WorldWideScience

Sample records for warm-hot intergalactic medium

  1. DETECTING THE WARM-HOT INTERGALACTIC MEDIUM THROUGH X-RAY ABSORPTION LINES

    International Nuclear Information System (INIS)

    Yao Yangsen; Shull, J. Michael; Cash, Webster; Wang, Q. Daniel

    2012-01-01

    The warm-hot intergalactic medium (WHIM) at temperatures 10 5 -10 7 K is believed to contain 30%-50% of the baryons in the local universe. However, all current X-ray detections of the WHIM at redshifts z > 0 are of low statistical significance (∼ Ovii ∼10 15 cm -2 (corresponding to an equivalent width of 2.5 mÅ for a Doppler velocity of 50 km s –1 ) at ∼> 3σ significance level. The simulation results also suggest that it would take >60 Ms for Chandra and 140 Ms for XMM-Newton to measure the N Ovii at ≥4σ from a spectrum of a background QSO with flux of ∼0.2 mCrab (1 Crab = 2 × 10 –8 erg s –1 cm –2 at 0.5-2 keV). Future X-ray spectrographs need to be equipped with spectral resolution R ∼ 4000 and effective area A ≥ 100 cm 2 to accomplish the similar constraints with an exposure time of ∼2 Ms and would require ∼11 Ms to survey the 15 QSOs with flux ∼> 0.2 mCrab along which clear intergalactic O VI absorbers have been detected.

  2. DETECTING THE WARM-HOT INTERGALACTIC MEDIUM THROUGH X-RAY ABSORPTION LINES

    Energy Technology Data Exchange (ETDEWEB)

    Yao Yangsen; Shull, J. Michael; Cash, Webster [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Sciences, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Wang, Q. Daniel, E-mail: yaoys@colorado.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2012-02-20

    The warm-hot intergalactic medium (WHIM) at temperatures 10{sup 5}-10{sup 7} K is believed to contain 30%-50% of the baryons in the local universe. However, all current X-ray detections of the WHIM at redshifts z > 0 are of low statistical significance ({approx}< 3{sigma}) and/or controversial. In this work, we aim to establish the detection limits of current X-ray observatories and explore requirements for next-generation X-ray telescopes for studying the WHIM through X-ray absorption lines. We analyze all available grating observations of Mrk 421 and obtain spectra with signal-to-noise ratios (S/Ns) of {approx}90 and 190 per 50 mA spectral bin from Chandra and XMM-Newton observations, respectively. Although these spectra are two of the best ever collected with Chandra and XMM-Newton, we cannot confirm the two WHIM systems reported by Nicastro et al. in 2005. Our bootstrap simulations indicate that spectra with such high S/N cannot constrain the WHIM with O VII column densities N{sub Ovii}{approx}10{sup 15} cm{sup -2} (corresponding to an equivalent width of 2.5 mA for a Doppler velocity of 50 km s{sup -1}) at {approx}> 3{sigma} significance level. The simulation results also suggest that it would take >60 Ms for Chandra and 140 Ms for XMM-Newton to measure the N{sub Ovii} at {>=}4{sigma} from a spectrum of a background QSO with flux of {approx}0.2 mCrab (1 Crab = 2 Multiplication-Sign 10{sup -8} erg s{sup -1} cm{sup -2} at 0.5-2 keV). Future X-ray spectrographs need to be equipped with spectral resolution R {approx} 4000 and effective area A {>=} 100 cm{sup 2} to accomplish the similar constraints with an exposure time of {approx}2 Ms and would require {approx}11 Ms to survey the 15 QSOs with flux {approx}> 0.2 mCrab along which clear intergalactic O VI absorbers have been detected.

  3. COINCIDENCES BETWEEN O VI AND O VII LINES: INSIGHTS FROM HIGH-RESOLUTION SIMULATIONS OF THE WARM-HOT INTERGALACTIC MEDIUM

    International Nuclear Information System (INIS)

    Cen Renyue

    2012-01-01

    With high-resolution (0.46 h –1 kpc), large-scale, adaptive mesh-refinement Eulerian cosmological hydrodynamic simulations we compute properties of O VI and O VII absorbers from the warm-hot intergalactic medium (WHIM) at z = 0. Our new simulations are in broad agreement with previous simulations with ∼40% of the intergalactic medium being in the WHIM. Our simulations are in agreement with observed properties of O VI absorbers with respect to the line incidence rate and Doppler-width-column-density relation. It is found that the amount of gas in the WHIM below and above 10 6 K is roughly equal. Strong O VI absorbers are found to be predominantly collisionally ionized. It is found that (61%, 57%, 39%) of O VI absorbers of log N(O VI) cm 2 = (12.5-13, 13-14, > 14) have T 5 K. Cross correlations between galaxies and strong [N(O VI) > 10 14 cm –2 ] O VI absorbers on ∼100-300 kpc scales are suggested as a potential differentiator between collisional ionization and photoionization models. Quantitative prediction is made for the presence of broad and shallow O VI lines that are largely missed by current observations but will be detectable by Cosmic Origins Spectrograph observations. The reported 3σ upper limit on the mean column density of coincidental O VII lines at the location of detected O VI lines by Yao et al. is above our predicted value by a factor of 2.5-4. The claimed observational detection of O VII lines by Nicastro et al., if true, is 2σ above what our simulations predict.

  4. Extended H I regions around spiral galaxies: a probe for galactic structure and the intergalactic medium

    International Nuclear Information System (INIS)

    Bergeron, J.

    1977-01-01

    The H I disks observed at large radii around nearby spiral galaxies provide sensitive probes for the mass distributions in these galaxies and of their environments. We show, for a few well-observed systems, that there is an unseen component which dominates the mass at large radii. This additional matter cannot be gas, either neutral or ionized. The data do not distinguish strongly between flat and spherical spatial distributions for this mass, though they suggest that the distribution is spherical. An observational test is proposed to differentiate the two. We investigate the thermal interaction between a hot intergalactic medium near the closure density and these extended H I regions in the assumption of magnetic field lines extended outward into the intergalactic medium (IGM). We show that, with plausible initial conditions, the intergalactic temperature at present cannot exceed 1 x 10 7 K if the H I is to have survived until now. Consideration of conditions in the past places even more stringent limits on the temperature and density of the IGM. Survival of the H I disk also implies that these galaxies cannot have persistent hot, dense halos. The X-ray observations of M31, in particular, cannot be interpreted in terms of a thermal bremsstrahlung halo model, unless this halo is younger than about 10 7 yr

  5. STAR FORMATION FEEDBACK AND METAL-ENRICHMENT HISTORY OF THE INTERGALACTIC MEDIUM

    International Nuclear Information System (INIS)

    Cen Renyue; Chisari, Nora Elisa

    2011-01-01

    Using the state-of-the-art cosmological hydrodynamic simulations of the standard cold dark matter model with star formation feedback strength normalized to match the observed star formation history of the universe at z= 0-6, we compute the metal-enrichment history of the intergalactic medium (IGM). Overall we show that galactic superwind (GSW) feedback from star formation can transport metals to the IGM and that the properties of simulated metal absorbers match current observations. The distance of influence of GSW from galaxies is typically limited to about ≤0.5 Mpc and within regions of overdensity δ ≥ 10. Most C IV and O VI absorbers are located within shocked regions of elevated temperature (T ≥ 2 x 10 4 K), overdensity (δ ≥ 10), and metallicity ([Z/Z sun ] = [ - 2.5, - 0.5]), enclosed by double shocks propagating outward. O VI absorbers have typically higher metallicity, lower density, and higher temperature than C IV absorbers. For O VI absorbers, collisional ionization dominates over the entire redshift range z= 0-6, whereas for C IV absorbers the transition occurs at moderate redshift z ∼ 3 from collisionally dominated to photoionization dominated. We find that the observed column density distributions for C IV and O VI in the range log N cm 2 =12-15 are reasonably reproduced by the simulations. The evolution of mass densities contained in C IV and O VI lines, Ω CIV and Ω OVI , is also in good agreement with observations, which shows a near constancy at low redshifts and an exponential drop beyond redshift z= 3-4. For both C IV and O VI, most absorbers are transient and the amount of metals probed by C IV and O VI lines of column log N cm 2 =12-15 is only ∼2% of total metal density at any epoch. While gravitational shocks from large-scale structure formation dominate the energy budget (80%-90%) for turning about 50% of the IGM to the warm-hot intergalactic medium (WHIM) by z = 0, GSW feedback shocks are energetically dominant over

  6. Intergalactic medium heating by dark matter

    NARCIS (Netherlands)

    Ripamonti, E.; Mapelli, M.; Ferrara, A.

    2006-01-01

    Abstract: We derive the evolution of the energy deposition in the intergalactic medium (IGM) by dark matter (DM) decays/annihilations for both sterile neutrinos and light dark matter (LDM) particles. At z > 200 sterile neutrinos transfer a fraction f_abs~0.5 of their rest mass energy into the IGM;

  7. The physical state of the intergalactic medium

    International Nuclear Information System (INIS)

    Barcons, X.; Fabian, A.C.; Rees, M.J.

    1991-01-01

    Because the process of galaxy formation is most unlikely to be perfectly efficient, there is a strong possibility that some baryonic gas remains outside collapsed structures such as galaxies and clusters of galaxies. What fraction of the baryonic content of the Universe resides in this intergalactic medium (IGM) and what physical state it is in are open questions. Here we use observational limits on the density of neutral hydrogen in the IGM, on the lack of deviations from a black-body spectrum of the cosmic microwave background (MBR), and on the extragalactic component of the soft X-ray background (XRB) to constrain the state of the IGM. From the lack of MBR fluctuations, any energetic IGM (containing as much energy as the binding energy in galaxies) is inferred to be smoothly distributed on scales greater than galactic. This rules out hot IGM models for the origin of the hard X-ray background, as well as the hypothesis that cosmic explosions may have given rise to cosmological structure on scales larger than galaxies. (author)

  8. Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web.

    Science.gov (United States)

    Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline

    2015-12-03

    Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe's total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 10(5)-10(7) kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm-hot baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm-hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 10(7) kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5-10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.

  9. Comparison of the hot-stamped boron-alloyed steel and the warm-stamped medium-Mn steel on microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Li, Xiaodong; Chang, Ying; Wang, Cunyu; Hu, Ping; Dong, Han

    2017-01-01

    The application of high strength steels (HSS) for automotive structural parts is an effective way to realize lightweight and enhance safety. Therefore, improvements in mechanical properties of HSS are needed. In the present study, the warm stamping process of the third generation automotive medium-Mn steel was discussed, the characteristics of martensitic transformation were investigated, as well as the microstructure and mechanical properties were analyzed, compared to the popular hot-stamped 22MnB5 steel in the automotive industry. The results are indicated as follows. Firstly, the quenching rate of the medium-Mn steel can be selected in a wide range based on its CCT curves, which is beneficial to the control of forming process. Secondly, the influence of stamping temperature and pressure on the M s temperature of the medium-Mn steel is not obvious and can be neglected, which is favorable to the even distribution of martensitic microstructure and mechanical properties. Thirdly, the phenomenon of decarbonization is hardly found on the surface of the warm-stamped medium-Mn steel, and the ultra-fine-grained microstructure is found inside the medium-Mn steel after warm stamping. Besides, the warm-stamped medium-Mn steel holds the better comprehensive properties, such as a lower yield ratio, higher total elongation and higher tear toughness than the hot-stamped 22MnB5 steel. Furthermore, an actual warm-stamped B-pillar of medium-Mn steel is stamped and ultra-fine-grained martensitic microstructure is obtained. The mechanical properties are evenly distributed. As a result, this paper proves that the warm-stamped medium-Mn steel part can meet the requirements of lightweight and crash safety, and is promising for the industrial production of automotive structural parts.

  10. Comparison of the hot-stamped boron-alloyed steel and the warm-stamped medium-Mn steel on microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaodong [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Chang, Ying, E-mail: yingc@dlut.edu.cn [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Wang, Cunyu [East China Branch of Central Iron & Steel Research Institute (CISRI), Beijing 100081 (China); Hu, Ping [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Dong, Han [East China Branch of Central Iron & Steel Research Institute (CISRI), Beijing 100081 (China)

    2017-01-02

    The application of high strength steels (HSS) for automotive structural parts is an effective way to realize lightweight and enhance safety. Therefore, improvements in mechanical properties of HSS are needed. In the present study, the warm stamping process of the third generation automotive medium-Mn steel was discussed, the characteristics of martensitic transformation were investigated, as well as the microstructure and mechanical properties were analyzed, compared to the popular hot-stamped 22MnB5 steel in the automotive industry. The results are indicated as follows. Firstly, the quenching rate of the medium-Mn steel can be selected in a wide range based on its CCT curves, which is beneficial to the control of forming process. Secondly, the influence of stamping temperature and pressure on the M{sub s} temperature of the medium-Mn steel is not obvious and can be neglected, which is favorable to the even distribution of martensitic microstructure and mechanical properties. Thirdly, the phenomenon of decarbonization is hardly found on the surface of the warm-stamped medium-Mn steel, and the ultra-fine-grained microstructure is found inside the medium-Mn steel after warm stamping. Besides, the warm-stamped medium-Mn steel holds the better comprehensive properties, such as a lower yield ratio, higher total elongation and higher tear toughness than the hot-stamped 22MnB5 steel. Furthermore, an actual warm-stamped B-pillar of medium-Mn steel is stamped and ultra-fine-grained martensitic microstructure is obtained. The mechanical properties are evenly distributed. As a result, this paper proves that the warm-stamped medium-Mn steel part can meet the requirements of lightweight and crash safety, and is promising for the industrial production of automotive structural parts.

  11. Simulating the interaction of galaxies and the intergalactic medium

    Science.gov (United States)

    Carin, Robert A.

    2008-11-01

    The co-evolution of galaxies and the intergalactic medium as a function of environment is studied using hydrodynamic simulations of the ΛCDM cosmogony. It is demonstrated with non-radiative calculations that, in the absence of non-gravitational mechanisms, dark matter haloes accrete a near-universal fraction (˜ 0.9Ω_{b}/&Omega_;{m}) of baryons. The absence of a mass or redshift dependence of this fraction augurs well for parameter tests that use X-ray clusters as cosmological probes. Moreover, this result indicates that non-gravitational processes must efficiently regulate the formation of stars in dark matter haloes if the halo mass function is to be reconciled with the observed galaxy luminosity function. Simulations featuring stellar evolution and non-gravitational feedback mechanisms (photo-heating by the ultraviolet background, and thermal and kinetic supernovae feedback) are used to follow the evolution of star formation, and the thermo- and chemo-dynamical evolution of baryons. The observed star formation history of the Universe is reproduced, except at low redshift where it is overestimated by a factor of a few, possibly indicating the need for feedback from active galactic nuclei to quench cooling flows around massive galaxies. The simulations more accurately reproduce the observed abundance of galaxies with late-type morphologies than has been reported elsewhere. The unique initial conditions of these simulations, based on the Millennium Simulation, allow an unprecedented study of the role of large-scale environment to be conducted. The cosmic star formation rate density is found to vary by an order of magnitude across the extremes of environment expected in the local Universe. The mass fraction of baryons in the observationally elusive warm-hot intergalactic medium (WHIM), and the volume filling factor that this gas occupies, is also shown to vary by a factor of a few across such environments. This variation is attributed to differences in the halo

  12. Interactions between intergalactic medium and galaxies

    International Nuclear Information System (INIS)

    Einasto, J.; Saar, E.

    1977-01-01

    The interaction of galaxies with the environmental gas both in clusters and in small groups of galaxies is investigated. Interaction between galaxies and the ambient medium can be considered simply as final touches in the process of galaxy formation. Large relative velocities of galaxies in their clusters and of the intercluster gas result in a loss of the intergalactic gas, that in its turn affects the morphology of cluster galaxies. Interaction between the coronal clouds and the gas in the disk of spiral galaxies may result in regular patterns of star formation and in the bending of planes of galaxies

  13. The physics and early history of the intergalactic medium

    International Nuclear Information System (INIS)

    Barkana, Rennan; Loeb, Abraham

    2007-01-01

    The intergalactic medium-the cosmic gas that fills the great spaces between the galaxies-is affected by processes ranging from quantum fluctuations in the very early Universe to radiative emission from newly formed stars. This gives the intergalactic medium a dual role as a powerful probe both of fundamental physics and of astrophysics. The heading of fundamental physics includes conditions in the very early Universe and cosmological parameters that determine the age of the Universe and its matter content. The astrophysics refers to chapters of the long cosmic history of stars and galaxies that are being revealed through the effects of stellar feedback on the cosmic gas. This review describes the physics of the intergalactic medium, focusing on recent theoretical and observational developments in understanding early cosmic history. In particular, the earliest generation of stars is thought to have transformed the Universe from darkness to light and to have had an enormous impact on the intergalactic medium. Half a million years after the Big Bang the Universe was filled with atomic hydrogen. As gravity pulled gas clouds together, the first stars ignited and their radiation turned the surrounding atoms back into free electrons and ions. From the observed spectral absorption signatures of the gas between us and distant sources, we know that the process of reionization pervaded most of space a billion years after the Big Bang, so that only a small fraction of the primordial hydrogen atoms remained between galaxies. Knowing exactly when and how the reionization process happened is a primary goal of cosmologists, because this would tell us when the early stars and black holes formed and in what kinds of galaxies. The distribution and clustering of these galaxies is particularly interesting since it is driven by primordial density fluctuations in the dark matter. Cosmic reionization is beginning to be understood with the help of theoretical models and computer

  14. Physics of the interstellar and intergalactic medium

    CERN Document Server

    Draine, Bruce T

    2010-01-01

    This is a comprehensive and richly illustrated textbook on the astrophysics of the interstellar and intergalactic medium--the gas and dust, as well as the electromagnetic radiation, cosmic rays, and magnetic and gravitational fields, present between the stars in a galaxy and also between galaxies themselves. Topics include radiative processes across the electromagnetic spectrum; radiative transfer; ionization; heating and cooling; astrochemistry; interstellar dust; fluid dynamics, including ionization fronts and shock waves; cosmic rays; distribution and evolution of the interstellar medium; and star formation. While it is assumed that the reader has a background in undergraduate-level physics, including some prior exposure to atomic and molecular physics, statistical mechanics, and electromagnetism, the first six chapters of the book include a review of the basic physics that is used in later chapters. This graduate-level textbook includes references for further reading, and serves as an invaluable resourc...

  15. Evolution of the intergalactic medium - What happened during the epoch z = 3-10?

    Science.gov (United States)

    Ikeuchi, S.; Ostriker, J. P.

    1986-01-01

    An attempt is made to model consistently the thermal and dynamic history of the intergalactic medium (IGM) from the era of reheating (z = 10-5) to the present, and to provide a unified explanation for the origin of ordinary galaxies, blue compact objects, and Lyman-alpha clouds. The evolution of the intergalactic gas is analyzed, treating the IGM as perfectly homogeneous at every epoch and taking into account radiative and Compton cooling, adiabatic cooling, shock heating, and heating produced by the diffuse UV flux. It is suggested that the IGM must have been heated to higher than a 10 to the 6th K by shock heasting caused either by explosions of pregalactic objects or expanding voids. The formation of intergalactic clouds by fragmentation of the resulting shells and the subsequent collapse of the shells to form galaxies are studied. An attempt is made to determine model parameters on the basis of an analysis of Lyman-alpha absorption lines.

  16. X-ray ionization of the intergalactic medium by quasars

    Science.gov (United States)

    Graziani, Luca; Ciardi, B.; Glatzle, M.

    2018-06-01

    We investigate the impact of quasars on the ionization of the surrounding intergalactic medium (IGM) with the radiative transfer code CRASH4, now accounting for X-rays and secondary electrons. After comparing with analytic solutions, we post-process a cosmic volume (≈1.5 × 104 Mpc3h-3) containing a ULAS J1120+0641-like quasar (QSO) hosted by a 5 × 1011M⊙h-1 dark matter (DM) halo. We find that: (i) the average HII region (R ˜ 3.2 pMpc in a lifetime tf = 107 yrs) is mainly set by UV flux, in agreement with semi-analytic scaling relations; (ii) a largely neutral (xHII < 0.001), warm (T ˜ 103 K) tail extends up to few Mpc beyond the ionization front, as a result of the X-ray flux; (iii) LyC-opaque inhomogeneities induce a line of sight (LOS) scatter in R as high as few physical Mpc, consistent with the DLA scenario proposed to explain the anomalous size of the ULAS J1120+0641 ionized region. On the other hand, with an ionization rate \\dot{N}_{γ ,0} ˜ 10^{57} s-1, the assumed DLA clustering and gas opacity, only one LOS shows an HII region compatible with the observed one. We deduce that either the ionization rate of the QSO is at least one order of magnitude lower or the ULAS J1120+0641 bright phase is shorter than 107 yrs.

  17. The evolution of the intergalactic medium and the origin of the galaxy luminosity function

    Science.gov (United States)

    Valls-Gabaud, David; Blanchard, Alain; Mamon, Gary

    1993-01-01

    The coupling of the Press and Schechter prescription with the CDM scenario and the Hoyle-Rees-Ostriker cooling criterion leads to a galaxy formation scenario in which galaxies are overproduced by a large factor. Although star formation might be suppressed in the smaller halos, a large amount of energy per galactic mass is needed to account for the present number density of galaxies. The evolution of the intergalactic medium (IGM) provides a simple criterion to prevent galaxy formation without requiring feedback, since halos with small virial temperatures are not able to retain the infalling hot gas of the IGM. If the ionizing background has decreased since z is approximately 1 - 2, then this criterion explains the slope of the luminosity function at the faint end. In addition, this scenario predicts two populations of dwarf galaxies, well differentiated in age, gas content, stellar populations, and clustering properties, which can be identified with dE and dIm galaxies.

  18. A photoionization instability in the early intergalactic medium

    Science.gov (United States)

    Hogan, Craig J.

    1992-01-01

    It is argued that any fairly uniform source of ionizing photons can be the cause of an instability in the pregalactic medium on scales larger than a photon path length. Underdense regions receive more ionizing energy per atom and reach higher temperature and entropy, driving the density down still further. Fluctuations created by this instability can lead to the formation of structures resembling protogalaxies and intergalactic clouds, obviating the need for gas clouds or density perturbations of earlier cosmological provenance, as is usually assumed in theories of galaxy and structure formation. Characteristic masses for clouds produced by the instability, with log mass in solar units plotted against log radius in kpc, are illustrated.

  19. Suprathermal grains: on intergalactic magnetic fields

    International Nuclear Information System (INIS)

    Dasgupta, A.K.

    1979-01-01

    Charged dust grains of radii a approximately equal to 3 x 10 -6 to approximately 3 x 10 -5 cm may be driven out of the galaxy due to radiation pressure of starlight. Once clear of the main gas-dust layer, dust grains may then escape into intergalactic space. Such grains are virtually indestructible-being evaporated only during formation. The dust grains, once injected into the intergalactic medium, may acquire suprathermal energy, thus 'suprathermal grains' in collision with magnetized cloud by the Fermi process. In order to attain relativistic energy, suprathermal grains have to move in and out ('scattering') of the magnetic field of the medium. It is now well established that high energy cosmic rays are of the order 10 20 eV or more. It has been speculated that these high energy (> = 10 18 eV) cosmic ray particles are charged dust grains, of intergalactic origin. This is possible only if there exists a magnetic field in the intergalactic medium. (Auth.)

  20. Probing the intergalactic medium with fast radio bursts

    International Nuclear Information System (INIS)

    Zheng, Z.; Ofek, E. O.; Kulkarni, S. R.; Neill, J. D.; Juric, M.

    2014-01-01

    The recently discovered fast radio bursts (FRBs), presumably of extragalactic origin, have the potential to become a powerful probe of the intergalactic medium (IGM). We point out a few such potential applications. We provide expressions for the dispersion measure and rotation measure as a function of redshift, and we discuss the sensitivity of these measures to the He II reionization and the IGM magnetic field. Finally, we calculate the microlensing effect from an isolated, extragalactic stellar-mass compact object on the FRB spectrum. The time delays between the two lensing images will induce constructive and destructive interference, leaving a specific imprint on the spectra of FRBs. With a high all-sky rate, a large statistical sample of FRBs is expected to make these applications feasible.

  1. Probing the nature of dark matter through the metal enrichment of the intergalactic medium

    Science.gov (United States)

    Bremer, Jonas; Dayal, Pratika; Ryan-Weber, Emma V.

    2018-06-01

    We focus on exploring the metal enrichment of the intergalactic medium (IGM) in cold and warm (1.5 and 3 keV) dark matter (DM) cosmologies, and the constraints this yields on the DM particle mass, using a semi-analytic model, DELPHI, that jointly tracks the DM and baryonic assembly of galaxies at z ≃ 4-20 including both supernova (SN) and (a range of) reionization feedback (models). We find that while M_{UV}≳ -15 galaxies contribute half of all IGM metals in the cold dark matter (CDM) model by z ≃ 4.5, given the suppression of low-mass haloes, larger haloes with M_{UV}≲ -15 provide about 80 per cent of the IGM metal budget in 1.5 keV warm dark matter (WDM) models using two different models for the metallicity of the interstellar medium. Our results also show that the only models compatible with two different high-redshift data sets, provided by the evolving ultraviolet luminosity function (UV LF) at z ≃ 6-10 and IGM metal density, are standard CDM and 3 keV WDM that do not include any reionization feedback; a combination of the UV LF and the Díaz et al. point provides a weaker constraint, allowing CDM and 3 and 1.5 keV WDM models with SN feedback only, as well as CDM with complete gas suppression of all haloes with v_{circ} ≲ 30 km s^{-1}. Tightening the error bars on the IGM metal enrichment, future observations, at z ≳ 5.5, could therefore represent an alternative way of shedding light on the nature of DM.

  2. IGMtransmission: A Java GUI to model the effects of the Intergalactic Medium on the colours of high redshift galaxies

    OpenAIRE

    Harrison, Christopher M.; Meiksin, Avery; Stock, David

    2011-01-01

    IGMtransmission is a Java graphical user interface that implements Monte Carlo simulations to compute the corrections to colours of high-redshift galaxies due to intergalactic attenuation based on current models of the Intergalactic Medium. The effects of absorption due to neutral hydrogen are considered, with particular attention to the stochastic effects of Lyman Limit Systems. Attenuation curves are produced, as well as colours for a wide range of filter responses and model galaxy spectra....

  3. Does Light from Steady Sources Bear Any Observable Imprint of the Dispersive Intergalactic Medium?

    Science.gov (United States)

    Lieu, Richard; Duan, Lingze

    2018-02-01

    There has recently been some interest in the prospect of detecting ionized intergalactic baryons by examining the properties of incoherent light from background cosmological sources, namely quasars. Although the paper by Lieu et al. proposed a way forward, it was refuted by the later theoretical work of Hirata & McQuinn and the observational study of Hales et al. In this paper we investigate in detail the manner in which incoherent radiation passes through a dispersive medium both from the frameworks of classical and quantum electrodynamics, leading us to conclude that the premise of Lieu et al. would only work if the pulses involved are genuinely classical ones containing many photons per pulse; unfortunately, each photon must not be treated as a pulse that is susceptible to dispersive broadening. We are nevertheless able to change the tone of the paper at this juncture by pointing out that because current technology allows one to measure the phase of individual modes of radio waves from a distant source, the most reliable way of obtaining irrefutable evidence of dispersion, namely via the detection of its unique signature of a quadratic spectral phase, may well be already accessible. We demonstrate how this technique is only applied to measure the column density of the ionized intergalactic medium.

  4. The effect of UV stars on the intergalactic medium. II

    International Nuclear Information System (INIS)

    Sonnanstine, A.E.; Hills, J.G.

    1976-01-01

    The effect of ionizing radiation from the UV stars (hot prewhite dwarfs) on the intergalactic medium (IGM) has been investigated. If the UV stars are powered only by gravitational contraction they radiate most of their energy at a typical surface temperature of 1.5 x 10 5 K which produces a very highly ionized IGM in which the elements carbon, nitrogen and oxygen are left with only one or two electrons. This result in these elements being very inefficient coolants. The gas is cooled principally by free-free emission and the collisional ionization of hydrogen and helium. For a typical UV star temperature of T=1.5 x 10 5 K, the temperature of the ionized gas in the IGM is Tsub(g)=1.2 x 10 5 K for a Hubble constant H 0 =75 kms -1 Mpc -1 and a hydrogen density nsub(H)=10 -6 cm -3 . Heating by cosmic rays and X-rays is insignificant in the IGM except perhaps in the H I clouds because when a hydrogen atom recombines in the IGM it is far more likely to be re-ionized by a UV-star photon than by either of the other two types of particles due to the greater space density of UV-star photons and their appreciably larger ionization cross sections. If the UV stars radiate a substantial fraction of their energy in a helium-burning stage in which they have surface temperatures of about 5 x 10 4 K, the temperature of the IGM could be lowered to about 5 x 10 4 K. (Auth.)

  5. Warm-hot gas in X-ray bright galaxy clusters and the H I-deficient circumgalactic medium in dense environments

    Science.gov (United States)

    Burchett, Joseph N.; Tripp, Todd M.; Wang, Q. Daniel; Willmer, Christopher N. A.; Bowen, David V.; Jenkins, Edward B.

    2018-04-01

    We analyse the intracluster medium (ICM) and circumgalactic medium (CGM) in seven X-ray-detected galaxy clusters using spectra of background quasi-stellar objects (QSOs) (HST-COS/STIS), optical spectroscopy of the cluster galaxies (MMT/Hectospec and SDSS), and X-ray imaging/spectroscopy (XMM-Newton and Chandra). First, we report a very low covering fraction of H I absorption in the CGM of these cluster galaxies, f_c = 25^{+25}_{-15} {per cent}, to stringent detection limits (N(H I) detect O VI in any cluster, and we only detect BLA features in the QSO spectrum probing one cluster. We estimate that the total column density of warm-hot gas along this line of sight totals to ˜ 3 per cent of that contained in the hot T > 107 K X-ray emitting phase. Residing at high relative velocities, these features may trace pre-shocked material outside the cluster. Comparing gaseous galaxy haloes from the low-density `field' to galaxy groups and high-density clusters, we find that the CGM is progressively depleted of H I with increasing environmental density, and the CGM is most severely transformed in galaxy clusters. This CGM transformation may play a key role in environmental galaxy quenching.

  6. EXCITATION TEMPERATURE OF THE WARM NEUTRAL MEDIUM AS A NEW PROBE OF THE Lyα RADIATION FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Claire E.; Lindner, Robert R.; Stanimirović, Snežana; Pingel, Nickolas M.; Lawrence, Allen; Babler, Brian L. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Goss, W. M.; Jencson, Jacob [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville, Socorro, NM 87801 (United States); Heiles, Carl [Radio Astronomy Laboratory, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Dickey, John [University of Tasmania, School of Maths and Physics, Private Bag 37, Hobart, TAS 7001 (Australia); Hennebelle, Patrick, E-mail: cmurray@astro.wisc.edu [Laboratoire AIM, Paris-Saclay, CEA/IRFU/SAp—CNRS—Université Paris Diderot, F-91191 Gif-sur-Yvette Cedex (France)

    2014-02-01

    We use the Karl G. Jansky Very Large Array to conduct a high-sensitivity survey of neutral hydrogen (H I) absorption in the Milky Way. In combination with corresponding H I emission spectra obtained mostly with the Arecibo Observatory, we detect a widespread warm neutral medium component with excitation temperature 〈T{sub s}〉=7200{sub −1200}{sup +1800} K (68% confidence). This temperature lies above theoretical predictions based on collisional excitation alone, implying that Lyα scattering, the most probable additional source of excitation, is more important in the interstellar medium (ISM) than previously assumed. Our results demonstrate that H I absorption can be used to constrain the Lyα radiation field, a critical quantity for studying the energy balance in the ISM and intergalactic medium yet notoriously difficult to model because of its complicated radiative transfer, in and around galaxies nearby and at high redshift.

  7. Diagnosing the reionization of the universe - The absorption spectrum of the intergalactic medium and Lyman alpha clouds

    Science.gov (United States)

    Giroux, Mark L.; Shapiro, Paul R.

    1991-01-01

    The thermal and ionization evolution of a uniform intergalactic medium composed of H and He and undergoing reionization is studied. The diagnosis of the metagalactic ionizing radiation background at z of about three using metal line ratios for Lyman limit quasar absorption line systems is addressed. The use of the He II Gunn-Peterson effect to diagnose the reionization source and/or nature of the Hy-alpha forest clouds is considered.

  8. Probing the Intergalactic Medium with Ly α and 21 cm Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Heneka, Caroline [Dark Cosmology Center, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Cooray, Asantha; Feng, Chang [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)

    2017-10-10

    We study 21 cm and Ly α fluctuations, as well as H α , while distinguishing between Ly α emission of galactic, diffuse, and scattered intergalactic medium (IGM) origin. Cross-correlation information about the state of the IGM is obtained, testing neutral versus ionized medium cases with different tracers in a seminumerical simulation setup. In order to pave the way toward constraints on reionization history and modeling beyond power spectrum information, we explore parameter dependencies of the cross-power signal between 21 cm and Ly α , which displays a characteristic morphology and a turnover from negative to positive correlation at scales of a couple Mpc{sup −1}. In a proof of concept for the extraction of further information on the state of the IGM using different tracers, we demonstrate the use of the 21 cm and H α cross-correlation signal to determine the relative strength of galactic and IGM emission in Ly α . We conclude by showing the detectability of the 21 cm and Ly α cross-correlation signal over more than one decade in scale at high signal-to-noise ratio for upcoming probes like SKA and the proposed all-sky intensity mapping satellites SPHEREx and CDIM, while also including the Ly α damping tail and 21 cm foreground avoidance in the modeling.

  9. Phonon-mediated distributed transition-edge-sensor X-ray detectors for surveys of galaxy clusters and the warm-hot interstellar medium

    International Nuclear Information System (INIS)

    Leman, Steven W.; Brink, Paul L.; Cabrera, Blas; Castle, Joseph P.; Chakraborty, Sudeepto; Deiker, Steve; Kahn, Steve; Martinez-Galarce, Dennis S.; Stern, Robert A.; Tomada, Astrid

    2006-01-01

    We are developing a novel phonon-mediated distributed-TES X-ray detector in which X-rays are absorbed in a large germanium or silicon crystal, and the energy is read out by four distributed TESs. This design takes advantage of existing TES technology while overcoming the difficulties of designing spatially large arrays. The sum of the four TES signals will yield energy resolution of E/δE∼1000 and the partitioning of energy between the four will yield position resolution of X/δX and Y/δY∼100. These macropixels, with advances in multiplexing, could be close-packed into 30x30 arrays equivalent to imaging instruments of 10 megapixels or more. We report on our progress to date and discuss its application to galaxy cluster searches and studies of the Warm-Hot Interstellar Medium

  10. On modeling and measuring the temperature of the z ∼ 5 intergalactic medium

    International Nuclear Information System (INIS)

    Lidz, Adam; Malloy, Matthew

    2014-01-01

    The temperature of the low-density intergalactic medium (IGM) at high redshift is sensitive to the timing and nature of hydrogen and He II reionization, and can be measured from Lyman-alpha (Lyα) forest absorption spectra. Since the memory of intergalactic gas to heating during reionization gradually fades, measurements as close as possible to reionization are desirable. In addition, measuring the IGM temperature at sufficiently high redshifts should help to isolate the effects of hydrogen reionization since He II reionization starts later, at lower redshift. Motivated by this, we model the IGM temperature at z ≳ 5 using semi-numeric models of patchy reionization. We construct mock Lyα forest spectra from these models and consider their observable implications. We find that the small-scale structure in the Lyα forest is sensitive to the temperature of the IGM even at redshifts where the average absorption in the forest is as high as 90%. We forecast the accuracy at which the z ≳ 5 IGM temperature can be measured using existing samples of high resolution quasar spectra, and find that interesting constraints are possible. For example, an early reionization model in which reionization ends at z ∼ 10 should be distinguishable—at high statistical significance—from a lower redshift model where reionization completes at z ∼ 6. We discuss improvements to our modeling that may be required to robustly interpret future measurements.

  11. Measurement of the small-scale structure of the intergalactic medium using close quasar pairs.

    Science.gov (United States)

    Rorai, Alberto; Hennawi, Joseph F; Oñorbe, Jose; White, Martin; Prochaska, J Xavier; Kulkarni, Girish; Walther, Michael; Lukić, Zarija; Lee, Khee-Gan

    2017-04-28

    The distribution of diffuse gas in the intergalactic medium (IGM) imprints a series of hydrogen absorption lines on the spectra of distant background quasars known as the Lyman-α forest. Cosmological hydrodynamical simulations predict that IGM density fluctuations are suppressed below a characteristic scale where thermal pressure balances gravity. We measured this pressure-smoothing scale by quantifying absorption correlations in a sample of close quasar pairs. We compared our measurements to hydrodynamical simulations, where pressure smoothing is determined by the integrated thermal history of the IGM. Our findings are consistent with standard models for photoionization heating by the ultraviolet radiation backgrounds that reionized the universe. Copyright © 2017, American Association for the Advancement of Science.

  12. THE DISTORTION OF THE COSMIC MICROWAVE BACKGROUND SPECTRUM DUE TO INTERGALACTIC DUST

    Energy Technology Data Exchange (ETDEWEB)

    Imara, Nia; Loeb, Abraham, E-mail: nimara@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-07-10

    Infrared emission from intergalactic dust might compromise the ability of future experiments to detect subtle spectral distortions in the Cosmic Microwave Background (CMB) from the early universe. We provide the first estimate of foreground contamination of the CMB signal due to diffuse dust emission in the intergalactic medium. We use models of the extragalactic background light to calculate the intensity of intergalactic dust emission and find that emission by intergalactic dust at z ≲ 0.5 exceeds the sensitivity of the planned Primordial Inflation Explorer to CMB spectral distortions by 1–3 orders of magnitude. In the frequency range ν = 150–2400 GHz, we place an upper limit of 0.06% on the contribution to the far-infrared background from intergalactic dust emission.

  13. Interstellar depletions and the filling factor of the hot interstellar medium

    International Nuclear Information System (INIS)

    Dwek, E.; Scalo, J.M.

    1979-01-01

    We have examined theoretically the evolution of refractory interstellar grain abundances and corresponding metal deplections in the solar neighborhood. The calculations include a self-consistent treatment of red-giant winds, planetary nebulae, protostellar nebulae, and suprnovae as sources of grains and star formation, and of encounters with supernova blast waves as sinks. We find that in the standard two-phase model for the interstellar medium (ISM), grain destruction is very efficient, and the abundance of refractory grains should be negligible, contrary to observations. In a cloudy three-phase ISM most grains reside in the warm and cold phases of the medium. Supernova blast waves expand predominantly in the hot and tenuous phase of the medium and are showed down as they propagate through a cloud. In order to obtain significant (approx.3) depletions of metals presubably locked up in refractory grain cores, the destruction of grains that reside in the clouds must be minimal. This requires that (a) the density contrast between the cloud and intercloud medium be sufficiently high, and (b) the filling factor of the hot and tenuous gas of the interstellar medium, which presumably gives rise to the O VI absorption and soft X-ray emission, be nearly unity. Much larger depletions (> or approx. =10) must reflect accretion of mantles within interstellar clouds

  14. PATCHY BLAZAR HEATING: DIVERSIFYING THE THERMAL HISTORY OF THE INTERGALACTIC MEDIUM

    International Nuclear Information System (INIS)

    Lamberts, Astrid; Chang, Philip; Pfrommer, Christoph; Puchwein, Ewald; Broderick, Avery E.; Shalaby, Mohamad

    2015-01-01

    TeV-blazars potentially heat the intergalactic medium (IGM) as their gamma rays interact with photons of the extragalactic background light to produce electron–positron pairs, which lose their kinetic energy to the surrounding medium through plasma instabilities. This results in a heating mechanism that is only weakly sensitive to the local density, and therefore approximately spatially uniform, naturally producing an inverted temperature–density relation in underdense regions. In this paper we go beyond the approximation of uniform heating and quantify the heating rate fluctuations due to the clustered distribution of blazars and how this impacts the thermal history of the IGM. We analytically compute a filtering function that relates the heating rate fluctuations to the underlying dark matter density field. We implement it in the cosmological code GADGET-3 and perform large-scale simulations to determine the impact of inhomogeneous heating. We show that because of blazar clustering, blazar heating is inhomogeneous for z ≳ 2. At high redshift, the temperature–density relation shows an important scatter and presents a low temperature envelope of unheated regions, in particular at low densities and within voids. However, the median temperature of the IGM is close to that in the uniform case, albeit slightly lower at low redshift. We find that blazar heating is more complex than initially assumed and that the temperature–density relation is not unique. Our analytic model for the heating rate fluctuations couples well with large-scale simulations and provides a cost-effective alternative to subgrid models

  15. THE HOT INTERSTELLAR MEDIUM OF THE INTERACTING GALAXY NGC 4490

    International Nuclear Information System (INIS)

    Richings, A. J.; Fabbiano, G.; Wang Junfeng; Roberts, T. P.

    2010-01-01

    We present an analysis of the hot interstellar medium (ISM) in the spiral galaxy NGC 4490, which is interacting with the irregular galaxy NGC 4485, using ∼100 ks of Chandra ACIS-S observations. The high angular resolution of Chandra enables us to remove discrete sources and perform spatially resolved spectroscopy for the star-forming regions and associated outflows, allowing us to look at how the physical properties of the hot ISM such as temperature, hydrogen column density, and metal abundances vary throughout these galaxies. We find temperatures of >0.41 keV and 0.85 +0.59 -0.12 keV, electron densities of >1.87η -1/2 x 10 -3 cm -3 and 0.21 +0.03 -0.04 η -1/2 x 10 -3 cm -3 , and hot gas masses of >1.1η 1/2 x 10 7 M sun and ∼3.7η 1/2 x 10 7 M sun in the plane and halo of NGC 4490, respectively, where η is the filling factor of the hot gas. The abundance ratios of Ne, Mg, and Si with respect to Fe are found to be consistent with those predicted by theoretical models of type II supernovae (SNe). The thermal energy in the hot ISM is ∼5% of the total mechanical energy input from SNe, so it is likely that the hot ISM has been enriched and heated by type II SNe. The X-ray emission is anticorrelated with the Hα and mid-infrared emission, suggesting that the hot gas is bounded by filaments of cooler ionized hydrogen mixed with warm dust.

  16. Research on Al-alloy sheet forming formability during warm/hot sheet hydroforming based on elliptical warm bulging test

    Science.gov (United States)

    Cai, Gaoshen; Wu, Chuanyu; Gao, Zepu; Lang, Lihui; Alexandrov, Sergei

    2018-05-01

    An elliptical warm/hot sheet bulging test under different temperatures and pressure rates was carried out to predict Al-alloy sheet forming limit during warm/hot sheet hydroforming. Using relevant formulas of ultimate strain to calculate and dispose experimental data, forming limit curves (FLCS) in tension-tension state of strain (TTSS) area are obtained. Combining with the basic experimental data obtained by uniaxial tensile test under the equivalent condition with bulging test, complete forming limit diagrams (FLDS) of Al-alloy are established. Using a quadratic polynomial curve fitting method, material constants of fitting function are calculated and a prediction model equation for sheet metal forming limit is established, by which the corresponding forming limit curves in TTSS area can be obtained. The bulging test and fitting results indicated that the sheet metal FLCS obtained were very accurate. Also, the model equation can be used to instruct warm/hot sheet bulging test.

  17. Efficient adiabatic hydrodynamical simulations of the high-redshift intergalactic medium

    Science.gov (United States)

    Gaikwad, Prakash; Choudhury, Tirthankar Roy; Srianand, Raghunathan; Khaire, Vikram

    2018-02-01

    We present a post-processing tool for GADGET-2 adiabatic simulations to model various observed properties of the Ly α forest at 2.5 ≤ z ≤ 4 that enables an efficient parameter estimation. In particular, we model the thermal and ionization histories that are not computed self-consistently by default in GADGET-2. We capture the effect of pressure smoothing by running GADGET-2 at an elevated temperature floor and using an appropriate smoothing kernel. We validate our procedure by comparing different statistics derived from our method with those derived using self-consistent simulations with GADGET-3. These statistics are: line-of-sight density field power spectrum, flux probability distribution function, flux power spectrum, wavelet statistics, curvature statistics, H I column density (N_{H I}) distribution function, linewidth (b) distribution and b versus log N_{H I} scatter. For the temperature floor of 104 K and typical signal-to-noise ratio of 25, the results agree well within 20 per cent of the self-consistent GADGET-3 simulation. However, this difference is smaller than the expected 1σ sample variance for an absorption path length of ˜5.35 at z = 3. Moreover for a given cosmology, we gain a factor of ˜N in computing time for modelling the intergalactic medium under N ≫ 1 different thermal histories. In addition, our method allows us to simulate the non-equilibrium evolution of thermal and ionization state of the gas and include heating due to non-standard sources like cosmic rays and high-energy γ-rays from Blazars.

  18. Probing the Metal Enrichment of the Intergalactic Medium at z = 5–6 Using the Hubble Space Telescope

    International Nuclear Information System (INIS)

    Cai, Zheng; Fan, Xiaohui; Dave, Romeel; Finlator, Kristian; Oppenheimer, Ben

    2017-01-01

    We test the galactic outflow model by probing associated galaxies of four strong intergalactic C iv absorbers at z = 5–6 using the Hubble Space Telescope ( HST ) Advanced Camera for Surveys (ACS) ramp narrowband filters. The four strong C iv absorbers reside at z = 5.74, 5.52, 4.95, and 4.87, with column densities ranging from N Civ = 10 13.8 to 10 14.8 cm −2 . At z = 5.74, we detect an i-dropout Ly α emitter (LAE) candidate with a projected impact parameter of 42 physical kpc from the C iv absorber. This LAE candidate has a Ly α -based star formation rate (SFR Lyα ) of 2 M ⊙ yr −1 and a UV-based SFR of 4 M ⊙ yr −1 . Although we cannot completely rule out that this i-dropout emitter may be an [O ii] interloper, its measured properties are consistent with the C iv powered galaxy at z = 5.74. For C iv absorbers at z = 4.95 and z = 4.87, although we detect two LAE candidates with impact parameters of 160 and 200 kpc, such distances are larger than that predicted from the simulations. Therefore, we treat them as nondetections. For the system at z = 5.52, we do not detect LAE candidates, placing a 3 σ upper limit of SFR Lyα ≈ 1.5 M ⊙ yr −1 . In summary, in these four cases, we only detect one plausible C iv source at z = 5.74. Combining the modest SFR of the one detection and the three nondetections, our HST observations strongly support that smaller galaxies (SFR Lyα ≲ 2 M ⊙ yr −1 ) are main sources of intergalactic C iv absorbers, and such small galaxies play a major role in the metal enrichment of the intergalactic medium at z ≳ 5.

  19. Probing the Metal Enrichment of the Intergalactic Medium at z = 5–6 Using the Hubble Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zheng [UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Fan, Xiaohui [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Dave, Romeel [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Finlator, Kristian [New Mexico State University, Las Cruces, NM 88003 (United States); Oppenheimer, Ben, E-mail: zcai@ucolick.org [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389 UCB, Boulder, CO 80309 (United States)

    2017-11-01

    We test the galactic outflow model by probing associated galaxies of four strong intergalactic C iv absorbers at z = 5–6 using the Hubble Space Telescope ( HST ) Advanced Camera for Surveys (ACS) ramp narrowband filters. The four strong C iv absorbers reside at z = 5.74, 5.52, 4.95, and 4.87, with column densities ranging from N {sub Civ} = 10{sup 13.8} to 10{sup 14.8} cm{sup −2}. At z = 5.74, we detect an i-dropout Ly α emitter (LAE) candidate with a projected impact parameter of 42 physical kpc from the C iv absorber. This LAE candidate has a Ly α -based star formation rate (SFR{sub Lyα} ) of 2 M {sub ⊙} yr{sup −1} and a UV-based SFR of 4 M {sub ⊙} yr{sup −1}. Although we cannot completely rule out that this i-dropout emitter may be an [O ii] interloper, its measured properties are consistent with the C iv powered galaxy at z = 5.74. For C iv absorbers at z = 4.95 and z = 4.87, although we detect two LAE candidates with impact parameters of 160 and 200 kpc, such distances are larger than that predicted from the simulations. Therefore, we treat them as nondetections. For the system at z = 5.52, we do not detect LAE candidates, placing a 3 σ upper limit of SFR{sub Lyα} ≈ 1.5 M {sub ⊙} yr{sup −1}. In summary, in these four cases, we only detect one plausible C iv source at z = 5.74. Combining the modest SFR of the one detection and the three nondetections, our HST observations strongly support that smaller galaxies (SFR{sub Lyα} ≲ 2 M {sub ⊙} yr{sup −1}) are main sources of intergalactic C iv absorbers, and such small galaxies play a major role in the metal enrichment of the intergalactic medium at z ≳ 5.

  20. TEMPORAL SMEARING OF TRANSIENT RADIO SOURCES BY THE INTERGALACTIC MEDIUM

    International Nuclear Information System (INIS)

    Macquart, Jean-Pierre; Koay, Jun Yi

    2013-01-01

    The temporal smearing of impulsive radio events at cosmological redshifts probes the properties of the ionized intergalactic medium (IGM). We relate the degree of temporal smearing and the profile of a scattered source to the evolution of a turbulent structure in the IGM as a function of redshift. We estimate the degree of scattering expected by analyzing the contributions to the scattering measure of the various components of baryonic matter embedded in the IGM, including the diffuse IGM, intervening galaxies, and intracluster gas. These estimates predict that the amount of temporal smearing expected at 300 MHz is typically as low as ∼1 ms and suggests that these bursts may be detectable with low-frequency widefield arrays. A generalization of the dispersion-measure-scattering-measure relation observed for Galactic scattering to the densities and turbulent conditions relevant to the IGM suggests that scattering measures on the order of 10 –6 kpc m –20/3 would be expected at z ∼ 1. This scattering is sufficiently low enough that its effects would not, for most lines of sight, be manifested in existing observations of the scatter broadening in images of extragalactic compact sources. The redshift dependence on the temporal smearing discriminates between scattering that occurs in the host galaxy of the burst and the IGM, with τ host ∝(1 + z) –3 if the scattering probes length scales below the inner scale of the turbulence or τ host ∝(1 + z) –17/5 if the turbulence follows a Kolmogorov spectrum. This differs strongly from the expected IGM scaling τ IGM ∼ z 2 for z ∼ 0.2–0.5 for z ∼> 1

  1. A model for the distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter-dominated universe

    Science.gov (United States)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1989-01-01

    The spatial distribution of the cold-dark-matter (CDM) and baryonic components of CDM-dominated cosmological models are characterized, summarizing the results of recent theoretical investigations. The evolution and distribution of matter in an Einstein-de Sitter universe on length scales small enough so that the Newtonian approximation is valid is followed chronologically, assuming (1) that the galaxies, CDM, and the intergalactic medium (IGM) are coupled by gravity, (2) that galaxies form by taking mass and momentum from the IGM, and (3) that the IGM responds to the energy input from the galaxies. The results of the numerical computations are presented in extensive graphs and discussed in detail.

  2. Changes in Extremely Hot Summers over the Global Land Area under Various Warming Targets.

    Science.gov (United States)

    Wang, Lei; Huang, Jianbin; Luo, Yong; Yao, Yao; Zhao, Zongci

    2015-01-01

    Summer temperature extremes over the global land area were investigated by comparing 26 models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) with observations from the Goddard Institute for Space Studies (GISS) and the Climate Research Unit (CRU). Monthly data of the observations and models were averaged for each season, and statistics were calculated for individual models before averaging them to obtain ensemble means. The summers with temperature anomalies (relative to 1951-1980) exceeding 3σ (σ is based on the local internal variability) are defined as "extremely hot". The models well reproduced the statistical characteristics evolution, and partly captured the spatial distributions of historical summer temperature extremes. If the global mean temperature increases 2°C relative to the pre-industrial level, "extremely hot" summers are projected to occur over nearly 40% of the land area (multi-model ensemble mean projection). Summers that exceed 5σ warming are projected to occur over approximately 10% of the global land area, which were rarely observed during the reference period. Scenarios reaching warming levels of 3°C to 5°C were also analyzed. After exceeding the 5°C warming target, "extremely hot" summers are projected to occur throughout the entire global land area, and summers that exceed 5σ warming would become common over 70% of the land area. In addition, the areas affected by "extremely hot" summers are expected to rapidly expand by more than 25%/°C as the global mean temperature increases by up to 3°C before slowing to less than 16%/°C as the temperature continues to increase by more than 3°C. The area that experiences summers with warming of 5σ or more above the warming target of 2°C is likely to maintain rapid expansion of greater than 17%/°C. To reduce the impacts and damage from severely hot summers, the global mean temperature increase should remain low.

  3. Dimming of supernovae by photon-pseudoscalar conversion and the intergalactic plasma

    International Nuclear Information System (INIS)

    Deffayet, Cedric; Harari, Diego; Uzan, Jean-Philippe; Zaldarriaga, Matias

    2002-01-01

    It has been suggested recently that the observed dimming of distant type Ia supernovae may be a consequence of mixing of the photons with very light axions. We point out that the effect of the plasma, in which the photons are propagating, must be taken into account. This effect changes the oscillation probability and renders the dimming frequency dependent, contrary to observations. One may hope to accommodate the data by averaging the oscillations over many different coherence domains. We estimate the effect of coherence loss, either due to the inhomogeneities of the magnetic field or of the intergalactic plasma. These estimates indicate that the achromaticity problem can be resolved only with very specific, and probably unrealistic, properties of the intergalactic medium

  4. Intergalactic dust and quasar distribution

    International Nuclear Information System (INIS)

    Soltan, A.

    1979-01-01

    Non-homogeneous intergalactic extinction may considerably affect the quasar distribution. Especially samples of quasars isolated on the basis of B-V colours are subject to this phenomenon. Apparent grouping and close pairs of quasars reported in the literature may be a result of intergalactic dust. Using surface distribution of faint blue objects selected by Hawkins and Reddish it is estimated that intergalactic extinction in B should reach approximately 1 mag out to the redshift of approximately 1. This is slightly larger than predicted by theory and comparable to the mean dust density derived from observations. (Author)

  5. Simulative testing of friction in warm/hot forging

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    The objective of sub-task 3.2 is to determine the friction values for different work piece materials, tool materials and lubricants as a function of the main process parameters under conditions reflecting those which are present in typical warm/hot forming operations i.e. surface expansion, work...... piece and tool temperature. Based on this experimental work establish mathematical formulations of friction as a function of the basic parameters....

  6. Propagation of monochromatic light in a hot and dense medium

    Science.gov (United States)

    Masood, Samina S.

    2017-12-01

    Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe.

  7. Propagation of monochromatic light in a hot and dense medium

    Energy Technology Data Exchange (ETDEWEB)

    Masood, Samina S. [University of Houston Clear Lake, Department of Physical and Applied Sciences, Houston, TX (United States)

    2017-12-15

    Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe. (orig.)

  8. Formation of hot intergalactic gas by gas ejection from a galaxy in an early explosive era

    International Nuclear Information System (INIS)

    Ikeuchi, Satoru

    1977-01-01

    Chemical evolution of a galaxy in an early explosive era is studied by means of one zone model. Calculating the thermal properties of interstellar gas and the overlapping factor of expanding supernova-remnant shells, the gas escape conditions from a galaxy are examined. From these, it is shown that the total mass of ejected gas from a galaxy amounts to 10 -- 40% of the initial mass of a galaxy. The ejected gas extends to the intergalactic space and the whole universe. The mass, the heavy-element abundance and other physical properties of thus formed intergalactic gas are investigated for various parameters of galactic evolution. Some other effects of gas release on the evolution of a galaxy and the evolution of the universe are discussed. (auth.)

  9. Detection of Hot Halo Gets Theory Out of Hot Water

    Science.gov (United States)

    2006-02-01

    Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of

  10. On the origin of the warm-hot absorbers in the Milky Way's halo

    NARCIS (Netherlands)

    Marasco, A.; Marinacci, F.; Fraternali, F.

    2013-01-01

    Disc galaxies like the Milky Way are expected to be surrounded by massive coronae of hot plasma that may contain a significant fraction of the so-called missing baryons. We investigate whether the local (vertical bar v(LSR)vertical bar <400 km s(-1)) warm-hot absorption features observed towards

  11. Environmentally Benign Lubricant Systems For Cold, Warm And Hot Forging

    DEFF Research Database (Denmark)

    Bay, Niels

    2010-01-01

    paper gives an overview of these efforts substituting environmentally hazardous lubricants in cold, warm and hot forging. The paper is an extract of the keynote paper [3] written by the author together with eight co-authors referring to collected papers and other information from more than 30 different...

  12. Cosmic gamma-ray burst from intergalactic relativistic dust grains

    International Nuclear Information System (INIS)

    Dasgupta, A.K.

    1979-01-01

    Charged dust grains of radii a approximately 3 x 10 -6 approximately 3 x 10 -5 cm may acquire relativistic energy (>10 18 eV) in the intergalactic medium. In order to attain relativistic energy, dust grains have to move in and out ('scattering') of the magnetic field of the medium. A relativistic grain of radius a -5 cm with Lorentz factor γ approximately 10 3 approaching the Earth will break up either due to electrostatic charge or due to sputtering about 150 approximately 100 km, and may scatter solar photons via a fluorescence process. Dust grains may also melt into droplets in the solar vicinity and may contribute towards observed gamma-ray bursts. (Auth.)

  13. New limits on 21 cm epoch of reionization from paper-32 consistent with an x-ray heated intergalactic medium at z = 7.7

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Aaron R.; Liu, Adrian; Ali, Zaki S.; Pober, Jonathan C. [Astronomy Department, University of California, Berkeley, CA (United States); Aguirre, James E.; Moore, David F. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Bradley, Richard F. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA (United States); Carilli, Chris L. [National Radio Astronomy Observatory, Socorro, NM (United States); DeBoer, David R.; Dexter, Matthew R.; MacMahon, David H. E. [Radio Astronomy Laboratory, University of California, Berkeley, CA (United States); Gugliucci, Nicole E. [Department of Astronomy, University of Virginia, Charlottesville, VA (United States); Jacobs, Daniel C. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Klima, Pat [National Radio Astronomy Observatory, Charlottesville, VA (United States); Manley, Jason R.; Walbrugh, William P. [Square Kilometer Array, South Africa Project, Cape Town (South Africa); Stefan, Irina I. [Cavendish Laboratory, Cambridge (United Kingdom)

    2014-06-20

    We present new constraints on the 21 cm Epoch of Reionization (EoR) power spectrum derived from three months of observing with a 32 antenna, dual-polarization deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. In this paper, we demonstrate the efficacy of the delay-spectrum approach to avoiding foregrounds, achieving over eight orders of magnitude of foreground suppression (in mK{sup 2}). Combining this approach with a procedure for removing off-diagonal covariances arising from instrumental systematics, we achieve a best 2σ upper limit of (41 mK){sup 2} for k = 0.27 h Mpc{sup –1} at z = 7.7. This limit falls within an order of magnitude of the brighter predictions of the expected 21 cm EoR signal level. Using the upper limits set by these measurements, we generate new constraints on the brightness temperature of 21 cm emission in neutral regions for various reionization models. We show that for several ionization scenarios, our measurements are inconsistent with cold reionization. That is, heating of the neutral intergalactic medium (IGM) is necessary to remain consistent with the constraints we report. Hence, we have suggestive evidence that by z = 7.7, the H I has been warmed from its cold primordial state, probably by X-rays from high-mass X-ray binaries or miniquasars. The strength of this evidence depends on the ionization state of the IGM, which we are not yet able to constrain. This result is consistent with standard predictions for how reionization might have proceeded.

  14. New limits on 21 cm epoch of reionization from paper-32 consistent with an x-ray heated intergalactic medium at z = 7.7

    International Nuclear Information System (INIS)

    Parsons, Aaron R.; Liu, Adrian; Ali, Zaki S.; Pober, Jonathan C.; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Dexter, Matthew R.; MacMahon, David H. E.; Gugliucci, Nicole E.; Jacobs, Daniel C.; Klima, Pat; Manley, Jason R.; Walbrugh, William P.; Stefan, Irina I.

    2014-01-01

    We present new constraints on the 21 cm Epoch of Reionization (EoR) power spectrum derived from three months of observing with a 32 antenna, dual-polarization deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. In this paper, we demonstrate the efficacy of the delay-spectrum approach to avoiding foregrounds, achieving over eight orders of magnitude of foreground suppression (in mK 2 ). Combining this approach with a procedure for removing off-diagonal covariances arising from instrumental systematics, we achieve a best 2σ upper limit of (41 mK) 2 for k = 0.27 h Mpc –1 at z = 7.7. This limit falls within an order of magnitude of the brighter predictions of the expected 21 cm EoR signal level. Using the upper limits set by these measurements, we generate new constraints on the brightness temperature of 21 cm emission in neutral regions for various reionization models. We show that for several ionization scenarios, our measurements are inconsistent with cold reionization. That is, heating of the neutral intergalactic medium (IGM) is necessary to remain consistent with the constraints we report. Hence, we have suggestive evidence that by z = 7.7, the H I has been warmed from its cold primordial state, probably by X-rays from high-mass X-ray binaries or miniquasars. The strength of this evidence depends on the ionization state of the IGM, which we are not yet able to constrain. This result is consistent with standard predictions for how reionization might have proceeded.

  15. Hot ductility of medium carbon steel with vanadium

    International Nuclear Information System (INIS)

    Lee, Chang-Hoon; Park, Jun-Young; Chung, JunHo; Park, Dae-Bum; Jang, Jin-Young; Huh, Sungyul; Ju Kim, Sung; Kang, Jun-Yun; Moon, Joonoh; Lee, Tae-Ho

    2016-01-01

    Hot ductility of medium carbon steel containing 0.52 wt% of carbon and 0.11 wt% of vanadium was investigated using a hot tensile test performed up to fracture. The hot ductility was evaluated by measuring the reduction of area of the fractured specimens, which were strained at a variety of test temperatures in a range of 600–1100 °C at a strain rate of 2×10"−"3/s. The hot ductility was excellent in a temperature range of 950–1100 °C, followed by a decrease of the hot ductility below 950 °C. The hot ductility continued to drop as the temperature was lowered to 600 °C. The loss of hot ductility in a temperature range of 800–950 °C, which is above the Ae_3 temperature, was due to V(C,N) precipitation at austenite grain boundaries. The further decline of hot ductility between 700 °C and 750 °C resulted from the transformation of ferrite films decorating austenite grain boundaries. The hot ductility continued to decrease at 650 °C or less, owing to ferrite films and the pearlite matrix, which is harder than ferrite. The pearlite was transformed from austenite due to relatively high carbon content.

  16. PHOTOSPHERIC PROPERTIES OF WARM EUV LOOPS AND HOT X-RAY LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Kano, R. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ueda, K. [Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tsuneta, S., E-mail: ryouhei.kano@nao.ac.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan)

    2014-02-20

    We investigate the photospheric properties (vector magnetic fields and horizontal velocity) of a well-developed active region, NOAA AR 10978, using the Hinode Solar Optical Telescope specifically to determine what gives rise to the temperature difference between ''warm loops'' (1-2 MK), which are coronal loops observed in EUV wavelengths, and ''hot loops'' (>3 MK), coronal loops observed in X-rays. We found that outside sunspots, the magnetic filling factor in the solar network varies with location and is anti-correlated with the horizontal random velocity. If we accept that the observed magnetic features consist of unresolved magnetic flux tubes, this anti-correlation can be explained by the ensemble average of flux-tube motion driven by small-scale random flows. The observed data are consistent with a flux tube width of ∼77 km and horizontal flow at ∼2.6 km s{sup –1} with a spatial scale of ∼120 km. We also found that outside sunspots, there is no significant difference between warm and hot loops either in the magnetic properties (except for the inclination) or in the horizontal random velocity at their footpoints, which are identified with the Hinode X-Ray Telescope and the Transition Region and Coronal Explorer. The energy flux injected into the coronal loops by the observed photospheric motion of the magnetic fields is estimated to be 2 × 10{sup 6} erg s{sup –1} cm{sup –2}, which is the same for both warm and hot loops. This suggests that coronal properties (e.g., loop length) play a more important role in giving rise to temperature differences of active-region coronal loops than photospheric parameters.

  17. Absorption signatures of warm-hot gas at low redshift : Ne VIII

    NARCIS (Netherlands)

    Tepper-García, T

    2013-01-01

    At z {lt} 1 a large fraction of the baryons is thought to reside in diffuse gas that has been shock-heated to high temperatures (10$^{5}$-10$^{6}$ K). Absorption by the 770.41, 780.32 å doublet of Ne VIII in quasar spectra represents a unique tool to study this elusive warm-hot phase. We have

  18. Distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    International Nuclear Information System (INIS)

    Ryu, D.; Vishniac, E.T.; Chiang, W.H.

    1988-11-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code

  19. Distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, D.; Vishniac, E.T.; Chiang, W.H.

    1988-11-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  20. Thermal Sunyaev-Zel'dovich effect in the intergalactic medium with primordial magnetic fields

    Science.gov (United States)

    Minoda, Teppei; Hasegawa, Kenji; Tashiro, Hiroyuki; Ichiki, Kiyotomo; Sugiyama, Naoshi

    2017-12-01

    The presence of ubiquitous magnetic fields in the universe is suggested from observations of radiation and cosmic ray from galaxies or the intergalactic medium (IGM). One possible origin of cosmic magnetic fields is the magnetogenesis in the primordial universe. Such magnetic fields are called primordial magnetic fields (PMFs), and are considered to affect the evolution of matter density fluctuations and the thermal history of the IGM gas. Hence the information of PMFs is expected to be imprinted on the anisotropies of the cosmic microwave background (CMB) through the thermal Sunyaev-Zel'dovich (tSZ) effect in the IGM. In this study, given an initial power spectrum of PMFs as P (k )∝B1Mpc 2knB , we calculate dynamical and thermal evolutions of the IGM under the influence of PMFs, and compute the resultant angular power spectrum of the Compton y -parameter on the sky. As a result, we find that two physical processes driven by PMFs dominantly determine the power spectrum of the Compton y -parameter; (i) the heating due to the ambipolar diffusion effectively works to increase the temperature and the ionization fraction, and (ii) the Lorentz force drastically enhances the density contrast on small scale just after the recombination epoch. These facts result in making the anisotropies of the CMB temperature on small scales, and we find that the signal goes up to 10 μ K2 around ℓ˜106 with B1 Mpc=0.1 nG and nB=0.0 . Therefore, CMB measurements on such small scales may provide a hint for the existence of the PMFs.

  1. Probing intergalactic magnetic fields with simulations of electromagnetic cascades

    International Nuclear Information System (INIS)

    Alves Batista, Rafael; Saveliev, Andrey; Russian Academy of Sciences, Moscow; Sigl, Guenter; Vachaspati, Tanmay

    2016-12-01

    We determine the effect of intergalactic magnetic fields on the distribution of high energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called ''Large Sphere Observer'' method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the Q-statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the S-statistics. Both methods provide a quantative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths B>or similar 10"-"1"5 G and magnetic coherence lengths L_c>or similar 100 Mpc. We show that the S-statistics has a better performance than the Q-statistics when assessing magnetic helicity from the simulated halos.

  2. Teetering Stars: Resonant Excitation of Stellar Obliquities by Hot and Warm Jupiters with External Companions

    Science.gov (United States)

    Anderson, Kassandra; Lai, Dong

    2018-04-01

    Stellar spin-orbit misalignments (obliquities) in hot Jupiter systems have been extensively probed in recent years thanks to Rossiter-McLaughlin observations. Such obliquities may reveal clues about hot Jupiter dynamical and migration histories. Common explanations for generating stellar obliquities include high-eccentricity migration, or primordial disk misalignment. This talk investigates another mechanism for producing stellar spin-orbit misalignments in systems hosting a close-in giant planet with an external, inclined planetary companion. Spin-orbit misalignment may be excited due to a secular resonance, occurring when the precession rate of the stellar spin axis (due to the inner orbit) becomes comparable to the precession rate of the inner orbital axis (due to the outer companion). Due to the spin-down of the host star via magnetic braking, this resonance may be achieved at some point during the star's main sequence lifetime for a wide range of giant planet masses and orbital architectures. We focus on both hot Jupiters (with orbital periods less than ten days) and warm Jupiters (with orbital periods around tens of days), and identify the outer perburber properties needed to generate substantial obliquities via resonant excitation, in terms of mass, separation, and inclination. For hot Jupiters, the stellar spin axis is strongly coupled to the orbital axis, and resonant excitation of obliquity requires a close perturber, located within 1-2 AU. For warm Jupiters, the spin and orbital axes are more weakly coupled, and the resonance may be achieved for more distant perturbers (at several to tens of AU). Resonant excitation of the stellar obliquity is accompanied by a decrease in the planets' mutual orbital inclination, and can thus erase high mutual inclinations in two-planet systems. Since many warm Jupiters are known to have outer planetary companions at several AU or beyond, stellar obliquities in warm Jupiter systems may be common, regardless of the

  3. The Dispersion of Fast Radio Bursts from a Structured Intergalactic Medium at Redshifts z < 1.5

    Science.gov (United States)

    Shull, J. Michael; Danforth, Charles W.

    2018-01-01

    We analyze the sources of free electrons that produce the large dispersion measures, {DM}≈ 300{--}1600 (in units of cm‑3 pc), observed toward fast radio bursts (FRBs). Individual galaxies typically produce {DM}∼ 25{--}60 {{cm}}-3 {pc} from ionized gas in their disk, disk-halo interface, and circumgalactic medium. Toward an FRB source at redshift z, a homogeneous intergalactic medium (IGM) containing a fraction {f}{IGM} of cosmological baryons will produce {DM}=(935 {{cm}}-3 {pc}){f}{IGM} {h}70-1I(z), where I{(z)=(2/3{{{Ω }}}m)[\\{{{{Ω }}}m(1+z)}3+{{{Ω }}}{{Λ }}\\}{}1/2-1]. A structured IGM of photoionized Lyα absorbers in the cosmic web produces similar dispersion, modeled from the observed distribution, {f}b(N,z), of H I (Lyα-forest) absorbers in column density and redshift with ionization corrections and scaling relations from cosmological simulations. An analytic formula for DM(z) applied to observed FRB dispersions suggests that {z}{FRB}≈ 0.2{--}1.5 for an IGM containing a significant baryon fraction, {f}{IGM}=0.6+/- 0.1. Future surveys of the statistical distribution, DM(z), of FRBs identified with specific galaxies and redshifts can be used to calibrate the IGM baryon fraction and distribution of Lyα absorbers. Fluctuations in DM at the level ±10 cm‑3 pc will arise from filaments and voids in the cosmic web.

  4. The Interaction of Hot and Cold Gas in the Disk and Halo of Galaxies

    Science.gov (United States)

    Slavin, Jonathan; Salamon, Michael (Technical Monitor)

    2004-01-01

    Most of the thermal energy in the Galaxy and perhaps most of the baryons in the Universe are found in hot (log T approximately 5.5 - 7) gas. Hot gas is detected in the local interstellar medium, in supernova remnants (SNR), the Galactic halo, galaxy clusters and the intergalactic medium (IGM). In our own Galaxy, hot gas exists in large superbubbles up to several hundred pc in diameter that locally dominate the interstellar medium (ISM) and determine its thermal and dynamic evolution. While X-ray observations using ROSAT, Chandra and XMM have allowed us to make dramatic progress in mapping out the morphology of the hot gas and in understanding some of its spectral characteristics, there remain fundamental questions that are unanswered. Chief among these questions is the way that hot gas interacts with cooler phase gas and the effects these interactions have on hot gas energetics. The theoretical investigations we proposed in this grant aim to explore these interactions and to develop observational diagnostics that will allow us to gain much improved information on the evolution of hot gas in the disk and halo of galaxies. The first of the series of investigations that we proposed was a thorough exploration of turbulent mixing layers and cloud evaporation. We proposed to employ a multi-dimensional hydrodynamical code that includes non-equilibrium ionization (NEI), radiative cooling and thermal conduction. These models are to be applied to high velocity clouds in our galactic halo that are seen to have O VI by FUSE (Sembach et ai. 2000) and other clouds for which sufficient constraining observations exist.

  5. Tracing the cosmic metal evolution in the low-redshift intergalactic medium

    Energy Technology Data Exchange (ETDEWEB)

    Michael Shull, J. [Also at Institute of Astronomy, University of Cambridge, Cambridge CB3 OHA, UK. (United Kingdom); Danforth, Charles W.; Tilton, Evan M., E-mail: michael.shull@colorado.edu, E-mail: danforth@colorado.edu, E-mail: evan.tilton@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2014-11-20

    Using the Cosmic Origins Spectrograph aboard the Hubble Space Telescope, we measured the abundances of six ions (C III, C IV, Si III, Si IV, N V, and O VI) in the low-redshift (z ≤ 0.4) intergalactic medium (IGM). Both C IV and Si IV have increased in abundance by a factor of ∼10 from z ≈ 5.5 to the present. We derive ion mass densities, ρ{sub ion} ≡ Ω{sub ion}ρ{sub cr}, with Ω{sub ion} expressed relative to the closure density. Our models of mass-abundance ratios, (Si III/Si IV) =0.67{sub −0.19}{sup +0.35}, (C III/C IV) =0.70{sub −0.20}{sup +0.43}, and (Ω{sub C} {sub III}+Ω{sub C} {sub IV})/(Ω{sub Si} {sub III}+Ω{sub Si} {sub IV})=4.9{sub −1.1}{sup +2.2}, are consistent with the photoionization parameter log U = –1.5 ± 0.4, hydrogen photoionization rate Γ{sub H} = (8 ± 2) × 10{sup –14} s{sup –1} at z < 0.4, and specific intensity I {sub 0} = (3 ± 1) × 10{sup –23} erg cm{sup –2} s{sup –1} Hz{sup –1} sr{sup –1} at the Lyman limit. Consistent ionization corrections for C and Si are scaled to an ionizing photon flux Φ{sub 0} = 10{sup 4} cm{sup –2} s{sup –1}, baryon overdensity Δ {sub b} ≈ 200 ± 50, and ''alpha-enhancement'' (Si/C enhanced to three times its solar ratio). We compare these metal abundances to the expected IGM enrichment and abundances in higher photoionized states of carbon (C V) and silicon (Si V, Si VI, and Si VII). Our ionization modeling infers IGM metal densities of (5.4 ± 0.5) × 10{sup 5} M {sub ☉} Mpc{sup –3} in the photoionized Lyα forest traced by the C and Si ions and (9.1 ± 0.6) × 10{sup 5} M {sub ☉} Mpc{sup –3} in hotter gas traced by O VI. Combining both phases, the heavy elements in the IGM have mass density ρ {sub Z} = (1.5 ± 0.8) × 10{sup 6} M {sub ☉} Mpc{sup –3} or Ω {sub Z} ≈ 10{sup –5}. This represents 10% ± 5% of the metals produced by (6 ± 2) × 10{sup 8} M {sub ☉} Mpc{sup –3} of integrated star formation with yield y{sub m} = 0

  6. Filling the Void: A Comprehensive Survey of the Intergalactic Medium at z 1 Using STIS/COS Archival Spectra

    Science.gov (United States)

    Khaire, Vikram

    2017-08-01

    There exists a large void in our understanding of the intergalactic medium (IGM) at z=0.5-1.5, spanning a significant cosmic time of 4 Gyr. This hole resulted from a paucity of near-UV QSO spectra, which were historically very expensive to obtain. However, with the advent of COS and the HST UV initiative, sufficient STIS/COS NUV spectra have finally become available, enabling the first statistical analyses. We propose a comprehensive study of the z 1 IGM using the Ly-alpha forest of 26 archival QSO spectra. This analysis will: (1) measure the distribution of HI absorbers to several percent precision down to log NHI science cases. These results, along with our state-of-the-art hydrodynamical simulations, and theoretical models of the UVB, will fill the 4 Gyr hole in our understanding of the IGM. When combined with existing HST and ground-based data from lower and higher z, they will lead to a complete, empirical description of the IGM from HI reionization to the present, spanning more than 10 Gyr of cosmic history, adding substantially to Hubble's legacy of discovery on the IGM.

  7. The distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    Science.gov (United States)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1988-01-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  8. The distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    Science.gov (United States)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1988-11-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega0 = 1 and h = 0.5 was considered (here h = H0 bar 100/kms/Mpc and H0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  9. Probing intergalactic magnetic fields with simulations of electromagnetic cascades

    Energy Technology Data Exchange (ETDEWEB)

    Alves Batista, Rafael [Oxford Univ. (United Kingdom). Dept. of Physics and Astrophysics; Saveliev, Andrey [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Russian Academy of Sciences, Moscow (Russian Federation). Keldysh Inst. of Applied Mathematics; Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Vachaspati, Tanmay [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics

    2016-12-15

    We determine the effect of intergalactic magnetic fields on the distribution of high energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called ''Large Sphere Observer'' method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the Q-statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the S-statistics. Both methods provide a quantative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths B>or similar 10{sup -15} G and magnetic coherence lengths L{sub c}>or similar 100 Mpc. We show that the S-statistics has a better performance than the Q-statistics when assessing magnetic helicity from the simulated halos.

  10. Observing Interstellar and Intergalactic Magnetic Fields

    Science.gov (United States)

    Han, J. L.

    2017-08-01

    Observational results of interstellar and intergalactic magnetic fields are reviewed, including the fields in supernova remnants and loops, interstellar filaments and clouds, Hii regions and bubbles, the Milky Way and nearby galaxies, galaxy clusters, and the cosmic web. A variety of approaches are used to investigate these fields. The orientations of magnetic fields in interstellar filaments and molecular clouds are traced by polarized thermal dust emission and starlight polarization. The field strengths and directions along the line of sight in dense clouds and cores are measured by Zeeman splitting of emission or absorption lines. The large-scale magnetic fields in the Milky Way have been best probed by Faraday rotation measures of a large number of pulsars and extragalactic radio sources. The coherent Galactic magnetic fields are found to follow the spiral arms and have their direction reversals in arms and interarm regions in the disk. The azimuthal fields in the halo reverse their directions below and above the Galactic plane. The orientations of organized magnetic fields in nearby galaxies have been observed through polarized synchrotron emission. Magnetic fields in the intracluster medium have been indicated by diffuse radio halos, polarized radio relics, and Faraday rotations of embedded radio galaxies and background sources. Sparse evidence for very weak magnetic fields in the cosmic web is the detection of the faint radio bridge between the Coma cluster and A1367. Future observations should aim at the 3D tomography of the large-scale coherent magnetic fields in our Galaxy and nearby galaxies, a better description of intracluster field properties, and firm detections of intergalactic magnetic fields in the cosmic web.

  11. Intergalactic extinction and the deceleration parameter

    International Nuclear Information System (INIS)

    Meinel, R.

    1981-01-01

    The deceleration parameter q 0 is calculated from the relation between apparent magnitudes m of the brightest galaxies in clusters and their redshifts z considering an intergalactic extinction. The calculation is valid for a Friedman universe, homogeneously filled with dust grains, assuming the extinction to be 0.5 mag at z = 1 and aΛ -1 -law of extinction (according to Oleak and Schmidt 1976). Using the m,z-values of Kristian, Sandage, and Westphal (1978) a formal value of q 0 approximately 2.1 is obtained instead of q 0 approximately 1.6 without consideration of intergalactic extinction. (author)

  12. Multifrequency survey of the intergalactic cloud in the M96 group

    International Nuclear Information System (INIS)

    Schneider, S.E.; Skrutskie, M.F.; Hacking, P.B.; Young, J.S.; Dickman, R.L.

    1989-01-01

    The intergalactic cloud of neutral hydrogen in the M96 group are examined for signs of emission over a wide range of frequencies, from radio waves to X rays. Past or present stellar activity in the gas might have been expected to produce detectable visual infrared, CO, OH, or radio recombination-line emission. None was detected. The limits are used to study physical conditions in the intergalactic gas. In particular, B and V band limits on starlight and IRAS limits on the presence of dust strongly constrain the presence of stars or stellar by-products. However, given the uncertainties about physical conditions in the intergalactic environment, it is difficult to rule out entirely the presence of stellar-processed materials. Results of neutral hydrogen mapping from a large-scale survey of the intergalactic cloud and surrounding region are also presented. These observations confirm that the gas is confined to a large ringlike structure. The simplest interpretation remains that the intergalactic gas in Leo is primordial. 36 references

  13. THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. II. REWRITING THE THERMAL HISTORY OF THE INTERGALACTIC MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Philip; Broderick, Avery E; Pfrommer, Christoph [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

    2012-06-10

    The universe is opaque to extragalactic very high energy gamma rays (VHEGRs, E > 100 GeV) because they annihilate and pair produce on the extragalactic background light. The resulting ultrarelativistic pairs are commonly assumed to lose energy primarily through inverse Compton scattering of cosmic microwave background (CMB) photons, reprocessing the original emission from TeV to GeV energies. In Broderick et al., we argued that this is not the case; powerful plasma instabilities driven by the highly anisotropic nature of the ultrarelativistic pair distribution provide a plausible way to dissipate the kinetic energy of the TeV-generated pairs locally, heating the intergalactic medium (IGM). Here, we explore the effect of this heating on the thermal history of the IGM. We collate the observed extragalactic VHEGR sources to determine a local VHEGR heating rate. Given the pointed nature of VHEGR observations, we estimate the correction for the various selection effects using Fermi observations of high- and intermediate-peaked BL Lac objects. As the extragalactic component of the local VHEGR flux is dominated by TeV blazars, we then estimate the evolution of the TeV blazar luminosity density by tying it to the well-observed quasar luminosity density and producing a VHEGR heating rate as a function of redshift. This heating is relatively homogeneous for z {approx}< 4, but there is greater spatial variation at higher redshift (order unity at z {approx} 6) because of the reduced number of blazars that contribute to local heating. We show that this new heating process dominates photoheating in the low-redshift evolution of the IGM and calculate the effect of this heating in a one-zone model. As a consequence, the inclusion of TeV blazar heating qualitatively and quantitatively changes the structure and history of the IGM. Due to the homogeneous nature of the extragalactic background light, TeV blazars produce a uniform volumetric heating rate. This heating is sufficient to

  14. THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. II. REWRITING THE THERMAL HISTORY OF THE INTERGALACTIC MEDIUM

    International Nuclear Information System (INIS)

    Chang, Philip; Broderick, Avery E.; Pfrommer, Christoph

    2012-01-01

    The universe is opaque to extragalactic very high energy gamma rays (VHEGRs, E > 100 GeV) because they annihilate and pair produce on the extragalactic background light. The resulting ultrarelativistic pairs are commonly assumed to lose energy primarily through inverse Compton scattering of cosmic microwave background (CMB) photons, reprocessing the original emission from TeV to GeV energies. In Broderick et al., we argued that this is not the case; powerful plasma instabilities driven by the highly anisotropic nature of the ultrarelativistic pair distribution provide a plausible way to dissipate the kinetic energy of the TeV-generated pairs locally, heating the intergalactic medium (IGM). Here, we explore the effect of this heating on the thermal history of the IGM. We collate the observed extragalactic VHEGR sources to determine a local VHEGR heating rate. Given the pointed nature of VHEGR observations, we estimate the correction for the various selection effects using Fermi observations of high- and intermediate-peaked BL Lac objects. As the extragalactic component of the local VHEGR flux is dominated by TeV blazars, we then estimate the evolution of the TeV blazar luminosity density by tying it to the well-observed quasar luminosity density and producing a VHEGR heating rate as a function of redshift. This heating is relatively homogeneous for z ∼< 4, but there is greater spatial variation at higher redshift (order unity at z ∼ 6) because of the reduced number of blazars that contribute to local heating. We show that this new heating process dominates photoheating in the low-redshift evolution of the IGM and calculate the effect of this heating in a one-zone model. As a consequence, the inclusion of TeV blazar heating qualitatively and quantitatively changes the structure and history of the IGM. Due to the homogeneous nature of the extragalactic background light, TeV blazars produce a uniform volumetric heating rate. This heating is sufficient to increase

  15. Predicting "Hot" and "Warm" Spots for Fragment Binding.

    Science.gov (United States)

    Rathi, Prakash Chandra; Ludlow, R Frederick; Hall, Richard J; Murray, Christopher W; Mortenson, Paul N; Verdonk, Marcel L

    2017-05-11

    Computational fragment mapping methods aim to predict hotspots on protein surfaces where small fragments will bind. Such methods are popular for druggability assessment as well as structure-based design. However, to date researchers developing or using such tools have had no clear way of assessing the performance of these methods. Here, we introduce the first diverse, high quality validation set for computational fragment mapping. The set contains 52 diverse examples of fragment binding "hot" and "warm" spots from the Protein Data Bank (PDB). Additionally, we describe PLImap, a novel protocol for fragment mapping based on the Protein-Ligand Informatics force field (PLIff). We evaluate PLImap against the new fragment mapping test set, and compare its performance to that of simple shape-based algorithms and fragment docking using GOLD. PLImap is made publicly available from https://bitbucket.org/AstexUK/pli .

  16. Large scale features of the hot component of the interstellar medium

    International Nuclear Information System (INIS)

    Garmire, G.P.

    1983-01-01

    The interstellar medium contains identifiable hot plasma clouds occupying up to about 35% of the volume of the local galactic disc. The temperature of these clouds is not uniform but ranges from 10 5 up to 4 x 10 6 K. Besides the high temperature which places the emission spectrum in the soft X-ray band, the implied pressure of the hot plasma compared to the cooler gas reveals the importance of this component in determining the motions and evolution of the cooler gas in the disc, as well as providing a source of hot gas which may extend above the galactic disc to form a corona. The author presents data from the A-2 soft X-ray experiment on the HEAO-1 spacecraft concerning the large scale features of this gas. These features are interpreted in terms of the late phases of supernovae expansion, multiple supernovae and the possible creation of a hot halo surrounding the region of the galactic nucleus. (Auth.)

  17. Dissociation of 1P states in hot QCD Medium Using Quasi-Particle Model

    Science.gov (United States)

    Nilima, Indrani; Agotiya, Vineet Kumar

    2018-03-01

    We extend the analysis of a very recent work [1] to study the dissociation phenomenon of 1P states of the charmonium and bottomonium spectra (χc and χb) in a hot QCD medium using Quasi-Particle Model. This study employed a medium modified heavy quark potential which has quite different form in the sense that it has a lomg range Coulombic tail in addition to the Yukawa term even above the deconfinement temperature. Then we study the flavor dependence of their binding energies and explore the nature of dissociation temperatures by employing the Quasi-Particle debye mass for pure gluonic and full QCD case. Interestingly, the dissociation temperatures obtained by employing EoS1 and EoS2 with the Γ criterion, is closer to the upper bound of the dissociation temperatures which are obtained by the dissolution of a given quarkonia state by the mean thermal energy of the quasi-partons in the hot QCD/QGP medium.

  18. The Intergalactic Medium as a Cosmological Tool

    Energy Technology Data Exchange (ETDEWEB)

    Viel, Matteo, E-mail: viel@oats.inaf.i [INAF - Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34131 Trieste (Italy); INFN/National Institute for Nuclear Physics, Via Valerio 2, I-34127 Trieste (Italy)

    2009-10-15

    In this talk I will review the capabilities of high-resolution (UVES and Keck) and low resolution (Sloan Digital Sky Survey - SDSS) quasar (QSO) Lyman-alpha absorption spectra as cosmological tools to probe the dark matter distribution in the high redshift universe. I will first summarize the results in terms of cosmological parameters and then discuss consistency with the parameters derived from other large scale structure observable such as the Cosmic Microwave Background (CMB) and weak lensing surveys. When the Lyman-alpha forest data are combined with CMB data and the weak lensing results of the z-COSMOS survey the constraints are: sigma{sub 8}=0.800+-0.023, n{sub s}=0.971+-0.011OMEGA{sub m}=0.247+-0.016 (1-sigma error bars), in perfect agreement with the CMB results of WMAP year five alone. I will briefly address the importance of Lyman-alpha for constraining the neutrino mass fraction. Furthermore, I will present constraints on the mass of warm dark matter (WDM) particles derived from the Lyman-alpha flux power spectrum of 55 high-resolution HIRES Lyman-alpha forest spectra at 2.0=1.2keV (2sigma) if the WDM consists of early decoupled thermal relics and m{sub WDM}>=5.6keV (2sigma) for sterile neutrinos. Adding the SDSS Lyman-alpha flux power spectrum at 2.2=4keV and m{sub WDM}>=28keV (2sigma) for thermal relics and sterile neutrinos. These results improve previous findings by a factor two and are currently the tightest constraints on the coldness of cold dark matter. Finally, I will discuss: i) recent results for a mixture of cold and warm dark matter and the constraints for sterile neutrinos as dark matter candidates in a physically motivated framework (resonant production); ii) perspectives of cross-correlating the Lyman-alpha forest with convergence maps of the cosmic microwave background; iii) fitting of the flux probability distribution function.

  19. The dynamics of the water droplet impacting onto hot solid surfaces at medium Weber numbers

    Science.gov (United States)

    Mitrakusuma, Windy H.; Kamal, Samsul; Indarto; Dyan Susila, M.; Hermawan; Deendarlianto

    2017-10-01

    The effects of the wettability of a droplet impacting onto a hot solid surface under medium Weber numbers were studied experimentally. The Weber numbers used in the present experiment were 52.1, 57.6, and 63.1. Three kinds of solid surfaces with different wettability were used. These were normal stainless steel (NSS), TiO2 coated NSS, and TiO2 coated NSS radiated with ultraviolet rays. The surface temperatures were varied from 60 to 200 °C. The image of side the view and 30° from horizontal were taken to explain the spreading and the interfacial behavior of a single droplet during impact the hot solid surfaces. It was found that under medium Weber numbers, the surface wettability plays an important role on the droplet spreading and evaporation time during the impact on the hot solid surfaces. The higher the wettability, the larger the droplet spreading on the hot surface, and the lower the evaporation time.

  20. Xenia: A Probe of Cosmic Chemical Evolution

    Science.gov (United States)

    Kouveliotou, Chryssa; Piro, L.

    2008-01-01

    Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and y-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.

  1. Xenia: A Probe of Cosmic Chemical Evolution

    Science.gov (United States)

    Kouveliotou, Chryssa; Piro, L.; Xenia Collaboration

    2008-03-01

    Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and γ-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.

  2. The concerted impact of galaxies and QSOs on the ionization and thermal state of the intergalactic medium

    Science.gov (United States)

    Kakiichi, Koki; Graziani, Luca; Ciardi, Benedetta; Meiksin, Avery; Compostella, Michele; Eide, Marius B.; Zaroubi, Saleem

    2017-07-01

    We present a detailed analysis of the ionization and thermal structure of the intergalactic medium (IGM) around a high-redshift (z = 10) QSO, using a large suite of cosmological, multifrequency radiative transfer simulations, exploring the contribution from galaxies as well as the QSO, and the effect of X-rays and secondary ionization. We show that in high-z QSO environments both the central QSO and the surrounding galaxies concertedly control the reionization morphology of hydrogen and helium and have a non-linear impact on the thermal structure of the IGM. A QSO imprints a distinctive morphology on H II regions if its total ionizing photon budget exceeds that of the surrounding galaxies since the onset of hydrogen reionization; otherwise, the morphology shows little difference from that of H II regions produced only by galaxies. In addition, the spectral shape of the collective radiation field from galaxies and QSOs controls the thickness of the I-fronts. While a UV-obscured QSO can broaden the I-front, the contribution from other UV sources, either galaxies or unobscured QSOs, is sufficient to maintain a sharp I-front. X-ray photons from the QSO are responsible for a prominent extended tail of partial ionization ahead of the I-front. QSOs leave a unique imprint on the morphology of He II/He III regions. We suggest that, while the physical state of the IGM is modified by QSOs, the most direct test to understand the role of galaxies and QSOs during reionization is to perform galaxy surveys in a region of sky imaged by 21 cm tomography.

  3. Study of the strongly ionized medium in active galactic n ('Warm Absorber'): multi-wavelength modelling and plasma diagnostics in the X-ray spectral range

    International Nuclear Information System (INIS)

    Porquet, Delphine

    1999-01-01

    The so-called 'Warm Absorber' medium is observed in the central region of Active Galactic Nuclei and particularly in Seyfert l galaxies. lt is mainly characterized by O(VII) and O(VIII) absorption edges detected in the soft X-rays. Its study (modelization and observation) is an important key tool to understand Active Galactic Nuclei. The work presented here consists in modelling the Warm Absorber, and in developing X-ray spectroscopy diagnostics to constrain the physical parameters of any hot medium such as the Warm Absorber. The physical parameters of the Warm Absorber (density, temperature, ionization processes..) are difficult to determine only on the basis of present X-ray data. In particular, the value of the density cannot be derived only from the modelling of the resonance lines and of the soft X-ray absorption edges since there are almost insensitive to the density in the range of values expected for the Warm Absorber. lt is why we have developed diagnostic methods based on a multi-wavelength approach. The modelling is made with two complementary computational codes: PEGAS, and IRIS which takes into account the most accurate atomic data. With these two codes, we have modelled several types of plasma ionisation processes (photoionized plasmas and/or collisional). Results for the Warm Absorber were compared to multi-wavelength observations (mainly the optical iron coronal lines [Fe X] 6375 Angstroms, [Fe XI] 7892 Angstroms, and [Fe XIV] 5303 Angstroms). The proposed method has allowed to show that the Warm Absorber could be responsible of the emission of these lines totally or partially. All models of the Warm Absorber producing coronal line equivalent widths larger than observed were ruled out. This strongly constrains the physical parameters of the Warm Absorber, and particularly its density (n H ≥10 10 cm -3 ). The new generation of X-ray satellites (Chandra/AXAF, XMM...) will produce spectra at high spectral resolution and high sensitivity

  4. PAPER-64 CONSTRAINTS ON REIONIZATION. II. THE TEMPERATURE OF THE z = 8.4 INTERGALACTIC MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Pober, Jonathan C. [Physics Dept., U. Washington, Seattle, WA (United States); Ali, Zaki S.; Parsons, Aaron R.; Cheng, Carina; Liu, Adrian [Astronomy Dept., University of California, Berkeley, CA (United States); McQuinn, Matthew [Astronomy Dept., University of Washington, Seattle, WA (United States); Aguirre, James E.; Kohn, Saul A. [Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Bernardi, Gianni; Grobbelaar, Jasper; Horrell, Jasper; Maree, Matthys [Square Kilometre Array South Africa (SKA SA), Pinelands (South Africa); Bradley, Richard F. [Dept. of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA (United States); Carilli, Chris L. [National Radio Astronomy Obs., Socorro, NM (United States); DeBoer, David R.; Dexter, Matthew R.; MacMahon, David H. E. [Radio Astronomy Lab., University of California, Berkeley, CA (United States); Furlanetto, Steven R. [Dept. of Physics and Astronomy, University of California, Los Angeles, CA (United States); Jacobs, Daniel C. [School of Earth and Space Exploration, Arizona State U., Tempe, AZ (United States); Klima, Patricia J. [National Radio Astronomy Obs., Charlottesville, VA (United States); and others

    2015-08-10

    We present constraints on both the kinetic temperature of the intergalactic medium (IGM) at z = 8.4, and on models for heating the IGM at high-redshift with X-ray emission from the first collapsed objects. These constraints are derived using a semi-analytic method to explore the new measurements of the 21 cm power spectrum from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER), which were presented in a companion paper, Ali et al. Twenty-one cm power spectra with amplitudes of hundreds of mK{sup 2} can be generically produced if the kinetic temperature of the IGM is significantly below the temperature of the cosmic microwave background (CMB); as such, the new results from PAPER place lower limits on the IGM temperature at z = 8.4. Allowing for the unknown ionization state of the IGM, our measurements find the IGM temperature to be above ≈5 K for neutral fractions between 10% and 85%, above ≈7 K for neutral fractions between 15% and 80%, or above ≈10 K for neutral fractions between 30% and 70%. We also calculate the heating of the IGM that would be provided by the observed high redshift galaxy population, and find that for most models, these galaxies are sufficient to bring the IGM temperature above our lower limits. However, there are significant ranges of parameter space that could produce a signal ruled out by the PAPER measurements; models with a steep drop-off in the star formation rate density at high redshifts or with relatively low values for the X-ray to star formation rate efficiency of high redshift galaxies are generally disfavored. The PAPER measurements are consistent with (but do not constrain) a hydrogen spin temperature above the CMB temperature, a situation which we find to be generally predicted if galaxies fainter than the current detection limits of optical/NIR surveys are included in calculations of X-ray heating.

  5. A SEARCH FOR DUST EMISSION IN THE LEO INTERGALACTIC CLOUD

    International Nuclear Information System (INIS)

    Bot, Caroline; Helou, George; Puget, Jeremie; Latter, William B.; Schneider, Stephen; Terzian, Yervant

    2009-01-01

    We present a search for infrared dust emission associated with the Leo cloud, a large intergalactic cloud in the M96 group. Mid-infrared and far-infrared images were obtained with the InfraRed Array Camera and the Multiband Imaging Photometer for Spitzer on the Spitzer Space Telescope. Our analysis of these maps is done at each wavelength relative to the H I spatial distribution. We observe a probable detection at 8 μm and a marginal detection at 24 μm associated with the highest H I column densities in the cloud. At 70 and 160 μm, upper limits on the dust emission are deduced. The level of the detection is low so that the possibility of a fortuitous cirrus clump or of an overdensity of extragalactic sources along the line of sight cannot be excluded. If this detection is confirmed, the quantities of dust inferred imply a dust-to-gas ratio in the intergalactic cloud up to a few times solar but no less than 1/20 solar. A confirmed detection would therefore exclude the possibility that the intergalactic cloud has a primordial origin. Instead, this large intergalactic cloud could therefore have been formed through interactions between galaxies in the group.

  6. Origin of warm and hot gas emission from low-mass protostars: Herschel-HIFI observations of CO J = 16-15

    DEFF Research Database (Denmark)

    Kristensen, Lars Egstrøm; Van Dishoeck, E. F.; Mottram, J. C.

    2017-01-01

    Context. Through spectrally unresolved observations of high-J CO transitions, Herschel Photodetector Array Camera and Spectrometer (PACS) has revealed large reservoirs of warm (300 K) and hot (700 K) molecular gas around low-mass protostars. The excitation and physical origin of this gas is still...... in cooling molecular H2-poor gas just prior to the onset of H2 formation. High spectral resolution observations of highly excited CO transitions uniquely shed light on the origin of warm and hot gas in low-mass protostellar objects....... not understood. Aims. We aim to shed light on the excitation and origin of the CO ladder observed toward protostars, and on the water abundance in different physical components within protostellar systems using spectrally resolved Herschel-HIFI data. Methods. Observations are presented of the highly excited CO...

  7. Potential Alternative Lower Global Warming Refrigerants for Air Conditioning in Hot Climates

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL; Shen, Bo [ORNL

    2017-01-01

    The earth continues to see record increase in temperatures and extreme weather conditions that is largely driven by anthropogenic emissions of warming gases such as carbon dioxide and other more potent greenhouse gases such as refrigerants. The cooperation of 188 countries in the Conference of the Parties in Paris 2015 (COP21) resulted in an agreement aimed to achieve a legally binding and universal agreement on climate, with the aim of keeping global warming below 2 C. A global phasedown of hydrofluorocarbons (HFCs) can prevent 0.5 C of warming by 2100. However, most of the countries in hot climates are considered as developing countries and as such are still using R-22 (a Hydrochlorofluorocarbon (HCFC)) as the baseline refrigerant and are currently undergoing a phase-out of R-22 which is controlled by current Montreal Protocol to R-410A and other HFC based refrigerants. These HFCs have significantly high Global Warming Potential (GWP) and might not perform as well as R-22 at high ambient temperature conditions. In this paper we present recent results on evaluating the performance of alternative lower GWP refrigerants for R-22 and R-410A for small residential mini-split air conditioners and large commercial packaged units. Results showed that several of the alternatives would provide adequate replacement for R-22 with minor system modification. For the R-410A system, results showed that some of the alternatives were almost drop-in ready with benefit in efficiency and/or capacity. One of the most promising alternatives for R-22 mini-split unit is propane (R-290) as it offers higher efficiency; however it requires compressor and some other minor system modification to maintain capacity and minimize flammability risk. Between the R-410A alternatives, R-32 appears to have a competitive advantage; however at the cost of higher compressor discharge temperature. With respect to the hydrofluoroolefin (HFO) blends, there existed a tradeoff in performance and system design

  8. Multiwavelength mock observations of the WHIM in a simulated galaxy cluster

    Science.gov (United States)

    Planelles, Susana; Mimica, Petar; Quilis, Vicent; Cuesta-Martínez, Carlos

    2018-06-01

    About half of the expected total baryon budget in the local Universe is `missing'. Hydrodynamical simulations suggest that most of the missing baryons are located in a mildly overdense, warm-hot intergalactic medium (WHIM), which is difficult to be detected at most wavelengths. In this paper, we explore multiwavelength synthetic observations of a massive galaxy cluster developed in a full Eulerian-adaptive mesh refinement cosmological simulation. A novel numerical procedure is applied on the outputs of the simulation, which are post-processed with a full-radiative transfer code that can compute the change of the intensity at any frequency along the null geodesic of photons. We compare the emission from the whole intergalactic medium and from the WHIM component (defined as the gas with a temperature in the range 105-107 K) at three observational bands associated with thermal X-rays, thermal and kinematic Sunyaev-Zel'dovich effect, and radio emission. The synthetic maps produced by this procedure could be directly compared with existing observational maps and could be used as a guide for future observations with forthcoming instruments. The analysis of the different emissions associated with a high-resolution galaxy cluster is in broad agreement with previous simulated and observational estimates of both gas components.

  9. Intergalactic Travel Bureau

    Science.gov (United States)

    Koski, Olivia; Rosin, Mark; Guerilla Science Team

    2014-03-01

    The Intergalactic Travel Bureau is an interactive theater outreach experience that engages the public in the incredible possibilities of space tourism. The Bureau is staffed by professional actors, who play the role of space travel agents, and professional astrophysicists, who play the role of resident scientists. Members of the public of all ages were invited to visit with bureau staff to plan the vacation of their dreams-to space. We describe the project's successful nine day run in New York in August 2013. Funded by the American Physical Society Public Outreach and Informing the Public Grants.

  10. Hot gas in the interstellar medium, from supernova remnants to the diffuse coronal phase

    International Nuclear Information System (INIS)

    Ballet, Jean

    1988-01-01

    This research thesis addresses the study of the hot interstellar medium and of its main component, supernovae remnants. The author studied the hypothesis according to which ions observed in the interstellar medium are produced during the evaporation of cold clouds in the coronal phase. He shows that effects of ionisation delay are important and modify by a factor 10 the total quantity of ions predicted by the model. The study of the influence on ionisation of hot electrons penetrating cold layers revealed that this effect is rather weak. Then, based on the observation of the Kepler supernovae remnants by means of EXOSAT, and on the use of a hydrodynamics code coupled with a step-by-step calculation of ionisation of elements, the author studied the evolution of young supernovae remnants: propagation of the main shock in the interstellar medium, and of the backlash in the matter ejected by the star. The author also studied the X emission of an older supernovae remnant (the Cygnus Loop) by analysing three EXOSAT observations of this remnant. Results of Fabry-Perot spectrophotometry have been used to study optic lines [fr

  11. The baryon content of the Cosmic Web

    Science.gov (United States)

    Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline

    2015-01-01

    Big-Bang nucleosynthesis indicates that baryons account for 5% of the Universe’s total energy content[1]. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two[2,3]. Cosmological simulations indicate that the missing baryons have not yet condensed into virialised halos, but reside throughout the filaments of the cosmic web: a low-density plasma at temperature 105–107 K known as the warm-hot intergalactic medium (WHIM)[3,4,5,6]. There have been previous claims of the detection of warm baryons along the line of sight to distant blazars[7,8,9,10] and hot gas between interacting clusters[11,12,13,14]. These observations were however unable to trace the large-scale filamentary structure, or to estimate the total amount of warm baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of ten-million-degree gas associated with the galaxy cluster Abell 2744. Previous observations of this cluster[15] were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we reveal hot gas structures that are coherent over 8 Mpc scales. The filaments coincide with over-densities of galaxies and dark matter, with 5-10% of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. PMID:26632589

  12. Motion induced second order temperature and y-type anisotropies after the subtraction of linear dipole in the CMB maps

    International Nuclear Information System (INIS)

    Sunyaev, Rashid A.; Khatri, Rishi

    2013-01-01

    y-type spectral distortions of the cosmic microwave background allow us to detect clusters and groups of galaxies, filaments of hot gas and the non-uniformities in the warm hot intergalactic medium. Several CMB experiments (on small areas of sky) and theoretical groups (for full sky) have recently published y-type distortion maps. We propose to search for two artificial hot spots in such y-type maps resulting from the incomplete subtraction of the effect of the motion induced dipole on the cosmic microwave background sky. This dipole introduces, at second order, additional temperature and y-distortion anisotropy on the sky of amplitude few μK which could potentially be measured by Planck HFI and Pixie experiments and can be used as a source of cross channel calibration by CMB experiments. This y-type distortion is present in every pixel and is not the result of averaging the whole sky. This distortion, calculated exactly from the known linear dipole, can be subtracted from the final y-type maps, if desired

  13. Baryon Budget of the Hot Circumgalactic Medium of Massive Spiral Galaxies

    Science.gov (United States)

    Li, Jiang-Tao; Bregman, Joel N.; Wang, Q. Daniel; Crain, Robert A.; Anderson, Michael E.

    2018-03-01

    The baryon content around local galaxies is observed to be much less than is needed in Big Bang nucleosynthesis. Simulations indicate that a significant fraction of these “missing baryons” may be stored in a hot tenuous circumgalactic medium (CGM) around massive galaxies extending to or even beyond the virial radius of their dark matter halos. Previous observations in X-ray and Sunyaev–Zel’dovich (SZ) signals claimed that ∼(1–50)% of the expected baryons are stored in a hot CGM within the virial radius. The large scatter is mainly caused by the very uncertain extrapolation of the hot gas density profile based on the detection in a small radial range (typically within 10%–20% of the virial radius). Here, we report stacking X-ray observations of six local isolated massive spiral galaxies from the CGM-MASS sample. We find that the mean density profile can be characterized by a single power law out to a galactocentric radius of ≈200 kpc (or ≈130 kpc above the 1σ background uncertainty), about half the virial radius of the dark matter halo. We can now estimate that the hot CGM within the virial radius accounts for (8 ± 4)% of the baryonic mass expected for the halos. Including the stars, the baryon fraction is (27 ± 16)%, or (39 ± 20)% by assuming a flattened density profile at r ≳ 130 kpc. We conclude that the hot baryons within the virial radius of massive galaxy halos are insufficient to explain the “missing baryons.”

  14. Non-Metallic Inclusions and Hot-Working Behaviour of Advanced High-Strength Medium-Mn Steels

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2016-06-01

    Full Text Available The work addresses the production of medium-Mn steels with an increased Al content. The special attention is focused on the identification of non-metallic inclusions and their modification using rare earth elements. The conditions of the thermomechanical treatment using the metallurgical Gleeble simulator and the semi-industrial hot rolling line were designed for steels containing 3 and 5% Mn. Hot-working conditions and controlled cooling strategies with the isothermal holding of steel at 400°C were selected. The effect of Mn content on the hot-working behaviour and microstructure of steel was addressed. The force-energetic parameters of hot rolling were determined. The identification of structural constituents was performed using light microscopy and scanning electron microscopy methods. The addition of rare earth elements led to the total modification of non-metallic inclusions, i.e., they replaced Mn and Al forming complex oxysulphides. The Mn content in a range between 3 and 5% does not affect the inclusion type and the hot-working behaviour. In contrast, it was found that Mn has a significant effect on a microstructure.

  15. GRB 130606A AS A PROBE OF THE INTERGALACTIC MEDIUM AND THE INTERSTELLAR MEDIUM IN A STAR-FORMING GALAXY IN THE FIRST Gyr AFTER THE BIG BANG

    International Nuclear Information System (INIS)

    Chornock, Ryan; Berger, Edo; Lunnan, Ragnhild; Drout, Maria R.; Fong Wenfai; Laskar, Tanmoy; Fox, Derek B.; Roth, Katherine C.

    2013-01-01

    We present high signal-to-noise ratio Gemini and MMT spectroscopy of the optical afterglow of the gamma-ray burst (GRB) 130606A at redshift z = 5.913, discovered by Swift. This is the first high-redshift GRB afterglow to have spectra of comparable quality to those of z ≈ 6 quasars. The data exhibit a smooth continuum at near-infrared wavelengths that is sharply cut off blueward of 8410 Å due to absorption from Lyα at redshift z ≈ 5.91, with some flux transmitted through the Lyα forest between 7000 and 7800 Å. We use column densities inferred from metal absorption lines to constrain the metallicity of the host galaxy between a lower limit of [Si/H] ∼> –1.7 and an upper limit of [S/H] ∼ GP eff (Lyα) > 6.4). This is comparable to the lowest-redshift Gunn-Peterson troughs found in quasar spectra. Some Lyβ and Lyγ transmission is detected in this redshift window, indicating that it is not completely opaque, and hence that the intergalactic medium (IGM) is nonetheless mostly ionized at these redshifts. We set a 2σ upper limit of 0.11 on the neutral fraction of the IGM at the redshift of the GRB from the lack of a Lyα red damping wing, assuming a model with a constant neutral density. GRB 130606A thus for the first time realizes the promise of GRBs as probes of the first galaxies and cosmic reionization

  16. Cosmic-ray self-confinement in the hot phase of the interstellar medium

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Kulsrud, R.M.

    1981-01-01

    Until a few years ago, it was believed that the interstellar medium was mostly filled by a neutral gas, of density approximately 0.1 cm -3 and a temperature of several thousand degrees. Kulsrud and Cesarsky (1971) showed that, in such a medium, cosmic rays of energy >approximately100 GeV are not confined at all, because the waves are damped very rapidly by the effect of the collisions between the neutral and the charged particles in the medium. The case of streaming in HII regions was considered by Wentzel (1974) and Skilling (1975), and did not lead either to a satisfactory solution. At present, the authors think that a substantial fraction of the interstellar medium is filled with a hot (approximately 10 6 K) and diffuse 'coronal gas' (10 -3 cm -3 ). The strength of the magnetic field in such regions is unknown; it is probably lower than the normal interstellar value, 2.5 μG, by a factor which may be in the range 3-30. (Auth.)

  17. The Nature of the Unresolved Extragalactic Cosmic Soft X-Ray Background

    Science.gov (United States)

    Cappelluti, N.; Ranalli, P.; Roncarelli, M.; Arevalo, P.; Zamorani, G.; Comastri, A.; Gilli, R.; Rovilos, E.; Vignali, C.; Allevato, V.; hide

    2013-01-01

    In this paper we investigate the power spectrum of the unresolved 0.5-2 keV cosmic X-ray background (CXB) with deep Chandra 4-Msec (Ms) observations in the Chandra Deep Field South (CDFS). We measured a signal that, on scales >30 arcsec, is significantly higher than the shot noise and is increasing with angular scale. We interpreted this signal as the joint contribution of clustered undetected sources like active galactic nuclei (AGN), galaxies and the intergalactic medium (IGM). The power of unresolved cosmic source fluctuations accounts for approximately 12 per cent of the 0.5-2 keV extragalactic CXB. Overall, our modelling predicts that approximately 20 per cent of the unresolved CXB flux is produced by low-luminosity AGN, approximately 25 per cent by galaxies and approximately 55 per cent by the IGM. We do not find any direct evidence of the so-called 'warm hot intergalactic medium' (i.e. matter with 10(exp 5) less than T less than 10(exp 7) K and density contrast delta less than 1000), but we estimated that it could produce about 1/7 of the unresolved CXB. We placed an upper limit on the space density of postulated X-ray-emitting early black holes at z greater than 7.5 and compared it with supermassive black hole evolution models.

  18. Turbulence Heating ObserveR - satellite mission proposal

    NARCIS (Netherlands)

    Vaivads, A.; Retinò, A.; J. Soucek; Yu.V. Khotyaintsev; F. Valentini (Francesco); C.P. Escoubet; O. Alexandrova; M. André; S.D. Bale; M. Balikhin; D. Burgess; E. Camporeale (Enrico); D. Caprioli; C.H.K. Chen; E. Clacey; C.M. Cully; J. De Keyser; J.P. Eastwood; A.N. Fazakerley; S. Eriksson; M.L. Goldstein; D.B. Graham; S. Haaland; M. Hoshino; H. Ji; H. Karimabadi; H. Kucharek; B. Lavraud; F. Marcucci; W.H. Matthaeus; T.E. Moore; R. Nakamura; Y. Narita; Z. Nemecek; C. Norgren; H. Opgenoorth; M. Palmroth; D. Perrone; J.-L. Pinçon; P. Rathsman; H. Rothkaehl; F. Sahraoui; S. Servidio; L. Sorriso-Valvo; R. Vainio; Z. Vörös; R.F. Wimmer-Schweingruber

    2016-01-01

    textabstractThe Universe is permeated by hot, turbulent, magnetized plasmas. Turbulent plasma is a major constituent of active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, the solar corona, the solar wind and the Earth’s magnetosphere, just to mention a few

  19. The turbulent life of dust grains in the supernova-driven, multiphase interstellar medium

    Science.gov (United States)

    Peters, Thomas; Zhukovska, Svitlana; Naab, Thorsten; Girichidis, Philipp; Walch, Stefanie; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Seifried, Daniel

    2017-06-01

    Dust grains are an important component of the interstellar medium (ISM) of galaxies. We present the first direct measurement of the residence times of interstellar dust in the different ISM phases, and of the transition rates between these phases, in realistic hydrodynamical simulations of the multiphase ISM. Our simulations include a time-dependent chemical network that follows the abundances of H+, H, H2, C+ and CO and take into account self-shielding by gas and dust using a tree-based radiation transfer method. Supernova explosions are injected either at random locations, at density peaks, or as a mixture of the two. For each simulation, we investigate how matter circulates between the ISM phases and find more sizeable transitions than considered in simple mass exchange schemes in the literature. The derived residence times in the ISM phases are characterized by broad distributions, in particular for the molecular, warm and hot medium. The most realistic simulations with random and mixed driving have median residence times in the molecular, cold, warm and hot phase around 17, 7, 44 and 1 Myr, respectively. The transition rates measured in the random driving run are in good agreement with observations of Ti gas-phase depletion in the warm and cold phases in a simple depletion model. ISM phase definitions based on chemical abundance rather than temperature cuts are physically more meaningful, but lead to significantly different transition rates and residence times because there is no direct correspondence between the two definitions.

  20. Hot Deformation Behavior of Hot-Extruded AA7175 Through Hot Torsion Tests.

    Science.gov (United States)

    Lee, Se-Yeon; Jung, Taek-Kyun; Son, Hyeon-Woo; Kim, Sang-Wook; Son, Kwang-Tae; Choi, Ho-Joon; Oh, Sang-Ho; Lee, Ji-Woon; Hyun, Soong-Keun

    2018-03-01

    The hot deformation behavior of hot-extruded AA7175 was investigated with flow curves and processing maps through hot torsion tests. The flow curves and the deformed microstructures revealed that dynamic recrystallization (DRX) occurred in the hot-extruded AA7175 during hot working. The failure strain was highest at medium temperature. This was mainly influenced by the dynamic precipitation of fine rod-shaped MgZn2. The processing map determined the optimal deformation condition for the alloy during hot working.

  1. Hot granules medium pressure forming process of AA7075 conical parts

    Science.gov (United States)

    Dong, Guojiang; Zhao, Changcai; Peng, Yaxin; Li, Ying

    2015-05-01

    High strength aluminum alloy plate has a low elongation at room temperature, which leads to the forming of its components need a high temperature. Liquid or gas is used as the pressure-transfer medium in the existing flexible mould forming process, the heat resistance of the medium and pressurizing device makes the application of aluminum alloy plate thermoforming restricted. To solve this problem, the existing medium is replaced by the heat-resisting solid granules and the general pressure equipments are applied. Based on the pressure-transfer performance test of the solid granules medium, the feasibility that the assumption of the extended Drucker-Prager linear model can be used in the finite element analysis is proved. The constitutive equation, the yield function and the theoretical forming limit diagram(FLD) of AA7075 sheet are established. Through the finite element numerical simulation of hot granules medium pressure forming(HGMF) process, not only the influence laws of the process parameters, such as forming temperature, the blank-holder gap and the diameter of the slab, on sheet metal forming performance are discussed, but also the broken area of the forming process is analyzed and predicted, which are coincided with the technological test. The conical part whose half cone angle is 15° and relative height H/d 0 is 0.57, is formed in one process at 250°C. The HGMF process solves the problems of loading and seal in the existing flexible mould forming process and provides a novel technology for thermoforming of light alloy plate, such as magnesium alloy, aluminium alloy and titanium alloy.

  2. Formation and early evolution of galaxies: Constraints on the properties of hot protogalaxies

    International Nuclear Information System (INIS)

    Berman, V.G.; Suchkov, A.A.

    1989-01-01

    In the framework of the hot model of galaxy formation, the following results are obtained: (1) to explain the mass and chemical composition of the intergalactic medium, the mass of the stellar component, and the mass of the x-ray coronas of giant elliptical and spiral galaxies (M s ∼ 10 11 Mass Sun ) the protogalaxies must have been heated to temperatures approximately five times greater than the virial temperature; (2) the x-ray luminosities of the coronas of models of spiral galaxies are less than for the analogous models of elliptical galaxies. Moreover, for unit potential of hidden mass the stellar mass of spiral galaxies is an order of magnitude greater; (3) if a hot protogalaxy is initially compact (R ∼ 20 kpc), then the stellar component is formed rapidly, during a time t ∼ 1 x 10 9 yr; but if the protogalaxy is diffuse (R ∼ 100 kpc), then t ∼ (5-7) x 10 9 yr; (4) coronas are not formed in models of heat-conducting protogalaxies; (5) hidden mass cannot be formed by low-mass stars formed in cooling flows - such flows do not arise if hidden mass is not present from the beginning. 23 refs., 4 figs., 2 tabs

  3. POLARIZATION MEASUREMENTS OF HOT DUST STARS AND THE LOCAL INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, J. P.; Cotton, D. V.; Bott, K.; Bailey, J.; Kedziora-Chudczer, L. [School of Physics, UNSW Australia, High Street, Kensington, NSW 2052 (Australia); Ertel, S. [Steward Observatory, Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Kennedy, G. M.; Wyatt, M. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Burgo, C. del [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla (Mexico); Absil, O. [Institut d’Astrophysique et de Géophysique, University of Liège, 19c allée du Six Août, B-4000 Liège (Belgium)

    2016-07-10

    Debris discs are typically revealed through the presence of excess emission at infrared wavelengths. Most discs exhibit excess at mid- and far-infrared wavelengths, analogous to the solar system’s Asteroid and Edgeworth-Kuiper belts. Recently, stars with strong (∼1%) excess at near-infrared wavelengths were identified through interferometric measurements. Using the HIgh Precision Polarimetric Instrument, we examined a sub-sample of these hot dust stars (and appropriate controls) at parts-per-million sensitivity in SDSS g ′ (green) and r ′ (red) filters for evidence of scattered light. No detection of strongly polarized emission from the hot dust stars is seen. We, therefore, rule out scattered light from a normal debris disk as the origin of this emission. A wavelength-dependent contribution from multiple dust components for hot dust stars is inferred from the dispersion (the difference in polarization angle in red and green) of southern stars. Contributions of 17 ppm (green) and 30 ppm (red) are calculated, with strict 3- σ upper limits of 76 and 68 ppm, respectively. This suggests weak hot dust excesses consistent with thermal emission, although we cannot rule out contrived scenarios, e.g., dust in a spherical shell or face-on discs. We also report on the nature of the local interstellar medium (ISM), obtained as a byproduct of the control measurements. Highlights include the first measurements of the polarimetric color of the local ISM and the discovery of a southern sky region with a polarization per distance thrice the previous maximum. The data suggest that λ {sub max}, the wavelength of maximum polarization, is bluer than typical.

  4. Use of emulsion for warm mix asphalt

    Directory of Open Access Journals (Sweden)

    Mahabir Panda

    2017-06-01

    Full Text Available Due to increase in energy costs and emission problems in hot mix asphalt usually used, it brought a great interest to the researchers to develop the warm mix technology for pavement constructions. Commonly known as warm mix asphalt (WMA, it is a typical method in the bituminous paving technology, which allows production and placement of bituminous mixes at lower temperatures than that used for hot mix asphalt (HMA. The WMA involves an environmental friendly production process that utilises organic additives, chemical additives and water based technologies. The organic and chemical additives are normally very costly and still involve certain amount of environmental issues. These factors motivated the authors to take up this technology using simple, environment friendly and somewhat cost effective procedure. In this study, an attempt has been made to prepare warm mixes by first pre-coating the aggregates with medium setting bitumen emulsion (MS and then mixing the semi-coated aggregates with VG 30 bitumen at a lower temperature than normally required. After a number of trials it was observed that mostly three mixing temperatures, namely temperatures 110 °C, 120 °C and 130 °C were appropriate to form the bituminous mixes with satisfactory homogeneity and consistency and as such were maintained throughout this study. Marshall samples for paving mixes were prepared using this procedure for dense bituminous macadam (DBM gradings as per the specifications of Ministry of Road Transport and Highways (MORTH and subsequently Marshall properties of the resultant mixes were studied with the main objective of deciding the different parameters that were considered for development of appropriate warm mix asphalt. In this study it has been observed that out of three mixing temperatures tried, the mixes prepared at 120 °C with bitumen-emulsion composition of 80B:20E for DBM warm mix, offer highest Marshall stability and highest indirect tensile strength

  5. Hot water systems as sources of Legionella pneumophila in hospital and nonhospital plumbing fixtures.

    Science.gov (United States)

    Wadowsky, R M; Yee, R B; Mezmar, L; Wing, E J; Dowling, J N

    1982-05-01

    Samples obtained from plumbing systems of hospitals, nonhospital institutions and homes were cultured for Legionella spp. by plating the samples directly on a selective medium. Swab samples were taken from the inner surfaces of faucet assemblies (aerators, spouts, and valve seats), showerheads, and shower pipes. Water and sediment were collected from the bottom of hot-water tanks. Legionella pneumophila serogroups 1, 5, and 6 were recovered from plumbing fixtures of the hospitals and nonhospital institutions and one of five homes. The legionellae (7 to 13,850 colony-forming units per ml) were also present in water and sediment from hot-water tanks maintained at 30 to 54 degrees C, but not in those maintained at 71 and 77 degrees C. Legionella micdadei was isolated from one tank. Thus legionellae are present in hot-water tanks which are maintained at warm temperatures or whose design results in warm temperatures at the bottom of the tanks. We hypothesize that hot-water tanks are a breeding site and a major source of L. pneumophila for the contamination of plumbing systems. The existence of these bacteria in the plumbing systems and tanks was not necessarily associated with disease. The extent of the hazard of this contamination needs to be delineated.

  6. Hot water systems as sources of Legionella pneumophila in hospital and nonhospital plumbing fixtures

    Energy Technology Data Exchange (ETDEWEB)

    Wadowsky, R.M.; Yee, R.B.; Mezmar, L.; Wing, E.J.; Dowling, J.N.

    1982-05-01

    Samples obtained from plumbing systems of hospitals, nonhospital institutions, and homes were cultured for Legionella spp. by plating the samples directly on a selective medium. Swab samples were taken from the inner surfaces of faucet assemblies (aerators, spouts, and valve seats), showerheads, and shower pipes. Water and sediment were collected from the bottom of hot-water tanks. Legionella pnenumophila serogroups 1.5, and 6 were recovered from plubming fixtures of the hospitals and nonhospital institutions and one of five homes. The legionellae (7 to 13,850 colony-forming units per ml) were also present in water and sediment from hot-water tanks maintained at 30 to 54/sup 0/C, but not in those maintained at 71 and 77/sup 0/C. Legionella micdadei was isolated from one tank. Thus legionellae are present in hot-water tanks which are maintained at warm temperatures or whose design results in warm temperatures at the bottom of the tanks. We hypothesize that hot-water tanks are a breeding site and a major source of L. pneumophila for the contamination of plumbing systems. The existence of these bacteria in the plumbing systems and tanks was not necessarily associated with disease. The extent of the hazard of this contamination needs to be delineated.

  7. Supergalactic studies. II. Supergalactic distribution of the nearest intergalactic gas clouds

    International Nuclear Information System (INIS)

    de Vaucouleurs, G.; Corwin, H.G. Jr.

    1975-01-01

    The report by Mathewson, Cleary, and Murray that the nearby ''high velocity'' H i clouds, and in particular the Magellanic Stream, are strongly concentrated toward the supergalactic plane is confirmed. The observed concentration within +-30degree from the supergalactic equator of 21 out of 25 clouds in the north galactic hemisphere and 27 out of 31 clouds in the south galactic hemisphere could occur by chance in less than 7 and 3 percent of random samples from a population having a statistically isotropic Poisson distribution. Since the two galactic hemispheres are substantially independent samples, the combined probability of the chance hypothesis is P -3 . It is found that actually the high-velocity clouds are not so much concentrated toward the supergalactic equator (SGE) as toward the equator of the ''Local Cloud'' of galaxies inclined 14degree to the main supergalactic plane. Both galaxies and H i clouds define the same small circle of maximum concentration and exhibit the same standard deviation (15degree) from it, demonstrating closely related space distributions. It is concluded that, with the possible exception of a few of the largest and probably nearest cloud complexes (MS, AC, C), most of the high-velocity clouds are truly intergalactic and associated with the Local Group and nearer groups of galaxies. Half the population in a total sample of 115 nearby galaxies and intergalactic gas coulds is within 11degree from the Local equator, indicating a half-thickness of approx.0.75 Mpc for the Local Cloud. Intergalactic gas clouds have already been identified near 10 of the nearest galaxies (including our Galaxy and the Magellanic Clouds), most within approx.3 Mpc. The estimated space density of intergalactic gas clouds is Napprox. =20--25 Mpc -3 , in approximate agreement with the densities required by the collision theory of ring galaxies

  8. Hot stuff. Global warming as a giant trend

    International Nuclear Information System (INIS)

    Brunstad, Bjoern

    2007-01-01

    The article presents various aspects of global warming with focus on meteorological data, global discharges, estimated surface temperature increments, ocean level elevations and net warming effects of various human activities. The consequences for the economic and social developments are discussed. Some action possibilities are mentioned. (tk)

  9. Techniques in X-ray Astronomy

    Indian Academy of Sciences (India)

    Kulinder Pal Singh is in the Department of. Astronomy and Astro- physics of the Tata. Institute of Fundamental. Research, Mumbai. His primary fields of research are X-ray studies of hot plasmas in stars, super- nova remnants, galaxies, intergalactic medium in clusters of galaxies, active galactic nuclei, cataclys- mic variables ...

  10. Numerical simulation of springback of medium-thick plates in local hot rolling

    Directory of Open Access Journals (Sweden)

    XIE Dong

    2017-10-01

    Full Text Available [Objectives] In order to understand the factors of springback in the local hot rolling of medium-thick steel plates,[Methods] a 3D thermal-elastic-plastic analysis is conducted to investigate the factors affecting the amount of springback. Through a series of numerical analyses,the influence of deformation temperature,temperature field distribution,plate size and local loading are examined. [Results] The results show that when the deformation temperature exceeds a certain level at which material yield stress begins to decrease significantly,the springback will reduce markedly with the increase in temperature. Due to the distribution characteristics of the deformation area,the influence of temperature distribution on springback where the local deformation scale is larger is dominated by the three dimensions of temperature field distribution. Changes in the length and width of the plate have a certain influence on the springback,in which changes to the length of a plate where the local deformation scale is larger have a more obvious influence on springback. The springback of the plate decreases with the increase of local loading. [Conclusions] The results of this study can assist in the optimization of parameters in the automatic hot rolling of thick plates,while also having a basic guiding effect on the further study of springback in the local hot rolling of thick plates.

  11. Atomic Data Revisions for Transitions Relevant to Observations of Interstellar, Circumgalactic, and Intergalactic Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cashman, Frances H.; Kulkarni, Varsha P. [Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208 (United States); Kisielius, Romas; Bogdanovich, Pavel [Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio al. 3, LT-10222 Vilnius (Lithuania); Ferland, Gary J. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)

    2017-05-01

    Measurements of element abundances in galaxies from astrophysical spectroscopy depend sensitively on the atomic data used. With the goal of making the latest atomic data accessible to the community, we present a compilation of selected atomic data for resonant absorption lines at wavelengths longward of 911.753 Å (the H i Lyman limit), for key heavy elements (heavier than atomic number 5) of astrophysical interest. In particular, we focus on the transitions of those ions that have been observed in the Milky Way interstellar medium (ISM), the circumgalactic medium (CGM) of the Milky Way and/or other galaxies, and the intergalactic medium (IGM). We provide wavelengths, oscillator strengths, associated accuracy grades, and references to the oscillator strength determinations. We also attempt to compare and assess the recent oscillator strength determinations. For about 22% of the lines that have updated oscillator strength values, the differences between the former values and the updated ones are ≳0.1 dex. Our compilation will be a useful resource for absorption line studies of the ISM, as well as studies of the CGM and IGM traced by sight lines to quasars and gamma-ray bursts. Studies (including those enabled by future generations of extremely large telescopes) of absorption by galaxies against the light of background galaxies will also benefit from our compilation.

  12. An Overt Chemical Protective Garment Reduces Thermal Strain Compared with a Covert Garment in Warm-Wet but Not Hot-Dry Environments

    Directory of Open Access Journals (Sweden)

    Matthew J. Maley

    2017-11-01

    Full Text Available Objectives: A commercial chemical, biological, radiological and nuclear (CBRN protective covert garment has recently been developed with the aim of reducing thermal strain. A covert CBRN protective layer can be worn under other clothing, with equipment added for full chemical protection when needed. However, it is unknown whether the covert garment offers any alleviation to thermal strain during work compared with a traditional overt ensemble. Therefore, the aim of this study was to compare thermal strain and work tolerance times during work in an overt and covert ensemble offering the same level of CBRN protection.Methods: Eleven male participants wore an overt (OVERT or covert (COVERT CBRN ensemble and walked (4 km·h−1, 1% grade for a maximum of 120 min in either a wet bulb globe temperature [WBGT] of 21, 30, or 37°C (Neutral, WarmWet and HotDry, respectively. The trials were ceased if the participants' gastrointestinal temperature reached 39°C, heart rate reached 90% of maximum, walking time reached 120 min or due to self-termination.Results: All participants completed 120 min of walking in Neutral. Work tolerance time was greater in OVERT compared with COVERT in WarmWet (P < 0.001, 116.5[9.9] vs. 88.9[12.2] min, respectively, though this order was reversed in HotDry (P = 0.003, 37.3[5.3] vs. 48.4[4.6] min, respectively. The rate of change in mean body temperature and mean skin temperature was greater in COVERT (0.025[0.004] and 0.045[0.010]°C·min−1, respectively compared with OVERT (0.014[0.004] and 0.027[0.007]°C·min−1, respectively in WarmWet (P < 0.001 and P = 0.028, respectively. However, the rate of change in mean body temperature and mean skin temperature was greater in OVERT (0.068[0.010] and 0.170[0.026]°C·min−1, respectively compared with COVERT (0.059[0.004] and 0.120[0.017]°C·min−1, respectively in HotDry (P = 0.002 and P < 0.001, respectively. Thermal sensation, thermal comfort, and ratings of perceived

  13. TWO-FLUID MAGNETOHYDRODYNAMICS SIMULATIONS OF CONVERGING H I FLOWS IN THE INTERSTELLAR MEDIUM. II. ARE MOLECULAR CLOUDS GENERATED DIRECTLY FROM A WARM NEUTRAL MEDIUM?

    International Nuclear Information System (INIS)

    Inoue, Tsuyoshi; Inutsuka, Shu-ichiro

    2009-01-01

    Formation of interstellar clouds as a consequence of thermal instability is studied using two-dimensional two-fluid magnetohydrodynamic simulations. We consider the situation of converging, supersonic flows of warm neutral medium in the interstellar medium that generate a shocked slab of thermally unstable gas in which clouds form. We find, as speculated in Paper I, that in the shocked slab magnetic pressure dominates thermal pressure and the thermal instability grows in the isochorically cooling, thermally unstable slab that leads to the formation of H I clouds whose number density is typically n ∼ -3 , even if the angle between magnetic field and converging flows is small. We also find that even if there is a large dispersion of magnetic field, evolution of the shocked slab is essentially determined by the angle between the mean magnetic field and converging flows. Thus, the direct formation of molecular clouds by piling up warm neutral medium does not seem to be a typical molecular cloud formation process, unless the direction of supersonic converging flows is biased to the orientation of mean magnetic field by some mechanism. However, when the angle is small, the H I shell generated as a result of converging flows is massive and possibly evolves into molecular clouds, provided gas in the massive H I shell is piled up again along the magnetic field line. We expect that another subsequent shock wave can again pile up the gas of the massive shell and produce a larger cloud. We thus emphasize the importance of multiple episodes of converging flows, as a typical formation process of molecular clouds.

  14. In-Situ Characterization of Deformation and Fracture Behavior of Hot-Rolled Medium Manganese Lightweight Steel

    Science.gov (United States)

    Zhao, Zheng-zhi; Cao, Rong-hua; Liang, Ju-hua; Li, Feng; Li, Cheng; Yang, Shu-feng

    2018-02-01

    The deformation and fracture behavior of hot-rolled medium manganese lightweight (0.32C-3.85Mn-4.18Al-1.53Si) steel was revealed by an in situ tensile test. Deformed δ-ferrite with plenty of cross-parallel deformation bands during in situ tensile tests provides δ-ferrite of good plasticity and ductility, although it is finally featured by the cleavage fracture. The soft and ductile δ-ferrite and high-volume fraction of austenite contribute to the superior mechanical properties of medium manganese lightweight steel heated at 800°C, with a tensile strength of 924 MPa, total elongation of 35.2% and product of the strength and elongation of 32.5 GPa %.

  15. CHARACTERIZING THE CIRCUMGALACTIC MEDIUM OF NEARBY GALAXIES WITH HST/COS AND HST/STIS ABSORPTION-LINE SPECTROSCOPY

    International Nuclear Information System (INIS)

    Stocke, John T.; Keeney, Brian A.; Danforth, Charles W.; Shull, J. Michael; Froning, Cynthia S.; Green, James C.; Penton, Steven V.; Savage, Blair D.

    2013-01-01

    The circumgalactic medium (CGM) of late-type galaxies is characterized using UV spectroscopy of 11 targeted QSO/galaxy pairs at z ≤ 0.02 with the Hubble Space Telescope Cosmic Origins Spectrograph (COS) and ∼60 serendipitous absorber/galaxy pairs at z ≤ 0.2 with the Space Telescope Imaging Spectrograph. CGM warm cloud properties are derived, including volume filling factors of 3%-5%, cloud sizes of 0.1-30 kpc, masses of 10-10 8 M ☉ , and metallicities of ∼0.1-1 Z ☉ . Almost all warm CGM clouds within 0.5 R vir are metal-bearing and many have velocities consistent with being bound, 'galactic fountain' clouds. For galaxies with L ∼> 0.1 L*, the total mass in these warm CGM clouds approaches 10 10 M ☉ , ∼10%-15% of the total baryons in massive spirals and comparable to the baryons in their parent galaxy disks. This leaves ∼> 50% of massive spiral-galaxy baryons 'missing'. Dwarfs ( –3 K) support the inference that previous COS detections of broad, shallow O VI and Lyα absorptions are of an extensive (∼400-600 kpc), hot (T ≈ 10 6 K), intra-cloud gas which is very massive (≥10 11 M ☉ ). While the warm CGM clouds cannot account for all the 'missing baryons' in spirals, the hot intra-group gas can, and could account for ∼20% of the cosmic baryon census at z ∼ 0 if this hot gas is ubiquitous among spiral groups.

  16. The Column Density Distribution and Continuum Opacity of the Intergalactic and Circumgalactic Medium at Redshift langzrang = 2.4

    Science.gov (United States)

    Rudie, Gwen C.; Steidel, Charles C.; Shapley, Alice E.; Pettini, Max

    2013-06-01

    We present new high-precision measurements of the opacity of the intergalactic and circumgalactic medium (IGM; CGM) at langzrang = 2.4. Using Voigt profile fits to the full Lyα and Lyβ forests in 15 high-resolution high-S/N spectra of hyperluminous QSOs, we make the first statistically robust measurement of the frequency of absorbers with H I column densities 14 \\lesssim log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) \\lesssim 17.2. We also present the first measurements of the frequency distribution of H I absorbers in the volume surrounding high-z galaxies (the CGM, 300 pkpc), finding that the incidence of absorbers in the CGM is much higher than in the IGM. In agreement with Rudie et al., we find that there are fractionally more high-N H I absorbers than low-N H I absorbers in the CGM compared to the IGM, leading to a shallower power law fit to the CGM frequency distribution. We use these new measurements to calculate the total opacity of the IGM and CGM to hydrogen-ionizing photons, finding significantly higher opacity than most previous studies, especially from absorbers with log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) law parameterization of the frequency distribution with a break near N H I ≈1015 cm-2. We compute new estimates of the mean free path (λmfp) to hydrogen-ionizing photons at z em = 2.4, finding λmfp = 147 ± 15 Mpc when considering only IGM opacity. If instead, we consider photons emanating from a high-z star-forming galaxy and account for the local excess opacity due to the surrounding CGM of the galaxy itself, the mean free path is reduced to λmfp = 121 ± 15 Mpc. These λmfp measurements are smaller than recent estimates and should inform future studies of the metagalactic UV background and of ionizing sources at z ≈ 2-3. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space

  17. Origin of the cosmic x-ray background

    International Nuclear Information System (INIS)

    Margon, B.

    1983-01-01

    Since 1962, it has been known that every part of the sky emits a uniform glow of x-rays. After two decades of intense study the origin of this diffuse x-ray background is still a subject of controversy. The near perfect isotropy of the x-ray background is clearly a vital clue to its origin. A second clue to the origin of the x-ray background arises from the fact that it is x-radiation tha is generated, rather than some longer wavelength radiation. Two hypotheses of the origin of this x-ray background are discussed. One hypothesis is that the x-ray background can be attributed to bremsstrahlung from a hot intergalactic medium. The second hypothesis is that the x-ray background originates from a large number of quasars. Because there is no estimate independent of the intensity of the x-ray background of how much hot intergalactic medium exists (if any), there is a real possibility that both sources contribute to the observed x-rays. (SC)

  18. The Faint End of the Quasar Luminosity Function at z ~ 4: Implications for Ionization of the Intergalactic Medium and Cosmic Downsizing

    Science.gov (United States)

    Glikman, Eilat; Djorgovski, S. G.; Stern, Daniel; Dey, Arjun; Jannuzi, Buell T.; Lee, Kyoung-Soo

    2011-02-01

    We present an updated determination of the z ~ 4 QSO luminosity function (QLF), improving the quality of the determination of the faint end of the QLF presented by Glikman et al. (2010). We have observed an additional 43 candidates from our survey sample, yielding one additional QSO at z = 4.23 and increasing the completeness of our spectroscopic follow-up to 48% for candidates brighter than R = 24 over our survey area of 3.76 deg2. We study the effect of using K-corrections to compute the rest-frame absolute magnitude at 1450 Å compared with measuring M 1450 directly from the object spectra. We find a luminosity-dependent bias: template-based K-corrections overestimate the luminosity of low-luminosity QSOs, likely due to their reliance on templates derived from higher luminosity QSOs. Combining our sample with bright quasars from the Sloan Digital Sky Survey and using spectrum-based M 1450 for all the quasars, we fit a double power law to the binned QLF. Our best fit has a bright-end slope, α = 3.3 ± 0.2, and faint-end slope, β = 1.6+0.8 -0.6. Our new data revise the faint-end slope of the QLF down to flatter values similar to those measured at z ~ 3. The break luminosity, though poorly constrained, is at M* = -24.1+0.7 -1.9, approximately 1-1.5 mag fainter than at z ~ 3. This QLF implies that QSOs account for about half the radiation needed to ionize the intergalactic medium at these redshifts. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  19. Study on the behavior of medium carbon vanadium microalloyed steel by hot compression test

    International Nuclear Information System (INIS)

    Meysami, Majid; Mousavi, Seyed Ali Asghar Akbari

    2011-01-01

    Research highlights: → At low Z parameter, the multi peak dynamic recrystallization behavior was observed. → At high Z, the stress-strain curves were exhibited with a single peak stress. → The hyperbolic sine law was found to provide the best fit for calculation of Q. → The average value of n was obtained as 4.687. → The peak stress and of the studied material was obtained. - Abstract: This article investigates the hot working behavior of medium carbon vanadium microalloyed steel by hot compression tests over the temperature range of 850-1100 deg. C and strain rate range of 0.001-0.5 s -1 to strain of 0.8. In this study, the general constitutive equations were used to determine the hot working constants. The peak stress (σ P ) and strain (ε P ) for initiation of dynamic recrystallization (DRX) at different temperatures and strain rates were calculated. The power law, exponential and hyperbolic sinusoidal types of Zener-Hollomon equations were used to determine the hot deformation activation energy (Q). The results suggested that the highest correlation coefficient was achieved for the hyperbolic sine law for the studied material. The magnitude of hot deformation activation energy (Q) was obtained as 319.910 kJ/mol. The classical single peak DRX was observed in most of temperatures and strain rates. However, for temperature of 1100 deg. C and strain rates of 0.001 s -1 , 0.01 s -1 , and also for temperature of 950 deg. C and strain rate of 0.001 s -1 the multiple peak dynamic recrystallization (MDRX) was observed, which showed that the 'recrystallization' was an observed strain rate behavior.

  20. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF WARM AND HOT JUPITERS: EFFECTS OF ORBITAL DISTANCE, ROTATION PERIOD, AND NONSYNCHRONOUS ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Showman, Adam P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Fortney, Jonathan J., E-mail: showman@lpl.arizona.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-03-10

    Efforts to characterize extrasolar giant planet (EGP) atmospheres have so far emphasized planets within 0.05 AU of their stars. Despite this focus, known EGPs populate a continuum of orbital separations from canonical hot Jupiter values (0.03–0.05 AU) out to 1 AU and beyond. Unlike typical hot Jupiters, these more distant EGPs will not generally be synchronously rotating. In anticipation of observations of this population, we here present three-dimensional atmospheric circulation models exploring the dynamics that emerge over a broad range of rotation rates and incident stellar fluxes appropriate for warm and hot Jupiters. We find that the circulation resides in one of two basic regimes. On typical hot Jupiters, the strong day–night heating contrast leads to a broad, fast superrotating (eastward) equatorial jet and large day–night temperature differences. At faster rotation rates and lower incident fluxes, however, the day–night heating gradient becomes less important, and baroclinic instabilities emerge as a dominant player, leading to eastward jets in the midlatitudes, minimal temperature variations in longitude, and, often, weak winds at the equator. Our most rapidly rotating and least irradiated models exhibit similarities to Jupiter and Saturn, illuminating the dynamical continuum between hot Jupiters and the weakly irradiated giant planets of our own solar system. We present infrared (IR) light curves and spectra of these models, which depend significantly on incident flux and rotation rate. This provides a way to identify the regime transition in future observations. In some cases, IR light curves can provide constraints on the rotation rate of nonsynchronously rotating planets.

  1. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF WARM AND HOT JUPITERS: EFFECTS OF ORBITAL DISTANCE, ROTATION PERIOD, AND NONSYNCHRONOUS ROTATION

    International Nuclear Information System (INIS)

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.

    2015-01-01

    Efforts to characterize extrasolar giant planet (EGP) atmospheres have so far emphasized planets within 0.05 AU of their stars. Despite this focus, known EGPs populate a continuum of orbital separations from canonical hot Jupiter values (0.03–0.05 AU) out to 1 AU and beyond. Unlike typical hot Jupiters, these more distant EGPs will not generally be synchronously rotating. In anticipation of observations of this population, we here present three-dimensional atmospheric circulation models exploring the dynamics that emerge over a broad range of rotation rates and incident stellar fluxes appropriate for warm and hot Jupiters. We find that the circulation resides in one of two basic regimes. On typical hot Jupiters, the strong day–night heating contrast leads to a broad, fast superrotating (eastward) equatorial jet and large day–night temperature differences. At faster rotation rates and lower incident fluxes, however, the day–night heating gradient becomes less important, and baroclinic instabilities emerge as a dominant player, leading to eastward jets in the midlatitudes, minimal temperature variations in longitude, and, often, weak winds at the equator. Our most rapidly rotating and least irradiated models exhibit similarities to Jupiter and Saturn, illuminating the dynamical continuum between hot Jupiters and the weakly irradiated giant planets of our own solar system. We present infrared (IR) light curves and spectra of these models, which depend significantly on incident flux and rotation rate. This provides a way to identify the regime transition in future observations. In some cases, IR light curves can provide constraints on the rotation rate of nonsynchronously rotating planets

  2. Alabama warm mix asphalt field study : final report.

    Science.gov (United States)

    2010-05-01

    The Alabama Department of Transportation hosted a warm mix asphalt field demonstration in August 2007. The warm mix asphalt technology demonstrated was Evotherm Dispersed Asphalt Technology. The WMA and hot mix asphalt produced for the demonstration ...

  3. A study on die wear model of warm and hot forgings

    Science.gov (United States)

    Kang, J. H.; Park, I. W.; Jae, J. S.; Kang, S. S.

    1998-05-01

    Factors influencing service lives of tools in warm and hot forging processes are wear, mechanical fatigue, plastic deformation and thermal fatigue, etc. Wear is the predominant factor for tool failure among these. To predict tool life by wear, Archard's model where hardness is considered as constant or function of temperature is generally applied. Usually hardness of die is a function of not only temperature but operating time of die. To consider softening of die by repeated operation it is necessary to express hardness of die by a function of temperature and time. In this study wear coefficients were measured for various temperatures and heat treatment for H13 tool steel. Also by experiment of reheating of die, die softening curves were obtained. From experimental results, relationships between tempering parameters and hardness were established to investigate effects of hardness decrease by the effect of temperatures and time. Finally modified Archard's wear model in which hardness is considered to be a function of main tempering curve was proposed. And finite element analyses were conducted by adopting suggested wear model. By comparisons of simulations and real profiles of worn die, proposed wear model was verified.

  4. CHANDRA observations of the NGC 1550 galaxy group: Implication for the temperature and entropy profiles of 1 keV galaxy groups

    DEFF Research Database (Denmark)

    Sun, M.; Forman, W.; Vikhlinin, A.

    2003-01-01

    is remarkably similar to those of two other 1 keV groups with accurate temperature determination. The temperature begins to decline at 0.07r(vir) - 0.1r(vir), while in hot clusters the decline begins at or beyond 0.2rvir. Thus, there are at least some 1 keV groups that have temperature profiles significantly...... different from those of hot clusters, which may reflect the role of nongravitational processes in intracluster medium/intergalactic medium evolution. NGC 1550 has no isentropic core in its entropy pro. le, in contrast to the predictions of "entropy floor'' simulations. We compare the scaled entropy profiles...

  5. Mid-Infrared Observations of Possible Intergalactic Star Forming Regions in the Leo Ring

    Science.gov (United States)

    Giroux, Mark; Smith, B.; Struck, C.

    2011-05-01

    Within the Leo group of galaxies lies a gigantic loop of intergalactic gas known as the Leo Ring. Not clearly associated with any particular galaxy, its origin remains uncertain. It may be a primordial intergalactic cloud alternatively, it may be a collision ring, or have a tidal origin. Combining archival Spitzer images of this structure with published UV and optical data, we investigate the mid-infrared properties of possible knots of star formation in the ring. These sources are very faint in the mid-infrared compared to star forming regions in the tidal features of interacting galaxies. This suggests they are either deficient in dust, or they may not be associated with the ring.

  6. MEASURING THE SOURCES OF THE INTERGALACTIC IONIZING FLUX

    International Nuclear Information System (INIS)

    Cowie, L. L.; Barger, A. J.; Trouille, L.

    2009-01-01

    We use a wide-field (0.9 deg 2 ) X-ray sample with optical and Galaxy Evolution Explorer (GALEX) ultraviolet observations to measure the contribution of active galactic nuclei (AGNs) to the ionizing flux as a function of redshift. Our analysis shows that the AGN contribution to the metagalactic ionizing background peaks at around z = 2. The measured values of the ionizing background from the AGNs are lower than previous estimates and confirm that ionization from AGNs is insufficient to maintain the observed ionization of the intergalactic medium (IGM) at z > 3. We show that only X-ray sources with broad lines in their optical spectra have detectable ionizing flux and that the ionizing flux seen in an AGN is not correlated with its X-ray color. We also use the GALEX observations of the GOODS-N region to place a 2σ upper limit of 0.008 on the average ionization fraction f ν (700 A)/f ν (1500 A) for 626 UV selected galaxies in the redshift range z = 0.9-1.4. We then use this limit to estimate an upper bound to the galaxy contribution in the redshift range z = 0-5. If the z ∼ 1.15 ionization fraction is appropriate for higher-redshift galaxies, then contributions from the galaxy population are also too low to account for the IGM ionization at the highest redshifts (z > 4).

  7. Study on the behavior of medium carbon vanadium microalloyed steel by hot compression test

    Energy Technology Data Exchange (ETDEWEB)

    Meysami, Majid [School of Metallurgy and Materials Engineering, University College of Engineering, University of Tehran, P.O. Box 11155-4653, Tehran (Iran, Islamic Republic of); Mousavi, Seyed Ali Asghar Akbari, E-mail: akbarimusavi@ut.ac.ir [School of Metallurgy and Materials Engineering, University College of Engineering, University of Tehran, P.O. Box 11155-4653, Tehran (Iran, Islamic Republic of)

    2011-03-25

    Research highlights: {yields} At low Z parameter, the multi peak dynamic recrystallization behavior was observed. {yields} At high Z, the stress-strain curves were exhibited with a single peak stress. {yields} The hyperbolic sine law was found to provide the best fit for calculation of Q. {yields} The average value of n was obtained as 4.687. {yields} The peak stress and of the studied material was obtained. - Abstract: This article investigates the hot working behavior of medium carbon vanadium microalloyed steel by hot compression tests over the temperature range of 850-1100 deg. C and strain rate range of 0.001-0.5 s{sup -1} to strain of 0.8. In this study, the general constitutive equations were used to determine the hot working constants. The peak stress ({sigma}{sub P}) and strain ({epsilon}{sub P}) for initiation of dynamic recrystallization (DRX) at different temperatures and strain rates were calculated. The power law, exponential and hyperbolic sinusoidal types of Zener-Hollomon equations were used to determine the hot deformation activation energy (Q). The results suggested that the highest correlation coefficient was achieved for the hyperbolic sine law for the studied material. The magnitude of hot deformation activation energy (Q) was obtained as 319.910 kJ/mol. The classical single peak DRX was observed in most of temperatures and strain rates. However, for temperature of 1100 deg. C and strain rates of 0.001 s{sup -1}, 0.01 s{sup -1}, and also for temperature of 950 deg. C and strain rate of 0.001 s{sup -1} the multiple peak dynamic recrystallization (MDRX) was observed, which showed that the 'recrystallization' was an observed strain rate behavior.

  8. Establishment and verification of solar radiation calculation model of glass daylighting roof in hot summer and warm winter zone in China

    OpenAIRE

    Zheng, Caidan; Wu, Peihao; Costanzo, Vincenzo; Wang, Yuchen; Yang, Xiaokun

    2017-01-01

    In this paper, solar heat gain through glass daylighting roof is deeply studied by theoretical calculation method, taking Guangzhou in the Hot Summer and Warm Winter (HSWW) zone as an example. The direct solar radiation is calculated by Bouguer formula whereas the diffuse solar radiation is calculated by Berlage formula, representing the basis for the calculation method of the solar radiation intensity through the glass daylighting roof. Through the establishment of solar radiation calculatio...

  9. Detection of the Galactic Warm Neutral Medium in HI 21cm absorption

    Science.gov (United States)

    Patra, Narendra Nath; Kanekar, Nissim; Chengalur, Jayaram N.; Roy, Nirupam

    2018-05-01

    We report a deep Giant Metrewave Radio Telescope (GMRT) search for Galactic HI 21cm absorption towards the quasar B0438-436, yielding the detection of wide, weak HI 21cm absorption, with a velocity-integrated HI 21cm optical depth of 0.0188 ± 0.0036 km s-1. Comparing this with the HI column density measured in the Parkes Galactic All-Sky Survey gives a column density-weighted harmonic mean spin temperature of 3760 ± 365 K, one of the highest measured in the Galaxy. This is consistent with most of the HI along the sightline arising in the stable warm neutral medium (WNM). The low peak HI 21cm optical depth towards B0438-436 implies negligible self-absorption, allowing a multi-Gaussian joint decomposition of the HI 21cm absorption and emission spectra. This yields a gas kinetic temperature of T_k ≤ (4910 ± 1900) K, and a spin temperature of T_s = (1000 ± 345) K for the gas that gives rise to the HI 21cm absorption. Our data are consistent with the HI 21cm absorption arising from either the stable WNM, with T_s ≪ T_k, T_k ≈ 5000 K, and little penetration of the background Lyman-α radiation field into the neutral hydrogen, or from the unstable neutral medium, with T_s ≈ T_k ≈ 1000K.

  10. Planck intermediate results XL. The Sunyaev-Zeldovich signal from the Virgo cluster

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.

    2016-01-01

    The Virgo cluster is the largest Sunyaev-Zeldovich (SZ) source in the sky, both in terms of angular size and total integrated flux. Planck's wide angular scale and frequency coverage, together with its high sensitivity, enable a detailed study of this big object through the SZ effect. Virgo is well...... and a constrained simulation of the environment of Virgo. Planck data suggest that significant amounts of low-density plasma surround Virgo, out to twice the virial radius. We find the SZ signal in the outskirts of Virgo to be consistent with a simple model that extrapolates the inferred pressure at lower radii...... warm/hot intergalactic medium. Taking the lack of symmetry of Virgo into account, we find that a prolate model is favoured by the combination of SZ and X-ray data, in agreement with predictions. Finally, based on the combination of the same SZ and X-ray data, we constrain the total amount of gas...

  11. GRB 130606A AS A PROBE OF THE INTERGALACTIC MEDIUM AND THE INTERSTELLAR MEDIUM IN A STAR-FORMING GALAXY IN THE FIRST Gyr AFTER THE BIG BANG

    Energy Technology Data Exchange (ETDEWEB)

    Chornock, Ryan; Berger, Edo; Lunnan, Ragnhild; Drout, Maria R.; Fong Wenfai; Laskar, Tanmoy [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fox, Derek B. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Roth, Katherine C., E-mail: rchornock@cfa.harvard.edu [Gemini Observatory, 670 North Aohoku Place, Hilo, HI 96720 (United States)

    2013-09-01

    We present high signal-to-noise ratio Gemini and MMT spectroscopy of the optical afterglow of the gamma-ray burst (GRB) 130606A at redshift z = 5.913, discovered by Swift. This is the first high-redshift GRB afterglow to have spectra of comparable quality to those of z Almost-Equal-To 6 quasars. The data exhibit a smooth continuum at near-infrared wavelengths that is sharply cut off blueward of 8410 A due to absorption from Ly{alpha} at redshift z Almost-Equal-To 5.91, with some flux transmitted through the Ly{alpha} forest between 7000 and 7800 A. We use column densities inferred from metal absorption lines to constrain the metallicity of the host galaxy between a lower limit of [Si/H] {approx}> -1.7 and an upper limit of [S/H] {approx}< -0.5 set by the non-detection of S II absorption. We demonstrate consistency between the dramatic evolution in the transmission fraction of Ly{alpha} seen in this spectrum over the redshift range z = 4.9-5.85 with that previously measured from observations of high-redshift quasars. There is an extended redshift interval of {Delta}z = 0.12 in the Ly{alpha} forest at z = 5.77 with no detected transmission, leading to a 3{sigma} upper limit on the mean Ly{alpha} transmission fraction of {approx}<0.2% (or {tau}{sub GP}{sup eff} (Ly{alpha}) > 6.4). This is comparable to the lowest-redshift Gunn-Peterson troughs found in quasar spectra. Some Ly{beta} and Ly{gamma} transmission is detected in this redshift window, indicating that it is not completely opaque, and hence that the intergalactic medium (IGM) is nonetheless mostly ionized at these redshifts. We set a 2{sigma} upper limit of 0.11 on the neutral fraction of the IGM at the redshift of the GRB from the lack of a Ly{alpha} red damping wing, assuming a model with a constant neutral density. GRB 130606A thus for the first time realizes the promise of GRBs as probes of the first galaxies and cosmic reionization.

  12. Hydration: special issues for playing football in warm and hot environments.

    Science.gov (United States)

    Shirreffs, S M

    2010-10-01

    The high metabolic rates and body temperatures sustained by football players during training and matches causes sweating--particularly when in warm or hot environments. There is limited published data on the effects of this sweat loss on football performance. The limited information available, together with knowledge of the effects of sweat loss in other sports with skill components as well as endurance and sprint components, suggests that the effects of sweating will be similar as in these other activities. Therefore, the generalization that, on average, a body mass reduction equivalent to 2% should be the acceptable limit of sweat losses seems reasonable. This magnitude and more, of sweat loss is a common occurrence for some players. Sodium is the main electrolyte lost in sweat but there is large variability in sodium losses between players. However, the extent of sodium losses in some players may be such that its replacement is warranted for these players. Although football is a team sport, the great individual variability in sweat and electrolyte losses of players in the same training session or match dictates that individual monitoring to determine individual water and electrolyte requirements should be an essential part of a player's nutrition strategy. © 2010 John Wiley & Sons A/S.

  13. The physics and history of global warming

    International Nuclear Information System (INIS)

    Hu Yongyun

    2012-01-01

    Global warming is not only a hot research area in atmospheric sciences and even all Earth sciences but is also a controversial topic in the international community. The purpose of this paper is not to clarify these controversies, but instead, to address the physical basis on which our understanding of global warming is founded, and to briefly review the nearly 200-year history of global warming sciences. We hope the paper will help readers, who have no background in the atmospheric and climate sciences, understand scientific issues of global warming. (author)

  14. Warm mix asphalt : final report.

    Science.gov (United States)

    2014-11-01

    The performance of pavements constructed using warm mix asphalt (WMA) technology were : compared to the performance of conventional hot mix asphalt (HMA) pavements placed on the : same project. Measurements of friction resistance, rutting/wear, ride ...

  15. Hadrons in hot and dense medium

    International Nuclear Information System (INIS)

    Mallik, S.

    2004-01-01

    We review chiral perturbation theory in some detail and construct interaction terms involving the Goldstone and the different non-Goldstone fields, in presence of external (classical) fields coupled to currents. The ensemble average of the two-point functions of the currents can now be expanded in terms of Feynman diagrams. We evaluate the one-loop diagrams in the neighbourhood of the respective poles to find the effective couplings and masses of the particles in medium. We also describe the virial formula for the self-energy of a particle in medium, giving its pole position. It proves useful if the scattering amplitude of the particle with particles in medium is known experimentally. (author)

  16. INTERGALACTIC 'PIPELINE' FUNNELS MATTER BETWEEN COLLIDING GALAXIES

    Science.gov (United States)

    2002-01-01

    This visible-light picture, taken by NASA's Hubble Space Telescope, reveals an intergalactic 'pipeline' of material flowing between two battered galaxies that bumped into each other about 100 million years ago. The pipeline [the dark string of matter] begins in NGC 1410 [the galaxy at left], crosses over 20,000 light-years of intergalactic space, and wraps around NGC 1409 [the companion galaxy at right] like a ribbon around a package. Although astronomers have taken many stunning pictures of galaxies slamming into each other, this image represents the clearest view of how some interacting galaxies dump material onto their companions. These results are being presented today at the 197th meeting of the American Astronomical Society in San Diego, CA. Astronomers used the Space Telescope Imaging Spectrograph to confirm that the pipeline is a continuous string of material linking both galaxies. Scientists believe that the tussle between these compact galaxies somehow created the pipeline, but they're not certain why NGC 1409 was the one to begin gravitationally siphoning material from its partner. And they don't know where the pipeline begins in NGC 1410. More perplexing to astronomers is that NGC 1409 is seemingly unaware that it is gobbling up a steady flow of material. A stream of matter funneling into the galaxy should have fueled a spate of star birth. But astronomers don't see it. They speculate that the gas flowing into NGC 1409 is too hot to gravitationally collapse and form stars. Astronomers also believe that the pipeline itself may contribute to the star-forming draught. The pipeline, a pencil-thin, 500 light-year-wide string of material, is moving a mere 0.02 solar masses of matter a year. Astronomers estimate that NGC 1409 has consumed only about a million solar masses of gas and dust, which is not enough material to spawn some of the star-forming regions seen in our Milky Way. The low amount means that there may not be enough material to ignite star birth

  17. First exploration of a single thermal interface between the two dominant phases of the interstellar medium

    Science.gov (United States)

    Gry, Cecile

    2017-08-01

    Two phases of the interstellar medium, the Warm Neutral Medium (WNM) and the Hot Ionized Medium (HIM) occupy most the volume of space in the plane of our Galaxy. Because the boundaries between these phases are important sources of energy loss for the hot gas, they are supposed to play an important role in the thermal structure and evolution of the ISM and of galaxies.Many theorists have created descriptions of the nature of such boundaries and have derived two fundamental concepts: (1) a conductive interface and (2) a turbulent mixing layer.We have yet to observe in detail either kind of boundary. This is achieved by using UV absorption lines of moderately high ionization stages of heavy elements. Yet, over most lines of sight the diagnostics are blurred out by the superposition of different regions with vastly different physical conditions, making them difficult to interpret. To characterize the nature of the physical processes at a boundary one must observe along a sight line that penetrates just one such region. The simplest configuration is the outer boundary of the Local Cloud, the WNM ((T 7000 K) that surrounds the Sun and which is embedded in a very low density, soft X-ray emitting hot medium ( 10^6 K) that fills a cavity ( 200 pc in diameter) called the Local Bubble.We propose to observe an ideal target: a nearby, bright B9V star (i.e. hot enough to provide a high-SNR continuum, but not enough to contaminate it with absorptions from circumstellar high-ionization species), located in a direction where the relative orientation of the magnetic field and the cloud boundary does not quench thermal conduction and thus favors a full extent of the interface.

  18. The Effects of Plastic Anisotropy in Warm and Hot Forming of Magnesium Sheet Materials

    Science.gov (United States)

    Taleff, Eric M.; Antoniswamy, Aravindha R.; Carpenter, Alexander J.; Yavuz, Emre

    Mg alloy sheet materials often exhibit plastic anisotropy at room temperature as a result of the limited slip systems available in the HCP lattice combined with a commonly strong basal texture. Less well studied is plastic anisotropy developed at the elevated temperatures associated with warm and hot forming. At these elevated temperatures, particularly above 200°C, the activation of additional slip systems significantly increases ductility. However, plastic anisotropy is also induced at elevated temperatures by a strong crystallographic texture, and it can require an accounting in material constitutive models to achieve accurate forming simulations. The type and degree of anisotropy under these conditions depend on both texture and deformation mechanism. The current understanding of plastic anisotropy in Mg AZ31B and ZEK100 sheet materials at elevated temperatures is reviewed in this article. The recent construction of material forming cases is also reviewed with strategies to account for plastic anisotropy in forming simulations.

  19. WARM GAS IN THE VIRGO CLUSTER. I. DISTRIBUTION OF Lyα ABSORBERS

    International Nuclear Information System (INIS)

    Yoon, Joo Heon; Putman, Mary E.; Bryan, Greg L.; Thom, Christopher; Chen, Hsiao-Wen

    2012-01-01

    The first systematic study of the warm gas (T = 10 4–5 K) distribution across a galaxy cluster is presented using multiple background QSOs in and around the Virgo Cluster. We detect 25 Lyα absorbers (N HI = 10 13.1–15.4 cm –2 ) in the Virgo velocity range toward 9 of 12 QSO sightlines observed with the Cosmic Origin Spectrograph, with a cluster impact parameter range of 0.36-1.65 Mpc (0.23-1.05 R vir ). Including 18 Lyα absorbers previously detected by STIS or GHRS toward 7 of 11 background QSOs in and around the Virgo Cluster, we establish a sample of 43 absorbers toward a total of 23 background probes for studying the incidence of Lyα absorbers in and around the Virgo Cluster. With these absorbers, we find (1) warm gas is predominantly in the outskirts of the cluster and avoids the X-ray-detected hot intracluster medium (ICM). Also, Lyα absorption strength increases with cluster impact parameter. (2) Lyα-absorbing warm gas traces cold H I-emitting gas in the substructures of the Virgo Cluster. (3) Including the absorbers associated with the surrounding substructures, the warm gas covering fraction (100% for N HI > 10 13.1 cm –2 ) is in agreement with cosmological simulations. We speculate that the observed warm gas is part of large-scale gas flows feeding the cluster both in the ICM and galaxies.

  20. A NEW METHOD TO DIRECTLY MEASURE THE JEANS SCALE OF THE INTERGALACTIC MEDIUM USING CLOSE QUASAR PAIRS

    International Nuclear Information System (INIS)

    Rorai, Alberto; Hennawi, Joseph F.; White, Martin

    2013-01-01

    Although the baryons in the intergalactic medium (IGM) trace dark matter fluctuations on megaparsec scales, on smaller scales ∼100 kpc, fluctuations are suppressed because the finite temperature gas is pressure supported against gravity, analogous to the classical Jeans argument. This Jeans filtering scale, which quantifies the small-scale structure of the IGM, has fundamental cosmological implications. First, it provides a thermal record of heat injected by ultraviolet photons during cosmic reionization events, and thus constrains the thermal and reionization history of the universe. Second, the Jeans scale determines the clumpiness of the IGM, a critical ingredient in models of cosmic reionization. Third, it sets the minimum mass scale for gravitational collapse from the IGM, and hence plays a pivotal role in galaxy formation. Unfortunately, it is extremely challenging to measure the Jeans scale via the standard technique of analyzing purely longitudinal Lyα forest spectra, because the thermal Doppler broadening of absorption lines along the line-of-sight, is highly degenerate with Jeans smoothing. In this work, we show that the Jeans filtering scale can be directly measured by characterizing the coherence of correlated Lyα forest absorption in close quasar pairs, with separations small enough ∼100 kpc to resolve it. We present a novel technique for this purpose, based on the probability density function (PDF) of phase angle differences of homologous longitudinal Fourier modes in close quasar pair spectra. A Bayesian formalism is introduced based on the phase angle PDF, and Markov Chain Monte Carlo techniques are used to characterize the precision of a hypothetical Jeans scale measurement, and explore degeneracies with other thermal parameters governing the IGM. A semi-analytical model of the Lyα forest is used to generate a large grid (500) of thermal models from a dark matter only simulation. Our full parameter study indicates that a realistic sample of

  1. A NEW METHOD TO DIRECTLY MEASURE THE JEANS SCALE OF THE INTERGALACTIC MEDIUM USING CLOSE QUASAR PAIRS

    Energy Technology Data Exchange (ETDEWEB)

    Rorai, Alberto; Hennawi, Joseph F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); White, Martin [Department of Astronomy, University of California at Berkeley, 601 Campbell Hall, Berkeley, CA 94720-3411 (United States)

    2013-10-01

    Although the baryons in the intergalactic medium (IGM) trace dark matter fluctuations on megaparsec scales, on smaller scales ∼100 kpc, fluctuations are suppressed because the finite temperature gas is pressure supported against gravity, analogous to the classical Jeans argument. This Jeans filtering scale, which quantifies the small-scale structure of the IGM, has fundamental cosmological implications. First, it provides a thermal record of heat injected by ultraviolet photons during cosmic reionization events, and thus constrains the thermal and reionization history of the universe. Second, the Jeans scale determines the clumpiness of the IGM, a critical ingredient in models of cosmic reionization. Third, it sets the minimum mass scale for gravitational collapse from the IGM, and hence plays a pivotal role in galaxy formation. Unfortunately, it is extremely challenging to measure the Jeans scale via the standard technique of analyzing purely longitudinal Lyα forest spectra, because the thermal Doppler broadening of absorption lines along the line-of-sight, is highly degenerate with Jeans smoothing. In this work, we show that the Jeans filtering scale can be directly measured by characterizing the coherence of correlated Lyα forest absorption in close quasar pairs, with separations small enough ∼100 kpc to resolve it. We present a novel technique for this purpose, based on the probability density function (PDF) of phase angle differences of homologous longitudinal Fourier modes in close quasar pair spectra. A Bayesian formalism is introduced based on the phase angle PDF, and Markov Chain Monte Carlo techniques are used to characterize the precision of a hypothetical Jeans scale measurement, and explore degeneracies with other thermal parameters governing the IGM. A semi-analytical model of the Lyα forest is used to generate a large grid (500) of thermal models from a dark matter only simulation. Our full parameter study indicates that a realistic sample of

  2. UNDERSTANDING THE STRUCTURE OF THE HOT INTERSTELLAR MEDIUM IN NORMAL EARLY-TYPE GALAXIES.

    Science.gov (United States)

    Traynor, Liam; Kim, Dong-Woo; Chandra Galaxy Atlas

    2018-01-01

    The hot interstellar medium (ISM) of early-type galaxies (ETG's) provides crucial insight into the understanding of their formation and evolution. Mechanisms such as type Ia supernovae heating, AGN feedback, deepening potential depth through dark matter assembly and ramp-pressure stripping are known to affect the structure of the ISM. By using temperature maps and radial temperature profiles of the hot ISM from ~70 ETG's with archival Chandra data, it is possible to classify the galaxy's ISM into common structural types. This is extended by using 3D fitting of the radial temperature profile in order to provide models that further constrain the structural types. Five structural types are present, negative (temperature decreases with radii), positive (temperature increases with radii), hybrid-dip (temperature decreases at small radii and increases at large radii), hybrid-bump (inverse of hybrid-dip) and quasi-isothermal (temperature is constant at all radii). This work will be continued by 1) determining which mechanisms are present in which galaxies and 2) analysing the model parameters between galaxies within each structural type to determine whether each type can be described by a single set of model parameters, indicating that the same physical processes are responsible for creating that structural type.

  3. X-ray spectroscopy of warm and hot electron components in the CAPRICE source plasma at EIS testbench at GSI.

    Science.gov (United States)

    Mascali, D; Celona, L; Maimone, F; Maeder, J; Castro, G; Romano, F P; Musumarra, A; Altana, C; Caliri, C; Torrisi, G; Neri, L; Gammino, S; Tinschert, K; Spaedtke, K P; Rossbach, J; Lang, R; Ciavola, G

    2014-02-01

    An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source - operating at GSI, Darmstadt - has been carried out. Two different detectors (a SDD - Silicon Drift Detector and a HpGe - hyper-pure Germanium detector) have been used to characterize the warm (2-30 keV) and hot (30-500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract the plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.

  4. HOT GAS HALOS IN EARLY-TYPE FIELD GALAXIES

    International Nuclear Information System (INIS)

    Mulchaey, John S.; Jeltema, Tesla E.

    2010-01-01

    We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L X -L K relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L K ∼ * suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L K ∼ * galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.

  5. Widespread rotationally hot hydronium ion in the galactic interstellar medium

    International Nuclear Information System (INIS)

    Lis, D. C.; Phillips, T. G.; Schilke, P.; Comito, C.; Higgins, R.

    2014-01-01

    We present new Herschel observations of the (6,6) and (9,9) inversion transitions of the hydronium ion toward Sagittarius B2(N) and W31C. Sensitive observations toward Sagittarius B2(N) show that the high, ∼500 K, rotational temperatures characterizing the population of the highly excited metastable H 3 O + rotational levels are present over a wide range of velocities corresponding to the Sagittarius B2 envelope, as well as the foreground gas clouds between the Sun and the source. Observations of the same lines toward W31C, a line of sight that does not intersect the Central Molecular Zone but instead traces quiescent gas in the Galactic disk, also imply a high rotational temperature of ∼380 K, well in excess of the kinetic temperature of the diffuse Galactic interstellar medium. While it is plausible that some fraction of the molecular gas may be heated to such high temperatures in the active environment of the Galactic center, characterized by high X-ray and cosmic-ray fluxes, shocks, and high degree of turbulence, this is unlikely in the largely quiescent environment of the Galactic disk clouds. We suggest instead that the highly excited states of the hydronium ion are populated mainly by exoergic chemical formation processes and the temperature describing the rotational level population does not represent the physical temperature of the medium. The same arguments may be applicable to other symmetric top rotors, such as ammonia. This offers a simple explanation of the long-standing puzzle of the presence of a pervasive, hot molecular gas component in the central region of the Milky Way. Moreover, our observations suggest that this is a universal process not limited to the active environments associated with galactic nuclei.

  6. Too hot to handle? Analytic solutions for massive neutrino or warm dark matter cosmologies

    Science.gov (United States)

    Slepian, Zachary; Portillo, Stephen K. N.

    2018-05-01

    We obtain novel closed-form solutions to the Friedmann equation for cosmological models containing a component whose equation of state is that of radiation (w = 1/3) at early times and that of cold pressureless matter (w = 0) at late times. The equation of state smoothly transitions from the early to late-time behavior and exactly describes the evolution of a species with a Dirac Delta function distribution in momentum magnitudes |p_0| (i.e. all particles have the same |p_0|). Such a component, here termed "hot matter", is an approximate model for both neutrinos and warm dark matter. We consider it alone and in combination with cold matter and with radiation, also obtaining closed-form solutions for the growth of super-horizon perturbations in each case. The idealized model recovers t(a) to better than 1.5% accuracy for all a relative to a Fermi-Dirac distribution (as describes neutrinos). We conclude by adding the second moment of the distribution to our exact solution and then generalizing to include all moments of an arbitrary momentum distribution in a closed-form solution.

  7. X-ray spectroscopy of warm and hot electron components in the CAPRICE source plasma at EIS testbench at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, D., E-mail: davidmascali@lns.infn.it; Celona, L.; Castro, G.; Torrisi, G.; Neri, L.; Gammino, S.; Ciavola, G. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, – Via S. Sofia 62, 95123 Catania (Italy); Maimone, F.; Maeder, J.; Tinschert, K.; Spaedtke, K. P.; Rossbach, J.; Lang, R. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt (Germany); Romano, F. P. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, – Via S. Sofia 62, 95123 Catania (Italy); IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); Musumarra, A.; Altana, C.; Caliri, C. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, – Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, via S. Sofia 64, 95123 Catania (Italy)

    2014-02-15

    An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source – operating at GSI, Darmstadt – has been carried out. Two different detectors (a SDD – Silicon Drift Detector and a HpGe – hyper-pure Germanium detector) have been used to characterize the warm (2–30 keV) and hot (30–500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract the plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.

  8. Laboratory evaluation of warm mix asphalt.

    Science.gov (United States)

    2011-09-14

    "Hot Mix Asphalt (HMA) has been traditionally produced at a discharge temperature of between : 280F (138C) and 320 F (160C), resulting in high energy (fuel) costs and generation of greenhouse : gases. The goal for Warm Mix Asphalt (WMA) is to...

  9. Reionization in a cold dark matter universe: The feedback of galaxy formation on the intergalactic medium

    Science.gov (United States)

    Shapiro, Paul R.; Giroux, Mark L.; Babul, Arif

    1994-01-01

    We study the coupled evolution of the intergalactic medium (IGM) and the emerging structure in the universe in the context of the cold dark matter (CDM) model, with a special focus on the consequences of imposing reionization and the Gunn-Peterson constraint as a boundary condition on the model. We have calculated the time-varying density of the IGM by coupling our detailed, numerical calculations of the thermal and ionization balance and radiative transfer in a uniform, spatially averaged IGM of H and He, including the mean opacity of an evolving distribution of gas clumps which correspond to quasar absorption line clouds, to the linearized equations for the growth of density fluctuations in both the gaseous and dark matter components in a CDM universe. We use the linear growth equations to identify the fraction of the gas which must have collapsed out at each epoch, an approach similar in spirit to the so-called Press-Schechter formalism. We identify the IGM density with the uncollapsed baryon fraction. The collapsed fraction is postulated to be a source of energy injection into the IGM, by radiation or bulk hydrodynamical heating (e.g., via shocks) or both, at a rate which is marginally enough to satisfy the Gunn-Peterson constraint at z less than 5. Our results include the following: (1) We find that the IGM in a CDM model must have contained a substantial fraction of the total baryon density of the universe both during and after its reionization epoch. (2) As a result, our previous conclusion that the observed Quasi-Stellar Objects (QSOs) at high redshift are not sufficient to ionize the IGM enough to satisfy the Gunn-Peterson constraint is confirmed. (3) We predict a detectable He II Gunn-Peterson effect at 304(1 + z) A in the spectra of quasars at a range of redshift z greater than or approx. 3, depending on the nature of the sources of IGM reionization. (4) We find, moreover, that a CDM model with high bias parameter b (i.e., b greater than or approx. 2

  10. Fabrication update on critical-angle transmission gratings for soft x-ray grating spectrometers

    Science.gov (United States)

    Heilmann, Ralf K.; Bruccoleri, Alex; Mukherjee, Pran; Yam, Jonathan; Schattenburg, Mark L.

    2011-09-01

    Diffraction grating-based, wavelength dispersive high-resolution soft x-ray spectroscopy of celestial sources promises to reveal crucial data for the study of the Warm-Hot Intergalactic Medium, the Interstellar Medium, warm absorption and outflows in Active Galactic Nuclei, coronal emission from stars, and other areas of interest to the astrophysics community. Our recently developed critical-angle transmission (CAT) gratings combine the advantages of the Chandra high and medium energy transmission gratings (low mass, high tolerance of misalignments and figure errors, polarization insensitivity) with those of blazed reflection gratings (high broad band diffraction efficiency, high resolution through use of higher diffraction orders) such as the ones on XMM-Newton. Extensive instrument and system configuration studies have shown that a CAT grating-based spectrometer is an outstanding instrument capable of delivering resolving power on the order of 5,000 and high effective area, even with a telescope point-spread function on the order of many arc-seconds. We have fabricated freestanding, ultra-high aspect-ratio CAT grating bars from silicon-on-insulator wafers using both wet and dry etch processes. The 200 nm-period grating bars are supported by an integrated Level 1 support mesh, and a coarser external Level 2 support mesh. The resulting grating membrane is mounted to a frame, resulting in a grating facet. Many such facets comprise a grating array that provides light-weight coverage of large-area telescope apertures. Here we present fabrication results on the integration of CAT gratings and the different high-throughput support mesh levels and on membrane-frame bonding. We also summarize recent x-ray data analysis of 3 and 6 micron deep wet-etched CAT grating prototypes.

  11. Soft x-ray emission from clusters of galaxies and related phenomena

    CERN Document Server

    Mittaz, Jonathan

    2004-01-01

    Since the discovery of the cluster soft excess (CSE) over eight years ago, its properties and origin have been the subject of debate With the recent launch of new missions such as XMM-Newton and FUSE, we are beginning to answer some of the complex issues regarding the phenomenon This conference proceedings is an attempt to bring together the latest research results and covers both observational and theoretical work on the CSE and related topics One of the main topics is the possible relationship between the CSE and the warm-hot intergalactic medium (WHIM), which is believed to harbor 50% of the baryons in the near Universe New data from both XMM-Newton and FUSE have indicated a possible causal link between the WHIM and CSE Evidence is based on the apparent detection of O VII emission lines in the soft excess spectrum of the outskirts of several clusters, as well as reports of absorption lines at local and higher redshifts (seen in the spectra of distant sources) as signature of the WHIM However, while there h...

  12. AN IN-DEPTH STUDY OF THE ABUNDANCE PATTERN IN THE HOT INTERSTELLAR MEDIUM IN NGC 4649

    International Nuclear Information System (INIS)

    Loewenstein, Michael; Davis, David S.

    2012-01-01

    We present our X-ray imaging spectroscopic analysis of data from deep Suzaku and XMM-Newton Observatory exposures of the Virgo Cluster elliptical galaxy NGC 4649 (M60), focusing on the abundance pattern in the hot interstellar medium (ISM). All measured elements show a radial decline in abundance, with the possible exception of O. We construct steady-state solutions to the chemical evolution equations that include infall in addition to stellar mass return and Type Ia supernova (SNIa) enrichment, and consider recently published SNIa yields. By adjusting a single model parameter to obtain a match to the global abundance pattern in NGC 4649, we infer that introduction of subsolar metallicity external gas has reduced the overall ISM metallicity and diluted the effectiveness of SNIa to skew the pattern toward low α/Fe ratios, and estimate the combination of SNIa rate and level of dilution. Evidently, newly introduced gas is heated as it is integrated into, and interacts with, the hot gas that is already present. These results indicate a complex flow and enrichment history for NGC 4649, reflecting the continual evolution of elliptical galaxies beyond the formation epoch. The heating and circulation of accreted gas may help reconcile this dynamic history with the mostly passive evolution of elliptical stellar populations. In an Appendix, we examine the effects of the recent updated atomic database AtomDB in spectral fitting of thermal plasmas with hot ISM temperatures in the elliptical galaxy range.

  13. Escape of ionizing radiation from star-forming regions in Young galaxies

    DEFF Research Database (Denmark)

    Razoumov, A; Sommer-Larsen, Jesper

    2006-01-01

    Galaxies: Formation, Galaxies: Intergalactic Medium, ISM: H II Regions, Radiative Transfer Udgivelsesdato: Nov. 10......Galaxies: Formation, Galaxies: Intergalactic Medium, ISM: H II Regions, Radiative Transfer Udgivelsesdato: Nov. 10...

  14. Properties of the Intergalactic Magnetic Field Constrained by Gamma-Ray Observations of Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Veres, P.; Dermer, C. D.; Dhuga, K. S. [Department of Physics, George Washington University, Washington, DC 20052 (United States)

    2017-09-20

    The magnetic field in intergalactic space gives important information about magnetogenesis in the early universe. The properties of this field can be probed by searching for radiation of secondary e {sup +} e {sup −} pairs created by TeV photons that produce GeV range radiation by Compton-scattering cosmic microwave background photons. The arrival times of the GeV “echo” photons depend strongly on the magnetic field strength and coherence length. A Monte Carlo code that accurately treats pair creation is developed to simulate the spectrum and time-dependence of the echo radiation. The extrapolation of the spectrum of powerful gamma-ray bursts (GRBs) like GRB 130427A to TeV energies is used to demonstrate how the intergalactic magnetic field can be constrained if it falls in the 10{sup −21}–10{sup −17} G range for a 1 Mpc coherence length.

  15. The COS-Halos survey: physical conditions and baryonic mass in the low-redshift circumgalactic medium

    International Nuclear Information System (INIS)

    Werk, Jessica K.; Prochaska, J. Xavier; Tejos, Nicolas; Tumlinson, Jason; Peeples, Molly S.; Fox, Andrew J.; Thom, Christopher; Bordoloi, Rongmon; Tripp, Todd M.; Katz, Neal; Lehner, Nicolas; O'Meara, John M.; Ford, Amanda Brady; Oppenheimer, Benjamin D.; Davé, Romeel; Weinberg, David H.

    2014-01-01

    We analyze the physical conditions of the cool, photoionized (T ∼10 4 K) circumgalactic medium (CGM) using the COS-Halos suite of gas column density measurements for 44 gaseous halos within 160 kpc of L ∼ L* galaxies at z ∼ 0.2. These data are well described by simple photoionization models, with the gas highly ionized (n H II /n H ≳ 99%) by the extragalactic ultraviolet background. Scaling by estimates for the virial radius, R vir , we show that the ionization state (tracked by the dimensionless ionization parameter, U) increases with distance from the host galaxy. The ionization parameters imply a decreasing volume density profile n H = (10 –4.2±0.25 )(R/R vir ) –0.8±0.3 . Our derived gas volume densities are several orders of magnitude lower than predictions from standard two-phase models with a cool medium in pressure equilibrium with a hot, coronal medium expected in virialized halos at this mass scale. Applying the ionization corrections to the H I column densities, we estimate a lower limit to the cool gas mass M CGM cool >6.5×10 10 M ☉ for the volume within R < R vir . Allowing for an additional warm-hot, O VI-traced phase, the CGM accounts for at least half of the baryons purported to be missing from dark matter halos at the 10 12 M ☉ scale.

  16. Counts of galaxies in the region of the 'intergalactic dark cloud' near iota Microscopii

    International Nuclear Information System (INIS)

    Meinunger, I.

    1976-01-01

    The distribution of the total numbers of galaxies down to about 18th magnitude on 84 squares is largely in agreement with the structure of the hypothetic intergalactic absorbing cloud near iota Microscopii found by C. Hoffmeister. The counts of galaxies were performed on the Whiteoak prints covering that region. (author)

  17. Investigation of warm-mix asphalt using Iowa aggregates.

    Science.gov (United States)

    2011-04-01

    The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphalt ...

  18. Intergalactic medium emission observations with the cosmic web imager. II. Discovery of extended, kinematically linked emission around SSA22 Lyα BLOB 2

    International Nuclear Information System (INIS)

    Christopher Martin, D.; Chang, Daphne; Matuszewski, Matt; Morrissey, Patrick; Rahman, Shahin; Moore, Anna; Steidel, Charles C.; Matsuda, Yuichi

    2014-01-01

    The intergalactic medium (IGM) is the dominant reservoir of baryons, delineates the large-scale structure of the universe at low to moderate overdensities, and provides gas from which galaxies form and evolve. Simulations of a cold-dark-matter- (CDM-) dominated universe predict that the IGM is distributed in a cosmic web of filaments and that galaxies should form along and at the intersections of these filaments. While observations of QSO absorption lines and the large-scale distribution of galaxies have confirmed the CDM paradigm, the cosmic web of IGM has never been confirmed by direct imaging. Here we report our observation of the Lyα blob 2 (LAB2) in SSA22 with the Cosmic Web Imager (CWI). This is an integral field spectrograph optimized for low surface brightness, extended emission. With 22 hr of total on- and off-source exposure, CWI has revealed that LAB2 has extended Lyα emission that is organized into azimuthal zones consistent with filaments. We perform numerous tests with simulations and the data to secure the robustness of this result, which relies on data with modest signal-to-noise ratios. We have developed a smoothing algorithm that permits visualization of data cube slices along image or spectral image planes. With both raw and smoothed data cubes we demonstrate that the filaments are kinematically associated with LAB2 and display double-peaked profiles characteristic of optically thick Lyα emission. The flux is 10-20 times brighter than expected for the average emission from the IGM but is consistent with boosted fluorescence from a buried QSO or gravitation cooling radiation. Using simple emission models, we infer a baryon mass in the filaments of at least 1-4 × 10 11 M ☉ , and the dark halo mass is at least 2 × 10 12 M ☉ . The spatial-kinematic morphology is more consistent with inflow from the cosmic web than outflow from LAB2, although an outflow feature maybe present at one azimuth. LAB2 and the surrounding gas have significant and

  19. Intergalactic medium emission observations with the cosmic web imager. II. Discovery of extended, kinematically linked emission around SSA22 Lyα BLOB 2

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Martin, D.; Chang, Daphne; Matuszewski, Matt; Morrissey, Patrick; Rahman, Shahin [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 278-17, Pasadena, CA 91125 (United States); Moore, Anna [Caltech Optical Observatories, Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 11-17, Pasadena, CA 91125 (United States); Steidel, Charles C.; Matsuda, Yuichi, E-mail: cmartin@srl.caltech.edu [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 249-17, Pasadena, CA 91125 (United States)

    2014-05-10

    The intergalactic medium (IGM) is the dominant reservoir of baryons, delineates the large-scale structure of the universe at low to moderate overdensities, and provides gas from which galaxies form and evolve. Simulations of a cold-dark-matter- (CDM-) dominated universe predict that the IGM is distributed in a cosmic web of filaments and that galaxies should form along and at the intersections of these filaments. While observations of QSO absorption lines and the large-scale distribution of galaxies have confirmed the CDM paradigm, the cosmic web of IGM has never been confirmed by direct imaging. Here we report our observation of the Lyα blob 2 (LAB2) in SSA22 with the Cosmic Web Imager (CWI). This is an integral field spectrograph optimized for low surface brightness, extended emission. With 22 hr of total on- and off-source exposure, CWI has revealed that LAB2 has extended Lyα emission that is organized into azimuthal zones consistent with filaments. We perform numerous tests with simulations and the data to secure the robustness of this result, which relies on data with modest signal-to-noise ratios. We have developed a smoothing algorithm that permits visualization of data cube slices along image or spectral image planes. With both raw and smoothed data cubes we demonstrate that the filaments are kinematically associated with LAB2 and display double-peaked profiles characteristic of optically thick Lyα emission. The flux is 10-20 times brighter than expected for the average emission from the IGM but is consistent with boosted fluorescence from a buried QSO or gravitation cooling radiation. Using simple emission models, we infer a baryon mass in the filaments of at least 1-4 × 10{sup 11} M {sub ☉}, and the dark halo mass is at least 2 × 10{sup 12} M {sub ☉}. The spatial-kinematic morphology is more consistent with inflow from the cosmic web than outflow from LAB2, although an outflow feature maybe present at one azimuth. LAB2 and the surrounding gas

  20. A new measurement of the intergalactic temperature at z ˜ 2.55-2.95

    Science.gov (United States)

    Rorai, Alberto; Carswell, Robert F.; Haehnelt, Martin G.; Becker, George D.; Bolton, James S.; Murphy, Michael T.

    2018-03-01

    We present two measurements of the temperature-density relationship (TDR) of the intergalactic medium (IGM) in the redshift range 2.55 law parameters T0 and γ describing the TDR. This approach yields T0/103 K = 15.6 ± 4.4 and γ = 1.45 ± 0.17 independent of the assumed pressure smoothing of the small-scale density field. In order to explore the information contained in the overall b-N_{H I} distribution rather than only the lower cut-off, we obtain a second measurement based on a similar Bayesian analysis of the median Doppler parameter for separate column-density ranges of the absorbers. In this case, we obtain T0/103 K = 14.6 ± 3.7 and γ = 1.37 ± 0.17 in good agreement with the first measurement. Our Bayesian analysis reveals strong anticorrelations between the inferred T0 and γ for both methods as well as an anticorrelation of the inferred T0 and the pressure smoothing length for the second method, suggesting that the measurement accuracy can in the latter case be substantially increased if independent constraints on the smoothing are obtained. Our results are in good agreement with other recent measurements of the thermal state of the IGM probing similar (over-)density ranges.

  1. Urban warming drives insect pest abundance on street trees.

    Directory of Open Access Journals (Sweden)

    Emily K Meineke

    Full Text Available Cities profoundly alter biological communities, favoring some species over others, though the mechanisms that govern these changes are largely unknown. Herbivorous arthropod pests are often more abundant in urban than in rural areas, and urban outbreaks have been attributed to reduced control by predators and parasitoids and to increased susceptibility of stressed urban plants. These hypotheses, however, leave many outbreaks unexplained and fail to predict variation in pest abundance within cities. Here we show that the abundance of a common insect pest is positively related to temperature even when controlling for other habitat characteristics. The scale insect Parthenolecanium quercifex was 13 times more abundant on willow oak trees in the hottest parts of Raleigh, NC, in the southeastern United States, than in cooler areas, though parasitism rates were similar. We further separated the effects of heat from those of natural enemies and plant quality in a greenhouse reciprocal transplant experiment. P. quercifex collected from hot urban trees became more abundant in hot greenhouses than in cool greenhouses, whereas the abundance of P. quercifex collected from cooler urban trees remained low in hot and cool greenhouses. Parthenolecanium quercifex living in urban hot spots succeed with warming, and they do so because some demes have either acclimatized or adapted to high temperatures. Our results provide the first evidence that heat can be a key driver of insect pest outbreaks on urban trees. Since urban warming is similar in magnitude to global warming predicted in the next 50 years, pest abundance on city trees may foreshadow widespread outbreaks as natural forests also grow warmer.

  2. Structure of a Wear-Resistant Medium-Carbon Steel After Hot Deformation in Hammer Dies and Heat Treatment

    Science.gov (United States)

    Knyazyuk, T. V.; Petrov, S. N.; Ryabov, V. V.; Khlusova, E. I.

    2018-01-01

    The structure of model specimens and articles fabricated from medium-carbon high-strength steels is studied for developing modes of forming of working members of tilling machines with cutting edges thinned without the expensive operation of electromachining. The effect of the temperature of heating of billets on the grain size of austenite is determined. The kinetics of recrystallization is studied in the temperature, rate and strain ranges typical for hot forming. A quantitative crystallographic analysis of the microstructure is performed by the EBSD technique. The degrees of distortion of the crystal lattices of structural components and the mean sizes of martensite blocks are determined.

  3. Diffuse cosmic x-rays below 1 keV

    International Nuclear Information System (INIS)

    Kraushaar, W.L.

    1973-01-01

    A description of those features of the low energy diffuse x-ray flux on which there is general observational agreement is given. Most of the discussion is restricted to the energy region below 280 eV, the carbon K edge. Topics include intensity, spatial structure, nature of the local emission, and the extragalactic component. It is concluded that the diffuse soft x-ray measurements cannot, taken alone, be said to provide positive evidence for a hot dense intergalactic medium. (U.S.)

  4. New photoionization models of intergalactic clouds

    Science.gov (United States)

    Donahue, Megan; Shull, J. M.

    1991-01-01

    New photoionization models of optically thin low-density intergalactic gas at constant pressure, photoionized by QSOs, are presented. All ion stages of H, He, C, N, O, Si, and Fe, plus H2 are modeled, and the column density ratios of clouds at specified values of the ionization parameter of n sub gamma/n sub H and cloud metallicity are predicted. If Ly-alpha clouds are much cooler than the previously assumed value, 30,000 K, the ionization parameter must be very low, even with the cooling contribution of a trace component of molecules. If the clouds cool below 6000 K, their final equilibrium must be below 3000 K, owing to the lack of a stable phase between 6000 and 3000 K. If it is assumed that the clouds are being irradiated by an EUV power-law continuum typical of WSOs, with J0 = 10 exp -21 ergs/s sq cm Hz, typical cloud thicknesses along the line of sight that are much smaller than would be expected from shocks, thermal instabilities, or gravitational collapse are derived.

  5. Warming increases hotspot areas of enzyme activity and shortens the duration of hot moments in the detritusphere

    Science.gov (United States)

    Ma, Xiaomin; Razavi, Bahar S.; Holz, Maire; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2017-04-01

    Temperature effects on enzyme kinetics and on the spatial distribution of microbial hotspots are important because of their potential feedback to climate change. We used direct zymography to study the spatial distributions of enzymes responsible for P (phosphatase), C (cellobiohydrolase) and N (leucine-aminopeptidase) cycles in the rhizosphere (living roots of maize) and detritusphere (7 and 14 days after cutting shoots). Soil zymography was coupled with enzyme kinetics to test temperature effects (10, 20, 30 and 40 °C) on the dynamics and localization of these three enzymes in the detritusphere. Total hotspot areas of enzyme activity were 1.9-7.9 times larger and their extension was broader in the detritusphere compared to rhizosphere. From 10 to 30 °C, the hotspot areas enlarged by a factor of 2-24 and Vmax increased by 1.5-6.6 times; both, however, decreased at 40 °C. For the first time, we found a close positive correlation between Vmax and the areas of enzyme activity hotspots, indicating that maximum reaction rate is coupled with hotspot formation. The substrate turnover time at 30 °C were 1.7-6.7-fold faster than at 10 °C. The Km of cellobiohydrolase and phosphatase significantly increased at 30 and 40 °C, indicating high enzyme conformational flexibility, or isoenzyme production at warm temperatures. We conclude that soil warming (at least up to 30°C) increases hotspot areas of enzyme activity and the maximum reaction rate (Vmax) in the detritusphere. This, in turn, leads to faster substrate exhaustion and shortens the duration of hot moments.

  6. Rapid growth of black holes accompanied with hot or warm outflows exposed to anisotropic super-Eddington radiation

    Science.gov (United States)

    Takeo, Eishun; Inayoshi, Kohei; Ohsuga, Ken; Takahashi, Hiroyuki R.; Mineshige, Shin

    2018-05-01

    We perform two-dimensional radiation hydrodynamical simulations of accretion flows on to a black hole (BH) with a mass of 103 ≤ MBH/ M⊙ ≲ 106 in order to study rapid growth of BHs in the early Universe. For spherically symmetric flows, hyper-Eddington accretion from outside the Bondi radius can occur unimpeded by radiation feedback when MBH ≳ 104 M⊙(n∞/105 cm - 3) - 1(T∞/104 K)3/2, where the density and temperature of ambient gas are initially set to n∞ = 105 cm-3 and T∞ = 104 K. Here, we study accretion flows exposed to anisotropic radiation from a nuclear accretion disc with a luminosity higher than the Eddington value (LEdd) due to collimation towards the bipolar directions. We find that, unlike the spherically symmetric case, even less massive BHs with MBH ionized regions expand towards the poles producing hot outflows with T ˜ 105 K. For more massive BHs with MBH ≳ 5 × 105 M⊙, intense inflows of neutral gas through the equator totally cover the central radiating region due to the non-radial gas motions. Because of efficient recombination by hydrogen, the entire flow settles in neutral and warm gas with T ≃ 8000 K. The BH is fed at a rate of ˜5 × 104LEdd/c2 (a half of the inflow rate from the Bondi radius). Moreover, radiation momentum absorbed by neutral hydrogen produces warm outflows towards the bipolar directions at ˜ 10 per cent of the BH feeding rate and with a velocity several times higher than the escaping value.

  7. The coastal ocean response to the global warming acceleration and hiatus.

    Science.gov (United States)

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-11-16

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes.

  8. The coastal ocean response to the global warming acceleration and hiatus

    Science.gov (United States)

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-01-01

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes. PMID:26568024

  9. How Does the Medium Affect the Message?

    Science.gov (United States)

    Dommermuth, William P.

    1974-01-01

    This experimental comparison of the advertising effectiveness of television, movies, radio, and print finds no support for McLuhan's idea that television is a "cool" medium and movies are a "hot" medium. (RB)

  10. Saphenous Venous Ablation with Hot Contrast in a Canine Model

    International Nuclear Information System (INIS)

    Prasad, Amit; Qian Zhong; Kirsch, David; Eissa, Marna; Narra, Pavan; Lopera, Jorge; Espinoza, Carmen G.; Castaneda, Wifrido

    2008-01-01

    Purpose. To determine the feasibility, efficacy, and safety of thermal ablation of the saphenous vein with hot contrast medium. Methods. Twelve saphenous veins of 6 dogs were percutaneously ablated with hot contrast medium. In all animals, ablation was performed in the vein of one leg, followed by ablation in the contralateral side 1 month later. An occlusion balloon catheter was placed in the infragenicular segment of the saphenous vein via a jugular access to prevent unwanted thermal effects on the non-target segment of the saphenous vein. After inflation of the balloon, 10 ml of hot contrast medium was injected under fluoroscopic control through a sheath placed in the saphenous vein above the ankle. A second 10 ml injection of hot contrast medium was made after 5 min in each vessel. Venographic follow-up of the ablated veins was performed at 1 month (n = 12) and 2 months (n = 6). Results. Follow-up venograms showed that all ablated venous segments were occluded at 1 month. In 6 veins which were followed up to 2 months, 4 (66%) remained occluded, 1 (16%) was partially patent, and the remaining vein (16%) was completely patent. In these latter 2 cases, an inadequate amount of hot contrast was delivered to the lumen due to a closed balloon catheter downstream which did not allow contrast to displace blood within the vessel. Discussion. Hot contrast medium thermal ablation of the saphenous vein appears feasible, safe, and effective in the canine model, provided an adequate amount of embolization agent is used

  11. The cosmic transparency measured with Type Ia supernovae: implications for intergalactic dust

    Science.gov (United States)

    Goobar, Ariel; Dhawan, Suhail; Scolnic, Daniel

    2018-06-01

    Observations of high-redshift Type Ia supernovae (SNe Ia) are used to study the cosmic transparency at optical wavelengths. Assuming a flat Λ cold dark matter (ΛCDM) cosmological model based on baryon acoustic oscillations and cosmic microwave background measurements, redshift dependent deviations of SN Ia distances are used to constrain mechanisms that would dim light. The analysis is based on the most recent Pantheon SN compilation, for which there is a 0.03 ± 0.01 {({stat})} mag discrepancy in the distant supernova distance moduli relative to the ΛCDM model anchored by supernovae at z < 0.05. While there are known systematic uncertainties that combined could explain the observed offset, here we entertain the possibility that the discrepancy may instead be explained by scattering of supernova light in the intergalactic medium (IGM). We focus on two effects: Compton scattering by free electrons and extinction by dust in the IGM. We find that if the discrepancy is entirely due to dimming by dust, the measurements can be modelled with a cosmic dust density Ω _IGM^dust = 8 × 10^{-5} (1+z)^{-1}, corresponding to an average attenuation of 2 × 10-5 mag Mpc-1 in V band. Forthcoming SN Ia studies may provide a definitive measurement of the IGM dust properties, while still providing an unbiased estimate of cosmological parameters by introducing additional parameters in the global fits to the observations.

  12. Outshining the quasars at reionization

    DEFF Research Database (Denmark)

    Watson, D.; Reeves, J.N.; Hjorth, J.

    2006-01-01

    Gamma Rays: Bursts, Galaxies: Intergalactic Medium, Galaxies: Quasars: Absorption Lines, X-Rays: Galaxies, X-Rays: General Udgivelsesdato: 19 January......Gamma Rays: Bursts, Galaxies: Intergalactic Medium, Galaxies: Quasars: Absorption Lines, X-Rays: Galaxies, X-Rays: General Udgivelsesdato: 19 January...

  13. The COS-Halos survey: physical conditions and baryonic mass in the low-redshift circumgalactic medium

    Energy Technology Data Exchange (ETDEWEB)

    Werk, Jessica K.; Prochaska, J. Xavier; Tejos, Nicolas [UCO/Lick Observatory, University of California, Santa Cruz, CA (United States); Tumlinson, Jason; Peeples, Molly S.; Fox, Andrew J.; Thom, Christopher; Bordoloi, Rongmon [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD (United States); Tripp, Todd M.; Katz, Neal [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Lehner, Nicolas [Department of Physics and Astronomy, University of Notre Dame, South Bend, IN (United States); O' Meara, John M. [Department of Chemistry and Physics, Saint Michael' s College, Colchester, VT (United States); Ford, Amanda Brady [Astronomy Department, University of Arizona, Tucson, AZ 85721 (United States); Oppenheimer, Benjamin D. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Davé, Romeel [University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Weinberg, David H., E-mail: jwerk@ucolick.org [Department of Astronomy, The Ohio State University, Columbus, OH (United States)

    2014-09-01

    We analyze the physical conditions of the cool, photoionized (T ∼10{sup 4} K) circumgalactic medium (CGM) using the COS-Halos suite of gas column density measurements for 44 gaseous halos within 160 kpc of L ∼ L* galaxies at z ∼ 0.2. These data are well described by simple photoionization models, with the gas highly ionized (n {sub H} {sub II}/n {sub H} ≳ 99%) by the extragalactic ultraviolet background. Scaling by estimates for the virial radius, R {sub vir}, we show that the ionization state (tracked by the dimensionless ionization parameter, U) increases with distance from the host galaxy. The ionization parameters imply a decreasing volume density profile n {sub H} = (10{sup –4.2±0.25})(R/R {sub vir}){sup –0.8±0.3}. Our derived gas volume densities are several orders of magnitude lower than predictions from standard two-phase models with a cool medium in pressure equilibrium with a hot, coronal medium expected in virialized halos at this mass scale. Applying the ionization corrections to the H I column densities, we estimate a lower limit to the cool gas mass M{sub CGM}{sup cool}>6.5×10{sup 10} M {sub ☉} for the volume within R < R {sub vir}. Allowing for an additional warm-hot, O VI-traced phase, the CGM accounts for at least half of the baryons purported to be missing from dark matter halos at the 10{sup 12} M {sub ☉} scale.

  14. Economical judge possibility uses solar collectors to warm service water and heating

    Directory of Open Access Journals (Sweden)

    Lívia Bodonská

    2006-09-01

    Full Text Available The sun-heated water has been used from before fossil fuels started to determine the direction of our power consumption. This article is focused on the assessing of the use of solar energy as one of inexhaustible resources that has multiple uses, including hot water service systems. Heating is rendered through solar collectors that permit to transform solar energy to warm water. We divide solar collectors into various groups but in principle they are medium temperature collectors and low temperature collectors. The work is directed also on the solar collector market. In our case the market is just at its initial stage as this technology is little known and costs of collectors are rather high, compared to our conditions, on average, they may grow up to 100,000 Slovac crowns per a family house. Because it is the only investment and the costs of operation are minimum throughout the entire collectors lifetime, from the economic point of view, it is a rather advantageous investment. Solar collectors are used in heating and also in hot service water systems in family houses, where they permit to lower costs for the consumption of many kinds of energies. In the hot service water system, solar collectors permit to lower the consumption by almost 70 %. This way of using the solar energy is very prospective and in future it will be used in various sectors

  15. Building Material Preferences in Warm-Humid and Hot-Dry Climates ...

    African Journals Online (AJOL)

    dry climates in Ghana. Using a combination of closed and open-ended questionnaires, a total of 1281 participants (473 adults and 808 youth) were recruited in Ghana in a two-month survey in Kumasi and Tamale representing the warm-humid ...

  16. Application of wavelet analysis in determining the periodicity of global warming

    Science.gov (United States)

    Feng, Xiao

    2018-04-01

    In the last two decades of the last century, the global average temperature has risen by 0.48 ° C over 100 years ago. Since then, global warming has become a hot topic. Global warming will have complex and potential impacts on humans and the Earth. However, the negative impacts far outweigh the positive impacts. The most obvious external manifestation of global warming is temperature. Therefore, this study uses wavelet analysis study the characteristics of temperature time series, solve the periodicity of the sequence, find out the trend of temperature change and predict the extent of global warming in the future, so as to take the necessary precautionary measures.

  17. Early and late hot extremes, and elongation of the warm period over Greece

    Science.gov (United States)

    Founda, Dimitra; Giannakopoulos, Christos; Pierros, Fragiskos

    2017-04-01

    The eastern Mediterranean has been assigned as one of the most responsive areas in climate change, mainly with respect to the occurrence of warmer and drier conditions. In Greece in particular, observations suggest prominent increases in the summer air temperature which in some areas amount to approximately 1 0C/decade since the mid 1970s, while Regional Climate Models simulate further increases in the near and distant future. These changes are coupled with simultaneous increase in the occurrence of hot extremes. In addition to changes in the frequency and intensity of hot extrems, timing of occurrence is also of special interest. Early heat waves in particular, have been found to increase thermal risk in humans. The study explores variations and trends in timing, namely the date of first and last occurrence of hot extremes within the year, and subsequently the hot extremes period (season), defined as the time interval (number of days) between first and last hot extremes occurrence, over Greece. A case study for the area of Athens covering a longer than 100-years period (1897-2015) was conducted first, which will be extended to other Greek areas. Several heat related climatic indices were used, based either on predefined temperature thresholds such as 'tropical days' (daily maximum air temperature, Tmax >30 0C), 'tropical nights' (daily minimum air temperature, Tmin >20 0C), 'hot days' (Tmax >35 0C), or on local climate statistics such as days with Tmax (or Tmin) > 95th percentile. The analysis revealed significant changes in the period of hot extremes and specifically elongation of the period, attributed to early rather than late hot extremes occurrence. An earlier shift of the first tropical day and the first tropical night occurrence by approximately 2 days/decade was found over the study period. An overall elongation of the 'hot days' season by 2.6 days/decade was also observed, which is more prominent since the early 1980s. Over the last three decades, earlier

  18. Radioactive Mapping Contaminant of Alpha on The Air in Space of Repair of Hot Cell and Medium Radioactivity Laboratory in Radio metallurgy Installation

    International Nuclear Information System (INIS)

    Yusuf-Nampira; Endang-Sukesi; S-Wahyuningsih; R-Budi-Santoso

    2007-01-01

    Hot cell and space of acid laboratory medium activity in Radio metallurgy Installation are used for the examination preparation of fuel nuclear post irradiation. The sample examined is dangerous radioactive material representing which can disseminate passing air stream. The dangerous material spreading can be pursued by arranging air stream from laboratory space to examination space. To know the performance the air stream arrangement is hence conducted by radioactive mapping contaminant of alpha in laboratory / space of activity place, for example, medium activity laboratory and repair space. This mapping radioactivity contaminant is executed with the measurement level of the radioactivity from sample air taken at various height with the distance of 1 m, various distance and from potential source as contaminant spreading access. The mapping result indicate that a little spreading of radioactive material happened from acid cupboard locker to laboratory activity up to distance of 3 m from acid cupboard locker and spreading of radioactive contaminant from goods access door of the hot cell 104 to repair space reach the distance of 2 m from goods door access. Level of the radioactive contamination in the space was far under maximum limitation allowed (20 Bq / m 3 ). (author)

  19. Predicting Hot Deformation of AA5182 Sheet

    Science.gov (United States)

    Lee, John T.; Carpenter, Alexander J.; Jodlowski, Jakub P.; Taleff, Eric M.

    Aluminum 5000-series alloy sheet materials exhibit substantial ductilities at hot and warm temperatures, even when grain size is not particularly fine. The relatively high strain-rate sensitivity exhibited by these non-superplastic materials, when deforming under solute-drag creep, is a primary contributor to large tensile ductilities. This active deformation mechanism influences both plastic flow and microstructure evolution across conditions of interest for hot- and warm-forming. Data are presented from uniaxial tensile and biaxial bulge tests of AA5182 sheet material at elevated temperatures. These data are used to construct a material constitutive model for plastic flow, which is applied in finite-element-method (FEM) simulations of plastic deformation under multiaxial stress states. Simulation results are directly compared against experimental data to explore the usefulness of this constitutive model. The effects of temperature and stress state on plastic response and microstructure evolution are discussed.

  20. Simulation of the hot flow behaviour of a medium carbon microalloyed steel. Part 2. Dynamic recrystallization: onset and kinetics

    International Nuclear Information System (INIS)

    Cabrera, J.M.; Al Omar, A.; Prado, J.M.

    1997-01-01

    According to the part 1 of this work, in this second part the dynamic recrystallization of a commercial medium carbon microalloyed steel is characterized from the point of view of its onset and kinetics. For this purpose uniaxial hot compression tests were carried out over a range of five orders of magnitude in strain rate and 300 degree centigree of temperature. Experimental results are compared with those reported in the literature and the possible effect of dynamic precipitation is also analyzed. It is verified that the kinetics of dynamics recrystallization can balefully be described by the classical Avrami equation. (Author) 42 refs

  1. Development of phonon-mediated transition-edge-sensor x-ray detectors for use in astronomy

    Science.gov (United States)

    Leman, Steven W.

    Low temperature detectors have grown in popularity over the years for a variety of reasons. Reduced thermal noise and the associated reduction in statistical fluctuations improve signal to noise. Novel material properties at low temperature such as superconductivity can be exploited. And let us not forget easier access to cryogenic techniques, for example industry made and sold refrigerators eliminating the need for graduate students to make their own. In this thesis I discuss development of a novel phonon-mediated distributed transition-edge-sensor x-ray detector which would be useful for astrophysical studies such as magnetic recombination in the solar corona, the warm-hot intergalactic medium and surveys of clusters and groups of galaxies. The detector uses a large semiconductor absorber and Transition-Edge-Sensors (TESs) to readout the absorbed energy. Calorimetry is performed on individual photons and a partitioning of the energy between various TESs allows for position determination. Hence time varying astronomical sources can be spectroscopically studied and imaged. I will conclude with a discussion of the detector's performance and propose a next generation detector which could make significant improvements on the design discussed in this thesis.

  2. Powerful H{sub 2} Line Cooling in Stephan’s Quintet. II. Group-wide Gas and Shock Modeling of the Warm H{sub 2} and a Comparison with [C ii] 157.7 μ m Emission and Kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Appleton, P. N.; Xu, C. K. [NASA HerschelScience Center, IPAC, Caltech, 770S Wilson Av., Pasadena, CA 91125 (United States); Guillard, P. [Sorbonne Universités, UPMC Univ. Paris 6 et CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis Bd Arago, F-75014 Paris (France); Togi, A. [Department of Physics and Astronomy, The University of Toledo, 2825 West Bancroft Street, Toledo, OH 43606 (United States); Alatalo, K. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Boulanger, F.; Pineau des Forêts, G. [Institut d’Astrophysique Spatiale, F-91405 Orsay, Université Paris Sud et CNRS (France); Cluver, M. [Department of Physics and Astronomy, University of Western Cape, Robert Sobukwe Road, Bellville, 7535 (South Africa); Lisenfeld, U. [Departamento de Física Teorica y del Cosmos, Universidad de Granada, Spain and Instituto Carlos I de Física Teorica y Computacional, Facultad de Ciencias, E-18071 Granada (Spain); Ogle, P., E-mail: apple@ipac.caltech.edu [NASA Extragalactic Database, IPAC, Caltech, 1200 E. California Boulevard, Caltech, Pasadena, CA 91125 (United States)

    2017-02-10

    We map for the first time the two-dimensional H{sub 2} excitation of warm intergalactic gas in Stephan's Quintet on group-wide (50 × 35 kpc{sup 2}) scales to quantify the temperature, mass, and warm H{sub 2} mass fraction as a function of position using Spitzer . Molecular gas temperatures are seen to rise (to T > 700 K) and the slope of the power-law density–temperature relation flattens along the main ridge of the filament, defining the region of maximum heating. We also performed MHD modeling of the excitation properties of the warm gas, to map the velocity structure and energy deposition rate of slow and fast molecular shocks. Slow magnetic shocks were required to explain the power radiated from the lowest-lying rotational states of H{sub 2}, and strongly support the idea that energy cascades down to small scales and low velocities from the fast collision of NGC 7318b with group-wide gas. The highest levels of heating of the warm H{sub 2} are strongly correlated with the large-scale stirring of the medium as measured by [C ii] spectroscopy with Herschel . H{sub 2} is also seen associated with a separate bridge that extends toward the Seyfert nucleus in NGC 7319, from both Spitzer and CARMA CO observations. This opens up the possibility that both galaxy collisions and outflows from active galactic nuclei can turbulently heat gas on large scales in compact groups. The observations provide a laboratory for studying the effects of turbulent energy dissipation on group-wide scales, which may provide clues about the heating and cooling of gas at high z in early galaxy and protogalaxy formation.

  3. A Secular Resonant Origin for the Loneliness of Hot Jupiters

    Science.gov (United States)

    Spalding, Christopher; Batygin, Konstantin

    2017-09-01

    Despite decades of inquiry, the origin of giant planets residing within a few tenths of an astronomical unit from their host stars remains unclear. Traditionally, these objects are thought to have formed further out before subsequently migrating inwards. However, the necessity of migration has been recently called into question with the emergence of in situ formation models of close-in giant planets. Observational characterization of the transiting subsample of close-in giants has revealed that “warm” Jupiters, possessing orbital periods longer than roughly 10 days more often possess close-in, co-transiting planetary companions than shorter period “hot” Jupiters, that are usually lonely. This finding has previously been interpreted as evidence that smooth, early migration or in situ formation gave rise to warm Jupiter-hosting systems, whereas more violent, post-disk migration pathways sculpted hot Jupiter-hosting systems. In this work, we demonstrate that both classes of planet may arise via early migration or in situ conglomeration, but that the enhanced loneliness of hot Jupiters arises due to a secular resonant interaction with the stellar quadrupole moment. Such an interaction tilts the orbits of exterior, lower-mass planets, removing them from transit surveys where the hot Jupiter is detected. Warm Jupiter-hosting systems, in contrast, retain their coplanarity due to the weaker influence of the host star’s quadrupolar potential relative to planet-disk interactions. In this way, hot Jupiters and warm Jupiters are placed within a unified theoretical framework that may be readily validated or falsified using data from upcoming missions, such as TESS.

  4. DYNAMICAL CONSTRAINTS ON THE ORIGIN OF HOT AND WARM JUPITERS WITH CLOSE FRIENDS

    Energy Technology Data Exchange (ETDEWEB)

    Antonini, Fabio; Lithwick, Yoram [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astrophysics, Northwestern University, Evanston, IL 60208 (United States); Hamers, Adrian S. [Leiden Observatory, Niels Bohrweg 2, Leiden, 2333CA (Netherlands)

    2016-12-01

    Gas giants orbiting their host star within the ice line are thought to have migrated to their current locations from farther out. Here we consider the origin and dynamical evolution of observed Jupiters, focusing on hot and warm Jupiters with outer friends. We show that the majority of the observed Jupiter pairs (20 out of 24) are dynamically unstable if the inner planet is placed at ≳1 au distance from the stellar host. This finding is at odds with formation theories that invoke the migration of such planets from semimajor axes ≳1 au due to secular dynamical processes (e.g., secular chaos, Lidov–Kozai [LK] oscillations) coupled with tidal dissipation. In fact, the results of N -body integrations show that the evolution of dynamically unstable systems does not lead to tidal migration but rather to planet ejections and collisions with the host star. This and other arguments lead us to suggest that most of the observed planets with a companion could not have been transported from farther out through secular migration processes. More generally, by using a combination of numerical and analytic techniques, we show that the high- e LK migration scenario can only account for less than 10% of all gas giants observed between 0.1 and 1 au. Simulations of multiplanet systems support this result. Our study indicates that rather than starting on highly eccentric orbits with orbital periods above 1 yr, these “warm” Jupiters are more likely to have reached the region where they are observed today without having experienced significant tidal dissipation.

  5. DYNAMICAL CONSTRAINTS ON THE ORIGIN OF HOT AND WARM JUPITERS WITH CLOSE FRIENDS

    International Nuclear Information System (INIS)

    Antonini, Fabio; Lithwick, Yoram; Hamers, Adrian S.

    2016-01-01

    Gas giants orbiting their host star within the ice line are thought to have migrated to their current locations from farther out. Here we consider the origin and dynamical evolution of observed Jupiters, focusing on hot and warm Jupiters with outer friends. We show that the majority of the observed Jupiter pairs (20 out of 24) are dynamically unstable if the inner planet is placed at ≳1 au distance from the stellar host. This finding is at odds with formation theories that invoke the migration of such planets from semimajor axes ≳1 au due to secular dynamical processes (e.g., secular chaos, Lidov–Kozai [LK] oscillations) coupled with tidal dissipation. In fact, the results of N -body integrations show that the evolution of dynamically unstable systems does not lead to tidal migration but rather to planet ejections and collisions with the host star. This and other arguments lead us to suggest that most of the observed planets with a companion could not have been transported from farther out through secular migration processes. More generally, by using a combination of numerical and analytic techniques, we show that the high- e LK migration scenario can only account for less than 10% of all gas giants observed between 0.1 and 1 au. Simulations of multiplanet systems support this result. Our study indicates that rather than starting on highly eccentric orbits with orbital periods above 1 yr, these “warm” Jupiters are more likely to have reached the region where they are observed today without having experienced significant tidal dissipation.

  6. Regional seasonal warming anomalies and land-surface feedbacks

    Science.gov (United States)

    Coffel, E.; Horton, R. M.

    2017-12-01

    Significant seasonal variations in warming are projected in some regions, especially central Europe, the southeastern U.S., and central South America. Europe in particular may experience up to 2°C more warming during June, July, and August than in the annual mean, enhancing the risk of extreme summertime heat. Previous research has shown that heat waves in Europe and other regions are tied to seasonal soil moisture variations, and that in general land-surface feedbacks have a strong effect on seasonal temperature anomalies. In this study, we show that the seasonal anomalies in warming are also due in part to land-surface feedbacks. We find that in regions with amplified warming during the hot season, surface soil moisture levels generally decline and Bowen ratios increase as a result of a preferential partitioning of incoming energy into sensible vs. latent. The CMIP5 model suite shows significant variability in the strength of land-atmosphere coupling and in projections of future precipitation and soil moisture. Due to the dependence of seasonal warming on land-surface processes, these inter-model variations influence the projected summertime warming amplification and contribute to the uncertainty in projections of future extreme heat.

  7. THE SURPRISINGLY CONSTANT STRENGTH OF O VI ABSORBERS OVER COSMIC TIME

    International Nuclear Information System (INIS)

    Fox, Andrew J.

    2011-01-01

    O VI absorption is observed in a wide range of astrophysical environments, including the local interstellar medium, the disk and halo of the Milky Way, high-velocity clouds, the Magellanic Clouds, starburst galaxies, the intergalactic medium (IGM), damped Lyα systems, and gamma-ray-burst host galaxies. Here, a new compilation of 775 O VI absorbers drawn from the literature is presented, all observed at high resolution (instrumental FWHM ≤ 20 km s -1 ) and covering the redshift range z = 0-3. In galactic environments [log N(H I) ∼> 20], the mean O VI column density is shown to be insensitive to metallicity, taking a value log N(O VI) ∼ 14.5 for galaxies covering the range -1.6 ∼ 4 K) clouds and hot (∼10 6 K) plasma, although many such layers would have to be intersected by a typical galaxy-halo sight line to build up the characteristic galactic N(O VI). The alternative, widely used model of single-phase photoionization for intergalactic O VI is ruled out by kinematic evidence in the majority of IGM O VI components at low and high redshift.

  8. Intergalactic stellar populations in intermediate redshift clusters

    Science.gov (United States)

    Melnick, J.; Giraud, E.; Toledo, I.; Selman, F.; Quintana, H.

    2012-11-01

    A substantial fraction of the total stellar mass in rich clusters of galaxies resides in a diffuse intergalactic component usually referred to as the intracluster light (ICL). Theoretical models indicate that these intergalactic stars originate mostly from the tidal interaction of the cluster galaxies during the assembly history of the cluster, and that a significant fraction of these stars could have formed in situ from the late infall of cold metal-poor gas clouds on to the cluster. However, these models also overpredict the fraction of stellar mass in the ICL by a substantial margin, something that is still not well understood. The models also make predictions about the age distribution of the ICL stars, which may provide additional observational constraints. Here we present population synthesis models for the ICL of an intermediate redshift (z = 0.29) X-ray cluster that we have extensively studied in previous papers. The advantage of observing intermediate redshift clusters rather than nearby ones is that the former fit the field of view of multi-object spectrographs in 8-m telescopes and therefore permit us to encompass most of the ICL with only a few well-placed slits. In this paper we show that by stacking spectra at different locations within the ICL it is possible to reach sufficiently high signal-to-noise ratios to fit population synthesis models and derive meaningful results. The models provide ages and metallicities for the dominant populations at several different locations within the ICL and the brightest cluster galaxies (BCG) halo, as well as measures of the kinematics of the stars as a function of distance from the BCG. We thus find that the ICL in our cluster is dominated by old metal-rich stars, at odds with what has been found in nearby clusters where the stars that dominate the ICL are old and metal poor. While we see weak evidence of a young, metal-poor component, if real, these young stars would amount to less than 1 per cent of the total ICL

  9. Nitrogen and Warming Control the Vegetation in Inner Mongolia Tourist Area

    OpenAIRE

    Sun, Qiong; Hu, Xiaobing; Zhang, Chi

    2016-01-01

    The global warming and atmospheric nitrogen deposition problem has become more and more serious under the influence of human activities, and it has become one of the hot issues in this field, which will have far-reaching impact on all kinds of vegetation, thus the functioning of the ecosystem will be changed, which will be reflected in climate warming process. Inner Mongolia Autonomous Region is mainly composed of desert grasslands, so the development and protection of vegetation has consider...

  10. Using gamma-ray bursts to probe the cosmic intergalactic medium

    Energy Technology Data Exchange (ETDEWEB)

    Sudilovsky, Vladimir

    2014-05-28

    Gamma-ray bursts (GRBs) rapidly liberate enormous amounts of energy through the cataclysmic destruction of an individual massive object. GRBs are the most energetic events in the Universe, boasting isotropic equivalent energy releases of E∝10{sup 51-54} erg in time scales of seconds - more energy than even active galaxies in the same time-frame. These transient events represent the ultimate high energy laboratories, and their afterglows are readily detectable from ground-based observatories out to cosmological distances out to z∝8. For this reason, GRBs are a natural tool to probe the early universe. To this end, programs to quickly measure the photometric and spectroscopic properties of GRB afterglows are providing a wealth of data that enable us to characterize the physical properties of both the burst itself and its host environment. In addition to providing extremely poignant information on the burst and its medium, GRB afterglow spectra show the presence of matter intervening along the line of sight. MgII, an important tracer of α-element processes and thus of star formation and galaxies, has been measured in ∝ 60% of GRB afterglow spectra. Surprisingly, MgII is only found in ∝30% of quasar spectra. This discrepancy in the number density dn/dz of intervening MgII absorbers implies that there are significant observational biases in either the spectroscopic samples of either GRB afterglows or quasars. In this work, we review the MgII issue and the biases proposed to explain it. We find that observations of other tracer systems (namely CIV) do not show the same overdensity, and thus conclude that solution to the MgII problem is related to the geometry of the sight-line relative to the absorbers. We conclude that an observational bias stemming from dust extinction arising from MgII cannot explain such a large discrepancy. Finally, we search for a signal of the MgII discrepancy in the transverse direction by computing the GRB-galaxy two point correlation

  11. Using gamma-ray bursts to probe the cosmic intergalactic medium

    International Nuclear Information System (INIS)

    Sudilovsky, Vladimir

    2014-01-01

    Gamma-ray bursts (GRBs) rapidly liberate enormous amounts of energy through the cataclysmic destruction of an individual massive object. GRBs are the most energetic events in the Universe, boasting isotropic equivalent energy releases of E∝10 51-54 erg in time scales of seconds - more energy than even active galaxies in the same time-frame. These transient events represent the ultimate high energy laboratories, and their afterglows are readily detectable from ground-based observatories out to cosmological distances out to z∝8. For this reason, GRBs are a natural tool to probe the early universe. To this end, programs to quickly measure the photometric and spectroscopic properties of GRB afterglows are providing a wealth of data that enable us to characterize the physical properties of both the burst itself and its host environment. In addition to providing extremely poignant information on the burst and its medium, GRB afterglow spectra show the presence of matter intervening along the line of sight. MgII, an important tracer of α-element processes and thus of star formation and galaxies, has been measured in ∝ 60% of GRB afterglow spectra. Surprisingly, MgII is only found in ∝30% of quasar spectra. This discrepancy in the number density dn/dz of intervening MgII absorbers implies that there are significant observational biases in either the spectroscopic samples of either GRB afterglows or quasars. In this work, we review the MgII issue and the biases proposed to explain it. We find that observations of other tracer systems (namely CIV) do not show the same overdensity, and thus conclude that solution to the MgII problem is related to the geometry of the sight-line relative to the absorbers. We conclude that an observational bias stemming from dust extinction arising from MgII cannot explain such a large discrepancy. Finally, we search for a signal of the MgII discrepancy in the transverse direction by computing the GRB-galaxy two point correlation

  12. What fills the space between the partially ionized clouds in the local interstellar medium

    International Nuclear Information System (INIS)

    Linsky, Jeffrey; Redfield, Seth

    2015-01-01

    The interstellar matter located between the warm clouds in the LISM and in the Local Cavity is now thought to be photoionized gas with temperatures in the range 10,000-20,000 K. While the hot stars ε CMa and β CMa are the primary photoionizing sources in the LISM, hot white dwarfs also contribute. We consider whether the Stromgren sphere gas produced by very local hot white dwarfs like Sirius B can be important in explaining the local intercloud gas. We find that the Stromgren sphere of Sirius can at least partially explain the intercloud gas in the lines of sight to several nearby stars. We also suggest that the partially ionized warm clouds like the Local Interstellar Cloud in which the Sun is located may be in part Strömgren sphere shells

  13. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot.

    Science.gov (United States)

    Caputi, Nick; Kangas, Mervi; Denham, Ainslie; Feng, Ming; Pearce, Alan; Hetzel, Yasha; Chandrapavan, Arani

    2016-06-01

    An extreme marine heat wave which affected 2000 km of the midwest coast of Australia occurred in the 2010/11 austral summer, with sea-surface temperature (SST) anomalies of 2-5°C above normal climatology. The heat wave was influenced by a strong Leeuwin Current during an extreme La Niña event at a global warming hot spot in the Indian Ocean. This event had a significant effect on the marine ecosystem with changes to seagrass/algae and coral habitats, as well as fish kills and southern extension of the range of some tropical species. The effect has been exacerbated by above-average SST in the following two summers, 2011/12 and 2012/13. This study examined the major impact the event had on invertebrate fisheries and the management adaption applied. A 99% mortality of Roei abalone ( Haliotis roei ) and major reductions in recruitment of scallops ( Amusium balloti ), king ( Penaeus latisulcatus ) and tiger ( P. esculentus ) prawns, and blue swimmer crabs were detected with management adapting with effort reductions or spatial/temporal closures to protect the spawning stock and restocking being evaluated. This study illustrates that fisheries management under extreme temperature events requires an early identification of temperature hot spots, early detection of abundance changes (preferably using pre-recruit surveys), and flexible harvest strategies which allow a quick response to minimize the effect of heavy fishing on poor recruitment to enable protection of the spawning stock. This has required researchers, managers, and industry to adapt to fish stocks affected by an extreme environmental event that may become more frequent due to climate change.

  14. "Hot", "Cold" and "Warm" Information and Higher Education Decision-Making

    Science.gov (United States)

    Slack, K.; Mangan, J.; Hughes, A.; Davies, P.

    2014-01-01

    This paper draws on the notions of "hot" and "cold" knowledge in analysing the responses of students to the relevance of different information and sources of such information in university choice. Analysis of questionnaire and focus group data from prospective and first-year undergraduate students provides evidence that many…

  15. Effect of warm-smoking on total microbial count of meat products

    Directory of Open Access Journals (Sweden)

    A Javadi

    2007-11-01

    Full Text Available The frankfurters are amongst the most famous and popular sausages in the world and beef and poultry meat are used in Iran for their preparation. The techniques of warm smoking at 42°c for two hours and then hot smoking together with steam cooking at 8°c for one hour are utilized in proportion of this product. In spite of its carcinogenic properties, smoke is used to create color, flavor and odor and to improve the preservative qualities of sausages. In this study, 14 sausage samples were taken from each of the stages of frankfurter production line including pre-smoking, post- warm smoking and post-hot smoking, their total microbial counts (aerobic mesophiles determined and the means of the three stages compared using the ANOVA statistical test. The results indicated that the total microbial count increased significantly (P

  16. THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. I. IMPLICATIONS OF PLASMA INSTABILITIES FOR THE INTERGALACTIC MAGNETIC FIELD AND EXTRAGALACTIC GAMMA-RAY BACKGROUND

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Avery E; Chang, Philip; Pfrommer, Christoph [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

    2012-06-10

    Inverse Compton cascades (ICCs) initiated by energetic gamma rays (E {approx}> 100 GeV) enhance the GeV emission from bright, extragalactic TeV sources. The absence of this emission from bright TeV blazars has been used to constrain the intergalactic magnetic field (IGMF), and the stringent limits placed on the unresolved extragalactic gamma-ray background (EGRB) by Fermi have been used to argue against a large number of such objects at high redshifts. However, these are predicated on the assumption that inverse Compton scattering is the primary energy-loss mechanism for the ultrarelativistic pairs produced by the annihilation of the energetic gamma rays on extragalactic background light photons. Here, we show that for sufficiently bright TeV sources (isotropic-equivalent luminosities {approx}> 10{sup 42} erg s{sup -1}) plasma beam instabilities, specifically the 'oblique' instability, present a plausible mechanism by which the energy of these pairs can be dissipated locally, heating the intergalactic medium. Since these instabilities typically grow on timescales short in comparison to the inverse Compton cooling rate, they necessarily suppress the ICCs. As a consequence, this places a severe constraint on efforts to limit the IGMF from the lack of a discernible GeV bump in TeV sources. Similarly, it considerably weakens the Fermi limits on the evolution of blazar populations. Specifically, we construct a TeV-blazar luminosity function from those objects currently observed and find that it is very well described by the quasar luminosity function at z {approx} 0.1, shifted to lower luminosities and number densities, suggesting that both classes of sources are regulated by similar processes. Extending this relationship to higher redshifts, we show that the magnitude and shape of the EGRB above {approx}10 GeV are naturally reproduced with this particular example of a rapidly evolving TeV-blazar luminosity function.

  17. CARBON-CHAIN SPECIES IN WARM-UP MODELS

    International Nuclear Information System (INIS)

    Hassel, George E.; Harada, Nanase; Herbst, Eric

    2011-01-01

    In previous warm-up chemical models of the low-mass star-forming region L1527, we investigated the evolution of carbon-chain unsaturated hydrocarbon species when the envelope temperature is slightly elevated to T ≈ 30 K. These models demonstrated that enhanced abundances of such species can be explained by gas-phase ion-molecule chemistry following the partial sublimation of methane from grain surfaces. We also concluded that the abundances of hydrocarbon radicals such as the C n H family should be further enhanced as the temperatures increase to higher values, but this conclusion stood in contrast with the lack of unambiguous detection of these species toward hot core and corino sources. Meanwhile, observational surveys have identified C 2 H, C 4 H, CH 3 CCH, and CH 3 OH toward hot corinos (especially IRAS 16293–2422) as well as toward L1527, with lower abundances for the carbon-chain radicals and higher abundances for the other two species toward the hot corinos. In addition, the Herschel Space Telescope has detected the bare linear chain C 3 in 50 K material surrounding young high-mass stellar objects. To understand these new results, we revisit previous warm-up models with an augmented gas-grain network that incorporated reactions from a gas-phase network that was constructed for use with increased temperature up to 800 K. Some of the newly adopted reactions between carbon-chain species and abundant H 2 possess chemical activation energy barriers. The revised model results now better reproduce the observed abundances of unsaturated carbon chains under hot corino (100 K) conditions and make predictions for the abundances of bare carbon chains in the 50 K regions observed by the Herschel HIFI detector.

  18. Why Are Hot Jupiters So Lonely?

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Jupiter-like planets with blisteringly close-in orbits are generally friendless, with no nearbyplanets transiting along with them. Giant planets with orbits a little further out, on the other hand, often have at least one companion. A new study examines the cause of hot Jupiters loneliness.Forming Close-In GiantsArtists impression of a planet forming within a protoplanetary disk. [NAOJ]Though weve studied close-in giant planets for decades now, we still dont fully understand how these objects form and evolve. Jupiter-like giant planets could form in situ next to their host stars, or they could form further out in the system beyond the ice line and then migrate inwards. And if they do migrate, this migration could occur early, while the protoplanetary disk still exists, or long after, via excitation of large eccentricities.We can try to resolve this mystery by examining the statistics of the close-in giant planets weve observed, but this often raises more questions than it answers. A prime example: the properties of close-in giants that have close-in companion planets orbiting in the same plane (i.e., co-transiting).About half of warm Jupiters Jupiter-like planets with periods of 1030 days appear to have close-in, co-transiting companions. In contrast, almost no hot Jupiters Jupiter-like planets with periods of less than 10 days have such companions. What causes this dichotomy?Schematic of the authors model, in which the close-in giant (m1) encounters a resonance with its host star, causing the orbit of the exterior companion (m2) to become tilted. [Spalding Batygin 2017]Friendless Hot JupitersWhile traditional models have argued that the two types of planets form via different pathways warm Jupiters form in situ, or else migrate inward early and smoothly, whereas hot Jupiters migrate inward late and violently, losing their companions in the process a new study casts doubt on this picture.Two scientists from the California Institute of Technology, Christopher

  19. Coral bleaching and ocean ''hot spots''

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T.J. (Global Coral Reef Alliance, Chappaqua, NY (United States)); Hayes, R.L. (Howard Univ., Washington, DC (United States). College of Medicine)

    1994-05-01

    Global sea-surface temperature maps show that mass coral-reef bleaching episodes between 1983 and 1991 followed positive anomalies more than 1 deg C above long-term monthly averages (''hot spots'') during the preceding warm season. Irregular formation, movement, and disappearance of hot spots make their detailed long-term prediction impossible, but they can be tracked in real time from satellite data. Monitoring of ocean hot spots and of coral bleaching is needed if the Framework Convention of Climate Change is to meet its goal of protecting the most temperature sensitive ecosystems. 47 refs, 3 figs

  20. The use of atomic force microscopy to evaluate warm mix asphalt.

    Science.gov (United States)

    2013-01-01

    The main objective of this study was to use the Atomic Force Microscopy (AFM) to examine the moisture susceptibility : and healing characteristics of Warm Mix Asphalt (WMA) and compare it with those of conventional Hot Mix Asphalt (HMA). To : this en...

  1. Use of warm mix asphalt pavement on Route 9, in Durham.

    Science.gov (United States)

    2012-06-01

    A number of new technologies have been developed to lower the production and placement temperatures : of hot-mix asphalt (HMA). Generically, these technologies are referred to as warm-mix asphalt (WMA). : In Europe and to a lesser extent in North Ame...

  2. Movement of global warming issues

    International Nuclear Information System (INIS)

    Sugiyama, Taishi

    2015-01-01

    This paper summarizes the report of IPCC (Intergovernmental Panel on Climate Change), and the movement of the global warming issues as seen from the United Nations Framework Convention on Climate Change (Conference of the Parties: COP) and the policy discussions in Japan. From the Fifth Assessment Report published by IPCC, it shows the following items: (1) increasing trends of greenhouse effect gas emissions during 1970 and 2010, (2) trends in world's greenhouse effect gas emissions according to income segment, and (3) factor analysis of changes in greenhouse effect gas emissions. Next, it takes up the greenhouse gas emission scenario of IPCC, shows the scenario due to temperature rise pattern, and introduces the assumption of emission reduction due to BECCS. Regarding the 2 deg. scenario that has become a hot topic in international negotiations, it describes the reason for difficulties in its implementation. In addition, as the international trends of global warming, it describes the agreement of numerical targets for emissions at COP3 (Kyoto Conference) and the subsequent movements. Finally, it introduces Japan's measures against global warming, as well as the future movement. (A.O.)

  3. Field Monitoring of Experimental Hot Mix Asphalt Projects Placed in Massachusetts

    Science.gov (United States)

    2017-06-30

    Since 2000, Massachusetts has been involved with numerous field trials of experimental hot mix asphalt mixtures. These experimental mixtures included several pilot projects using the Superpave mixture design methodology, utilization of warm mix aspha...

  4. Effect of hot pressing additives on the leachability of hot pressed sodium hydrous titanium oxide

    International Nuclear Information System (INIS)

    Valentine, T.M.; Sambell, R.A.J.

    1980-01-01

    Sodium hydrous titanium oxide is an ion exchange resin which can be used for immobilizing medium level waste (MLW) liquors. When hot pressed, it undergoes conversion to a ceramic. Three low melting point materials (borax, bismuth trioxide, and a mixture of PbO/CuO) were added to the (Na)HTiO and the effect that each of these had on aiding densification was assessed. Hot pressing temperature, applied pressure, and percentage addition of hot pressing aid were varied. Percentage open porosity, flexural strength, and leachability were measured. There was a linear relationship between the percentage open porosity and the logarithm of the leach rate for a constant percentage addition of each additive

  5. Effect of external hot EGR dilution on combustion, performance and particulate emissions of a GDI engine

    International Nuclear Information System (INIS)

    Xie, Fangxi; Hong, Wei; Su, Yan; Zhang, Miaomiao; Jiang, Beiping

    2017-01-01

    Highlights: • Effect of hot EGR on combustion and PN emission is investigated on a GDI engine. • Appropriate addition of hot EGR can reduce fuel consumption, NO_x and PN emission. • Relationship between BSFC and emissions of hot EGR is better than cooled EGR. • Condition with low-medium speeds and medium loads are more suitable for hot EGR. - Abstract: In this paper, an experimental investigation about the influence of hot EGR addition on the engine combustion, performance and particulate number emission was conducted at a spark-ignition gasoline direct injection (GDI) engine. Meanwhile, the different effects between cooled and hot EGR addition methods were compared and the variations of fuel consumption and particle number emissions under six engine operating conditions with different speeds and loads were analyzed. The research result indicated that increasing hot EGR ratio properly with adjustment of ignition timing could effectively improve the relationship among brake-specific fuel consumption (BSFC), NO_x and particle number emissions. When hot EGR ratio increased to 20%, not only BSFC but also the NO_x and particle number emissions were reduced, which were about 7%, 87% and 36% respectively. Compared with cooled EGR, the flame development and propagation speeds were accelerated, and cycle-by-cycle combustion variation decreased with hot EGR. Meanwhile, using hot EGR made the engine realize a better relationship among fuel consumption, NO_x and particle number emissions. The biggest improvements of BSFC, NO_x and particle number emissions were obtained at low-medium speed and medium load engine conditions by hot EGR addition method. While engine speed increased and load decreased, the improvement of engine fuel consumption and emission reduced with hot EGR method.

  6. Power-law to Power-law Mapping of Blazar Spectra from Intergalactic Absorption

    International Nuclear Information System (INIS)

    Stecker, F W; Scully, S T

    2007-01-01

    We have derived a useful analytic approximation for determining the effect of intergalactic absorption on the γ-ray spectra of TeV blazars the energy range 0.2 TeV γ γ ) is approximately logarithmic. The effect of this energy dependence is to steepen intrinsic source spectra such that a source with an approximate power-law spectral index Γ s is converted to one with an observed spectral index Γ o ≅ Γ s + ΔΓ(z) where ΔΓ(z) is a linear function of z in the redshift range 0.05-0.4. We apply this approximation to the spectra of 7 TeV blazars

  7. Intergalactic Leadership: Practical Tips for Leading Where No One Has Gone Before

    Directory of Open Access Journals (Sweden)

    Peg A Lonnquist

    2015-07-01

    Full Text Available Most of the transformational, inclusive, partnership leadership literature, while brilliant and inspirational, does not provide day-to-day ideas for practitioners. Drawing on several key leadership theories and theorists (Kouzes and Posner’s five core behaviors of successful leaders, the Athena Model based on research on women leaders, Centered Leadership from the McKinsey Project, the Research-Productivity and Engagement Model, Burn’s and Bass’ Transformational Leadership Theory, Riane Eisler’s partnership leadership, multicultural leadership theorist Juana Bordas, and feminist leadership theorists, the author describes how she has translated and implemented day-to-day leadership practices which she calls Intergalactic Leadership.

  8. On the relationship between tropospheric conditions and widespread hot days in Iran

    Science.gov (United States)

    Asakereh, Hossein; Shadman, Hassan

    2018-01-01

    The present study investigated how the tropospheric conditions relate to the occurrence of widespread hot days (WHD) in Iran using the data of maximum daily temperature and other tropospheric variables. To better understand the tropospheric conditions during WHD, different patterns of tropospheric circulation were examined systematically. Four tropospheric types were identified based on sea level pressure (SLP). SLP, 500 hPa height, anomaly patterns, and warm advection maps were constructed for typical days of each group. The tropospheric conditions associated with hot days occurred simultaneously with a low-pressure system at sea level, a ridge at middle troposphere over Iran, and a pronounced trough over the Mediterranean Sea at 500 hPa. These conditions caused air mass from subtropical regions toward Iran. That is, northward, northeastward, and even eastward winds injected heat with warm origins toward the country. Hot days compounded by drought conditions have affected many parts of the country in different ways such as decrease in the agricultural products in numerous areas and significant discharge reduction in many rivers. The society is also very likely to face considerable challenges to cope with hot days. The findings of the study can be utilized in climate modeling and climate prediction of hot days in the country. Accordingly, water and electricity consumption can be planned with further precision and water consumption can be managed in crises.

  9. A comparative simple method for human bioclimatic conditions applied to seasonally hot/warm cities of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda Martinez, A. [Universidad Veracruzana, Xalapa, Veracruz (Mexico); Garcia Cueto, O.R. [Universidad Autonoma de Baja California, Mexicali, B.C. (Mexico)

    2002-01-01

    The climate of a region is an environmental resource with important implications for things such as thermal comfort, health and productivity of the population. In this work, the bioclimatic comfort was evaluated for seven seasonally warm/hot cities of Mexico by means of the following current indexes: Discomfort Index, Enthalpy Index and Heat Strain Index. Also, the periods during which it is necessary to use air conditioning in the studied cities were calculated from estimated global radiation and hourly data of temperature and relative humidity which made it possible to establish them with high precision. Finally, the useful of the Heat Strain Index is shown. It is a simple index needing available meteorological data to compare bioclimatic conditions of similar sites. [Spanish] El clima regional tiene implicaciones en el confort, la salud y la productividad de la poblacion. En este articulo se presentan las evaluaciones bioclimaticas comparativas de siete ciudades calidas de Mexico. Se aplicaron los indices bioclimaticos de disconfort, entalpia y esfuerzo frente al calor. Se calcularon los periodos para los cuales es necesario el uso de aire acondicionado, a partir de estimaciones de radiacion solar global y de temperatura y humedad horarias medias mensuales. Finalmente se muestra la utilidad y calidad del Indice de esfuerzo frente al calor, el cual requiere solo de datos climatologicos comunes para poder comparar condiciones bioclimaticas de sitios similares.

  10. Effects on the spectrum of the cosmic microwave background due to intergalactic dust

    International Nuclear Information System (INIS)

    Kurtz, R.C.

    1981-01-01

    A model for intergalactic dust composed of graphite grains is presented. The model is examined in the context of the Rayleigh approximation for results due to long-wavelength scattering and absorption by the grains. The temperature of the scattering grains as a function of redshift is found, based on reasonable assumptions of the density of optical wavelength radiation in the universe. Mechanisms for aligning the grains on a scale large enough to produce polarization in the microwave region are discussed. The results are used to predict features that may be present in the observed cosmic microwave background radiation spectrum

  11. An optical search for the intergalactic HI cloud in Leo

    International Nuclear Information System (INIS)

    Kibblewhite, E.J.; Cawson, M.G.M.; Disney, M.J.; Phillipps, S.

    1985-01-01

    An optical search has been made for the large intergalactic HI cloud discovered from Arecibo by previous authors. A very deep red UKSTU plate of the area has been scanned by the APM machine and deep CCD frames of a small area near a peak in the HI emission have been acquired. No extended emission is found at the limiting surface brightness of the photographic material and no excess of stars above that expected from the Galaxy is found in the CCD data. However, due to the extreme size of the HI cloud, the upper limit on the total luminosity is that of a dwarf galaxy, Msub(B) >approx.-18. As its hydrogen and total masses would not be unusual for a galaxy, a highly extended very low surface brightness galaxy can not be ruled out, at present. (author)

  12. The Effect of Passive Design Strategies on Thermal Performance of Female Secondary School Buildings during Warm Season in Hot Dry Climate

    Directory of Open Access Journals (Sweden)

    Sahar eZahiri

    2016-03-01

    Full Text Available This paper describes a series of field studies and simulation analysis to improve the thermal performance of school buildings in the city of Tehran in Iran during warm season. The field studies used on-site measurement and questionnaire-based survey in the warm spring season in a typical female secondary school building. The on-site monitoring assessed the indoor air temperature and humidity levels of six classrooms while the occupants completed questionnaires covering their thermal sensations and thermal preferences. Moreover, thermal simulation analysis was also carried out to evaluate and improve the thermal performance of the classrooms based on the students’ thermal requirements and passive design strategies. In this study, the environmental design guidelines for female secondary school buildings were introduced for the hot and dry climate of Tehran, using passive design strategies. The study shows that the application of passive design strategies including south and south-east orientation, 10cm thermal insulation in wall and 5cm in the roof, and the combination of 30cm side fins and overhangs as a solar shading devices, as well as all-day ventilation strategy and the use of thermal mass materials with 25cm-30cm thickness, has considerable impact on indoor air temperatures in warm season in Tehran and keeps the indoor environment in an acceptable thermal condition. The results of the field studies also indicated that most of the occupants found their thermal environment not to be comfortable and the simulation results showed that passive design techniques had a significant influence on the indoor air temperature and can keep it in an acceptable range based on the female students’ thermal requirement. Therefore, in order to enhance the indoor environment and to increase the learning performance of the students, it is necessary to use the appropriate passive design strategies, which also reduce the need for mechanical systems and

  13. Investigation on the intense fringe formation phenomenon downstream hot-image plane.

    Science.gov (United States)

    Hu, Yonghua; Li, Guohui; Zhang, Lifu; Huang, Wenti; Chen, Shuming

    2015-11-30

    The propagation of a high-power flat-topped Gaussian beam, which is modulated by three parallel wirelike scatterers, passing through a downstream Kerr medium slab and free spaces is investigated. A new phenomenon is found that a kind of intense fringe with intensity several times that of the incident beam can be formed in a plane downstream the Kerr medium. This kind of intense fringe is another result in the propagation process of nonlinear imaging and it locates scores of centimeters downstream the predicted hot image plane. Moreover, the intensity of this fringe can achieve the magnitude of that of hot image in corresponding single-scatterer case, and this phenomenon can arise only under certain conditions. As for the corresponding hot images, they are also formed but largely suppressed. The cause of the formation of such an intense fringe is analyzed and found related to interference in the free space downstream the Kerr medium. Moreover, the ways it is influenced by some important factors such as the wavelength of incident beam and the properties of scatterers and Kerr medium are discussed, and some important properties and relations are revealed.

  14. Humid Heat Waves at different warming levels

    Science.gov (United States)

    Russo, S.; Sillmann, J.; Sterl, A.

    2017-12-01

    The co-occurrence of consecutive hot and humid days during a heat wave can strongly affect human health. Here, we quantify humid heat wave hazard in the recent past and at different levels of global warming.We find that the magnitude and apparent temperature peak of heat waves, such as the ones observed in Chicago in 1995 and China in 2003, have been strongly amplified by humidity. Climate model projections suggest that the percentage of area where heat wave magnitude and peak are amplified by humidity increases with increasing warming levels. Considering the effect of humidity at 1.5o and 2o global warming, highly populated regions, such as the Eastern US and China, could experience heat waves with magnitude greater than the one in Russia in 2010 (the most severe of the present era).The apparent temperature peak during such humid-heat waves can be greater than 55o. According to the US Weather Service, at this temperature humans are very likely to suffer from heat strokes. Humid-heat waves with these conditions were never exceeded in the present climate, but are expected to occur every other year at 4o global warming. This calls for respective adaptation measures in some key regions of the world along with international climate change mitigation efforts.

  15. A VLT/MUSE galaxy survey towards QSO Q1410: looking for a WHIM traced by BLAs in inter-cluster filaments†

    Science.gov (United States)

    Pessa, Ismael; Tejos, Nicolas; Barrientos, L. Felipe; Werk, Jessica; Bielby, Richard; Padilla, Nelson; Morris, Simon L.; Prochaska, J. Xavier; Lopez, Sebastian; Hummels, Cameron

    2018-03-01

    Cosmological simulations predict that a significant fraction of the low-z baryon budget resides in large-scale filaments in the form of a diffuse plasma at temperatures T ˜ 105 - 107 K. However, direct observation of this so-called warm-hot intergalactic medium (WHIM) has been elusive. In the ΛCDM paradigm, galaxy clusters correspond to the nodes of the cosmic web at the intersection of several large-scale filamentary threads. In previous work, we used HST/COS data to conduct the first survey of broad H I Lyα absorbers (BLAs) potentially produced by WHIM in inter-cluster filaments. We targeted a single QSO, namely Q1410, whose sight-line intersects 7 independent inter-cluster axes at impact parameters cluster axes, we found 3 without any galaxy counterpart to stringent luminosity limits (˜4 × 108 L⊙ ˜0.01 L*), providing further evidence that these BLAs may represent genuine WHIM detections. We combined this sample with other suitable BLAs from the literature and inferred the corresponding baryon mean density for these filaments in the range Ω ^fil_bar= 0.02-0.04. Our rough estimates are consistent with the predictions from numerical simulations but still subject to large systematic uncertainties, mostly from the adopted geometry, ionization corrections and density profile.

  16. Kepler constraints on planets near hot Jupiters.

    Science.gov (United States)

    Steffen, Jason H; Ragozzine, Darin; Fabrycky, Daniel C; Carter, Joshua A; Ford, Eric B; Holman, Matthew J; Rowe, Jason F; Welsh, William F; Borucki, William J; Boss, Alan P; Ciardi, David R; Quinn, Samuel N

    2012-05-22

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 21 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  17. Kepler constraints on planets near hot Jupiters

    Science.gov (United States)

    Steffen, Jason H.; Ragozzine, Darin; Fabrycky, Daniel C.; Carter, Joshua A.; Ford, Eric B.; Holman, Matthew J.; Rowe, Jason F.; Welsh, William F.; Borucki, William J.; Boss, Alan P.; Ciardi, David R.; Quinn, Samuel N.

    2012-01-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2∶1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history. PMID:22566651

  18. Use of warm mix asphalt pavement on Interstate 95, Carmel to Hampden, northbound.

    Science.gov (United States)

    2012-06-01

    A number of new technologies have been developed to lower the production and placement temperatures : of hot-mix asphalt (HMA). Generically, these technologies are referred to as warm-mix asphalt (WMA). : In Europe and to a lesser extent in North Ame...

  19. Comment 1 on workshop in adaptation and mitigation strategies - why greenhouse warming stays a hot topic

    International Nuclear Information System (INIS)

    Coppock, R.

    1992-01-01

    The rapidity with which greenhouse warming burst onto the national and international political agendas is surprising. So too is the fact that it has remained of central interest despite the lack of understanding of the phenomenon exhibited by the general public. Even with lackluster public response, politicians and governments around the world are advocating costly actions designed to counter greenhouse warming. A certain amount of attention and concern is necessary to establish and sustain the attention of government decision makers. There are several attributes of the greenhouse warming problem that generated enough attention and concern to propel it so quickly onto the international agenda and keep it in the forefront for action. First, it is one of a new set of global problems that is intimately connected to scientific analysis. A great deal of data has been collected and analyzed since the early 1960s. Scientists have been carefully laying the groundwork for decades and have a solid foundation for addressing the problem. They were ready in 1988 to capitalize on the North American drought as a vehicle to bring the longer-term problem of greenhouse warming to more wide-spread attention. In short, there is a large body of knowledge about the problem and possible remediative actions. Second, greenhouse warming is a vivid problem with considerable psychological impact. Following close on the heels of the antarctic ozone hole and more widespread depletion of stratospheric ozone, it also demonstrates human capacity to directly alter the physical planet on which we depend for survival. Greenhouse warming is symbolic of some of our deepest fears

  20. Hydrodynamic Simulation of the Cosmological X-Ray Background

    Science.gov (United States)

    Croft, Rupert A. C.; Di Matteo, Tiziana; Davé, Romeel; Hernquist, Lars; Katz, Neal; Fardal, Mark A.; Weinberg, David H.

    2001-08-01

    We use a hydrodynamic simulation of an inflationary cold dark matter model with a cosmological constant to predict properties of the extragalactic X-ray background (XRB). We focus on emission from the intergalactic medium (IGM), with particular attention to diffuse emission from warm-hot gas that lies in relatively smooth filamentary structures between galaxies and galaxy clusters. We also include X-rays from point sources associated with galaxies in the simulation, and we make maps of the angular distribution of the emission. Although much of the X-ray luminous gas has a filamentary structure, the filaments are not evident in the simulated maps because of projection effects. In the soft (0.5-2 keV) band, our calculated mean intensity of radiation from intergalactic and cluster gas is 2.3×10-12 ergs-1 cm-2 deg-2, 35% of the total softband emission. This intensity is compatible at the ~1 σ level with estimates of the unresolved soft background intensity from deep ROSAT and Chandra measurements. Only 4% of the hard (2-10 keV) emission is associated with intergalactic gas. Relative to active galactic nuclei flux, the IGM component of the XRB peaks at a lower redshift (median z~0.45) and spans a narrower redshift range, so its clustering makes an important contribution to the angular correlation function of the total emission. The clustering on the scales accessible to our simulation (0.1‧-10') is significant, with an amplitude roughly consistent with an extrapolation of recent ROSAT results to small scales. A cross-correlation analysis of the XRB against nearby galaxies taken from a simulated redshift survey also yields a strong signal from the IGM. Our conclusions about the soft background intensity differ from those of some recent papers that have argued that the expected emission from gas in galaxy, group, and cluster halos would exceed the observed background unless much of the gas is expelled by supernova feedback. We obtain reasonable compatibility with

  1. Recent warming trend in the coastal region of Qatar

    Science.gov (United States)

    Cheng, Way Lee; Saleem, Ayman; Sadr, Reza

    2017-04-01

    The objective of this study was to analyze long-term temperature-related phenomena in the eastern portion of the Middle East, focusing on the coastal region of Qatar. Extreme temperature indices were examined, which were defined by the Expert Team on Climate Change Detection and Indices, for Doha, Qatar; these indices were then compared with those from neighboring countries. The trends were calculated for a 30-year period (1983-2012), using hourly data obtained from the National Climatic Data Center. The results showed spatially consistent warming trends throughout the region. For Doha, 11 of the 12 indices studied showed significant warming trends. In particular, the warming trends were represented by an increase in the number of warm days and nights and a decrease in the number of cool nights and days. The high-temperature extremes during the night have risen at more than twice the rate of their corresponding daytime extremes. The intensity and frequency of hot days have increased, and the minimum temperature indices exhibited a higher rate of warming. The climatic changes in Doha are consistent with the region-wide heat-up in recent decades across the Middle East. However, the rapid economic expansion, increase of population since the 1990s, and urban effects in the region are thought to have intensified the rapidly warming climate pattern observed in Doha since the turn of the century.

  2. Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble

    Science.gov (United States)

    Wehner, Michael; Stone, Dáithí; Mitchell, Dann; Shiogama, Hideo; Fischer, Erich; Graff, Lise S.; Kharin, Viatcheslav V.; Lierhammer, Ludwig; Sanderson, Benjamin; Krishnan, Harinarayan

    2018-03-01

    The half a degree additional warming, prognosis and projected impacts (HAPPI) experimental protocol provides a multi-model database to compare the effects of stabilizing anthropogenic global warming of 1.5 °C over preindustrial levels to 2.0 °C over these levels. The HAPPI experiment is based upon large ensembles of global atmospheric models forced by sea surface temperature and sea ice concentrations plausible for these stabilization levels. This paper examines changes in extremes of high temperatures averaged over three consecutive days. Changes in this measure of extreme temperature are also compared to changes in hot season temperatures. We find that over land this measure of extreme high temperature increases from about 0.5 to 1.5 °C over present-day values in the 1.5 °C stabilization scenario, depending on location and model. We further find an additional 0.25 to 1.0 °C increase in extreme high temperatures over land in the 2.0 °C stabilization scenario. Results from the HAPPI models are consistent with similar results from the one available fully coupled climate model. However, a complicating factor in interpreting extreme temperature changes across the HAPPI models is their diversity of aerosol forcing changes.

  3. A study of energy performance and audit of commercial mall in hot-summer/warm-winter climate zone in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhisheng, Li; Jiawen, Liao; Xiaoxia, Wang [School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong, 510006 (China); Lin, Yaolin [Building Energy Solutions and Technologies, Inc, San Jose Office, San Jose, CA 95134 (United States); Xuhong, Liu [School of Architecture and Urban Planning, Guangdong University of Technology, Guangzhou, Guangdong, 510643 (China)

    2013-08-15

    The building energy performance improvement of large-scale public buildings is very important to release China's energy shortage pressure. The aim of the study is to find out the building energy saving potentials of large-scale public and commercial buildings by energy audit. In this paper, the energy consumption, energy performance, and audit were carried out for a typical commercial mall, the so-called largest mall in Asia, located in a hot-summer and warm-winter climate zone. The total annual energy consumption reaches 210.01 kWh/m{sup 2}, of which lighting energy consumption accounts for 30.03 kWh/m{sup 2} and the lift and elevator energy consumption accounts for 40.46 kWh/m{sup 2}. It is by far higher than that of the average building energy consumption in the same category. However, the annual heating, ventilation, and air-conditioning (HVAC) energy consumption is only 87.19 kWh/m{sup 2} even though they run 24/7. It proves that the energy performance of the HVAC system is good. Therefore, the building energy savings potential mainly relies on reducing the excessive usage of lighting, lifts, and elevators.

  4. Adverse effects in coronary angiography: a comparative study of different temperature contrast medium

    International Nuclear Information System (INIS)

    Zhou Peng; Wang Qiulin; Cai Guocai; Li Lu; Jiang Licheng; Yang Zhen; Huang Xiuping

    2011-01-01

    Objective: To investigate the correlation between different temperature contrast medium and the occurrence of adverse effects, including the chest discomfort, the changes of heart rate, ST segment and T wave, the operating time and the used dosage of contrast medium, in performing coronary angiography. Methods: According to the contrast medium temperature used in coronary angiography, the patients were randomly divided into two groups: room temperature group (n=521) and warm temperature group (n=522). The contrast medium used in warm temperature group was bathed in 37 ℃ water for 60 minutes when the coronary angiography was carried out. The T Wave amplitude changes ≥ 0.01 mv, ST segment depression ≥ 0.05 mv, changes in heart rate ≥ 10 times/min were brought into the positive accounting. The occurrence of adverse effects, such as palpitation, chest distress and pectoralgia, the operative time and the used dosage of contrast medium were recorded. The results were analyzed and compared between the two groups. Results: Statistically significant differences in the changes of heart rate, ST segment deviation, T wave change and operating time existed between the two groups (P<0.05). And the difference in the occurrence of adverse effects between the two groups was also statistically significant (P<0.05). Conclusion: When performing coronary angiography, warming of the contrast medium with water bath is greatly conducive to the prevention of cardiac adverse effects. (authors)

  5. Climate extremes in Europe at 1.5 and 2 degrees of global warming

    Science.gov (United States)

    King, Andrew D.; Karoly, David J.

    2017-11-01

    There is an international effort to attempt to limit global warming to 1.5 °C above pre-industrial levels, however, there is a lack of quantitative analysis on the benefits of holding global warming to such a level. In this study, coupled climate model simulations are used to form large ensembles of simulated years at 1.5 °C and 2 °C of global warming. These ensembles are used to assess projected changes in the frequency and magnitude of European climate extremes at these warming levels. For example, we find that events similar to the European record hot summer of 2003, which caused tens of thousands of excess deaths, would be very likely at least 24% less frequent in a world at 1.5 °C global warming compared to 2 °C global warming. Under 2 °C of global warming, we could expect such extreme summer temperatures in the historical record to become commonplace, occurring in at least one-in-every-two years. We find that there are very clear benefits to limiting global warming for the European continent, including fewer and less intense heat and rainfall extremes when compared with higher levels of global warming.

  6. The Magnetic Field in Galaxies, Galaxy Clusters, and the InterGalactic Space

    CERN Document Server

    Dar, A; Dar, Arnon

    2005-01-01

    Magnetic fields of debated origin appear to permeate the Universe on all large scales. There is mounting evidence that supernovae produce not only roughly spherical ejecta and winds, but also highly relativistic jets of ordinary matter. These jets, which travel long distances, slow down by accelerating the matter encountered on their path to cosmic-ray energies. We show that, if the turbulent motions induced by the winds and the cosmic rays generate magnetic fields in rough energy equipartition, the predicted magnetic-field strengths coincide with the ones observed not only in galaxies (5 $\\mu$G in the Milky Way) but also in galaxy clusters (6 $\\mu$G in Coma). The prediction for the intergalactic (or inter-cluster) field is 50 nG.

  7. Heavy Scalar, Vector, and Axial-Vector Mesons in Hot and Dense Nuclear Medium

    Directory of Open Access Journals (Sweden)

    Arvind Kumar

    2014-01-01

    Full Text Available In this work we shall investigate the mass modifications of scalar mesons (D0; B0, vector mesons (D*; B*, and axial-vector mesons (D1; B1 at finite density and temperature of the nuclear medium. The above mesons are modified in the nuclear medium through the modification of quark and gluon condensates. We will find the medium modification of quark and gluon condensates within chiral SU(3 model through the medium modification of scalar-isoscalar fields σ and ζ at finite density and temperature. These medium modified quark and gluon condensates will further be used through QCD sum rules for the evaluation of in-medium properties of the above mentioned scalar, vector, and axial vector mesons. We will also discuss the effects of density and temperature of the nuclear medium on the scattering lengths of the above scalar, vector, and axial-vector mesons. The study of the medium modifications of the above mesons may be helpful for understanding their production rates in heavy-ion collision experiments. The results of present investigations of medium modifications of scalar, vector, and axial-vector mesons at finite density and temperature can be verified in the compressed baryonic matter (CBM experiment of FAIR facility at GSI, Germany.

  8. Developments of Thermal Environment Techniques of Animal Housing in Hot Climate

    DEFF Research Database (Denmark)

    Zhang, Guoqiang; Bjerg, Bjarne Schmidt

    It is a challenge to create the satisfied indoor climate of farm animal housing in hot climate conditions by ventilation design and control. Facing to the global warming tendency, the challenge become event great. To overcome this challenge, an optimal indoor climate control system should be able...

  9. Can warming particles enter global climate discussions?

    International Nuclear Information System (INIS)

    Bond, Tami C

    2007-01-01

    'Soot' or 'black carbon', which comes from incomplete combustion, absorbs light and warms the atmosphere. Although there have been repeated suggestions that reduction of black carbon could be a viable part of decreasing global warming, it has not yet been considered when choosing actions to reduce climatic impact. In this paper, I examine four conceptual barriers to the consideration of aerosols in global agreements. I conclude that some of the major objections to considering aerosols under hemispheric or global agreements are illusory because: (1) a few major sources will be addressed by local regulations, but the remainder may not be addressed by traditional air quality management; (2) climate forcing by carbon particles is not limited to 'hot spots'-about 90% of it occurs at relatively low concentrations; (3) while aerosol science is complex, the most salient characteristics of aerosol behavior can be condensed into tractable metrics including, but not limited to, the global warming potential; (4) despite scientific uncertainties, reducing all aerosols from major sources of black carbon will reduce direct climate warming with a very high probability. This change in climate forcing accounts for at least 25% of the accompanying CO 2 forcing with significant probability (25% for modern diesel engines, 90% for superemitting diesels, and 55% for cooking with biofuels). Thus, this fraction of radiative forcing should not be ignored

  10. Medium dependence of vector meson properties in heavy ion collisions

    International Nuclear Information System (INIS)

    Faessler, Amand; Fuchs, Christian

    2007-01-01

    Heavy ion collisions produce dense and hot nuclear matter. Dileptons give information about this hot and dense phase. The dileptons are produced by vector mesons. Theoretical calculation of dilepton production in the DLS (Berkeley), the HADES (GSI) experiments and the CERES, HELIOS and NA60 data from CERN give information about possible modifications of the vector meson properties in hot and dense nuclear matter. Here the description in relativistic quantum molecular dynamics of heavy ion collisions and dilepton production are presented and compared with data. (authors) Key words: heavy ion collisions; dense and hot nuclear matter; dileptons; medium dependence

  11. Three-phase Interstellar Medium in Galaxies Resolving Evolution with Star Formation and Supernova Feedback (TIGRESS): Algorithms, Fiducial Model, and Convergence

    Science.gov (United States)

    Kim, Chang-Goo; Ostriker, Eve C.

    2017-09-01

    We introduce TIGRESS, a novel framework for multi-physics numerical simulations of the star-forming interstellar medium (ISM) implemented in the Athena MHD code. The algorithms of TIGRESS are designed to spatially and temporally resolve key physical features, including: (1) the gravitational collapse and ongoing accretion of gas that leads to star formation in clusters; (2) the explosions of supernovae (SNe), both near their progenitor birth sites and from runaway OB stars, with time delays relative to star formation determined by population synthesis; (3) explicit evolution of SN remnants prior to the onset of cooling, which leads to the creation of the hot ISM; (4) photoelectric heating of the warm and cold phases of the ISM that tracks the time-dependent ambient FUV field from the young cluster population; (5) large-scale galactic differential rotation, which leads to epicyclic motion and shears out overdense structures, limiting large-scale gravitational collapse; (6) accurate evolution of magnetic fields, which can be important for vertical support of the ISM disk as well as angular momentum transport. We present tests of the newly implemented physics modules, and demonstrate application of TIGRESS in a fiducial model representing the solar neighborhood environment. We use a resolution study to demonstrate convergence and evaluate the minimum resolution {{Δ }}x required to correctly recover several ISM properties, including the star formation rate, wind mass-loss rate, disk scale height, turbulent and Alfvénic velocity dispersions, and volume fractions of warm and hot phases. For the solar neighborhood model, all these ISM properties are converged at {{Δ }}x≤slant 8 {pc}.

  12. Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble

    Directory of Open Access Journals (Sweden)

    M. Wehner

    2018-03-01

    Full Text Available The half a degree additional warming, prognosis and projected impacts (HAPPI experimental protocol provides a multi-model database to compare the effects of stabilizing anthropogenic global warming of 1.5 °C over preindustrial levels to 2.0 °C over these levels. The HAPPI experiment is based upon large ensembles of global atmospheric models forced by sea surface temperature and sea ice concentrations plausible for these stabilization levels. This paper examines changes in extremes of high temperatures averaged over three consecutive days. Changes in this measure of extreme temperature are also compared to changes in hot season temperatures. We find that over land this measure of extreme high temperature increases from about 0.5 to 1.5 °C over present-day values in the 1.5 °C stabilization scenario, depending on location and model. We further find an additional 0.25 to 1.0 °C increase in extreme high temperatures over land in the 2.0 °C stabilization scenario. Results from the HAPPI models are consistent with similar results from the one available fully coupled climate model. However, a complicating factor in interpreting extreme temperature changes across the HAPPI models is their diversity of aerosol forcing changes.

  13. Preliminary geothermal investigations at Manley Hot Springs, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    East, J.

    1982-04-01

    Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

  14. X-ray investigations of the hot ISM

    Science.gov (United States)

    Sanders, W. T.

    1993-01-01

    At energies less than one keV, the intensity of the galactic x-ray background dominates that of the extragalactic background in almost every direction on the sky. Below 1/4 keV, the galactic x-ray background has a galactic stellar component, but the dominant emitter seems to be hot interstellar matter. The origin of the general 3/4 keV x-ray background remains uncertain, but one component must also be the contribution from hot interstellar matter. An overview is given of recent x-ray investigations of the hot interstellar medium using data from the ROSAT X-ray Telescope/Position-Sensitive Proportional Counter (XRT/PSPC) instrument. Several prominent features in the low energy x-ray background that are interpreted as fossil supernova remnants are discussed.

  15. Fuels management in the southern Appalachian Mountains, hot continental division

    Science.gov (United States)

    Matthew J. Reilly; Thomas A. Waldrop; Joseph J. O’Brien

    2012-01-01

    The Southern Appalachian Mountains, Hot Continental Mountains Division, M220 (McNab and others 2007) are a topographically and biologically complex area with over 10 million ha of forested land, where complex environmental gradients have resulted in a great diversity of forest types. Abundant moisture and a long, warm growing season support high levels of productivity...

  16. X-ray emission from high-redshift miniquasars: self-regulating the population of massive black holes through global warming

    Science.gov (United States)

    Tanaka, Takamitsu; Perna, Rosalba; Haiman, Zoltán.

    2012-10-01

    Observations of high-redshift quasars at z ≳6 imply that supermassive black holes (SMBHs) with masses M≳109 M were in place less than 1 Gyr after the big bang. If these SMBHs assembled from 'seed' BHs left behind by the first stars, then they must have accreted gas at close to the Eddington limit during a large fraction (>rsim 50 per cent) of the time. A generic problem with this scenario, however, is that the mass density in M ˜ 106 M⊙ SMBHs at z ˜ 6 already exceeds the locally observed SMBH mass density by several orders of magnitude; in order to avoid this overproduction, BH seed formation and growth must become significantly less efficient in less massive protogalaxies through some form of feedback, while proceeding unabated in the most massive galaxies that formed first. Using Monte Carlo realizations of the merger and growth history of BHs, we show that X-rays from the earliest accreting BHs can provide such a feedback mechanism, on a global scale. Our calculations paint a self-consistent picture of BH-made climate change, in which the first miniquasars - among them the ancestors of the z ˜ 6 quasar SMBHs - globally warm the intergalactic medium and suppress the formation and growth of subsequent generations of BHs. We present two specific models with global miniquasar feedback that provide excellent agreement with recent estimates of the z = 6 SMBH mass function. For each of these models, we estimate the rate of BH mergers at z > 6 that could be detected by the proposed gravitational-wave observatory eLISA/NGO.

  17. Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology

    Energy Technology Data Exchange (ETDEWEB)

    Duplessis, Francis [Physics Department, Arizona State University, Tempe, AZ 85287 (United States); Vachaspati, Tanmay, E-mail: fdupless@asu.edu, E-mail: tvachasp@asu.edu [Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742 (United States)

    2017-05-01

    Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify and explain a new feature of the Q-statistics that can further enhance its power.

  18. Charmonium propagation through a dense medium

    Directory of Open Access Journals (Sweden)

    Kopeliovich B.Z.

    2015-01-01

    Full Text Available Attenuation of a colourless c̄c dipole propagating with a large momentum through a hot medium originates from two sources, Debye screening (melting, and inelastic collisions with surrounding scattering centres (absorption. The former never terminates completely production of a bound charmonium in heavy ion collisions, even at very high temperatures. The latter, is controlled my the magnitude of the dipole cross section, related to the transport coefficient, which is the rate of transverse momentum broadening in the medium. A novel procedure of Lorentz boosting of the Schrödinger equation is developed, which allows to calculate the charmonium survival probability employing the path-integral technique, incorporating both melting and absorption. A novel mechanism of charmonium regeneration in a dense medium is proposed.

  19. Radial structure of curvature-driven instabilities in a hot-electron plasma

    International Nuclear Information System (INIS)

    Spong, D.A.; Berk, H.L.; Van Dam, J.W.

    1984-01-01

    A nonlocal analysis of curvature-driven instabilities for a hot-electron ring interacting with a warm background plasma has been made. Four different instability modes characteristic of hot-electron plasmas have been examined: the high-frequency hot-electron interchange (at frequencies larger than the ion-cyclotron frequency), the compressional Alfven instability, the interacting background pressure-driven interchange, and the conventional hot-electron interchange (at frequencies below the ion-cyclotron frequency). The decoupling condition between core and hot-electron plasmas has also been examined, and its influence on the background and hot-electron interchange stability boundaries has been studied. The assumed equilibrium plasma profiles and resulting radial mode structure differ somewhat from those used in previous local analytic estimates; however, when the analysis is calibrated to the appropriate effective radial wavelength of the nonlocal calculation, reasonable agreement is obtained. Comparison with recent experimental measurements indicates that certain of these modes may play a role in establishing operating boundaries for the ELMO Bumpy Torus-Scale (EBT-S) experiment. The calculations given here indicate the necessity of having core plasma outside the ring to prevent the destabilizing wave resonance of the precessional mode with a cold plasma

  20. Thermal and cardiorespiratory newborn adaptations during hot tub bath

    Directory of Open Access Journals (Sweden)

    Gentil Gomes da Fonseca Filho

    2017-03-01

    Full Text Available Objective: To evaluate thermal and cardiorespiratory adaptation during hot tub bath and shower in healthy newborns in the first hours of life. Study design: This is a randomized blind controlled trial, registered in ReBEC (No. RBR-4z26f3 with 184 newborns divided into hot tub group (n=84 and shower (n=100. Newborns from intervention group were immersed in a hot tub with warm water up to the neck, without exposure to air flow, and control group received traditional shower. Heart rate, respiratory rate and temperature were measured before and immediately after bath by an investigator blinded to the type of bath. Results: Groups were similar in gender, gestational age, birth weight, Apgar score at 5th minute and hours of life, p => 0.05. To analyze thermal and cardiorespiratory adjustments, difference between post-bath variables and pre-bath was calculated. In this analysis, it was found statistically significant difference between two types of bath regarding heart rate, respiratory rate and temperature. Hot tub bath decreases heart and respiratory rates and increases temperature, whereas shower provides the opposite effect (0.0001. Conclusion: This study demonstrates that hot tub baths and shower, in healthy newborns, promote thermal and cardiorespiratory adaptations, reflecting thermal, cardiac and respiratory positive reactions after hot tub bath.

  1. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China

    Directory of Open Access Journals (Sweden)

    Qunfang Huang

    2015-07-01

    Full Text Available The Yangtze River Delta (YRD has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime and maximal (daytime air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957–2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05. Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001. The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming.

  2. Simulation of the hot flow behaviour of a medium carbon microalloyed steel

    International Nuclear Information System (INIS)

    Cabrera, J.M.; Al Omar, A.; Prado, J.M.

    1997-01-01

    According to the part 1 of this work the constitutive equations of the hot flow behaviour of a commercial microalloyed steel have been obtained. For this purpose, the uniaxial hot compression tests described in the part 2 were employed. Tests were carried out over a range of 5 orders of magnitude in strain rate and 300 degree centigree of temperature. Experimental results are compared with the theoretical model introduced in the first part of this study. It is concluded that deviations between experimental and theoretical curves are lower than 10%. It is shown that the classical hyperbolic sine constitutive equation described accurately the experimental behaviour provided that stresses are normalized by the Young's modulus and strain rates by the self-diffusion coefficient. An internal stress must also be introduced in the latter equation when the initial grain size is fine enough. (Author) 24 refs

  3. X-ray imaging and spectro-imaging techniques for investigating the intergalactic medium properties within merging clusters of galaxies

    International Nuclear Information System (INIS)

    Bourdin, Herve

    2004-01-01

    Clusters of galaxies are gravitationally bound matter over-densities which are filled with a hot and ionized gas emitting in X-rays. They form during merging phases of subgroups, so that the gas undergoes shock and mixing processes which perturb its physical properties at hydrostatic equilibrium. In order to map the spatial distributions of the gas emissivity, temperature and entropy as observed by X-ray telescopes, we compared different multi-scale imaging algorithms, and also developed and tested a new multi-scale spectro-imaging algorithm. With this algorithm, the searched parameter is first estimated from a count statistics within different spatial resolution elements, and its space-frequency variations are then coded by Haar wavelet coefficients. The optimal spatial distribution of the parameter is finally restored by thresholding the noisy wavelet transform. (author) [fr

  4. Use of warm mix asphalt pavement along Rt. 27 in the towns of Farmington and New Portland.

    Science.gov (United States)

    2012-05-01

    A number of new technologies have been developed to lower the production and placement temperatures : of hot-mix asphalt (HMA). Generically, these technologies are referred to as warm-mix asphalt (WMA). : In Europe and to a lesser extent in North Ame...

  5. On unique parameters and unified formal form of hot-wire anemometric sensor model

    International Nuclear Information System (INIS)

    LigePza, P.

    2005-01-01

    This note reviews the extensively adopted equations used as models of hot-wire anemometric sensors. An unified formal form of the mathematical model of a hot-wire anemometric sensor with otherwise defined parameters is proposed. Those parameters, static and dynamic, have simple physical interpretation and can be easily determined. They show directly the range of sensor application. They determine the metrological properties of the given sensor in the actual medium. Hence, the parameters' values might be ascribed to each sensor in the given medium and be quoted in manufacturers' catalogues, supplementing the sensor specifications. Because of their simple physical interpretation, those parameters allow the direct comparison of the fundamental metrological properties of various sensors and selection of the optimal sensor for the given research measurement application. The parameters are also useful in modeling complex hot-wire systems

  6. Investigation of Warm Mix Asphalt (WMA) Technologies and Increased Percentages of Reclaimed Asphalt Pavement (RAP) in Asphalt Mixtures

    Science.gov (United States)

    2011-04-01

    The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphalt ...

  7. WARM SPITZER PHOTOMETRY OF THREE HOT JUPITERS: HAT-P-3b, HAT-P-4b AND HAT-P-12b

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, Kamen O. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Deming, Drake [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States); Knutson, Heather A. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Fortney, Jonathan J.; Laughlin, Gregory [Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cowan, Nicolas B. [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Desert, Jean-Michel [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Sada, Pedro V. [Department of Physics and Mathematics, University of Monterrey, Monterrey (Mexico); Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Langton, Jonathan [Department of Physics, Principia College, Elsah, IL 62028 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2013-06-20

    We present Warm Spitzer/IRAC secondary eclipse time series photometry of three short-period transiting exoplanets, HAT-P-3b, HAT-P-4b and HAT-P-12b, in both the available 3.6 and 4.5 {mu}m bands. HAT-P-3b and HAT-P-4b are Jupiter-mass objects orbiting an early K and an early G dwarf star, respectively. For HAT-P-3b we find eclipse depths of 0.112%+0.015%-0.030% (3.6 micron) and 0.094%+0.016%-0.009% (4.5 {mu}m). The HAT-P-4b values are 0.142%+0.014%-0.016% (3.6 micron) and 0.122%+0.012%-0.014% 4.5 {mu}m). The two planets' photometry is consistent with inefficient heat redistribution from their day to night sides (and low albedos), but it is inconclusive about possible temperature inversions in their atmospheres. HAT-P-12b is a Saturn-mass planet and is one of the coolest planets ever observed during secondary eclipse, along with the hot Neptune GJ 436b and the hot Saturn WASP-29b. We are able to place 3{sigma} upper limits on the secondary eclipse depth of HAT-P-12b in both wavelengths: <0.042% (3.6 {mu}m) and <0.085% (4.5 {mu}m). We discuss these results in the context of the Spitzer secondary eclipse measurements of GJ 436b and WASP-29b. It is possible that we do not detect the eclipses of HAT-P-12b due to high eccentricity, but find that weak planetary emission in these wavelengths is a more likely explanation. We place 3{sigma} upper limits on the |e cos {omega}| quantity (where e is eccentricity and {omega} is the argument of periapsis) for HAT-P-3b (<0.0081) and HAT-P-4b (<0.0042), based on the secondary eclipse timings.

  8. Simulating the chemical enrichment of the intergalactic medium

    NARCIS (Netherlands)

    Wiersma, Robert Peter Coalter

    2010-01-01

    Over the past few decades, it has become evident that the vast amount of space that exists between galaxies contains trace amounts of elements heavier than helium ('metals' in astronomical terms). This is surprising since the baryonic universe is expected to initially be composed of solely hydrogen,

  9. Investigation of Transmission Warming Technologies at Various Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jehlik, Forrest; Iliev, Simeon; Wood, Eric; Gonder, Jeff

    2017-03-28

    This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a 2011 Ford Fusion. The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the Fusion was tested cold and with the transmission pre-heated prior to completing the test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions. For the Taurus, the fuel consumption variability within one standard deviation was shown to be under 0.5% for eight repeat Urban Dynamometer Driving Cycles (UDDS). These results were valid with the transmission warming system active or passive. Using the transmission warming system under 22 degrees C ambient temperature, fuel consumption reduction was shown to be 1.4%. For the Fusion, pre-warming the transmission reduced fuel consumption 2.5% for an urban drive cycle at -7 degrees C ambient temperature, with 1.5% of the 2.5% gain associated with the transmission, while consumption for the US06 test was shown to be reduced by 7% with 5.5% of the 7% gain associated with the transmission. It was found that engine warming due to conduction between the pre-heated transmission and the engine resulted in the remainder of the benefit. For +22 degrees C ambient tests, the pre-heated transmission was shown to reduce fuel consumption approximately 1% on an urban cycle, while no benefit was seen for the US06 cycle. The simplified modeling results showed gains in efficiency ranging from 0-1.5% depending on the ambient

  10. Does the projected pathway to global warming targets matter?

    Science.gov (United States)

    Bärring, Lars; Strandberg, Gustav

    2018-02-01

    Since the ‘Paris agreement’ in 2015 there has been much focus on what a +1.5 °C or +2 °C warmer world would look like. Since the focus lies on policy relevant global warming targets, or specific warming levels (SWLs), rather than a specific point in time, projections are pooled together to form SWL ensembles based on the target temperature rather than emission scenario. This study uses an ensemble of CMIP5 global model projections to analyse how well SWL ensembles represent the stabilized climate of global warming targets. The results show that the SWL ensembles exhibit significant trends that reflect the transient nature of the RCP scenarios. These trends have clear effect on the timing and clustering of monthly cold and hot extremes, even though the effect on the temperature of the extreme months is less visible. In many regions there is a link between choice of RCP scenario used in the SWL ensemble and climate change signal in the highest monthly temperatures. In other regions there is no such clear-cut link. From this we conclude that comprehensive analyses of what prospects the different global warming targets bring about will require stabilization scenarios. Awaiting such targeted scenarios we suggest that prudent use of SWL scenarios, taking their characteristics and limitations into account, may serve as reasonable proxies in many situations.

  11. The Formation and Physical Origin of Highly Ionized Cooling Gas

    Energy Technology Data Exchange (ETDEWEB)

    Bordoloi, Rongmon [MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States); Wagner, Alexander Y. [University of Tsukuba, Center for Computational Sciences, Tennodai 1-1-1, Tsukuba, Ibaraki (Japan); Heckman, Timothy M.; Norman, Colin A., E-mail: bordoloi@mit.edu, E-mail: bordoloi@mit.edu [Department of Physics and Astronomy, John Hopkins University, 21218, Baltimore, MD (United States)

    2017-10-20

    We present a simple model that explains the origin of warm, diffuse gas seen primarily as highly ionized absorption-line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O vi, O vii, Ne viii, N v, and Mg x, and we present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium, and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explained by a simple model of radiatively cooling gas. We show that most such absorption-line systems are consistent with being collisionally ionized, and we estimate the maximum-likelihood temperature of the gas in each observation. This model satisfactorily explains why O vi is regularly observed around star-forming low- z L* galaxies, and why N v is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O vi absorbers in the interstellar, circumgalactic, intragroup, and intergalactic media, as well as the available data on other absorption lines from highly ionized species.

  12. FIREBall-2: Trailblazing observations of the space UV circumgalactic medium

    Science.gov (United States)

    Martin, Christopher

    The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the circumgalactic medium of low redshift galaxies (0.3zz 0.7, conduct a targeted search of circumquasar (CQM) media for selected targets, and conduct follow up on likely tar-gets selected via GALEX and a pilot survey conducted by our group. We will also conduct a statistical search for the faint IGM via statistical stacking of our data. The FIREBall-2 team includes two female graduate students in key roles (both of whom are finishing their PhDs in 2016) and is overseen by a female Postdoctoral scholar (supported by NSF AAPF and Caltech Millikan Fellowships, in addition to a recent Roman Technology Fellowship award). Additional funding is necessary to keep this highly qualified balloon team together for a second flight. FIREBall-2 will test key technologies and science strategies for a future space mission to map emission from CGM and IGM baryons. Its flights will continue to provide important training for the next generation of space astrophysicists working in UV and other wavelength instrumentation. Most importantly, FIREBall-2 will detect emission from the CGM of nearby galaxies, providing the first census of the density and kinematics of this material for low z galaxies and open-ing a new field of CGM science.

  13. Australian climate extremes at 1.5 °C and 2 °C of global warming

    Science.gov (United States)

    King, Andrew D.; Karoly, David J.; Henley, Benjamin J.

    2017-06-01

    To avoid more severe impacts from climate change, there is international agreement to strive to limit warming to below 1.5 °C. However, there is a lack of literature assessing climate change at 1.5 °C and the potential benefits in terms of reduced frequency of extreme events. Here, we demonstrate that existing model simulations provide a basis for rapid and rigorous analysis of the effects of different levels of warming on large-scale climate extremes, using Australia as a case study. We show that limiting warming to 1.5 °C, relative to 2 °C, would perceptibly reduce the frequency of extreme heat events in Australia. The Australian continent experiences a variety of high-impact climate extremes that result in loss of life, and economic and environmental damage. Events similar to the record-hot summer of 2012-2013 and warm seas associated with bleaching of the Great Barrier Reef in 2016 would be substantially less likely, by about 25% in both cases, if warming is kept to lower levels. The benefits of limiting warming on hydrometeorological extremes are less clear. This study provides a framework for analysing climate extremes at 1.5 °C global warming.

  14. Asian climate change under 1.5–4 °C warming targets

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2017-06-01

    Full Text Available Based on simulations of 18 CMIP5 models under three RCP scenarios, this article investigates changes in mean temperature and precipitation and their extremes over Asia in the context of global warming targets of 1.5–4 °C, and further compares the differences between 1.5 °C and 2 °C targets. Results show that relative to the pre-industrial era, the mean temperature over Asia increases by 2.3 °C, 3.0 °C, 4.6 °C, and 6.0 °C at warming targets of 1.5 °C, 2 °C, 3 °C, and 4 °C, respectively, with stronger warming in high latitudes than in low latitudes. The corresponding enhancement in mean precipitation over the entire Asian region is 4.4%, 5.8%, 10.2%, and 13.0%, with significant regional differences. In addition, an increase in warm extremes, a decrease in cold extremes, and a strengthening in the variability of amounts of extreme precipitation are projected. Under the 1.5 °C target, compared with the climate under the 2 °C target, the mean temperature will be lower by 0.5–1 °C over Asia; the mean precipitation will be less by 5%–20% over most of Asia, but will be greater by about 10%–15% over West Asia and western South Asia; extreme high temperatures will be uniformly cooler throughout the Asian region, and the warming in extreme low temperatures will decrease significantly in high latitudes of Asia; extreme precipitation will be weaker over most of Asia but will be stronger over West Asia and western South Asia. Under the 1.5 °C and 2 °C warming targets, the probability of very hot weather (anomalies greater than 1σ, σ is standard deviation, extremely hot weather (anomalies greater than 3σ, and extremely heavy precipitation (anomalies greater than 3σ occurring will increase by at least once, 10%, and 10%, respectively, compared to the reference period (1861–1900.

  15. Are there really intergalactic hydrogen clouds in the Sculptor group

    International Nuclear Information System (INIS)

    Haynes, M.P.; Roberts, M.S.

    1979-01-01

    High-sensitivity 21 cm observations of the region of the Sculptor group of galaxies reveal at least 30 H I clouds distributed over only the southern sector of the group. These new data add two striking complications to the picture of the clouds as H I companions of Sculptor galaxies: first, a much wider spatial distribution of clouds in marked contrast with the clustering of clouds around NGC 55 and NGC 300 previously reported by Mathewson, Cleary, and Murray; and second, a cloud velocity distribution which does not match that of the galaxies.We cannot reconcile the spatial and velocity distributions of the H I clouds with those of the group or of any subgroup. We conclude that there are no intergalactic H I clouds of > or =10 8 M/sub sun/ and galactic dimensions within the Sculptor group. Of a number of explanations alternative to group membership, we favor the identification of the clouds as a component of the Magellanic Stream which is seen in projection. Observations reported here of other nearby groups, combined with those of Sculptor, rule out the existence of a significant population of discrete H I clouds having the above properties

  16. Global warming combat policies in energy sector of Iran

    International Nuclear Information System (INIS)

    Rahimi, N.; Karbassi, A. R.; Abbaspour, M.

    2002-01-01

    Among the efforts to slow the potential for climate change are measures to reduce emissions of CO 2 from energy use, and promote long-term storage of carbon in forests and soils. Important environmental changes due to climate change and global warming pose potentially significant risks to humans, social systems, and natural world. Many uncertainties remain regarding precise timing,magnitude, and regional patterns of climate change and the extent to which mankind and nature can adapt to any changes. Estimating technical / economical / environmental potentials for reducing CO 2 emission in energy sector and preventing of global warming is one of the main activities, which have been performed for the first time in Iran. By use of 26 factors, model on global warming combat policies in energy sector of Iran in long-medium and short term determine decreasing amount of CO 2 emission. The results and also method of providing this model will be described in this paper

  17. Global warming and its implication to emission reduction strategies for residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoming; Chen, Dong; Ren, Zhengen [CSIRO Climate Adaptation Flagship and CSIRO Ecosystem Sciences, Commonwealth Scientific and Industrial Research Organisation (CSIRO), P.O. Box 56, Graham Road, Highett, Victoria 3190 (Australia)

    2011-04-15

    Carbon emission reduction schemes by improving residential building energy performance are often developed and assessed upon the assumption of current or stationary climates. This study investigated the heating and cooling (H-C) energy requirements and corresponding carbon emissions of residential houses in different climatic conditions in relation to global warming. This included assessing and quantifying the efficacy of emission reduction schemes based on emission reduction capacity (ERC). ERC represents the percentage of projected carbon emission reduction under changing climate in a specific year compared to the expected reduction by a scheme at current or stationary climates. It is shown that in a heating-dominated region with a cold climate or temperate climate with cold winter, ERC is projected to increase (or the projected emission reduction is higher than the expected reduction under the emission reduction scheme) in the presence of global warming. In contrast, in a cooling-dominated region with a hot dry or hot humid climate or an H-C balanced temperate climate, ERC is projected to decline. This implies that emission reductions will be lower than those initially targeted by the emission reduction scheme without consideration of global warming. Additionally, to reflect the changing carbon emission over years due to climate change, the average emission reduction capacity (AERC) was also proposed for the assessment of reduction schemes. It was concluded that the design and assessment of carbon emission reduction schemes for residential buildings need to move beyond its assumptions of a current or stationary climate to take into account climate change impacts. (author)

  18. Rheological Characterization of Warm-Modified Asphalt Mastics Containing Electric Arc Furnace Steel Slags

    Directory of Open Access Journals (Sweden)

    M. Pasetto

    2016-01-01

    Full Text Available The environmental sustainability of road materials and technologies plays a key role in pavement engineering. In this sense, the use of Warm Mix Asphalt (WMA, that is, a modified asphalt concrete that can be produced and applied at lower temperature, is considered an effective solution leading to environmental and operational benefits. The environmental sustainability of WMA can be further enhanced with the inclusion of steel slag in partial substitution of natural aggregates. Nevertheless, such innovative material applied at lower temperatures containing warm additives and steel slag should be able to guarantee at least the same performance of traditional hot mix asphalts, thus assuring acceptable mechanical properties and durability. Therefore, the purpose of this study is to investigate the rheological behaviour of bituminous mastics obtained combining a warm-modified binder and a filler (material passing to 0.063 mm coming from electric arc furnace steel slag. To evaluate the influence of both warm additive and steel slag, a plain binder and limestone filler were also used for comparison purposes. Complex modulus and permanent deformation resistance of bitumens and mastics were assessed using a dynamic shear rheometer. Experimental results showed that steel slag warm mastics assure enhanced performance demonstrating promising applicability.

  19. DRIVING OUTFLOWS WITH RELATIVISTIC JETS AND THE DEPENDENCE OF ACTIVE GALACTIC NUCLEUS FEEDBACK EFFICIENCY ON INTERSTELLAR MEDIUM INHOMOGENEITY

    International Nuclear Information System (INIS)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2012-01-01

    We examine the detailed physics of the feedback mechanism by relativistic active galactic nucleus (AGN) jets interacting with a two-phase fractal interstellar medium (ISM) in the kpc-scale core of galaxies using 29 three-dimensional grid-based hydrodynamical simulations. The feedback efficiency, as measured by the amount of cloud dispersal generated by the jet-ISM interactions, is sensitive to the maximum size of clouds in the fractal cloud distribution but not to their volume filling factor. Feedback ceases to be efficient for Eddington ratios P jet /L edd ∼ –4 , although systems with large cloud complexes ∼> 50 pc require jets of Eddington ratio in excess of 10 –2 to disperse the clouds appreciably. Based on measurements of the bubble expansion rates in our simulations, we argue that sub-grid AGN prescriptions resulting in negative feedback in cosmological simulations without a multi-phase treatment of the ISM are good approximations if the volume filling factor of warm-phase material is less than 0.1 and the cloud complexes are smaller than ∼25 pc. We find that the acceleration of the dense embedded clouds is provided by the ram pressure of the high-velocity flow through the porous channels of the warm phase, flow that has fully entrained the shocked hot-phase gas it has swept up, and is additionally mass loaded by ablated cloud material. This mechanism transfers 10% to 40% of the jet energy to the cold and warm gas, accelerating it within a few 10 to 100 Myr to velocities that match those observed in a range of high- and low-redshift radio galaxies hosting powerful radio jets.

  20. Numerical Simulations of Multiphase Winds and Fountains from Star-forming Galactic Disks. I. Solar Neighborhood TIGRESS Model

    Science.gov (United States)

    Kim, Chang-Goo; Ostriker, Eve C.

    2018-02-01

    Gas blown away from galactic disks by supernova (SN) feedback plays a key role in galaxy evolution. We investigate outflows utilizing the solar neighborhood model of our high-resolution, local galactic disk simulation suite, TIGRESS. In our numerical implementation, star formation and SN feedback are self-consistently treated and well resolved in the multiphase, turbulent, magnetized interstellar medium. Bursts of star formation produce spatially and temporally correlated SNe that drive strong outflows, consisting of hot (T> 5× {10}5 {{K}}) winds and warm (5050 {{K}} 1 {kpc} from the midplane has mass and energy fluxes nearly constant with d. The hot flow escapes our local Cartesian box barely affected by gravity, and is expected to accelerate up to terminal velocity of {v}{wind}∼ 350{--}500 {km} {{{s}}}-1. The mean mass and energy loading factors of the hot wind are 0.1 and 0.02, respectively. For warm gas, the mean outward mass flux through d=1 {kpc} is comparable to the mean star formation rate, but only a small fraction of this gas is at velocity > 50 {km} {{{s}}}-1. Thus, the warm outflows eventually fall back as inflows. The warm fountain flows are created by expanding hot superbubbles at d< 1 {kpc}; at larger d neither ram pressure acceleration nor cooling transfers significant momentum or energy flux from the hot wind to the warm outflow. The velocity distribution at launching near d∼ 1 {kpc} is a better representation of warm outflows than a single mass loading factor, potentially enabling development of subgrid models for warm galactic winds in arbitrary large-scale galactic potentials.

  1. Warming impact on energy use of HVAC system in buildings of different thermal qualities and in different climates

    International Nuclear Information System (INIS)

    Kharseh, Mohamad; Altorkmany, Lobna; Al-Khawaj, Mohammed; Hassani, Ferri

    2014-01-01

    Highlights: • Improving TQBE reduces heating load, while it might increase cooling load. • Warming impact on energy use of HVAC varies from one climate to another. • Warming impact on energy use of HVAC depends on building’s thermal quality. • In mild climate, warming does not have a significant impact on energy use of HVAC. - Abstract: In order to combat climate change, energy use in the building must be further reduced. Heating ventilation and air conditioning (HVAC) systems in residential buildings account for considerable fraction of global energy consumption. The potential contribution the domestic sector can make in reducing energy consumption is recognized worldwide. The driving energy of HVACs depends on the thermal quality of the building envelope (TQBE) and outside temperature. Definitely, building regulations are changing with the time toward reduce the thermal loads of buildings. However, most of the existing residential buildings were built to lower TQBE. For instant, 72% of residential dwellings in the 15-EU were built before 1972. To investigate the impact of warming on driving energy of HVACs of a residential building a computer model was developed. Three climate categories/cities were considered, i.e. Stockholm (cold), Istanbul (mild), and Doha (hot). In each city, two buildings were modeled: one was assumed to be built according to the current local buildings regulations (standard TQBE), while the anther was built to lower TQBE. The simulations were run for present and future (in 2050) outdoor designing conditions. The calculations show that the impact of the warming on annual driving energy of HVACs (reduction or increase) depends very much on the climate category and on the TQBE. Based on the climate and TQBE, the change in annual HVACs energy varies from −7.4% (in cold climate) to 12.7% (in hot climate). In mild climate, it was shown that the warming does not have significant impact on annual HVACs energy. Improving the TQBE can

  2. Warm Dense Matter: An Overview

    International Nuclear Information System (INIS)

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-01-01

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities. The conclusion of this

  3. THE PROBLEM OF HOT-SPOTS IN MICROWAVE EQUIPMENT USED FOR PREPARATORY TECHNIQUES - THEORY AND PRACTICE

    NARCIS (Netherlands)

    KOK, LP; BOON, ME; SMID, HM

    1993-01-01

    Electron microscopists who wants to use a microwave (MW) oven to stimulate preparatory processes are sooner or later confronted with the problem of hot spots. It soon becomes clear to the user of any MW oven that the energy distribution-thus the speed of absorbing energy, and hence warming up-varies

  4. Effect of container, vitrification volume and warming solution on cryosurvival of in vitro-produced bovine embryos.

    Science.gov (United States)

    Rios, G L; Mucci, N C; Kaiser, G G; Alberio, R H

    2010-03-01

    The aim of the present research was to develop a low cost and easy to perform vitrification method for in vitro-produced cattle embryos. Effect of container material was evaluated (plastic straw compared to glass capillary, experiment 1), two volume sample (1 compared to 0.5 microL, experiment 2) and warming solution composition medium (Tissue Culture Medium 199 (TCM-199) compared to phosphate buffered saline (PBS), experiment 3) as modifications of the open pulled straw (OPS) system in order to reduce embryo damage caused by exposure to cold. In all experiments, day 7 and expanded blastocysts of cattle were exposed to the vitrification solution 1 for 3 min and 30s in solution 2. After this, embryos were placed in a droplet and loaded in a narrow end container, and immediately submerged into liquid nitrogen. For warming, vitrified embryos were plunged into warming solution 1 for 3 min, and transferred into warming solution 2 for 1 min. Fresh embryos kept in culture were used as control group. Hatching rates were recorded in all cases at day 13. In experiment 1 there was no significant effect of container material on hatching rates. Postwarming survival rate of vitrified embryos was lower than control (27.5% plastic straws, 18.9% glass capillary and 80.5% control, Pstraw (OPS) procedure, and that PBS can replace TCM-199 in warming solutions, but lesser hatching rates should be expected.

  5. Feasibility for development of an aquaculture facility at Hot Spring Cove

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This report describes the feasibilty of obtaining geothermally warmed water for use in aquaculture at Hot Springs Cove, British Columbia, and concludes that while the sources can probably be assessed from two sites in the cove, neither this nor the quantity of water available can be known for certain without field trials. The report also examines the feasibility of culturing various species of sea life at Hot Springs Cove, and concludes that a combination of rearing coho salmon smolts and oysters, with the late addition of tilapia, appears to be the most suitable both for biological and economic reasons. The total capital investment amounts to about $1,033,000. Operating costs would be about $450,000 annually, and additional capital to cover this would be needed in the first years of operation. A business plan is provided which includes cash flow projections for the first nine years of operation, and this shows that a maximum investment of approximately $1.2 million would be needed by the third year of operation. If sufficient warm water is available, and the facility is operated successfully, it should pay off the investment in seven to nine years, provided that interest free loans are available for capital investments. 20 refs., 1 fig., 8 tabs.

  6. THE ATMOSPHERES OF THE HOT-JUPITERS KEPLER-5b AND KEPLER-6b OBSERVED DURING OCCULTATIONS WITH WARM-SPITZER AND KEPLER

    Energy Technology Data Exchange (ETDEWEB)

    Desert, Jean-Michel; Charbonneau, David; Fressin, Francois; Latham, David W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Madhusudhan, Nikku [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Knutson, Heather A. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Deming, Drake [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Borucki, William J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Brown, Timothy M. [Las Cumbres Observatory Global Telescope, Goleta, CA 93117 (United States); Caldwell, Douglas [SETI Institute, Mountain View, CA 94043 (United States); Ford, Eric B. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Gilliland, Ronald L. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Marcy, Geoffrey W. [Berkeley Astronomy Department, University of California, Berkeley, CA 94720 (United States); Seager, Sara, E-mail: jdesert@cfa.harvard.edu [Massachusetts Institute of Technology, Cambridge, MA 02159 (United States)

    2011-11-01

    This paper reports the detection and the measurements of occultations of the two transiting hot giant exoplanets Kepler-5b and Kepler-6b by their parent stars. The observations are obtained in the near-infrared with Warm-Spitzer Space Telescope and at optical wavelengths by combining more than a year of Kepler photometry. The investigation consists of constraining the eccentricities of these systems and of obtaining broadband emergent photometric data for individual planets. For both targets, the occultations are detected at the 3{sigma} level at each wavelength with mid-occultation times consistent with circular orbits. The brightness temperatures of these planets are deduced from the infrared observations and reach T{sub Spitzer} = 1930 {+-} 100 K and T{sub Spitzer} = 1660 {+-} 120 K for Kepler-5b and Kepler-6b, respectively. We measure optical geometric albedos A{sub g} in the Kepler bandpass and find A{sub g} = 0.12 {+-} 0.04 for Kepler-5b and A{sub g} = 0.11 {+-} 0.04 for Kepler-6b, leading to upper an limit for the Bond albedo of A{sub B} {<=} 0.17 in both cases. The observations for both planets are best described by models for which most of the incident energy is redistributed on the dayside, with only less than 10% of the absorbed stellar flux redistributed to the nightside of these planets.

  7. VERTICAL STRUCTURE OF A SUPERNOVA-DRIVEN TURBULENT, MAGNETIZED INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Hill, Alex S.; Matthew Haffner, L.; Ryan Joung, M.; Mac Low, Mordecai-Mark; Benjamin, Robert A.; Klingenberg, Christian; Waagan, Knut

    2012-01-01

    Stellar feedback drives the circulation of matter from the disk to the halo of galaxies. We perform three-dimensional magnetohydrodynamic simulations of a vertical column of the interstellar medium with initial conditions typical of the solar circle in which supernovae drive turbulence and determine the vertical stratification of the medium. The simulations were run using a stable, positivity-preserving scheme for ideal MHD implemented in the FLASH code. We find that the majority (≈90%) of the mass is contained in thermally stable temperature regimes of cold molecular and atomic gas at T 4.2 K, with strong peaks in probability distribution functions of temperature in both the cold and warm regimes. The 200-10 4.2 K gas fills 50%-60% of the volume near the plane, with hotter gas associated with supernova remnants (30%-40%) and cold clouds ( 5 K) gas accounts for most of the mass and volume, while hot gas dominates at |z| > 3 kpc. The magnetic field in our models has no significant impact on the scale heights of gas in each temperature regime; the magnetic tension force is approximately equal to and opposite the magnetic pressure, so the addition of the field does not significantly affect the vertical support of the gas. The addition of a magnetic field does reduce the fraction of gas in the cold ( 4 K) gas. However, our models lack rotational shear and thus have no large-scale dynamo, which reduces the role of the field in the models compared to reality. The supernovae drive oscillations in the vertical distribution of halo gas, with the period of the oscillations ranging from ≈30 Myr in the T 6 K gas, in line with predictions by Walters and Cox.

  8. Soil warming for utilization and dissipation of waste heat in Pennsylvania

    International Nuclear Information System (INIS)

    DeWalle, D.R.; Chapura, A.M. Jr.

    1978-01-01

    The feasibility of using soil warming for utilization and dissipation of reject heat from power plants was demonstrated in a year-long test operation of a field prototype in Pennsylvania. A parallel network of 5-mm-diam polyethylene pipes was buried at a 0.3-m depth and with 0.6-m spacing in the soil covering a 15- x 60-m area to convey hot water simulating condenser cooling water from a power plant. Crop response to the heated soil varied: Snap beans and warm season forage crops such as sudangrass responded with increased yields, while cool season forage crops experienced decreased yields. Winter wheat yields were also increased, but winter barley was winter-killed due to delayed development of cold tolerance in the warm soil. Heat dissipation from the buried pipes was primarily by thermal conduction to the soil surface. Rates of heat loss from the buried pipes were most accurately predicted using an equation that included an explicit term for heat conduction below the pipes. Estimated soil warming land area necessary to dissipate all the reject heat from a 33% efficiency, 1500-MW electrical power plant based on minimum measured summer heat loss rates was 76 km 2 compared to the economic optimum of 18.2 km 2 determined as the least-cost system

  9. Large-amplitude ion-acoustic double layers in a plasma with warm ions

    International Nuclear Information System (INIS)

    Roychoudury, R.K.; Bhattacharyya, S.; Varshni, Y.P.

    1990-01-01

    The conditions for the existence of an ion-acoustic double layer in a plasma with warm ions and two distinct groups of hot electrons have been studied using the Sagdeev potential method. A comparison is made with the published results of Bharuthram and Shukla for cold ions and a two temperature electron population. Numerical studies have been made to find out the effect of a finite ion temperature on the Mach number of the double layers

  10. Calculation and validation of heat transfer coefficient for warm forming operations

    Science.gov (United States)

    Omer, Kaab; Butcher, Clifford; Worswick, Michael

    2017-10-01

    In an effort to reduce the weight of their products, the automotive industry is exploring various hot forming and warm forming technologies. One critical aspect in these technologies is understanding and quantifying the heat transfer between the blank and the tooling. The purpose of the current study is twofold. First, an experimental procedure to obtain the heat transfer coefficient (HTC) as a function of pressure for the purposes of a metal forming simulation is devised. The experimental approach was used in conjunction with finite element models to obtain HTC values as a function of die pressure. The materials that were characterized were AA5182-O and AA7075-T6. Both the heating operation and warm forming deep draw were modelled using the LS-DYNA commercial finite element code. Temperature-time measurements were obtained from both applications. The results of the finite element model showed that the experimentally derived HTC values were able to predict the temperature-time history to within a 2% of the measured response. It is intended that the HTC values presented herein can be used in warm forming models in order to accurately capture the heat transfer characteristics of the operation.

  11. [The interaction of soil micromycetes with "hot" particles in a model system].

    Science.gov (United States)

    Zhdanova, N N; Lashko, T N; Redchits, T I; Vasilevskaia, A I; Borisiuk, L G; Siniavskaia, O I; Gavriliuk, V I; Muzalev, P N

    1991-01-01

    A model system which permits observing for a long time and fixing interaction of fungi with a radiation source has been created on the basis of an isolated "hot" particle, deficient mineral medium (saccharose content 60 mg/l) and suspension of fungal conidia. Five species (six strains) of micromycetes isolated from radionuclide-contaminated soils and fifteen "hot" particles have been tested. It has been found out for the first time that Cladosporium cladosporioides and Penicillium roseo-purpureum are able actively overgrow "hot" particles whose radioactivity did not exceed 3.1-1.0(-7) Ci by gamma-spectrum and to destroy them 50-150 days later. Certain changes in morphology of fungi-destructors of "hot" particles are revealed. A problem on ecological significance of the found phenomenon is discussed.

  12. The baryonic mass function of galaxies.

    Science.gov (United States)

    Read, J I; Trentham, Neil

    2005-12-15

    In the Big Bang about 5% of the mass that was created was in the form of normal baryonic matter (neutrons and protons). Of this about 10% ended up in galaxies in the form of stars or of gas (that can be in molecules, can be atomic, or can be ionized). In this work, we measure the baryonic mass function of galaxies, which describes how the baryonic mass is distributed within galaxies of different types (e.g. spiral or elliptical) and of different sizes. This can provide useful constraints on our current cosmology, convolved with our understanding of how galaxies form. This work relies on various large astronomical surveys, e.g. the optical Sloan Digital Sky Survey (to observe stars) and the HIPASS radio survey (to observe atomic gas). We then perform an integral over our mass function to determine the cosmological density of baryons in galaxies: Omega(b,gal)=0.0035. Most of these baryons are in stars: Omega(*)=0.0028. Only about 20% are in gas. The error on the quantities, as determined from the range obtained between different methods, is ca 10%; systematic errors may be much larger. Most (ca 90%) of the baryons in the Universe are not in galaxies. They probably exist in a warm/hot intergalactic medium. Searching for direct observational evidence and deeper theoretical understanding for this will form one of the major challenges for astronomy in the next decade.

  13. Global warming's impact on the performance of GSHP

    Energy Technology Data Exchange (ETDEWEB)

    Kharseh, Mohamad; Altorkmany, Lobna; Nordell, Bo [Department of Civil, Environmental and Natural Resources Engineering, Luleaa University of Technology, SE-97187 Luleaa (Sweden)

    2011-05-15

    Since heating and cooling systems of buildings consume 30-50% of the global energy consumption, increased efficiency of such systems means a considerable reduction in energy consumption. Ground source heat pumps (GSHP) are likely to play a central role in achieving this goal due to their high energy efficient performance. The efficiency of GSHP depends on the ground temperature, heating and cooling demands, and the distribution of heating and cooling over the year. However, all of these are affected by the ongoing climatic change. Consequently, global warming has direct effects on the GSHP performance. Within the framework of current study, heating and cooling demands of a reference building were calculated for different global warming scenarios in different climates i.e. cold, mild and hot climate. The prime energy required to drive the GSHP system is compared for each scenario and two configurations of ground heat exchangers. Current study shows that the ongoing climatic change has significant impact on GSHP systems. (author)

  14. Hot-melt extrusion microencapsulation of quercetin for taste-masking.

    Science.gov (United States)

    Khor, Chia Miang; Ng, Wai Kiong; Kanaujia, Parijat; Chan, Kok Ping; Dong, Yuancai

    2017-02-01

    Besides its poor dissolution rate, the bitterness of quercetin also poses a challenge for further development. Using carnauba wax, shellac or zein as the shell-forming excipient, this work aimed to microencapsulate quercetin by hot-melt extrusion for taste-masking. In comparison with non-encapsulated quercetin, the microencapsulated powders exhibited significantly reduced dissolution in the simulated salivary pH 6.8 medium indicative of their potentially good taste-masking efficiency in the order of zein > carnauba wax > shellac. In vitro bitterness analysis by electronic tongue confirmed the good taste-masking efficiency of the microencapsulated powders. In vitro digestion results showed that carnauba wax and shellac-microencapsulated powders presented comparable dissolution rate with the pure quercetin in pH 1.0 (gastric) and 6.8 (intestine) medium; while zein-microencapsulated powders exhibited a remarkably slower dissolution rate. Crystallinity of quercetin was slightly reduced after microencapsulation while its chemical structure remained unchanged. Hot-melt extrusion microencapsulation could thus be an attractive technique to produce taste-masked bioactive powders.

  15. Modeling the Warming Impact of Urban Land Expansion on Hot Weather Using the Weather Research and Forecasting Model: A Case Study of Beijing, China

    Science.gov (United States)

    Liu, Xiaojuan; Tian, Guangjin; Feng, Jinming; Ma, Bingran; Wang, Jun; Kong, Lingqiang

    2018-06-01

    The impacts of three periods of urban land expansion during 1990-2010 on near-surface air temperature in summer in Beijing were simulated in this study, and then the interrelation between heat waves and urban warming was assessed. We ran the sensitivity tests using the mesoscaleWeather Research and Forecasting model coupled with a single urban canopy model, as well as high-resolution land cover data. The warming area expanded approximately at the same scale as the urban land expansion. The average regional warming induced by urban expansion increased but the warming speed declined slightly during 2000-2010. The smallest warming occurred at noon and then increased gradually in the afternoon before peaking at around 2000 LST—the time of sunset. In the daytime, urban warming was primarily caused by the decrease in latent heat flux at the urban surface. Urbanization led to more ground heat flux during the day and then more release at night, which resulted in nocturnal warming. Urban warming at night was higher than that in the day, although the nighttime increment in sensible heat flux was smaller. This was because the shallower planetary boundary layer at night reduced the release efficiency of near-surface heat. The simulated results also suggested that heat waves or high temperature weather enhanced urban warming intensity at night. Heat waves caused more heat to be stored in the surface during the day, greater heat released at night, and thus higher nighttime warming. Our results demonstrate a positive feedback effect between urban warming and heat waves in urban areas.

  16. Quasar Absorption in the UV: Probing the Intergalactic Medium

    Science.gov (United States)

    Weinberg, David; Katz, Neal

    1998-01-01

    The purpose of this project is to model the low-redshift Lyman-alpha forest and exploration of the relation between Lyman-alpha absorbers and galaxies. This paper shows that the simulation models that are so successful at explaining properties of the high-redshift forest also account for the most important results of observational studies of the low-redshift forest, from HST (especially the Quasar Absorption Line Key Project) and ground-based follow-up.

  17. Amplified Arctic warming by phytoplankton under greenhouse warming.

    Science.gov (United States)

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  18. Focus talk on interactions between jets and medium

    International Nuclear Information System (INIS)

    Ruppert, Joerg

    2006-01-01

    The energy and momentum lost by a hard parton propagating through hot and dense matter has to be redistributed during the nuclear medium evolution. Apart from heating the medium, there is the possibility that collective modes are excited leading to the emergence of Mach cones or Cherenkov radiation. Recent two-particle correlation measurements by STAR [F. Wang [STAR Collaboration], J. Phys. G 30, S1299 (2004) [arXiv:nucl-ex/0404010]; C. Gagliardi, these proceedings] and PHENIX [S. S. Adler et al. [PHENIX Collaboration], arXiv:nucl-ex/0507004; N. Ajitanand, these proceedings] at RHIC indicate that such phenomena may play an important role in understanding the jet-medium interactions. Possible collective modes are discussed and it is demonstrated that Mach cones as created by colorless or colored sound are a possible explanation of the hardronic two-particle correlation data

  19. Hot interstellar tunnels. I. Simulation of interacting supernova remnants

    International Nuclear Information System (INIS)

    Smith, B.W.

    1977-01-01

    Reexamining a suggestion of Cox and Smith, we find that intersecting supernova remnants can indeed generate and maintain hot interstellar regions with napproximately-less-than10 -2 cm -3 and Tapprox.10 6 K. These regions are likely to occupy at least 30% of the volume of a spiral arm near the midplane of the gaseous disk if the local supernova rate there is greater than 1.5 x 10 -7 Myr -1 pc -3 . Their presence in the interstellar medium is supported by observations of the soft X-ray background. The theory required to build a numerical simulation of interacting supernova remnants is developed. The hot cavities within a population of remnants will become connected for a variety of assumed conditions in the outer shells of old remnants. Extensive hot cavity regions or tunnels are built and enlarged by supernovae occurring in relatively dense gas which produce connections, but tunnels are kept hot primarily by supernovae occurring within the tunnels. The latter supernovae initiate fast shock waves which apparently reheat tunnels faster than they are destroyed by thermal conduction in a galactic magnetic field or by radiative cooling. However, the dispersal of these rejuvenating shocks over a wide volume is inhibited by motions of cooler interstellar gas in the interval between shocks. These motions disrupt the contiguity of the component cavities of a tunnel and may cause its death.The Monte Carlo simulations indicate that a quasi-equilibrium is reached within 10 7 years of the first supernova in a spiral arm. This equilibrium is characterized by a constant average filling fraction for cavities in the interstellar volume. Aspects of the equilibrium are discussed for a range of supernova rates. Two predictions of Cox and Smith are not confirmed within this range: critical growth of hot regions to encompass the entire medium, and the efficient quenching of a remnant's expansion by interaction with other cavities

  20. STIS observations of five hot white dwarfs

    OpenAIRE

    Bannister, N. P.; Barstow, M. A.; Holberg, J. B.; Bruhweiler, F. C.

    2000-01-01

    We present some early results from a study of five hot DA white dwarf stars, based on spectra obtained using STIS. All show multiple components in one or more of the strong resonance absorption lines typically associated with the stellar photosphere (e.g. C IV, Si IV, N V and O V). Possible relationships between the non-photospheric velocity components and the interstellar medium or local stellar environment, are investigated, including contributions from gravitational redshifting.

  1. X-ray and SZ constraints on the properties of hot CGM

    Science.gov (United States)

    Singh, Priyanka; Majumdar, Subhabrata; Nath, Biman B.; Silk, Joseph

    2018-05-01

    We use observations of stacked X-ray luminosity and Sunyaev-Zel'dovich (SZ) signal from a cosmological sample of ˜80, 000 and 104,000 massive galaxies, respectively, with 1012.6 ≲ M500 ≲ 1013M⊙ and mean redshift, z¯ ˜ 0.1 - 0.14 to constrain the hot Circumgalactic Medium (CGM) density and temperature. The X-ray luminosities constrain the density and hot CGM mass, while the SZ signal helps in breaking the density-temperature degeneracy. We consider a simple power-law density distribution (ne∝r-3β) as well as a hydrostatic hot halo model, with the gas assumed to be isothermal in both cases. The datasets are best described by the mean hot CGM profile ∝r-1.2, which is shallower than an NFW profile. For halo virial mass ˜1012 - 1013M⊙, the hot CGM contains ˜ 20 - 30% of galactic baryonic mass for the power-law model and 4 - 11% for the hydrostatic halo model, within the virial radii. For the power-law model, the hot CGM profile broadly agrees with observations of the Milky Way. The mean hot CGM mass is comparable to or larger than the mass contained in other phases of the CGM for L* galaxies.

  2. Hot water in the Long Valley Caldera—The benefits and hazards of this large natural resource

    Science.gov (United States)

    Evans, William C.; Hurwitz, Shaul; Bergfeld, Deborah; Howle, James F.

    2018-03-26

    The volcanic processes that have shaped the Long Valley Caldera in eastern California have also created an abundant supply of natural hot water. This natural resource provides benefits to many users, including power generation at the Casa Diablo Geothermal Plant, warm water for a state fish hatchery, and beautiful scenic areas such as Hot Creek gorge for visitors. However, some features can be dangerous because of sudden and unpredictable changes in the location and flow rate of boiling water. The U.S. Geological Survey monitors several aspects of the hydrothermal system in the Long Valley Caldera including temperature, flow rate, and water chemistry.

  3. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    OpenAIRE

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatmen...

  4. Passive Optimization Design Based on Particle Swarm Optimization in Rural Buildings of the Hot Summer and Warm Winter Zone of China

    Directory of Open Access Journals (Sweden)

    Shilei Lu

    2017-12-01

    Full Text Available The development of green building is an important way to solve the environmental problems of China’s construction industry. Energy conservation and energy utilization are important for the green building evaluation criteria (GBEC. The objective of this study is to evaluate the quantitative relationship between building shape parameter, envelope parameters, shading system, courtyard and the energy consumption (EC as well as the impact on indoor thermal comfort of rural residential buildings in the hot summer and warm winter zone (HWWZ. Taking Quanzhou (Fujian Province of China as an example, based on the field investigation, EnergyPlus is used to build the building performance model. In addition, the classical particle swarm optimization algorithm in GenOpt software is used to optimize the various factors affecting the EC. Single-objective optimization has provided guidance to the multi-dimensional optimization and regression analysis is used to find the effects of a single input variable on an output variable. Results shows that the energy saving rate of an optimized rural residence is about 26–30% corresponding to the existing rural residence. Moreover, the payback period is about 20 years. A simple case study is used to demonstrate the accuracy of the proposed optimization analysis. The optimization can be used to guide the design of new rural construction in the area and the energy saving transformation of the existing rural houses, which can help to achieve the purpose of energy saving and comfort.

  5. Discovery of intergalactic radio emission in the Coma-A1367 supercluster

    International Nuclear Information System (INIS)

    Kim, K.T.; Kronberg, P.P.; Venturi, T.

    1989-01-01

    The Coma cluster is a rich cluster of galaxies nested in an even larger super cluster of galaxies. The plane of the supercluster seems to be defined by the Coma cluster itself and another galaxy cluster, Abell 1367, which lies ∼ 40 Mpc farther west. The largest structures known are the giant voids and superclusters which are as large as 70h 75 -1 Mpc (refs 3-5). The Coma cluster of galaxies seems to be located on the rim of a giant void in the three-dimensional distribution of galaxies. Here we describe the detection of faint, supercluster-scale radio emission at 326 MHz that extends between the Coma cluster of galaxies and the Abell 1367 cluster and which is apparently not associated with any individual galaxy system in the complex. The radiation's synchrotron origin implies the existence of a large-scale intercluster magnetic field with an estimated strength of 0.3-0.6 μG, which is remarkably strong. The synchrotron-emitting relativistic electrons cannot be older than a few times 10 8 yr, but we speculate that the magnetic field is the fossil of a pre-galactic primaeval field, which was amplified in the course of the formation of intergalactic voids and superclusters. (author)

  6. A deep X-ray view of the bare AGN Ark 120. IV. XMM-Newton and NuSTAR spectra dominated by two temperature (warm, hot) Comptonization processes

    Science.gov (United States)

    Porquet, D.; Reeves, J. N.; Matt, G.; Marinucci, A.; Nardini, E.; Braito, V.; Lobban, A.; Ballantyne, D. R.; Boggs, S. E.; Christensen, F. E.; Dauser, T.; Farrah, D.; Garcia, J.; Hailey, C. J.; Harrison, F.; Stern, D.; Tortosa, A.; Ursini, F.; Zhang, W. W.

    2018-01-01

    Context. The physical characteristics of the material closest to supermassive black holes (SMBHs) are primarily studied through X-ray observations. However, the origins of the main X-ray components such as the soft X-ray excess, the Fe Kα line complex, and the hard X-ray excess are still hotly debated. This is particularly problematic for active galactic nuclei (AGN) showing a significant intrinsic absorption, either warm or neutral, which can severely distort the observed continuum. Therefore, AGN with no (or very weak) intrinsic absorption along the line of sight, so-called "bare AGN", are the best targets to directly probe matter very close to the SMBH. Aims: We perform an X-ray spectral analysis of the brightest and cleanest bare AGN known so far, Ark 120, in order to determine the process(es) at work in the vicinity of the SMBH. Methods: We present spectral analyses of data from an extensive campaign observing Ark 120 in X-rays with XMM-Newton (4 × 120 ks, 2014 March 18-24), and NuSTAR (65.5 ks, 2014 March 22). Results: During this very deep X-ray campaign, the source was caught in a high-flux state similar to the earlier 2003 XMM-Newton observation, and about twice as bright as the lower-flux observation in 2013. The spectral analysis confirms the "softer when brighter" behavior of Ark 120. The four XMM-Newton/pn spectra are characterized by the presence of a prominent soft X-ray excess and a significant Fe Kα complex. The continuum is very similar above about 3 keV, while significant variability is present for the soft X-ray excess. We find that relativistic reflection from a constant-density, flat accretion disk cannot simultaneously produce the soft excess, broad Fe Kα complex, and hard X-ray excess. Instead, Comptonization reproduces the broadband (0.3-79 keV) continuum well, together with a contribution from a mildly relativistic disk reflection spectrum. Conclusions: During this 2014 observational campaign, the soft X-ray spectrum of Ark 120 below 0

  7. New lubricant systems for cold and warm forging – advantages and limitations

    DEFF Research Database (Denmark)

    Bay, Niels

    2011-01-01

    . The present paper gives an overview of these efforts substituting environmentally hazardous lubricants in cold, warm and hot forging by new, more harmless lubricants. Introduction of these new lubricants, however, has some drawbacks due to lower limits of lubrication leading to risk of pick-up, poor product......The increasing focus on environmental issues and the requirements to establish solutions diminishing the impact on working environment as well as external environment has strongly motivated the efforts to develop new, environmentally friendly tribological systems for metal forming production...

  8. Climate warming: what we can actually expect

    International Nuclear Information System (INIS)

    Delbecq, Denis; Lemarchand, Fabienne; Boucher, Olivier; Dessus, Benjamin; Laponche, Bernard; Le Treut, Herve

    2013-01-01

    As the next IPCC (Intergovernmental Panel on Climate Change) report is soon to be published, a paleo-climatologist answers few questions about issues related to climate change (recent climate events, slower temperature increase during the past ten years, lessons learned from the previous IPCC report, evolutions of models, remaining opportunities to limit temperature increase to 2 degrees). A second article comments climate modelling improvements (finer description of oceans, atmosphere and ice field, introduction of new mechanisms in IPCC models such as carbon cycle, vegetation evolution, aerosols and atmospheric chemistry, models relying on greenhouse gas emission principles and not on socioeconomic scenarios any longer). A third article outlines that Earth has never been so warm since 1850 and proposes some explanations about the fact that warming has slowed down during the last ten years. A fourth article discusses how greenhouse gas emissions can be reduced, notices that their accounting underestimates the short-term and medium-term impact of methane emission reduction, and stresses the importance of an increased attention to methane emissions

  9. "Hot", "Cold" and "Warm" Supports: Towards Theorising Where Refugee Students Go for Assistance at University

    Science.gov (United States)

    Baker, Sally; Ramsay, Georgina; Irwin, Evonne; Miles, Lauren

    2018-01-01

    This paper contributes a rich picture of how students from refugee backgrounds navigate their way into and through undergraduate studies in a regional Australian university, paying particular attention to their access to and use of different forms of support. We draw on the conceptualisation of "hot" and "cold" knowledge,…

  10. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite

    International Nuclear Information System (INIS)

    Xu, Yun-bo; Hu, Zhi-ping; Zou, Ying; Tan, Xiao-dong; Han, Ding-ting; Chen, Shu-qing; Ma, De-gang; Misra, R.D.K.

    2017-01-01

    The microstructure-properties relationship, work-hardening behavior and retained austenite stability have been systematically investigated in a hot-rolled medium manganese transformation-induced-plasticity (TRIP) steel containing δ-ferrite subjected to one-step and two-step intercritical annealing. The steel exhibited tensile strength of 752 MPa and total elongation of 52.7% for one-step intercritical annealing at 740 °C, tensile strength of 954 MPa and total elongation of 39.2% in the case of intercritical quenching at 800 °C and annealing at 740 °C. The austenite obtained by two-step annealing mostly consists of refined lath structures and increased fraction of block-type particles existing at various kinds of sites, which is highly distinguished from those characterized by long lath morphology and small amounts of granular shape in one-step annealed samples. In spite of a higher C and Mn content in austenite and finer austenite laths, two-step annealing can lead to an active and continuous TRIP effect provided by a mixed blocky and lath-type austenitic structure with lower stability, contributing to a higher UTS. In contrast, one-step annealing gave rise to a less active but sustained TRIP effect given by the dominant lath-like austenite having higher stability, leading to a very high elongation. The further precipitation of vanadium carbides and the presence of both dislocation substructure and fine equiaxed grain in ferrite matrix facilitate the increase of yield strength after double annealing. - Highlights: • A novel two-step process was applied to a hot-rolled Fe-0.2C-6.5Mn-3Al steel. • The interplay between different microstructures and mechanical properties was studied. • Two-step annealing led to an active and continuous TRIP. • An outstanding combination of strength of 954 MPa and elongation of 39.2% was obtained.

  11. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yun-bo [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Hu, Zhi-ping, E-mail: huzhiping900401@126.com [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Zou, Ying; Tan, Xiao-dong; Han, Ding-ting; Chen, Shu-qing [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Ma, De-gang [Tangshan Iron and Steel Company, Tangshan 063000, People' s Republic China (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, TX 79968 (United States)

    2017-03-14

    The microstructure-properties relationship, work-hardening behavior and retained austenite stability have been systematically investigated in a hot-rolled medium manganese transformation-induced-plasticity (TRIP) steel containing δ-ferrite subjected to one-step and two-step intercritical annealing. The steel exhibited tensile strength of 752 MPa and total elongation of 52.7% for one-step intercritical annealing at 740 °C, tensile strength of 954 MPa and total elongation of 39.2% in the case of intercritical quenching at 800 °C and annealing at 740 °C. The austenite obtained by two-step annealing mostly consists of refined lath structures and increased fraction of block-type particles existing at various kinds of sites, which is highly distinguished from those characterized by long lath morphology and small amounts of granular shape in one-step annealed samples. In spite of a higher C and Mn content in austenite and finer austenite laths, two-step annealing can lead to an active and continuous TRIP effect provided by a mixed blocky and lath-type austenitic structure with lower stability, contributing to a higher UTS. In contrast, one-step annealing gave rise to a less active but sustained TRIP effect given by the dominant lath-like austenite having higher stability, leading to a very high elongation. The further precipitation of vanadium carbides and the presence of both dislocation substructure and fine equiaxed grain in ferrite matrix facilitate the increase of yield strength after double annealing. - Highlights: • A novel two-step process was applied to a hot-rolled Fe-0.2C-6.5Mn-3Al steel. • The interplay between different microstructures and mechanical properties was studied. • Two-step annealing led to an active and continuous TRIP. • An outstanding combination of strength of 954 MPa and elongation of 39.2% was obtained.

  12. Friction and wear in hot forging of steels

    International Nuclear Information System (INIS)

    Daouben, E.; Dubar, L.; Dubar, M.; Deltombe, R.; Dubois, A.; Truong-Dinh, N.; Lazzarotto, L.

    2007-01-01

    In the field of hot forging of steels, the mastering of wear phenomena enables to save cost production, especially concerning tools. Surfaces of tools are protected thanks to graphite. The existing lubrication processes are not very well known: amount and quality of lubricant, lubrication techniques have to be strongly optimized to delay wear phenomena occurrence. This optimization is linked with hot forging processes, the lubricant layers must be tested according to representative friction conditions. This paper presents the first part of a global study focused on wear phenomena encountered in hot forging of steels. The goal is the identification of reliable parameters, in order to bring knowledge and models of wear. A prototype testing stand developed in the authors' laboratory is involved in this experimental analysis. This test is called Warm and Hot Upsetting Sliding Test (WHUST). The stand is composed of a heating induction system and a servo-hydraulic system. Workpieces taken from production can be heated until 1200 deg. C. A nitrided contactor representing the tool is heated at 200 deg. C. The contactor is then coated with graphite and rubs against the workpiece, leaving a residual track on it. Friction coefficient and surface parameters on the contactor and the workpiece are the most representative test results. The surface parameters are mainly the sliding length before defects occurrence, and the amplitude of surface profile of the contactor. The developed methodology will be first presented followed by the different parts of the experimental prototype. The results of experiment show clearly different levels of performance according to different lubricants

  13. SECULAR CHAOS AND THE PRODUCTION OF HOT JUPITERS

    International Nuclear Information System (INIS)

    Wu Yanqin; Lithwick, Yoram

    2011-01-01

    In a planetary system with two or more well-spaced, eccentric, inclined planets, secular interactions may lead to chaos. The innermost planet may gradually become very eccentric and/or inclined as a result of the secular degrees of freedom drifting toward equipartition of angular momentum deficit. Secular chaos is known to be responsible for the eventual destabilization of Mercury in our own solar system. Here we focus on systems with three giant planets. We characterize the secular chaos and demonstrate the criterion for it to occur, but leave a detailed understanding of secular chaos to a companion paper. After an extended period of eccentricity diffusion, the inner planet's pericenter can approach the star to within a few stellar radii. Strong tidal interactions and ensuing tidal dissipation extract orbital energy from the planet and pull it inward, creating a hot Jupiter. In contrast to other proposed channels for the production of hot Jupiters, such a scenario (which we term 'secular migration') explains a range of observations: the pile-up of hot Jupiters at 3 day orbital periods, the fact that hot Jupiters are in general less massive than other radial velocity planets, that they may have misaligned inclinations with respect to stellar spin, and that they have few easily detectable companions (but may have giant companions in distant orbits). Secular migration can also explain close-in planets as low in mass as Neptune; and an aborted secular migration can explain the 'warm Jupiters' at intermediate distances. In addition, the frequency of hot Jupiters formed via secular migration increases with stellar age. We further suggest that secular chaos may be responsible for the observed eccentricities of giant planets at larger distances and that these planets could exhibit significant spin-orbit misalignment.

  14. Transfer flask for hot active fuel elements

    International Nuclear Information System (INIS)

    Aubert, Roger; Moutard, Daniel.

    1980-01-01

    This invention concerns a flask for transporting active fuel elements removed from a nuclear reactor vessel, after only a few days storage and hence cooling, either within a nuclear power station itself or between such a station and a near-by storage area. This containment system is not a flask for conveyance over long and medium distances. Specifically, the invention concerns a transport flask that enables hot fuel elements to be cooled, even in the event of accidents [fr

  15. Effects of single antegrade hot shot in comparison with no hot shot administration during coronary artery bypass grafting

    Directory of Open Access Journals (Sweden)

    Pouya Mirmohammadsadeghi

    2015-05-01

    Full Text Available BACKGROUND: Superior results will be achieved from cardiac surgery by minimizing the effect of ischemia/reperfusion injury during cross-clamping of the aorta. Different cardioplegia solutions have been introduced, but the optimum one is still ambiguous. The aim of this study is to determine the effect of single antegrade hot shot terminal warm blood cardioplegia (TWBC on patients who had undergone coronary artery bypass grafting (CABG. METHODS: In total, 2488 patients who had CABG surgery in Sina Hospital, Isfahan, Iran, from 2003 to 2011 were enrolled in this case-control study. They were divided into two groups, those who received cold cardioplegia only and those who received a hot shot following cold cardioplegia. Demographics, and clinical data, such as; premature atrial contraction (PAC arrhythmia, diabetes treatment, and left ventricular ejection fraction (EF, were collected and logistic regression analysis was used to analyze the data. RESULTS: There were significant differences found between subjects receiving antegrade hot shot based on direct current (DC shocks, with regard to; female, EF levels, diabetes treatment (P < 0.050. Those who did not receive the hot shot and were not diabetic received more DC shock (P = 0.019. The prevalence of subjects who did no need DC shock was significantly higher among male subjects who had good EF and acceptable diabetic treatment. Multiple logistic regression showed that PAC arrhythmia did not have a significant effect on receiving DC shock during CAGB [0.84 (0.25, 2.85, (P = 0.780]. Having poor EF increased the risk of receiving DC shock among subjects by 2.81 [(1.69, 4.69, (P ≤ 0.001] (P < 0.001. Among the diabetic subjects, receiving insulin decreased the risk of receiving DC shock by 0.54 (0.29, 0.98 (P = 0.042. CONCLUSION: It was concluded that single antegrade hot shot following cold cardioplegia was not particularly effective in the CABG group. TWBC will decrease the need for DC shock.   

  16. Inferring Temperature Inversions in Hot Jupiters Via Spitzer Emission Spectroscopy

    Science.gov (United States)

    Garhart, Emily; Deming, Drake; Mandell, Avi

    2016-10-01

    We present a systematic study of 35 hot Jupiter secondary eclipses, including 16 hot Jupiters never before characterized via emission, observed at the 3.6 μm and 4.5 μm bandpasses of Warm Spitzer in order to classify their atmospheric structure, namely, the existence of temperature inversions. This is a robust study in that these planets orbit stars with a wide range of compositions, temperatures, and activity levels. This diverse sample allows us to investigate the source of planetary temperature inversions, specifically, its correlation with stellar irradiance and magnetic activity. We correct for systematic and intra-pixel sensitivity effects with a pixel level decorrelation (PLD) method described in Deming et al. (2015). The relationship between eclipse depths and a best-fit blackbody function versus stellar activity, a method described in Knutson et al. (2010), will ultimately enable us to appraise the current hypotheses of temperature inversions.

  17. The Basketball warms-ups - theoretical assumptions and practical solutions

    Directory of Open Access Journals (Sweden)

    Sebastian Łubiński

    2017-06-01

    Full Text Available Many authors emphasize the importance of warm-up. Warm-up in team games aims at enhancing the body adaptation to the physical activity and to activate physiological functions from the rest state to the active state. Warm-up brings many different benefits, for example: physiological, psychological, and preventive, regardless of the classification of the above. From a psychological standpoint, the warm-up is performed to create the body "alertness", activity and readiness, and a willingness to act effectively. It was found that the players who perform the correct warm-up are better mentally prepared than those who do not perform it. After a well performed warm-up, the athlete is self-confident and has a positive attitude to the match. It is believed that the warm-up can also be the way to relieve tension and anxiety and to increase concentration and motivation before the match. Warm-up also improves the emotional states and reduces fear of failure. It has been verified that the warm-up, performed under appropriate conditions, improves focus, visual perception, action accuracy, self-confidence, speed and responsiveness, speed of processing and decision making. From the physiological point of view, the warm-up is an activity that adapts the basketball player’s body to an effort. It is an important factor that affects the effect of participation in the competition. Data from the literature suggest that the warm-up individualization is necessary in terms of duration and intensity. There are two types of warm-ups: passive and active. Passive warm-up is the one that is performed by using hot showers, baths, saunas, and steam baths or by using energetics massage. Active warm-up requires a lot of commitment and determination from the athlete during exercises that prepare the body and muscles for an effort. The training measures used during this part of warm-up are the general exercises that improve strength, stretch, coordination

  18. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    Science.gov (United States)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  19. Diverse properties of interstellar medium embedding gamma-ray bursts at the epoch of reionization

    International Nuclear Information System (INIS)

    Cen, Renyue; Kimm, Taysun

    2014-01-01

    Analysis is performed on ultra-high-resolution large-scale cosmological radiation-hydrodynamic simulations to quantify, for the first time, the physical environment of long-duration gamma-ray bursts (GRBs) at the epoch of reionization. We find that, on parsec scales, 13% of GRBs remain in high-density (≥10 4 cm –3 ) low-temperature star-forming regions, whereas 87% of GRBs occur in low-density (∼10 –2.5 cm –3 ) high-temperature regions heated by supernovae. More importantly, the spectral properties of GRB afterglows, such as the neutral hydrogen column density, total hydrogen column density, dust column density, gas temperature, and metallicity of intervening absorbers, vary strongly from sight line to sight line. Although our model explains extant limited observationally inferred values with respect to circumburst density, metallicity, column density, and dust properties, a substantially larger sample of high-z GRB afterglows would be required to facilitate a statistically solid test of the model. Our findings indicate that any attempt to infer the physical properties (such as metallicity) of the interstellar medium (ISM) of the host galaxy based on a very small number (usually one) of sight lines would be precarious. Utilizing high-z GRBs to probe the ISM and intergalactic medium should be undertaken properly, taking into consideration the physical diversities of the ISM.

  20. Simulated Warming Differentially Affects the Growth and Competitive Ability of Centaurea maculosa Populations from Home and Introduced Ranges

    OpenAIRE

    He, Wei-Ming; Li, Jing-Ji; Peng, Pei-Hao

    2012-01-01

    Climate warming may drive invasions by exotic plants, thereby raising concerns over the risks of invasive plants. However, little is known about how climate warming influences the growth and competitive ability of exotic plants from their home and introduced ranges. We conducted a common garden experiment with an invasive plant Centaurea maculosa and a native plant Poa pratensis, in which a mixture of sand and vermiculite was used as a neutral medium, and contrasted the total biomass, competi...

  1. Contribution to the study of the intergalactic medium physical properties through infrared, sub-millimetric and millimetric observations

    International Nuclear Information System (INIS)

    Pointecouteau, Etienne

    1999-01-01

    This work concerns the largest self-gravitating structures of the Universe, clusters of galaxies. Due to its thermodynamical conditions, their intracluster atmosphere is completely ionised. This gas is observed at X-ray wavelengths through its free-free emission, and at submillimeter-millimeter wavelengths through the Sunyaev-Zel'dovich (SZ) effect. This effect is due to the inverse Compton scattering of the cosmic microwave background photons by the hot intracluster electrons. First, taking into account the weakly relativistic behaviour of the electrons, we performed exact calculations of the SZ spectrum. The resulting spectra show the strong dependency of the SZ effect spectral shape with respect to the gas temperature. Making use of this work, we analysed the millimeter data from the DiaBolo spectrophotometer in the direction of a massive and distant cluster, RXJ1347-1145. With a high angular resolution, we have mapped the centre and the extended emission of this cluster, leading to the detection of the strongest SZ effect measured to date. The comparison with the X-ray data shows some very exciting and puzzling differences. In the third part, we present for the first time the spectrum of a galaxy cluster, A2163, from far infrared (90 μm) to millimeter (2.1 mm) wavelengths. The constraints set by the FIR measurements on the residual dust emission, allowed us put strong constraints on the SZ parameters. Finally, we propose a new method which allows to extract the intracluster gas temperature from a set of SZ data. We have quantified the reliability of this method in case of observations obtained from the Planck surveyor and the Herschel space missions. (author) [fr

  2. A possible cause of the AO polarity reversal from winter to summer in 2010 and its relation to hemispheric extreme hot summer

    Science.gov (United States)

    Tachibana, Yoshihiro; Otomi, Yuriko; Nakamura, Tetsu

    2013-04-01

    In 2010, the Northern Hemisphere, in particular Russia and Japan, experienced an abnormally hot summer characterized by record-breaking warm temperatures and associated with a strongly positive Arctic Oscillation (AO), that is, low pressure in the Arctic and high pressure in the midlatitudes. In contrast, the AO index the previous winter and spring (2009/2010) was record-breaking negative. The AO polarity reversal that began in summer 2010 can explain the abnormally hot summer. The winter sea surface temperatures (SST) in the North Atlantic Ocean showed a tripolar anomaly pattern—warm SST anomalies over the tropics and high latitudes and cold SST anomalies over the midlatitudes—under the influence of the negative AO. The warm SST anomalies continued into summer 2010 because of the large oceanic heat capacity. A model simulation strongly suggested that the AO-related summertime North Atlantic oceanic warm temperature anomalies remotely caused blocking highs to form over Europe, which amplified the positive summertime AO. Thus, a possible cause of the AO polarity reversal might be the "memory" of the negative winter AO in the North Atlantic Ocean, suggesting an interseasonal linkage of the AO in which the oceanic memory of a wintertime negative AO induces a positive AO in the following summer. Understanding of this interseasonal linkage may aid in the long-term prediction of such abnormal summer events.

  3. The importance of warm season warming to western U.S. streamflow changes

    Science.gov (United States)

    Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P.

    2011-01-01

    Warm season climate warming will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. Warm season (April-September) warming reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) warming, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent warm season. A uniform warm season warming of 3C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same warming applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Copyright 2011 by the American Geophysical Union.

  4. Analysis of Medium-Scale Solar Thermal Systems and Their Potential in Lithuania

    Directory of Open Access Journals (Sweden)

    Rokas Valančius

    2015-06-01

    Full Text Available Medium-scale solar hot water systems with a total solar panel area varying from 60 to 166 m2 have been installed in Lithuania since 2002. However, the performance of these systems varies depending on the type of energy users, equipment and design of the systems, as well as their maintenance. The aim of this paper was to analyse operational SHW systems from the perspective of energy production and economic benefit as well as to outline the differences of their actual performance compared to the numerical simulation results. Three different medium-scale solar thermal systems in Lithuania were selected for the analysis varying in both equipment used (flat type solar collectors, evacuated tube collectors and type of energy user (swimming pool building, domestic hot water heating, district heating. The results of the analysis showed that in the analysed cases the gap between measured and modelled data of heat energy produced by SHW systems was approx. 11%. From the economical perspective, the system with flat type solar collectors used for domestic hot water production was proved to be most efficient. However, calculation of Internal Rate of Return showed that a grant of 35% is required for this project to be fully profitable.

  5. Solar 'hot spots' are still hot

    Science.gov (United States)

    Bai, Taeil

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22.

  6. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    Science.gov (United States)

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  7. Hot gas path component cooling system

    Science.gov (United States)

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  8. 16S RRNA Gene Analysis of Chlorate Reducing Thermophilic Bacteria From Local Hot Spring

    OpenAIRE

    Aminin, Agustina L. N; Katulistiwasari, Puri; Mulyani, Nies Suci

    2011-01-01

    Chlorates waste remediation by biological processes has been the object of current research. Strain CR, the chlorate reducing bacteria was isolated from Gedongsongo hot spring using minimal medium broth containing chlorates and acetate at 55oC. The determination of chlorate reduction from medium was carried out using turbidimetric method. CR isolate showed reducing ability 18% after four days of incubation. The phenotypic character of CR isolate including rod-shaped cells, gram-positive bacte...

  9. Global warming

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Canada's Green Plan strategy for dealing with global warming is being implemented as a multidepartmental partnership involving all Canadians and the international community. Many of the elements of this strategy are built on an existing base of activities predating the Green Plan. Elements of the strategy include programs to limit emissions of greenhouse gases, such as initiatives to encourage more energy-efficient practices and development of alternate fuel sources; studies and policy developments to help Canadians prepare and adapt to climate change; research on the global warming phenomenon; and stimulation of international action on global warming, including obligations arising out of the Framework Convention on Climate Change. All the program elements have been approved, funded, and announced. Major achievements to date are summarized, including improvements in the Energy Efficiency Act, studies on the socioeconomic impacts of global warming, and participation in monitoring networks. Milestones associated with the remaining global warming initiatives are listed

  10. The effect of warm air-blowing on the microtensile bond strength of one-step self-etch adhesives to root canal dentin.

    Science.gov (United States)

    Taguchi, Keita; Hosaka, Keiichi; Ikeda, Masaomi; Kishikawa, Ryuzo; Foxton, Richard; Nakajima, Masatoshi; Tagami, Junji

    2018-02-01

    The use of warm air-blowing to evaporate solvents of one-step self-etch adhesive systems (1-SEAs) has been reported to be a useful method. The purpose of this study was to evaluate the effect of warm air-blowing on root canal dentin. Four 1-SEAs (Clearfil Bond SE ONE, Unifil Core EM self-etch bond, Estelink, BeautiDualbond EX) were used. Each 1-SEA was applied to root canal dentin according to the manufacturers' instructions. After the adhesives were applied, solvent was evaporated using either normal air (23±1°C) or warm air (80±1°C) for 20s, and resin composite was placed in the post spaces. The air from the dryer, which could be used in normal- or hot-air-mode, was applied at a distance of 5cm above the root canal cavity in the direction of tooth axis. The temperature of the stream of air from the dryer in the hot-air-mode was 80±1°C, and in the normal mode, 23±1°C. After water storage of the specimens for 24h, the μTBS were evaluated at the coronal and apical regions. The μTBSs were statistically analyzed using three-way ANOVA and Student's t-test with Bonferroni correction (α=0.05). The warm air-blowing significantly increased the μTBS of all 1-SEAs at the apical regions, and also significantly increased the μTBS of two adhesives (Estelink and BeautiDualBond EX) at coronal regions. The μTBS of 1-SEAs to root canal dentin was improved by using warm air-blowing. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  11. PLASMA EFFECTS ON FAST PAIR BEAMS. II. REACTIVE VERSUS KINETIC INSTABILITY OF PARALLEL ELECTROSTATIC WAVES

    International Nuclear Information System (INIS)

    Schlickeiser, R.; Krakau, S.; Supsar, M.

    2013-01-01

    The interaction of TeV gamma-rays from distant blazars with the extragalactic background light produces relativistic electron-positron pair beams by the photon-photon annihilation process. Using the linear instability analysis in the kinetic limit, which properly accounts for the longitudinal and the small but finite perpendicular momentum spread in the pair momentum distribution function, the growth rate of parallel propagating electrostatic oscillations in the intergalactic medium is calculated. Contrary to the claims of Miniati and Elyiv, we find that neither the longitudinal nor the perpendicular spread in the relativistic pair distribution function significantly affect the electrostatic growth rates. The maximum kinetic growth rate for no perpendicular spread is even about an order of magnitude greater than the corresponding reactive maximum growth rate. The reduction factors in the maximum growth rate due to the finite perpendicular spread in the pair distribution function are tiny and always less than 10 –4 . We confirm earlier conclusions by Broderick et al. and our group that the created pair beam distribution function is quickly unstable in the unmagnetized intergalactic medium. Therefore, there is no need to require the existence of small intergalactic magnetic fields to scatter the produced pairs, so that the explanation (made by several authors) for the Fermi non-detection of the inverse Compton scattered GeV gamma-rays by a finite deflecting intergalactic magnetic field is not necessary. In particular, the various derived lower bounds for the intergalactic magnetic fields are invalid due to the pair beam instability argument

  12. Should Workers Avoid Consumption of Chilled Fluids in a Hot and Humid Climate?

    Directory of Open Access Journals (Sweden)

    Matt B. Brearley

    2017-12-01

    Full Text Available Despite provision of drinking water as the most common method of occupational heat stress prevention, there remains confusion in hydration messaging to workers. During work site interactions in a hot and humid climate, workers commonly report being informed to consume tepid fluids to accelerate rehydration. When questioned on the evidence supporting such advice, workers typically cite that fluid absorption is delayed by ingestion of chilled beverages. Presumably, delayed absorption would be a product of fluid delivery from the gut to the intestines, otherwise known as gastric emptying. Regulation of gastric emptying is multifactorial, with gastric volume and beverage energy density the primary factors. If gastric emptying is temperature dependent, the impact of cooling is modest in both magnitude and duration (≤ 5 minutes due to the warming of fluids upon ingestion, particularly where workers have elevated core temperature. Given that chilled beverages are most preferred by workers, and result in greater consumption than warm fluids during and following physical activity, the resultant increased consumption of chilled fluids would promote gastric emptying through superior gastric volume. Hence, advising workers to avoid cool/cold fluids during rehydration appears to be a misinterpretation of the research. More appropriate messaging to workers would include the thermal benefits of cool/cold fluid consumption in hot and humid conditions, thereby promoting autonomy to trial chilled beverages and determine personal preference. In doing so, temperature-based palatability would be maximized and increase the likelihood of workers maintaining or restoring hydration status during and after their work shift. Keywords: Fluid consumption, gastric emptying, hot and humid conditions, hydration, occupational

  13. Communicating the deadly consequences of global warming for human heat stress

    Science.gov (United States)

    Matthews, Tom K. R.; Wilby, Robert L.; Murphy, Conor

    2017-04-01

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  14. Communicating the deadly consequences of global warming for human heat stress.

    Science.gov (United States)

    Matthews, Tom K R; Wilby, Robert L; Murphy, Conor

    2017-04-11

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  15. Solar hot spots are still hot

    International Nuclear Information System (INIS)

    Bai, T.

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22. 14 refs

  16. Observations of Hot-Jupiter occultations combining Spitzer and Kepler photometry

    Directory of Open Access Journals (Sweden)

    Knutson H.

    2011-02-01

    Full Text Available We present the status of an ongoing program which aim at measuring occultations by their parent stars of transiting hot giant exoplanets discovered recently by Kepler. The observations are obtained in the near infrared with WarmSpitzer Space Telescope and at optical wavelengths by combining more than a year of Kepler photometry. The investigation consists of measuring the mid-occultation times and the relative occultation depths in each band-passes. Our measurements of occultations depths in the Kepler bandpass is turned into the determination of the optical geometric albedo Ag in this wavelength domain. The brightness temperatures of these planets are deduced from the infrared observations. We combine the optical and near infrared planetary emergent fluxes to obtain broad band emergent spectra of individual planet. We finally compare these spectra to hot Jupiter atmospheric models in order broadly distinguishing these atmospheres between different classes of models.

  17. The symmetry, misalignment and kinematic evolution of double radio sources

    International Nuclear Information System (INIS)

    Macklin, J.T.

    1981-01-01

    The symmetry properties of a carefully selected sample of 76 double radio sources have been examined. It is found that: (1) The average intrinsic misalignment (the ratio of the displacement of the optical object to the source size, before projection) of these sources is 0.038, independent of the intrinsic size; (2) sources which are most misaligned tend to have the highest values of D, the ratio of hot-spot separations from the nucleus; (3) hot spots are more asymmetric in brightness than are tails; and (4) the relative brightness of hot spots is not correlated with D, but the relation between D and F, the ratio of total flux densities in components, implies that most of the diffuse structure tends to be associated with the hot spot closer to the optical identification. Computer simulations have been used to examine (2); this is best explained if the major contribution to the D distribution is independent of orientation and is correlated with the intrinsic misalignment. It is shown that (2) is in conflict with the hypothesis that motion of the parent galaxy relative to the intergalactic medium makes the dominant contribution to the observed misalignment. (3) and (4) can be explained in terms of a beam model of double radio sources which includes the effects of the external environment. (author)

  18. Developmental Competence of Vitrified-Warmed Bovine Oocytes at the Germinal-Vesicle Stage is Improved by Cyclic Adenosine Monophosphate Modulators during In Vitro Maturation.

    Directory of Open Access Journals (Sweden)

    Kenji Ezoe

    Full Text Available Cryopreservation of mature oocytes and embryos has provided numerous benefits in reproductive medicine. Although successful cryopreservation of germinal-vesicle stage (GV oocytes holds promise for further advances in reproductive biology and clinical embryology fields, reports regarding cryopreservation of immature oocytes are limited. Oocyte survival and maturation rates have improved since vitrification is being performed at the GV stage, but the subsequent developmental competence of GV oocytes is still low. The purpose of this study was to evaluate the effects of supplementation of the maturation medium with cyclic adenosine monophosphate (cAMP modulators on the developmental competence of vitrified-warmed GV bovine oocytes. GV oocytes were vitrified-warmed and cultured to allow for oocyte maturation, and then parthenogenetically activated or fertilized in vitro. Our results indicate that addition of a cAMP modulator forskolin (FSK or 3-isobutyl-1-methylxanthine (IBMX to the maturation medium significantly improved the developmental competence of vitrified-warmed GV oocytes. We also demonstrated that vitrification of GV oocytes led to a decline in cAMP levels and maturation-promoting factor (MPF activity in the oocytes during the initial and final phases of maturation, respectively. Nevertheless, the addition of FSK or IBMX to the maturation medium significantly elevated cAMP levels and MPF activity during IVM. Taken together, our results suggest that the cryopreservation-associated meiotic and developmental abnormalities observed in GV oocytes may be ameliorated by an artificial increase in cAMP levels during maturation culture after warming.

  19. HOT 2015

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    2016-01-01

    HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud.......HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud....

  20. Spontaneuos and Parametric Processes in Warm Rubidium Vapours

    Directory of Open Access Journals (Sweden)

    Dąbrowski M.

    2014-12-01

    Full Text Available Warm rubidium vapours are known to be a versatile medium for a variety of experiments in atomic physics and quantum optics. Here we present experimental results on producing the frequency converted light for quantum applications based on spontaneous and stimulated processes in rubidium vapours. In particular, we study the efficiency of spontaneously initiated stimulated Raman scattering in the Λ-level configuration and conditions of generating the coherent blue light assisted by multi-photon transitions in the diamond-level configuration. Our results will be helpful in search for new types of interfaces between light and atomic quantum memories.

  1. The Cosmic Baryon Cycle in the FIRE Simulations

    Science.gov (United States)

    Anglés-Alcázar, Daniel

    2017-07-01

    The exchange of mass, energy, and metals between galaxies and their surrounding circumgalactic medium represents an integral part of the modern paradigm of galaxy formation. In this talk, I will present recent progress in understanding the cosmic baryon cycle using cosmological hydrodynamic simulations from the Feedback In Realistic Environments (FIRE) project. Local stellar feedback processes regulate star formation in galaxies and shape the multi-phase structure of the interstellar medium while driving large-scale outflows that connect galaxies with the circumgalactic medium. I will discuss the efficiency of winds evacuating gas from galaxies, the ubiquity and properties of wind recycling, and the importance of intergalactic transfer, i.e. the exchange of gas between galaxies via winds. I will show that intergalactic transfer can dominate late time gas accretion onto Milky Way-mass galaxies over fresh accretion and standard wind recycling.

  2. OUTFLOW AND HOT DUST EMISSION IN HIGH-REDSHIFT QUASARS

    International Nuclear Information System (INIS)

    Wang, Huiyuan; Xing, Feijun; Wang, Tinggui; Zhou, Hongyan; Zhang, Kai; Zhang, Shaohua

    2013-01-01

    Correlations of hot dust emission with outflow properties are investigated, based on a large z ∼ 2 non-broad absorption line quasar sample built from the Wide-field Infrared Survey and the Sloan Digital Sky Survey data releases. We use the near-infrared slope and the infrared to UV luminosity ratio to indicate the hot dust emission relative to the emission from the accretion disk. In our luminous quasars, these hot dust emission indicators are almost independent of the fundamental parameters, such as luminosity, Eddington ratio and black hole mass, but moderately dependent on the blueshift and asymmetry index (BAI) and FWHM of C IV lines. Interestingly, the latter two correlations dramatically strengthen with increasing Eddington ratio. We suggest that, in high Eddington ratio quasars, C IV regions are dominated by outflows so the BAI and FWHM (C IV) can reliably reflect the general properties and velocity of outflows, respectively. In low Eddington ratio quasars, on the other hand, C IV lines are primarily emitted by virialized gas so the BAI and FWHM (C IV) become less sensitive to outflows. Therefore, the correlations for the highest Eddington ratio quasars are more likely to represent the true dependence of hot dust emission on outflows and the correlations for the entire sample are significantly diluted by the low Eddington ratio quasars. Our results show that an outflow with a large BAI or velocity can double the hot dust emission on average. We suggest that outflows either contain hot dust in themselves or interact with the dusty interstellar medium or torus

  3. Life cycle assessment of domestic heat pump hot water systems in Australia

    Directory of Open Access Journals (Sweden)

    Moore Andrew D.

    2017-01-01

    Full Text Available Water heating accounts for 23% of residential energy consumption in Australia, and, as over half is provided by electric water heaters, is a significant source of greenhouse gas emissions. Due to inclusion in rebate schemes heat pump water heating systems are becoming increasingly popular, but do they result in lower greenhouse gas emissions? This study follows on from a previous life cycle assessment study of domestic hot water systems to include heat pump systems. The streamlined life cycle assessment approach used focused on the use phase of the life cycle, which was found in the previous study to be where the majority of global warming potential (GWP impacts occurred. Data was collected from an Australian heat pump manufacturer and was modelled assuming installation within Australian climate zone 3 (AS/NZS 4234:2011. Several scenarios were investigated for the heat pumps including different sources of electricity (grid, photovoltaic solar modules, and batteries and the use of solar thermal panels. It was found that due to their higher efficiency heat pump hot water systems can result in significantly lower GWP than electric storage hot water systems. Further, solar thermal heat pump systems can have lower GWP than solar electric hot water systems that use conventional electric boosting. Additionally, the contributions of HFC refrigerants to GWP can be significant so the use of alternative refrigerants is recommended. Heat pumps combined with PV and battery technology can achieve the lowest GWP of all domestic hot water systems.

  4. Forgeability test of extruded Mg–Sn–Al–Zn alloys under warm forming conditions

    International Nuclear Information System (INIS)

    Yoon, Jonghun; Park, Sunghyuk

    2014-01-01

    Highlights: • We compared forgeability of new developed TAZ alloys with conventional AZ alloys. • Forgeability was evaluated with a T-shape forging under hot forming condition. • TAZ alloys show the best performance in forgeability under hot forging condition. • Microstructures of the forged part were investigated with EBSD experiments. • YS and UTS of forged part with TAZ alloy are enhanced compared with AZ alloy. - Abstract: Magnesium (Mg) alloys have been thoroughly researched to replace steel or aluminum parts in automotives for reducing weight without sacrificing their strength. The widespread use of Mg alloys has been limited by its insufficient formability, which results from a lack of active slip systems at room temperature. It leads to a hot forming process for Mg alloys to enhance the formability and plastic workability. In addition, forged or formed parts of Mg alloys should have the reliable initial yield and ultimate tensile strength after hot working processes since its material properties should be compatible with other parts thereby guaranteeing structural safety against external load and crash. In this research, an optimal warm forming condition for applying extruded Mg–Sn–Al–Zn (TAZ) Mg alloys into automotive parts is proposed based on T-shape forging tests and the feasibility of forged parts is evaluated by measuring the initial yield strength and investigating the grain size in orientation imaging microscopy (OIM) maps

  5. Performance of Recycled Porous Hot Mix Asphalt with Gilsonite Additive

    Directory of Open Access Journals (Sweden)

    Ludfi Djakfar

    2015-01-01

    Full Text Available The objective of the study is to evaluate the performance of porous asphalt using waste recycled concrete material and explore the effect of adding Gilsonite to the mixture. As many as 90 Marshall specimens were prepared with varied asphalt content, percentage of Gilsonite as an additive, and proportioned recycled and virgin coarse aggregate. The test includes permeability capability and Marshall characteristics. The results showed that recycled concrete materials seem to have a potential use as aggregate in the hot mix asphalt, particularly on porous hot mix asphalt. Adding Gilsonite at ranges 8–10% improves the Marshall characteristic of the mix, particularly its stability, without decreasing significantly the permeability capability of the mix. The use of recycled materials tends to increase the asphalt content of the mix at about 1 to 2% higher. With stability reaching 750 kg, the hot mix recycled porous asphalt may be suitable for use in the local roads with medium vehicle load.

  6. Study of the zirconium passive layer in nitric medium, by the means of electrochemical impedance spectrometry

    International Nuclear Information System (INIS)

    Musy, C.

    1996-01-01

    Although zirconium exhibits a very low corrosion rate in nitric medium at 100 C, electrochemical impedance spectrometry enabled the in-situ monitoring of the zirconium oxide growth in theses conditions. The growth curve shows a very clear deceleration of the oxide growth kinetics after the first hundred hours of immersion in hot nitric medium. The initial thickness of the native oxide film is also examined

  7. Improvement of sweating model in 2-Node Model and its application to thermal safety for hot environments

    Energy Technology Data Exchange (ETDEWEB)

    Ooka, Ryozo [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153 8505 (Japan); Minami, Yuriko [Tokyo Electric Power Company, Tokyo (Japan); Sakoi, Tomonori [International Young Researchers Empowerment Center, Shinshu University, Nagano (Japan); Tsuzuki, Kazuyo [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Rijal, H.B. [Integrated Research System for Sustainability Science, The University of Tokyo, Tokyo (Japan)

    2010-07-15

    Recently, due to global warming and the heat-island effect, more and more people are exposed to the dangers of heat disorders. A hot thermal environment can be evaluated using various indices, such as new Standard Effective Temperature (SET{sup *}) using the 2-Node Model (2 NM), Wet Bulb Globe Temperature (WBGT), Predicted Heat Strain (PHS) model, and so on. The authors aim to develop a safety evaluation approach for hot environments. Subject experiments are performed in a laboratory to comprehend the physiological response of the human body. The results are compared with the computed values from the 2 NM and PHS models, and improved the sweating model in 2 NM in order to take into account the relationship with metabolic rate. A demonstration is provided of using the new sweating model for evaluating thermal safety in a hot environment. (author)

  8. HotRegion: a database of predicted hot spot clusters.

    Science.gov (United States)

    Cukuroglu, Engin; Gursoy, Attila; Keskin, Ozlem

    2012-01-01

    Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion.

  9. Unexpected Impacts of Global warming on Extreme Warm Spells

    Science.gov (United States)

    Sardeshmukh, P. D.; Compo, G. P.; McColl, C.; Penland, C.

    2017-12-01

    It is generally presumed that the likelihood of extreme warm spells around the globe has increased, and will continue to increase, due to global warming. However, we find that this is generally not true in three very different types of global observational datasets and uncoupled atmospheric model simulations of the 1959 to 2012 period with prescribed observed global SSTs, sea ice, and radiative forcing changes. While extreme warm spells indeed became more common in many regions, in many other regions their likelihood remained almost the same or even decreased from the first half to the second half of this period. Such regions of unexpected changes covered nearly 40 percent of the globe in both winter and summer. The basic reason for this was a decrease of temperature variability in such regions that offset or even negated the effect of the mean temperature shift on extreme warm spell probabilities. The possibility of such an impact on extreme value probabilities was highlighted in a recent paper by Sardeshmukh, Compo, and Penland (Journal of Climate 2015). The consistency of the changes in extreme warm spell probabilities among the different observational datasets and model simulations examined suggests that they are robust regional aspects of global warming associated with atmospheric circulation changes. This highlights the need for climate models to represent not just the mean regional temperature signals but also the changes in subseasonal temperature variability associated with global warming. However, current climate models (both CMIP3 and CMIP5) generally underestimate the magnitude of the changes in the atmospheric circulation and associated temperature variability. A likely major cause of this is their continuing underestimation of the magnitude of the spatial variation of tropical SST trends. By generating an overly spatially bland tropical SST warming in response to changes in radiative forcing, the models spuriously mute tropically

  10. Effects of hot shot (non cardioplegic blood based) on cardiac contractility and rhythm as parameters of myocardial protection in cabg surgery abstract objective

    International Nuclear Information System (INIS)

    Janjua, A.M.; Iqbal, M.A.; Rashid, A.

    2012-01-01

    To compare the effects of warm blood cardioplegia along with hot shot (non-cardioplegic blood based) at the end of ischemic time to warm blood cardioplegia without hot shot to assess resumption of effective electromechanical activity and need for internal electrical cardioversion as indicators of myocardial protection and preservation. Study Design: Randomized control trial. Place and Duration: The study was conducted at Armed Forces Institute of Cardiology (AFIC), Rawalpindi for a period of 10 months (March 2009 - Dec 2009). Patients and Methods: Total 100 patients of coronary artery disease having coronary artery bypass grafting (CABG) surgery were equally and randomly divided into two groups using random numbers table. Group A (n=50), consisted of warm blood cardioplegia with non cardioplegic blood based hot shot and group B (n=50), consisted of warm blood cardioplegia only. The adequacy of myocardial protection techniques was assessed by noting the time interval (in seconds) between declamping of the ascending aorta and patient regaining electromechanical activity. Additional parameters were rhythm, use of internal cardiac defibrillation, inotropes, IABP requirement and ECG evidenced peri-op MI. Results: Average age in group A was 56.98 +- 9.47 years and in Group B it was 59.1 9.35 years. In group A there were 48 (96%) males and group B there were 43 (86%) males with p-value of 0.081. Comparison of preoperative variables of both the groups revealed no difference in cross clamp time (p=0.52), CPB time (p = 0.68) and endarterectomy (p=0.55). The electromechanical activity (contractility of heart) returned within 7.53 +- 2.09 min in group A as compared to 9.81 +- 2.6 min in group B (p<0.001). Significantly high frequency was observed for defibrillation (p=0.025), inotropic support (p=0.045) and IABP insertion (p=0.041) in group B as compared to group A. Conclusion: In CABG surgery the additional use of hot shot (non cardioplegic blood based) during cardiopulmonary

  11. The isotope geochemistry of hot springs gases and waters from Coromandel and Hauraki

    International Nuclear Information System (INIS)

    Lyon, G.L.; Giggenbach, W.F.

    1992-01-01

    Carbon, hydrogen and oxygen stable isotope analyses have been made on carbon dioxide,methane and water from warm and hot springs in the Coromandel Peninsula and Hauraki Plains. Most of the waters are isotopically unaltered meteoric waters. Methane δ 1 3C values vary widely, from -30%o to -72%o. Warm springs in swamps at Maketu and Kerepehi have microbial methane probably added to the water near the surface. Puriri, Okoroire and Miranda springs produce thermally derived methane, and the Hot Water Beach gas is similar to the Kaitoke gas in chemistry and isotopic composition but altered by shallow microbial oxidation. The Te Aroha gas, though, is not inconsistent with a geothermal origin and the boiling springs and oxygen-isotope altered water are further evidence for high temperatures. Other spring gases have mixtures of thermogenic and microbial methane and none are closely similar to major NZ geothermal CH 4 composition. CO 2 , which is usually present in lesser amounts than N 2 , has isotopic values which suggest a geothermal origin at Te Aroha and Maketu, but otherwise indicates a crustal origin. The dominance of N 2 implies that the fluid flows are tectonic fracture flow rather than geothermal. 3 He/ 4 He data gives further evidence of no major contribution from magmatic material except at Maketu, on the NW boundary of the TVZ. (author). 24 refs., 4 figs., 2 tabs

  12. The Interstellar Medium in External Galaxies: Summaries of contributed papers

    Science.gov (United States)

    Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)

    1990-01-01

    The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.

  13. A hot air driven thermoacoustic-Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, M.E.H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-09-15

    Significant energy savings can be obtained by implementing a thermally driven heat pump into industrial or domestic applications. Such a thermally driven heat pump uses heat from a high-temperature source to drive the system which upgrades an abundantly available heat source (industrial waste heat, air, water, geothermal). A way to do this is by coupling a thermoacoustic engine with a thermoacoustic heat pump. The engine is driven by a burner and produces acoustic power and heat at the required temperature. The acoustic power is used to pump heat in the heat pump to the required temperature. This system is attractive since it uses a noble gas as working medium and has no moving mechanical parts. This paper deals with the first part of this system: the engine. In this study, hot air is used to simulate the flue gases originating from a gas burner. This is in contrast with a lot of other studies of thermoacoustic engines that use an electrical heater as heat source. Using hot air resembles to a larger extent the real world application. The engine produces about 300W of acoustic power with a performance of 41% of the Carnot efficiency at a hot air temperature of 620C.

  14. Hot rolling of thick uranium molybdenum alloys

    Science.gov (United States)

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  15. Fiscal 1999 report on result of the model project for waste heat recovery in hot blast stove; 1999 nendo netsufuro hainetsu kaishu model jigyo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purpose of curtailing energy consumption of the steel industry, a heavy energy consuming industry in China, a model project was carried out for waste heat recovery in a hot blast stove, with the fiscal 1999 results reported. In the process of this project, a heat exchanger for recovering heat is installed in the exhaust gas flue of a hot blast stove in ironworks, with sensible heat recovered through a heating medium. The heat exchanger for recovering heat and the preheating heat exchanger, which was installed in the main pipe for blast furnace gas and for combustion air, were connected by pressure piping, with the blast furnace gas and the combustion air preheated. In addition, a heating medium circulating pump for transporting the heating medium is installed, as are an expansion tank for absorbing expansion/contraction due to change in temperature, a heating medium storage tank for accepting the entire heating medium in the system for the maintenance of the equipment, and heating medium feeding pump, for example. This year, on the basis of the 'Agreement Annex', basic designs and detailed designs were performed for each equipment in the waste heat recovering equipment for the hot blast stove. Further, procurement and manufacturing were implemented for various component parts and devices of the waste heat recovering equipment. (NEDO)

  16. A WARM MOLECULAR HYDROGEN TAIL DUE TO RAM-PRESSURE STRIPPING OF A CLUSTER GALAXY

    International Nuclear Information System (INIS)

    Sivanandam, Suresh; Rieke, Marcia J.; Rieke, George H.

    2010-01-01

    We have discovered a remarkable warm (130-160 K) molecular hydrogen tail with a H 2 mass of approximately 4 x 10 7 M sun extending 20 kpc from a cluster spiral galaxy, ESO 137-001, in Abell 3627. At least half of this gas is lost permanently to the intracluster medium, as the tail extends beyond the tidal radius of the galaxy. We also detect a hot (400-550 K) component in the tail that is approximately 1% of the mass. The large H 2 line to IR continuum luminosity ratio in the tail indicates that star formation is not a major excitation source and that the gas is possibly shock-heated. This discovery confirms that the galaxy is currently undergoing ram-pressure stripping, as also indicated by its previously discovered X-ray and Hα tails. We estimate that the galaxy is losing its warm H 2 gas at a rate of ∼2-3 M sun yr -1 . The true mass-loss rate is likely higher if we account for cold molecular gas and atomic gas. We predict that the galaxy will lose most of its gas in a single pass through the core and place a strong upper limit on the ram-pressure timescale of 1 Gyr. We also study the star-forming properties of the galaxy and its tail. We identify most of the previously discovered external Hα sources within the tail in our 8 μm data but not in our 3.6 μm data; IRS spectroscopy of the region containing these Hα sources also reveals aromatic features typically associated with star formation. From the positions of these H II regions, it appears that star formation is not occurring throughout the molecular hydrogen tail but only immediately downstream of the galaxy. Some of these H II regions lie outside the tidal radius of the galaxy, indicating that ram-pressure stripping can be a source of intracluster stars.

  17. Identifying biologically meaningful hot-weather events using threshold temperatures that affect life-history.

    Directory of Open Access Journals (Sweden)

    Susan J Cunningham

    Full Text Available Increases in the frequency, duration and intensity of heat waves are frequently evoked in climate change predictions. However, there is no universal definition of a heat wave. Recent, intense hot weather events have caused mass mortalities of birds, bats and even humans, making the definition and prediction of heat wave events that have the potential to impact populations of different species an urgent priority. One possible technique for defining biologically meaningful heat waves is to use threshold temperatures (T(thresh above which known fitness costs are incurred by species of interest. We set out to test the utility of this technique using T(thresh values that, when exceeded, affect aspects of the fitness of two focal southern African bird species: the southern pied babbler Turdiodes bicolor (T(thresh = 35.5 °C and the common fiscal Lanius collaris (T(thresh = 33 °C. We used these T(thresh values to analyse trends in the frequency, duration and intensity of heat waves of magnitude relevant to the focal species, as well as the annual number of hot days (maximum air temperature > T(thresh, in north-western South Africa between 1961 and 2010. Using this technique, we were able to show that, while all heat wave indices increased during the study period, most rapid increases for both species were in the annual number of hot days and in the maximum intensity (and therefore intensity variance of biologically meaningful heat waves. Importantly, we also showed that warming trends were not uniform across the study area and that geographical patterns in warming allowed both areas of high risk and potential climate refugia to be identified. We discuss the implications of the trends we found for our focal species, and the utility of the T(thresh technique as a conservation tool.

  18. Organic compounds in hot-water-soluble fractions from water repellent soils

    Science.gov (United States)

    Atanassova, Irena; Doerr, Stefan

    2014-05-01

    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  19. Gas in Galaxies

    OpenAIRE

    Bland-Hawthorn, J.; Reynolds, R. J.

    2000-01-01

    The interstellar medium (ISM) can be thought of as the galactic atmosphere which fills the space between stars. When clouds within the ISM collapse, stars are born. When the stars die, they return their matter to the surrounding gas. Therefore the ISM plays a vital role in galactic evolution. The medium includes starlight, gas, dust, planets, comets, asteroids, fast moving charged particles (cosmic rays) and magnetic fields. The gas can be further divided into hot, warm and cold components, e...

  20. Local warming: daily temperature change influences belief in global warming.

    Science.gov (United States)

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  1. Determination of the Mean HI Absorption of the Intergalactic Medium ...

    Indian Academy of Sciences (India)

    4Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, .... New Technology Telescope (NTT) of the European Southern Observatory (ESO) or .... Wavelengths were air-vacuum corrected using the Edlén (1966) formula.

  2. Simulated warming differentially affects the growth and competitive ability of Centaurea maculosa populations from home and introduced ranges.

    Directory of Open Access Journals (Sweden)

    Wei-Ming He

    Full Text Available Climate warming may drive invasions by exotic plants, thereby raising concerns over the risks of invasive plants. However, little is known about how climate warming influences the growth and competitive ability of exotic plants from their home and introduced ranges. We conducted a common garden experiment with an invasive plant Centaurea maculosa and a native plant Poa pratensis, in which a mixture of sand and vermiculite was used as a neutral medium, and contrasted the total biomass, competitive effects, and competitive responses of C. maculosa populations from Europe (home range and North America (introduced range under two different temperatures. The warming-induced inhibitory effects on the growth of C. maculosa alone were stronger in Europe than in North America. The competitive ability of C. maculosa plants from North America was greater than that of plants from Europe under the ambient condition whereas this competitive ability followed the opposite direction under the warming condition, suggesting that warming may enable European C. maculosa to be more invasive. Across two continents, warming treatment increased the competitive advantage instead of the growth advantage of C. maculosa, suggesting that climate warming may facilitate C. maculosa invasions through altering competitive outcomes between C. maculosa and its neighbors. Additionally, the growth response of C. maculosa to warming could predict its ability to avoid being suppressed by its neighbors.

  3. Simulated warming differentially affects the growth and competitive ability of Centaurea maculosa populations from home and introduced ranges.

    Science.gov (United States)

    He, Wei-Ming; Li, Jing-Ji; Peng, Pei-Hao

    2012-01-01

    Climate warming may drive invasions by exotic plants, thereby raising concerns over the risks of invasive plants. However, little is known about how climate warming influences the growth and competitive ability of exotic plants from their home and introduced ranges. We conducted a common garden experiment with an invasive plant Centaurea maculosa and a native plant Poa pratensis, in which a mixture of sand and vermiculite was used as a neutral medium, and contrasted the total biomass, competitive effects, and competitive responses of C. maculosa populations from Europe (home range) and North America (introduced range) under two different temperatures. The warming-induced inhibitory effects on the growth of C. maculosa alone were stronger in Europe than in North America. The competitive ability of C. maculosa plants from North America was greater than that of plants from Europe under the ambient condition whereas this competitive ability followed the opposite direction under the warming condition, suggesting that warming may enable European C. maculosa to be more invasive. Across two continents, warming treatment increased the competitive advantage instead of the growth advantage of C. maculosa, suggesting that climate warming may facilitate C. maculosa invasions through altering competitive outcomes between C. maculosa and its neighbors. Additionally, the growth response of C. maculosa to warming could predict its ability to avoid being suppressed by its neighbors.

  4. The role of clouds and oceans in global greenhouse warming

    International Nuclear Information System (INIS)

    Hoffert, M.I.

    1992-12-01

    During the past three years we have conducted several studies using models and a combination of satellite data, in situ meteorological and oceanic data, and paleoclimate reconstructions, under the DoE program, ''Quantifying the Link Between Change in Radiative Balance and Atmospheric Temperature''. Our goals were to investigate effects of global cloudiness variations on global climate and their implications for cloud feedback and continue development and application of NYU transient climate/ocean models, with emphasis on coupled effects of greenhouse warming and feedbacks by both the clouds and oceans. Our original research plan emphasized the use of cloud, surface temperature and ocean data sets interpreted by focused climate/ocean models to develop a cloud radiative forcing scenario for the past 100 years and to assess the transient climate response; to narrow key uncertainties in the system; and to identify those aspects of the climate system most likely to be affected by greenhouse warming over short, medium and long time scales

  5. Integration of Thermoelectric Generators and Wood Stove to Produce Heat, Hot Water, and Electrical Power

    DEFF Research Database (Denmark)

    Goudarzi, A.M.; Mazandarani, P.; Panahi, R.

    2013-01-01

    Traditional fire stoves are characterized by low efficiency. In this experimental study, the combustion chamber of the stove is developed by two devices. An electric fan can increase the air to fuel ratio in order to increase the system’s efficiency and to decrease the air pollution by providing....... The presented prototype is designed to fulfill the basic needs of domestic electricity, hot water and the essential heat for warming the room and cooking....

  6. Ultrahigh-energy Cosmic Rays from Fanaroff Riley class II radio galaxies

    Science.gov (United States)

    Rachen, Joerg; Biermann, Peter L.

    1992-08-01

    The hot spots of very powerful radio galaxies (Fanaroff Riley class II) are argued to be the sources of the ultrahigh energy component in Cosmic Rays. We present calculations of Cosmic Ray transport in an evolving universe, taking the losses against the microwave background properly into account. As input we use the models for the cosmological radio source evolution derived by radioastronomers (mainly Peacock 1985). The model we adopt for the acceleration in the radio hot spots has been introduced by Biermann and Strittmatter (1987), and Meisenheimer et al. (1989) and is based on first order Fermi theory of particle acceleration at shocks (see, e.g., Drury 1983). As an unknown the actual proportion of energy density in protons enters, which together with structural uncertainties in the hot spots should introduce no more than one order of magnitude in uncertainty: We easily reproduce the observed spectra of high energy cosmic rays. It follows that scattering of charged energetic particles in intergalactic space must be sufficiently small in order to obtain contributions from sources as far away as even the nearest Fanaroff Riley class II radio galaxies. This implies a strong constraint on the turbulent magnetic field in intergalactic space.

  7. Mesoamerican Nephropathy or Global Warming Nephropathy?

    Science.gov (United States)

    Roncal-Jimenez, Carlos A; García-Trabanino, Ramon; Wesseling, Catharina; Johnson, Richard J

    2016-01-01

    An epidemic of chronic kidney disease (CKD) of unknown cause has emerged along the Pacific Coast of Central America. The disease primarily affects men working manually outdoors, and the major group affected is sugarcane workers. The disease presents with an asymptomatic rise in serum creatinine that progresses to end-stage renal disease over several years. Renal biopsies show chronic tubulointerstitial disease. While the cause remains unknown, recent studies suggest that it is driven by recurrent dehydration in the hot climate. Potential mechanisms include the development of hyperosmolarity with the activation of the aldose reductase-fructokinase pathway in the proximal tubule leading to local injury and inflammation, and the possibility that renal injury may be the consequence of repeated uricosuria and urate crystal formation as a consequence of both increased generation and urinary concentration, similar to a chronic tumor lysis syndrome. The epidemic is postulated to be increasing due to the effects of global warming. An epidemic of CKD has led to the death of more than 20,000 lives in Central America. The cause is unknown, but appears to be due to recurrent dehydration. Potential mechanisms for injury are renal damage as a consequence of recurrent hyperosmolarity and/or injury to the tubules from repeated episodes of uricosuria. The epidemic of CKD in Mesoamerica may be due to chronic recurrent dehydration as a consequence of global warming and working conditions. This entity may be one of the first major diseases attributed to climate change and the greenhouse effect. © 2016 S. Karger AG, Basel.

  8. Galactic Winds Driven by Supernovae and Radiation Pressure: Theory and Simulations

    Science.gov (United States)

    Zhang, Dong; Davis, Shane

    2018-01-01

    Galactic winds are ubiquitous in most rapidly star-forming galaxies. They are crucial to the process of galaxy formation and evolution, regulating star formation, shaping the stellar mass function and the mass-metallicity relation, and enriching the intergalactic medium with metals. Although important, the physics of galactic winds is still unclear. Winds may be driven by many mechanisms including overlapping supernovae explosions, radiation pressure of starlight on dust grains, and cosmic rays. However, the growing observations of multiphase structure in galactic winds in a large number of galaxies have not been well explained by any models. In this talk I will focus on the models of supernova- and radiation-pressure-driven winds. Using the state-of-the-art numerical simulations, I will assess the relative merits of these driving mechanisms for accelerating cold and warm clouds to observed velocities, and momentum flux boost during wind propagation.

  9. THE DETECTION OF A HOT MOLECULAR CORE IN THE LARGE MAGELLANIC CLOUD WITH ALMA

    International Nuclear Information System (INIS)

    Shimonishi, Takashi; Onaka, Takashi; Kawamura, Akiko; Aikawa, Yuri

    2016-01-01

    We report the first detection of a hot molecular core outside our Galaxy based on radio observations with ALMA toward a high-mass young stellar object (YSO) in a nearby low metallicity galaxy, the Large Magellanic Cloud (LMC). Molecular emission lines of CO, C 17 O, HCO + , H 13 CO + , H 2 CO, NO, SiO, H 2 CS, 33 SO, 32 SO 2 , 34 SO 2 , and 33 SO 2 are detected from a compact region (∼0.1 pc) associated with a high-mass YSO, ST11. The temperature of molecular gas is estimated to be higher than 100 K based on rotation diagram analysis of SO 2 and 34 SO 2 lines. The compact source size, warm gas temperature, high density, and rich molecular lines around a high-mass protostar suggest that ST11 is associated with a hot molecular core. We find that the molecular abundances of the LMC hot core are significantly different from those of Galactic hot cores. The abundances of CH 3 OH, H 2 CO, and HNCO are remarkably lower compared to Galactic hot cores by at least 1–3 orders of magnitude. We suggest that these abundances are characterized by the deficiency of molecules whose formation requires the hydrogenation of CO on grain surfaces. In contrast, NO shows a high abundance in ST11 despite the notably low abundance of nitrogen in the LMC. A multitude of SO 2 and its isotopologue line detections in ST11 imply that SO 2 can be a key molecular tracer of hot core chemistry in metal-poor environments. Furthermore, we find molecular outflows around the hot core, which is the second detection of an extragalactic protostellar outflow. In this paper, we discuss the physical and chemical characteristics of a hot molecular core in the low metallicity environment.

  10. Potential application of solar thermal systems for hot water production in Hong Kong

    International Nuclear Information System (INIS)

    Li Hong; Yang Hongxing

    2009-01-01

    This paper presents the evaluation results of conventional solar water heater (SWH) systems and solar assisted heat pump (SAHP) systems for hot water production in Hong Kong. An economic comparison and global warming impact analysis are conducted among the two kinds of solar thermal systems and traditional water heating systems (i.e. electric water heaters and towngas water heaters). The economic comparison results show that solar thermal systems have greater economic benefits than traditional water heating systems. In addition, conventional SWH systems are comparable with the SAHP systems when solar fractions are above 50%. Besides, analysis on the sensitivity of the total equivalent warming impact (TEWI) indicates that the towngas boosted SWH system has the greatest potential in greenhouse gas emission reduction with various solar collector areas and the electricity boosted SWH system has the comparative TEWI with the SAHP systems if its solar fraction is above 50%. As for SAHP systems, the solar assisted air source heat pump (SA-ASHP) system has the least global warming impact. Based on all investigation results, suggestions are given on the selection of solar thermal systems for applications in Hong Kong

  11. Experience with The Use of Warm Mix Asphalt Additives in Bitumen Binders

    Directory of Open Access Journals (Sweden)

    Cápayová Silvia

    2018-03-01

    Full Text Available In most European countries, Hot Mix Asphalt (HMA technology is still being used as the standard for the production and processing of bituminous mixtures. However, from the perspective of environmental acceptability, global warming and greenhouse gas production, Slovakia is making an effort to put into practice modern technology, which is characterized by lower energy consumption and reducing negative impacts on the environment. Warm mix asphalt technologies (WMA, which have been verified at the Department of Transportation Engineering laboratory, Faculty of Civil Engineering, Slovak University of Technology (FCE, SUT can provide the required mixture properties and can be used not only for the construction of new roads, but also for their renovation and reconstruction. The paper was created in cooperation with the Technical University of Ostrava, Czech Republic, which also deals with the addition of additives to asphalt mixtures and binders. It describes a comparison of the impact of some organic and chemical additives on the properties of commonly used bitumen binders in accordance with valid standards and technical regulations.

  12. Experience with The Use of Warm Mix Asphalt Additives in Bitumen Binders

    Science.gov (United States)

    Cápayová, Silvia; Unčík, Stanislav; Cihlářová, Denisa

    2018-03-01

    In most European countries, Hot Mix Asphalt (HMA) technology is still being used as the standard for the production and processing of bituminous mixtures. However, from the perspective of environmental acceptability, global warming and greenhouse gas production, Slovakia is making an effort to put into practice modern technology, which is characterized by lower energy consumption and reducing negative impacts on the environment. Warm mix asphalt technologies (WMA), which have been verified at the Department of Transportation Engineering laboratory, Faculty of Civil Engineering, Slovak University of Technology (FCE, SUT) can provide the required mixture properties and can be used not only for the construction of new roads, but also for their renovation and reconstruction. The paper was created in cooperation with the Technical University of Ostrava, Czech Republic, which also deals with the addition of additives to asphalt mixtures and binders. It describes a comparison of the impact of some organic and chemical additives on the properties of commonly used bitumen binders in accordance with valid standards and technical regulations.

  13. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen......Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  14. Simulating Cosmic Reionisation

    NARCIS (Netherlands)

    Pawlik, Andreas Heinz

    2009-01-01

    The first stars formed a few hundred million years after the Big Bang, when the Universe was only a small fraction of its present age. Their radiation transformed the previously cold and neutral hydrogen that filled intergalactic space into the hot and ionised cosmic plasma that is observed today.

  15. Longitudinal Changes in Tear Evaporation Rates After Eyelid Warming Therapies in Meibomian Gland Dysfunction.

    Science.gov (United States)

    Yeo, Sharon; Tan, Jen Hong; Acharya, U Rajendra; Sudarshan, Vidya K; Tong, Louis

    2016-04-01

    Lid warming is the major treatment for meibomian gland dysfunction (MGD). The purpose of the study was to determine the longitudinal changes of tear evaporation after lid warming in patients with MGD. Ninety patients with MGD were enrolled from a dry eye clinic at Singapore National Eye Center in an interventional trial. Participants were treated with hot towel (n = 22), EyeGiene (n = 22), or Blephasteam (n = 22) twice daily or a single 12-minute session of Lipiflow (n = 24). Ocular surface infrared thermography was performed at baseline and 4 and 12 weeks after the treatment, and image features were extracted from the captured images. The baseline of conjunctival tear evaporation (TE) rate (n = 90) was 66.1 ± 21.1 W/min. The rates were not significantly different between sexes, ages, symptom severities, tear breakup times, Schirmer test, corneal fluorescein staining, or treatment groups. Using a general linear model (repeat measures), the conjunctival TE rate was reduced with time after treatment. A higher baseline evaporation rate (≥ 66 W/min) was associated with greater reduction of evaporation rate after treatment. Seven of 10 thermography features at baseline were predictive of reduction in irritative symptoms after treatment. Conjunctival TE rates can be effectively reduced by lid warming treatment in some MGD patients. Individual baseline thermography image features can be predictive of the response to lid warming therapy. For patients that do not have excessive TE, additional therapy, for example, anti-inflammatory therapy, may be required.

  16. Quantifying the Influence of Global Warming on Unprecedented Extreme Climate Events

    Science.gov (United States)

    Diffenbaugh, Noah S.; Singh, Deepti; Mankin, Justin S.; Horton, Daniel E.; Swain, Daniel L.; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; hide

    2017-01-01

    Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.

  17. Quantifying the influence of global warming on unprecedented extreme climate events.

    Science.gov (United States)

    Diffenbaugh, Noah S; Singh, Deepti; Mankin, Justin S; Horton, Daniel E; Swain, Daniel L; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; Rajaratnam, Bala

    2017-05-09

    Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.

  18. FIREBall-2: Trailblazing observations of the space UV circumgalactic medium (Columbia University, Co-I Proposal)

    Science.gov (United States)

    Schiminovich, David

    Columbia University is a Co-I institution in a collaborative research program with Caltech, the Lead Institution (PI: Christopher Martin). The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the circumgalactic medium of low redshift galaxies (0.3zz 0.7, conduct a targeted search of circumquasar (CQM) media for selected targets, and conduct follow up on likely tar-gets selected via GALEX and a pilot survey conducted by our group. We will also conduct a statistical search for the faint IGM via statistical stacking of our data. The FIREBall-2 team includes two female graduate students in key roles (both of whom are finishing their PhDs in 2016) and is overseen by a female Postdoctoral scholar (supported by NSF AAPF and Caltech Millikan Fellowships, in addition to a recent Roman Technology Fellowship award). Additional funding is necessary to keep this highly qualified balloon team together for a second flight. FIREBall-2 will test key technologies and science strategies for a future space mission to map emission from CGM and IGM baryons. Its flights will continue to provide important training for the next generation of space astrophysicists working in UV and other wavelength instrumentation. Most importantly, FIREBall-2 will detect emission from the CGM of nearby galaxies, providing the first census of the density and kinematics of this material for low z galaxies and open-ing a new field of CGM science.

  19. Modeling research in low-medium temperature geothermal field, Tianjin

    Institute of Scientific and Technical Information of China (English)

    WANG; Kun(王坤); LI; Chunhua(李春华)

    2002-01-01

    The geothermal reservoir in Tianjin can be divided into two parts: the upper one is the porous medium reservoir in the Tertiary system; the lower one includes the basement reservoir in Lower Paleozoic and Middle-Upper Proterozoic. Hot springs are exposed in the northern mountain and confined geothermal water is imbedded in the southern plain. The geothermal reservoir is incised by several fractures. In recent years, TDS of the geothermal water have gone up along with the production rate increasing, along the eastern fracture zone (Cangdong Fracture and West Baitangkou Fracture). This means that the northern fracture system is the main seepage channel of the deep circulation geothermal water, and the reservoir has good connection in a certain area and definite direction. The isotopic research about hydrogen and carbon chronology indicates that the main recharge period of geothermal water is the Holocene Epoch, the pluvial and chilly period of 20 kaBP. The karst conduits in weathered carbonate rocks of the Proterozoic and Lower Paleozoic and the northeast regional fracture system are the main feeding channels of Tianjin geothermal water. Since the Holocene epoch, the geothermal water stayed at a sealed warm period. The tracer test in WR45 doublet system shows that the tracer test is a very effective measure for understanding the reservoir's transport nature and predicting the cooling time and transport velocity during the reinjection. 3-D numerical simulation shows that if the reinjection well keeps a suitable distance from the production well, reinjection will be a highly effective measure to extract more thermal energy from the rock matrix. The cooling of the production well will not be a problem.

  20. Intensified Arctic warming under greenhouse warming by vegetation–atmosphere–sea ice interaction

    International Nuclear Information System (INIS)

    Jeong, Jee-Hoon; Kug, Jong-Seong; Linderholm, Hans W; Chen, Deliang; Kim, Baek-Min; Jun, Sang-Yoon

    2014-01-01

    Observations and modeling studies indicate that enhanced vegetation activities over high latitudes under an elevated CO 2 concentration accelerate surface warming by reducing the surface albedo. In this study, we suggest that vegetation-atmosphere-sea ice interactions over high latitudes can induce an additional amplification of Arctic warming. Our hypothesis is tested by a series of coupled vegetation-climate model simulations under 2xCO 2 environments. The increased vegetation activities over high latitudes under a 2xCO 2 condition induce additional surface warming and turbulent heat fluxes to the atmosphere, which are transported to the Arctic through the atmosphere. This causes additional sea-ice melting and upper-ocean warming during the warm season. As a consequence, the Arctic and high-latitude warming is greatly amplified in the following winter and spring, which further promotes vegetation activities the following year. We conclude that the vegetation-atmosphere-sea ice interaction gives rise to additional positive feedback of the Arctic amplification. (letter)

  1. Experimental and theoretical investigations on the warm-up of a high-pressure mercury discharge lamp

    International Nuclear Information System (INIS)

    Zalach, J.; Franke, St.; Schoepp, H.; Araoud, Z.; Charrada, K.; Zissis, G.

    2011-01-01

    Modern high-pressure discharge lamps are forced to provide instant light and hot relight capabilities - if possible at lower power units. A detailed understanding of the warm-up of high-pressure discharge lamps is therefore required. Complex fluid model codes were developed for the past years including more and more processes like two-dimensional treatment of convection trying to provide a more comprehensive and consistent description of high-pressure discharge lamps. However, there is a lack of experimental data to examine the performance of these models. This work provides a very complete set of geometrical, electrical, spectroscopic, and thermographic data according to the warm-up of a high-pressure mercury discharge lamp that is compared to the results of a state of the art fluid code. Quantitative agreement is achieved for single parameters like wall temperatures. But the paper also reveals the need for further investigations and improvements of the code.

  2. Global warming-setting the stages

    International Nuclear Information System (INIS)

    1994-01-01

    Most of us have heard or read about global warming. However, the messages we receive are often in conflict, raising more questions than answer. Is global warming a good or a bad thing? has it already started or is it part of our future? Are we, or are we not doing anything about it? Should we be concerned? This primer on Global Warming is designed to clear up some of this confusion by providing basic scientific information on global warming issue. It is clear that there is still much to learn about global warming. However, it is also clear that there is a lot that we already know - and that dose provide cause for concern. We must understand the global warming issue if we are to make wise decisions and take responsible actions in response to the challenges and opportunities posed by global warming. Chapter 1 of 'the primer on global Warming' set the stage with a brief overview of science of global warming within the context of climate change. In addition, it introduces the specific issues that surround the global warming problem. As far as the science of global warming is concerned the following questions are discussed. What is global climate? Is climate change natural? What causes climate to vary on a global scale? How does the composition of the atmosphere relate to climate change. but there are also certain issues discussed here which surround the global warming such as: If climate varies naturally, why is there a concern about 'global warming'? What are the potential consequences of 'global warning'. What human activities contribute to 'global warming'. (Author)

  3. Global Warming Induced Changes in Rainfall Characteristics in IPCC AR5 Models

    Science.gov (United States)

    Lau, William K. M.; Wu, Jenny, H.-T.; Kim, Kyu-Myong

    2012-01-01

    Changes in rainfall characteristic induced by global warming are examined from outputs of IPCC AR5 models. Different scenarios of climate warming including a high emissions scenario (RCP 8.5), a medium mitigation scenario (RCP 4.5), and 1% per year CO2 increase are compared to 20th century simulations (historical). Results show that even though the spatial distribution of monthly rainfall anomalies vary greatly among models, the ensemble mean from a sizable sample (about 10) of AR5 models show a robust signal attributable to GHG warming featuring a shift in the global rainfall probability distribution function (PDF) with significant increase (>100%) in very heavy rain, reduction (10-20% ) in moderate rain and increase in light to very light rains. Changes in extreme rainfall as a function of seasons and latitudes are also examined, and are similar to the non-seasonal stratified data, but with more specific spatial dependence. These results are consistent from TRMM and GPCP rainfall observations suggesting that extreme rainfall events are occurring more frequently with wet areas getting wetter and dry-area-getting drier in a GHG induced warmer climate.

  4. ALMA Observations of the Archetypal “Hot Core” That Is Not: Orion-KL

    International Nuclear Information System (INIS)

    Orozco-Aguilera, M. T.; Zapata, Luis A.; Hirota, Tomoya; Qin, Sheng-Li; Masqué, Josep M

    2017-01-01

    We present sensitive high angular resolution (∼0.″1–0.″3) continuum Atacama Large Millimeter/Submillimeter Array (ALMA) observations of the archetypal hot core located in the Orion Kleinmann-Low (KL) region. The observations were made in five different spectral bands (bands 3, 6, 7, 8, and 9) covering a very broad range of frequencies (149–658 GHz). Apart from the well-known millimeter emitting objects located in this region (Orion Source I and BN), we report the first submillimeter detection of three compact continuum sources (ALMA1–3) in the vicinities of the Orion-KL hot molecular core. These three continuum objects have spectral indices between 1.47 and 1.56, and brightness temperatures between 100 and 200 K at 658 GHz, suggesting that we are seeing moderate, optically thick dust emission with possible grain growth. However, as these objects are not associated with warm molecular gas, and some of them are farther out from the molecular core, we thus conclude that they cannot heat the molecular core. This result favors the hypothesis that the hot molecular core in Orion-KL core is heated externally.

  5. ALMA Observations of the Archetypal “Hot Core” That Is Not: Orion-KL

    Energy Technology Data Exchange (ETDEWEB)

    Orozco-Aguilera, M. T. [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Tonantzintla, Puebla, México (Mexico); Zapata, Luis A. [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Hirota, Tomoya [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka-shi, Tokyo 181-8588 (Japan); Qin, Sheng-Li [Department of Astronomy, Yunnan University, and Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming 650091 (China); Masqué, Josep M, E-mail: lzapata@crya.unam.mx [Departamento de Astronomía, Universidad de Guanajuato, Apdo. Postal 144, 36000 Guanajuato, México (Mexico)

    2017-09-20

    We present sensitive high angular resolution (∼0.″1–0.″3) continuum Atacama Large Millimeter/Submillimeter Array (ALMA) observations of the archetypal hot core located in the Orion Kleinmann-Low (KL) region. The observations were made in five different spectral bands (bands 3, 6, 7, 8, and 9) covering a very broad range of frequencies (149–658 GHz). Apart from the well-known millimeter emitting objects located in this region (Orion Source I and BN), we report the first submillimeter detection of three compact continuum sources (ALMA1–3) in the vicinities of the Orion-KL hot molecular core. These three continuum objects have spectral indices between 1.47 and 1.56, and brightness temperatures between 100 and 200 K at 658 GHz, suggesting that we are seeing moderate, optically thick dust emission with possible grain growth. However, as these objects are not associated with warm molecular gas, and some of them are farther out from the molecular core, we thus conclude that they cannot heat the molecular core. This result favors the hypothesis that the hot molecular core in Orion-KL core is heated externally.

  6. TeV gamma rays from 3C 279 - A possible probe of origin and intergalactic infrared radiation fields

    Science.gov (United States)

    Stecker, F. W.; De Jager, O. C.; Salamon, M. H.

    1992-01-01

    The gamma-ray spectrum of 3C 279 during 1991 June exhibited a near-perfect power law between 50 MeV and over 5 GeV with a differential spectral index of -(2.02 +/- 0.07). If extrapolated, the gamma-ray spectrum of 3C 279 should be easily detectable with first-generation air Cerenkov detectors operating above about 0.3 TeV provided there is no intergalactic absorption. However, by using model-dependent lower and upper limits for the extragalactic infrared background radiation field, a sharp cutoff of the 3C 279 spectrum is predicted at between about 0.1 and about 1 TeV. The sensitivity of present air Cerenkov detectors is good enough to measure such a cutoff, which would provide the first opportunity to obtain a measurement of the extragalactic background infrared radiation field.

  7. Improvement of tolerance of Saccharomyces cerevisiae to hot-compressed water-treated cellulose by expression of ADH1

    Energy Technology Data Exchange (ETDEWEB)

    Jayakody, Lahiru N.; Horie, Kenta; Kitagaki, Hiroshi [Saga Univ. (Japan). Dept. of Environmental Sciences; Hayashi, Nobuyuki [Saga Univ. (Japan). Dept. of Applied Biochemistry and Food Science

    2012-04-15

    Hot-compressed water treatment of cellulose and hemicellulose for subsequent bioethanol production is a novel, economically feasible, and nonhazardous method for recovering sugars. However, the hot-compressed water-treated cellulose and hemicellulose inhibit subsequent ethanol fermentation by the yeast Saccharomyces cerevisiae. To overcome this problem, we engineered a yeast strain with improved tolerance to hot-compressed water-treated cellulose. We first determined that glycolaldehyde has a greater inhibitory effect than 5-HMF and furfural and a combinational effect with them. On the basis of the hypothesis that the reduction of glycolaldehyde to ethylene glycol should detoxify glycolaldehyde, we developed a strain overexpressing the alcohol dehydrogenase gene ADH1. The ADH1-overexpressing strain exhibits an improved fermentation profile in a glycolaldehyde-containing medium. The conversion ratio of glycolaldehyde to ethylene glycol is 30 {+-} 1.9% when the control strain is used; this ratio increases to 77 {+-} 3.6% in the case of the ADH1-overexpressing strain. A glycolaldehyde treatment and the overexpression of ADH1 cause changes in the fermentation products so as to balance the metabolic carbon flux and the redox status. Finally, the ADH1-overexpressing strain shows a statistically significantly improved fermentation profile in a hot-compressed water-treated cellulose-containing medium. The conversion ratio of glycolaldehyde to ethylene glycol is 33 {+-} 0.85% when the control strain is used but increases to 72 {+-} 1.7% in the case of the ADH1-overexpressing strain. These results show that the reduction of glycolaldehyde to ethylene glycol is a promising strategy to decrease the toxicity of hot-compressed water-treated cellulose. This is the first report on the improvement of yeast tolerance to hot-compressed water-treated cellulose and glycolaldehyde.

  8. Thermal comfort of people in the hot and humid area of China-impacts of season, climate, and thermal history.

    Science.gov (United States)

    Zhang, Y; Chen, H; Wang, J; Meng, Q

    2016-10-01

    We conducted a climate chamber study on the thermal comfort of people in the hot and humid area of China. Sixty subjects from naturally ventilated buildings and buildings with split air conditioners participated in the study, and identical experiments were conducted in a climate chamber in both summer and winter. Psychological and physiological responses were observed over a wide range of conditions, and the impacts of season, climate, and thermal history on human thermal comfort were analyzed. Seasonal and climatic heat acclimatization was confirmed, but they were found to have no significant impacts on human thermal sensation and comfort. The outdoor thermal history was much less important than the indoor thermal history in regard to human thermal sensation, and the indoor thermal history in all seasons of a year played a key role in shaping the subjects' sensations in a wide range of thermal conditions. A warmer indoor thermal history in warm seasons produced a higher neutral temperature, a lower thermal sensitivity, and lower thermal sensations in warm conditions. The comfort and acceptable conditions were identified for people in the hot and humid area of China. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Global Warming: A Reduced Threat?.

    Science.gov (United States)

    Michaels, Patrick J.; Stooksbury, David E.

    1992-10-01

    One popular and apocalyptic vision of the world influenced by increasing concentrations of infrared-absorbing trace gases is that of ecological disaster brought about by rapidly rising temperatures, sea level, and evaporation rates. This vision developed from a suite of climate models that have since considerably changed in both their dynamics and their estimates of prospective warming. Observed temperatures indicate that much more warming should already have taken place than predicted by earlier models in the Northern Hemisphere, and that night, rather than day, readings in that hemisphere show a relative warming. A high-latitude polar-night warming or a general night warming could be either benign or beneficial. A large number of plant species show both increased growth and greater water-use efficiency under enhanced carbon dioxide.An extensive body of evidence now indicates that anthropo-generated sulfate emissions are mitigating some of the warming, and that increased cloudiness as a result of these emissions will further enhance night, rather than day, warming. The sulfate emissions, though, are not sufficient to explain all of the night warming. However, the sensitivity of climate to anthropogenerated aerosols, and the general lack of previously predicted warming, could drastically alter the debate on global warming in favor of less expensive policies.

  10. Early results from the Far Infrared Absolute Spectrophotometer (FIRAS)

    Science.gov (United States)

    Mather, J. C.; Cheng, E. S.; Shafer, R. A.; Eplee, R. E.; Isaacman, R. B.; Fixsen, D. J.; Read, S. M.; Meyer, S. S.; Weiss, R.; Wright, E. L.

    1991-01-01

    The Far Infrared Absolute Spectrophotometer (FIRAS) on the Cosmic Background Explorer (COBE) mapped 98 percent of the sky, 60 percent of it twice, before the liquid helium coolant was exhausted. The FIRAS covers the frequency region from 1 to 100/cm with a 7 deg angular resolution. The spectral resolution is 0.2/cm for frequencies less than 20/cm and 0.8/cm for higher frequencies. Preliminary results include: a limit on the deviations from a Planck curve of 1 percent of the peak brightness from 1 to 20/cm, a temperature of 2.735 +/- 0.06 K, a limit on the Comptonization parameter y of 0.001, on the chemical potential parameter mu of 0.01, a strong limit on the existence of a hot smooth intergalactic medium, and a confirmation that the dipole anisotropy spectrum is that of a Doppler shifted blackbody.

  11. Heat conduction boundary layers of condensed clumps in cooling flows

    International Nuclear Information System (INIS)

    Boehringer, H.; Fabian, A.C.

    1989-01-01

    The structure of heat conduction boundary layers of gaseous condensations embedded in the hot intergalactic gas in clusters of galaxies is investigated by means of steady, one-dimensional, hydrodynamic models. It is assumed that heat conduction is effective only on scales much smaller than the total region of the cooling flow. Models are calculated for an arbitrary scaling factor, accounting for the reduction in heat conduction efficiency compared to the classical Spitzer case. The results imply a lower limit to the size spectrum of the condensations. The enhancement of cooling in the ambient medium due to heat conduction losses is calculated for a range of clump parameters. The luminosity of several observable emission lines, the extreme ultraviolet (EUV) and soft X-ray emission spectrum, and the column density of some important ions are determined for the model boundary layers and compared with observations. (author)

  12. Hot Flashes

    Science.gov (United States)

    Hot flashes Overview Hot flashes are sudden feelings of warmth, which are usually most intense over the face, neck and chest. Your skin might redden, as if you're blushing. Hot flashes can also cause sweating, and if you ...

  13. THE SIZE AND ORIGIN OF METAL-ENRICHED REGIONS IN THE INTERGALACTIC MEDIUM FROM SPECTRA OF BINARY QUASARS

    International Nuclear Information System (INIS)

    Martin, Crystal L.; Fournier, Amanda P.; Scannapieco, Evan; Ellison, Sara L.; Hennawi, Joseph F.; Djorgovski, S. G.

    2010-01-01

    We present tomography of the circum-galactic metal distribution at redshift 1.7-4.5 derived from echellete spectroscopy of binary quasars. We find C IV systems at similar redshifts in paired sightlines more often than expected for sightline-independent redshifts. As the separation of the sightlines increases from 36 kpc to 907 kpc, the amplitude of this clustering decreases. At the largest separations, the C IV systems cluster similar to the Lyman-break galaxies studied by Adelberger et al. in 2005. The C IV systems are significantly less correlated than these galaxies, however, at separations less than R 1 ≅ 0.42 ± 0.15 h -1 comoving Mpc. Measured in real space, i.e., transverse to the sightlines, this length scale is significantly smaller than the break scale estimated previously from the line-of-sight correlation function in redshift space by Scannapieco et al. in 2006. Using a simple model, we interpret the new real-space measurement as an indication of the typical physical size of enriched regions. We adopt this size for enriched regions and fit the redshift-space distortion in the line-of-sight correlation function. The fitted velocity kick is consistent with the peculiar velocity of galaxies as determined by the underlying mass distribution and places an upper limit on the average outflow (or inflow) speed of metals. The implied timescale for dispersing metals is larger than the typical stellar ages of Lyman-break galaxies, and we argue that enrichment by galaxies at z ≥ 4.3 played a greater role in dispersing metals. To further constrain the growth of enriched regions, we discuss empirical constraints on the evolution of the C IV correlation function with cosmic time. This study demonstrates the potential of tomography for measuring the metal enrichment history of the circum-galactic medium.

  14. Experimental study on the warm forming and quenching behavior for hot stamping of high-strength aluminum alloys

    Science.gov (United States)

    Degner, J.; Horn, A.; Merklein, M.

    2017-09-01

    Within the last decades, stringent regulations on fuel consumption, CO2 emissions and product recyclability forced the automotive sector to implement new strategies within the field of car body manufacturing. Due to their low density and good corrosion resistance, aluminum became one of the most relevant lightweight materials. Recently, especially high- strength aluminum alloys for structural components gained importance. Since the low formability of these alloys limits their application, there is a need for novel process strategies in order to enhance the forming behavior. One promising approach is the hot stamping of aluminum alloys. The combination of quenching and forming in one step after solution heat treatment leads to a significant improvement of the formability. Furthermore, higher manufacturing accuracy can be achieved due to reduced spring back. Within this contribution, the influence of forming temperature on the subsequent material behavior and the heat transfer during quenching will be analyzed. Therefore, the mechanical and thermal material characteristics such as flow behavior and heat transfer coefficient during hot stamping are investigated.

  15. Cosmic ray diffusion in a violent interstellar medium

    International Nuclear Information System (INIS)

    Bykov, A.M.; Toptygin, I.N.

    1985-01-01

    A variety of the avaiable observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM

  16. Hot shot induction and reperfusion with a specific blocker of the es-ENT1 nucleoside transporter before and after hypothermic cardioplegia abolishes myocardial stunning in acutely ischemic hearts despite metabolic derangement: Hot shot drug delivery before hypothermic cardioplegia

    Science.gov (United States)

    Abd-Elfattah, Anwar Saad; Tuchy, Gert E.; Jessen, Michael E.; Salter, David R.; Goldstein, Jacques P.; Brunsting, Louis A.; Wechsler, Andrew S.

    2013-01-01

    Objective Simultaneous inhibition of the cardiac equilibrative-p-nitrobenzylthioinosine (NBMPR)–sensitive (es) type of the equilibrative nucleoside transport 1 (ENT1) nucleoside transporter, with NBMPR, and adenosine deaminase, with erythro-9-[2-hydroxy-3-nonyl]adenine (EHNA), prevents release of myocardial purines and attenuates myocardial stunning and fibrillation in canine models of warm ischemia and reperfusion. It is not known whether prolonged administration of hypothermic cardioplegia influences purine release and EHNA/NBMPR-mediated cardioprotection in acutely ischemic hearts. Methods Anesthetized dogs (n = 46), which underwent normothermic aortic crossclamping for 20 minutes on-pump, were divided to determine (1) purine release with induction of intermittent antegrade or continuous retrograde hypothermic cardioplegia and reperfusion, (2) the effects of postischemic treatment with 100 µM EHNA and 25 µM NBMPR on purine release and global functional recovery, and (3) whether a hot shot and reperfusion with EHNA/NBMPR inhibits purine release and attenuates ventricular dysfunction of ischemic hearts. Myocardial biopsies and coronary sinus effluents were obtained and analyzed using high-performance liquid chromatography. Results Warm ischemia depleted myocardial adenosine triphosphate and elevated purines (ie, inosine > adenosine) as markers of ischemia. Induction of intermittent antegrade or continuous retrograde hypothermic (4°C) cardioplegia releases purines until the heart becomes cold (90% of purines in coronary sinus effluent. Reperfusion with EHNA/NBMPR abolished ventricular dysfunction in acutely ischemic hearts with and without a hot shot and hypothermic cardioplegic arrest. Conclusions Induction of hypothermic cardioplegia releases purines from ischemic hearts until they become cold, whereas reperfusion induces massive purine release and myocardial stunning. Inhibition of cardiac es-ENT1 nucleoside transporter abolishes postischemic reperfusion

  17. Warm liquid calorimetry for LHC

    CERN Document Server

    Geulig,E; Wallraff,W; Bézaguet, Alain-Arthur; Cavanna, F; Cinnini, P; Cittolin, Sergio; Dreesen, P; Demoulin, M; Dunps, L; Fucci, A; Gallay, G; Givernaud, Alain; Gonidec, A; Jank, Werner; Maurin, Guy; Placci, Alfredo; Porte, J P; Radermacher, E; Samyn, D; Schinzel, D; Schmidt, W F; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    Results from the beam tests of the U/TMP "warm liquid" calorimeter show that such a technique is very promising for the LHC. Our aim is to extend this programme and design a calorimeter that can satisfy the requirements of high rates, high radiation levels, compensation, uniformity and granularity, as well as fully contain hadronic showers. We propose to construct liquid ionization chambers operated at very high fields, capable of collecting the total charge produced by ionizing particles within times comparable to the bunch crossing time of the future Collider. For this reason we plan to extend the current programme on tetramethylpentane (TMP) to tetramethylsilane (TMSi). An electromagnetic calorimeter consisting of very high field ionization chambers filled with TMSi as sensitive medium with Uranium and/or other high density material as absorber will first be built (to be followed by a full-scale calorimeter module), on which newly designed fast amplifiers and readout electronics will be tested. In addition...

  18. Trait acclimation mitigates mortality risks of tropical canopy trees under global warming

    Directory of Open Access Journals (Sweden)

    Frank eSterck

    2016-05-01

    Full Text Available There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35ºC and ambient CO2 concentrations (390-800 ppm predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2ºC, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  19. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    Science.gov (United States)

    Sterck, Frank; Anten, Niels P. R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25–35°C) and ambient CO2 concentrations (390–800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10–20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change. PMID:27242814

  20. HOT 2011

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet....

  1. A model for intergalactic filaments and galaxy formation during the first gigayear

    Science.gov (United States)

    Harford, A. Gayler; Hamilton, Andrew J. S.

    2017-11-01

    We propose a physically based, analytic model for intergalactic filaments during the first gigayear of the universe. The structure of a filament is based upon a gravitationally bound, isothermal cylinder of gas. The model successfully predicts for a cosmological simulation the total mass per unit length of a filament (dark matter plus gas) based solely upon the sound speed of the gas component, contrary to the expectation for collisionless dark matter aggregation. In the model, the gas, through its hydrodynamic properties, plays a key role in filament structure rather than being a passive passenger in a preformed dark matter potential. The dark matter of a galaxy follows the classic equation of collapse of a spherically symmetric overdensity in an expanding universe. In contrast, the gas usually collapses more slowly. The relative rates of collapse of these two components for individual galaxies can explain the varying baryon deficits of the galaxies under the assumption that matter moves along a single filament passing through the galaxy centre, rather than by spherical accretion. The difference in behaviour of the dark matter and gas can be simply and plausibly related to the model. The range of galaxies studied includes that of the so-called too big to fail galaxies, which are thought to be problematic for the standard Λ cold dark matter model of the universe. The isothermal-cylinder model suggests a simple explanation for why these galaxies are, unaccountably, missing from the night sky.

  2. An intergalactic absorbing cloud in the neighbourhood of the North galactic pole

    International Nuclear Information System (INIS)

    Murawski, W.

    1983-01-01

    The purpose of this investigation is to study the possibility that the lack of galaxies in the area between the Virgo and Coma clusters, to which OKROY (1965) drew attention, is due to an intergalactic cloud. Using Zwicky's Catalogue of Galaxies and Clusters of Galaxies, it is shown that there is a shortage of galaxies in the suspected area for all magnitude classes. The absorption of the cloud is calculated to be 0.45+-05 mag. A quantity called the areal colour index (ACI) is introduced and defined as ACI=a sub(b) b sub(b)/(a sub(r) b sub(r)) where a and b are the lengths of the major and minor axes of a galaxy, respectively, and the subscripts b and r respectively refer to measurements on the blue and red prints of the Palomar survey, given in the Uppsala Catalogue of Galaxies. The average ACI is found to be 1.25 for the control area, and 1.04 for the area covered by Okroy's alleged obscuring cloud. On the basis of this colour data an approximate map showing the shape of the cloud is given. The effect of the alleged cloud on the shape frequency of types of galaxies is discussed. It is found that the cloud significantly increases the ratio of elliptical and dwarf galaxies to SO's. The determination of the distance to the cloud and its density is discussed. (author)

  3. Drag and diffusion of heavy quarks in a hot and anisotropic QCD medium

    International Nuclear Information System (INIS)

    Srivastava, P.K.; Patra, Binoy Krishna

    2017-01-01

    The propagation of heavy quarks (HQs) in a medium was quite often modeled by the Fokker-Planck (FP) equation. Since the transport coefficients, related to drag and diffusion processes, are the main ingredients in the FP equation, the evolution of HQs is thus effectively controlled by them. At the initial stage of the relativistic heavy-ion collisions, asymptotic weak-coupling causes the free-streaming motions of partons in the beam direction and the expansions in transverse directions are almost frozen, hence an anisotropy in the momentum space sets in. Since HQs are too produced in the same time, the study of the effect of momentum anisotropy on the drag and diffusion coefficients becomes highly desirable. In this article we have thus studied the drag and diffusion of HQs in the anisotropic medium and found that the presence of the anisotropy reduces both drag and diffusion coefficients. In addition, the anisotropy introduces an angular dependence to both the drag and diffusion coefficients, as a result both coefficients get more inflated when the partons are moving transversely to the direction of anisotropy than when moving parallel to the direction of anisotropy. (orig.)

  4. Drag and diffusion of heavy quarks in a hot and anisotropic QCD medium

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, P.K.; Patra, Binoy Krishna [Indian Institute of Technology Roorkee, Department of Physics, Roorkee (India)

    2017-06-15

    The propagation of heavy quarks (HQs) in a medium was quite often modeled by the Fokker-Planck (FP) equation. Since the transport coefficients, related to drag and diffusion processes, are the main ingredients in the FP equation, the evolution of HQs is thus effectively controlled by them. At the initial stage of the relativistic heavy-ion collisions, asymptotic weak-coupling causes the free-streaming motions of partons in the beam direction and the expansions in transverse directions are almost frozen, hence an anisotropy in the momentum space sets in. Since HQs are too produced in the same time, the study of the effect of momentum anisotropy on the drag and diffusion coefficients becomes highly desirable. In this article we have thus studied the drag and diffusion of HQs in the anisotropic medium and found that the presence of the anisotropy reduces both drag and diffusion coefficients. In addition, the anisotropy introduces an angular dependence to both the drag and diffusion coefficients, as a result both coefficients get more inflated when the partons are moving transversely to the direction of anisotropy than when moving parallel to the direction of anisotropy. (orig.)

  5. The effects of hot nights on mortality in Barcelona, Spain

    Science.gov (United States)

    Royé, D.

    2017-12-01

    Heat-related effects on mortality have been widely analyzed using maximum and minimum temperatures as exposure variables. Nevertheless, the main focus is usually on the former with the minimum temperature being limited in use as far as human health effects are concerned. Therefore, new thermal indices were used in this research to describe the duration of night hours with air temperatures higher than the 95% percentile of the minimum temperature (hot night hours) and intensity as the summation of these air temperatures in degrees (hot night degrees). An exposure-response relationship between mortality due to natural, respiratory, and cardiovascular causes and summer night temperatures was assessed using data from the Barcelona region between 2003 and 2013. The non-linear relationship between the exposure and response variables was modeled using a distributed lag non-linear model. The estimated associations for both exposure variables and mortality shows a relationship with high and medium values that persist significantly up to a lag of 1-2 days. In mortality due to natural causes, an increase of 1.1% per 10% (CI95% 0.6-1.5) for hot night hours and 5.8% per each 10° (CI95% 3.5-8.2%) for hot night degrees is observed. The effects of hot night hours reach their maximum with 100% and lead to an increase by 9.2% (CI95% 5.3-13.1%). The hourly description of night heat effects reduced to a single indicator in duration and intensity is a new approach and shows a different perspective and significant heat-related effects on human health.

  6. Historical deforestation locally increased the intensity of hot days in northern mid-latitudes

    Science.gov (United States)

    Lejeune, Quentin; Davin, Edouard L.; Gudmundsson, Lukas; Winckler, Johannes; Seneviratne, Sonia I.

    2018-05-01

    The effects of past land-cover changes on climate are disputed1-3. Previous modelling studies have generally concluded that the biogeophysical effects of historical deforestation led to an annual mean cooling in the northern mid-latitudes3,4, in line with the albedo-induced negative radiative forcing from land-cover changes since pre-industrial time reported in the most recent Intergovernmental Panel on Climate Change report5. However, further observational and modelling studies have highlighted strong seasonal and diurnal contrasts in the temperature response to deforestation6-10. Here, we show that historical deforestation has led to a substantial local warming of hot days over the northern mid-latitudes—a finding that contrasts with most previous model results11,12. Based on observation-constrained state-of-the-art climate-model experiments, we estimate that moderate reductions in tree cover in these regions have contributed at least one-third of the local present-day warming of the hottest day of the year since pre-industrial time, and were responsible for most of this warming before 1980. These results emphasize that land-cover changes need to be considered when studying past and future changes in heat extremes, and highlight a potentially overlooked co-benefit of forest-based carbon mitigation through local biogeophysical mechanisms.

  7. Active Movement Warm-Up Routines

    Science.gov (United States)

    Walter, Teri; Quint, Ashleigh; Fischer, Kim; Kiger, Joy

    2011-01-01

    This article presents warm-ups that are designed to physiologically and psychologically prepare students for vigorous physical activity. An active movement warm-up routine is made up of three parts: (1) active warm-up movement exercises, (2) general preparation, and (3) the energy system. These warm-up routines can be used with all grade levels…

  8. HOT AND COLD GALACTIC GAS IN THE NGC 2563 GALAXY GROUP

    International Nuclear Information System (INIS)

    Rasmussen, Jesper; Bai, Xue-Ning; Mulchaey, John S.; Van Gorkom, J. H.; Lee, Duane; Jeltema, Tesla E.; Zabludoff, Ann I.; Wilcots, Eric; Martini, Paul; Roberts, Timothy P.

    2012-01-01

    The role of environmentally induced gas stripping in driving galaxy evolution in groups remains poorly understood. Here we present extensive Chandra and Very Large Array mosaic observations of the hot and cold interstellar medium within the members of the nearby, X-ray bright NGC 2563 group, a prime target for studies of the role of gas stripping and interactions in relatively small host halos. Our observations cover nearly all group members within a projected radius of 1.15 Mpc (∼1.4 R vir ) of the group center, down to a limiting X-ray luminosity and H I mass of 3 × 10 39 erg s –1 and 2 × 10 8 M ☉ , respectively. The X-ray data are consistent with efficient ram pressure stripping of the hot gas halos of early-type galaxies near the group core, but no X-ray tails are seen and the limited statistics preclude strong conclusions. The H I results suggest moderate H I mass loss from the group members when compared to similar field galaxies. Six of the 20 H I-detected group members show H I evidence of ongoing interactions with other galaxies or with the intragroup medium. Suggestive evidence is further seen for galaxies with close neighbors in position-velocity space to show relatively low H I content, consistent with tidal removal of H I. The results thus indicate removal of both hot and cold gas from the group members via a combination of ram pressure stripping and tidal interactions. We also find that 16 of the 20 H I detections occur on one side of the group, reflecting an unusual morphological segregation whose origin remains unclear.

  9. The hot and cold interstellar matter of early type galaxies and their radio emission

    International Nuclear Information System (INIS)

    Kim, Dongwoo; Fabbiano, G.

    1990-01-01

    Over the last few years, the knowledge of the interstellar matter (ISM) of early type galaxies has increased dramatically. Many early type galaxies are now known to have ISM in three different phases: cold (neutral hydrogen (HI), dust and molecular material), warm (ionized) and hot (S-ray emitting) gas. Early type galaxies have smaller masses of cold ISM (10 to the 7th power - 10 to the 8th power solar mass; Jura et al. 1987) than later type spiral galaxies, while they have far more hot gas (10 to the 9th power - 10 to the tenth power solar mass; Forman et al. 1985, Canizares et al. 1987). In order to understand the relationship between the different phases of the ISM and the role of the ISM in fueling radio continuum sources and star formation, researchers compared observational data from a wide range of wavelengths

  10. Medium-sized water reactors for undeveloped regions

    International Nuclear Information System (INIS)

    Osmachkin, V. S.

    2004-01-01

    In the new century the growth of population and an increasing of energy demands together with the difficulties of fossil fuel supply are expected. It is important to find optimal ways in solving such problems without the climate warming. The nuclear power having many advantages in comparison with fossil fuel technologies could play the great role in near future. The Medium-Sized Nuclear Reactors for production of electricity, heat and fresh water are considered as a main direction of nuclear power applications in the developing world It is important to discuss the requirements to such nuclear plants for using in the Countries with Small and Medium Electricity Grids. Particularly, cost-benefit analysis of construction NPP has to include assessment of all type risks and effectiveness of plant. In the paper an attention is paid on Water Reactors designed on the basis of navy technology. Such compact PWR built on special mills and placed on special floating vessel could be used in undeveloped regions. Total plant can be transported to any point of World Ocean and return back to mill for repair or decommissioning after exhaustion of lifetime. It is expected that such reactors with innovative design approach, provision of high safety and proper economic efficiency, based on leasing procedures, could be very attractive for medium-sized and developing countries.(author)

  11. Warm Mix Asphalt

    Science.gov (United States)

    2009-04-17

    State of Alaska State of Alaska - Warm Mix Project Warm Mix Project: Location - Petersburg, Alaska which is Petersburg, Alaska which is located in the heart of Southeast Alaska located in the heart of Southeast Alaska's Inside Passage at the tip of M...

  12. Xylanases of thermophilic bacteria from Icelandic hot springs

    Energy Technology Data Exchange (ETDEWEB)

    Pertulla, M; Raettoe, M; Viikari, L [VTT, Biotechnical Lab., Espoo (Finland); Kondradsdottir, M [Dept. of Biotechnology, Technological Inst. of Iceland, Reykjavik (Iceland); Kristjansson, J K [Dept. of Biotechnology, Technological Inst. of Iceland, Reykjavik (Iceland) Inst. of Biotechnology, Iceland Univ., Reykjavik (Iceland)

    1993-02-01

    Thermophilic, aerobic bacteria isolated from Icelandic hot springs were screened for xylanase activity. Of 97 strains tested, 14 were found to be xylanase positive. Xylanase activities up to 12 nkat/ml were produced by these strains in shake flasks on xylan medium. The xylanases of the two strains producing the highest activities (ITI 36 and ITI 283) were similar with respect to temperature and pH optima (80deg C and pH 8.0). Xylanase production of strain ITI 36 was found to be induced by xylan and xylose. Xylanase activity of 24 nkat/ml was obtained with this strain in a laboratory-scale-fermentor cultivation on xylose medium. [beta]-Xylosidase activity was also detected in the culture filtrate. The thermal half-life of ITI 36 xylanase was 24 h at 70deg C. The highest production of sugars from hydrolysis of beech xylan was obtained at 70deg C, although xylan depolymerization was detected even up to 90deg C. (orig.).

  13. Absorption systems at z ˜ 2 as a probe of the circum galactic medium: a probabilistic approach

    Science.gov (United States)

    Mongardi, C.; Viel, M.; D'Odorico, V.; Kim, T.-S.; Barai, P.; Murante, G.; Monaco, P.

    2018-05-01

    We characterize the properties of the intergalactic medium (IGM) around a sample of galaxies extracted from state-of-the-art hydrodynamical simulations of structure formation in a cosmological volume of 25 Mpc comoving at z ˜ 2. The simulations are based on two different sub-resolution schemes for star formation and supernova feedback: the MUlti-Phase Particle Integrator (MUPPI) scheme and the Effective Model. We develop a quantitative and probabilistic analysis based on the apparent optical depth method of the properties of the absorbers as a function of impact parameter from their nearby galaxies: in such a way we probe different environments from circumgalactic medium (CGM) to low density filaments. Absorbers' properties are then compared with a spectroscopic observational data set obtained from high resolution quasar spectra. Our main focus is on the NCIV - NHI relation around simulated galaxies: the results obtained with MUPPI and the Effective model are remarkably similar, with small differences only confined to regions at impact parameters b = [1 - 3] × rvir. Using {C IV} as a tracer of the metallicity, we obtain evidence that the observed metal absorption systems have the highest probability to be confined in a region of 150-400 kpc around galaxies. Near-filament environments have instead metallicities too low to be probed by present-day telescopes, but could be probed by future spectroscopical studies. Finally we compute {C IV} covering fractions which are in agreement with observational data.

  14. In-medium properties of pseudoscalar D_s and B_s mesons

    Science.gov (United States)

    Chhabra, Rahul; Kumar, Arvind

    2017-11-01

    We calculate the shift in the masses and decay constants of D_s(1968) and B_s(5370) mesons in hot and dense asymmetric strange hadronic matter using QCD sum rules and chiral SU(3) model. In-medium strange quark condensates _{ρ _B}, and gluon condensates _{ρ _B}, to be used in the QCD sum rules for pseudoscalar D_s and B_s mesons, are calculated using a chiral SU(3) model. As an application of our present work, we calculate the in-medium decay widths of the excited (c\\bar{s}) states D_s^*(2715) and D_s^*(2860) decaying to (D_s(1968),η ) mesons. The medium effects in their decay widths are incorporated through the mass modification of the D_s(1968) and η mesons. The results of the present investigation may be helpful in understanding the possible outcomes of the future experiments like CBM and PANDA under the FAIR facility.

  15. Nuclear applications for steam and hot water supply

    International Nuclear Information System (INIS)

    1991-07-01

    An increase in the heat energy needs underlined by the potential increase in fossil fuel prices, particularly in oil supplies, and by the necessity for an improvement of the environment worldwide, as signalized by the IAEA Member States, prompted the decision to start a programme leading to this report. This document is intended to help to identify the experience of Member States where nuclear power plants or specialized nuclear heat plants are employed or envisaged to be used for distribution of steam or hot water to industrial or residential consumers, covering low and medium temperature ranges. 25 refs, 33 figs, 15 tabs

  16. How warm days increase belief in global warming

    Science.gov (United States)

    Zaval, Lisa; Keenan, Elizabeth A.; Johnson, Eric J.; Weber, Elke U.

    2014-02-01

    Climate change judgements can depend on whether today seems warmer or colder than usual, termed the local warming effect. Although previous research has demonstrated that this effect occurs, studies have yet to explain why or how temperature abnormalities influence global warming attitudes. A better understanding of the underlying psychology of this effect can help explain the public's reaction to climate change and inform approaches used to communicate the phenomenon. Across five studies, we find evidence of attribute substitution, whereby individuals use less relevant but available information (for example, today's temperature) in place of more diagnostic but less accessible information (for example, global climate change patterns) when making judgements. Moreover, we rule out alternative hypotheses involving climate change labelling and lay mental models. Ultimately, we show that present temperature abnormalities are given undue weight and lead to an overestimation of the frequency of similar past events, thereby increasing belief in and concern for global warming.

  17. Agnostic stacking of intergalactic doublet absorption: measuring the Ne VIII population

    Science.gov (United States)

    Frank, Stephan; Pieri, Matthew M.; Mathur, Smita; Danforth, Charles W.; Shull, J. Michael

    2018-05-01

    We present a blind search for doublet intergalactic metal absorption with a method dubbed `agnostic stacking'. Using a forward-modelling framework, we combine this with direct detections in the literature to measure the overall metal population. We apply this novel approach to the search for Ne VIII absorption in a set of 26 high-quality COS spectra. We probe to an unprecedented low limit of log N>12.3 at 0.47≤z ≤1.34 over a path-length Δz = 7.36. This method selects apparent absorption without requiring knowledge of its source. Stacking this mixed population dilutes doublet features in composite spectra in a deterministic manner, allowing us to measure the proportion corresponding to Ne VIII absorption. We stack potential Ne VIII absorption in two regimes: absorption too weak to be significant in direct line studies (12.3 13.7). We do not detect Ne VIII absorption in either regime. Combining our measurements with direct detections, we find that the Ne VIII population is reproduced with a power-law column density distribution function with slope β = -1.86 ^{+0.18 }_{ -0.26} and normalization log f_{13.7} = -13.99 ^{+0.20 }_{ -0.23}, leading to an incidence rate of strong Ne VIII absorbers dn/dz =1.38 ^{+0.97 }_{ -0.82}. We infer a cosmic mass density for Ne VIII gas with 12.3 value significantly lower that than predicted by recent simulations. We translate this density into an estimate of the baryon density Ωb ≈ 1.8 × 10-3, constituting 4 per cent of the total baryonic mass.

  18. Solar heating and hot water system installed at Southeast of Saline, Unified School District 306, Mentor, Kansas

    Science.gov (United States)

    1979-01-01

    The solar system, installed in a new building, was designed to provide 52 percent of the estimated annual space heating load and 84 percent of the estimated annual potable hot water requirement. The liquid flat plate collectors are ground-mounted and cover a total area of 5125 square feet. The system will provide supplemental heat for the school's closed-loop water-to-air heat pump system and domestic hot water. The storage medium is water inside steel tanks with a capacity of 11,828 gallons for space heating and 1,600 gallons for domestic hot water. The solar heating facility is described and drawings are presented of the completed system which was declared operational in September 1978, and has functioned successfully since.

  19. Refrigeration and global warming

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Some aspects of global warming in general, and the implications for refrigerants and refrigerator efficiency in particular, are briefly considered in a question and answer format. The concepts of Global Warming Potential (GWP) and Total Equivalent Warming Impact (TEWI) are explained. GWP is an index which allows a simple comparison to be make between the warming effects of different gases on a kg to kg basis relative to carbon. The GWP depends both on the lifetime of a substance in the atmosphere and its infra-red absorption capacity. The overall warming effect of operating a refrigeration system for its entire life is measured by its TEWI. Chloroflourocarbons (CFCs) which have been widely used as refrigerants are powerful greenhouse gases with high GWPs. Because of the bank of CFCs in refrigerating systems, their levels in the atmosphere are still increasing and it will be some time before refrigerant changes will be effective in reducing the warming effects of refrigerant releases. Hydrocarbons, hydroflourocarbons and ammonia all have a part to play as substitute refrigerants. Refrigerator efficiency is very important in terms of reducing CO 2 emissions. (UK)

  20. A magnified young galaxy from about 500 million years after the Big Bang.

    Science.gov (United States)

    Zheng, Wei; Postman, Marc; Zitrin, Adi; Moustakas, John; Shu, Xinwen; Jouvel, Stephanie; Høst, Ole; Molino, Alberto; Bradley, Larry; Coe, Dan; Moustakas, Leonidas A; Carrasco, Mauricio; Ford, Holland; Benítez, Narciso; Lauer, Tod R; Seitz, Stella; Bouwens, Rychard; Koekemoer, Anton; Medezinski, Elinor; Bartelmann, Matthias; Broadhurst, Tom; Donahue, Megan; Grillo, Claudio; Infante, Leopoldo; Jha, Saurabh W; Kelson, Daniel D; Lahav, Ofer; Lemze, Doron; Melchior, Peter; Meneghetti, Massimo; Merten, Julian; Nonino, Mario; Ogaz, Sara; Rosati, Piero; Umetsu, Keiichi; van der Wel, Arjen

    2012-09-20

    Re-ionization of the intergalactic medium occurred in the early Universe at redshift z ≈ 6-11, following the formation of the first generation of stars. Those young galaxies (where the bulk of stars formed) at a cosmic age of less than about 500 million years (z ≲ 10) remain largely unexplored because they are at or beyond the sensitivity limits of existing large telescopes. Understanding the properties of these galaxies is critical to identifying the source of the radiation that re-ionized the intergalactic medium. Gravitational lensing by galaxy clusters allows the detection of high-redshift galaxies fainter than what otherwise could be found in the deepest images of the sky. Here we report multiband observations of the cluster MACS J1149+2223 that have revealed (with high probability) a gravitationally magnified galaxy from the early Universe, at a redshift of z = 9.6 ± 0.2 (that is, a cosmic age of 490 ± 15 million years, or 3.6 per cent of the age of the Universe). We estimate that it formed less than 200 million years after the Big Bang (at the 95 per cent confidence level), implying a formation redshift of ≲14. Given the small sky area that our observations cover, faint galaxies seem to be abundant at such a young cosmic age, suggesting that they may be the dominant source for the early re-ionization of the intergalactic medium.

  1. HOT 2014

    DEFF Research Database (Denmark)

    Lund, Henriette

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  2. Studying the ICM in clusters of galaxies via surface brightness fluctuations of the cosmic X-ray background

    Science.gov (United States)

    Kolodzig, Alexander; Gilfanov, Marat; Hütsi, Gert; Sunyaev, Rashid

    2018-02-01

    We study surface brightness fluctuations of the cosmic X-ray background (CXB) using Chandra data of XBOOTES. After masking out resolved sources we compute the power spectrum of fluctuations of the unresolved CXB for angular scales from {≈ } 2 arcsec to ≈3°. The non-trivial large-scale structure (LSS) signal dominates over the shot noise of unresolved point sources on angular scales above {˜ } 1 arcmin and is produced mainly by the intracluster medium (ICM) of unresolved clusters and groups of galaxies, as shown in our previous publication. The shot-noise-subtracted power spectrum of CXB fluctuations has a power-law shape with the slope of Γ = 0.96 ± 0.06. Their energy spectrum is well described by the redshifted emission spectrum of optically thin plasma with the best-fitting temperature of T ≈ 1.3 keV and the best-fitting redshift of z ≈ 0.40. These numbers are in good agreement with theoretical expectations based on the X-ray luminosity function and scaling relations of clusters. From these values we estimate the typical mass and luminosity of the objects responsible for CXB fluctuations, M500 ∼ 1013.6 M⊙ h-1 and L0.5-2.0 keV ∼ 1042.5 erg s-1. On the other hand, the flux-weighted mean temperature and redshift of resolved clusters are T ≈ 2.4 keV and z ≈ 0.23 confirming that fluctuations of unresolved CXB are caused by cooler (i.e. less massive) and more distant clusters, as expected. We show that the power spectrum shape is sensitive to the ICM structure all the way to the outskirts, out to ∼few × R500. We also searched for possible contribution of the warm-hot intergalactic medium (WHIM) to the observed CXB fluctuations. Our results underline the significant diagnostic potential of the CXB fluctuation analysis in studying the ICM structure in clusters.

  3. Peranan Environmental Accounting Terhadap Global Warming

    OpenAIRE

    Martusa, Riki

    2009-01-01

    This article explores about is global warming. The distortion of nature causes global warming. Industrial sector is one of global warming incurred. Some nations create a group to cope this matter. They try to reduce carbon emission as one of global warming causes by controlling industrial carbon emission through financial reporting. This article explores normatively roles of environmental accounting in cope with global warming.  

  4. HOT 2010

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  5. HOT 2013

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  6. Suppression of sawtooth oscillations due to hot electrons and hot ions

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Berk, H.L.

    1989-01-01

    The theory of m = 1 kink mode stabilization is discussed in the presence of either magnetically trapped hot electrons or hot ions. For instability hot ion requires particles peaked inside the q = 1 surface, while hot electrons require that its pressure profile be increasing at the q = 1 surface. Experimentally observed sawtooth stabilization usually occurs with off-axis heating with ECRH and near axis heating with ICRH. Such heating may produce the magnetically trapped hot particle pressure profiles that are consistent with theory. 17 refs., 2 figs

  7. Constraining the Physical State of the Hot Gas Halos in NGC 4649 and NGC 5846

    Science.gov (United States)

    Paggi, Alessandro; Kim, Dong-Woo; Anderson, Craig; Burke, Doug; D'Abrusco, Raffaele; Fabbiano, Giuseppina; Fruscione, Antonella; Gokas, Tara; Lauer, Jen; McCollough, Michael; Morgan, Doug; Mossman, Amy; O'Sullivan, Ewan; Trinchieri, Ginevra; Vrtilek, Saeqa; Pellegrini, Silvia; Romanowsky, Aaron J.; Brodie, Jean

    2017-07-01

    We present results of a joint Chandra/XMM-Newton analysis of the early-type galaxies NGC 4649 and NGC 5846 aimed at investigating differences between mass profiles derived from X-ray data and those from optical data, to probe the state of the hot interstellar medium (ISM) in these galaxies. If the hot ISM is at a given radius in hydrostatic equilibrium (HE), the X-ray data can be used to measure the total enclosed mass of the galaxy. Differences from optically derived mass distributions therefore yield information about departures from HE in the hot halos. The X-ray mass profiles in different angular sectors of NGC 4649 are generally smooth with no significant azimuthal asymmetries within 12 kpc. Extrapolation of these profiles beyond this scale yields results consistent with the optical estimate. However, in the central region (rdisappears in the NW direction, where the emission is smooth and extended. In this sector we find consistent X-ray and optical mass profiles, suggesting that the hot halo is not responding to strong nongravitational forces.

  8. HOT AND COLD GALACTIC GAS IN THE NGC 2563 GALAXY GROUP

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Jesper [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Bai, Xue-Ning [Department of Astrophysical Sciences, Peyton Hall, Princeton University, NJ 08544 (United States); Mulchaey, John S. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Van Gorkom, J. H.; Lee, Duane [Department of Astronomy, Columbia University, Mail Code 5246, 550 West 120th Street, New York, NY 10027 (United States); Jeltema, Tesla E. [UCO/Lick Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States); Zabludoff, Ann I. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Wilcots, Eric [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St., Madison, WI 53706 (United States); Martini, Paul [Department of Astronomy, 4055 McPherson Laboratory, Ohio State University, 140 West 18th Avenue, Columbus, OH (United States); Roberts, Timothy P., E-mail: jr@dark-cosmology.dk [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2012-03-01

    The role of environmentally induced gas stripping in driving galaxy evolution in groups remains poorly understood. Here we present extensive Chandra and Very Large Array mosaic observations of the hot and cold interstellar medium within the members of the nearby, X-ray bright NGC 2563 group, a prime target for studies of the role of gas stripping and interactions in relatively small host halos. Our observations cover nearly all group members within a projected radius of 1.15 Mpc ({approx}1.4 R{sub vir}) of the group center, down to a limiting X-ray luminosity and H I mass of 3 Multiplication-Sign 10{sup 39} erg s{sup -1} and 2 Multiplication-Sign 10{sup 8} M{sub Sun }, respectively. The X-ray data are consistent with efficient ram pressure stripping of the hot gas halos of early-type galaxies near the group core, but no X-ray tails are seen and the limited statistics preclude strong conclusions. The H I results suggest moderate H I mass loss from the group members when compared to similar field galaxies. Six of the 20 H I-detected group members show H I evidence of ongoing interactions with other galaxies or with the intragroup medium. Suggestive evidence is further seen for galaxies with close neighbors in position-velocity space to show relatively low H I content, consistent with tidal removal of H I. The results thus indicate removal of both hot and cold gas from the group members via a combination of ram pressure stripping and tidal interactions. We also find that 16 of the 20 H I detections occur on one side of the group, reflecting an unusual morphological segregation whose origin remains unclear.

  9. Sudden Stratospheric Warming Compendium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sudden Stratospheric Warming Compendium (SSWC) data set documents the stratospheric, tropospheric, and surface climate impacts of sudden stratospheric warmings. This...

  10. Sealed Attics Exposed to Two Years of Weathering in a Hot and Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William A [ORNL; Railkar, Sudhir [GAF; Shiao, Ming C [ORNL; Desjarlais, Andre Omer [ORNL

    2016-01-01

    Field studies in a hot, humid climate were conducted to investigate the thermal and hygrothermal performance of ventilated attics and non-ventilated semi-conditioned attics sealed with open-cell and with closed-cell spray polyurethane foam insulation. Moisture pin measurements made in the sheathing and absolute humidity sensor data from inside the foam and from the attic air show that moisture is being stored in the foam. The moisture in the foam diffuses to and from the sheathing dependent on the pressure gradient at the foam-sheathing interface which is driven by the irradiance and night-sky radiation. Ventilated attics in the same hot, humid climate showed less moisture movement in the sheathing than those sealed with either open- or closed-cell spray foam. In the ventilated attics the relative humidity drops as the attic air warms; however, the opposite was observed in the sealed attics. Peaks in measured relative humidity in excess of 80 90% and occasionally near saturation (i.e., 100%) were observed from solar noon till about 8 PM on hot, humid days. The conditioned space of the test facility is heated and cooled by an air-to-air heat pump. Therefore the partial pressure of the indoor air during peak irradiance is almost always less than that observed in the sealed attics. Field data will be presented to bring to light the critical humidity control issues in sealed attics exposed to hot, humid climates.

  11. Absorption of X-rays in the interstellar medium

    International Nuclear Information System (INIS)

    Ride, S.K.; Stanford Univ., Calif.; Walker, A.B.C. Jr.; Stanford Univ., Calif.

    1977-01-01

    In order to interpret soft X-ray spectra of cosmic X-ray sources, it is necessary to know the photoabsorption cross-section of the intervening interstellar material. Current models suggest that the interstellar medium contains two phases which make a substantial contribution to the X-ray opacity: cool, relatively dense clouds that exist in pressure equilibrium with hot, tenuous intercloud regions. We have computed the soft X-ray photoabsorption cross-section (per hydrogen atom) of each of these two phases. The calculation are based on a model of the interstellar medium which includes chemical evolution of the galaxy, the formation of molecules and grains, and the ionization structure of each of each phase. These cross-sections of clouds and of intercloud regions can be combined to yield the total soft X-ray photoabsorption cross-section of the interstellar medium. By choosing the appropriate linear combination of cloud and intercloud cross-sections, we can tailor the total cross-section to a particular line-of-sight. This approach, coupled with our interstellar model, enables us to better describe a wide range of interstellar features such as H II regions, dense (molecular) clouds, or the ionized clouds which may surround binary X-ray sources. (orig.) [de

  12. THE SOCIAL MEDIA IMPACT ON SMALL AND MEDIUM SIZED BUSINESSES

    OpenAIRE

    Mihai Alexandru Constantin Logofatu

    2012-01-01

    This paper aims to be a short introduction to social media and discusses on few ways in which small and medium sized businesses in Romania can take advantage of this hot topic. Through the use of social media every company can reach a global audience with less effort, time and money. In a world shaped more and more around social platforms the customer behaviour has completely and forever changed and those leaders and organizations that understand and embrace this new type of communication, co...

  13. Turblence-related morphology in extragalactic radio sources

    International Nuclear Information System (INIS)

    Benford, G.; Ferrari, A.; Trussoni, E.

    1980-01-01

    As particle beams propagate through the intergalactic medium, unavoidable instabilities from shear flows produce turbulent magnetic waves. Rather than disrupting beams, this wave energy may enhance luminosity and alter morphology. For reasonable parameters the dominant nonlinear process is an energy cascade from long wavelengths ( 21 cm) to short wavelengths ( 14 cm), where particles are reaccelerated in quasi-linear fachion. We construct a phenomenological turbulence theory to describe this. In an ambient magnetic field, wave-particle scatterings which cause reacceleration can also lead to spatial cross-field diffusion, broadening the beam. Thus beams can flare rapidly as they propagate. This relates luminosity to morphology in a new way. The broadening is wholly intrinsic, unrelated to the beam environment. A variety of radio source types may be related to his effect. Protons do not scatter strongly, remaining collimated and depositing most of the beam energy in hot spots, which are generally weak in the radio but strong in the X-ray

  14. An Analysis of Recent Measurements of the Temperature of the Cosmic Microwave Background Radiation

    Science.gov (United States)

    Smoot, G.; Levin, S. M.; Witebsky, C.; De Amici, G.; Rephaeli, Y.

    1987-07-01

    This paper presents an analysis of the results of recent temperature measurements of the cosmic microwave background radiation (CMBR). The observations for wavelengths longer than 0.1 cum are well fit by a blackbody spectrum at 2.74{+ or -}0.0w K; however, including the new data of Matsumoto et al. (1987) the result is no longer consistent with a Planckian spectrum. The data are described by a Thomson-distortion parameter u=0.021{+ or -}0.002 and temperature 2.823{+ or -}0.010 K at the 68% confidence level. Fitting the low-frequency data to a Bose-Einstein spectral distortion yields a 95% confidence level upper limit of 1.4 x 10{sup -2} on the chemical potential mu{sub 0}. These limits on spectral distortions place restrictions on a number of potentially interesting sources of energy release to the CMBR, including the hot intergalactic medium proposed as the source of the X-ray background.

  15. Galaxy clusters and cosmology

    CERN Document Server

    White, S

    1994-01-01

    Galaxy clusters are the largest coherent objects in Universe. It has been known since 1933 that their dynamical properties require either a modification of the theory of gravity, or the presence of a dominant component of unseen material of unknown nature. Clusters still provide the best laboratories for studying the amount and distribution of this dark matter relative to the material which can be observed directly -- the galaxies themselves and the hot,X-ray-emitting gas which lies between them.Imaging and spectroscopy of clusters by satellite-borne X -ray telescopes has greatly improved our knowledge of the structure and composition of this intergalactic medium. The results permit a number of new approaches to some fundamental cosmological questions,but current indications from the data are contradictory. The observed irregularity of real clusters seems to imply recent formation epochs which would require a universe with approximately the critical density. On the other hand, the large baryon fraction observ...

  16. Military Implications of Global Warming.

    Science.gov (United States)

    1999-05-20

    U.S. environmental issues also have important global implications. This paper analyzes current U.S. Policy as it pertains to global warming and climate...for military involvement to reduce global warming . Global warming and other environmental issues are important to the U.S. military. As the United

  17. Warm measurements of CBA superconducting magnets

    International Nuclear Information System (INIS)

    Engelmann, R.; Herrera, J.; Kahn, S.; Kirk, H.; Willen, E.; Yamin, P.

    1983-01-01

    We present results on magnetic field measurements of CBA dipole magnets in the warm (normal conductor) and cryogenic (superconducting) states. We apply two methods for the warm measurements, a dc and ac method. We find a good correlation between warm and cryogenic measurements which lends itself to a reliable diagnosis of magnet field errors using warm measurements early in the magnet assembly process. We further find good agreement between the two warm measurement methods, both done at low currents

  18. A two millennium-long hot drought in the southwestern United States driven by Arctic sea-ice retreat

    Science.gov (United States)

    Lachniet, M. S.; Asmerom, Y.; Polyak, V. J.; Denniston, R. F.

    2017-12-01

    The Great Basin and lower Colorado River Basin are susceptible to sustained droughts that impact water resources and economic activity for millions of residents of the southwestern United States. The causes of past droughts in the basin remain debated. Herein, we document a strong Arctic to mid-latitude teleconnection during the Holocene that resulted in an extreme `hot drought' persisting for more than two millennia in the southwestern United States, based on a continuous growth rate and new high-resolution carbon and oxygen isotopic time series from a precisely-dated stalagmite from Leviathan Cave, Nevada. Between 9850-7670 yr B2k, highest Holocene oxygen isotope values indicate warm temperatures and moisture-sensitive proxies of high carbon isotope values and low stalagmite growth rate and minimal soil productivity and aquifer recharge. We refer to this period as the Altithermal Hot Drought. A second interval (6770 to 5310 yr B2k) indicates a warm drought. The two Altithermal droughts exceed in severity and duration any droughts observed in the modern and tree-ring records. Further, we show that Altithermal hot droughts were widespread in the southwestern United States, at a time when human populations in the Great Basin were low. The droughts show strong similarities to proxies for Arctic paleoclimate and we suggest that insolation-driven changes in sea ice and snow cover extent in the high latitudes drove atmospheric circulation anomalies in the Great Basin. Because rising greenhouse gas concentrations are projected to increase global and Arctic temperatures with a possible loss of summer sea by the end of the 21st century, our record suggests that a return to prolonged hotter and drier conditions in the southern Great Basin and lower Colorado River Basin is possible within coming centuries.

  19. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    International Nuclear Information System (INIS)

    Sejas, Sergio A; Albert, Oriene S; Cai, Ming; Deng, Yi

    2014-01-01

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heat flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Therefore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea. (letter)

  20. Warm Spitzer and Palomar near-IR secondary eclipse photometry of two hot Jupiters: WASP-48b and HAT-P-23b

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, Joseph G.; Knutson, Heather A.; Désert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Zhao, Ming [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 05844 (United States); Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Todorov, Kamen O. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)

    2014-02-01

    We report secondary eclipse photometry of two hot Jupiters, WASP-48b and HAT-P-23b, at 3.6 and 4.5 μm taken with the InfraRed Array Camera aboard the Spitzer Space Telescope during the warm Spitzer mission and in the H and K{sub S} bands with the Wide Field IR Camera at the Palomar 200 inch Hale Telescope. WASP-48b and HAT-P-23b are Jupiter-mass and twice Jupiter-mass objects orbiting an old, slightly evolved F star and an early G dwarf star, respectively. In the H, K{sub S} , 3.6 μm, and 4.5 μm bands, respectively, we measure secondary eclipse depths of 0.047% ± 0.016%, 0.109% ± 0.027%, 0.176% ± 0.013%, and 0.214% ± 0.020% for WASP-48b. In the K{sub S} , 3.6 μm, and 4.5 μm bands, respectively, we measure secondary eclipse depths of 0.234% ± 0.046%, 0.248% ± 0.019%, and 0.309% ± 0.026% for HAT-P-23b. For WASP-48b and HAT-P-23b, respectively, we measure delays of 2.6 ± 3.9 minutes and 4.0 ± 2.4 minutes relative to the predicted times of secondary eclipse for circular orbits, placing 2σ upper limits on |ecos ω| of 0.0053 and 0.0080, both of which are consistent with circular orbits. The dayside emission spectra of these planets are well-described by blackbodies with effective temperatures of 2158 ± 100 K (WASP-48b) and 2154 ± 90 K (HAT-P-23b), corresponding to moderate recirculation in the zero albedo case. Our measured eclipse depths are also consistent with one-dimensional radiative transfer models featuring varying degrees of recirculation and weak thermal inversions or no inversions at all. We discuss how the absence of strong temperature inversions on these planets may be related to the activity levels and metallicities of their host stars.

  1. HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES

    International Nuclear Information System (INIS)

    Winn, Joshua N.; Albrecht, Simon; Fabrycky, Daniel; Johnson, John Asher

    2010-01-01

    We show that stars with transiting planets for which the stellar obliquity is large are preferentially hot (T eff > 6250 K). This could explain why small obliquities were observed in the earliest measurements, which focused on relatively cool stars drawn from Doppler surveys, as opposed to hotter stars that emerged more recently from transit surveys. The observed trend could be due to differences in planet formation and migration around stars of varying mass. Alternatively, we speculate that hot-Jupiter systems begin with a wide range of obliquities, but the photospheres of cool stars realign with the orbits due to tidal dissipation in their convective zones, while hot stars cannot realign because of their thinner convective zones. This in turn would suggest that hot Jupiters originate from few-body gravitational dynamics and that disk migration plays at most a supporting role.

  2. The asymmetric impact of global warming on US drought types and distributions in a large ensemble of 97 hydro-climatic simulations.

    Science.gov (United States)

    Huang, Shengzhi; Leng, Guoyong; Huang, Qiang; Xie, Yangyang; Liu, Saiyan; Meng, Erhao; Li, Pei

    2017-07-19

    Projection of future drought is often involved large uncertainties from climate models, emission scenarios as well as drought definitions. In this study, we investigate changes in future droughts in the conterminous United States based on 97 1/8 degree hydro-climate model projections. Instead of focusing on a specific drought type, we investigate changes in meteorological, agricultural, and hydrological drought as well as the concurrences. Agricultural and hydrological droughts are projected to become more frequent with increase in global mean temperature, while less meteorological drought is expected. Changes in drought intensity scale linearly with global temperature rises under RCP8.5 scenario, indicating the potential feasibility to derive future drought severity given certain global warming amount under this scenario. Changing pattern of concurrent droughts generally follows that of agricultural and hydrological droughts. Under the 1.5 °C warming target as advocated in recent Paris agreement, several hot spot regions experiencing highest droughts are identified. Extreme droughts show similar patterns but with much larger magnitude than the climatology. This study highlights the distinct response of droughts of various types to global warming and the asymmetric impact of global warming on drought distribution resulting in a much stronger influence on extreme drought than on mean drought.

  3. FUNDAMENTAL PROPERTIES OF THE HIGHLY IONIZED PLASMAS IN THE MILKY WAY

    International Nuclear Information System (INIS)

    Lehner, N.; Zech, W. F.; Howk, J. C.; Savage, B. D.

    2011-01-01

    The cooling transition temperature gas in the interstellar medium (ISM), traced by the high ions, Si IV, C IV, N V, and O VI, helps to constrain the flow of energy from the hot ISM with T>10 6 K to the warm ISM with T 4 K. We investigate the properties of this gas along the lines of sight to 38 stars in the Milky Way disk using 1.5-2.7 km s -1 resolution spectra of Si IV, C IV, and N V absorption from the Space Telescope Imaging Spectrograph, and 15 km s -1 resolution spectra of O VI absorption from the Far Ultraviolet Spectroscopic Explorer. The absorption by Si IV and C IV exhibits broad and narrow components while only broad components are seen in N V and O VI. The narrow components imply gas with T 4 K and trace two distinct types of gas. The strong, saturated, and narrow Si IV and C IV components trace the gas associated with the vicinities of O-type stars and their supershells. The weaker narrow Si IV and C IV components trace gas in the general ISM that is photoionized by the EUV radiation from cooling hot gas or has radiatively cooled in a non-equilibrium manner from the transition temperature phase, but rarely the warm-ionized medium probed by Al III. The broad Si IV, C IV, N V, and O VI components trace collisionally ionized gas that is very likely undergoing a cooling transition from the hot ISM to the warm ISM. The cooling process possibly provides the regulation mechanism that produces (N(C IV)/N(Si IV)) = 3.9 ± 1.9. The cooling process also produces absorption lines where the median and mean values of the line widths increase with the energy required to create the ion.

  4. Self-consistent descriptions of vector mesons in hot matter reexamined

    International Nuclear Information System (INIS)

    Riek, Felix; Knoll, Joern

    2010-01-01

    Technical concepts are presented that improve the self-consistent treatment of vector mesons in a hot and dense medium. First applications concern an interacting gas of pions and ρ mesons. As an extension of earlier studies, we thereby include random-phase-approximation-type vertex corrections and further use dispersion relations to calculate the real part of the vector-meson self-energy. An improved projection method preserves the four transversality of the vector-meson polarization tensor throughout the self-consistent calculations, thereby keeping the scheme void of kinematical singularities.

  5. Solar heating and hot water system installed at Listerhill, Alabama

    Science.gov (United States)

    1978-01-01

    The Solar system was installed into a new building and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

  6. OXYGEN METALLICITY DETERMINATIONS FROM OPTICAL EMISSION LINES IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Athey, Alex E.; Bregman, Joel N.

    2009-01-01

    We measured the oxygen abundances of the warm (T ∼ 10 4 K) phase of gas in seven early-type galaxies through long-slit observations. A template spectra was constructed from galaxies void of warm gas and subtracted from the emission-line galaxies, allowing for a clean measurement of the nebular lines. The ratios of the emission lines are consistent with photoionization, which likely originates from the ultraviolet flux of postasymototic giant branch stars. We employ H II region photoionization models to determine a mean oxygen metallicity of 1.01 ± 0.50 solar for the warm interstellar medium (ISM) in this sample. This warm ISM 0.5-1.5 solar metallicity is consistent with modern determinations of the metallicity in the hot (T ∼ 10 6 -10 7 K) ISM and the upper range of this warm ISM metallicity is consistent with stellar population metallicity determinations. A solar metallicity of the warm ISM favors an internal origin for the warm ISM such as asymptotic giant branch mass loss within the galaxy.

  7. Murder or not? Cold temperature makes criminals appear to be cold-blooded and warm temperature to be hot-headed.

    Directory of Open Access Journals (Sweden)

    Christine Gockel

    Full Text Available Temperature-related words such as cold-blooded and hot-headed can be used to describe criminal behavior. Words associated with coldness describe premeditated behavior and words associated with heat describe impulsive behavior. Building on recent research about the close interplay between physical and interpersonal coldness and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences judgments of criminals. Participants in rooms with low temperature regarded criminals to be more cold-blooded than participants in rooms with high temperature. Specifically, they were more likely to attribute premeditated crimes, ascribed crimes resulting in higher degrees of penalty, and attributed more murders to criminals. Likewise, participants in rooms with high temperature regarded criminals to be more hot-headed than participants in rooms with low temperature: They were more likely to attribute impulsive crimes. Results imply that cognitive representations of temperature are closely related to representations of criminal behavior and attributions of intent.

  8. Murder or Not? Cold Temperature Makes Criminals Appear to Be Cold-Blooded and Warm Temperature to Be Hot-Headed

    Science.gov (United States)

    Gockel, Christine; Kolb, Peter M.; Werth, Lioba

    2014-01-01

    Temperature-related words such as cold-blooded and hot-headed can be used to describe criminal behavior. Words associated with coldness describe premeditated behavior and words associated with heat describe impulsive behavior. Building on recent research about the close interplay between physical and interpersonal coldness and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences judgments of criminals. Participants in rooms with low temperature regarded criminals to be more cold-blooded than participants in rooms with high temperature. Specifically, they were more likely to attribute premeditated crimes, ascribed crimes resulting in higher degrees of penalty, and attributed more murders to criminals. Likewise, participants in rooms with high temperature regarded criminals to be more hot-headed than participants in rooms with low temperature: They were more likely to attribute impulsive crimes. Results imply that cognitive representations of temperature are closely related to representations of criminal behavior and attributions of intent. PMID:24788725

  9. Effects of post heat-treatment on surface characteristics and adhesive bonding performance of medium density fiberboard

    Science.gov (United States)

    Nadir Ayrilimis; Jerrold E. Winandy

    2009-01-01

    A series of commercially manufactured medium density fiberboard (MDF) panels were exposed to a post-manufacture heat-treatment at various temperatures and durations using a hot press and just enough pressure to ensure firm contact between the panel and the press platens. Post-manufacture heat-treatment improved surface roughness of the exterior MDF panels. Panels...

  10. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects

    Science.gov (United States)

    Chen, Xing; Jeong, Su-Jong

    2018-02-01

    To meet the growing demand for food, land is being managed to be more productive using agricultural intensification practices, such as the use of irrigation. Understanding the specific environmental impacts of irrigation is a critical part of using it as a sustainable way to provide food security. However, our knowledge of irrigation effects on climate is still limited to daytime effects. This is a critical issue to define the effects of irrigation on warming related to greenhouse gases (GHGs). This study shows that irrigation led to an increasing temperature (0.002 °C year-1) by enhancing nighttime warming (0.009 °C year-1) more than daytime cooling (-0.007 °C year-1) during the dry season from 1961-2004 over the North China Plain (NCP), which is one of largest irrigated areas in the world. By implementing irrigation processes in regional climate model simulations, the consistent warming effect of irrigation on nighttime temperatures over the NCP was shown to match observations. The intensive nocturnal warming is attributed to energy storage in the wetter soil during the daytime, which contributed to the nighttime surface warming. Our results suggest that irrigation could locally amplify the warming related to GHGs, and this effect should be taken into account in future climate change projections.

  11. Non-equilibrium ionization around clouds evaporating in the interstellar medium

    International Nuclear Information System (INIS)

    Ballet, J.; Luciani, J.F.; Mora, P.

    1986-01-01

    It is of prime importance for global models of the interstellar medium to know whether dense clouds do or do not evaporate in the hot coronal gas. The rate of mass exchanges between phases depends very much on that. McKee and Ostriker's model, for instance, assumes that evaporation is important enough to control the expansion of supernova remnants, and that mass loss obeys the law derived by Cowie and McKee. In fact, the geometry of the magnetic field is nearly unknown, and it might totally inhibit evaporation, if the clouds are not regularly connected to the hot gas. Up to now, the only test of the theory is the U.V. observation (by the Copernicus and IUE satellites) of absorption lines of ions such as OVI or NV, that exist at temperatures of a few 100,000 K typical of transition layers around evaporating clouds. Other means of testing the theory are discussed

  12. Polycyclic aromatic hydrocarbons emitted from a hot-mix drum, asphalt plant: study of the influence from use of recycled bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, A.; Jullien, A.; Moneron, P. [Lab. Central des Ponts et Chaussees, Div. Technologie du Genie Civil et Environnement, Section Developpement Durable, Bouguenais (France)

    2007-11-15

    A study was conducted to determine if the use of recycled asphalt aggregate influences emissions of polycyclic aromatic hydrocarbons (PAH). Hot bitumen contains PAH compounds which have been gaining increasing attention due to their toxicity. In addition, the energy consumed during asphalt mixing can reach 60 per cent of the total energy needed for the construction and maintenance of a road over a 30-year service life. Asphalt hot mixing is one of the most common processes found in the road sector. It requires warming and drying aggregate through combustion. In order to minimize emissions, the major influential parameters must be identified. A joint research program involving several institutions has been launched to conduct an experimental campaign on the Blois Hot Mix Asphalt plant, with quantification of the 16 PAH listed by the United States Environmental Protection Agency. Variations in asphalt recycling rate favour emissions of heavy molecular weight PAH, among those analysed. It was determined that specific markers of combustion and materials may contribute to a better understanding of the entire hot asphalt mixing process. It was suggested that chemical characterization of bitumen may help in predicting PAH emissions. 24 refs., 6 tabs., 5 figs.

  13. Hot Corrosion of Inconel 625 Overlay Weld Cladding in Smelting Off-Gas Environment

    Science.gov (United States)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2013-10-01

    Degradation mechanisms and hot corrosion behavior of weld overlay alloy 625 were studied. Phase structure, morphology, thermal behavior, and chemical composition of deposited salt mixture on the weld overlay were characterized utilizing XRD, SEM/EDX, DTA, and ICP/OES, respectively. Dilution level of Fe in the weldment, dendritic structure, and degradation mechanisms of the weld were investigated. A molten phase formed on the weld layer at the operating temperature range of the boiler, which led to the hot corrosion attack in the water wall and the ultimate failure. Open circuit potential and weight-loss measurements and potentiodynamic polarization were carried out to study the hot corrosion behavior of the weld in the simulated molten salt medium at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Internal oxidation and sulfidation plus pitting corrosion were identified as the main hot corrosion mechanisms in the weld and boiler tubes. The presence of a significant amount of Fe made the dendritic structure of the weld susceptible to preferential corrosion. Preferentially corroded (Mo, Nb)-depleted dendrite cores acted as potential sites for crack initiation from the surface layer. The penetration of the molten phase into the cracks accelerated the cracks' propagation mainly through the dendrite cores and further crack branching/widening.

  14. Parton fragmentation in the vacuum and in the medium

    CERN Document Server

    Albino, S.; Arleo, F.; Besson, Dave Z.; Brooks, William K.; Buschbeck, B.; Cacciari, M.; Christova, E.; Corcella, G.; D'Enterria, David G.; Dolejsi, Jiri; Domdey, S.; Estienne, M.; Hamacher, Klaus; Heinz, M.; Hicks, K.; Kettler, D.; Kumano, S.; Moch, S.O.; Muccifora, V.; Pacetti, S.; Perez-Ramos, R.; Pirner, H.J.; Pronko, Alexandre Pavlovich; Radici, M.; Rak, J.; Roland, C.; Rudolph, Gerald; Rurikova, Z.; Salgado, C.A.; Sapeta, S.; Saxon, David H.; Seidl, Ralf-Christian; Seuster, R.; Stratmann, M.; Tannenbaum, Michael J.; Tasevsky, M.; Trainor, T.; Traynor, D.; Werlen, M.; Zhou, C.

    2008-01-01

    We present the mini-proceedings of the workshop on ``Parton fragmentation in the vacuum and in the medium'' held at the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*, Trento) in February 2008. The workshop gathered both theorists and experimentalists to discuss the current status of investigations of quark and gluon fragmentation into hadrons at different accelerator facilities (LEP, B-factories, JLab, HERA, RHIC, and Tevatron) as well as preparations for extension of these studies at the LHC. The main physics topics covered were: (i) light-quark and gluon fragmentation in the vacuum including theoretical (global fits analyses and MLLA) and experimental (data from e+e-, p-p, e-p collisions) aspects, (ii) strange and heavy-quark fragmentation, (iii) parton fragmentation in cold QCD matter (nuclear DIS), and (iv) medium-modified fragmentation in hot and dense QCD matter (high-energy nucleus-nucleus collisions). These mini-proceedings consist of an introduction and short summ...

  15. G-warm inflation

    Science.gov (United States)

    Herrera, Ramón

    2017-05-01

    A warm inflationary universe in the context of Galileon model or G-model is studied. Under a general formalism we study the inflationary dynamics and the cosmological perturbations considering a coupling of the form G(phi,X)=g(phi) X. As a concrete example, we consider an exponential potential together with the cases in which the dissipation and Galilean coefficients are constants. Also, we study the weak regime given by the condition RR+3gHdot phi. Additionally, we obtain constraints on the parameters during the evolution of G-warm inflation, assuming the condition for warm inflation in which the temperature T>H, the conditions or the weak and strong regimes, together with the consistency relation r=r(ns) from Planck data.

  16. Impact and prevention on global warming

    International Nuclear Information System (INIS)

    Park, Heon Ryeol

    2003-11-01

    This book deals with impact and prevention on global warming with eight chapters, which introduce the change after the earth was born and natural environment, how is global atmospheric environment under the control of radiant energy? What does global warming look with the earth history like? What's the status of global warming so far? How does climate change happen? What is the impact by global warming and climate change and for preservation of global environment of 21 century with consumption of energy, measure and prospect on global warming. It has reference, index and three appendixes.

  17. Powerful Radio Sources with Simbol-X: The Nucleus

    Science.gov (United States)

    Grandi, Paola

    2009-05-01

    The black holes in the hearts of bright elliptical galaxies are commonly observed to be associated with powerful relativistic jets. The mechanism by which material entering the accretion radius is converted into jet power remains the subject of much debate. At the same time, the interplay between the relativistic jet and the interstellar/intergalactic medium is the topic of intense discussions, being such knowledge essential for understanding the nature of the accretion process, galaxy formation and the growth of supermassive black holes. Simbol-X can play a fundamental role in addressing at least three important questions: I) the link between accretion and relativistic outflow at intergalactic medium at kpc scales (Migliori et al., this conference)

  18. Galactic Winds and the Role Played by Massive Stars

    Science.gov (United States)

    Heckman, Timothy M.; Thompson, Todd A.

    Galactic winds from star-forming galaxies play at key role in the evolution of galaxies and the intergalactic medium. They transport metals out of galaxies, chemically enriching the intergalactic medium and modifying the chemical evolution of galaxies. They affect the surrounding interstellar and circumgalactic media, thereby influencing the growth of galaxies though gas accretion and star formation. In this contribution we first summarize the physical mechanisms by which the momentum and energy output from a population of massive stars and associated supernovae can drive galactic winds. We use the prototypical example of M 82 to illustrate the multiphase nature of galactic winds. We then describe how the basic properties of galactic winds are derived from the data, and summarize how the properties of galactic winds vary systematically with the properties of the galaxies that launch them. We conclude with a brief discussion of the broad implications of galactic winds.

  19. Long range global warming

    International Nuclear Information System (INIS)

    Rolle, K.C.; Pulkrabek, W.W.; Fiedler, R.A.

    1995-01-01

    This paper explores one of the causes of global warming that is often overlooked, the direct heating of the environment by engineering systems. Most research and studies of global warming concentrate on the modification that is occurring to atmospheric air as a result of pollution gases being added by various systems; i.e., refrigerants, nitrogen oxides, ozone, hydrocarbons, halon, and others. This modification affects the thermal radiation balance between earth, sun and space, resulting in a decrease of radiation outflow and a slow rise in the earth's steady state temperature. For this reason the solution to the problem is perceived as one of cleaning up the processes and effluents that are discharged into the environment. In this paper arguments are presented that suggest, that there is a far more serious cause for global warming that will manifest itself in the next two or three centuries; direct heating from the exponential growth of energy usage by humankind. Because this is a minor contributor to the global warming problem at present, it is overlooked or ignored. Energy use from the combustion of fuels and from the output of nuclear reactions eventually is manifest as warming of the surroundings. Thus, as energy is used at an ever increasing rate the consequent global warming also increases at an ever increasing rate. Eventually this rate will become equal to a few percent of solar radiation. When this happens the earth's temperature will have risen by several degrees with catastrophic results. The trends in world energy use are reviewed and some mathematical models are presented to suggest future scenarios. These models can be used to predict when the global warming problem will become undeniably apparent, when it will become critical, and when it will become catastrophic

  20. Global warming on trial

    International Nuclear Information System (INIS)

    Broeker, W.S.

    1992-01-01

    Jim Hansen, a climatologist at NASA's Goddard Space Institute, is convinced that the earth's temperature is rising and places the blame on the buildup of greenhouse gases in the atmosphere. Unconvinced, John Sununu, former White House chief of staff, doubts that the warming will be great enough to produce serious threat and fears that measures to reduce the emissions would throw a wrench into the gears that drive the Unites States' troubled economy. During his three years at the White House, Sununu's view prevailed, and although his role in the debate has diminished, others continue to cast doubt on the reality of global warming. A new lobbying group called the Climate Council has been created to do just this. Burning fossil fuels is not the only problem; a fifth of emissions of carbon dioxide now come from clearing and burning forests. Scientists are also tracking a host of other greenhouse gases that emanate from a variety of human activities; the warming effect of methane, chlorofluorocarbons and nitrous oxide combined equals that of carbon dioxide. Although the current warming from these gases may be difficult to detect against the background noise of natural climate variation, most climatologists are certain that as the gases continue to accumulate, increases in the earth's temperature will become evident even to skeptics. If the reality of global warming were put on trial, each side would have trouble making its case. Jim Hansen's side could not prove beyond a reasonable doubt that carbon dioxide and other greenhouse gases have warmed the planet. But neither could John Sununu's side prove beyond a reasonable doubt that the warming expected from greenhouse gases has not occurred. To see why each side would have difficulty proving its case, this article reviews the arguments that might be presented in such a hearing

  1. Can air pollutant controls change global warming?

    International Nuclear Information System (INIS)

    Strefler, Jessica; Luderer, Gunnar; Kriegler, Elmar; Meinshausen, Malte

    2014-01-01

    Highlights: • Air pollution policies do not affect long-term climate targets. • Reduction of aerosols counteracts a fraction of the reduction of Kyoto forcing. • Air pollution policies may affect the rate of climate change in the short term. • There is no tradeoff between clean air and climate policies. - Abstract: In this paper we analyze the interaction between climate and air pollution policies using the integrated assessment model REMIND coupled to the reduced-form climate model MAGICC. Since overall, aerosols tend to cool the atmosphere, there is a concern that a reduction of pollutant emissions could accelerate global warming and offset the climate benefits of carbon dioxide emission reductions. We investigate scenarios which independently reduce emissions from either large-scale sources, such as power plants, or small-scale sources, such as cooking and heating stoves. Large-scale sources are likely to be easier to control, but their aerosol emissions are characterized by a relatively high sulfur content, which tends to result in atmospheric cooling. Pollution from small-scale sources, by contrast, is characterized by a high share of carbonaceous aerosol, which is an important contributor to global warming. We find that air pollution policies can significantly reduce aerosol emissions when no climate policies are in place. Stringent climate policies lead to a large reduction of fossil fuel use, and therefore result in a concurrent reduction of air pollutant emissions. These reductions partly reduce aerosol masking, thus initially counteracting the reduction of greenhouse gas forcing, however not overcompensating it. If climate policies are in place, air pollution policies have almost no impacts on medium- and long-term radiative forcing. Therefore there is no conflict of objectives between clean air and limiting global warming. We find that the stringency of air pollution policies may influence the rate of global temperature change in the first decade

  2. Warm-up and performance in competitive swimming.

    Science.gov (United States)

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Marinho, Daniel A

    2014-03-01

    Warm-up before physical activity is commonly accepted to be fundamental, and any priming practices are usually thought to optimize performance. However, specifically in swimming, studies on the effects of warm-up are scarce, which may be due to the swimming pool environment, which has a high temperature and humidity, and to the complexity of warm-up procedures. The purpose of this study is to review and summarize the different studies on how warming up affects swimming performance, and to develop recommendations for improving the efficiency of warm-up before competition. Most of the main proposed effects of warm-up, such as elevated core and muscular temperatures, increased blood flow and oxygen delivery to muscle cells and higher efficiency of muscle contractions, support the hypothesis that warm-up enhances performance. However, while many researchers have reported improvements in performance after warm-up, others have found no benefits to warm-up. This lack of consensus emphasizes the need to evaluate the real effects of warm-up and optimize its design. Little is known about the effectiveness of warm-up in competitive swimming, and the variety of warm-up methods and swimming events studied makes it difficult to compare the published conclusions about the role of warm-up in swimming. Recent findings have shown that warm-up has a positive effect on the swimmer's performance, especially for distances greater than 200 m. We recommend that swimmers warm-up for a relatively moderate distance (between 1,000 and 1,500 m) with a proper intensity (a brief approach to race pace velocity) and recovery time sufficient to prevent the early onset of fatigue and to allow the restoration of energy reserves (8-20 min).

  3. Two particle correlations with photon triggers to study hot QCD medium in ALICE at LHC

    CERN Document Server

    Yaxian, Mao; Shou, Daicui; Schutz, Yves

    2011-01-01

    With the advent of the Large Hadron Collider (LHC)at the end of 2009, the new accelerator at CERN collides protons and heavy-ions at unprecedented high energies. ALICE , one of the major experiment installed at LHC, is dedicated to the study of nuclear matter under extreme conditions of energy density with the opportunity of creating a partonic medium called the Quark- Gluon-Plasma (QGP). This new experimental facility opens new avenues for the understanding of fundamental properties of the strong interaction and its vacuum. To reach the objectives of this scientific program, it is required to select a set of appropriate probes carrying relevant information on the properties of the medium created in ultra-relativistic heavy-ion collisions. Based on the information delivered by all the observables and guided by modelization of the fundamental principles in action, a coherent picture will emerge to interpret the observed phenomena. In the first part of the present document I describe the context of the scientif...

  4. Recent warming of lake Kivu.

    Science.gov (United States)

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  5. Recent warming of lake Kivu.

    Directory of Open Access Journals (Sweden)

    Sergei Katsev

    Full Text Available Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  6. In hot water: the future of Australia's coastal and marine ecosystems

    International Nuclear Information System (INIS)

    Richardson, Anthony J; Poloczanska, Elvira

    2007-01-01

    Full text: Full text: Marine ecosystems are extremely important economically and ecologically to Australia in terms of tourism, coastal defence, resources, and ecosystem services such as nutrient cycling and waste disposal. Australia is also a globally important repository of biodiversity. Here we describe the observed and potential future impacts of climate change on Australia's marine diversity. Climate simulations project oceanic warming, an increase in stratification, a strengthening of the Eastern Australian Current, increased ocean acidification, a rise in sea level, and altered storm and rainfall regimes, which taken collectively will fundamentally change marine ecosystems. There has already been widespread bleaching of tropical corals, poleward shifts of temperate fish and plankton populations, and a decline in cold-water giant kelp off Tasmania. Future changes are likely to be even more dramatic and have considerable economic and ecological consequences, especially in 'hot spots' of climate change such as theTasman Sea and the Great Barrier Reef area. Corals are likely to bleach more frequently and decline in abundance in response to both warming and ocean acidification. Planktonic animals with calcium carbonate shells, such as winged pteropod snails and coccolithophorid phytoplankton, are likely to decline as increased ocean acidification impairs their ability to maintain carbonate body structures. The projected high warming off south-east Australia is of particular concern. Marine ecosystems in this region are already stressed by high metal concentrations, sewage pollution, and overfishing, and climate models project that this region will warm more than anywhere else in the Southern Hemisphere this century because of enhanced southerly penetration of the East Australian Current. Venomous jellyfish and harmful algal blooms, which are major threats to human health, will potentially extend further south and occur more frequently. Temperate species

  7. Nonlinear dynamo in the intracluster medium

    Science.gov (United States)

    Beresnyak, Andrey; Miniati, Francesco

    2018-05-01

    Hot plasma in galaxy clusters, the intracluster medium is observed to be magnetized with magnetic fields of around a μG and the correlation scales of tens of kiloparsecs, the largest scales of the magnetic field so far observed in the Universe. Can this magnetic field be used as a test of the primordial magnetic field in the early Universe? In this paper, we argue that if the cluster field was created by the nonlinear dynamo, the process would be insensitive to the value of the initial field. Our model combines state of the art hydrodynamic simulations of galaxy cluster formation in a fully cosmological context with nonlinear dynamo theory. Initial field is not a parameter in this model, yet it predicts magnetic scale and strength compatible with observations.

  8. The release of organic compounds during biomass drying depends upon the feedstock and/or altering drying heating medium

    International Nuclear Information System (INIS)

    Rupar, K.; Sanati, M.

    2003-01-01

    The release of organic compounds during the drying of biomass is a potential environmental problem, it may contribute to air pollution or eutrophication. In many countries there are legal restrictions on the amounts of terpenes that may be released into the atmosphere. When considering bioenergy in future energy systems, it is important that information on the environmental effects is available. The emissions of organic compounds from different green and dried biofuels that have been dried in hot air and steam medium, were analyzed by using different techniques. Gas chromatography and gas chromatography mass spectrometry have been used to identify the organic matter. The terpene content was significantly affected by the following factors: changing of the drying medium and the way the same biomass was handled from different localities in Sweden. Comparison between spectra from dried and green fuels reveal that the main compounds emitted during drying are monoterpene and sesquiterpene hydrocarbons, while the emissions of diterpene hydrocarbons seem to be negligible. The relative proportionality between emitted monoterpene, diterpene and sesquiterpene change when the drying medium shifts from steam to hot air. The obtained result of this work implies a parameter optimization study of the dryer with regard to environmental impact. With assistance of this result it might be foreseen that choice of special drying medium, diversity of biomass and low temperature reduce the emissions. A thermo-gravimetric analyzer was used for investigating the biomass drying rate. (author)

  9. Simulation of the hot flow behaviour of a medium carbon microalloyed steel. Part 1. Theoretical approach

    International Nuclear Information System (INIS)

    Cabrera, J.M.; Prado, J.M.

    1997-01-01

    The constitutive equations to model the hot flow behaviour of metallic materials in general, and of microalloyed steels in particular (see part 2 of this work) are established in this work. Special emphasis is done on the dynamic softening mechanisms, i.e., dynamic recovery and recrystallization phenomena. The equations developed are physic-based, not empirical, and the modelling allows an easy implementation in an analysis by numerical methods. The resulting equations are even able to predict the final grain size. (Author) 39 refs

  10. Differentiation regional climate impact indicators at 1.5°C and 2°C warming above pre-industrial levels

    Science.gov (United States)

    Schleussner, C. F.

    2016-12-01

    Robust appraisals of climate impacts at different levels of global-mean temperature increase are vital to guide assessments of dangerous anthropogenic interference with the climate system. By establishing 1.5°C as the long term temperature limit for global average temperature increase and inviting a special report of the IPCC on the impacts of 1.5°C, the Paris Agreement has put such assessments high on the post-Paris science agenda. Here I will present recent findings of climate impacts at 1.5°C, including extreme weather events, water availability, agricultural yields, sea-level rise and risk of coral reef loss. In particular, I will present findings from a recent study that attempts to differentiate between such impacts at warming levels of 1.5°¸C and 2°C above pre-industrial (Schleussner et al., 2016). By analyzing changes in indicators for 26 world regions as applicable, the study found regional dependent differences between a 1.5°C and 2°C warming. Regional hot-spots of change emerge with tropical regions bearing the brunt of the impacts of an additional 0.5°C warming. These findings highlight the importance of regional differentiation to assess both future climate risks and different vulnerabilities to incremental increases in global-mean temperature. Building on that analysis, I will discuss limitations of existing approaches to differentiate between warming levels and outline opportunities for future work on refining our understanding of the difference between impacts at 1.5°C and 2°C warming. ReferencesSchleussner, C.-F. et al. Differential climate impacts for policy relevant limits to global warming: the case of 1.5°C and 2°C. Earth Syst. Dyn. 7, 327-351 (2016).

  11. Experimental winter warming modifies thermal performance and primes acorn ants for warm weather

    DEFF Research Database (Denmark)

    MacLean, Heidi J.; Penick, Clint A.; Dunn, Robert R.

    2017-01-01

    The frequency of warm winter days is increasing under global climate change, but how organisms respond to warmer winters is not well understood. Most studies focus on growing season responses to warming. Locomotor performance is often highly sensitive to temperature, and can determine fitness...... outcomes through a variety of mechanisms including resource acquisition and predator escape. As a consequence, locomotor performance, and its impacts on fitness, may be strongly affected by winter warming in winter-active species. Here we use the acorn ant, Temnothorax curvispinosus, to explore how thermal...... performance (temperature-driven plasticity) in running speed is influenced by experimental winter warming of 3–5 °C above ambient in a field setting. We used running speed as a measure of performance as it is a common locomotor trait that influences acquisition of nest sites and food in acorn ants...

  12. Effects of short term and long term soil warming on ecosystem phenology of a sub-arctic grassland: an NDVI-based approach

    Science.gov (United States)

    Leblans, Niki; Sigurdsson, Bjarni D.; Janssens, Ivan A.

    2014-05-01

    Phenology has been defined as the study of the timing of recurring biological events and the causes of their timing with regard to abiotic and biotic factors. Ecosystem phenology, including the onset of the growing season and its senescence in autumn, plays an important role in the carbon, water and energy exchange between biosphere and atmosphere at higher latitudes. Factors that influence ecosystem phenology can therefore induce important climate-controlling feedback mechanisms. Global surface temperatures have been predicted to increase in the coming decades. Hence, a better understanding of the effect of temperature on ecosystem phenology is essential. Natural geothermal soil temperature gradients in Iceland offer a unique opportunity to study the soil temperature (Ts) dependence of ecosystem phenology and distinguish short-term (transient) warming effects (in recently established Ts gradients) from long-term (permanent) effects (in centuries-old Ts gradients). This research was performed in the framework of an international research project (ForHot; www.forhot.is). ForHot includes two natural grassland areas with gradients in Ts, dominated by Festuca sp., Agrostis sp.. The first warmed area was created in 2008, when an earthquake in S-Iceland caused geothermal systems to be shifted to previously cold soils. The second area is located about 3 km away from this newly warmed grassland. For this area, there are proofs that the natural soil warming has been continuous for at least 300 year. In the present study we focus on Ts elevation gradients of +0 to +10°C. The experiment consists of five transects with five temperature levels (+0,+1,+3,+5 and +10°C) in the two aforementioned grassland ecosystems (n=25 in each grassland). From April until November 2013, weekly measurements of the normalized difference vegetation index (NDVI) were taken. In the short-term warmed grassland, the greening of the vegetation was 36 days advanced at +10°C Ts and the date of 50

  13. Radiographic evaluation of the quality of root canal obturation of single-matched cone Gutta-percha root canal filling versus hot lateral technique

    Directory of Open Access Journals (Sweden)

    Randa Suleiman Obeidat

    2014-01-01

    Full Text Available Aim: The aim of this study is to evaluate radiographically the quality of root canal filling in mesiodistal and buccolingual view when comparing matched cone condensation and warm lateral Gutta-percha condensation using system B heating instrument in a low-heat warm lateral condensation technique in0 vitro. Materials and Methods: A total of 40 mandibular premolars with straight single canals were divided into two groups with 20 each. The root canals were shaped by hand file and Revo-S rotary files to size (25, 0.06 at the end point, then they filled by Gutta-percha cone and meta-seal sealer. In group A, a single matched cone technique was used to fill the root canals. In group B, a hot lateral condensation using system B instrument at 101°C was performed. Result: The result of this study showed no significant difference in density of Gutta-percha fill in apical and coronal two-third when comparing matched cone root canal filling and hot lateral technique (P > 0.05. The only significant difference (P < 0.05 was in matched cone between buccolingual and mesiodistal view in the coronal two-third. Conclusion: Within the limitation of this study, single matched cone technique has a good density in the apical one-third as that of the hot lateral technique so it may be used for filling narrow canals. In the coronal two-third of the root canal, single matched cone technique showed inferior density of root canal filling which can be improved by using accessory cones Gutta-percha in wide canal.

  14. Origin, structure and evolution of galaxies

    International Nuclear Information System (INIS)

    Zhi, F.L.

    1988-01-01

    Recent developments of the origin, structure and evolution of galaxies have been reviewed. The contents of this book are: Inflationary Universe; Cosmic String; Active Galaxies; Intergalactic Medium; Waves in Disk Galaxies; Dark Matter; Gas Dynamics in Disk Galaxies; Equilibrium and Stability of Spiral Galaxies

  15. Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions.

    Science.gov (United States)

    Polade, Suraj D; Gershunov, Alexander; Cayan, Daniel R; Dettinger, Michael D; Pierce, David W

    2017-09-07

    In most Mediterranean climate (MedClim) regions around the world, global climate models (GCMs) consistently project drier futures. In California, however, projections of changes in annual precipitation are inconsistent. Analysis of daily precipitation in 30 GCMs reveals patterns in projected hydrometeorology over each of the five MedClm regions globally and helps disentangle their causes. MedClim regions, except California, are expected to dry via decreased frequency of winter precipitation. Frequencies of extreme precipitation, however, are projected to increase over the two MedClim regions of the Northern Hemisphere where projected warming is strongest. The increase in heavy and extreme precipitation is particularly robust over California, where it is only partially offset by projected decreases in low-medium intensity precipitation. Over the Mediterranean Basin, however, losses from decreasing frequency of low-medium-intensity precipitation are projected to dominate gains from intensifying projected extreme precipitation. MedClim regions are projected to become more sub-tropical, i.e. made dryer via pole-ward expanding subtropical subsidence. California's more nuanced hydrological future reflects a precarious balance between the expanding subtropical high from the south and the south-eastward extending Aleutian low from the north-west. These dynamical mechanisms and thermodynamic moistening of the warming atmosphere result in increased horizontal water vapor transport, bolstering extreme precipitation events.

  16. IGMtransmission: Transmission curve computation

    Science.gov (United States)

    Harrison, Christopher M.; Meiksin, Avery; Stock, David

    2015-04-01

    IGMtransmission is a Java graphical user interface that implements Monte Carlo simulations to compute the corrections to colors of high-redshift galaxies due to intergalactic attenuation based on current models of the Intergalactic Medium. The effects of absorption due to neutral hydrogen are considered, with particular attention to the stochastic effects of Lyman Limit Systems. Attenuation curves are produced, as well as colors for a wide range of filter responses and model galaxy spectra. Photometric filters are included for the Hubble Space Telescope, the Keck telescope, the Mt. Palomar 200-inch, the SUBARU telescope and UKIRT; alternative filter response curves and spectra may be readily uploaded.

  17. Effect of Strain Rate on Hot Ductility Behavior of a High Nitrogen Cr-Mn Austenitic Steel

    Science.gov (United States)

    Wang, Zhenhua; Meng, Qing; Qu, Minggui; Zhou, Zean; Wang, Bo; Fu, Wantang

    2016-03-01

    18Mn18Cr0.6N steel specimens were tensile tested between 1173 K and 1473 K (900 °C and 1200 °C) at 9 strain rates ranging from 0.001 to 10 s-1. The tensile strained microstructures were analyzed through electron backscatter diffraction analysis. The strain rate was found to affect hot ductility by influencing the strain distribution, the extent of dynamic recrystallization and the resulting grain size, and dynamic recovery. The crack nucleation sites were primarily located at grain boundaries and were not influenced by the strain rate. At 1473 K (1200 °C), a higher strain rate was beneficial for grain refinement and preventing hot cracking; however, dynamic recovery appreciably occurred at 0.001 s-1 and induced transgranular crack propagation. At 1373 K (1100 °C), a high extent of dynamic recrystallization and fine new grains at medium strain rates led to good hot ductility. The strain gradient from the interior of the grain to the grain boundary increased with decreasing strain rate at 1173 K and 1273 K (900 °C and 1000 °C), which promoted hot cracking. Grain boundary sliding accompanied grain rotation and did not contribute to hot cracking.

  18. Energy Saving Potential by Utilizing Natural Ventilation under Warm Conditions

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg

    2014-01-01

    The objective of this article is to show the potential of natural ventilation as a passive cooling method within the residential sector of countries which are located in warm conditions using Mexico as a case study. The method is proposed as performing, with a simplified ventilation model, thermal......–airflow simulations of 27 common cases of dwellings (considered as one thermal zone) based on the combination of specific features of the building design, occupancy and climate conditions. The energy saving potential is assessed then by the use of a new assessment method suitable for large-scale scenarios using...... the actual number of air-conditioned dwellings distributed among the 27 cases. Thereby, the energy saving is presented as the difference in the cooling demand of the dwelling during one year without and with natural ventilation, respectively. Results indicate that for hot-dry conditions, buildings with high...

  19. Effective Field Theories for Hot and Dense Matter

    Directory of Open Access Journals (Sweden)

    Blaschke D.

    2010-10-01

    Full Text Available The lecture is divided in two parts. The first one deals with an introduction to the physics of hot, dense many-particle systems in quantum field theory [1, 2]. The basics of the path integral approach to the partition function are explained for the example of chiral quark models. The QCD phase diagram is discussed in the meanfield approximation while QCD bound states in the medium are treated in the rainbow-ladder approximation (Gaussian fluctuations. Special emphasis is devoted to the discussion of the Mott effect, i.e. the transition of bound states to unbound, but resonant scattering states in the continnum under the influence of compression and heating of the system. Three examples are given: (1 the QCD model phase diagram with chiral symmetry ¨ restoration and color superconductivity [3], (2 the Schrodinger equation for heavy-quarkonia [4], and (2 Pions [5] as well as Kaons and D-mesons in the finite-temperature Bethe-Salpeter equation [6]. We discuss recent applications of this quantum field theoretical approach to hot and dense quark matter for a description of anomalous J/ψ supression in heavy-ion collisions [7] and for the structure and cooling of compact stars with quark matter interiors [8]. The second part provides a detailed introduction to the Polyakov-loop Nambu–Jona-Lasinio model [9] for thermodynamics and mesonic correlations [10] in the phase diagram of quark matter. Important relationships of low-energy QCD like the Gell-Mann–Oakes–Renner relation are generalized to finite temperatures. The effect of including the coupling to the Polyakov-loop potential on the phase diagram and mesonic correlations is discussed. An outlook is given to effects of nonlocality of the interactions [11] and of mesonic correlations in the medium [12] which go beyond the meanfield description.

  20. Methods of patient warming during abdominal surgery.

    Directory of Open Access Journals (Sweden)

    Li Shao

    Full Text Available BACKGROUND: Keeping abdominal surgery patients warm is common and warming methods are needed in power outages during natural disasters. We aimed to evaluate the efficacy of low-cost, low-power warming methods for maintaining normothermia in abdominal surgery patients. METHODS: Patients (n = 160 scheduled for elective abdominal surgery were included in this prospective clinical study. Five warming methods were applied: heated blood transfusion/fluid infusion vs. unheated; wrapping patients vs. not wrapping; applying moist dressings, heated or not; surgical field rinse heated or not; and applying heating blankets or not. Patients' nasopharyngeal and rectal temperatures were recorded to evaluate warming efficacy. Significant differences were found in mean temperatures of warmed patients compared to those not warmed. RESULTS: When we compared temperatures of abdominal surgery patient groups receiving three specific warming methods with temperatures of control groups not receiving these methods, significant differences were revealed in temperatures maintained during the surgeries between the warmed groups and controls. DISCUSSION: The value of maintaining normothermia in patients undergoing abdominal surgery under general anesthesia is accepted. Three effective economical and practically applicable warming methods are combined body wrapping and heating blanket; combined body wrapping, heated moist dressings, and heating blanket; combined body wrapping, heated moist dressings, and warmed surgical rinse fluid, with or without heating blanket. These methods are practically applicable when low-cost method is indeed needed.

  1. Global warming and obesity: a systematic review.

    Science.gov (United States)

    An, R; Ji, M; Zhang, S

    2018-02-01

    Global warming and the obesity epidemic are two unprecedented challenges mankind faces today. A literature search was conducted in the PubMed, Web of Science, EBSCO and Scopus for articles published until July 2017 that reported findings on the relationship between global warming and the obesity epidemic. Fifty studies were identified. Topic-wise, articles were classified into four relationships - global warming and the obesity epidemic are correlated because of common drivers (n = 21); global warming influences the obesity epidemic (n = 13); the obesity epidemic influences global warming (n = 13); and global warming and the obesity epidemic influence each other (n = 3). We constructed a conceptual model linking global warming and the obesity epidemic - the fossil fuel economy, population growth and industrialization impact land use and urbanization, motorized transportation and agricultural productivity and consequently influences global warming by excess greenhouse gas emission and the obesity epidemic by nutrition transition and physical inactivity; global warming also directly impacts obesity by food supply/price shock and adaptive thermogenesis, and the obesity epidemic impacts global warming by the elevated energy consumption. Policies that endorse deployment of clean and sustainable energy sources, and urban designs that promote active lifestyles, are likely to alleviate the societal burden of global warming and obesity. © 2017 World Obesity Federation.

  2. Urban heat island and bioclimatological conditions in a hot-humid tropical city: the example of Akure, Nigeria

    Directory of Open Access Journals (Sweden)

    Balogun, Ifeoluwa A.

    2014-09-01

    Full Text Available The impact of weather on human health has become an issue of increased significance in recent times, considering the increasing rate of urbanisation and the much associated heat island phenomenon. This study examines the urbanisation influence on human bioclimatic conditions in Akure, a medium sized hot-humid tropical city in Nigeria, utilising data from measurements at urban and rural sites in the city. Differences in the diurnal, monthly and seasonal variation of human bioclimatic characteristics between both environments were evaluated and tested for statistical significance. Higher frequencies of high temperatures observed in the city centre suggest a significant heat stress and health risk in this hot-humid city.

  3. A near-infrared transmission spectrum for the warm Saturn HAT-P-12b

    Energy Technology Data Exchange (ETDEWEB)

    Line, Michael R.; Knutson, Heather; Desert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Deming, Drake; Wilkins, Ashlee, E-mail: mrl@gps.caltech.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2013-12-01

    We present a Hubble Space Telescope Wide Field Camera-3 (WFC3) transmission spectrum for the transiting exoplanet HAT-P-12b. This warm (1000 K) sub-Saturn-mass planet has a smaller mass and a lower temperature than the hot Jupiters that have been studied so far. We find that the planet's measured transmission spectrum lacks the expected water absorption feature for a hydrogen-dominated atmosphere and is instead best described by a model with high-altitude clouds. Using a frequentist hypothesis testing procedure, we can rule out a hydrogen-dominated cloud-free atmosphere to 4.9σ. When combined with other recent WFC3 studies, our observations suggest that clouds may be common in exoplanetary atmospheres.

  4. Increasing occurrence of cold and warm extremes during the recent global warming slowdown.

    Science.gov (United States)

    Johnson, Nathaniel C; Xie, Shang-Ping; Kosaka, Yu; Li, Xichen

    2018-04-30

    The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.

  5. G-warm inflation

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Ramón, E-mail: ramon.herrera@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Casilla 4059, Valparaíso (Chile)

    2017-05-01

    A warm inflationary universe in the context of Galileon model or G-model is studied. Under a general formalism we study the inflationary dynamics and the cosmological perturbations considering a coupling of the form G (φ, X )= g (φ) X . As a concrete example, we consider an exponential potential together with the cases in which the dissipation and Galilean coefficients are constants. Also, we study the weak regime given by the condition R <1+3 gH φ-dot , and the strong regime in which 1< R +3 gH φ-dot . Additionally, we obtain constraints on the parameters during the evolution of G-warm inflation, assuming the condition for warm inflation in which the temperature T > H , the conditions or the weak and strong regimes, together with the consistency relation r = r ( n {sub s} ) from Planck data.

  6. Warming Affects Growth Rates and Microcystin Production in Tropical Bloom-Forming Microcystis Strains

    Directory of Open Access Journals (Sweden)

    Trung Bui

    2018-03-01

    Full Text Available Warming climate is predicted to promote cyanobacterial blooms but the toxicity of cyanobacteria under global warming is less well studied. We tested the hypothesis that raising temperature may lead to increased growth rates but to decreased microcystin (MC production in tropical Microcystis strains. To this end, six Microcystis strains were isolated from different water bodies in Southern Vietnam. They were grown in triplicate at 27 °C (low, 31 °C (medium, 35 °C (high and 37 °C (extreme. Chlorophyll-a-, particle- and MC concentrations as well as dry-weights were determined. All strains yielded higher biomass in terms of chlorophyll-a concentration and dry-weight at 31 °C compared to 27 °C and then either stabilised, slightly increased or declined with higher temperature. Five strains easily grew at 37 °C but one could not survive at 37 °C. When temperature was increased from 27 °C to 37 °C total MC concentration decreased by 35% in strains with MC-LR as the dominant variant and by 94% in strains with MC-RR. MC quota expressed per particle, per unit chlorophyll-a and per unit dry-weight significantly declined with higher temperatures. This study shows that warming can prompt the growth of some tropical Microcystis strains but that these strains become less toxic.

  7. The Simulation and Analysis of the Closed Die Hot Forging Process by A Computer Simulation Method

    Directory of Open Access Journals (Sweden)

    Dipakkumar Gohil

    2012-06-01

    Full Text Available The objective of this research work is to study the variation of various parameters such as stress, strain, temperature, force, etc. during the closed die hot forging process. A computer simulation modeling approach has been adopted to transform the theoretical aspects in to a computer algorithm which would be used to simulate and analyze the closed die hot forging process. For the purpose of process study, the entire deformation process has been divided in to finite number of steps appropriately and then the output values have been computed at each deformation step. The results of simulation have been graphically represented and suitable corrective measures are also recommended, if the simulation results do not agree with the theoretical values. This computer simulation approach would significantly improve the productivity and reduce the energy consumption of the overall process for the components which are manufactured by the closed die forging process and contribute towards the efforts in reducing the global warming.

  8. The mechanical behavior of two warm-mix asphalts

    Directory of Open Access Journals (Sweden)

    H. A. Rondón-Quintana

    2016-09-01

    Full Text Available This paper presents results stemming from a comparative experimental analysis of two warm-mix asphalts (WMA and a dense-graded hot-mix asphalt (HMA. In order to evaluate asphalt mixture behavior, physical and rheological tests were conducted, including tests on resilient modulus, resistance to moisture-induced damage, resistance to fatigue and resistance to permanent deformation. Samples studied were subjected to short (STOA and long-term (LTOA aging. As far as asphalt mixture composition is concerned, the same particle size distribution and coarse aggregate were employed for both mixture types. The control HMA mixture was produced with AC 60-70, and the WMAs used the same asphalt cement modified with two chemical additives (Rediset WMX® and Cecabase RT®. The modified mixtures exhibited better resistance to permanent deformation, aging and moisture-induced damage (versus the control mixture. Likewise, WMAs generally saw increased fatigue resistance under controlled-stress loading, which rheological characterization showed is mainly attributable to binder additives and their concomitant modifications.

  9. Authropogenic Warming in North Alaska?.

    Science.gov (United States)

    Michaels, Patrick J.; Sappington, David E.; Stooksbury, David E.

    1988-09-01

    Using permafrost boreholes, Lachenbruch and Marshall recently reported evidence for a 2°-4°C warming in North Alaska occurring at some undetermined time during the last century. Popular accounts suggest their findings are evidence for anthropogenic warming caused by trace gases. Analyses of North Alaskan 1000-500 mb thickness onwards back to 1948 indicate that the warming was prior to that date. Relatively sparse thermometric data for the early twentieth century from Jones et al. are too noisy to support any trend since the data record begins in 1910, or to apply to any subperiod of climatic significance. Any warming detected from the permafrost record therefore occurred before the major emissions of thermally active trace gases.

  10. Global warming

    International Nuclear Information System (INIS)

    Houghton, John

    2005-01-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources

  11. Electromagnetic energy density and stress tensor in a warm plasma with finite flow velocity

    International Nuclear Information System (INIS)

    Choi, Cheong R.; Lee, Nam C.

    2004-01-01

    The expressions of the average of energy density and the average stress tensor of the electromagnetic field in a warm collisionless plasma moving with a finite velocity are obtained by using a microscopic method that uses the fluid description of plasma. The result contains terms involved with derivatives of the dielectric tensor with respect to the velocity, which explicitly represent the effects of the finite velocity of the medium. In the zero-velocity limit, the results reduce to the well-known expressions for a plasma at rest with temporal and spatial dispersion

  12. Comparison of Plasma-Redshift Cosmology and Big-Bang Cosmology

    Science.gov (United States)

    Brynjolfsson, Ari

    2009-05-01

    Plasma redshift is derived theoretically from conventional axioms of physics by using more accurate methods than those conventionally used. The main difference is the proper inclusion of the dielectric constant. The force acting on the electron is proportional to E=D/ɛ and not D as is conventionally surmised. This correction is not important in ordinary laboratory plasmas; but in the hot sparse plasmas of the intergalactic space, it explains the gradual energy loss (the cosmological redshift) of photons. This energy loss of photons is transferred to the plasma and makes it very hot. The plasma redshift explains long range of phenomena, including the intrinsic redshift of Sun, stars, galaxies and quasars, and the cosmological redshift. It explains also the beautiful black body spectrum of the CMB, and it predicts the observed XRB, and much more. There is no need for Big Bang, Inflation, Dark Energy, Dark Matter, Black Holes and much more. The universe is quasi-static and can renew itself forever. There is no cosmic time dilation. In intergalactic space the average temperature is 2.7.10^6 K, and the average electron density (Ne)avg= 2 .10-4 cm-3.

  13. COS-burst: Observations of the Impact of Starburst-driven Winds on the Properties of the Circum-galactic Medium

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, Timothy; Borthakur, Sanchayeeta [Center for Astrophysical Sciences, Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Wild, Vivienne [School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9AJ (United Kingdom); Schiminovich, David [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Bordoloi, Rongmon, E-mail: theckma1@jhu.edu [MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2017-09-10

    We report on observations made with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope ( HST ) using background quasi-stellar objects to probe the circum-galactic medium (CGM) around 17 low-redshift galaxies that are undergoing or have recently undergone a strong starburst (the COS-Burst program). The sightlines extend out to roughly the virial radius of the galaxy halo. We construct control samples of normal star-forming low-redshift galaxies from the COS/ HST archive that match the starbursts in terms of galaxy stellar mass and impact parameter. We find clear evidence that the CGM around the starbursts differs systematically compared to the control galaxies. The Ly α , Si iii, C iv, and possibly O vi absorption lines are stronger as a function of impact parameter, and the ratios of the equivalent widths of C iv/Ly α and Si iii/Ly α are both higher than in normal star-forming galaxies. We also find that the widths and the velocity offsets (relative to v {sub sys}) of the Ly α absorption lines are significantly larger in the CGM of the starbursts, implying velocities of the absorbing material that are roughly twice the halo virial velocity. We show that these properties can be understood as a consequence of the interaction between a starburst-driven wind and the preexisting CGM. These results underscore the importance of winds driven from intensely star-forming galaxies in helping drive the evolution of galaxies and the intergalactic medium. They also offer a new probe of the properties of starburst-driven winds and of the CGM itself.

  14. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    Science.gov (United States)

    Meyer, D. M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V. V.; Mignone, A.; Izzard, R. G.; Kaper, L.

    2014-11-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [O III]. The Hα emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.

  15. Impact of dark matter decays and annihilations on structure formation

    NARCIS (Netherlands)

    Mapelli, M.; Ripamonti, E.

    2007-01-01

    Abstract: We derived the evolution of the energy deposition in the intergalactic medium (IGM) by different decaying (or annihilating) dark matter (DM) candidates. Heavy annihilating DM particles (with mass larger than a few GeV) have no influence on reionization and heating, even if we assume that

  16. Impact of dark matter on reionization and heating

    NARCIS (Netherlands)

    Mapelli, M.; Ripamonti, E.

    2007-01-01

    Abstract: We derived the evolution of the energy deposition in the intergalactic medium (IGM) by different decaying (or annihilating) dark matter (DM) candidates. Heavy annihilating DM particles (with mass larger than a few GeV) have no influence on reionization and heating, even if we assume that

  17. The impact of sustained hot weather on risk of acute work-related injury in Melbourne, Australia.

    Science.gov (United States)

    McInnes, Judith Anne; MacFarlane, Ewan M; Sim, Malcolm R; Smith, Peter

    2018-02-01

    It has been reported that weather-related high ambient temperature is associated with an increased risk of work-related injury. Understanding this relationship is important because work-related injuries are a major public health problem, and because projected climate changes will potentially expose workers to hot days, including consecutive hot days, more often. The aim of this study was to quantify the impact of exposure to sustained periods of hot weather on work-related injury risk for workers in Melbourne, Australia. A time-stratified case crossover study design was utilised to examine the association between two and three consecutive days and two and three consecutive nights of hot weather and the risk of work-related injury, using definitions of hot weather ranging from the 60th to the 95th percentile of daily maximum and minimum temperatures for the Melbourne metropolitan area, 2002-2012. Workers' compensation claim data was used to identify cases of acute work-related injury. Overall, two and three consecutive days of hot weather were associated with an increased risk of injury, with this effect becoming apparent at a daily maximum temperature of 27.6 °C (70th percentile). Three consecutive days of high but not extreme temperatures were associated with the strongest effect, with a 15% increased risk of injury (odds ratio 1.15, 95% confidence interval 1.01-1.30) observed when daily maximum temperature was ≥33.3 °C (90th percentile) for three consecutive days, compared to when it was not. At a threshold of 35.5 °C (95th percentile), there was no significant association between temperature and injury for either two or three consecutive days of heat. These findings suggest that warnings to minimise harm to workers from hot weather should be given, and prevention protocol initiated, when consecutive warm days of temperatures lower than extreme heat temperatures are forecast, and well before the upper ranges of ambient daytime temperatures are reached.

  18. The impact of sustained hot weather on risk of acute work-related injury in Melbourne, Australia

    Science.gov (United States)

    McInnes, Judith Anne; MacFarlane, Ewan M.; Sim, Malcolm R.; Smith, Peter

    2018-02-01

    It has been reported that weather-related high ambient temperature is associated with an increased risk of work-related injury. Understanding this relationship is important because work-related injuries are a major public health problem, and because projected climate changes will potentially expose workers to hot days, including consecutive hot days, more often. The aim of this study was to quantify the impact of exposure to sustained periods of hot weather on work-related injury risk for workers in Melbourne, Australia. A time-stratified case crossover study design was utilised to examine the association between two and three consecutive days and two and three consecutive nights of hot weather and the risk of work-related injury, using definitions of hot weather ranging from the 60th to the 95th percentile of daily maximum and minimum temperatures for the Melbourne metropolitan area, 2002-2012. Workers' compensation claim data was used to identify cases of acute work-related injury. Overall, two and three consecutive days of hot weather were associated with an increased risk of injury, with this effect becoming apparent at a daily maximum temperature of 27.6 °C (70th percentile). Three consecutive days of high but not extreme temperatures were associated with the strongest effect, with a 15% increased risk of injury (odds ratio 1.15, 95% confidence interval 1.01-1.30) observed when daily maximum temperature was ≥33.3 °C (90th percentile) for three consecutive days, compared to when it was not. At a threshold of 35.5 °C (95th percentile), there was no significant association between temperature and injury for either two or three consecutive days of heat. These findings suggest that warnings to minimise harm to workers from hot weather should be given, and prevention protocol initiated, when consecutive warm days of temperatures lower than extreme heat temperatures are forecast, and well before the upper ranges of ambient daytime temperatures are reached.

  19. Fewer bacteria in warm water

    International Nuclear Information System (INIS)

    Bagh, Lene

    1999-01-01

    There has been many suggestions to how the ideal warm water system should be. Particularly whether warm water containers or heat exchangers in larger houses are the best solutions in order to maintain a water quality with low levels of bacteria. In an investigation made by Statens Byggeforskningsinstitutt (Denmark) regarding ''Bacterial growth in warm water installations with heat exchangers'' there were used several heat exchangers made by Gjelsted and Lund of three of which had HWAT heating cables. The bacterial content was low from these exchangers compared to exchangers with circulation. The article presents promising results from a study where the method was investigated over a longer period in two new larger warm water systems. Some energy conservation aspects are discussed

  20. IXO and the Missing Baryons: The Need High Resolution Spectroscopy

    Science.gov (United States)

    Nicastro, Fabrizio

    2009-01-01

    About half of the baryons in the Universe are currently eluding detection. Hydrodynamical simulations for the formation of Large Scale Structures (LSSs), predict that these baryons, at zmatter: the Warm-Hot Intergalactic Medium (WHIM). The WHIM has probably been progressively enriched with metals, during phases of intense starburst and AGN activity, up to possibly solar metallicity (Cen & Ostriker, 2006), and should therefore shine and/or absorb in in the soft X-ray band, via electronic transitions from the most abundant metals. The importance of detecting and studying the WHIM lies not only in the possibility of finally making a complete census of all baryons in the Universe, but also in the possibility of (a) directly measuring the metallicity history of the Universe, and so investigating on metal-transport in the Universe and galaxy-IGM, AGN-IGM feedback mechanisms, (b) directly measuring the heating history of the Universe, and so understanding the process of LSS formation and shocks, and (c) performing cosmological parameter measurements through a 3D 2-point angular correlation function analysis of the WHIM filaments. Detecting, and studying the WHIM with the current X-ray instrumentation however, is extremely challenging, because of the low sensitivity and resolution of the Chandra and XMM-Newton gratings, and the very low 'grasp' of all currently available imaging-spectrometers. IXO, instead, thanks to its large grating effective area (> 1000 cm2 at 0.5 keV) and high spectral resolution (R>2500 at 0.5 keV) will be perfectly suited to attack the problem in a systematic way. Here we demonstrate that high resolution gratings are crucial for these kind of studies and show that the IXO gratings will be able to detect more than 300-700 OVII WHIM filaments along about 70 lines of sight, in less than 0.7.

  1. High Resolution Adjustable Mirror Control for X-ray Astronomy

    Science.gov (United States)

    Trolier-McKinstry, Susan

    We propose to build and test thin film transistor control circuitry for a new highresolution adjustable X-ray mirror technology. This control circuitry will greatly simplify the wiring scheme to address individual actuator cells. The result will be a transformative improvement for the X-ray Surveyor mission concept: mathematical models, which fit the experimental data quite well, indicate that 0.5 arcsecond imaging is feasible through this technique utilizing thin slumped glass substrates with uncorrected angular resolution of order 5-10 arcseconds. In order to correct for figures errors in a telescope with several square meters of collecting area, millions of actuator cells must be set and held at specific voltages. It is clearly not feasible to do this via millions of wires, each one connected to an actuator. Instead, we propose to develop and test thin-film technology that operates on the same principle as megapixel computer screens. We will develop the technologies needed to build thin film piezoelectric actuators, controlled by thin film ZnO transistors, on flexible polyimide films, and to connect those films to the back surfaces of X-ray mirrors on thin glass substrates without deforming the surface. These technologies represent a promising avenue of the development of mirrors for the X-Ray Surveyor mission concept. Such a telescope will make possible detailed studies of a wide variety of astrophysical sources. One example is the Warm-Hot Intergalactic Medium (WHIM), which is thought to account for a large fraction of the normal matter in the universe but which has not been detected unambiguously to date. Another is the growth of supermassive black holes in the early universe. This proposal supports NASA's goals of technical advancement of technologies suitable for future missions, and training of graduate students.

  2. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F. (Compiler)

    2015-01-01

    The Faculty Fellowship program was revived in the summer of 2015 at NASA Marshall Space Flight Center, following a period of diminished faculty research activity here since 2006 when budget cuts in the Headquarters' Education Office required realignment. Several senior Marshall managers recognized the need to involve the Nation's academic research talent in NASA's missions and projects to the benefit of both entities. These managers invested their funds required to establish the renewed Faculty Fellowship program in 2015, a 10-week residential research involvement of 16 faculty in the laboratories and offices at Marshall. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2015 Marshall Faculty Fellowship program, along with the Program Announcement (appendix A) and the Program Description (appendix B). The research touched on seven areas-propulsion, materials, instrumentation, fluid dynamics, human factors, control systems, and astrophysics. The propulsion studies included green propellants, gas bubble dynamics, and simulations of fluid and thermal transients. The materials investigations involved sandwich structures in composites, plug and friction stir welding, and additive manufacturing, including both strength characterization and thermosets curing in space. The instrumentation projects involved spectral interfero- metry, emissivity, and strain sensing in structures. The fluid dynamics project studied the water hammer effect. The human factors project investigated the requirements for close proximity operations in confined spaces. Another team proposed a controls system for small launch vehicles, while in astrophysics, one faculty researcher estimated the practicality of weather modification by blocking the Sun's insolation, and another found evidence in satellite data of the detection of a warm-hot

  3. THE AKARI 2.5-5.0 μm SPECTRAL ATLAS OF TYPE-1 ACTIVE GALACTIC NUCLEI: BLACK HOLE MASS ESTIMATOR, LINE RATIO, AND HOT DUST TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dohyeong; Im, Myungshin; Kim, Ji Hoon; Jun, Hyunsung David; Lee, Seong-Kook [Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University, Shillim-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Woo, Jong-Hak; Lee, Hyung Mok; Lee, Myung Gyoon [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Shillim-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Nakagawa, Takao; Matsuhara, Hideo; Wada, Takehiko; Takagi, Toshinobu [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Oyabu, Shinki [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Ohyama, Youichi, E-mail: dohyeong@astro.snu.ac.kr, E-mail: mim@astro.snu.ac.kr [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2015-01-01

    We present 2.5-5.0 μm spectra of 83 nearby (0.002 < z < 0.48) and bright (K < 14 mag) type-1 active galactic nuclei (AGNs) taken with the Infrared Camera on board AKARI. The 2.5-5.0 μm spectral region contains emission lines such as Brβ (2.63 μm), Brα (4.05 μm), and polycyclic aromatic hydrocarbons (3.3 μm), which can be used for studying the black hole (BH) masses and star formation activity in the host galaxies of AGNs. The spectral region also suffers less dust extinction than in the ultra violet (UV) or optical wavelengths, which may provide an unobscured view of dusty AGNs. Our sample is selected from bright quasar surveys of Palomar-Green and SNUQSO, and AGNs with reverberation-mapped BH masses from Peterson et al. Using 11 AGNs with reliable detection of Brackett lines, we derive the Brackett-line-based BH mass estimators. We also find that the observed Brackett line ratios can be explained with the commonly adopted physical conditions of the broad line region. Moreover, we fit the hot and warm dust components of the dust torus by adding photometric data of SDSS, 2MASS, WISE, and ISO to the AKARI spectra, finding hot and warm dust temperatures of ∼1100 K and ∼220 K, respectively, rather than the commonly cited hot dust temperature of 1500 K.

  4. Recently amplified arctic warming has contributed to a continual global warming trend

    Science.gov (United States)

    Huang, Jianbin; Zhang, Xiangdong; Zhang, Qiyi; Lin, Yanluan; Hao, Mingju; Luo, Yong; Zhao, Zongci; Yao, Yao; Chen, Xin; Wang, Lei; Nie, Suping; Yin, Yizhou; Xu, Ying; Zhang, Jiansong

    2017-12-01

    The existence and magnitude of the recently suggested global warming hiatus, or slowdown, have been strongly debated1-3. Although various physical processes4-8 have been examined to elucidate this phenomenon, the accuracy and completeness of observational data that comprise global average surface air temperature (SAT) datasets is a concern9,10. In particular, these datasets lack either complete geographic coverage or in situ observations over the Arctic, owing to the sparse observational network in this area9. As a consequence, the contribution of Arctic warming to global SAT changes may have been underestimated, leading to an uncertainty in the hiatus debate. Here, we constructed a new Arctic SAT dataset using the most recently updated global SATs2 and a drifting buoys based Arctic SAT dataset11 through employing the `data interpolating empirical orthogonal functions' method12. Our estimate of global SAT rate of increase is around 0.112 °C per decade, instead of 0.05 °C per decade from IPCC AR51, for 1998-2012. Analysis of this dataset shows that the amplified Arctic warming over the past decade has significantly contributed to a continual global warming trend, rather than a hiatus or slowdown.

  5. A Determination of the Intergalactic Redshift Dependent UV-Optical-NIR Photon Density Using Deep Galaxy Survey Data and the Gamma-ray Opacity of the Universe

    Science.gov (United States)

    Stecker, Floyd W.; Malkan, Matthew A.; Scully, Sean T.

    2012-01-01

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of redshift using an approach based on observational data obtained in many different wavelength bands from local to deep galaxy surveys. This allows us to obtain an empirical determination of the IBL and to quantify its observationally based uncertainties. Using our results on the IBL, we then place 68% confidence upper and lower limits on the opacity of the universe to gamma-rays, free of the theoretical assumptions that were needed for past calculations. We compare our results with measurements of the extragalactic background light and upper limits obtained from observations made by the Fermi Gamma-ray Space Telescope.

  6. Molecular determinants of enzyme cold adaptation: comparative structural and computational studies of cold- and warm-adapted enzymes.

    Science.gov (United States)

    Papaleo, Elena; Tiberti, Matteo; Invernizzi, Gaetano; Pasi, Marco; Ranzani, Valeria

    2011-11-01

    The identification of molecular mechanisms underlying enzyme cold adaptation is a hot-topic both for fundamental research and industrial applications. In the present contribution, we review the last decades of structural computational investigations on cold-adapted enzymes in comparison to their warm-adapted counterparts. Comparative sequence and structural studies allow the definition of a multitude of adaptation strategies. Different enzymes carried out diverse mechanisms to adapt to low temperatures, so that a general theory for enzyme cold adaptation cannot be formulated. However, some common features can be traced in dynamic and flexibility properties of these enzymes, as well as in their intra- and inter-molecular interaction networks. Interestingly, the current data suggest that a family-centered point of view is necessary in the comparative analyses of cold- and warm-adapted enzymes. In fact, enzymes belonging to the same family or superfamily, thus sharing at least the three-dimensional fold and common features of the functional sites, have evolved similar structural and dynamic patterns to overcome the detrimental effects of low temperatures.

  7. Projected Temperature-Related Years of Life Lost From Stroke Due To Global Warming in a Temperate Climate City, Asia: Disease Burden Caused by Future Climate Change.

    Science.gov (United States)

    Li, Guoxing; Guo, Qun; Liu, Yang; Li, Yixue; Pan, Xiaochuan

    2018-04-01

    Global warming has attracted worldwide attention. Numerous studies have indicated that stroke is associated with temperature; however, few studies are available on the projections of the burden of stroke attributable to future climate change. We aimed to investigate the future trends of stroke years of life lost (YLL) associated with global warming. We collected death records to examine YLL in Tianjin, China, from 2006 to 2011. We fitted a standard time-series Poisson regression model after controlling for trends, day of the week, relative humidity, and air pollution. We estimated temperature-YLL associations with a distributed lag nonlinear model. These models were then applied to the local climate projections to estimate temperature-related YLL in the 2050s and 2070s. We projected temperature-related YLL from stroke in Tianjin under 19 global-scale climate models and 3 different greenhouse gas emission scenarios. The results showed a slight decrease in YLL with percent decreases of 0.85%, 0.97%, and 1.02% in the 2050s and 0.94%, 1.02%, and 0.91% in the 2070s for the 3 scenarios, respectively. The increases in heat-related annual YLL and the decreases in cold-related YLL under the high emission scenario were the strongest. The monthly analysis showed that the most significant increase occurred in the summer months, particularly in August, with percent changes >150% in the 2050s and up to 300% in the 2070s. Future changes in climate are likely to lead to an increase in heat-related YLL, and this increase will not be offset by adaptation under both medium emission and high emission scenarios. Health protections from hot weather will become increasingly necessary, and measures to reduce cold effects will also remain important. © 2018 American Heart Association, Inc.

  8. The Great Warming Brian Fagan

    Science.gov (United States)

    Fagan, B. M.

    2010-12-01

    The Great Warming is a journey back to the world of a thousand years ago, to the Medieval Warm Period. Five centuries of irregular warming from 800 to 1250 had beneficial effects in Europe and the North Atlantic, but brought prolonged droughts to much of the Americas and lands affected by the South Asian monsoon. The book describes these impacts of warming on medieval European societies, as well as the Norse and the Inuit of the far north, then analyzes the impact of harsh, lengthy droughts on hunting societies in western North America and the Ancestral Pueblo farmers of Chaco Canyon, New Mexico. These peoples reacted to drought by relocating entire communities. The Maya civilization was much more vulnerable that small-scale hunter-gatherer societies and subsistence farmers in North America. Maya rulers created huge water storage facilities, but their civilization partially collapsed under the stress of repeated multiyear droughts, while the Chimu lords of coastal Peru adapted with sophisticated irrigation works. The climatic villain was prolonged, cool La Niñalike conditions in the Pacific, which caused droughts from Venezuela to East Asia, and as far west as East Africa. The Great Warming argues that the warm centuries brought savage drought to much of humanity, from China to Peru. It also argues that drought is one of the most dangerous elements in today’s humanly created global warming, often ignored by preoccupied commentators, but with the potential to cause over a billion people to starve. Finally, I use the book to discuss the issues and problems of communicating multidisciplinary science to the general public.

  9. Climatic warming destabilizes forest ant communities.

    Science.gov (United States)

    Diamond, Sarah E; Nichols, Lauren M; Pelini, Shannon L; Penick, Clint A; Barber, Grace W; Cahan, Sara Helms; Dunn, Robert R; Ellison, Aaron M; Sanders, Nathan J; Gotelli, Nicholas J

    2016-10-01

    How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable.

  10. Analysis of Medium-Scale Solar Thermal Systems and Their Potential in Lithuania

    OpenAIRE

    Valančius, Rokas; Jurelionis, Andrius; Jonynas, Rolandas; Katinas, Vladislovas; Perednis, Eugenijus

    2015-01-01

    Medium-scale solar hot water systems with a total solar panel area varying from 60 to 166 m 2 have been installed in Lithuania since 2002. However, the performance of these systems varies depending on the type of energy users, equipment and design of the systems, as well as their maintenance. The aim of this paper was to analyse operational SHW systems from the perspective of energy production and economic benefit as well as to outline the differences of their actual performance compared to t...

  11. Warm natural inflation

    International Nuclear Information System (INIS)

    Mishra, Hiranmaya; Mohanty, Subhendra; Nautiyal, Akhilesh

    2013-01-01

    In warm inflation models there is the requirement of generating large dissipative couplings of the inflation with radiation, while at the same Âătime, not de-stabilising the flatness of the inflation potential due to radiative corrections. One way to achieve this without fine tuning unrelated couplings is by supersymmetry. In this talk we will discuss warm inflation with Pseudo-Nambu-Goldstone Bosons (PNGB). In this case inflation and other light fields are PNGB. So, the radiative corrections to the potential are suppressed and the thermal Âăcorrections are small as long as the temperature is below the symmetry breaking scale. In such models it is possible to fulfill the contrary requirements of an inflation potential which is stable under radiative corrections and the generation of a large dissipative coupling of the inflation field with other light fields. This warm inflation model with PNGB gives the observed CMB-anisotropy amplitude and spectral index having the symmetry breaking scale at the GUT scale. (author)

  12. Hot Surface Ignition

    OpenAIRE

    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.

    2015-01-01

    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  13. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... pp 59-79. Determination of the Mean HI Absorption of the Intergalactic Medium ... Markov Stochastic Technique to Determine Galactic Cosmic Ray Sources Distribution · Ashraf Farahat ... pp 89-96. Study of High and Low Amplitude Wave Trains of Cosmic Ray Diurnal Variation during Solar Cycle 23.

  14. Gas stripping in galaxy clusters: a new SPH simulation approach

    Czech Academy of Sciences Publication Activity Database

    Jáchym, Pavel; Palouš, Jan; Köppen, J.; Combes, F.

    2007-01-01

    Roč. 472, č. 1 (2007), s. 5-20 ISSN 0004-6361 R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : galaxie s * interactions * intergalactic medium Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.259, year: 2007

  15. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  16. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Hugh [ARIES Collaborative, New York, NY (United States); Wade, Jeremy [ARIES Collaborative, New York, NY (United States)

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  17. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.

    Science.gov (United States)

    Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima

    2012-08-27

    In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.

  18. Global warming 2007. An update to global warming: the balance of evidence and its policy implications.

    Science.gov (United States)

    Keller, Charles F

    2007-03-09

    In the four years since my original review (Keller[25]; hereafter referred to as CFK03), research has clarified and strengthened our understanding of how humans are warming the planet. So many of the details highlighted in the IPCC's Third Assessment Report[21] and in CFK03 have been resolved that I expect many to be a bit overwhelmed, and I hope that, by treating just the most significant aspects of the research, this update may provide a road map through the expected maze of new information. In particular, while most of CFK03 remains current, there are important items that have changed: Most notable is the resolution of the conundrum that mid-tropospheric warming did not seem to match surface warming. Both satellite and radiosonde (balloon-borne sensors) data reduction showed little warming in the middle troposphere (4-8 km altitude). In the CFK03 I discussed potential solutions to this problem, but at that time there was no clear resolution. This problem has now been solved, and the middle troposphere is seen to be warming apace with the surface. There have also been advances in determinations of temperatures over the past 1,000 years showing a cooler Little Ice Age (LIA) but essentially the same warming during medieval times (not as large as recent warming). The recent uproar over the so-called "hockey stick" temperature determination is much overblown since at least seven other groups have made relatively independent determinations of northern hemisphere temperatures over the same time period and derived essentially the same results. They differ on how cold the LIA was but essentially agree with the Mann's hockey stick result that the Medieval Warm Period was not as warm as the last 25 years. The question of the sun's influence on climate continues to generate controversy. It appears there is a growing consensus that, while the sun was a major factor in earlier temperature variations, it is incapable of having caused observed warming in the past quarter

  19. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  20. Modelling Hot Air Balloons.

    Science.gov (United States)

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)