is very likely11The term "likelihood" is used here as in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). According to the definition in this rep...... Ice Sheet, the fate of arctic sea ice and a possible weakening of the thermohaline circulation (THC) under future warming conditions have led to increased research activities, including an assessment of arctic climate and climate change (ACIA, 2005), the fourth assessment report (AR4...

  8. Disentangling the effects of acidic air pollution, atmospheric CO2 , and climate change on recent growth of red spruce trees in the Central Appalachian Mountains.

    Science.gov (United States)

    Mathias, Justin M; Thomas, Richard B

    2018-05-20

    In the 45 years after legislation of the Clean Air Act, there has been tremendous progress in reducing acidic air pollutants in the eastern United States, yet limited evidence exists that cleaner air has improved forest health. Here, we investigate the influence of recent environmental changes on the growth and physiology of red spruce (Picea rubens Sarg.) trees, a key indicator species of forest health, spanning three locations along a 100 km transect in the Central Appalachian Mountains. We incorporated a multiproxy approach using 75-year tree ring chronologies of basal tree growth, carbon isotope discrimination (∆ 13 C, a proxy for leaf gas exchange), and δ 15 N (a proxy for ecosystem N status) to examine tree and ecosystem level responses to environmental change. Results reveal the two most important factors driving increased tree growth since ca. 1989 are reductions in acidic sulfur pollution and increases in atmospheric CO 2 , while reductions in pollutant emissions of NO x and warmer springs played smaller, but significant roles. Tree ring ∆ 13 C signatures increased significantly since 1989, concurrently with significant declines in tree ring δ 15 N signatures. These isotope chronologies provide strong evidence that simultaneous changes in C and N cycling, including greater photosynthesis and stomatal conductance of trees and increases in ecosystem N retention, were related to recent increases in red spruce tree growth and are consequential to ecosystem recovery from acidic pollution. Intrinsic water use efficiency (iWUE) of the red spruce trees increased by ~51% across the 75-year chronology, and was driven by changes in atmospheric CO 2 and acid pollution, but iWUE was not linked to recent increases in tree growth. This study documents the complex environmental interactions that have contributed to the recovery of red spruce forest ecosystems from pervasive acidic air pollution beginning in 1989, about 15 years after acidic pollutants started to

  9. Effects of brood pheromone (SuperBoost) on consumption of protein supplement and growth of honey bee (Hymenoptera: Apidae) colonies during fall in a northern temperate climate.

    Science.gov (United States)

    Sagili, Ramesh R; Breece, Carolyn R

    2012-08-01

    Honey bee, Apis mellifera L. (Hymenoptera: Apidae), nutrition is vital for colony growth and maintenance of a robust immune system. Brood rearing in honey bee colonies is highly dependent on protein availability. Beekeepers in general provide protein supplement to colonies during periods of pollen dearth. Honey bee brood pheromone is a blend of methyl and ethyl fatty acid esters extractable from cuticle of honey bee larvae that communicates the presence of larvae in a colony. Honey bee brood pheromone has been shown to increase protein supplement consumption and growth of honey bee colonies in a subtropical winter climate. Here, we tested the hypothesis that synthetic brood pheromone (SuperBoost) has the potential to increase protein supplement consumption during fall in a temperate climate and thus increase colony growth. The experiments were conducted in two locations in Oregon during September and October 2009. In both the experiments, colonies receiving brood pheromone treatment consumed significantly higher protein supplement and had greater brood area and adult bees than controls. Results from this study suggest that synthetic brood pheromone may be used to stimulate honey bee colony growth by stimulating protein supplement consumption during fall in a northern temperate climate, when majority of the beekeepers feed protein supplement to their colonies.

  10. Mainstreaming Low-Carbon Climate-Resilient growth pathways into investment decision-making - lessons from development financial institutions on approaches and tools

    International Nuclear Information System (INIS)

    Cochran, Ian; Eschalier, Claire; Deheza, Mariana

    2015-01-01

    The integration or 'mainstreaming' of the transition to a low-carbon climate-resilient future as a prism through which to make financial decisions poses a broad number of operational challenges. This background paper for the March 31 event is drawn from the report currently underway by CDC Climat Research supported by the Group Agence Francaise de Developpement and the Group Caisse des depots entitled 'Mainstreaming Low-Carbon Climate-Resilient Growth Pathways into International Finance Institutions' Activities: Identifying standards and tools and a typology for integration into operational decision-making'. Drawing from existing studies of current practice among mainly public development finance institutions (DFIs), this paper presents three families of tools and metrics used by DFIs to integrate climate change into investment decision-making. It presents a number of examples of how institutions have mainstreamed these issues into upstream strategic and downstream assessment processes. This paper also identifies the further challenge of moving from a system of tools and indicators that focus principally on climate finance tracking - important to foster trust and progress on international cooperation - to a means of aligning activities across financial institutions and the entire economy with the transition to a low-carbon climate-resilient economic model necessary to achieve the 2 deg. C commitment. (authors)

  11. Changes in climate-growth relationships and IADF formation over time of pine species (Pinus halepensis, P. pinaster and P. sylvestris in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Jorge Olivar

    2015-04-01

    Full Text Available Background: The Mediterranean basin has experienced an increase in the mean annual temperature, a decrease in the mean annual precipitation, and an increase in the frequency of severe drought periods during the second half of the 20th century. However, winter and spring precipitation has increased and summer precipitation has decreased in the western Mediterranean region. Aim of the study: The objectives of the present study were: i to compare changes in climate-growth relationships over time for Pinus halepensis, P. pinaster and P. sylvestris in Spain ii to quantify the presence of intra-annual density fluctuations (IADFs on the three species, and iii to define the associated climatic variables. Area of study: 26 sampling sites (8 P. halepensis sites, 8 P. pinaster sites and 10 P. sylvestris sites were selected in their distribution area in Spain. Main results: Precipitation is the main factor influencing growth and IADF occurrence in the three species. Wet periods during previous winter and spring induced higher growth rates on P. halepensis and P. pinaster, while P. sylvestris was mostly influenced by summer precipitation. However, the influence of these climatic variables on the growth of these species changed over the studied period. The increase of winter and spring precipitation combined with increasingly harsh summer climatic conditions in the second half of the 20th century may have enhanced the importance of precipitation at the beginning of the growing season on the growth of species subject to higher summer drought stress (P. halepensis and P. pinaster and increased IADF occurrence. Research highlights: Besides reflecting changes in the environmental conditions during the growing season, the inclusion of IADF detection in chronologies adds new information to ring-width chronologies, thereby improving its quality.

  12. Costs of climate impacts

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, W O

    1980-03-01

    The surest prospect for future world climate patterns is that they will differ from present ones. What is uncertain is how much, and exactly in what way in different geographical regions. The anthropogenic CO/sub 2/ increase will probably exceed the unknown forcing functions of natural climate change within 30 to 60 years. It is not unlikely that by AD 2040 the world's climate, driven by the CO/sub 2/ increase, will enter a domain warmer than any within the past few million years. The costs of averting this climate change or of absorbing its impact are likely to be huge, even though today imponderable. Not least among these are intangible and unquantifiable costs associated with changes in human values and the quality of everyday life for future generations.

  13. Partnering for climate change adaptations by Dutch housing associations

    OpenAIRE

    Roders, M.J.

    2015-01-01

    Introduction Climate change can no longer be ignored. It is globally recognised that the evidence for climate change is unequivocal and that action needs to be taken in order to address its negative effects. These effects, such as warmer and drier summers and more extreme rainfall, may threaten the quality of life of those living in urban environments. To limit these threats, a number of climate change adaptation measures can be taken to pre-empt the negative effects of climate chan...

  14. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    Science.gov (United States)

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, Jill; Zimmerman, Jess K.; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.

  15. The Effect of Climate Change on Potato (Solanum tuberosum L. Production in Feridonshahr Region of Isfahan I- Growth and Development

    Directory of Open Access Journals (Sweden)

    zohrab adavi

    2018-02-01

    Full Text Available Introduction The historical trend of Iran annual average temperature of shows a 0.05 °C.year-1 increase which indicates that future emissions of greenhouse gases will continue to increase temperature and consequently cause to climatic change in the country. This change in environment will have a serious impact on different growth and development processes of crops. Increasing temperature could affect physiological processes like photosynthesis, respiration and partitioning of photo-assimilates. The negative impacts of climate change on potato production are reported in the literature. The present study was conducted to quantify the potential impacts of climate change on phenology, growth and tuber yield of potato. Materials and Methods The climate projections of Hadley Centre Coupled Model version 3 (HadCM3, France and Institute of Pierre Simon Laplace (IPCM4, United Kingdom, was used to simulate the future conditions based on A2, B1 and A1B SRES (Special Report on Emissions Scenarios scenario at three time periods including 2015-2045 (2030, 2046-2075 (2060 and 2076-2105 (2090with a baseline of 1988-2012 (2012. For each period, the year shown in the parenthesis was considered as target year. The SUBSTOR-Potato model, one of the sixteen models embedded within the DSSAT (v4.5 program, was used to simulate the baseline and future yield and growth characteristics of potato. The model was calibrated and validated during 2012 and 2013 with two different farm experiments. In these experiments, the effects of different amounts of nitrogen fertilizer on yield and morphological traits of three potato cultivars were investigated. Six levels of nitrogen fertilizer (0, 50, 100, 200, 300 and 400 kg urea. ha-1 and three commonly planted potato cultivars in the region (Arinda, Santeh and Agria as early, medium and late maturity varieties, respectively were studied as a factorial arrangement based on a randomized complete block design with three replications

  16. Tropical forest carbon balance in a warmer world: a critical review spanning microbial- to ecosystem-scale processes

    Science.gov (United States)

    Wood, Tana E.; Cavaleri, Molly A.; Reed, Sasha C.

    2012-01-01

    Tropical forests play a major role in regulating global carbon (C) fluxes and stocks, and even small changes to C cycling in this productive biome could dramatically affect atmospheric carbon dioxide (CO2) concentrations. Temperature is expected to increase over all land surfaces in the future, yet we have a surprisingly poor understanding of how tropical forests will respond to this significant climatic change. Here we present a contemporary synthesis of the existing data and what they suggest about how tropical forests will respond to increasing temperatures. Our goals were to: (i) determine whether there is enough evidence to support the conclusion that increased temperature will affect tropical forest C balance; (ii) if there is sufficient evidence, determine what direction this effect will take; and, (iii) establish what steps should to be taken to resolve the uncertainties surrounding tropical forest responses to increasing temperatures. We approach these questions from a mass-balance perspective and therefore focus primarily on the effects of temperature on inputs and outputs of C, spanning microbial- to ecosystem-scale responses. We found that, while there is the strong potential for temperature to affect processes related to C cycling and storage in tropical forests, a notable lack of data combined with the physical, biological and chemical diversity of the forests themselves make it difficult to resolve this issue with certainty. We suggest a variety of experimental approaches that could help elucidate how tropical forests will respond to warming, including large-scale in situ manipulation experiments, longer term field experiments, the incorporation of a range of scales in the investigation of warming effects (both spatial and temporal), as well as the inclusion of a diversity of tropical forest sites. Finally, we highlight areas of tropical forest research where notably few data are available, including temperature effects on: nutrient cycling

  17. Rapid climatic changes recorded in loess successions

    NARCIS (Netherlands)

    Vandenberghe, J.; Nugteren, G.D.

    2001-01-01

    Detailed grain-size analyses, both in China and western Europe, indicate the occurrence of short climatic cycles during loess deposition of the last glacial. Cold episodes coincided with enhanced deposition of relatively coarse loess and alternated with relatively warmer episodes with decreased

  18. Transformation of even-aged European beech (Fagus sylvatica L.) to uneven-aged management under changing growth conditions caused by climate change

    DEFF Research Database (Denmark)

    Schou, Erik; Meilby, Henrik

    2013-01-01

    Transformation from even-aged to uneven-aged forest management is currently taking place throughout Europe. Climate change is, however, expected to change growth conditions—possibly quite radically. Using a deterministic approach, it was the objective of this study to investigate the influence...... of such changes on optimal transformation strategies for an even-aged stand of European Beech in Denmark. For a range of growth change scenarios, represented by changes in site index, optimal harvest policies were determined using a matrix modelling approach and a differential evolution algorithm. Transition...... probabilities were updated continuously based on stand level variables and the transition matrix was thus dynamic. With optimal transformation policies, stand development followed similar pathways during the transformation phase irrespective of climate change scenario. Optimal transformation policies were thus...

  19. Antimicrobial Effect of 15 Medicinal Plant Species and their Dependency on Climatic Conditions of Growth in Different Geographical and Ecological Areas of Fars Province

    Directory of Open Access Journals (Sweden)

    Abbas Abdollahi

    2012-05-01

    Full Text Available Background: The effects of medicinal plants are variable in different conditions. Here, the antimicrobial effect of 15 medicinal plant species and their dependency on the climatic condition of growth in different geographical and ecological areas of Fars Province were studied. Materials and Methods: In This empirical study, the antimicrobial effect of hydro-alcoholic extract of 15 medicinal plant species was examined against standard bacterial strains comparing to conventional therapeutic antibiotics using disk diffusion assay and serial broth dilution. Results: All Extracts were effective against S.aureus ATCC 25923 growth; also Peganum harmala, Myrtus communis, Mentha pulegium, Mentha spp, and Zataria multiflora extracts were observed to have antimicrobial activity against E.coli ATCC 25922. This antimicrobial activity had partially similar results, comparing to conventional antibioticsConclusion: Medicinal plants produce various amounts of antimicrobial substances under the climatic and ecological conditions of each zone, which must be considered in manufacturing herbal medicines.

  20. Impacts and adaptation for climate change in urban forests

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, M. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2006-07-01

    Changes to urban trees as a result of climate change were reviewed in order to aid urban forest managers in the development of adaptive climate change strategies. Various climate change models have predicted that winter and spring temperatures will increase. Higher amounts of precipitation are also anticipated. Higher temperatures will results in evapotranspiration, which will cause soil moisture levels to decline. Climatologists have also suggested that very hot days, winter storms and high rainfall events will increase in frequency. In addition, higher levels of atmospheric carbon dioxide (CO{sub 2}) will affect photosynthesis, with associated impacts on urban tree growth. Higher temperatures and longer growing seasons will allow insect populations to build up to higher levels, and warmer and dryer summers are likely to bring longer fire seasons and more severe fires. Urban trees under stress from drought and higher temperatures will be increasingly vulnerable to existing urban stressors such as air pollution and soil compaction. However, the ecological services provided by trees will become more valuable under future climate change regimes, particularly for shading and space cooling, as well as soil aeration and stabilization and the uptake of storm water. It was suggested that future tree growth may be enhanced on sites with adequate water and nutrients, but will probably decline in areas that are already marginal. It was recommended that urban forest managers assess the present vulnerability of trees to climate-related events in order to prepare for future change. Managers should also assess their capacity to implement various strategies through municipal and provincial partnerships. It was observed that decisions taken now about forest management will play out over several decades. It was concluded that maintaining a flexible and resilient urban forest management system is the best defence, as specific climate change impacts cannot be predicted. 18 refs., 4

  1. Darcy’s law predicts widespread forest mortality under climate warming

    Science.gov (United States)

    McDowell, Nate G.; Allen, Craig D.

    2015-01-01

    Drought and heat-induced tree mortality is accelerating in many forest biomes as a consequence of a warming climate, resulting in a threat to global forests unlike any in recorded history. Forests store the majority of terrestrial carbon, thus their loss may have significant and sustained impacts on the global carbon cycle. We use a hydraulic corollary to Darcy’s law, a core principle of vascular plant physiology, to predict characteristics of plants that will survive and die during drought under warmer future climates. Plants that are tall with isohydric stomatal regulation, low hydraulic conductance, and high leaf area are most likely to die from future drought stress. Thus, tall trees of old-growth forests are at the greatest risk of loss, which has ominous implications for terrestrial carbon storage. This application of Darcy’s law indicates today’s forests generally should be replaced by shorter and more xeric plants, owing to future warmer droughts and associated wildfires and pest attacks. The Darcy’s corollary also provides a simple, robust framework for informing forest management interventions needed to promote the survival of current forests. Given the robustness of Darcy’s law for predictions of vascular plant function, we conclude with high certainty that today’s forests are going to be subject to continued increases in mortality rates that will result in substantial reorganization of their structure and carbon storage.

  2. Sensitivity of Photosynthetic Gas Exchange and Growth of Lodgepole Pine to Climate Variability Depends on the Age of Pleistocene Glacial Surfaces

    Science.gov (United States)

    Osborn, B.; Chapple, W.; Ewers, B. E.; Williams, D. G.

    2014-12-01

    The interaction between soil conditions and climate variability plays a central role in the ecohydrological functions of montane conifer forests. Although soil moisture availability to trees is largely dependent on climate, the depth and texture of soil exerts a key secondary influence. Multiple Pleistocene glacial events have shaped the landscape of the central Rocky Mountains creating a patchwork of soils differing in age and textural classification. This mosaic of soil conditions impacts hydrological properties, and montane conifer forests potentially respond to climate variability quite differently depending on the age of glacial till and soil development. We hypothesized that the age of glacial till and associated soil textural changes exert strong control on growth and photosynthetic gas exchange of lodgepole pine. We examined physiological and growth responses of lodgepole pine to interannual variation in maximum annual snow water equivalence (SWEmax) of montane snowpack and growing season air temperature (Tair) and vapor pressure deficit (VPD) across a chronosequence of Pleistocene glacial tills ranging in age from 700k to 12k years. Soil textural differences across the glacial tills illustrate the varying degrees of weathering with the most well developed soils with highest clay content on the oldest till surfaces. We show that sensitivity of growth and carbon isotope discrimination, an integrated measure of canopy gas exchange properties, to interannual variation SWEmax , Tair and VPD is greatest on young till surfaces, whereas trees on old glacial tills with well-developed soils are mostly insensitive to these interannual climate fluctuations. Tree-ring widths were most sensitive to changes in SWEmax on young glacial tills (p < 0.01), and less sensitive on the oldest till (p < 0.05). Tair correlates strongly with δ13C values on the oldest and youngest tills sites, but shows no significant relationship on the middle aged glacial till. It is clear that

  3. Women are Warmer but No Less Assertive than Men: Gender and Language on Facebook.

    Directory of Open Access Journals (Sweden)

    Gregory Park

    Full Text Available Using a large social media dataset and open-vocabulary methods from computational linguistics, we explored differences in language use across gender, affiliation, and assertiveness. In Study 1, we analyzed topics (groups of semantically similar words across 10 million messages from over 52,000 Facebook users. Most language differed little across gender. However, topics most associated with self-identified female participants included friends, family, and social life, whereas topics most associated with self-identified male participants included swearing, anger, discussion of objects instead of people, and the use of argumentative language. In Study 2, we plotted male- and female-linked language topics along two interpersonal dimensions prevalent in gender research: affiliation and assertiveness. In a sample of over 15,000 Facebook users, we found substantial gender differences in the use of affiliative language and slight differences in assertive language. Language used more by self-identified females was interpersonally warmer, more compassionate, polite, and-contrary to previous findings-slightly more assertive in their language use, whereas language used more by self-identified males was colder, more hostile, and impersonal. Computational linguistic analysis combined with methods to automatically label topics offer means for testing psychological theories unobtrusively at large scale.

  4. Women are Warmer but No Less Assertive than Men: Gender and Language on Facebook

    Science.gov (United States)

    Park, Gregory; Schwartz, H. Andrew; Kern, Margaret L.; Eichstaedt, Johannes C.; Kosinski, Michael; Stillwell, David; Ungar, Lyle H.; Seligman, Martin E. P.

    2016-01-01

    Using a large social media dataset and open-vocabulary methods from computational linguistics, we explored differences in language use across gender, affiliation, and assertiveness. In Study 1, we analyzed topics (groups of semantically similar words) across 10 million messages from over 52,000 Facebook users. Most language differed little across gender. However, topics most associated with self-identified female participants included friends, family, and social life, whereas topics most associated with self-identified male participants included swearing, anger, discussion of objects instead of people, and the use of argumentative language. In Study 2, we plotted male- and female-linked language topics along two interpersonal dimensions prevalent in gender research: affiliation and assertiveness. In a sample of over 15,000 Facebook users, we found substantial gender differences in the use of affiliative language and slight differences in assertive language. Language used more by self-identified females was interpersonally warmer, more compassionate, polite, and—contrary to previous findings—slightly more assertive in their language use, whereas language used more by self-identified males was colder, more hostile, and impersonal. Computational linguistic analysis combined with methods to automatically label topics offer means for testing psychological theories unobtrusively at large scale. PMID:27223607

  5. Environmental effects on growth phenology of co-occurring Eucalyptus species.

    Science.gov (United States)

    Rawal, Deepa S; Kasel, Sabine; Keatley, Marie R; Aponte, Cristina; Nitschke, Craig R

    2014-05-01

    Growth is one of the most important phenological cycles in a plant's life. Higher growth rates increase the competitive ability, survival and recruitment and can provide a measure of a plant's adaptive capacity to climate variability and change. This study identified the growth relationship of six Eucalyptus species to variations in temperature, soil moisture availability, photoperiod length and air humidity over 12 months. The six species represent two naturally co-occurring groups of three species each representing warm-dry and the cool-moist sclerophyll forests, respectively. Warm-dry eucalypts were found to be more tolerant of higher temperatures and lower air humidity than the cool-moist eucalypts. Within groups, species-specific responses were detected with Eucalyptus microcarpa having the widest phenological niche of the warm-dry species, exhibiting greater resistance to high temperature and lower air humidity. Temperature dependent photoperiodic responses were exhibited by all the species except Eucalyptus tricarpa and Eucalyptus sieberi, which were able to maintain growth as photoperiod shortened but temperature requirements were fulfilled. Eucalyptus obliqua exhibited a flexible growth rate and tolerance to moisture limitation which enables it to maintain its growth rate as water availability changes. The wider temperature niche exhibited by E. sieberi compared with E. obliqua and Eucalyptus radiata may improve its competitive ability over these species where winters are warm and moisture does not limit growth. With climate change expected to result in warmer and drier conditions in south-east Australia, the findings of this study suggest all cool-moist species will likely suffer negative effects on growth while the warm-dry species may still maintain current growth rates. Our findings highlight that climate driven shifts in growth phenology will likely occur as climate changes and this may facilitate changes in tree communities by altering inter

  6. Net root growth and nutrient acquisition in response to predicted climate change in two contrasting heathland species

    DEFF Research Database (Denmark)

    Arndal, M.F.; Merrild, M.P.; Michelsen, A.

    2013-01-01

    Accurate predictions of nutrient acquisition by plant roots and mycorrhizas are critical in modelling plant responses to climate change.We conducted a field experiment with the aim to investigate root nutrient uptake in a future climate and studied root production by ingrowth cores, mycorrhizal...... to elevated CO2. The species-specific response to the treatments suggests different sensitivity to global change factors, which could result in changed plant competitive interactions and belowground nutrient pool sizes in response to future climate change....

  7. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests.

    Science.gov (United States)

    Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.

  8. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests.

    Directory of Open Access Journals (Sweden)

    Danny L Fry

    Full Text Available In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1, and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56% in large patches (≥ 10 trees, and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.

  9. Drought tolerance and growth in populations of a wide-ranging tree species indicate climate change risks for the boreal north.

    Science.gov (United States)

    Montwé, David; Isaac-Renton, Miriam; Hamann, Andreas; Spiecker, Heinrich

    2016-02-01

    Choosing drought-tolerant planting stock in reforestation programs may help adapt forests to climate change. To inform such reforestation strategies, we test lodgepole pine (Pinus contorta Doug. ex Loud. var latifolia Englm.) population response to drought and infer potential benefits of a northward transfer of seeds from drier, southern environments. The objective is addressed by combining dendroecological growth analysis with long-term genetic field trials. Over 500 trees originating from 23 populations across western North America were destructively sampled in three experimental sites in southern British Columbia, representing a climate warming scenario. Growth after 32 years from provenances transferred southward or northward over long distances was significantly lower than growth of local populations. All populations were affected by a severe natural drought event in 2002. The provenances from the most southern locations showed the highest drought tolerance but low productivity. Local provenances were productive and drought tolerant. Provenances from the boreal north showed lower productivity and less drought tolerance on southern test sites than all other sources, implying that maladaptation to drought may prevent boreal populations from taking full advantage of more favorable growing conditions under projected climate change. © 2015 John Wiley & Sons Ltd.

  10. Climate change in the Netherlands : Challenges for a safe and attractive urban environment

    NARCIS (Netherlands)

    Döpp, S.P.; Bosch, P.R.; Deelen, C.L. van

    2009-01-01

    Climate change in cities has so far been underexposed in Dutch research on climate change adaptation. High population density and high economic values make Dutch urban areas nevertheless vulnerable to climate change. Even with stringent mitigation policies Dutch cities will be subject to warmer

  11. A climate trend analysis of Ethiopia

    Science.gov (United States)

    Funk, Christopher C.; Rowland, Jim; Eilerts, Gary; Kebebe, Emebet; Biru, Nigist; White, Libby; Galu, Gideon

    2012-01-01

    This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), examines recent trends in March-June, June-September, and March-September rainfall and temperature, identifying significant reductions in rainfall and increases in temperature over time in many areas of Ethiopia. Conclusions: * Spring and summer rains in parts of Ethiopia have declined by 15-20 percent since the mid-1970s. * Substantial warming across the entire country has exacerbated the dryness.* An important pattern of observed existing rainfall declines coincides with heavily populated areas of the Rift Valley in south-central Ethiopia, and is likely already adversely affecting crop yields and pasture conditions. * Rapid population growth and the expansion of farming and pastoralism under a drier, warmer climate regime could dramatically increase the number of at-risk people in Ethiopia during the next 20 years.* Many areas of Ethiopia will maintain moist climate conditions, and agricultural development in these areas could help offset rainfall declines and reduced production in other areas.

  12. Long-term growth-increment chronologies reveal diverse influences of climate forcing on freshwater and forest biota in the Pacific Northwest.

    Science.gov (United States)

    Black, Bryan A; Dunham, Jason B; Blundon, Brett W; Brim-Box, Jayne; Tepley, Alan J

    2015-02-01

    Analyses of how organisms are likely to respond to a changing climate have focused largely on the direct effects of warming temperatures, though changes in other variables may also be important, particularly the amount and timing of precipitation. Here, we develop a network of eight growth-increment width chronologies for freshwater mussel species in the Pacific Northwest, United States and integrate them with tree-ring data to evaluate how terrestrial and aquatic indicators respond to hydroclimatic variability, including river discharge and precipitation. Annual discharge averaged across water years (October 1-September 30) was highly synchronous among river systems and imparted a coherent pattern among mussel chronologies. The leading principal component of the five longest mussel chronologies (1982-2003; PC1(mussel)) accounted for 47% of the dataset variability and negatively correlated with the leading principal component of river discharge (PC1(discharge); r = -0.88; P < 0.0001). PC1(mussel) and PC1(discharge) were closely linked to regional wintertime precipitation patterns across the Pacific Northwest, the season in which the vast majority of annual precipitation arrives. Mussel growth was also indirectly related to tree radial growth, though the nature of the relationships varied across the landscape. Negative correlations occurred in forests where tree growth tends to be limited by drought while positive correlations occurred in forests where tree growth tends to be limited by deep or lingering snowpack. Overall, this diverse assemblage of chronologies illustrates the importance of winter precipitation to terrestrial and freshwater ecosystems and suggests that a complexity of climate responses must be considered when estimating the biological impacts of climate variability and change. © 2014 John Wiley & Sons Ltd.

  13. The rise and fall of infectious disease in a warmer world

    Science.gov (United States)

    Lafferty, Kevin D.; Mordecai, Erin A.

    2016-01-01

    Now-outdated estimates proposed that climate change should have increased the number of people at risk of malaria, yet malaria and several other infectious diseases have declined. Although some diseases have increased as the climate has warmed, evidence for widespread climate-driven disease expansion has not materialized, despite increased research attention. Biological responses to warming depend on the non-linear relationships between physiological performance and temperature, called the thermal response curve. This leads performance to rise and fall with temperature. Under climate change, host species and their associated parasites face extinction if they cannot either thermoregulate or adapt by shifting phenology or geographic range. Climate change might also affect disease transmission through increases or decreases in host susceptibility and infective stage (and vector) production, longevity, and pathology. Many other factors drive disease transmission, especially economics, and some change in time along with temperature, making it hard to distinguish whether temperature drives disease or just correlates with disease drivers. Although it is difficult to predict how climate change will affect infectious disease, an ecological approach can help meet the challenge.

  14. The rise and fall of infectious disease in a warmer world [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Kevin D. Lafferty

    2016-08-01

    Full Text Available Now-outdated estimates proposed that climate change should have increased the number of people at risk of malaria, yet malaria and several other infectious diseases have declined. Although some diseases have increased as the climate has warmed, evidence for widespread climate-driven disease expansion has not materialized, despite increased research attention. Biological responses to warming depend on the non-linear relationships between physiological performance and temperature, called the thermal response curve. This leads performance to rise and fall with temperature. Under climate change, host species and their associated parasites face extinction if they cannot either thermoregulate or adapt by shifting phenology or geographic range. Climate change might also affect disease transmission through increases or decreases in host susceptibility and infective stage (and vector production, longevity, and pathology. Many other factors drive disease transmission, especially economics, and some change in time along with temperature, making it hard to distinguish whether temperature drives disease or just correlates with disease drivers. Although it is difficult to predict how climate change will affect infectious disease, an ecological approach can help meet the challenge.

  15. A risk assessment of climate change and the impact of forest diseases on forest ecosystems in the Western United States and Canada

    Science.gov (United States)

    John T. Kliejunas

    2011-01-01

    This risk assessment projects the effects of eight forest diseases under two climate-change scenarios (warmer and drier, warmer and wetter). Examples are used to describe how various types of forest diseases may respond to environmental changes. Forest diseases discussed in this report include foliar diseases, Phytophthora diseases, stem rusts,...

  16. Physical and economic consequences of climate change in Europe.

    Science.gov (United States)

    Ciscar, Juan-Carlos; Iglesias, Ana; Feyen, Luc; Szabó, László; Van Regemorter, Denise; Amelung, Bas; Nicholls, Robert; Watkiss, Paul; Christensen, Ole B; Dankers, Rutger; Garrote, Luis; Goodess, Clare M; Hunt, Alistair; Moreno, Alvaro; Richards, Julie; Soria, Antonio

    2011-02-15

    Quantitative estimates of the economic damages of climate change usually are based on aggregate relationships linking average temperature change to loss in gross domestic product (GDP). However, there is a clear need for further detail in the regional and sectoral dimensions of impact assessments to design and prioritize adaptation strategies. New developments in regional climate modeling and physical-impact modeling in Europe allow a better exploration of those dimensions. This article quantifies the potential consequences of climate change in Europe in four market impact categories (agriculture, river floods, coastal areas, and tourism) and one nonmarket impact (human health). The methodology integrates a set of coherent, high-resolution climate change projections and physical models into an economic modeling framework. We find that if the climate of the 2080s were to occur today, the annual loss in household welfare in the European Union (EU) resulting from the four market impacts would range between 0.2-1%. If the welfare loss is assumed to be constant over time, climate change may halve the EU's annual welfare growth. Scenarios with warmer temperatures and a higher rise in sea level result in more severe economic damage. However, the results show that there are large variations across European regions. Southern Europe, the British Isles, and Central Europe North appear most sensitive to climate change. Northern Europe, on the other hand, is the only region with net economic benefits, driven mainly by the positive effects on agriculture. Coastal systems, agriculture, and river flooding are the most important of the four market impacts assessed.

  17. Climate-growth relationships for yellow-poplar across structural and site quality gradients in the southern Appalachian Mountains

    Science.gov (United States)

    Tara L. Keyser; Peter M. Brown

    2014-01-01

    Forecasted changes in climate across the southeastern US include an increase in temperature along with more variable precipitation patterns, including an increase in the severity and frequency of drought events. As such, the management of forests for increased resistance or resilience to the direct and indirect effects of climate change, including decreased tree- and...

  18. Recent widespread tree growth decline despite increasing atmospheric CO2.

    Science.gov (United States)

    Silva, Lucas C R; Anand, Madhur; Leithead, Mark D

    2010-07-21

    The synergetic effects of recent rising atmospheric CO(2) and temperature are expected to favor tree growth in boreal and temperate forests. However, recent dendrochronological studies have shown site-specific unprecedented growth enhancements or declines. The question of whether either of these trends is caused by changes in the atmosphere remains unanswered because dendrochronology alone has not been able to clarify the physiological basis of such trends. Here we combined standard dendrochronological methods with carbon isotopic analysis to investigate whether atmospheric changes enhanced water use efficiency (WUE) and growth of two deciduous and two coniferous tree species along a 9 degrees latitudinal gradient across temperate and boreal forests in Ontario, Canada. Our results show that although trees have had around 53% increases in WUE over the past century, growth decline (measured as a decrease in basal area increment--BAI) has been the prevalent response in recent decades irrespective of species identity and latitude. Since the 1950s, tree BAI was predominantly negatively correlated with warmer climates and/or positively correlated with precipitation, suggesting warming induced water stress. However, where growth declines were not explained by climate, WUE and BAI were linearly and positively correlated, showing that declines are not always attributable to warming induced stress and additional stressors may exist. Our results show an unexpected widespread tree growth decline in temperate and boreal forests due to warming induced stress but are also suggestive of additional stressors. Rising atmospheric CO2 levels during the past century resulted in consistent increases in water use efficiency, but this did not prevent growth decline. These findings challenge current predictions of increasing terrestrial carbon stocks under climate change scenarios.

  19. Thermal responses from repeated exposures to severe cold with intermittent warmer temperatures.

    Science.gov (United States)

    Ozaki, H; Enomoto-Koshimizu, H; Tochihara, Y; Nakamura, K

    1998-09-01

    This study was conducted to evaluate physiological reaction and manual performance during exposure to warm (30 degrees C) and cool (10 degrees C) environments after exposure to very low temperatures (-25 degrees C). Furthermore, this experiment was conducted to study whether it is desirable to remove cold-protective jackets in warmer rooms after severe cold exposure. Eight male students remained in an extremely cold room for 20 min, after which they transferred into either the warm room or the cool room for 20 min. This pattern was repeated three times, and the total cold exposure time was 60 min. In the warm and cool rooms, the subjects either removed their cold-protective jackets (Condition A), or wore them continuously (Condition B). Rectal temperature, skin temperatures, manual performance, blood pressure, thermal, comfort and pain sensations were measured during the experiment. The effects of severe cold on almost all measurements in the cool (10 degrees C) environment were greater than those in the warm (30 degrees C) environment under both clothing conditions. The effects of severe cold on all measurements under Condition A except rectal temperature and toe skin temperature were significantly greater than those under Condition B in the cool environment but, not at all differences between Condition A and Condition B in the warm environments were significant. It was recognized that to remove cold-protective jackets in the cool room (10 degrees C) after severe cold exposure promoted the effects of severe cold. When rewarming in the warm resting room (30 degrees C), the physiological and psychological responses and manual performance were not influenced by the presence or absence of cold-protective clothing. These results suggest that it is necessary for workers to make sure to rewarm in the warm room outside of the cold storage and continue to wear cold-protective clothing in the cool room.

  20. Rapid warming forces contrasting growth trends of subalpine fir ( Abies fabri ) at higher- and lower-elevations in the eastern Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenzhi; Jia, Min; Wang, Genxu; Zhu, Wanze; McDowell, Nate G.

    2017-10-01

    Tree radial growth is expected to increase at higher elevations under climate warming, while lower elevation tree growth is expected to decline. However, numerous studies have found tree radial growth responds consistently to climate along elevational gradients. Here, we sampled five plots across the subalpine Abies fabri forest belt on Gongga Mountain in the eastern Tibetan Plateau to determine tree radial growth trends and responses to climate. Three commonly used detrending methods all consistently showed that tree radial growth at high elevation (> 3100 m) increased, while tree growth declined at the lower elevations (2700 m–2900 m) over the last three decades. Increasing late-growing season temperature positively (p < 0.05) correlated to tree radial growth at higher elevations, but the sign of this relationship reversed to become negative at lower elevations. Moving-window correlation analyses indicated the difference between high and low elevations response to temperature variation increased strongly with warming. Placing our result into the global context, 62% of 39 published studies found that trees along elevation gradients respond divergently to warming, and that these are located in warmer and wetter regions of the Earth. Notably, 28% of studies found non-significant responses to temperature at both high and low elevations. Our findings in the subalpine mountain forest in the eastern Tibetan Plateau were consistent with the majority of published datasets, and imply increasing temperature benefit for tree populations at higher elevation, while warming dampens growth at lower elevations.

  1. Ecophysiology and Growth of White Spruce Seedlings from Various Seed Sources along a Climatic Gradient Support the Need for Assisted Migration.

    Science.gov (United States)

    Otis Prud'homme, Guillaume; Lamhamedi, Mohammed S; Benomar, Lahcen; Rainville, André; DeBlois, Josianne; Bousquet, Jean; Beaulieu, Jean

    2017-01-01

    With climate change, favorable growing conditions for tree species are shifting northwards and to higher altitudes. Therefore, local populations are becoming less adapted to their environment. Assisted migration is one of the proposed adaptive measures to reduce the vulnerability of natural populations and maintain forest productivity. It consists of moving genetic material to a territory where future climate conditions correspond to those of its current location. Eight white spruce ( Picea glauca [Moench] Voss) seed sources representing as many seed orchards were planted in 2013 at three forest sites simulating a south-north climatic gradient of 1.7°C in Québec, Canada. The objectives were to (1) evaluate the morpho-physiological responses of the different seed sources and (2) determine the role of genetic adaptation and physiological plasticity on the observed variation in morpho-physiological traits. Various seedling characteristics were measured, notably height growth from nursery to the fourth year on plantation. Other traits such as biomass and carbon allocation, nutritional status, and various photosynthetic traits before bud break, were evaluated during the fourth growing season. No interaction between sites and seed sources was observed for any traits, suggesting similar plasticity between seed sources. There was no change in the rank of seed sources and sites between years for height growth. Moreover, a significant positive correlation was observed between the height from the nursery and that after 4 years in the plantation. Southern seed sources showed the best height growth, while optimum growth was observed at the central site. Juvenile height growth seems to be a good indicator of the juvenile carbon sequestration and could serve as a selection criterion for the best genetics sources for carbon sequestration. Vector analysis showed no nitrogen deficiency 4 years after planting. Neither seed sources nor planting sites had a significant effect on

  2. Ecophysiology and Growth of White Spruce Seedlings from Various Seed Sources along a Climatic Gradient Support the Need for Assisted Migration

    Directory of Open Access Journals (Sweden)

    Guillaume Otis Prud'homme

    2018-01-01

    Full Text Available With climate change, favorable growing conditions for tree species are shifting northwards and to higher altitudes. Therefore, local populations are becoming less adapted to their environment. Assisted migration is one of the proposed adaptive measures to reduce the vulnerability of natural populations and maintain forest productivity. It consists of moving genetic material to a territory where future climate conditions correspond to those of its current location. Eight white spruce (Picea glauca [Moench] Voss seed sources representing as many seed orchards were planted in 2013 at three forest sites simulating a south-north climatic gradient of 1.7°C in Québec, Canada. The objectives were to (1 evaluate the morpho-physiological responses of the different seed sources and (2 determine the role of genetic adaptation and physiological plasticity on the observed variation in morpho-physiological traits. Various seedling characteristics were measured, notably height growth from nursery to the fourth year on plantation. Other traits such as biomass and carbon allocation, nutritional status, and various photosynthetic traits before bud break, were evaluated during the fourth growing season. No interaction between sites and seed sources was observed for any traits, suggesting similar plasticity between seed sources. There was no change in the rank of seed sources and sites between years for height growth. Moreover, a significant positive correlation was observed between the height from the nursery and that after 4 years in the plantation. Southern seed sources showed the best height growth, while optimum growth was observed at the central site. Juvenile height growth seems to be a good indicator of the juvenile carbon sequestration and could serve as a selection criterion for the best genetics sources for carbon sequestration. Vector analysis showed no nitrogen deficiency 4 years after planting. Neither seed sources nor planting sites had a

  3. Turn down the heat: why a 4 deg. C warmer world must be avoided

    International Nuclear Information System (INIS)

    Schellnhuber, Hans Joachim; Hare, William; Serdeczny, Olivia; Adams, Sophie; Coumou, Dim; Frieler, Katja; Martin, Maria; Otto, Ilona M.; Perrette, Mahe; Robinson, Alexander; Rocha, Marcia; Schaeffer, Michiel; Schewe, Jacob; Wang, Xiaoxi; Warszawski, Lila; Durand, Francis

    2012-11-01

    This paper summarizes in French the content of a Report for the World Bank made by the Potsdam Institute for Climate Impact Research and Climate Analytics. This report provides a snapshot of recent scientific literature (about 190 papers) and new analyses of likely impacts and risks that would be associated with a 4 deg. Celsius warming within this century. It is a rigorous attempt to outline a range of risks, focusing on developing countries and especially the poor. A 4 deg. C world would be one of unprecedented heat waves, severe drought, and major floods in many regions, with serious impacts on ecosystems and associated services. But with action, a 4 deg. C world can be avoided and we can likely hold warming below 2 deg. C. This report is not a comprehensive scientific assessment, as will be forthcoming from the Intergovernmental Panel on Climate Change (IPCC) in 2013-14 in its fifth assessment report. It is focused on developing countries, while recognizing that developed countries are also vulnerable and at serious risk of major damages from climate change. A series of recent extreme events worldwide continue to highlight the vulnerability of not only the developing world but even wealthy industrialized countries. No nation will be immune to the impacts of climate change. However, the distribution of impacts is likely to be inherently unequal and tilted against many of the world's poorest regions, which have the least economic, institutional, scientific, and technical capacity to cope and adapt

  4. Effect of Planting Date on Reducing Growth Period of Spring Safflower Cultivars in Tabriz Cold and Semi-arid Climate

    Directory of Open Access Journals (Sweden)

    B Pasban Eslam

    2018-02-01

    Full Text Available Introduction Safflower is a plant adaptable to areas with limited rainfall during winter and spring and dry air at flowering, seed filling and maturity stages, and tolerant to water deficit. The positive correlation coefficient observed between safflower seed yield with precipitation and low air temperature during seed germination to flowering and flowering to seed maturity. Furthermore, precipitation and low temperature during flowering to seed maturity significantly increased seed oil percentage. Therefore, it seems that, by adjusting the planting time can be adapted phenological stages of plant with appropriate weather conditions. The aims of this research were study the possibility reducing the growth period of safflower spring varieties with maintaining performance through delay in planting time, evaluate seed and oil yields at different planting times, and identify the best varieties for cold and semi-arid areas. Materials and Methods The experiment was conducted at the East Azarbaijan Agriculture and Natural Resources Research Center (46°2¢E, 37°58¢N, 1347 m a.s.l. during 2014-2015 growing season. According to Koppen climatic classification system, the area climate is semi-arid and cold. This study was carried out as factorial experiment based on randomized complete block design with three replications. Treatments were four planting dates (30 March, 9, 19 and 29 April and three safflower spring cultivars (Sina, Soffeh and Goldasht. Plant spacing between rows was 24 cm and final plant density was 70 plant per m2. Each plot consisted of 6 rows in 5 meters. Plants were harvested on the 11th and 14th of August in the first and second years of experiment, respectively. At the harvest time, in order to control boarder effects, plants from the sides of each plot were removed. Measured traits were plant height, capitulum diameter, seed yield, capitula number per plant, seed number per capitulum and 1000-seed weight. Ten plants in each plot

  5. Last Interglacial climate and sea-level evolution from a coupled ice sheet-climate model

    NARCIS (Netherlands)

    Goelzer, Heiko; Huybrechts, Philippe; Marie-France, Loutre; Fichefet, Thierry

    2016-01-01

    As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG, ∼130 to 115kyrgBP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial

  6. Assessment of the phenology impact on SVAT modelling through a crop growth model over a Mediterranean crop site : Consequences on the water balance under climate change conditions.

    Science.gov (United States)

    Moulin, S.; Garrigues, S.; Olioso, A.; Ruget, F.; Desfonds, V.; Bertrand, N.; Lecharpentier, P.; Ripoche, D.; Launay, M.; Brisson, N.

    2012-04-01

    In the coming years, water resources and vegetation production of Mediterranean areas will be drastically affected by climate changes as well as intense and rapid changes in the land use. The impact of climate and land-use changes on water balance and vegetation production can be analysed and predicted through land surface models, provided that the uncertainties associated to these models and to the data used to run them are evaluated. Vegetation phenology is generally poorly taken into account in land surface models and may be a substantial source of uncertainties for global change scenario studies. In this paper, we discuss the improvement obtained in Soil Vegetation Atmosphere Transfer (SVAT) modelling by taking into account the phenology using a crop growth model, focusing on the water budget, over a Mediterranean crop site. The STICS model (Brisson et al, 1998) is used to simulate crop processes (growth and development, taking into account water and nitrogen exchanges between the environment and the crop). STICS describes the vegetation phenology very accurately and was validated for many types of crop and various pedoclimatic conditions. The SVAT model being analyzed is the a-gs version (Calvet et al., 1998) of the ISBA model (Noilhan et al, 1989), which simulates the photosynthesis and calculates the plant biomass and the Leaf Area Index (LAI) using a simple growth model. In STICS, the phenology is driven by the sum of daily air temperatures, which is quite realistic, while in ISBA, the phenology is driven by the plant carbon assimilation. Measurements (vegetation characteristics, soil properties, agricultural practises, energy and water balance) performed in the lower Rhone valley experimental area (Avignon, France) are used as well as long series of climatic data (past records and future simulations). In a first step, by running STICS and ISBA for maize and wheat crops with long series of climatic data, including future scenarios of climate (CLIMATOR

  7. Future Climate Prediction of Urban Atmosphere in A Tropical Megacity: Utilization of RCP/SSP Scenarios with an Urban Growth Model

    Science.gov (United States)

    Darmanto, N. S.; Varquez, A. C. G.; Kanda, M.; Takakuwa, S.

    2016-12-01

    Economic development in Southeast Asia megacities leads to rapid transformation into more complicated urban configurations. These configurations, including building geometry, enhance aerodynamic drag thus reducing near-surface wind speeds. Roughness parameters representing building geometry, along with anthropogenic heat emissions, contribute to the formation of urban heat islands (UHI). All these have been reproduced successfully in the Weather Research and Forecasting (WRF) Model coupled with an improved single-layer urban canopy model incorporating a realistic distribution of urban parameters and anthropogenic heat emission in the Jakarta Greater Area. We apply this technology to climate change studies by introducing future urbanization defined by urban sprawl, vertical rise in buildings, and increase anthropogenic heat emission (AHE) due to population changes, into futuristic climate modelling. To simulate 2050s future climate, pseudo-global warming method was used which relied on current and ensembles of 5 CMIP5 GCMs for 2 representative concentration pathways (RCP), 2.6 and 8.5. To determine future urbanization level, 2050 population growth and energy consumption were estimated from shared socioeconomic pathways (SSP). This allows the estimation of future urban sprawl, building geometry, and AHE using the SLEUTH urban growth model and spatial growth assumptions. Two cases representing combinations of RCP and SSP were simulated in WRF: RCP2.6-SSP1 and RCP8.5-SSP3. Each case corresponds to best and worst-case scenarios of implementing adaptation and mitigation strategies, respectively. It was found that 2-m temperature of Jakarta will increase by 0.62°C (RCP2.6) and 1.44°C (RCP8.5) solely from background climate change; almost on the same magnitude as the background temperature increase of RCP2.6 (0.5°C) and RCP8.5 (1.2°C). Compared with previous studies, the result indicates that the effect of climate change on UHI in tropical cities may be lesser than

  8. RESPONSE OF NIGERIAN CASSAVA EXPANSION INITIATIVES TO CLIMATE CHANGES, ECONOMIC GROWTH AND SOME POLICY INSTRUMENT (1970-2012

    Directory of Open Access Journals (Sweden)

    Onwumere Joseph

    2013-10-01

    Full Text Available This study considered the limiting response of Nigeria cassava expansion initiative to climate changes, economic growth and some policy instruments. The presidential initiative to make cassava a foreign exchange earner as well as ensuring that national demand are satisfied has made cassava a significant economic crop and resource input of industrial and international status. Currently, its derivatives such as animal feed, starch, ethanol, cassava chip, cassava flour, cassava liquor etc are in high demand. Having gained international recognition some factors need be examined to ascertain the limiting response of this economic crop some exogenous factors. The specific objectives of interest were to ascertain the response of cassava output expansion to rainfall, temperature, imports, exports, credit allocation to agribusiness, exchange rate, nominal interest rate, inflation and GDP from 1970 – 2012. Also, it examined the short and long run effects of these variables to cassava output so as to know how much adjustment it makes to reach the equilibrium. Secondary data were used for this research work. The technique of data analysis was auto- regressive modeling regression. To capture the long run and short run dynamics of cassava output behavior, the error correction model (ECM using the Engle-Granger methodology was adopted. The result revealed a very high rate of adjustment to long run equilibrium and the variables are correlated which means that impact of each variable on cassava output behavior in the economy is inseparable. The Error correction coefficient of -0.975 measures the speed of adjustment towards long run equilibrium earned the expected negative sign and is statistically significant at 1% risk level. Thus, this study recommends that the emerging cassava economy of Nigeria would be adequately empowered for efficient productivity if the Government stipulate policies that will encourage domestic output expansion to meet the national and

  9. Assessment of Groundwater Resources in the Context of Climate Change and Population Growth: Case of the Klela Basin in Southern Mali

    Directory of Open Access Journals (Sweden)

    Adama Toure

    2017-07-01

    Full Text Available Groundwater in the Klela basin in Mali, a subbasin of the Bani basin (one of the main tributaries of the Niger River, is required for domestic use, irrigation and livestock. Furthermore, water supply of the city of Sikasso directly depends on the groundwater resources, which are under pressure caused by increased water demand as well as climate variability and climate change. As a consequence, freshwater availability is being threatened which can have a direct negative impact on irrigation agriculture. The aim of this study was to evaluate future behavior of groundwater resources in the context of climate change and population growth using socio-economic and population growth scenarios for water demand and the Representative Concentration Pathways scenarios (RCP4.5 and RCP8.5 data for calculating groundwater recharge using the Thornthwaite model. The WEAP (Water Evaluation and Planning system model was applied to balance water availability and demand and to compute changes in groundwater storage up to 2050. The overall results show that groundwater recharge as well as storage is decreasing over time, especially in the 2030s which can lead to severe agricultural droughts in this period. Recharge declined by approximatively 49% and stored groundwater by 24% over the study period.

  10. Effects of climate change on the length of growth stages and water requirement of wheat and barley (Case Study: Birjand Plain

    Directory of Open Access Journals (Sweden)

    Mitra Rahmani

    2016-03-01

    Full Text Available Introduction The global climate is changing and, despite efforts to reduce greenhouse gas emissions, weather variation is inevitable. Meanwhile, agriculture as a major water consumer will require adaptation to these variations, along with other challenges, to guarantee its persistence and sustainability. Given the arid and semi-arid climate of Iran, water, as a main limiting factor for agricultural production, plays an important role in determining the type of farming activities (Osamu et al., 2005. Crop water requirements and evapotranspiration are the main cause of water consumption in agricultural sector, the both accepted to face a dramatic increase in future under influence of increasing temperatures resulting from climate change (Koocheki et al., 2001. In this regard, the foreknowledge about future changes in climate and its effects on agricultural water use can be helpful for farmers and decision-makers. This study aimed to evaluate the climatic conditions of Birjand plain in the next two decades, and to investigate the effects of climate change on water consumption of wheat and barley as two main crops in this region. Materials and methods In the present survey, the effects of estimated climate change in Birjand plain on water requirement of wheat and barley and wheat yield in the 2010-2039 period were studied. Based on average weather data for the last thirty years from Birjand synoptic stations, climatic parameters of temperature and precipitation for the time period of 2010-2039 were simulated with LARS-WG5 using A1 scenario confirmed by the IPCC. Wind speed and relative humidity also were estimated for the future period. Common planting and harvesting dates were obtained from local farmers and Birjand Agriculture Organization and duration and crop coefficients (Kc for early, developmental, middle and final crop growth stages in the current period were extracted from FAO Irrigation and Drainage Paper No. 56. For the future period

  11. Response of Vegetation to Climate Change in the Drylands of East Asia

    International Nuclear Information System (INIS)

    Dai, L; Wang, K; Wang, R L; Zhang, L

    2014-01-01

    Over the past 25 years, global climate and environmental changes have caused an unprecedented rate of vegetation change, as exemplified in the drylands of East Asia. In this study, we investigated the spatio-temporal changes of vegetation in this region and analysed their relationship with climate data. Our results show that vegetation productivity significantly increased from 1982 to 2006. This increasing trend was observed for most of the region, particularly for northwest Mongolia and central Inner Mongolia. Grasslands, croplands, forests, and shrublands, all exhibited this trend. The annual growth rate of the grasslands determined using the Normalized Difference Vegetation Index (NDVI) was the largest observed change; reaching 0.07% p.a, followed by shrublands (0.06%), croplands (0.03%), and forests (0.02%). In the different geographic regions, the roles of temperature and precipitation on vegetation growth were shown to be different. Temperature was the dominant factor for the observed NDVI increase in northwest Mongolia and the centre of Inner Mongolia. The combined influences of temperature and precipitation changes have resulted in the promotion of vegetation growth, as seen in eastern GanSu. Temperature change is the primary factor for initiating vegetation growth in spring and autumn because warmer temperatures increase the length of the growing season, and are thus evaluated as an increased NDVI value. Increased precipitation has been shown to play a positive role on vegetation growth during summer

  12. Wetter subtropics in a warmer world: Contrasting past and future hydrological cycles

    Science.gov (United States)

    Burls, Natalie J.; Fedorov, Alexey V.

    2017-12-01

    During the warm Miocene and Pliocene Epochs, vast subtropical regions had enough precipitation to support rich vegetation and fauna. Only with global cooling and the onset of glacial cycles some 3 Mya, toward the end of the Pliocene, did the broad patterns of arid and semiarid subtropical regions become fully developed. However, current projections of future global warming caused by CO2 rise generally suggest the intensification of dry conditions over these subtropical regions, rather than the return to a wetter state. What makes future projections different from these past warm climates? Here, we investigate this question by comparing a typical quadrupling-of-CO2 experiment with a simulation driven by sea-surface temperatures closely resembling available reconstructions for the early Pliocene. Based on these two experiments and a suite of other perturbed climate simulations, we argue that this puzzle is explained by weaker atmospheric circulation in response to the different ocean surface temperature patterns of the Pliocene, specifically reduced meridional and zonal temperature gradients. Thus, our results highlight that accurately predicting the response of the hydrological cycle to global warming requires predicting not only how global mean temperature responds to elevated CO2 forcing (climate sensitivity) but also accurately quantifying how meridional sea-surface temperature patterns will change (structural climate sensitivity).

  13. Climate variability and demand growth as drivers of water scarcity in the Turkwel river basin: a bottom-up risk assessment of a data-sparse basin in Kenya

    Science.gov (United States)

    Hirpa, F. A.; Dyer, E.; Hope, R.; Dadson, S. J.

    2017-12-01

    Sustainable water management and allocation are essential for maintaining human well-being, sustaining healthy ecosystems, and supporting steady economic growth. The Turkwel river basin, located in north-western Kenya, experiences a high level of water scarcity due to its arid climate, high rainfall variability, and rapidly growing water demand. However, due to sparse hydro-climatic data and limited literature, the water resources system of the basin has been poorly understood. Here we apply a bottom-up climate risk assessment method to estimate the resilience of the basin's water resources system to growing demand and climate stressors. First, using a water resource system model and historical climate data, we construct a climate risk map that depicts the way in which the system responds to climate change and variability. Then we develop a set of water demand scenarios to identify the conditions that potentially lead to the risk of unmet water demand and groundwater depletion. Finally, we investigate the impact of climate change and variability by stress testing these development scenarios against historically strong El Niño/Southern Oscillation (ENSO) years and future climate projections from multiple Global Circulation Models (GCMs). The results reveal that climate variability and increased water demand are the main drivers of water scarcity in the basin. Our findings show that increases in water demand due to expanded irrigation and population growth exert the strongest influence on the ability of the system to meet water resource supply requirements, and in all cases considered increase the impacts of droughts caused by future climate variability. Our analysis illustrates the importance of combining analysis of future climate risks with other development decisions that affect water resources planning. Policy and investment decisions which maximise water use efficiency in the present day are likely to impart resilience to climate change and variability under a

  14. Biomass changes and trophic amplification of plankton in a warmer ocean

    KAUST Repository

    Chust, Guillem

    2014-05-07

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  15. Biomass changes and trophic amplification of plankton in a warmer ocean

    KAUST Repository

    Chust, Guillem; Allen, Julian Icarus; Bopp, Laurent; Schrum, Corinna; Holt, Jason T.; Tsiaras, Kostas P.; Zavatarelli, Marco; Chifflet, Marina; Cannaby, Heather; Dadou, Isabelle C.; Daewel, Ute; Wakelin, Sarah L.; Machú , Eric; Pushpadas, Dhanya; Butenschö n, Momme; Artioli, Yuri; Petihakis, George; Smith, Chris J M; Garç on, Vé ronique C.; Goubanova, Katerina; Le Vu, Briac; Fach, Bettina A.; Salihoglu, Baris; Clementi, Emanuela; Irigoien, Xabier

    2014-01-01

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  16. Biomass changes and trophic amplification of plankton in a warmer ocean.

    Science.gov (United States)

    Chust, Guillem; Allen, J Icarus; Bopp, Laurent; Schrum, Corinna; Holt, Jason; Tsiaras, Kostas; Zavatarelli, Marco; Chifflet, Marina; Cannaby, Heather; Dadou, Isabelle; Daewel, Ute; Wakelin, Sarah L; Machu, Eric; Pushpadas, Dhanya; Butenschon, Momme; Artioli, Yuri; Petihakis, George; Smith, Chris; Garçon, Veronique; Goubanova, Katerina; Le Vu, Briac; Fach, Bettina A; Salihoglu, Baris; Clementi, Emanuela; Irigoien, Xabier

    2014-07-01

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  17. Effects of a future warmer ocean on the coexisting copepods Calanus finmarchicus and C. glacialis in Disko Bay, Western Greenland

    DEFF Research Database (Denmark)

    Kjellerup, Sanne; Dünweber, Michael; Swalethorp, Rasmus

    2012-01-01

    The effects of temperature and food was examined for Calanus finmarchicus and C. glacialis during 3 phases of the phytoplankton spring bloom in Disko Bay, western Greenland. The 2 species were collected during pre-bloom, bloom, and post-bloom and exposed to temperatures from 0 to 10°C, combined...... production. Our results suggest that a future warmer ocean will reduce the advantage of early spawning by C. glacialis and that C. finmarchicus will become increasingly prevalent...

  18. Simulation of Crop Growth and Water-Saving Irrigation Scenarios for Lettuce: A Monsoon-Climate Case Study in Kampong Chhnang, Cambodia

    Directory of Open Access Journals (Sweden)

    Pinnara Ket

    2018-05-01

    Full Text Available Setting up water-saving irrigation strategies is a major challenge farmers face, in order to adapt to climate change and to improve water-use efficiency in crop productions. Currently, the production of vegetables, such as lettuce, poses a greater challenge in managing effective water irrigation, due to their sensitivity to water shortage. Crop growth models, such as AquaCrop, play an important role in exploring and providing effective irrigation strategies under various environmental conditions. The objectives of this study were (i to parameterise the AquaCrop model for lettuce (Lactuca sativa var. crispa L. using data from farmers’ fields in Cambodia, and (ii to assess the impact of two distinct full and deficit irrigation scenarios in silico, using AquaCrop, under two contrasting soil types in the Cambodian climate. Field observations of biomass and canopy cover during the growing season of 2017 were used to adjust the crop growth parameters of the model. The results confirmed the ability of AquaCrop to correctly simulate lettuce growth. The irrigation scenario analysis suggested that deficit irrigation is a “silver bullet” water saving strategy that can save 20–60% of water compared to full irrigation scenarios in the conditions of this study.

  19. Solar cycles and climate variations

    International Nuclear Information System (INIS)

    Chistyakov, V.F.

    1990-01-01

    Climate oscillations with 100-, 200- and 300-year periods are positively correlated with solar activity oscillations: the higher is solar activity the warmer is climate. According to geological data (varved clays) it is determined, that length of cycles has decreased from 23.4 up to 11 years during latter 2.5 billion years. 12-year cycles occurred during the great glaciation periods, while 10-year cycles occurred during interglaciation periods. It is suggested, that these oscillations are related with variations of the solar activity and luminescence

  20. Adaptability to climate change in forestry species: drought effects on growth and wood anatomy of ponderosa pines growing at different competition levels

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, M. E.; Gyenge, J. E.; Urquiza, M. M.; Varela, S.

    2012-11-01

    More stressful conditions are expected due to climatic change in several regions, including Patagonia, South-America. In this region, there are no studies about the impact of severe drought events on growth and wood characteristics of the most planted forestry species, Pinus ponderosa (Doug. ex-Laws). The objective of this study was to quantify the effect of a severe drought event on annual stem growth and functional wood anatomy of pines growing at different plantation densities aiming to understand how management practices can help to increase their adaptability to climate change. Growth magnitude and period, specific hydraulic conductivity, and anatomical traits (early- and late wood proportion, lumen diameter, cell-wall thickness, tracheid length and bordered pit dimensions) were measured in the ring 2008-2009, which was formed during drought conditions. This drought event decreased annual stem growth by 30-38% and 58-65% respect to previous mean growth, in open vs. closed stand trees, respectively, indicating a higher sensitivity of the latter, which is opposite to reports from the same species growing in managed native forests in USA. Some wood anatomical variables did differ in more water stressed trees (lower cell wall thickness of early wood cells and higher proportion of small-lumen cells in late wood), which in turn did not affect wood function (hydraulic conductivity and resistance to implosion). Other anatomical variables (tracheid length, pit dimensions, early- and late wood proportion, lumen diameter of early wood cells) did not differ between tree sizes and plantation density. The results suggest that severe drought affects differentially the amount but not the function and quality of formed wood in ponderosa pine growing at different competition levels. (Author) 41 refs.

  1. Comparison of physical body growth and metabolic and reproductive endocrine functions between north and south climates of Japan in trained Thoroughbred yearling horses.

    Science.gov (United States)

    Tangyuenyong, Siriwan; Sato, Fumio; Nambo, Yasuo; Murase, Harutaka; Endo, Yoshiro; Tanaka, Tomomi; Nagaoka, Kentaro; Watanabe, Gen

    2017-01-01

    This study aimed to compare body growth, metabolic, and reproductive hormonal changes in trained Thoroughbred yearling horses under different climate conditions with and without light supplementation (LS). Thoroughbred yearlings raised at research centers of the Japan Racing Association in Hokkaido (north) or Miyazaki (south) were divided into control and LS groups. In the LS groups, 44 colts and 47 fillies from Hokkaido and 11 colts and 11 fillies from Miyazaki were exposed to LS with an extended photoperiod of 14.5 hr of daylight and 9.5 hr of darkness. One week before and once a month after LS, circulating total thyroxine (T4), insulin-like growth factor-I (IGF-1), prolactin (PRL), cortisol, and progesterone (P4) concentrations were measured by radioimmunoassay and fluoroimmunoassay, respectively. Growth parameters, including body weight, height, girth, and cannon bone circumferences, were measured monthly. Hair coat (HC) condition was scored. Under natural conditions, the T4 concentrations of Hokkaido yearlings tended to be higher, whereas the IGF-1 (colt) and PRL levels were significantly lower than those of yearlings in Miyazaki. Growth parameters and HC scores were lower in Hokkaido yearlings. With LS, the PRL and P4 concentrations in Hokkaido and Miyazaki were higher, and the first ovarian activity tended to be earlier than in the controls. Only LS Hokkaido yearlings showed significantly higher HC scores than the controls. Comparing the different climates among the LS yearlings, the levels of PRL and P4 and the HC scores in Hokkaido yearlings increased and reached levels similar to those in Miyazaki yearlings. The body weight and girth increment percentages of Hokkaido yearlings in January dramatically decreased and then eventually increased to levels similar to those of Miyazaki yearlings. This suggested that yearlings in naturally colder Hokkaido exhibit higher basal metabolism to maintain homeostasis. However, providing LS may help to improve growth and

  2. Tree-ring growth patterns and climatic signals along a vertical transect of larch sites in the Simplon and Rhône Valleys (Switzerland)

    Science.gov (United States)

    Riechelmann, Dana F. C.; Esper, Jan

    2017-04-01

    State-of-the-art millennial long temperature reconstructions from the European Alps integrate wood samples of Larix decidua Mill. from the Lötschental and Simplon regions in Switzerland (Büntgen et al., 2005; 2006). Some of the oldest samples that enable the extension of the time-series back into the first millennium AD are obtained from old buildings in Simplon Village, through the precise location of these samples and the elevation of sampling sites remain unknown. We here evaluate the growth characteristics of larch tree-ring width data along a vertical transect in the Simplon and Rhône valleys. 330 trees from nine sites in 985, 1100, 1400, 1575, 1710, 1712, 1900, 2020, and 2150 m asl have been sampled and analysed for their climate signals. The results indicate a stronger temperature signal in the tree-ring width with increasing elevation. The lower the sites the more a drought signal is imprinted in the ring width data. The intermediate site at 1400 m asl does not show any pronounced climate signal. A comparison of growth patterns of living-tree sites with samples from the historical buildings in Simplon Village (Riechelmann et al., 2013) indicates the construction timber to origin from intermediate to higher elevations. We therefore do not expect strong temperature signal from these timbers. References: Büntgen, U., Esper, J., Frank, D.C., Nicolussi, K., Schmidhalter, M., 2005. A 1052-year tree-ring proxy for Alpine summer temperatures. Climate Dynamics 25: 141-153. Büntgen, U., Frank, D.C., Nievergelt, D., Esper J., 2006. Summer temperature variations in the European Alps, A.D. 755-2004. Journal of Climate 19: 5606-5623. Riechelmann, D.F.C., Schmidhalter, M., Büntgen, U., Esper, J., 2013. Extending a high-elevation larch ring width chronology from the Simplon region in the Swiss Alps over the past millenium. TRACE 11:103-108.

  3. Climatic and anthropogenic changes in Western Switzerland: Impacts on water stress.

    Science.gov (United States)

    Milano, Marianne; Reynard, Emmanuel; Köplin, Nina; Weingartner, Rolf

    2015-12-01

    Recent observed hydro-climatic changes in mountainous areas are of concern as they may directly affect capacity to fulfill water needs. The canton of Vaud in Western Switzerland is an example of such a region as it has experienced water shortage episodes during the past decade. Based on an integrated modeling framework, this study explores how hydro-climatic conditions and water needs could evolve in mountain environments and assesses their potential impacts on water stress by the 2060 horizon. Flows were simulated based on a daily semi-distributed hydrological model. Future changes were derived from Swiss climate scenarios based on two regional climate models. Regarding water needs, the authorities of the canton of Vaud provided a population growth scenario while irrigation and livestock trends followed a business-as-usual scenario. Currently, the canton of Vaud experiences moderate water stress from June to August, except in its Alpine area where no stress is noted. In the 2060 horizon, water needs could exceed 80% of the rivers' available resources in low- to mid-altitude environments in mid-summer. This arises from the combination of drier and warmer climate that leads to longer and more severe low flows, and increasing urban (+40%) and irrigation (+25%) water needs. Highlighting regional differences supports the development of sustainable development pathways to reduce water tensions. Based on a quantitative assessment, this study also calls for broader impact studies including water quality issues. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. [Tree-ring growth responses of Mongolian oak (Quercus mongolica) to climate change in southern northeast: a case study in Qianshan Mountains].

    Science.gov (United States)

    Teng, Li; Xing-Yuan, He; Zhen-Ju, Chen

    2014-07-01

    Mongolian oak is one of the most important broad-leaved tree species in forests, Northeast China. Based on the methodology of dendrochronology, the variations of tree ring radial growth of Mongolian oak in Qianshan Mountains, south of Northeast China, were analyzed. Combined with the temperature and precipitation data from meteorological stations since 1951, the relationships between standardized tree ring width chronology and main climatic factors were analyzed. In this region, the precipitation between April and July of the current year had an significant relationship with the tree ring width of Mongolian oak, and was the main factor limiting the radial growth. The extreme maximum temperature of May was also a key factor influencing the tree ring width, which had a significant on the tree ring width of Mongolian oak. The precipitation in April had a significant and stable relationship with the growth of Mongolian oak since the 1950s. The 'divergence problem' was found in the study area, which the sensitivity of tree growth to summer temperature reduced since the 1980s. The tree growth response to temperature showed a seasonal change from summer to spring.

  5. Real-Time Monitoring of Mountain Conifer Growth Response to Seasonal Climate and the Summer Monsoon in the Great Basin of North America

    Science.gov (United States)

    Strachan, S.; Biondi, F.

    2013-12-01

    Tree rings in the American intermountain west are often used for palaeoclimatic purposes, including reconstructions of precipitation, temperature, and drought. Specific seasonal phenomena such as the North American Monsoon (NAM) are also being identified in tree-ring studies as being related to certain growth features in the rings (such as early-onset 'false' latewood). These relationships have historically been developed using statistical relationships between tree-ring chronologies and regional weather observations. In zones near the periphery of the NAM, summertime precipitation may be more sporadic, yet localized vegetation assemblages in the northern Mojave desert and Great Basin regions indicate that these events are still important for some ecosystems which have established in areas where NAM activity is present. Major shifts in NAM behavior in the past may have been recorded by tree rings, and identifying the specific mechanisms/circumstances by which this occurs is critical for efforts seeking to model ecosystem response to climate changes. By establishing in-situ monitoring of climate/weather, soils, and tree-growth variables in Pinus ponderosa scopulorum and Pinus monophylla zones at study sites in eastern/southern Nevada, we are able to address these issues at very fine spatial and temporal scales. Data from two seasons of monitoring precipitation, solar radiation, air temperature, soil temperature, soil water content, tree sap flow, tree radial distance increment, and hourly imagery are presented. Point dendrometers along with sap flow sensors monitor growth in these ponderosa pine around the clock to help researchers understand tree-ring/climate relationships.

  6. The acute thermal respiratory response is unique among species in a guild of larval anuran amphibians-Implications for energy economy in a warmer future.

    Science.gov (United States)

    Rowe, Christopher L; Crandall, Erin A

    2018-03-15

    Climate change is bringing about increased temperatures of amphibian habitats throughout the world, where ectothermic larvae will experience elevated respiratory (metabolic) energy demands. We compared the acute, thermal respiratory response ("TRR") of four species of sympatric larval amphibians (Lithobates sphenocephalus, L. catesbeianus, Scaphiopus holbrookii, and Hyla chrysoscelis) to determine species-specific differences in the rate at which metabolic energy requirements increase with temperature. The TRR, the slope of the relationship between respiration rate and temperature within critical thermal limits, varied significantly among species such that the absolute, per capita change in metabolic energy requirement as temperature increased was greater for L. sphenocephalus and L. catesbeianus than for H. chrysoscelis and S. holbrookii. This was also reflected in the temperature coefficients (Q 10,18.5-25.5 ), which ranged from 1.77 (S. holbrookii) to 2.70 (L. sphenocephalus) for per capita respiration rates. Our results suggest that L. sphenocephalus and L. catesbeianus will experience a more rapid increase in energetic requirements as temperature increases relative to the other species, possibly magnifying their influences on the resource pool. There is a critical paucity of information on the metabolic responses of most larval amphibians across a range of temperatures, despite that this relationship dictates the magnitude of the priority investment of assimilated energy in respiration, thus shaping the energetic economy of the individual. A broader knowledge of species-specific TRRs, combined with research to determine thermal acclimatory or adaptive potentials over chronic time scales, will provide a framework for evaluating whether asymmetric, climate-mediated differences in energetic demands among species could ultimately influence larval amphibian ecology in a warmer future. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    Science.gov (United States)

    Xiaohui Feng; María Uriarte; Grizelle González; Sasha Reed; Jill Thompson; Jess K. Zimmerman; Lora Murphy

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very...

  8. Ecosystem vulnerability assessment and synthesis: a report from the Climate Change Response Framework Project in northern Wisconsin

    Science.gov (United States)

    Chris Swanston; Maria Janowiak; Louis Iverson; Linda Parker; David Mladenoff; Leslie Brandt; Patricia Butler; Matt St. Pierre; Anantha Prasad; Stephen Matthews; Matthew Peters; Dale Higgins; Avery Dorland

    2011-01-01

    The forests of northern Wisconsin will likely experience dramatic changes over the next 100 years as a result of climate change. This assessment evaluates key forest ecosystem vulnerabilities to climate change across northern Wisconsin under a range of future climate scenarios. Warmer temperatures and shifting precipitation patterns are expected to influence ecosystem...

  9. Integrated Modeling of Crop Growth and Water Resource Management to Project Climate Change Impacts on Crop Production and Irrigation Water Supply and Demand in African Nations

    Science.gov (United States)

    Dale, A. L.; Boehlert, B.; Reisenauer, M.; Strzepek, K. M.; Solomon, S.

    2017-12-01

    Climate change poses substantial risks to African agriculture. These risks are exacerbated by concurrent risks to water resources, with water demand for irrigation comprising 80 to 90% of water withdrawals across the continent. Process-based crop growth models are able to estimate both crop demand for irrigation water and crop yields, and are therefore well-suited to analyses of climate change impacts at the food-water nexus. Unfortunately, impact assessments based on these models generally focus on either yields or water demand, rarely both. For this work, we coupled a crop model to a water resource management model in order to predict national trends in the impact of climate change on crop production, irrigation water demand, and the availability of water for irrigation across Africa. The crop model FAO AquaCrop-OS was run at 2ox2o resolution for 17 different climate futures from the CMIP5 archive, nine for Representative Concentration Pathway (RCP) 4.5 and eight for RCP8.5. Percent changes in annual rainfed and irrigated crop production and temporal shifts in monthly irrigation water demand were estimated for the years 2030, 2050, 2070, and 2090 for maize, sorghum, rice, wheat, cotton, sugarcane, fruits & vegetables, roots & tubers, and legumes & soybeans. AquaCrop was then coupled to a water management model (WEAP) in order to project changes in the ability of seven major river basins (the Congo, Niger, Nile, Senegal, Upper Orange, Volta, and Zambezi) to meet irrigation water demand out to 2050 in both average and dry years in the face of both climate change and irrigation expansion. Spatial and temporal trends were identified and interpreted through the lens of potential risk management strategies. Uncertainty in model estimates is reported and discussed.

  10. Evaluating within-population variability in behavior and demography for the adaptive potential of a dispersal-limited species to climate change

    Science.gov (United States)

    Muñoz, David J.; Miller Hesed, Kyle; Grant, Evan H. Campbell; Miller, David A.W.

    2016-01-01

    Multiple pathways exist for species to respond to changing climates. However, responses of dispersal-limited species will be more strongly tied to ability to adapt within existing populations as rates of environmental change will likely exceed movement rates. Here, we assess adaptive capacity in Plethodon cinereus, a dispersal-limited woodland salamander. We quantify plasticity in behavior and variation in demography to observed variation in environmental variables over a 5-year period. We found strong evidence that temperature and rainfall influence P. cinereus surface presence, indicating changes in climate are likely to affect seasonal activity patterns. We also found that warmer summer temperatures reduced individual growth rates into the autumn, which is likely to have negative demographic consequences. Reduced growth rates may delay reproductive maturity and lead to reductions in size-specific fecundity, potentially reducing population-level persistence. To better understand within-population variability in responses, we examined differences between two common color morphs. Previous evidence suggests that the color polymorphism may be linked to physiological differences in heat and moisture tolerance. We found only moderate support for morph-specific differences for the relationship between individual growth and temperature. Measuring environmental sensitivity to climatic variability is the first step in predicting species' responses to climate change. Our results suggest phenological shifts and changes in growth rates are likely responses under scenarios where further warming occurs, and we discuss possible adaptive strategies for resulting selective pressures.

  11. In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster

    OpenAIRE

    Culler, Lauren E.; Ayres, Matthew P.; Virginia, Ross A.

    2015-01-01

    Climate change is altering environmental temperature, a factor that influences ectothermic organisms by controlling rates of physiological processes. Demographic effects of warming, however, are determined by the expression of these physiological effects through predator–prey and other species interactions. Using field observations and controlled experiments, we measured how increasing temperatures in the Arctic affected development rates and mortality rates (from predation) of immature Arcti...

  12. Volcanic Eruptions and Climate: Outstanding Research Issues

    Science.gov (United States)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  13. Response of Quercus velutina growth and water use efficiency to climate variability and nitrogen fertilization in a temperate deciduous forest in the northeastern USA.

    Science.gov (United States)

    Jennings, Katie A; Guerrieri, Rossella; Vadeboncoeur, Matthew A; Asbjornsen, Heidi

    2016-04-01

    Nitrogen (N) deposition and changing climate patterns in the northeastern USA can influence forest productivity through effects on plant nutrient relations and water use. This study evaluates the combined effects of N fertilization, climate and rising atmospheric CO2on tree growth and ecophysiology in a temperate deciduous forest. Tree ring widths and stable carbon (δ(13)C) and oxygen (δ(18)O) isotopes were used to assess tree growth (basal area increment, BAI) and intrinsic water use efficiency (iWUE) ofQuercus velutinaLamb., the dominant tree species in a 20+ year N fertilization experiment at Harvard Forest (MA, USA). We found that fertilized trees exhibited a pronounced and sustained growth enhancement relative to control trees, with the low- and high-N treatments responding similarly. All treatments exhibited improved iWUE over the study period (1984-2011). Intrinsic water use efficiency trends in the control trees were primarily driven by changes in stomatal conductance, while a stimulation in photosynthesis, supported by an increase in foliar %N, contributed to enhancing iWUE in fertilized trees. All treatments were predominantly influenced by growing season vapor pressure deficit (VPD), with BAI responding most strongly to early season VPD and iWUE responding most strongly to late season VPD. Nitrogen fertilization increasedQ. velutinasensitivity to July temperature and precipitation. Combined, these results suggest that ambient N deposition in N-limited northeastern US forests has enhanced tree growth over the past 30 years, while rising ambient CO2has improved iWUE, with N fertilization and CO2having synergistic effects on iWUE. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Millennium-scale crossdating and inter-annual climate sensitivities of standing California redwoods.

    Science.gov (United States)

    Carroll, Allyson L; Sillett, Stephen C; Kramer, Russell D

    2014-01-01

    Extremely decay-resistant wood and fire-resistant bark allow California's redwoods to accumulate millennia of annual growth rings that can be useful in biological research. Whereas tree rings of Sequoiadendron giganteum (SEGI) helped formalize the study of dendrochronology and the principle of crossdating, those of Sequoia sempervirens (SESE) have proven much more difficult to decipher, greatly limiting dendroclimatic and other investigations of this species. We overcame these problems by climbing standing trees and coring trunks at multiple heights in 14 old-growth forest locations across California. Overall, we sampled 1,466 series with 483,712 annual rings from 120 trees and were able to crossdate 83% of SESE compared to 99% of SEGI rings. Standard and residual tree-ring chronologies spanning up to 1,685 years for SESE and 1,538 years for SEGI were created for each location to evaluate crossdating and to examine correlations between annual growth and climate. We used monthly values of temperature, precipitation, and drought severity as well as summer cloudiness to quantify potential drivers of inter-annual growth variation over century-long time series at each location. SESE chronologies exhibited a latitudinal gradient of climate sensitivities, contrasting cooler northern rainforests and warmer, drier southern forests. Radial growth increased with decreasing summer cloudiness in northern rainforests and a central SESE location. The strongest dendroclimatic relationship occurred in our southernmost SESE location, where radial growth correlated negatively with dry summer conditions and exhibited responses to historic fires. SEGI chronologies showed negative correlations with June temperature and positive correlations with previous October precipitation. More work is needed to understand quantitative relationships between SEGI radial growth and moisture availability, particularly snowmelt. Tree-ring chronologies developed here for both redwood species have

  15. Millennium-scale crossdating and inter-annual climate sensitivities of standing California redwoods.

    Directory of Open Access Journals (Sweden)

    Allyson L Carroll

    Full Text Available Extremely decay-resistant wood and fire-resistant bark allow California's redwoods to accumulate millennia of annual growth rings that can be useful in biological research. Whereas tree rings of Sequoiadendron giganteum (SEGI helped formalize the study of dendrochronology and the principle of crossdating, those of Sequoia sempervirens (SESE have proven much more difficult to decipher, greatly limiting dendroclimatic and other investigations of this species. We overcame these problems by climbing standing trees and coring trunks at multiple heights in 14 old-growth forest locations across California. Overall, we sampled 1,466 series with 483,712 annual rings from 120 trees and were able to crossdate 83% of SESE compared to 99% of SEGI rings. Standard and residual tree-ring chronologies spanning up to 1,685 years for SESE and 1,538 years for SEGI were created for each location to evaluate crossdating and to examine correlations between annual growth and climate. We used monthly values of temperature, precipitation, and drought severity as well as summer cloudiness to quantify potential drivers of inter-annual growth variation over century-long time series at each location. SESE chronologies exhibited a latitudinal gradient of climate sensitivities, contrasting cooler northern rainforests and warmer, drier southern forests. Radial growth increased with decreasing summer cloudiness in northern rainforests and a central SESE location. The strongest dendroclimatic relationship occurred in our southernmost SESE location, where radial growth correlated negatively with dry summer conditions and exhibited responses to historic fires. SEGI chronologies showed negative correlations with June temperature and positive correlations with previous October precipitation. More work is needed to understand quantitative relationships between SEGI radial growth and moisture availability, particularly snowmelt. Tree-ring chronologies developed here for both redwood

  16. Climate Change and Flood Operations in the Sacramento Basin, California

    Directory of Open Access Journals (Sweden)

    Ann D. Willis

    2011-07-01

    Full Text Available Ann D. Willis, Jay R. Lund, Edwin S. Townsley, and Be