WorldWideScience

Sample records for warm season grasses

  1. Establishing native warm season grasses on Eastern Kentucky strip mines

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Forestry

    1998-12-31

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat.

  2. Establishing native warm season grasses on Eastern Kentucky strip mines

    International Nuclear Information System (INIS)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B.

    1998-01-01

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat

  3. Small mammal use of native warm-season and non-native cool-season grass forage fields

    Science.gov (United States)

    Ryan L Klimstra,; Christopher E Moorman,; Converse, Sarah J.; Royle, J. Andrew; Craig A Harper,

    2015-01-01

    Recent emphasis has been put on establishing native warm-season grasses for forage production because it is thought native warm-season grasses provide higher quality wildlife habitat than do non-native cool-season grasses. However, it is not clear whether native warm-season grass fields provide better resources for small mammals than currently are available in non-native cool-season grass forage production fields. We developed a hierarchical spatially explicit capture-recapture model to compare abundance of hispid cotton rats (Sigmodon hispidus), white-footed mice (Peromyscus leucopus), and house mice (Mus musculus) among 4 hayed non-native cool-season grass fields, 4 hayed native warm-season grass fields, and 4 native warm-season grass-forb ("wildlife") fields managed for wildlife during 2 summer trapping periods in 2009 and 2010 of the western piedmont of North Carolina, USA. Cotton rat abundance estimates were greater in wildlife fields than in native warm-season grass and non-native cool-season grass fields and greater in native warm-season grass fields than in non-native cool-season grass fields. Abundances of white-footed mouse and house mouse populations were lower in wildlife fields than in native warm-season grass and non-native cool-season grass fields, but the abundances were not different between the native warm-season grass and non-native cool-season grass fields. Lack of cover following haying in non-native cool-season grass and native warm-season grass fields likely was the key factor limiting small mammal abundance, especially cotton rats, in forage fields. Retention of vegetation structure in managed forage production systems, either by alternately resting cool-season and warm-season grass forage fields or by leaving unharvested field borders, should provide refugia for small mammals during haying events.

  4. Comparative growth analysis of cool- and warm-season grasses in a cool-temperate environment

    International Nuclear Information System (INIS)

    Belesky, D.P.; Fedders, J.M.

    1995-01-01

    Using both cool-season (C3) and warm-season (C4) species is a viable means of optimizing herbage productivity over varying climatic conditions in temperate environments. Despite well-documented differences in water, N, and radiation use, no consistent evidence demonstrates productivity differences among C3 and C4 perennial grass species under identical management. A field study was conducted to determine relative growth rates (RGR), nitrogen productivity (NP), and mean radiation productivity (RP) (dry matter production as a function of incident radiation) of cool- and warm-season grasses managed identically. Results were used to identify management practices thd could lead to optimal productivity in combinations or mixtures of cool- and warm-season grasses. Dry matter yields of warm-season grasses equaled or surpassed those of cool-season grasses, despite a 40% shorter growth interval. Certain cool- and warm-season grasses appear to be suitable for use in mixtures, based on distribution of herbage production; however, actual compatibility may be altered by defoliation management. Relative growth rates varied among years and were about 40% lower for canopies clipped to a 10-cm residue height each time 20-cm of growth accumulated compared with other treatments. The RGR of warm-season grasses was twice that of cool-season grasses Nitrogen productivity (g DM g-1 N d -1) and mean radiation productivity (g DM MJ-1) for warm-season grasses was also more than twice that of cool-season grasses. Radiation productivity of cool-season grasses was dependent on N, while this was not always the case for warm-season grasses. The superior production capability of certain warm-season compared with cool-season grasses in a cool-temperate environment can be sustained under a range of defoliation treatments and demonstrates suitability for use in frequently defoliated situations

  5. Warm season grass establishment (in one year without the weeds)

    International Nuclear Information System (INIS)

    Downing, D.

    1998-01-01

    Native warm season grasses, big bluestem and indian, were established by the broadcast method on a relatively large area (130 acres) of reclaimed coal surface-mined land in Perry County, Illinois. Existing vegetation was controlled using two quarts of Round-Up and 12 ounces of Plateau per acre the first week of May. Five pounds of pure live seed of both species were applied by airflow using 100 pounds per acre of 0-46-0 and 100 pounds per acre of 0-0-60, primarily to carry the seed. The surface was cultipacked to insure good seed to soil contact. Planting was initiated and completed the last week of June. An estimated 95% to 100% ground cover was evident by mid to late August. By mid September, numerous big blue stem flower/seed stalks were noticeable

  6. Annual warm-season grasses vary for forage yield, quality, and competitiveness with weeds

    Science.gov (United States)

    Warm-season annual grasses may be suitable as herbicide-free forage crops. A two-year field study was conducted to determine whether tillage system and nitrogen (N) fertilizer application method influenced crop and weed biomass, water use, water use efficiency (WUE), and forage quality of three war...

  7. Grassland bird productivity in warm season grass fields in southwest Wisconsin

    Science.gov (United States)

    Byers, Carolyn M.; Ribic, Christine; Sample, David W.; Dadisman, John D.; Guttery, Michael

    2017-01-01

    Surrogate grasslands established through federal set-aside programs, such as U.S. Department of Agriculture's Conservation Reserve Program (CRP), provide important habitat for grassland birds. Warm season grass CRP fields as a group have the potential for providing a continuum of habitat structure for breeding birds, depending on how the fields are managed and their floristic composition. We studied the nesting activity of four obligate grassland bird species, Bobolink (Dolichonyx oryzivorus), Eastern Meadowlark (Sturnella magna), Grasshopper Sparrow (Ammodramus savannarum), and Henslow's Sparrow (A. henslowii), in relation to vegetative composition and fire management in warm season CRP fields in southwest Wisconsin during 2009–2011. Intraspecific variation in apparent nest density was related to the number of years since the field was burned. Apparent Grasshopper Sparrow nest density was highest in the breeding season immediately following spring burns, apparent Henslow's Sparrow nest density was highest 1 y post burn, and apparent Bobolink and Eastern Meadowlark nest densities were higher in post fire years one to three. Grasshopper Sparrow nest density was highest on sites with more diverse vegetation, specifically prairie forbs, and on sites with shorter less dense vegetation. Bobolink, Eastern Meadowlark, and Henslow's Sparrow apparent nest densities were higher on sites with deeper litter; litter was the vegetative component that was most affected by spring burns. Overall nest success was 0.487 for Bobolink (22 d nesting period), 0.478 for Eastern Meadowlark (25 d nesting period), 0.507 for Grasshopper Sparrow (22 d nesting period), and 0.151 for Henslow's Sparrow (21 d nesting period). The major nest predators were grassland-associated species: thirteen-lined ground squirrel (Ictidomys tridecemlineatus), striped skunk (Mephitis mephitis), milk snake (Lampropeltis triangulum), American badger (Taxidea taxus), and western fox snake (Elaphe vulpina). Overall

  8. Economic and conservation implications of converting exotic forages to native warm-season grass

    Directory of Open Access Journals (Sweden)

    Adrian P. Monroe

    2017-07-01

    Full Text Available Intensive agriculture can have negative environmental consequences such as nonpoint source pollution and the simplification of biotic communities, and land sharing posits that conservation can be enhanced by integrating agricultural productivity and biodiversity on the same land. In the Southeastern United States, native warm-season grasses (NWSG may be a land sharing alternative to exotic forages currently in production because of greater livestock gains with lower fertilizer inputs, and habitat for grassland birds. However, uncertainty regarding costs and risk poses an important barrier to incorporating NWSG in livestock operations. We evaluated the economic and conservation implications of NWSG conversion among small, operational-scale pastures (6.8–10.5 ha during 2011–2012 at the Prairie Research Unit in Monroe Co., Mississippi (USA. We used partial budgets to compare the marginal rate of return (MRRe from converting exotic grass pastures to either a NWSG monoculture of Indiangrass (Sorghastrum nutans or a NWSG mix of Indiangrass, little bluestem (Schizachyrium scoparium, and big bluestem (Andropogon gerardii. We similarly compared changes in productivity of dickcissels (Spiza americana, a grassland bird specializing in tall structure. Average daily gain (ADG of steers and revenue were consistently higher for NWSG treatments than exotic grass pasture, but ADG declined between years. Indiangrass pastures yielded consistently positive MRRe, indicating producers would receive 16–24% return on investment. Marginal rate of return was lower for mixed NWSG (−12 to 3%, driven by slightly lower livestock ADG and higher establishment costs than for Indiangrass. Sensitivity analyses indicated that MRRe also was influenced by cattle selling price. Conversely, mixed NWSG increased dickcissel productivity by a greater degree than Indiangrass per amount invested in NWSG conversion, suggesting a tradeoff between livestock and dickcissel production

  9. The cost of feeding bred dairy heifers on native warm-season grasses and harvested feedstuffs.

    Science.gov (United States)

    Lowe, J K; Boyer, C N; Griffith, A P; Waller, J C; Bates, G E; Keyser, P D; Larson, J A; Holcomb, E

    2016-01-01

    Heifer rearing is one of the largest production expenses for dairy cattle operations, which is one reason milking operations outsource heifer rearing to custom developers. The cost of harvested feedstuffs is a major expense in heifer rearing. A possible way to lower feed costs is to graze dairy heifers, but little research exists on this topic in the mid-south United States. The objectives of this research were to determine the cost of feeding bred dairy heifers grazing native warm-season grasses (NWSG), with and without legumes, and compare the cost of grazing with the cost of rearing heifers using 3 traditional rations. The 3 rations were corn silage with soybean meal, corn silage with dry distillers grain, and a wet distillers grain-based ration. Bred Holstein heifers between 15- and 20-mo-old continuously grazed switchgrass (SG), SG with red clover (SG+RC), a big bluestem and Indiangrass mixture (BBIG), and BBIG with red clover (BBIG+RC) in Tennessee during the summer months. Total grazing days were calculated for each NWSG to determine the average cost/animal per grazing day. The average daily gain (ADG) was calculated for each NWSG to develop 3 harvested feed rations that would result in the same ADG over the same number of grazing day as each NWSG treatment. The average cost/animal per grazing day was lowest for SG ($0.48/animal/grazing d) and highest for BBIG+RC ($1.10/animal/grazing d). For both BBIG and SG, legumes increased the average cost/animal per grazing day because grazing days did not increase enough to account for the additional cost of the legumes. No difference was observed in ADG for heifers grazing BBIG (0.85 kg/d) and BBIG+RC (0.94 kg/d), and no difference was observed in ADG for heifers grazing SG (0.71 kg/d) and SG+RC (0.70 kg/d). However, the ADG for heifers grazing SG and SG+RC was lower than the ADG for heifers grazing either BBIG or BBIG+RC. The average cost/animal per grazing day was lower for all NWSG treatments than the average cost

  10. Development of new techniques of using irradiation in the genetic improvement of warm season grasses, the assessment of their genetic and cytogenetic effects and biomass production from grass. Annual progress report, November 1, 1979 to October 31, 1980

    International Nuclear Information System (INIS)

    Burton, G.W.; Hanna, W.W.

    1980-01-01

    New techniques are described for using irradiation and chemical mutagens in the genetic improvement of several warm season grasses. Genetic and cytogenetic effects of these treatments are also being studied

  11. Development of new techniques of using irradiation in the genetic improvement of warm season grasses and an assessment of the genetic and cytogenetic effects. Progress report, May 1, 1975--April 30, 1976

    International Nuclear Information System (INIS)

    Burton, G.W.; Hanna, W.W.

    1976-06-01

    Irradiation ( 60 Coγ source) was used for the genetic improvement of several warm season grasses and pearl millet. Results of plant breeding experiments using radioinduced mutants of Bermuda grass and millet are reported

  12. Seeding method influences warm-season grass abundance and distribution but not local diversity in grassland restoration

    Science.gov (United States)

    Yurkonis, Kathryn A.; Wilsey, Brian J.; Moloney, Kirk A.; Drobney, Pauline; Larson, Diane L.

    2010-01-01

    Ecological theory predicts that the arrangement of seedlings in newly restored communities may influence future species diversity and composition. We test the prediction that smaller distances between neighboring seeds in drill seeded grassland plantings would result in lower species diversity, greater weed abundance, and larger conspecific patch sizes than otherwise similar broadcast seeded plantings. A diverse grassland seed mix was either drill seeded, which places seeds in equally spaced rows, or broadcast seeded, which spreads seeds across the ground surface, into 24 plots in each of three sites in 2005. In summer 2007, we measured species abundance in a 1 m2 quadrat in each plot and mapped common species within the quadrat by recording the most abundant species in each of 64 cells. Quadrat-scale diversity and weed abundance were similar between drilled and broadcast plots, suggesting that processes that limited establishment and controlled invasion were not affected by such fine-scale seed distribution. However, native warm-season (C4) grasses were more abundant and occurred in less compact patches in drilled plots. This difference in C4 grass abundance and distribution may result from increased germination or vegetative propagation of C4 grasses in drilled plots. Our findings suggest that local plant density may control fine-scale heterogeneity and species composition in restored grasslands, processes that need to be further investigated to determine whether seed distributions can be manipulated to increase diversity in restored grasslands.

  13. Harvesting Effects on Species Composition and Distribution of Cover Attributes in Mixed Native Warm-Season Grass Stands

    Directory of Open Access Journals (Sweden)

    Vitalis W. Temu

    2015-05-01

    Full Text Available Managing grasslands for forage and ground-nesting bird habitat requires appropriate defoliation strategies. Subsequent early-summer species composition in mixed stands of native warm-season grasses (Indiangrass (IG, Sorghastrum nutans, big bluestem (BB, Andropogon gerardii and little bluestem (LB, Schizachyrium scoparium responding to harvest intervals (treatments, 30, 40, 60, 90 or 120 d and durations (years in production was assessed. Over three years, phased May harvestings were initiated on sets of randomized plots, ≥90 cm apart, in five replications (blocks to produce one-, two- and three-year-old stands. Two weeks after harvest, the frequencies of occurrence of plant species, litter and bare ground, diagonally across each plot (line intercept, were compared. Harvest intervals did not influence proportions of dominant plant species, occurrence of major plant types or litter, but increased that of bare ground patches. Harvest duration increased the occurrence of herbaceous forbs and bare ground patches, decreased that of tall-growing forbs and litter, but without affecting that of perennial grasses, following a year with more September rainfall. Data suggest that one- or two-year full-season forage harvesting may not compromise subsequent breeding habitat for bobwhites and other ground-nesting birds in similar stands. It may take longer than a year’s rest for similar stands to recover from such changes in species composition.

  14. Novel application of ALMANAC: Modelling a functional group, exotic warm-season perennial grasses

    Science.gov (United States)

    Introduced perennial C4 grasses such buffelgrass (Pennisetum ciliare [(L.) Link]) and old world bluestems (OWB), including genera such as Bothriochloa Kuntze, Capillipedium Stapf, and Dichanthium Willemet have the potential to dominate landscapes. A process-based model that realistically simulates ...

  15. Integrated production of warm season grasses and agroforestry for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Samson, R.; Omielan, J. [Resource Efficient Agricultural Production-Canada, Ste, Anne de Bellevue, Quebec (Canada); Girouard, P.; Henning, J. [McGill Univ., Ste. Anne de Bellevue, Quebec (Canada)

    1993-12-31

    Increased research on C{sub 3} and C{sub 4} perennial biomass crops is generating a significant amount of information on the potential of these crops to produce large quantities of low cost biomass. In many parts of North America it appears that both C{sub 3} and C{sub 4} species are limited by water availability particularly on marginal soils. In much of North America, rainfall is exceeded by evaporation. High transpiration rates by fast growing trees and rainfall interception by the canopy appear to indicate that this can further exacerbate the problem of water availability. C{sub 4} perennial grasses appear to have distinct advantages over C{sub 3} species planted in monoculture systems particularly on marginal soils. C{sub 4} grasses historically predominated over much of the land that is now available for biomass production because of their adaptation to low humidity environments and periods of low soil moisture. The planting of short rotation forestry (SRF) species in an energy agroforestry system is proposed as an alternative production strategy which could potentially alleviate many of the problems associated with SRF monocultures. Energy agroforestry would be complementary to both production of conventional farm crops and C{sub 4} perennial biomass crops because of beneficial microclimatic effects.

  16. Development of new techniques of using irradiation in the genetic improvement of warm season grasses and an assessment of the genetic and cytogenetic effects. Annual report, August 1, 1976--October 31, 1977

    International Nuclear Information System (INIS)

    Burton, G.W.; Hanna, W.W.

    1977-08-01

    New techniques of using irradiation in the genetic improvement of several warm season grasses are described. The economic value of radiation induced plant mutants and the genetic and cytogenetic effects of these treatments are discussed. Alterations in protein quality in pearl millet grain and improved varieties of Bermuda grass following radiation treatment are reported

  17. Development of new techniques of using irradiation in the genetic improvement of warm season grasses and an assessment of the genetic and cytogenetic effects. Progress report, November 1, 1977--October 31, 1978

    International Nuclear Information System (INIS)

    Hanna, W.W.; Burton, G.W.

    1978-05-01

    Progress is reported on plant breeding programs for the genetic improvement of warm season grasses using irradiation as a tool. Data are included from studies on alteration of the protein quantity and quality in pearl millet grain by irradiation and mutation breeding; the effects of nitrogen and genotype on pearl millet grain; the effects of seed size on quality in pearl millet; irradiation breeding of sterile triploid turf Bermuda grasses; irradiation breeding of sterile coastcross-1, a forage grass, to increase winter hardiness; use of irradiation to induce resistance to rust disease; and an economic assessment of irradiation-induced mutants for plant breeding programs

  18. Greenhouse gas flux under warm-season perennial C4 grasses across different soil and climate gradients on the Islands of Hawaii

    Science.gov (United States)

    Pawlowski, M. N.; Crow, S. E.; Sumiyoshi, Y.; Wells, J.; Kikkawa, H. R.

    2011-12-01

    Agricultural soils can serve as either a sink or a source for atmospheric carbon (C) and other greenhouse gases (GHG). This is particularly true for tropical soils where influences from climate and soil gradients are wide ranging. Current estimates of GHG flux from soil are often under or overestimated due to high variability in sample sites and inconsistencies in land use and vegetation type, making extrapolation to new study systems difficult. This work aimed to identify patterns of trace fluxes of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) across two soil types and three species of warm season perennial C4 grasses: Pennisetum purpureum (Napier grass), Panicum maximum (Guinea grass) and Saccharum officinarum (sugar cane) on the islands of Oahu and Maui in Hawaii. Multiple static vented chambers were installed into replicate plots for each species; flux measurements were made during the growth, fertilization and harvest cycles at set time intervals for one hour and analyzed by gas chromatography. Initial results from Oahu indicate no significant differences in CO2 flux between the P. maximum and P. purpureum species after fertilization or at full growth. We observed an average flux of 143 mg m-2 h-1 and 155 mg m-2 h-1 for P. maximum and P. purpureum respectively at full growth for CO2 and 1.7 μg m-2 h-1and 0.3 μg m-2 h-1 for N2O. Additionally, N2O rates sampled after a typical fertilizer application were significantly greater than at full growth (p=0.0005) with flux rates of 25.2 μg m2h-1 and 30.3 μg m2h-1 for P. maximum and P. purpureum respectively. With a global warming potential of 310 for N2O, even short-term spikes following fertilizer application can cause long lasting effects of GHG emission from agricultural soils. CH4 flux was negligible for all species on the Oahu plots during these sample periods. Globally, water limitation is a major factor influencing the potential productivity of agricultural crops and the sustainability of

  19. Nitrogen Fertilization Effect on Phosphorus Remediation Potential of Three Perennial Warm-Season Forages

    NARCIS (Netherlands)

    Newman, Y.C.; Agyin-Birikorang, S.; Adjei, M.B.; Scholberg, J.M.S.; Silveira, M.L.; Vendramini, J.M.B.; Rechcigl, J.E.; Sollenberger, L.E.

    2009-01-01

    Warm-season C-4 grasses are capable of removing excess soil nutrients because of their high Yield potential and nutrient uptake efficiency. Bahiagrass (Paspalum notatum Flugge), limpograss [Hemarthria altissima (Poir.) Stapf& Hubb], and stargrass (Cynodon nlemfuensis Vanderyst), three commonly

  20. Development of new techniques of using irradiation in the genetic improvement of warm season grasses, the assessment of their genetic and cytogenetic effects and biomass production from grass. Progress report, November 1, 1978-October 31, 1979

    International Nuclear Information System (INIS)

    Burton, G.W.; Hanna, W.W.

    1979-06-01

    The following topics are discussed: altering protein quantity and quality in pearl millet grain by irradiation and mutation breeding; effect of nitrogen and genotype (male and female) on pearl millet grain; irradiation breeding of sterile triploid turf bermudagrasses; irradiation breeding of sterile Coastcross-1, a forage grass hybrid to increase winterhardiness; heterosis resulting from crossing specific irradiation induced mutants with their normal inbred parent; economic assessment of irradiation induced mutants; use of ethidium bromide to create cytoplasmic male sterile mutants in pearl millet; use of mitomycin and streptomycin to create cytoplasmic male sterile mutants in pearl millet; biomass of napiergrass; evaluation of mutagen induced lignin mutants in sorghum; interspecific transfer of germplasm using gamma radiation; production of homozygous translocation tester stocks; use of radiation to control the reproductive behavior in plants; genetics of radiation induced mutations; response of pearl millet pollen to gamma radiation; and nature of morphological changes in sterile triploid bermudagrass on golf courses

  1. Seasonal variation in diurnal atmospheric grass pollen concentration profiles

    DEFF Research Database (Denmark)

    Peel, Robert George; Ørby, Pia Viuf; Skjøth, Carsten Ambelas

    2014-01-01

    the time of day when peak concentrations are most likely to occur using seasonally averaged diurnal profiles. Atmospheric pollen loads are highly dependent upon emissions, and different species of grass are known to flower and emit pollen at different times of the day and during different periods......In this study, the diurnal atmospheric grass pollen concentration profile within the Danish city of Aarhus was shown to change in a systematic manner as the pollen season progressed. Although diurnal grass pollen profiles can differ greatly from day-to-day, it is common practice to establish...... of the pollen season. Pollen concentrations are also influenced by meteorological factors - directly through those parameters that govern pollen dispersion and transport, and indirectly through the weather-driven flowering process. We found that three different profiles dominated the grass pollen season...

  2. Persistence of Overseeded Cool-Season Grasses in Bermudagrass Turf

    OpenAIRE

    Thomas Serensits; Matthew Cutulle; Jeffrey F. Derr

    2011-01-01

    Cool-season grass species are commonly overseeded into bermudagrass turf for winter color. When the overseeded grass persists beyond the spring; however, it becomes a weed. The ability of perennial ryegrass, Italian (annual) ryegrass, intermediate ryegrass, and hybrid bluegrass to persist in bermudagrass one year after seeding was determined. Perennial ryegrass, intermediate ryegrass, and Italian ryegrass produced acceptable ground cover in the spring after fall seeding. Hybrid bluegrass di...

  3. Development of new techniques of using irradiation in the genetic improvement of warm season grasses and assessment of the genetic and cytogenetic effects. Report period, May 1, 1974--April 30, 1975

    International Nuclear Information System (INIS)

    Burton, G.W.; Hanna, W.W.

    1975-01-01

    The following studies were conducted: altering protein quantity and quality in pearl millet grain by irradiation and mutation breeding; gamma-radiation breeding of sterile triploid turf Bermuda grasses; irradiation breeding of sterile coast cross-1, a forage grass hybrid, to increase winter hardiness; heterosis resulting from crossing specific radioinduced mutants with their normal inbred parent; economic assessment of radioinduced mutants; use of irradiation to induce resistance to rust disease; production of homozygous translocation tester stocks; use of radiation to control reproductive behavior in plants; and genetics of radioinduced mutations. (U.S.)

  4. Ecophysiological responses of native and invasive grasses to simulated warming and drought

    Science.gov (United States)

    Ravi, S.; Law, D. J.; Wiede, A.; Barron-Gafford, G. A.; Breshears, D. D.; Dontsova, K.; Huxman, T. E.

    2011-12-01

    Climate models predict that many arid regions around the world - including the North American deserts - may become affected more frequently by recurrent droughts. At the same time, these regions are experiencing rapid vegetation transformations such as invasion by exotic grasses. Thus, understanding the ecophysiological processes accompanying exotic grass invasion in the context of rising temperatures and recurrent droughts is fundamental to global change research. Under ambient and warmer (+ 4° C) conditions inside the Biosphere 2 facility, we compared the ecophysiological responses (e.g. photosynthesis, stomatal conductance, pre-dawn leaf water potential, light & CO2 response functions, biomass) of a native grass - Heteropogan contortus (Tangle head) and an invasive grass - Pennisetum ciliare (Buffel grass) growing in single and mixed communities. Further, we monitored the physiological responses and mortality of these plant communities under moisture stress conditions, simulating a global change-type-drought. The results indicate that the predicted warming scenarios may enhance the invasibility of desert landscapes by exotic grasses. In this study, buffel grass assimilated more CO2 per unit leaf area and out-competed native grasses more efficiently in a warmer environment. However, scenarios involving a combination of drought and warming proved disastrous to both the native and invasive grasses, with drought-induced grass mortality occurring at much shorter time scales under warmer conditions.

  5. The importance of warm season warming to western U.S. streamflow changes

    Science.gov (United States)

    Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P.

    2011-01-01

    Warm season climate warming will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. Warm season (April-September) warming reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) warming, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent warm season. A uniform warm season warming of 3C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same warming applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Copyright 2011 by the American Geophysical Union.

  6. Key factors that influence for seasonal production of Guinea grass

    Directory of Open Access Journals (Sweden)

    Leandro Coelho de Araujo

    Full Text Available ABSTRACT: Climate, soil and management are the main drives for growth and production of tropical pastures. Thus, a better understanding of the effects of these factors and their interactions under climate conditions is required to obtain effective management options. Here, we used data from two field trials to research on climate and management interactions on the production seasonality of Panicum maximum Jacq. Treatments included four sampling times (250, 500, 750, and 1000 °C accumulated during eight regrowth period, under irrigated and rainfed conditions and, cuts were made to simulate grazing intensity. All treatments were arranged in a completely randomized block design with four replications. At each sampling time, basal tillers were sampled to observe meristematic differentiation and were linked with the respective daylength. Soil moisture was determined, and the water availability index (WAI was calculated. The dry matter production (DMP was taken and relative productivity was calculated. Soil moisture was the key seasonal drive in spring-summer and the WAI could be used to adjust the maximum production for that season. The major drive for DMP in fall was the daylength, which was found at 11.81 h. For all seasons, DMP correlated better with the residues in early regrowth phase (r = 0.82 and p < 0.0001 and with degree-days at final regrowth phase (r = 0.73 p < 0.01. Applying these critical values to management guidelines should make Guinea grass DMP more efficient on tropical farms.

  7. Persistence of Overseeded Cool-Season Grasses in Bermudagrass Turf

    Directory of Open Access Journals (Sweden)

    Thomas Serensits

    2011-01-01

    Full Text Available Cool-season grass species are commonly overseeded into bermudagrass turf for winter color. When the overseeded grass persists beyond the spring; however, it becomes a weed. The ability of perennial ryegrass, Italian (annual ryegrass, intermediate ryegrass, and hybrid bluegrass to persist in bermudagrass one year after seeding was determined. Perennial ryegrass, intermediate ryegrass, and Italian ryegrass produced acceptable ground cover in the spring after fall seeding. Hybrid bluegrass did not establish well, resulting in unacceptable cover. Perennial ryegrass generally persisted the most one year after seeding, either because of summer survival of plants or because of new germination the following fall. Plant counts one year after seeding were greater in the higher seeding rate treatment compared to the lower seeding treatment rate of perennial ryegrass, suggesting new germination had occurred. Plant counts one year after seeding plots with intermediate ryegrass or Italian ryegrass were attributed primarily to latent germination and not summer survival. Applications of foramsulfuron generally did not prevent overseeded species stand one year after seeding, supporting the conclusion of new germination. Although quality is less with intermediate ryegrass compared to perennial ryegrass, it transitions out easier than perennial ryegrass, resulting in fewer surviving plants one year later.

  8. Performances of some warm-season turfgrasses under ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... Main characteristics of mediterranean climate are represented by mild, rainy ... the warm-season turfgrasses with low water use rate and. *Corresponding ..... Lawns and Golf, Sleeping Bear Press, Chelsea, MI. Busey P (2003).

  9. Regional seasonal warming anomalies and land-surface feedbacks

    Science.gov (United States)

    Coffel, E.; Horton, R. M.

    2017-12-01

    Significant seasonal variations in warming are projected in some regions, especially central Europe, the southeastern U.S., and central South America. Europe in particular may experience up to 2°C more warming during June, July, and August than in the annual mean, enhancing the risk of extreme summertime heat. Previous research has shown that heat waves in Europe and other regions are tied to seasonal soil moisture variations, and that in general land-surface feedbacks have a strong effect on seasonal temperature anomalies. In this study, we show that the seasonal anomalies in warming are also due in part to land-surface feedbacks. We find that in regions with amplified warming during the hot season, surface soil moisture levels generally decline and Bowen ratios increase as a result of a preferential partitioning of incoming energy into sensible vs. latent. The CMIP5 model suite shows significant variability in the strength of land-atmosphere coupling and in projections of future precipitation and soil moisture. Due to the dependence of seasonal warming on land-surface processes, these inter-model variations influence the projected summertime warming amplification and contribute to the uncertainty in projections of future extreme heat.

  10. Evaluation of Warm Season Turfgrass under Different Irrigation Regimes in Arid Region

    Directory of Open Access Journals (Sweden)

    Abdullah Mohd Hassan ALSHEHHI

    2010-09-01

    Full Text Available Turfgrasses play a very important role in enhancing quality of life in modern urban living. Water quantity is the most important challenge worldwide in establishing and maintaining quality turf. The present study was aimed to test the performance of three warm season turfgrasses under four water levels for plantation in arid zones. Pits (48 measuring 1m length x 1m width x 0.6 m depth were planted with four replications of Common Bermuda grass (Cynodon dactylon, Tifway Bermuda grass (Cynodon dactylon x transvaalensis and Seashore Paspalum grass (Paspalum vaginatum in complete randomized design (CRD. Irrigation was done daily with 15 l/plot during the first 4 weeks (establishment period and four irrigation levels (5, 10, and 15, 20 l/lot were maintained in the following 8 weeks (treatment period. Physical parameters (canopy temperatures, ambient temperature, leaf area, shoot production and relative water content were measured once in two week as well as the visual quality (shoot color, shoot density and shoot uniformity was assessed, however, chlorophyll analysis was done in the end of the study. It was found that temperature has significant effect on performance of turfgrasses. Canopy temperature was higher than ambient temperature in the three turfgrasses but it has different level in each variety. Five liter of water per day per square meter gave acceptable turf quality when ambient temperature ranged from 20 to 33�C. Seashore paspalum performed best followed by Tifway Bermuda grass and common Bermuda grass respectively.

  11. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone.

    Science.gov (United States)

    Coldren, G A; Barreto, C R; Wykoff, D D; Morrissey, E M; Langley, J A; Feller, I C; Chapman, S K

    2016-11-01

    Increasing temperatures and a reduction in the frequency and severity of freezing events have been linked to species distribution shifts. Across the globe, mangrove ranges are expanding toward higher latitudes, likely due to diminishing frequency of freezing events associated with climate change. Continued warming will alter coastal wetland plant dynamics both above- and belowground, potentially altering plant capacity to keep up with sea level rise. We conducted an in situ warming experiment, in northeast Florida, to determine how increased temperature (+2°C) influences co-occurring mangrove and salt marsh plants. Warming was achieved using passive warming with three treatment levels (ambient, shade control, warmed). Avicennia germinans, the black mangrove, exhibited no differences in growth or height due to experimental warming, but displayed a warming-induced increase in leaf production (48%). Surprisingly, Distichlis spicata, the dominant salt marsh grass, increased in biomass (53% in 2013 and 70% in 2014), density (41%) and height (18%) with warming during summer months. Warming decreased plant root mass at depth and changed abundances of anaerobic bacterial taxa. Even while the poleward shift of mangroves is clearly controlled by the occurrences of severe freezes, chronic warming between these freeze events may slow the progression of mangrove dominance within ecotones. © 2016 by the Ecological Society of America.

  12. Improved quality of beneath-canopy grass in South African savannas: Local and seasonal variation

    NARCIS (Netherlands)

    Treydte, A.C.; Looringh van Beeck, F.A.; Ludwig, F.; Heitkonig, I.M.A.

    2008-01-01

    Questions: Do large trees improve the nutrient content and the structure of the grass layer in savannas? Does the magnitude of this improvement differ with locality ( soil nutrients) and season ( water availability)? Are grass structure and species composition beneath tree canopies influenced by

  13. New Claviceps species from warm-season grasses

    Czech Academy of Sciences Publication Activity Database

    Pažoutová, Sylvie; Odvody, G.; Frederickson, D.E.; Chudíčková, Milada; Olšovská, Jana; Kolařík, Miroslav

    2011-01-01

    Roč. 49, č. 1 (2011), s. 145-165 ISSN 1560-2745 R&D Projects: GA ČR GA206/97/0611 Institutional research plan: CEZ:AV0Z50200510 Keywords : Ascomycota * Taxonomy * Phylogeny Subject RIV: EE - Microbiology, Virology Impact factor: 4.769, year: 2011

  14. Ecophysiological Responses of Invasive and Native Grass Communities with Simulated Warming

    Science.gov (United States)

    Quade, B.; Ravi, S.; Huxman, T. E.

    2010-12-01

    William Quade1, Sujith Ravi2, Ashley Weide2, Greg Barron-Gafford2, Katerina Dontsova2 and Travis E Huxman2 1Carthage College, WI 2 B2 Earthscience & UA Biosphere 2, University of Arizona, Tucson. Abstract Climate change, anthropogenic disturbances and lack of proper management practices have rendered many arid regions susceptible to invasions by exotic grasses with consequent ecohydrological, biogeochemical and socio economic implications. Thus, understanding the ecophysiological processes driving these large-scale vegetation shifts in drylands, in the context of rising temperatures and recurrent droughts is fundamental to global change research. Using the Biosphere 2 facility to maintain distinct temperature treatments of ambient and predicted warmer conditions (+ 4o C) inside, we compared the physiological (e.g. photosynthesis, stomatal conductance, biomass) responses of a native grass - Heteropogan contortus (Tanglehead) and an invasive grass - Pennisetum ciliare (Buffelgrass) growing in single and mixed communities. The results indicate that Buffelgrass can assimilate more CO2 per unit leaf area under current conditions, though warming seems to inhibit the performance when looking at biomass, photosynthesis and stomatal conductance. Under similar moisture regimes Buffelgrass performed better than Tangle head in mixed communities regardless of the temperature. Both grasses had decrease in stomatal conductance with warmer conditions, however the Buffel grass did not have the same decrease of conductance when planted in a mixed communities. Key words: Buffelgrass, Tanglehead, Biosphere 2, stomatal conductance, climate change

  15. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses

    Science.gov (United States)

    Talukder, Shyamal K.; Saha, Malay C.

    2017-01-01

    Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder. PMID:28798766

  16. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses

    Directory of Open Access Journals (Sweden)

    Shyamal K. Talukder

    2017-07-01

    Full Text Available Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs. Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder.

  17. Responses of Seasonal Precipitation Intensity to Global Warming

    Science.gov (United States)

    Lan, Chia-Wei; Lo, Min-Hui; Chou, Chia

    2016-04-01

    Under global warming, the water vapor increases with rising temperature at the rate of 7%/K. Most previous studies focus on the spatial differences of precipitation and suggest that wet regions become wetter and dry regions become drier. Our recent studies show a temporal disparity of global precipitation, which the wet season becomes wetter and dry season becomes drier; therefore, the annual range increases. However, such changes in the annual range are not homogeneous globally, and in fact, the drier trend over the ocean is much larger than that over the land, where the dry season does not become drier. Such precipitation change over land is likely because of decreased omega at 500hPa (more upward motion) in the reanalysis datasets from 1980 to 2013. The trends of vertical velocity and moist static energy profile over the increased precipitation regions become more unstable. The instability is most likely attributed to the change in specific humility below 400hPa. Further, we will use Coupled Model Intercomparison Project Phase 5 (CMIP5) archives to investigate whether the precipitation responses in dry season are different between the ocean and land under global warming.

  18. Warm-season severe wind events in Germany

    Science.gov (United States)

    Gatzen, Christoph

    2013-04-01

    A 15-year data set of wind measurements was analyzed with regard to warm season severe wind gusts in Germany. For April to September of the years 1997 to 2011, 1035 wind measurements of 26 m/s or greater were found. These wind reports were associated with 268 wind events. In total, 252 convective wind events contributed to 837 (81%) of the wind reports, 16 non-convective synoptic-scale wind events contributed to 198 reports (19%). Severe wind events were found with synoptic situations characterized by rather strong mid-level flow and advancing mid-level troughs. Severe convective wind events were analyzed using radar images and classified with respect to the observed radar structure. The most important convective mode was squall lines that were associated with one third of all severe wind gusts, followed by groups, bow echo complexes, and bow echoes. Supercells and cells were not associated with many wind reports. The low contribution of isolated cells indicates that rather large-scale forcing by synoptic-scale features like fronts is important for German severe wind events. Bow echoes were found to be present for 58% of all wind reports. The movement speed of bow echoes indicated a large variation with a maximum speed of 33 m/s. Extreme wind events as well as events with more than 15 wind reports were found to be related to higher movement speeds. Concentrating on the most intense events, derechos seem to be very important to the warm season wind threat in Germany. Convective events with a path length of more than 400 km contributed to 36% of all warm-season wind gusts in this data set. Furthermore, eight of nine extreme gusts exceeding 40 m/s were recorded with derecho events.

  19. Cluster fescue (Festuca paradoxa Desv.): A multipurpose native cool-season grass

    Science.gov (United States)

    Nadia E. Navarrete-Tindall; J.W. Van Sambeek; R.A. Pierce

    2005-01-01

    Native cool-season grasses (NCSG) are adapted to a wide range of habitats and environmental conditions, and cluster fescue (Festuca paradoxa Desv.) is no exception. Cluster fescue can be found in unplowed upland prairies, prairie draws, savannas, forest openings, and glades (Aiken et al. 1996). Although its range includes 23 states in the continental...

  20. Winter Season Mortality: Will Climate Warming Bring Benefits?

    Science.gov (United States)

    Kinney, Patrick L; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Tertre, Alain Le; Medina, Sylvia; Vautard, Robert

    2015-06-01

    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  1. Forage yield and nitrogen nutrition dynamics of warm-season native forage genotypes under two shading levels and in full sunlight

    OpenAIRE

    Barro,Raquel Santiago; Varella,Alexandre Costa; Lemaire,Gilles; Medeiros,Renato Borges de; Saibro,João Carlos de; Nabinger,Carlos; Bangel,Felipe Villamil; Carassai,Igor Justin

    2012-01-01

    The successful achievement of a highly productive understorey pasture in silvopastoral systems depends on the use of well-adapted forage genotypes, showing good agronomic performance and persistence under shading and grazing. In this study, the herbage dry matter yield (DMY) and nitrogen nutrition dynamics were determined in three native warm-season grasses (Paspalum regnellii, Paspalum dilatatum and Paspalum notatum) and a forage legume (Arachis pintoi) under two shading levels compared with...

  2. Grass pollen seasons in Poland against a background of the meteorological conditions

    Directory of Open Access Journals (Sweden)

    Dorota Myszkowska

    2015-12-01

    Full Text Available The paper refers to the estimation of Poaceae pollen seasons in Poland in selected areas. The aim of the study was to present the long-term variability of the start, end and duration of grass pollen seasons and the seasonal pollen index (SPI in Poland against a background of the meteorological conditions over pollen seasons. The study was performed in eight Polish cities in 1992–2014 (the common seasons were 2003–2012. Pollen season start was relatively stable in the studied period, the seasons began about the 10th of May, a bit earlier in the south part of Poland. Pollen season ends were more changeable in comparison to the season start and fluctuated from the middle of July to the middle of September. SPI clearly depended on temperature and precipitation in April–August. Daily maximum pollen concentrations were achieved between the end of May and the first decade of July and no evident relationship between this day and weather conditions was found, apart from 2004.

  3. Effects of Altered Seasonality of Precipitation on Grass Production and Grasshopper Performance in a Northern Mixed Prairie.

    Science.gov (United States)

    Branson, David H

    2017-06-01

    Climatic changes are leading to differing patterns and timing of precipitation in grassland ecosystems, with the seasonal timing of precipitation affecting plant biomass and plant composition. No previous studies have examined how drought seasonality affects grasshopper performance and the impact of herbivory on vegetation. We modified seasonal patterns of precipitation and grasshopper density in a manipulative experiment to examine if seasonality of drought combined with herbivory affected plant biomass, nitrogen content, and grasshopper performance. Grass biomass was affected by both precipitation and grasshopper density treatments, while nitrogen content of grass was higher with early-season drought. Proportional survival was negatively affected by initial density, while survival was higher with early drought than with full-season drought. Drought timing affected the outcome, with early summer drought increasing grass nitrogen content and grasshopper survival, while season-long and late-season drought did not. The results support arguments that our knowledge of plant responses to seasonal short-term variation in climate is limited and illustrate the importance of experiments manipulating precipitation phenology. The results confirm that understanding the season of drought is critical for predicting grasshopper population dynamics, as extreme early summer drought may be required to strongly affect Melanoplus sanguinipes (F.) performance. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  4. Increase of lymphocytes with Fc receptors for IgE in patients with allergic rhinitis during the grass pollen season.

    OpenAIRE

    Spiegelberg, H L; Simon, R A

    1981-01-01

    Peripheral blood lymphocytes from 10 nonallergic donors and 7 patients suffering from seasonal allergic rhinitis and receiving desensitization therapy were analyzed by rosette assays for Fc receptors for IgE (Fc epsilon R) and IgG (Fc gamma R) before, during and after the grass pollen season. Six of seven patients had moderately elevated IgE levels (330 +/- 268 IU/ml), all had high titers of skin sensitizing antibodies to grass pollens and serum IgE antibodies as measured by radio-allergosorb...

  5. How Do Grass Species, Season and Ensiling Influence Mycotoxin Content in Forage?

    Directory of Open Access Journals (Sweden)

    Adam Nawrath

    2013-11-01

    Full Text Available Mycotoxins are secondary metabolites produced by fungal species that have harmful effects on mammals. The aim of this study was to assess the content of mycotoxins in fresh-cut material of selected forage grass species both during and at the end of the growing season. We further assessed mycotoxin content in subsequently produced first-cutting silages with respect to the species used in this study: Lolium perenne (cv. Kentaur, Festulolium pabulare (cv. Felina, Festulolium braunii (cv. Perseus, and mixtures of these species with Festuca rubra (cv. Gondolin or Poa pratensis (Slezanka. The mycotoxins deoxynivalenol, zearalenone and T-2 toxin were mainly detected in the fresh-cut grass material, while fumonisin and aflatoxin contents were below the detection limits. July and October were the most risky periods for mycotoxins to occur. During the cold temperatures in November and December, the occurrence of mycotoxins in fresh-cut material declined. Although June was a period with low incidence of mycotoxins in green silage, contents of deoxynivalenol and zearalenone in silages from the first cutting exceeded by several times those determined in their biomass collected directly from the field. Moreover, we observed that use of preservatives or inoculants did not prevent mycotoxin production.

  6. Elevated CO2 and warming induce substantial and persistent declines in forage quality irrespective of warming in mixed grass prairie

    Science.gov (United States)

    Increasing atmospheric [CO2] and temperature are expected to affect the productivity, species composition, biogeochemistry, and therefore the quantity and quality of forage available to herbivores in rangeland ecosystems. Both elevated CO2 (eCO2) and warming affect plant tissue chemistry through mul...

  7. A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations

    Science.gov (United States)

    Dai, Aiguo; Rasmussen, Roy M.; Liu, Changhai; Ikeda, Kyoko; Prein, Andreas F.

    2017-08-01

    Climate models project increasing precipitation intensity but decreasing frequency as greenhouse gases increase. However, the exact mechanism for the frequency decrease remains unclear. Here we investigate this by analyzing hourly data from regional climate change simulations with 4 km grid spacing covering most of North America using the Weather Research and Forecasting model. The model was forced with present and future boundary conditions, with the latter being derived by adding the CMIP5 19-model ensemble mean changes to the ERA-interim reanalysis. The model reproduces well the observed seasonal and spatial variations in precipitation frequency and histograms, and the dry interval between rain events over the contiguous US. Results show that overall precipitation frequency indeed decreases during the warm season mainly due to fewer light-moderate precipitation (0.1 2.0 mm/h) events, while heavy (2 10 mm/h) events increase. Dry spells become longer and more frequent, together with a reduction in time-mean relative humidity (RH) in the lower troposphere during the warm season. The increased dry hours and decreased RH lead to a reduction in overall precipitation frequency and also for light-moderate precipitation events, while water vapor-induced increases in precipitation intensity and the positive latent heating feedback in intense storms may be responsible for the large increase in intense precipitation. The size of intense storms increases while their number decreases in the future climate, which helps explain the increase in local frequency of heavy precipitation. The results generally support a new hypothesis for future warm-season precipitation: each rainstorm removes ≥7% more moisture from the air per 1 K local warming, and surface evaporation and moisture advection take slightly longer than currently to replenish the depleted moisture before the next storm forms, leading to longer dry spells and a reduction in precipitation frequency, as well as

  8. Nitrogen fertilization strategies for xaraes and tifton 85 grasses irrigated in the dry season

    Directory of Open Access Journals (Sweden)

    Domingos Sávio Queiroz

    2012-08-01

    Full Text Available An experiment was carried out to assess rates and nitrogen fertilization strategies on the forage yield using irrigation to supply the water deficit during the dry season. The grasses Cynodon spp cv. tifton 85 and Brachiaria brizantha cv. Xaraés were cultivated with nitrogen (N at levels of 200 and 400 kg/ha according to strategies: 1 half dose applied during the rainy season (RS and half during the dry season (DS; 2 1/3 during the RS and 2/3 during the DS; 3 2/3 during the RS and 1/3 during the DS; 4 all doses applied during the DS. In each season the dose was divided in three applications. Eleven harvests were conducted: six in the RS and five in the DS. When 2/3 of N was applied in the DS, forage yield in this period was statistically equivalent to those obtained in the RS in three of the five harvests for both 200 and 400 kg/ha of N. With 100% of N applied in the DS, the yield of four of five cuts of forage was similar to that obtained in the RS for both rates of N. The strategy of applying more N in the DS rather than in the RS was effective, keeping the yield steadily throughout the year. The application of 100% of the dose of 200 kg/ha N and 2/3 of the dose of 400 kg/ha N both in the dry period, under irrigation, promote uniform productions per harvest throughout the year.

  9. The responses of microbial temperature relationships to seasonal change and winter warming in a temperate grassland.

    Science.gov (United States)

    Birgander, Johanna; Olsson, Pål Axel; Rousk, Johannes

    2018-01-18

    Microorganisms dominate the decomposition of organic matter and their activities are strongly influenced by temperature. As the carbon (C) flux from soil to the atmosphere due to microbial activity is substantial, understanding temperature relationships of microbial processes is critical. It has been shown that microbial temperature relationships in soil correlate with the climate, and microorganisms in field experiments become more warm-tolerant in response to chronic warming. It is also known that microbial temperature relationships reflect the seasons in aquatic ecosystems, but to date this has not been investigated in soil. Although climate change predictions suggest that temperatures will be mostly affected during winter in temperate ecosystems, no assessments exist of the responses of microbial temperature relationships to winter warming. We investigated the responses of the temperature relationships of bacterial growth, fungal growth, and respiration in a temperate grassland to seasonal change, and to 2 years' winter warming. The warming treatments increased winter soil temperatures by 5-6°C, corresponding to 3°C warming of the mean annual temperature. Microbial temperature relationships and temperature sensitivities (Q 10 ) could be accurately established, but did not respond to winter warming or to seasonal temperature change, despite significant shifts in the microbial community structure. The lack of response to winter warming that we demonstrate, and the strong response to chronic warming treatments previously shown, together suggest that it is the peak annual soil temperature that influences the microbial temperature relationships, and that temperatures during colder seasons will have little impact. Thus, mean annual temperatures are poor predictors for microbial temperature relationships. Instead, the intensity of summer heat-spells in temperate systems is likely to shape the microbial temperature relationships that govern the soil-atmosphere C

  10. Seasonal variations of cadmium and zinc in Arrhenatherum elatius, a perennial grass species from highly contaminated soils

    International Nuclear Information System (INIS)

    Deram, Annabelle; Denayer, Franck-Olivier; Petit, Daniel; Van Haluwyn, Chantal

    2006-01-01

    There is interest in studying bioaccumulation in plants because they form the base of the food chain as well as their potential use in phytoextraction. From this viewpoint, our study deals with the seasonal variation, from January to July, of Cd and Zn bioaccumulation in three metallicolous populations of Arrhenatherum elatius, a perennial grass with a high biomass production. In heavily polluted soils, while Zn bioaccumulation is weak, A. elatius accumulates more Cd than reported gramineous plants, with concentration of up to 100 μg g -1 . Our results also showed seasonal variations of bioaccumulation, underlying the necessity for in situ studies to specify the date of sampling and also the phenology of the collected plant sample. In our experimental conditions, accumulation is lower in June, leading us to the hypothesis of restriction in heavy metals translocation from roots to aerial parts during seed production. - Cd and Zn bioaccumulation varies seasonally in a perennial grass

  11. Seasonal variations of cadmium and zinc in Arrhenatherum elatius, a perennial grass species from highly contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Deram, Annabelle [Institut Lillois d' Ingenierie de la Sante, Universite Droit et Sante de Lille, EA 2690, 42 rue Ambroise Pare, 59120 Loos (France)]. E-mail: aderam@ilis.univ-lille2.fr; Denayer, Franck-Olivier [Institut Lillois d' Ingenierie de la Sante, Universite Droit et Sante de Lille, EA 2690, 42 rue Ambroise Pare, 59120 Loos (France); Petit, Daniel [Laboratoire de Genetique et Evolution des Populations Vegetales, UPRESA-CNRS 8016, Bat SN2, Universite des Sciences et Techniques de Lille, 59655 Villeneuve d' Ascq, F59655 France (France); Van Haluwyn, Chantal [Faculte des Sciences Pharmaceutiques et Biologiques, Departement de Botanique, Universite Droit et Sante de Lille, EA 2690, B.P. 83, 59006 Lille Cedex (France)

    2006-03-15

    There is interest in studying bioaccumulation in plants because they form the base of the food chain as well as their potential use in phytoextraction. From this viewpoint, our study deals with the seasonal variation, from January to July, of Cd and Zn bioaccumulation in three metallicolous populations of Arrhenatherum elatius, a perennial grass with a high biomass production. In heavily polluted soils, while Zn bioaccumulation is weak, A. elatius accumulates more Cd than reported gramineous plants, with concentration of up to 100 {mu}g g{sup -1}. Our results also showed seasonal variations of bioaccumulation, underlying the necessity for in situ studies to specify the date of sampling and also the phenology of the collected plant sample. In our experimental conditions, accumulation is lower in June, leading us to the hypothesis of restriction in heavy metals translocation from roots to aerial parts during seed production. - Cd and Zn bioaccumulation varies seasonally in a perennial grass.

  12. Striking Seasonality in the Secular Warming of the Northern Continents: Structure and Mechanisms

    Science.gov (United States)

    Nigam, S.; Thomas, N. P.

    2017-12-01

    The linear trend in twentieth-century surface air temperature (SAT)—a key secular warming signal— exhibits striking seasonal variations over Northern Hemisphere continents; SAT trends are pronounced in winter and spring but notably weaker in summer and fall. The SAT trends in historical twentieth-century climate simulations informing the Intergovernmental Panel for Climate Change's Fifth Assessment show varied (and often unrealistic) strength and structure, and markedly weaker seasonal variation. The large intra-ensemble spread of winter SAT trends in some historical simulations was surprising, especially in the context of century-long linear trends, with implications for the detection of the secular warming signal. The striking seasonality of observed secular warming over northern continents warrants an explanation and the representation of related processes in climate models. Here, the seasonality of SAT trends over North America is shown to result from land surface-hydroclimate interactions and, to an extent, also from the secular change in low-level atmospheric circulation and related thermal advection. It is argued that the winter dormancy and summer vigor of the hydrologic cycle over middle- to high-latitude continents permit different responses to the additional incident radiative energy from increasing greenhouse gas concentrations. The seasonal cycle of climate, despite its monotony, provides an expanded phase space for the exposition of the dynamical and thermodynamical processes generating secular warming, and an exceptional cost-effective opportunity for benchmarking climate projection models.

  13. Seasonal/Interannual Variations of Carbon Sequestration and Carbon Emission in a Warm-Season Perennial Grassland

    OpenAIRE

    Deepa Dhital; Tomoharu Inoue; Hiroshi Koizumi

    2014-01-01

    Carbon sequestration and carbon emission are processes of ecosystem carbon cycling that can be affected while land area converted to grassland resulting in increased soil carbon storage and below-ground respiration. Discerning the importance of carbon cycle in grassland, we aimed to estimate carbon sequestration in photosynthesis and carbon emission in respiration from soil, root, and microbes, for four consecutive years (2007–2010) in a warm-season perennial grassland, Japan. Soil carbon emi...

  14. Intake, digestibility, and nitrogen retention by sheep supplemented with warm-season legume haylages or soybean meal.

    Science.gov (United States)

    Foster, J L; Adesogan, A T; Carter, J N; Blount, A R; Myer, R O; Phatak, S C

    2009-09-01

    The high cost of commercial supplements necessitates evaluation of alternatives for ruminant livestock fed poor quality warm-season grasses. This study determined how supplementing bahiagrass haylage (Paspalum notatum Flügge cv. Tifton 9) with soybean [Glycine max (L.) Merr.] meal or warm-season legume haylages affected the performance of lambs. Forty-two Dorper x Katadhin lambs (27.5 +/- 5 kg) were fed for ad libitum intake of bahiagrass haylage (67.8% NDF, 9.6% CP) alone (control) or supplemented with soybean meal (18.8% NDF, 51.4% CP) or haylages of annual peanut [Arachis hypogaea (L.) cv. Florida MDR98; 39.6% NDF, 18.7% CP], cowpea [Vigna unguiculata (L.) Walp. cv. Iron clay; 44.1% NDF, 16.0% CP], perennial peanut (Arachis glabrata Benth. cv. Florigraze; 40.0% NDF, 15.8% CP), or pigeonpea [Cajanus cajan (L.) Millsp. cv. GA-2; 65.0% NDF, 13.7% CP]. Haylages were harvested at the optimal maturity for maximizing yield and nutritive value, wilted to 45% DM, baled, wrapped in polyethylene plastic, and ensiled for 180 d. Legumes were fed at 50% of the dietary DM, and soybean meal was fed at 8% of the dietary DM to match the average CP concentration (12.8%) of legume haylage-supplemented diets. Lambs were fed each diet for a 14-d adaptation period and a 7-d data collection period. Each diet was fed to 7 lambs in period 1 and 4 lambs in period 2. Pigeonpea haylage supplementation decreased (P haylages increased (P haylage, all supplements increased (P haylage supplementation, but unaffected (P = 0.05) by other supplements. Efficiency of microbial protein synthesis was unaffected (P = 0.05) by diet. Ruminal ammonia concentration was increased (P = 0.01) by all supplements, but only soybean meal and annual peanut haylage increased (P haylages are promising protein supplements for growing lambs.

  15. Competition among warm season C4-cereals influence water use efficiency and competition ratios

    Directory of Open Access Journals (Sweden)

    Amanullah

    2015-12-01

    Full Text Available Water use efficiency (WUE and competition ratio (CR response of three warm season C4-cereals (grasses viz. corn (Zea mays L., cv. Hybrid-5393 VT3, grain sorghum (Sorghum bicolor L. Moench, cv. Hybrid-84G62 PAT, and foxtail millets (Setaria italic, cv. German Strain R in pure and mixed stands under low and high water levels was investigated. The experiment was conducted in pot experiment at Dryland Agriculture Institute, West Texas A&M University, Canyon, Texas, USA, during spring 2010. The objective of this study was to know whether the differences in the competitive ability of different crop species influence WUE or not? The planned mean comparison indicated that the corn WUE was 20, 11, and 6% higher in the mixed stand than in pure stand at 30, 60, and 90 days after emergence (DAE, respectively. The corn plants in pure stand had 91, 72, and 81% higher WUE than the average WUE of sorghum and millets in pure stand at 30, 60, and 90 DAE, respectively. Grain sorghum in pure stand had 70, 32, and 36% higher WUE than that of millets in pure stand at 30, 60, and 90 DAE, respectively. The WUE of three crops in mixed stand was 10 and 8% higher than the two crops mixed stand at the two early stages; but the WUE was 24% less in the three crops mixed stand than the two crops mixed stand at 90 DAE. Corn-mixed stand in two crops (average of corn + sorghum and corn + millets had 78, 74, and 74% higher WUE than the mixed stand of sorghum and millets at 30, 60, and 90 DAE, respectively. Corn and millets mixed stand had 14, 10, and 26% higher WUE than the corn and sorghum mixed stand at 30, 60, and 90 DAE, respectively. The increase in water level decreased WUE at the two late growth stages in all three crop plants. At the early growth stage (30 DAE, WUE increased in all crops at the higher water level. On the basis of CR, corn was found the best competitor, while millets was declared the least competitor in the mixed stands (corn

  16. Warm season chloride concentrations in stream habitats of freshwater mussel species at risk

    International Nuclear Information System (INIS)

    Todd, Aaron K.; Kaltenecker, M. Georgina

    2012-01-01

    Warm season (May–October) chloride concentrations were assessed in stream habitats of freshwater mussel species at risk in southern Ontario, Canada. Significant increases in concentrations were observed at 96% of 24 long-term (1975–2009) monitoring sites. Concentrations were described as a function of road density indicating an anthropogenic source of chloride. Linear regression showed that 36% of the variation of concentrations was explained by road salt use by the provincial transportation ministry. Results suggest that long-term road salt use and retention is contributing to a gradual increase in baseline chloride concentrations in at risk mussel habitats. Exposure of sensitive mussel larvae (glochidia) to increasing chloride concentrations may affect recruitment to at risk mussel populations. - Highlights: ► Warm season chloride concentrations were assessed in habitats of mussel species at risk. ► Concentrations increased significantly at 96% of 24 long-term monitoring sites. ► Concentrations increased with increases in road density and road salt use. ► Retention of road salt likely contributed to elevated warm season concentrations. ► Glochidia exposure to increasing concentrations may affect mussel reproduction. - Warm season chloride concentrations increased in southern Ontario streams with road salt use, such that reproduction of freshwater mussel species at risk may be affected.

  17. Seasonal body size reductions with warming covary with major body size gradients in arthropod species

    DEFF Research Database (Denmark)

    Horne, Curtis R.; Hirst, Andrew G.; Atkinson, David

    2017-01-01

    experience different developmental conditions. Yet, unlike other size patterns, these common seasonal temperature–size gradients have never been collectively analysed. We undertake the largest analysis to date of seasonal temperature-size gradients in multivoltine arthropods, including 102 aquatic...... and terrestrial species from 71 global locations. Adult size declines in warmer seasons in 86% of the species examined. Aquatic species show approximately 2.5-fold greater reduction in size per °C of warming than terrestrial species, supporting the hypothesis that greater oxygen limitation in water than in air...

  18. Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing.

    Science.gov (United States)

    Bintanja, R; Krikken, F

    2016-12-02

    Observed and projected climate warming is strongest in the Arctic regions, peaking in autumn/winter. Attempts to explain this feature have focused primarily on identifying the associated climate feedbacks, particularly the ice-albedo and lapse-rate feedbacks. Here we use a state-of-the-art global climate model in idealized seasonal forcing simulations to show that Arctic warming (especially in winter) and sea ice decline are particularly sensitive to radiative forcing in spring, during which the energy is effectively 'absorbed' by the ocean (through sea ice melt and ocean warming, amplified by the ice-albedo feedback) and consequently released to the lower atmosphere in autumn and winter, mainly along the sea ice periphery. In contrast, winter radiative forcing causes a more uniform response centered over the Arctic Ocean. This finding suggests that intermodel differences in simulated Arctic (winter) warming can to a considerable degree be attributed to model uncertainties in Arctic radiative fluxes, which peak in summer.

  19. Seasonal timing in a warming world : Plasticity of seasonal timing of growth and reproduction

    NARCIS (Netherlands)

    Salis, Lucia

    2015-01-01

    In seasonal environments the timing of various biological processes is crucial for growth, survival and reproductive success of an individual. Nowadays, rapid large-scale climate change is altering species’ seasonal timing (phenology) in many eco¬systems. In this thesis Lucia Salis focuses on the

  20. NUTRITIVE QUALITY OF TEN GRASSES DURING THE RAINY SEASON IN A HOT-HUMID CLIMATE AND ULTISOL SOIL

    Directory of Open Access Journals (Sweden)

    Rodrigo Ortega-Gómez

    2011-11-01

    Full Text Available The nutritive quality of ten grasses harvested at 3, 6, 9 and 12 weeks of regrowth was assessed during the rainy season (August-October 2008, in the humid tropics of Veracruz, Mexico. Grasses tested included four Brachiaria spp.: “insurgente”–B. brizantha, “signal”–B. decumbens, Chetumal–B. humidicola, “mulato I”–B. brizantha x B. ruziziensis; three Panicum maximum: Mombasa, “privilegio”, Tanzania; and three Pennisetum spp.: Taiwán, and the hybrids P. purpureum x P. glaucum “Cuban” king grass and “purple” king grass. Means for crude protein by grass group were: Pennisetum spp. (9.9 % = P. maximum (8.7 % > Brachiaria spp. (7.6 %, whereas means for in situ dry matter disappearance (ISD were: Pennisetum spp. (69.7 % > Brachiaria spp. (65.1 % > P. maximum (59.7 %. Crude protein and ISD significantly decreased by 0.42 % and 1.50 % per week. Neutral detergent fiber was not affected by model effects (mean 71.4 %. Means for acid detergent fiber (ADF by grass group were: P. maximum (47.6 % = Pennisetum spp. (44.0 % > Brachiaria spp. (42.8 %, whereas means for lignin (LIG were: P. maximum (8.5 % > Pennisetum spp. (7.6 % > Brachiaria spp. (6.7 %. The ADF and LIG significantly increased by 1.21 % and 0.19 % per week. Pennisetum spp. had the highest nutritive value at all regrowth ages.

  1. Seasonal timing in a warming world : plasticity of seasonal timing of growth and reproduction

    OpenAIRE

    Salis, L.

    2015-01-01

    In seasonal environments the timing of various biological processes is crucial for growth, survival and reproductive success of an individual. Nowadays, rapid large-scale climate change is altering species’ seasonal timing (phenology) in many eco¬systems. In this thesis Lucia Salis focuses on the study of seasonal timing in the food chain of the oak-winter moth-great tit. As temperature increased over the last decades, both phenologies of the host plant, the oak, and the herbivorous insect, t...

  2. Seasonal exposure to drought and air warming affects soil Collembola and mites.

    Science.gov (United States)

    Xu, Guo-Liang; Kuster, Thomas M; Günthardt-Goerg, Madeleine S; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4 °C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length ≤ 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type.

  3. Seasonal exposure to drought and air warming affects soil Collembola and mites.

    Directory of Open Access Journals (Sweden)

    Guo-Liang Xu

    Full Text Available Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4 °C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length ≤ 0.20 mm increased, but the percentage of large mites (body length >0.40 mm decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type.

  4. Seasonal Exposure to Drought and Air Warming Affects Soil Collembola and Mites

    Science.gov (United States)

    Xu, Guo-Liang; Kuster, Thomas M.; Günthardt-Goerg, Madeleine S.; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4°C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type. PMID:22905210

  5. The impact of global warming on seasonality of ocean primary production

    Directory of Open Access Journals (Sweden)

    S. Henson

    2013-06-01

    Full Text Available The seasonal cycle (i.e. phenology of oceanic primary production (PP is expected to change in response to climate warming. Here, we use output from 6 global biogeochemical models to examine the response in the seasonal amplitude of PP and timing of peak PP to the IPCC AR5 warming scenario. We also investigate whether trends in PP phenology may be more rapidly detectable than trends in annual mean PP. The seasonal amplitude of PP decreases by an average of 1–2% per year by 2100 in most biomes, with the exception of the Arctic which sees an increase of ~1% per year. This is accompanied by an advance in the timing of peak PP by ~0.5–1 months by 2100 over much of the globe, and particularly pronounced in the Arctic. These changes are driven by an increase in seasonal amplitude of sea surface temperature (where the maxima get hotter faster than the minima and a decrease in the seasonal amplitude of the mixed layer depth and surface nitrate concentration. Our results indicate a transformation of currently strongly seasonal (bloom forming regions, typically found at high latitudes, into weakly seasonal (non-bloom regions, characteristic of contemporary subtropical conditions. On average, 36 yr of data are needed to detect a climate-change-driven trend in the seasonal amplitude of PP, compared to 32 yr for mean annual PP. Monthly resolution model output is found to be inadequate for resolving phenological changes. We conclude that analysis of phytoplankton seasonality is not necessarily a shortcut to detecting climate change impacts on ocean productivity.

  6. Health economic comparison of SLIT allergen and SCIT allergoid immunotherapy in patients with seasonal grass-allergic rhinoconjunctivitis in Germany.

    Science.gov (United States)

    Verheggen, Bram G; Westerhout, Kirsten Y; Schreder, Carl H; Augustin, Matthias

    2015-01-01

    Allergoids are chemically modified allergen extracts administered to reduce allergenicity and to maintain immunogenicity. Oralair® (the 5-grass tablet) is a sublingual native grass allergen tablet for pre- and co-seasonal treatment. Based on a literature review, meta-analysis, and cost-effectiveness analysis the relative effects and costs of the 5-grass tablet versus a mix of subcutaneous allergoid compounds for grass pollen allergic rhinoconjunctivitis were assessed. A Markov model with a time horizon of nine years was used to assess the costs and effects of three-year immunotherapy treatment. Relative efficacy expressed as standardized mean differences was estimated using an indirect comparison on symptom scores extracted from available clinical trials. The Rhinitis Symptom Utility Index (RSUI) was applied as a proxy to estimate utility values for symptom scores. Drug acquisition and other medical costs were derived from published sources as well as estimates for resource use, immunotherapy persistence, and occurrence of asthma. The analysis was executed from the German payer's perspective, which includes payments of the Statutory Health Insurance (SHI) and additional payments by insurants. Comprehensive deterministic and probabilistic sensitivity analyses and different scenarios were performed to test the uncertainty concerning the incremental model outcomes. The applied model predicted a cost-utility ratio of the 5-grass tablet versus a market mix of injectable allergoid products of € 12,593 per QALY in the base case analysis. Predicted incremental costs and QALYs were € 458 (95% confidence interval, CI: € 220; € 739) and 0.036 (95% CI: 0.002; 0.078), respectively. Compared to the allergoid mix the probability of the 5-grass tablet being the most cost-effective treatment option was predicted to be 76% at a willingness-to-pay threshold of € 20,000. The results were most sensitive to changes in efficacy estimates, duration of the pollen season, and

  7. An Update to the Warm-Season Convective Wind Climatology of KSC/CCAFS

    Science.gov (United States)

    Lupo, Kevin

    2012-01-01

    Total of 1100 convective events in the 17-year warm-season climatology at KSC/CCAFS. July and August typically are the peak of convective events, May being the minimum. Warning and non-warning level convective winds are more likely to occur in the late afternoon (1900-2000Z). Southwesterly flow regimes and wind directions produce the strongest winds. Storms moving from southwesterly direction tend to produce more warning level winds than those moving from the northerly and easterly directions.

  8. Chronic environmental stress enhances tolerance to seasonal gradual warming in marine mussels.

    Directory of Open Access Journals (Sweden)

    Ionan Marigómez

    Full Text Available In global climate change scenarios, seawater warming acts in concert with multiple stress sources, which may enhance the susceptibility of marine biota to thermal stress. Here, the responsiveness to seasonal gradual warming was investigated in temperate mussels from a chronically stressed population in comparison with a healthy one. Stressed and healthy mussels were subjected to gradual temperature elevation for 8 days (1°C per day; fall: 16-24°C, winter: 12-20°C, summer: 20-28°C and kept at elevated temperature for 3 weeks. Healthy mussels experienced thermal stress and entered the time-limited survival period in the fall, became acclimated in winter and exhibited sublethal damage in summer. In stressed mussels, thermal stress and subsequent health deterioration were elicited in the fall but no transition into the critical period of time-limited survival was observed. Stressed mussels did not become acclimated to 20°C in winter, when they experienced low-to-moderate thermal stress, and did not experience sublethal damage at 28°C in summer, showing instead signs of metabolic rate depression. Overall, although the thermal threshold was lowered in chronically stressed mussels, they exhibited enhanced tolerance to seasonal gradual warming, especially in summer. These results challenge current assumptions on the susceptibility of marine biota to the interactive effects of seawater warming and pollution.

  9. Observed changes in seasonal heat waves and warm temperature extremes in the Romanian Carpathians

    Science.gov (United States)

    Micu, Dana; Birsan, Marius-Victor; Dumitrescu, Alexandru; Cheval, Sorin

    2015-04-01

    Extreme high temperature have a large impact on environment and human activities, especially in high elevation areas particularly sensitive to the recent climate warming. The climate of the Romanian Carpathians became warmer particularly in winter, spring and summer, exibiting a significant increasing frequency of warm extremes. The paper investigates the seasonal changes in the frequency, duration and intensity of heat waves in relation to the shifts in the daily distribution of maximum temperatures over a 50-year period of meteorological observations (1961-2010). The paper uses the heat wave definition recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI) and exploits the gridded daily dataset of maximum temperature at 0.1° resolution (~10 km) developed in the framework of the CarpatClim project (www.carpatclim.eu). The seasonal changes in heat waves behavior were identified using the Mann-Kendall non-parametric trend test. The results suggest an increase in heat wave frequency and a lengthening of intervals affected by warm temperature extremes all over the study region, which are explained by the shifts in the upper (extreme) tail of the daily maximum temperature distribution in most seasons. The trends are consistent across the region and are well correlated to the positive phases of the East Atlantic Oscillation. Our results are in good agreement with the previous temperature-related studies concerning the Carpathian region. This study was realized within the framework of the project GENCLIM, financed by UEFISCDI, code PN-II 151/2014.

  10. Historical Documentation of Warm-Season Grasses Management at Erie National Wildlife Refuge 1989

    Data.gov (United States)

    Department of the Interior — The early accounts of an active grassland management program at Erie National Wildlife Refuge dates back to 1977. This report is an attempt to document the refuge’s...

  11. Crop growth rate differs in warm season C4-grasses grown in pure ...

    African Journals Online (AJOL)

    SAM

    2014-07-23

    Jul 23, 2014 ... Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture Peshawar-Pakistan- ... plus root dry weights) per unit ground area per unit time] ... below-ground total biomass (Rubio et al., 2001).

  12. Crop growth rate differs in warm season C4-grasses grown in pure ...

    African Journals Online (AJOL)

    German Strain R) grown in pure and mixed stands under low and high water levels was investigated at one month interval namely: 30, 60 and 90 days after emergence (DAE), in pot experiment at Dryland Agriculture Institute, West Texas A&M University, Canyon, Texas, USA during spring 2010. The corn CGR in the mixed ...

  13. Provisioning of nestling Dickcissels in native warm-season grass field buffers

    Science.gov (United States)

    Mitchell, K.L.; Riffell, Samuel K.; Burger, L. Wes; Vilella, Francisco

    2012-01-01

    We used video cameras in 2008–2009 to record provisioning activities at Dickcissel (Spiza americana) nests in and around Conservation Reserve Program field buffers in north-central Mississippi, USA. We simultaneously observed foraging flight distances of parents. Provisioning rate (P  =  0.412), biomass (P  =  0.161), and foraging distance (P  =  0.159) did not increase with nestling age. Parents delivered larger items to meet demand associated with older nestlings (P  =  0.010–0.001). This suggests energetic costs of changes in prey selection were less than costs of increasing the number or distance of provisioning trips. Presence of male helpers increased provisioning rate (P nestling food resources similar to surrounding habitats. Use of continuous video monitoring of nest activity allows well-concealed activities including provisioning and male helping to be directly observed and better quantified.

  14. Satellite Phenology Observations Inform Peak Season of Allergenic Grass Pollen Aerobiology across Two Continents

    Science.gov (United States)

    Huete, A. R.; Devadas, R.; Davies, J.

    2015-12-01

    Pollen exposure and prevalence of allergenic diseases have increased in many parts of the world during the last 30 years, with exposure to aeroallergen grass pollen expected to intensify with climate change, raising increased concerns for allergic diseases. The primary contributing factors to higher allergenic plant species presence are thought to be climate change, land conversion, and biotic mixing of species. Conventional methods for monitoring airborne pollen are hampered by a lack of sampling sites and heavily rely on meteorology with less attention to land cover updates and monitoring of key allergenic species phenology stages. Satellite remote sensing offers an alternative method to overcome the restrictive coverage afforded by in situ pollen networks by virtue of its synoptic coverage and repeatability of measurements that enable timely updates of land cover and land use information and monitoring landscape dynamics and interactions with human activity and climate. In this study, we assessed the potential of satellite observations of urban/peri-urban environments to directly inform landscape conditions conducive to pollen emissions. We found satellite measurements of grass cover phenological evolution to be highly correlated with in situ aerobiological grass pollen concentrations in five urban centres located across two hemispheres (Australia and France). Satellite greenness data from the Moderate Resolution Imaging Spectroradiometer (MODIS) were found to be strongly synchronous with grass pollen aerobiology in both temperate grass dominated sites (France and Melbourne), as well as in Sydney, where multiple pollen peaks coincided with the presence of subtropical grasses. Employing general additive models (GAM), the satellite phenology data provided strong predictive capabilities to inform airborne pollen levels and forecast periods of grass pollen emissions at all five sites. Satellite phenology offer promising opportunities of improving public health risk

  15. On the shortening of Indian summer monsoon season in a warming scenario

    Science.gov (United States)

    Sabeerali, C. T.; Ajayamohan, R. S.

    2018-03-01

    Assessing the future projections of the length of rainy season (LRS) has paramount societal impact considering its potential to alter the seasonal mean rainfall over the Indian subcontinent. Here, we explored the projections of LRS using both historical and Representative Concentration Pathways 8.5 (RCP8.5) simulations of the Coupled Model Intercomparison Project Phase5 (CMIP5). RCP8.5 simulations project shortening of the LRS of Indian summer monsoon by altering the timing of onset and withdrawal dates. Most CMIP5 RCP8.5 model simulations indicate a faster warming rate over the western tropical Indian Ocean compared to other regions of the Indian Ocean. It is found that the pronounced western Indian Ocean warming and associated increase in convection results in warmer upper troposphere over the Indian Ocean compared to the Indian subcontinent, reducing the meridional gradient in upper tropospheric temperature (UTT) over the Asian summer monsoon (ASM) domain. The weakening of the meridional gradient in UTT induces weakening of easterly vertical wind shear over the ASM domain during first and last phase of monsoon, facilitate delayed (advanced) monsoon onset (withdrawal) dates, ensues the shortening of LRS of the Indian summer monsoon in a warming scenario.

  16. Observed decreases in the Canadian outdoor skating season due to recent winter warming

    International Nuclear Information System (INIS)

    Damyanov, Nikolay N; Mysak, Lawrence A; Damon Matthews, H

    2012-01-01

    Global warming has the potential to negatively affect one of Canada’s primary sources of winter recreation: hockey and ice skating on outdoor rinks. Observed changes in winter temperatures in Canada suggest changes in the meteorological conditions required to support the creation and maintenance of outdoor skating rinks; while there have been observed increases in the ice-free period of several natural water bodies, there has been no study of potential trends in the duration of the season supporting the construction of outdoor skating rinks. Here we show that the outdoor skating season (OSS) in Canada has significantly shortened in many regions of the country as a result of changing climate conditions. We first established a meteorological criterion for the beginning, and a proxy for the length of the OSS. We extracted this information from daily maximum temperature observations from 1951 to 2005, and tested it for significant changes over time due to global warming as well as due to changes in patterns of large-scale natural climate variability. We found that many locations have seen a statistically significant decrease in the OSS length, particularly in Southwest and Central Canada. This suggests that future global warming has the potential to significantly compromise the viability of outdoor skating in Canada. (letter)

  17. Incorporating residual temperature and specific humidity in predicting weather-dependent warm-season electricity consumption

    Science.gov (United States)

    Guan, Huade; Beecham, Simon; Xu, Hanqiu; Ingleton, Greg

    2017-02-01

    Climate warming and increasing variability challenges the electricity supply in warm seasons. A good quantitative representation of the relationship between warm-season electricity consumption and weather condition provides necessary information for long-term electricity planning and short-term electricity management. In this study, an extended version of cooling degree days (ECDD) is proposed for better characterisation of this relationship. The ECDD includes temperature, residual temperature and specific humidity effects. The residual temperature is introduced for the first time to reflect the building thermal inertia effect on electricity consumption. The study is based on the electricity consumption data of four multiple-street city blocks and three office buildings. It is found that the residual temperature effect is about 20% of the current-day temperature effect at the block scale, and increases with a large variation at the building scale. Investigation of this residual temperature effect provides insight to the influence of building designs and structures on electricity consumption. The specific humidity effect appears to be more important at the building scale than at the block scale. A building with high energy performance does not necessarily have low specific humidity dependence. The new ECDD better reflects the weather dependence of electricity consumption than the conventional CDD method.

  18. Observed decreases in the Canadian outdoor skating season due to recent winter warming

    Science.gov (United States)

    Damyanov, Nikolay N.; Damon Matthews, H.; Mysak, Lawrence A.

    2012-03-01

    Global warming has the potential to negatively affect one of Canada’s primary sources of winter recreation: hockey and ice skating on outdoor rinks. Observed changes in winter temperatures in Canada suggest changes in the meteorological conditions required to support the creation and maintenance of outdoor skating rinks; while there have been observed increases in the ice-free period of several natural water bodies, there has been no study of potential trends in the duration of the season supporting the construction of outdoor skating rinks. Here we show that the outdoor skating season (OSS) in Canada has significantly shortened in many regions of the country as a result of changing climate conditions. We first established a meteorological criterion for the beginning, and a proxy for the length of the OSS. We extracted this information from daily maximum temperature observations from 1951 to 2005, and tested it for significant changes over time due to global warming as well as due to changes in patterns of large-scale natural climate variability. We found that many locations have seen a statistically significant decrease in the OSS length, particularly in Southwest and Central Canada. This suggests that future global warming has the potential to significantly compromise the viability of outdoor skating in Canada.

  19. Plastid phylogenomics of the cool-season grass subfamily: clarification of relationships among early-diverging tribes.

    Science.gov (United States)

    Saarela, Jeffery M; Wysocki, William P; Barrett, Craig F; Soreng, Robert J; Davis, Jerrold I; Clark, Lynn G; Kelchner, Scot A; Pires, J Chris; Edger, Patrick P; Mayfield, Dustin R; Duvall, Melvin R

    2015-05-04

    Whole plastid genomes are being sequenced rapidly from across the green plant tree of life, and phylogenetic analyses of these are increasing resolution and support for relationships that have varied among or been unresolved in earlier single- and multi-gene studies. Pooideae, the cool-season grass lineage, is the largest of the 12 grass subfamilies and includes important temperate cereals, turf grasses and forage species. Although numerous studies of the phylogeny of the subfamily have been undertaken, relationships among some 'early-diverging' tribes conflict among studies, and some relationships among subtribes of Poeae have not yet been resolved. To address these issues, we newly sequenced 25 whole plastomes, which showed rearrangements typical of Poaceae. These plastomes represent 9 tribes and 11 subtribes of Pooideae, and were analysed with 20 existing plastomes for the subfamily. Maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) robustly resolve most deep relationships in the subfamily. Complete plastome data provide increased nodal support compared with protein-coding data alone at nodes that are not maximally supported. Following the divergence of Brachyelytrum, Phaenospermateae, Brylkinieae-Meliceae and Ampelodesmeae-Stipeae are the successive sister groups of the rest of the subfamily. Ampelodesmeae are nested within Stipeae in the plastome trees, consistent with its hybrid origin between a phaenospermatoid and a stipoid grass (the maternal parent). The core Pooideae are strongly supported and include Brachypodieae, a Bromeae-Triticeae clade and Poeae. Within Poeae, a novel sister group relationship between Phalaridinae and Torreyochloinae is found, and the relative branching order of this clade and Aveninae, with respect to an Agrostidinae-Brizinae clade, are discordant between MP and ML/BI trees. Maximum likelihood and Bayesian analyses strongly support Airinae and Holcinae as the successive sister groups of a Dactylidinae

  20. The influence of the bottom cold water on the seasonal variability of the Tsushima warm current

    Science.gov (United States)

    Isobe, Atsuhiko

    1995-06-01

    Previous studies have concluded that the volume transport and surface current velocity of the Tsushima Warm Current are at a maximum between summer and autumn and at a minimum between winter and spring. Each study has obtained these results indirectly, using the sea level difference across the Tsushima-Korea Strait or dynamic calculation. Numerical experiments are performed to estimate the seasonal variability in the sea level difference caused by the Bottom Cold Water (BCW), which intrudes from the Sea of Japan along the Korean coast in the bottom layer. These experiments basically treat the baroclinic adjustment problem of the BCW in a rectangular cross section perpendicular to the axis (northeast-southwest direction) of the Tsushima-Korea Strait. It is a five-layer model for summer and a two-layer model for winter. The initial conditions and parameters in models are chosen so as to match the calculated velocity-density fields with the observed velocity-density fields [Isobe A., S. Tawara, A. Kaneko and M. Kawano (1994) Continental Shelf Research, 14, 23-35.]. Consequently, the experiments prove that the observed seasonal variability in the sea level difference across the Tsushima-Korea Strait largely contains the baroclinic motion caused by the BCW. It should be noted that the position of the BCW also plays an important role in producing a considerable seasonal variation of the sea level difference. It is critical to remove the baroclinic contribution from the observed sea level differences across the Tsushima-Korea Strait in order to estimate the seasonal variation in the volume transport of the Tsushima Warm Current.

  1. Disruption of the European climate seasonal clock in a warming world

    Science.gov (United States)

    Cattiaux, J.; Cassou, C.

    2015-12-01

    Strength and inland penetration of the oceanic westerly flow over Europe control a large part of the temperature variability over most of the continent. Reduced westerlies, linked to high-pressure anomalies over Scandinavia, induce cold conditions in winter and warm conditions in summer. Here we propose to define the onset of these two seasons as the calendar day where the daily circulation/temperature relationship over Western Europe switches sign. According to this meteorologically-based metrics assessed from several observational datasets, we provide robust evidence for an earlier summer onset by ~10 days between the 1960s and 2000s. Results from model ensemble simulations dedicated to detection-attribution show that this calendar advance is incompatible with the sole internal climate variability and can be attributed to anthropogenic forcings. Late winter snow disappearance over Eastern Europe affects cold air intrusion to the West when easterlies blow, and is mainly responsible for the observed present-day and near-future summer advance. Our findings agree with phenological-based trends (earlier spring events) reported for many living species over Europe, for which they provide a novel dynamical interpretation beyond the traditionally evoked global warming effect. Based on business-as-usual scenario, a seasonal shift of ~25 days is expected by 2100 for summer onset, while no clear signal arises for winter onset.

  2. Effects of Global Warming on Predatory Bugs Supported by Data Across Geographic and Seasonal Climatic Gradients

    Science.gov (United States)

    Schuldiner-Harpaz, Tarryn; Coll, Moshe

    2013-01-01

    Global warming may affect species abundance and distribution, as well as temperature-dependent morphometric traits. In this study, we first used historical data to document changes in Orius (Heteroptera: Anthocoridae) species assemblage and individual morphometric traits over the past seven decades in Israel. We then tested whether these changes could have been temperature driven by searching for similar patterns across seasonal and geographic climatic gradients in a present survey. The historical records indicated a shift in the relative abundance of dominant Orius species; the relative abundance of O. albidipennis, a desert-adapted species, increased while that of O. laevigatus decreased in recent decades by 6 and 10–15 folds, respectively. These shifts coincided with an overall increase of up to 2.1°C in mean daily temperatures over the last 25 years in Israel. Similar trends were found in contemporary data across two other climatic gradients, seasonal and geographic; O. albidipennis dominated Orius assemblages under warm conditions. Finally, specimens collected in the present survey were significantly smaller than those from the 1980’s, corresponding to significantly smaller individuals collected now during warmer than colder seasons. Taken together, results provide strong support to the hypothesis that temperature is the most likely driver of the observed shifts in species composition and body sizes because (1) historical changes in both species assemblage and body size were associated with rising temperatures in the study region over the last few decades; and (2) similar changes were observed as a result of contemporary drivers that are associated with temperature. PMID:23805249

  3. Forage mass and stocking rate of elephant grass pastures managed under agroecological and conventional systems

    OpenAIRE

    Clair Jorge Olivo; Carlos Alberto Agnolin; Priscila Flôres Aguirre; Cláudia Marques de Bem; Tiago Luís da Ros de Araújo; Michelle Schalemberg Diehl; Gilmar Roberto Meinerz

    2014-01-01

    The objective was to evaluate elephant grass (Pennisetum purpureum Schum.) pastures, under the agroecological and conventional systems, as forage mass and stocking rate. In the agroecological system, the elephant grass was established in rows spaced by 3.0 m from each other. During the cool season ryegrass (Lolium multiflorum Lam.) was established between these rows, which allowed the development of spontaneous growth species during the warm season. In the conventional system the elephant gra...

  4. Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions

    Science.gov (United States)

    Freund, Mandy; Henley, Benjamin J.; Karoly, David J.; Allen, Kathryn J.; Baker, Patrick J.

    2017-11-01

    Australian seasonal rainfall is strongly affected by large-scale ocean-atmosphere climate influences. In this study, we exploit the links between these precipitation influences, regional rainfall variations, and palaeoclimate proxies in the region to reconstruct Australian regional rainfall between four and eight centuries into the past. We use an extensive network of palaeoclimate records from the Southern Hemisphere to reconstruct cool (April-September) and warm (October-March) season rainfall in eight natural resource management (NRM) regions spanning the Australian continent. Our bi-seasonal rainfall reconstruction aligns well with independent early documentary sources and existing reconstructions. Critically, this reconstruction allows us, for the first time, to place recent observations at a bi-seasonal temporal resolution into a pre-instrumental context, across the entire continent of Australia. We find that recent 30- and 50-year trends towards wetter conditions in tropical northern Australia are highly unusual in the multi-century context of our reconstruction. Recent cool-season drying trends in parts of southern Australia are very unusual, although not unprecedented, across the multi-century context. We also use our reconstruction to investigate the spatial and temporal extent of historical drought events. Our reconstruction reveals that the spatial extent and duration of the Millennium Drought (1997-2009) appears either very much below average or unprecedented in southern Australia over at least the last 400 years. Our reconstruction identifies a number of severe droughts over the past several centuries that vary widely in their spatial footprint, highlighting the high degree of diversity in historical droughts across the Australian continent. We document distinct characteristics of major droughts in terms of their spatial extent, duration, intensity, and seasonality. Compared to the three largest droughts in the instrumental period (Federation Drought

  5. Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions

    Directory of Open Access Journals (Sweden)

    M. Freund

    2017-11-01

    Full Text Available Australian seasonal rainfall is strongly affected by large-scale ocean–atmosphere climate influences. In this study, we exploit the links between these precipitation influences, regional rainfall variations, and palaeoclimate proxies in the region to reconstruct Australian regional rainfall between four and eight centuries into the past. We use an extensive network of palaeoclimate records from the Southern Hemisphere to reconstruct cool (April–September and warm (October–March season rainfall in eight natural resource management (NRM regions spanning the Australian continent. Our bi-seasonal rainfall reconstruction aligns well with independent early documentary sources and existing reconstructions. Critically, this reconstruction allows us, for the first time, to place recent observations at a bi-seasonal temporal resolution into a pre-instrumental context, across the entire continent of Australia. We find that recent 30- and 50-year trends towards wetter conditions in tropical northern Australia are highly unusual in the multi-century context of our reconstruction. Recent cool-season drying trends in parts of southern Australia are very unusual, although not unprecedented, across the multi-century context. We also use our reconstruction to investigate the spatial and temporal extent of historical drought events. Our reconstruction reveals that the spatial extent and duration of the Millennium Drought (1997–2009 appears either very much below average or unprecedented in southern Australia over at least the last 400 years. Our reconstruction identifies a number of severe droughts over the past several centuries that vary widely in their spatial footprint, highlighting the high degree of diversity in historical droughts across the Australian continent. We document distinct characteristics of major droughts in terms of their spatial extent, duration, intensity, and seasonality. Compared to the three largest droughts in the instrumental

  6. Positive feedback of greenhouse gas balances to warming is determined by non-growing season emissions in an alpine meadow

    Science.gov (United States)

    Niu, S.; Wang, J.; Quan, Q.; Chen, W.; Wen, X.; Yu, G.

    2017-12-01

    Large uncertainties exist in the sources and sinks of greenhouse gases (CO2, CH4, N2O) in response to climate warming and human activity. So far, numerous previous studies have evaluated the CO2 budget, but little attention has paid to CH4 and N2O budgets and the concurrent balance of these three gases in combination, especially in the non-growing season. Here, we synthesized eddy covariance measurement with the automatic chamber measurements of CO2, CH4, and N2O exposed to three levels of temperature treatments (ambient, +1.5 °C, +2.5 °C) and two disturbance treatments (ummowing, mowing) in an alpine meadow on the Tibetan Plateau. We have found that warming caused increase in CH4 uptake and decrease in N2O emission offset little of the enhancement in CO2 emission, triggering a positive feedback to climate warming. Warming switches the ecosystem from a net sink (-17 ± 14 g CO2-eq m-2 yr-1) in the control to a net source of greenhouse gases of 94 ± 36 gCO2-eq m-2 yr-1 in the plots with +1.5 °C warming treatment, and 177 ± 6 gCO2-eq m-2 yr-1 in the plots with +2.5 °C warming treatment. The changes in the non-growing season balance, rather than those in the growing season, dominate the warming responses of annual greehouse gas balance. And this is not changed by mowing. The dominant role of responses of winter greenhouse gas balance in the positive feedback of ecosystem to climate warming highlights that greenhouse gas balance in cold season has to be considered when assessing climate-carbon cycle feedback.

  7. Seasonality of change: Summer warming rates do not fully represent effects of climate change on lake temperatures

    Science.gov (United States)

    Winslow, Luke; Read, Jordan S.; Hansen, Gretchen J. A.; Rose, Kevin C.; Robertson, Dale M.

    2017-01-01

    Responses in lake temperatures to climate warming have primarily been characterized using seasonal metrics of surface-water temperatures such as summertime or stratified period average temperatures. However, climate warming may not affect water temperatures equally across seasons or depths. We analyzed a long-term dataset (1981–2015) of biweekly water temperature data in six temperate lakes in Wisconsin, U.S.A. to understand (1) variability in monthly rates of surface- and deep-water warming, (2) how those rates compared to summertime average trends, and (3) if monthly heterogeneity in water temperature trends can be predicted by heterogeneity in air temperature trends. Monthly surface-water temperature warming rates varied across the open-water season, ranging from 0.013 in August to 0.073°C yr−1 in September (standard deviation [SD]: 0.025°C yr−1). Deep-water trends during summer varied less among months (SD: 0.006°C yr−1), but varied broadly among lakes (–0.056°C yr−1 to 0.035°C yr−1, SD: 0.034°C yr−1). Trends in monthly surface-water temperatures were well correlated with air temperature trends, suggesting monthly air temperature trends, for which data exist at broad scales, may be a proxy for seasonal patterns in surface-water temperature trends during the open water season in lakes similar to those studied here. Seasonally variable warming has broad implications for how ecological processes respond to climate change, because phenological events such as fish spawning and phytoplankton succession respond to specific, seasonal temperature cues.

  8. Cattle production supplemented on signal grass pastures during the rainy season

    Directory of Open Access Journals (Sweden)

    Manoel Eduardo Rozalino Santos

    2016-01-01

    Full Text Available The effects of four supplement doses (0, 1, 2 and 3 kg animal-1 day-1 on pasture characteristics and on cattle production on Brachiaria decumbens cv. Basilisk pastures in continuous stocking with variable stocking rate were assessed. Experimental design comprised completely randomized blocks with two replications. Concentrate supplementation did not influence mass (4141 kg ha-1 of DM and production rate of forage (97.6 kg ha-1 day-1 of DM, morphological components and nutrition value in hand-plucked forage. Similarly, the number of live (1.607 tillers m-² and dead (636 tillers m-² tillers was not affected by concentrate supplementation. There were linear increases in animal performance (from 0.70 to 1.13 kg animal-1 day-1, stocking rate (1.9 to 3.8 animal unit ha-1 and animal production per area (1.8 to 6.2 kg ha-1 body weight with supplementation doses. Concentrate supplementation does not change the structural characteristics of signal grass pastures managed in continuous stocking at 20 cm high, but increases animal production.

  9. Santa Inês sheep supplementation on urochloa grass pasture during the dry season: intake, nutrient digestibility and performance

    Directory of Open Access Journals (Sweden)

    Paulo José Presídio Almeida

    2012-03-01

    Full Text Available This study was conducted with the objective of evaluating the effect of concentrate supplementation, formulated with different ingredients (Mesquite pod meal, sorghum meal or wheat meal and mineral supplementation on performance, intake and digestibility of nutrients in Santa Inês lambs grazing on urochloa grass during the dry season. Twenty-four uncastrated weaned Santa Inês sheep, with average body weight (BW 20±2 kg with an average of 120 days of age were used in the assay. The experiment lasted 75 days. The animals grazing deferred Urochloa grass (Urochloa mosambicensis (Hack Daudy were distributed into four treatments consisting of mineral supplementation provided ad libitum and concentrated supplements containing mesquite pod meal, sorghum meal or wheat meal, supplied 10 g /kg BW on dry matter basis. The intakes of dry matter (DM and crude protein (CP were affected by the intake of concentrate supplement, regardless of the ingredients used in the supplements, compared with the mineral supplementation treatment, since the consumption of forage was reduced in 30% with mesquite pod meal supplement, and neutral detergent fiber (NDF intake was not affected in relation to treatments. The digestibility of DM and CP were higher for treatments with supplements, and NDF digestibility did not differ between treatments. A significant difference was observed in the values of average daily gain for the treatments with concentrate supplementation compared with the one of mineral supplementation. The supplementation with concentrate in grazing enables improvement of performance, intake and digestibility of nutrients regardless of the ingredient used in the supplement.

  10. Native Grass Community Management Plan for the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Ryon, Michael G [ORNL; Parr, Patricia Dreyer [ORNL; Cohen, Kari [ORNL

    2007-06-01

    Land managers at the Department of Energy's Oak Ridge National Laboratory in East Tennessee are restoring native warm-season grasses and wildflowers to various sites across the Oak Ridge Reservation (ORR). Some of the numerous benefits to planting native grasses and forbs include improved habitat quality for wildlife, improved aesthetic values, lower long-term maintenance costs, and compliance with Executive Order 13112 (Clinton 1999). Challenges to restoring native plants on the ORR include the need to gain experience in establishing and maintaining these communities and the potentially greater up-front costs of getting native grasses established. The goals of the native grass program are generally outlined on a fiscal-year basis. An overview of some of the issues associated with the successful and cost-effective establishment and maintenance of native grass and wildflower stands on the ORR is presented in this report.

  11. Seasonal patterns in soil N availability in the arctic tundra in response to accelerated snowmelt and warming

    Science.gov (United States)

    Darrouzet-Nardi, A.; Wallenstein, M. D.; Steltzer, H.; Sullivan, P.; Melle, C.; Segal, A.; Weintraub, M. N.

    2010-12-01

    Arctic soils contain large stocks of carbon (C) and may act as a significant CO2 source in response to climate warming. However, nitrogen (N) availability limits both plant growth and decomposition in many Arctic sites, and may thus be a key constraint on climate-carbon feedbacks. While current models of tundra ecosystems and their responses to climate change assume that N limits plant growth and C limits decomposition, there is strong evidence to the contrary showing that N can also limit decomposition. For example, the production of both new microbial biomass and enzymes that degrade organic matter appear to be limited by N during the summer. N availability is strongly seasonal: we have previously observed relatively high availability early in the growing season followed by a pronounced crash in tussock tundra soils. To investigate the drivers of N availability throughout the season, we used a field manipulation of tussock tundra growing season length (~4 days acceleration of snowmelt) and air temperature (open top chambers) and a laboratory soil N addition in both early and late season. Nutrient availability throughout the field season was measured at high temporal resolution (25 measurements from soil thaw through early plant senescence). Results from a laboratory experiment in which N was added to early season and late season soils suggests that soil respiration is in fact N limited at both times of the season, though this limitation is temperature dependent with effects most pronounced at 10°C. High-resolution measurements of nutrients in the soil solution and extractable N throughout the season showed that although a nutrient crash in N can be observed mid-season, N availability can still fluctuate later in the season. Finally, effects of the extended growing season and increased air temperature have so far had few effects on soil nutrient N dynamics throughout the summer growing season, suggesting either an insensitivity of N availability to these

  12. Grazing management effects on sediment, phosphorus, and pathogen loading of streams in cool-season grass pastures.

    Science.gov (United States)

    Schwarte, Kirk A; Russell, James R; Kovar, John L; Morrical, Daniel G; Ensley, Steven M; Yoon, Kyoung-Jin; Cornick, Nancy A; Cho, Yong Il

    2011-01-01

    Erosion and runoff from pastures may lead to degradation of surface water. A 2-yr grazing study was conducted to quantify the effects of grazing management on sediment, phosphorus (P), and pathogen loading of streams in cool-season grass pastures. Six adjoining 12.1-ha pastures bisected by a stream in central Iowa were divided into three treatments: continuous stocking with unrestricted stream access (CSU), continuous stocking with restricted stream access (CSR), and rotational stocking (RS). Rainfall simulations on stream banks resulted in greater ( CSR pastures. Bovine enterovirus was shed by an average of 24.3% of cows during the study period and was collected in the runoff of 8.3 and 16.7% of runoff simulations on bare sites in CSU pastures in June and October of 2008, respectively, and from 8.3% of runoff simulations on vegetated sites in CSU pastures in April 2009. Fecal pathogens (bovine coronavirus [BCV], bovine rotavirus group A, and O157:H7) shed or detected in runoff were almost nonexistent; only BCV was detected in feces of one cow in August of 2008. Erosion of cut-banks was the greatest contributor of sediment and P loading to the stream; contributions from surface runoff and grazing animals were considerably less and were minimized by grazing management practices that reduced congregation of cattle by pasture streams. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Different growth responses of C3 and C4 grasses to seasonal water and nitrogen regimes and competition in a pot experiment.

    Science.gov (United States)

    Niu, Shuli; Liu, Weixing; Wan, Shiqiang

    2008-01-01

    Understanding temporal niche separation between C(3) and C(4) species (e.g. C(3) species flourishing in a cool spring and autumn while C(4) species being more active in a hot summer) is essential for exploring the mechanism for their co-existence. Two parallel pot experiments were conducted, with one focusing on water and the other on nitrogen (N), to examine growth responses to water or nitrogen (N) seasonality and competition of two co-existing species Leymus chinensis (C(3) grass) and Chloris virgata (C(4) grass) in a grassland. The two species were planted in either monoculture (two individuals of one species per pot) or a mixture (two individuals including one L. chinensis and one C. virgata per pot) under three different water or N seasonality regimes, i.e. the average model (AM) with water or N evenly distributed over the growing season, the one-peak model (OPM) with more water or N in the summer than in the spring and autumn, and the two-peak model (TPM) with more water or N in the spring and autumn than in the summer. Seasonal water regimes significantly affected biomass in L. chinensis but not in C. virgata, while N seasonality impacted biomass and relative growth rate of both species over the growing season. L. chinensis accumulated more biomass under the AM and TPM than OPM water or N treatments. Final biomass of C. virgata was less impacted by water and N seasonality than that of L. chinensis. Interspecific competition significantly decreased final biomass in L. chinensis but not in C. virgata, suggesting an asymmetric competition between the two species. The magnitude of interspecific competition varied with water and N seasonality. Changes in productivity and competition balance of L. chinensis and C. virgata under shifting seasonal water and N availabilities suggest a contribution of seasonal variability in precipitation and N to the temporal niche separation between C(3) and C(4) species.

  14. Integrated rice-duck farming mitigates the global warming potential in rice season.

    Science.gov (United States)

    Xu, Guochun; Liu, Xin; Wang, Qiangsheng; Yu, Xichen; Hang, Yuhao

    2017-01-01

    Integrated rice-duck farming (IRDF), as a mode of ecological agriculture, is an important way to realize sustainable development of agriculture. A 2-year split-plot field experiment was performed to evaluate the effects of IRDF on methane (CH 4 ) and nitrous oxide (N 2 O) emissions and its ecological mechanism in rice season. This experiment was conducted with two rice farming systems (FS) of IRDF and conventional farming (CF) under four paddy-upland rotation systems (PUR): rice-fallow (RF), annual straw incorporating in rice-wheat rotation system (RWS), annual straw-based biogas residues incorporating in rice-wheat rotation system (RWB), and rice-green manure (RGM). During the rice growing seasons, IRDF decreased the CH 4 emission by 8.80-16.68%, while increased the N 2 O emission by 4.23-15.20%, when compared to CF. Given that CH 4 emission contributed to 85.83-96.22% of global warming potential (GWP), the strong reduction in CH 4 emission led to a significantly lower GWP of IRDF as compared to CF. The reason for this trend was because IRDF has significant effect on dissolved oxygen (DO) and soil redox potential (Eh), which were two pivotal factors for CH 4 and N 2 O emissions in this study. The IRDF not only mitigates the GWP, but also increases the rice yield by 0.76-2.43% compared to CF. Moreover, compared to RWS system, RF, RWB and RGM systems significantly reduced CH 4 emission by 50.17%, 44.89% and 39.51%, respectively, while increased N 2 O emission by 10.58%, 14.60% and 23.90%, respectively. And RWS system had the highest GWP. These findings suggest that mitigating GWP and improving rice yield could be simultaneously achieved by the IRDF, and employing suitable PUR would benefit for relieving greenhouse effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Forage yield and nitrogen nutrition dynamics of warm-season native forage genotypes under two shading levels and in full sunlight

    Directory of Open Access Journals (Sweden)

    Raquel Santiago Barro

    2012-07-01

    Full Text Available The successful achievement of a highly productive understorey pasture in silvopastoral systems depends on the use of well-adapted forage genotypes, showing good agronomic performance and persistence under shading and grazing. In this study, the herbage dry matter yield (DMY and nitrogen nutrition dynamics were determined in three native warm-season grasses (Paspalum regnellii, Paspalum dilatatum and Paspalum notatum and a forage legume (Arachis pintoi under two shading levels compared with full sun. The experiment was conducted in the Campanha region, Bagé, state of Rio Grande do Sul, Brazil, during two evaluation cycles (2008/2009 and 2009/2010. Three shade cloth levels (0%, 50% and 80% of light restriction were applied to the forage genotypes in a split plot design, in which shading levels were the main plot and forage genotypes were the subplots, with three replications. P. regnellii showed the highest accumulated DMY (1500 and 1700 g m-2, respectively, for the first and second evaluation cycles at all shading levels and showed no DMY decreased under the heavy shade (80%. Average DMY over the four genotypes under the 50% shade level was higher or equal compared with full sun. Influence of rainfall was observed on the DMY performance of all genotypes: the positive effect of moderate shading (50% on P. dilatatum and P. notatum DMY was associated to a low soil water availability status. Increased shading level resulted in high nitrogen nutrition index values on grasses, in comparison with full sun. All genotypes performed well under the moderate shading level, but the DMY of both P. regnellii and P. dilatatum and the herbage N content in P. notatum and A. pintoi of all genotypes stood out, showing that those main genotypes are promising to grow in silvopastoral systems at the Campanha region in southern Brazil.

  16. Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem

    DEFF Research Database (Denmark)

    Arndal, M. F.; Schmidt, I. K.; Kongstad, J.

    2013-01-01

    growth would be matched by an increase in root nutrient uptake of NH4+-N and NO3- -N. Root growth was significantly increased by elevated CO2. The roots, however, did not fully compensate for the higher growth with a similar increase in nitrogen uptake per unit of root mass. Hence the nitrogen...... concentration in roots was decreased in elevated CO2, whereas the biomass N pool was unchanged or even increased. The higher net root production in elevated CO2 might be a strategy for the plants to cope with increased nutrient demand leading to a long-term increase in N uptake on a whole-plant basis. Drought...... reduced grass root biomass and N uptake, especially when combined with warming, but CO2 was the most pronounced main factor effect. Several significant interactions of the treatments were found, which indicates that the responses were nonadditive and that changes to multiple environmental changes cannot...

  17. Projected warming portends seasonal shifts of stream temperatures in the Crown of the Continent Ecosystem, USA and Canada

    Science.gov (United States)

    Jones, Leslie A.; Muhlfeld, Clint C.; Marshall, Lucy A.

    2017-01-01

    Climate warming is expected to increase stream temperatures in mountainous regions of western North America, yet the degree to which future climate change may influence seasonal patterns of stream temperature is uncertain. In this study, a spatially explicit statistical model framework was integrated with empirical stream temperature data (approximately four million bi-hourly recordings) and high-resolution climate and land surface data to estimate monthly stream temperatures and potential change under future climate scenarios in the Crown of the Continent Ecosystem, USA and Canada (72,000 km2). Moderate and extreme warming scenarios forecast increasing stream temperatures during spring, summer, and fall, with the largest increases predicted during summer (July, August, and September). Additionally, thermal regimes characteristic of current August temperatures, the warmest month of the year, may be exceeded during July and September, suggesting an earlier and extended duration of warm summer stream temperatures. Models estimate that the largest magnitude of temperature warming relative to current conditions may be observed during the shoulder months of winter (April and November). Summer stream temperature warming is likely to be most pronounced in glacial-fed streams where models predict the largest magnitude (> 50%) of change due to the loss of alpine glaciers. We provide the first broad-scale analysis of seasonal climate effects on spatiotemporal patterns of stream temperature in the Crown of the Continent Ecosystem for better understanding climate change impacts on freshwater habitats and guiding conservation and climate adaptation strategies.

  18. Corresponding Relation between Warm Season Precipitation Extremes and Surface Air Temperature in South China

    Institute of Scientific and Technical Information of China (English)

    SUN; Wei; LI; Jian; YU; Ru-Cong

    2013-01-01

    Hourly data of 42 rain gauges over South China during 1966–2005 were used to analyze the corresponding relation between precipitation extremes and surface air temperature in the warm season(May to October).The results show that below 25℃,both daily and hourly precipitation extremes in South China increase with rising temperature.More extreme events transit to the two-time Clausius-Clapeyron(CC)relationship at lower temperatures.Daily as well as hourly precipitation extremes have a decreasing tendency nearly above 25℃,among which the decrease of hourly extremes is much more significant.In order to investigate the efects of rainfall durations,hourly precipitation extremes are presented by short duration and long duration precipitation,respectively.Results show that the dramatic decrease of hourly rainfall intensities above 25℃ is mainly caused by short duration precipitation,and long duration precipitation extremes rarely occur in South China when surface air temperature surpasses 28℃.

  19. Linkage Between Hourly Precipitation Events and Atmospheric Temperature Changes over China during the Warm Season

    Science.gov (United States)

    Miao, Chiyuan; Sun, Qiaohong; Borthwick, Alistair G. L.; Duan, Qingyun

    2016-01-01

    We investigated changes in the temporospatial features of hourly precipitation during the warm season over mainland China. The frequency and amount of hourly precipitation displayed latitudinal zonation, especially for light and moderate precipitation, which showed successive downward change over time in northeastern and southern China. Changes in the precipitation amount resulted mainly from changes in frequency rather than changes in intensity. We also evaluated the linkage between hourly precipitation and temperature variations and found that hourly precipitation extreme was more sensitive to temperature than other categories of precipitation. A strong dependency of hourly precipitation on temperature occurred at temperatures colder than the median daily temperature; in such cases, regression slopes were greater than the Clausius-Clapeyron (C-C) relation of 7% per degree Celsius. Regression slopes for 31.6%, 59.8%, 96.9%, and 99.1% of all stations were greater than 7% per degree Celsius for the 75th, 90th, 99th, and 99.9th percentiles for precipitation, respectively. The mean regression slopes within the 99.9th percentile of precipitation were three times the C-C rate. Hourly precipitation showed a strong negative relationship with daily maximum temperature and the diurnal temperature range at most stations, whereas the equivalent correlation for daily minimum temperature was weak. PMID:26931350

  20. Seasonal variations in methane fluxes in response to summer warming and leaf litter addition in a subarctic heath ecosystem

    Science.gov (United States)

    Pedersen, Emily Pickering; Elberling, Bo; Michelsen, Anders

    2017-08-01

    Methane (CH4) is a powerful greenhouse gas controlled by both biotic and abiotic processes. Few studies have investigated CH4 fluxes in subarctic heath ecosystems, and climate change-induced shifts in CH4 flux and the overall carbon budget are therefore largely unknown. Hence, there is an urgent need for long-term in situ experiments allowing for the study of ecosystem processes over time scales relevant to environmental change. Here we present in situ CH4 and CO2 flux measurements from a wet heath ecosystem in northern Sweden subjected to 16 years of manipulations, including summer warming with open-top chambers, birch leaf litter addition, and the combination thereof. Throughout the snow-free season, the ecosystem was a net sink of CH4 and CO2 (CH4 -0.27 mg C m-2 d-1; net ecosystem exchange -1827 mg C m-2 d-1), with highest CH4 uptake rates (-0.70 mg C m-2 d-1) during fall. Warming enhanced net CO2 flux, while net CH4 flux was governed by soil moisture. Litter addition and the combination with warming significantly increased CH4 uptake rates, explained by a pronounced soil drying effect of up to 32% relative to ambient conditions. Both warming and litter addition also increased the seasonal average concentration of dissolved organic carbon in the soil. The site was a carbon sink with a net uptake of 60 g C m-2 over the snow-free season. However, warming reduced net carbon uptake by 77%, suggesting that this ecosystem type might shift from snow-free season sink to source with increasing summer temperatures.

  1. Effects of species diversity on seasonal variation in herbage yield and nutritive value of seven binary grass-legume mixtures and pure grass under cutting

    DEFF Research Database (Denmark)

    Elgersma, Anjo; Søegaard, Karen

    2016-01-01

    Intensively managed sown temperate grasslands are generally of low species diversity, although swards based on grass-legume mixtures may have superior productivity and herbage quality than grass-only swards. We conducted a cutting experiment over two years to test the effect of species composition...... and diversity on herbage yield, contents of N, neutral detergent fibre (NDF) and in vitro organic matter digestibility (IVOMD). Perennial ryegrass (PR, Lolium perenne) was sown alone and with each of four forage legumes: red clover (RC, Trifolium pratense), lucerne (LU, Medicago sativa), birdsfoot trefoil (BT......, Lotus corniculatus) and white clover (WC, Trifolium repens); WC was also sown with hybrid ryegrass (HR, Lolium × boucheanum), meadow fescue (MF, Festuca pratensis) and timothy (TI, Phleum pratense). Herbage productivity was lowest in pure PR followed by PR/BT, and highest in PR/RC; this mixture had...

  2. Distribution and seasonal change of the Tsugaru warm current water off Rokkasho

    International Nuclear Information System (INIS)

    Shima, Shigeki; Nakayama, Tomoharu; Iseda, Kenichi; Nishizawa, Keisuke; Gasa, Shinichi; Suto, Kazuhiko; Sakurai, Satoshi; Oguri, Kazumasa; Kouzuma, Kiyotake

    2000-01-01

    The first commercial spent fuel reprocessing plant in Japan is being installed in Rokkasho-mura, Aomori Prefecture. Decontaminated liquid effluents in its operation will be released into a sea. In accessing the environmental impact of radionuclides discharged into a sea, it is important that the patterns of water movements around the discharge outlet are clarified. This area off Rokkasho is an open coast, where the Tsugaru Warm Current Water (TWC), the cold Oyashio and the warm Kuroshio Extension meet. Therefore, it is considered that complicated water circulations will be formed around the region of the wastewater outlet. Current structures of the coastal water near the ocean outlet were investigated by use of mooring current meters/ADCPs, a towing-ADCP, and some CTD observations. In addition, extensive observations with CTD and a shipboard ADCP were made in detail around the off Rokkasho (Shimokita Peninsula) to evaluate the distribution and the seasonal change of the TWC. These observations were carried out five times in September 1997 to August 1999. Gyre mode and coastal mode of the TWC experimentally pointed out by Conlon are found by those investigations. In the gyre mode, the large eddy more than 100 km in diameter is found in the east part of the Tsugaru Strait, which has the vertical structure of 1,000 m in depth. From the current measurements by shipboard ADCP, the velocity of the TWC was more than three knots and the width of its fastest region about 30km at that mode. On the other hand, in the coastal mode, the TWC flows along the continental slope off Rokkasho (ca five miles off the coast) and is about 400m thick in depth. The TWC affects the layers below the sill depth of the Tsugaru Strait. In the gyre mode the TWC flows northward along the slope off Rokkasho, however, around the coastal zone standing near to the outlet, southward flow was observed predominantly. At the coastal mode, the northward flow was mostly observed around the coastal area

  3. Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland.

    Science.gov (United States)

    Eggemeyer, Kathleen D; Awada, Tala; Harvey, F Edwin; Wedin, David A; Zhou, Xinhua; Zanner, C William

    2009-02-01

    We used the natural abundance of stable isotopic ratios of hydrogen and oxygen in soil (0.05-3 m depth), plant xylem and precipitation to determine the seasonal changes in sources of soil water uptake by two native encroaching woody species (Pinus ponderosa P. & C. Lawson, Juniperus virginiana L.), and two C(4) grasses (Schizachyrium scoparium (Michx.) Nash, Panicum virgatum L.), in the semiarid Sandhills grasslands of Nebraska. Grass species extracted most of their water from the upper soil profile (0.05-0.5 m). Soil water uptake from below 0.5 m depth increased under drought, but appeared to be minimal in relation to the total water use of these species. The grasses senesced in late August in response to drought conditions. In contrast to grasses, P. ponderosa and J. virginiana trees exhibited significant plasticity in sources of water uptake. In winter, tree species extracted a large fraction of their soil water from below 0.9 m depth. In spring when shallow soil water was available, tree species used water from the upper soil profile (0.05-0.5 m) and relied little on water from below 0.5 m depth. During the growing season (May-August) significant differences between the patterns of tree species water uptake emerged. Pinus ponderosa acquired a large fraction of its water from the 0.05-0.5 and 0.5-0.9 m soil profiles. Compared with P. ponderosa, J. virginiana acquired water from the 0.05-0.5 m profile during the early growing season but the amount extracted from this profile progressively declined between May and August and was mirrored by a progressive increase in the fraction taken up from 0.5-0.9 m depth, showing plasticity in tracking the general increase in soil water content within the 0.5-0.9 m profile, and being less responsive to growing season precipitation events. In September, soil water content declined to its minimum, and both tree species shifted soil water uptake to below 0.9 m. Tree transpiration rates (E) and water potentials (Psi) indicated

  4. Effect of sand versus grass training surfaces during an 8-week pre-season conditioning programme in team sport athletes.

    Science.gov (United States)

    Binnie, Martyn John; Dawson, Brian; Arnot, Mark Alexander; Pinnington, Hugh; Landers, Grant; Peeling, Peter

    2014-01-01

    This study compared the use of sand and grass training surfaces throughout an 8-week conditioning programme in well-trained female team sport athletes (n = 24). Performance testing was conducted pre- and post-training and included measures of leg strength and balance, vertical jump, agility, 20 m speed, repeat speed (8 × 20 m every 20 s), as well as running economy and maximal oxygen consumption (VO2max). Heart rate (HR), training load (rating of perceived exertion (RPE) × duration), movement patterns and perceptual measures were monitored throughout each training session. Participants completed 2 × 1 h conditioning sessions per week on sand (SAND) or grass (GRASS) surfaces, incorporating interval training, sprint and agility drills, and small-sided games. Results showed a significantly higher (P < 0.05) HR and training load in the SAND versus GRASS group throughout each week of training, plus some moderate effect sizes to suggest lower perceptual ratings of soreness and fatigue on SAND. Significantly greater (P < 0.05) improvements in VO2max were measured for SAND compared to GRASS. These results suggest that substituting sand for grass training surfaces throughout an 8-week conditioning programme can significantly increase the relative exercise intensity and training load, subsequently leading to superior improvements in aerobic fitness.

  5. Effects of maturity and harvest season of grass-clover silage and of forage-to-concentrate ratio on milk production of dairy cows

    DEFF Research Database (Denmark)

    Alstrup, L; Søegaard, K; Weisbjerg, M R

    2016-01-01

    This study examined the effects of maturity and season of harvest of grass-clover silages and forage:concentrate ratio (FCR) on feed intake, milk production, chewing activity, digestibility, and fecal consistency of Holstein dairy cows. Comparison included 2 cuts in spring season (early and late......) and 2 cuts in summer season (early and late) combined with high FCR (80:20; HFCR) and low FCR (50:50; LFCR). The experiment included 24 lactating Holstein cows arranged as 2 repeated 4 × 4 Latin squares with four 21-d periods and included measurements of feed composition, feed intake, milk production...... digestible than late maturity cuts, which was also reflected in a lower concentration of neutral detergent fiber (NDF) in early maturity cuts, whereas summer cuts had a higher crude protein concentration than spring cuts. Increased maturity decreased the intake of DM and energy, increased NDF intake...

  6. Global warming related transient albedo feedback in the Arctic and its relation to the seasonality of sea ice

    Science.gov (United States)

    Andry, Olivier; Bintanja, Richard; Hazeleger, Wilco

    2015-04-01

    The Arctic is warming two to three times faster than the global average. Arctic sea ice cover is very sensitive to this warming and has reached historic minima in late summer in recent years (i.e. 2007, 2012). Considering that the Arctic Ocean is mainly ice-covered and that the albedo of sea ice is very high compared to that of open water, the change in sea ice cover is very likely to have a strong impact on the local surface albedo feedback. Here we quantify the temporal changes in surface albedo feedback in response to global warming. Usually feedbacks are evaluated as being representative and constant for long time periods, but we show here that the strength of climate feedbacks in fact varies strongly with time. For instance, time series of the amplitude of the surface albedo feedback, derived from future climate simulations (CIMP5, RCP8.5 up to year 2300) using a kernel method, peaks around the year 2100. This maximum is likely caused by an increased seasonality in sea-ice cover that is inherently associated with sea ice retreat. We demonstrate that the Arctic average surface albedo has a strong seasonal signature with a maximum in spring and a minimum in late summer/autumn. In winter when incoming solar radiation is minimal the surface albedo doesn't have an important effect on the energy balance of the climate system. The annual mean surface albedo is thus determined by the seasonality of both downwelling shortwave radiation and sea ice cover. As sea ice cover reduces the seasonal signature is modified, the transient part from maximum sea ice cover to its minimum is shortened and sharpened. The sea ice cover is reduced when downwelling shortwave radiation is maximum and thus the annual surface albedo is drastically smaller. Consequently the change in annual surface albedo with time will become larger and so will the surface albedo feedback. We conclude that a stronger seasonality in sea ice leads to a stronger surface albedo feedback, which accelerates

  7. Seasonal and inter-annual variation of Beryllium-7 deposition in birch-tree leaves and grass in the northeast upland area of the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Poeschl, Michael, E-mail: poschl@mendelu.c [Department of Molecular Biology and Radiobiology, Faculty of Agronomy, Mendel University of Agriculture in Brno, Zemedelska 1, 61300 Brno (Czech Republic); Brunclik, Tomas, E-mail: brunclik@georadis.co [Georadis s.r.o., Hudcova 56b, 621 00 Brno (Czech Republic); Hanak, Jaromir, E-mail: jaromir.hanak@geology.c [Czech Geological Survey, Department of Environmental Geology and Geophysics, Leitnerova 22, 658 69 Brno (Czech Republic)

    2010-09-15

    The activity concentrations of Beryllium-7 ({sup 7}Be), a naturally occurring radioisotope produced in the atmosphere, were measured in leaves of birch-trees, above-ground parts of grass, soil and rainwater in the mountain massive Kralicky Sneznik (the northeast of the Czech Republic, altitude about 750 m) in the years of 2005, 2006 and 2007. Dried and ground samples of the plants and soils, and water samples from wet deposition were used to determine the {sup 7}Be content using a semiconductor gamma spectrometer. The {sup 7}Be values ranged from 147.0 to 279.6 Bq kg{sup -1}, from 48.7 to 740.8 Bq kg{sup -1}, from 2.1 to 8.7 Bq kg{sup -1}, and from 0.6 to 1.9 Bq kg{sup -1} in birch-tree leaves, grass samples, soils, and rainwater, respectively. Insignificant inter-annual variations but significant increase in the {sup 7}Be activity concentrations during the spring and summer months were observed in birch-tree leaves and grass samples. The seasonal variation of the {sup 7}Be concentrations in grass samples correlated (R{sup 2} = 0.4663 and 0.6489) with precipitation. No similar correlation was found for {sup 7}Be in birch-tree leaves. Beryllium-7 content in birch-tree leaves and in aerial parts of grass was mainly caused by direct transport of {sup 7}Be from wet deposition into aerial parts of the observed plants.

  8. Soil Moisture and Sea Surface Temperatures equally important for Land Climate in the Warm Season

    Science.gov (United States)

    Orth, R.; Seneviratne, S. I.

    2015-12-01

    Both sea surface temperatures (SSTs) and soil moisture (SM) are important drivers of climate variability over land. In this study we present a comprehensive comparison of SM versus SST impacts on land climate in the warm season. We perform ensemble experiments with the Community Earth System Model (CESM) where we set SM or SSTs to median conditions, respectively, to remove their inter-annual variability, whereby the other component - SST or SM - is still interactively computed. In contrast to earlier experiments performed with prescribed SSTs, our experiments suggest that SM is overall as important as SSTs for land climate, not only in the midlatitudes but also in the tropics and subtropics. Mean temperature and precipitation are reduced by 0.1-0.5 K and 0-0.2 mm, respectively, whereas their variability at different time scales decreases by 10-40% (temperature) and 0-10% (precipitation) when either SM or SSTs are prescribed. Also drought occurrence is affected, with mean changes in the maximum number of cumulative dry days of 0-0.75 days. Both SM and SST-induced changes are strongest for hot temperatures (up to 0.7 K, and 50%), extreme precipitation (up to 0.4 mm, and 20%), and strong droughts (up to 2 days). Local climate changes in response to removed SM variability are controlled - to first order - by the land-atmosphere coupling and the natural SM variability. SST-related changes are partly controlled by the relation of local temperature or precipitation with the El Niño-Southern Oscillation. Moreover removed SM or SST variabilities both induce remote effects by impacting the atmospheric circulation. Our results are similar for the present day and the end of the century. We investigate the inter-dependency between SM and SST and find a sufficient degree of independence for the purpose of this study. The robustness of our findings is shown by comparing the response of CESM to removed SM variability with four other global climate models. In summary, SM and SSTs

  9. Contribution of trees and grasses to ecosystem fluxes of water, carbon, and energy throughout the seasons under different nutrient availability

    Science.gov (United States)

    El-Madany, T. S.; Migliavacca, M.; Perez-Priego, O.; Luo, Y.; Moreno, G.; Carrara, A.; Kolle, O.; Reichstein, M.

    2017-12-01

    In semi-arid savanna type ecosystems, the carbon and water cycle are closely related to each other. Water availability is the main driver for the development and phenology of the vegetation, especially for annual plants. Depending on tree density, nutrient availability and species the contribution of the tree- and the herbaceous layer to ecosystem fluxes can vary substantially. We present data from an ecosystem scale nutrient manipulation experiment within a Mediterranean savanna type ecosystem which is used for cattle. The footprint areas of two out of three ecosystem eddy co-variance (EC) towers were fertilized with nitrogen (NT) and nitrogen plus phosphorous (NPT) while the third one served as the control tower (CT). At each ecosystem EC-tower an additional herbaceous layer tower was installed that only sampled fluxes from the herbaceous layer. Under certain assumptions flux differences between the ecosystem EC and the herbaceous layer EC systems can be considered as the contribution of the trees to the ecosystem fluxes. Based on phenology of the herbaceous layer estimated through green-chromatic-coordinates from digital imagery the year was separated into spring, senescence, regreening, and winter. The focus of the analysis is (i) the evaluation of the method and how it works throughout the different seasons and (ii) the quantification of the contribution of trees and grasses to ecosystem fluxes of water, carbon, and energy under different environmental conditions and nutrient stoichiometry. The contribution of the trees to total ecosystem fluxes is variable in time. Especially, during the beginning of the senescence period high evapotranspiration rates and largest carbon uptake are measured while the contribution to sensible heat fluxes is largest during the end of the summer. During the regreening and winter the contribution of ET is relatively constant around 0.25 mm d-1. During the peak of the greenness ET and carbon flux of the herbaceous EC tower are

  10. In a warming climate, just how predictable are temperature extremes at weather and seasonal time scales?

    CSIR Research Space (South Africa)

    Landman, WA

    2011-10-01

    Full Text Available stream_source_info Landman7_2011.pdf.txt stream_content_type text/plain stream_size 3538 Content-Encoding ISO-8859-1 stream_name Landman7_2011.pdf.txt Content-Type text/plain; charset=ISO-8859-1 In a warming climate... at UK Met Office N9 members SA Japan UKUSA USA Brazil* SA SASA * IBSA-Ocean In use Near future Far future VCM/UTCM ENSEMBLES Strong anthropogenically forced warming trends have been observed over southern Africa and are projected...

  11. Seasonal modulation of the Asian summer monsoon between the Medieval Warm Period and Little Ice Age: a multi model study

    Science.gov (United States)

    Kamae, Youichi; Kawana, Toshi; Oshiro, Megumi; Ueda, Hiroaki

    2017-12-01

    Instrumental and proxy records indicate remarkable global climate variability over the last millennium, influenced by solar irradiance, Earth's orbital parameters, volcanic eruptions and human activities. Numerical model simulations and proxy data suggest an enhanced Asian summer monsoon during the Medieval Warm Period (MWP) compared to the Little Ice Age (LIA). Using multiple climate model simulations, we show that anomalous seasonal insolation over the Northern Hemisphere due to a long cycle of orbital parameters results in a modulation of the Asian summer monsoon transition between the MWP and LIA. Ten climate model simulations prescribing historical radiative forcing that includes orbital parameters consistently reproduce an enhanced MWP Asian monsoon in late summer and a weakened monsoon in early summer. Weakened, then enhanced Northern Hemisphere insolation before and after June leads to a seasonally asymmetric temperature response over the Eurasian continent, resulting in a seasonal reversal of the signs of MWP-LIA anomalies in land-sea thermal contrast, atmospheric circulation, and rainfall from early to late summer. This seasonal asymmetry in monsoon response is consistently found among the different climate models and is reproduced by an idealized model simulation forced solely by orbital parameters. The results of this study indicate that slow variation in the Earth's orbital parameters contributes to centennial variability in the Asian monsoon transition.[Figure not available: see fulltext.

  12. Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing

    NARCIS (Netherlands)

    Bintanja, R.; Krikken, F.

    2016-01-01

    Observed and projected climate warming is strongest in the Arctic regions, peaking in autumn/winter. Attempts to explain this feature have focused primarily on identifying the associated climate feedbacks, particularly the ice-Albedo and lapse-rate feedbacks. Here we use a state-of-The-Art global

  13. Development of abiotic-stress resistant warm season trufgrasses by proton-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y. W.; Kim, J. Y.; Jeong, S. H. [Korea Univ., Seoul (Korea, Republic of)

    2007-04-15

    The direct use of mutation is a valuable approach to generate genetic variation in crop species by altering agronomically useful major traits. The proton beam, as a mutagen, was applied to improve resistance traits of Zoysia grass under various abiotic stresses. Proton beam was irradiated to mature dry seeds of Zenith (Zoysia grass), which is well-adapted to Korean climate, using a proton- accelerator with seven different doses (50, 100, 150, 200, 250, 300, 400 Gy). Individual seedling of M1 plant was transplanted from the seed bed and allowed to reach appropriate plant mass. Clones that showed superior growth were chosen and transplanted to pots for further clone propagation and field evaluation. Growth characteristics of turfgrass, such as plant height, leaf length, leaf width, number of tiller were evaluated ninety days after sowing. Although large variation within each dose, noticeable differences were found among different irradiated doses. Most of the mutant clones derived from the irradiation treatment showed more vigorous growth than the control plants. RAPD (Random Amplified Polymorphic DNA) and AFLP (Amplified Fragment Length Polymorphism) methods were conducted to analyze genomic variations associated with proton beam irradiation. In order to establish selection criteria for selection of salt-stress resistance plants, an in vitro method that is able to select salt-stress resistant mutants in liquid media without ambient disturbances. Total 647 predominance clones that were considered as abiotic stress resistant mutants were transplanted to the field for further evaluation.

  14. Root Characteristics of Perennial Warm-Season Grasslands Managed for Grazing and Biomass Production

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2013-07-01

    Full Text Available Minirhizotrons were used to study root growth characteristics in recently established fields dominated by perennial C4-grasses that were managed either for cattle grazing or biomass production for bioenergy in Virginia, USA. Measurements over a 13-month period showed that grazing resulted in smaller total root volumes and root diameters. Under biomass management, root volume was 40% higher (49 vs. 35 mm3 and diameters were 20% larger (0.29 vs. 0.24 mm compared to grazing. While total root length did not differ between grazed and biomass treatments, root distribution was shallower under grazed areas, with 50% of total root length in the top 7 cm of soil, compared to 41% in ungrazed exclosures. These changes (i.e., longer roots and greater root volume in the top 10 cm of soil under grazing but the reverse at 17–28 cm soil depths were likely caused by a shift in plant species composition as grazing reduced C4 grass biomass and allowed invasion of annual unsown species. The data suggest that management of perennial C4 grasslands for either grazing or biomass production can affect root growth in different ways and this, in turn, may have implications for the subsequent carbon sequestration potential of these grasslands.

  15. Periodic regulation of expression of genes for kisspeptin, gonadotropin-inhibitory hormone and their receptors in the grass puffer: Implications in seasonal, daily and lunar rhythms of reproduction.

    Science.gov (United States)

    Ando, Hironori; Shahjahan, Md; Kitahashi, Takashi

    2018-04-03

    The seasonal, daily and lunar control of reproduction involves photoperiodic, circadian and lunar changes in the activity of kisspeptin, gonadotropin-inhibitory hormone (GnIH) and gonadotropin-releasing hormone (GnRH) neurons. These changes are brought through complex networks of light-, time- and non-photic signal-dependent control mechanisms, which are mostly unknown at present. The grass puffer, Takifugu alboplumbeus, a semilunar spawner, provides a unique and excellent animal model to assess this question because its spawning is synchronized with seasonal, daily and lunar cycles. In the diencephalon, the genes for kisspeptin, GnIH and their receptors showed similar expression patterns with clear seasonal and daily oscillations, suggesting that they are regulated by common mechanisms involving melatonin, circadian clock and water temperature. For implications in semilunar-synchronized spawning rhythm, melatonin receptor genes showed ultradian oscillations in expression with the period of 14.0-15.4 h in the pineal gland. This unique ultradian rhythm might be driven by circatidal clock. The possible circatidal clock and circadian clock in the pineal gland may cooperate to drive circasemilunar rhythm to regulate the expression of the kisspeptin, GnIH and their receptor genes. On the other hand, high temperature (over 28 °C) conditions, under which the expression of the kisspeptin and its receptor genes is markedly suppressed, may provide an environmental signal that terminates reproduction at the end of breeding period. Taken together, the periodic regulation of the kisspeptin, GnIH and their receptor genes by melatonin, circadian clock and water temperature may be important in the precisely-timed spawning of the grass puffer. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Protozoans bacterivory in a subtropical environment during a dry/cold and a rainy/warm season

    Directory of Open Access Journals (Sweden)

    Karina F. Hisatugo

    2014-01-01

    Full Text Available In aquatic ecosystems, bacteria are controlled by several organisms in the food chain, such as protozoa, that use them as food source. This study aimed to quantify the ingestion and clearance rates of bacteria by ciliates and heterotrophic nanoflagellates (HNF in a subtropical freshwater reservoir (Monjolinho reservoir -São Carlos -Brazil during one year period, in order to verify their importance as consumers and controllers of bacteria in two seasons, a dry/cold and a rainy/warm one. For this purpose, in situ bacterivory experiments were carried out bimonthly using fluorescently labeled bacteria with 5-(4,6 diclorotriazin-2yl aminofluorescein (DTAF. Although ciliates have shown the highest individual ingestion and clearance rates, bacterivory was dominated by HNF, who showed higher population ingestion rates (mean of 9,140 bacteria h-1mL-1 when compared to ciliates (mean of 492 bacteria h-1mL-1. The greater predation impact on bacterial communities was caused mainly by the small HNF (< 5 µm population, especially in the rainy season, probably due to the abundances of these organisms, the precipitation, trophic index state and water temperature that were higher in this period. Thus, the protozoan densities together with environmental variables were extremely relevant in determining the seasonal pattern of bacterivory in Monjolinho reservoir.

  17. SEASONALITY OF ANNUAL PLANT ESTABLISHMENT INFLUENCES THE INTERACTIONBETWEEN THE NON-NATIVE ANNUAL GRASS BROMUS MADRITENSIS SSP. RUBENS AND MOJAVE DESERT PERENNIALS

    Energy Technology Data Exchange (ETDEWEB)

    L A. DEFALCO; G. C. FERNANDEZ; R. S. NOWAK

    2004-01-01

    Competition between native and non-native species can change the composition and structure of plant communities, but in deserts the timing of non-native plant establishment can modulate their impacts to native species. In a field experiment, we varied densities of the non-native annual grass Bromus madritensis ssp. rubens around individuals of three native perennials--Larrea iridentata, Achnatherum hymenoides, and Pleuraphis rigida--in either winter or spring. Additional plots were prepared for the Same perennial species and seasons, but with a mixture of native annual species. Relative growth rates of perennial shoots (RGRs) declined with increasing Bromus biomass when Bromus that was established in winter had 2-3 mo of growth and high water use before perennial growth began. However, this high water use did not significantly reduce water potentials for the perennials, suggesting Bromus that established earlier depleted other soil resources, such as N, otherwise used by perennial plants. Spring-established Bromus had low biomass even at higher densities and did not effectively reduce RGRs, resulting in an overall lower impact to perennials than when Bromus was established in winter. Similarly, growth and reproduction of perennials with mixed annuals as neighbors did not differ from those with Bromus neighbors of equivalent biomass, but densities of these annuals did not support the high biomass necessary to reduce perennial growth. Thus, impacts of native Mojave Desert annuals to perennials are expected to be lower than those of Bromus because seed dormancy and narrow requirements for seedling survivorship produce densities and biomass lower than those achieved by Bromus. In comparing the effects of Bromus among perennial species, the impact of increased Bromus biomass on RGR was lower for Larrea than for the two perennial grasses, probably because Lurrea maintains low growth rates throughout the year, even after Bromus has completed its life cycle. This contrasts

  18. Seasonal growth and translocation of some major and trace elements in two Mediterranean grasses (Stipa tenacissima Loefl. ex L. and Lygeum spartum Loefl. ex L.)

    Science.gov (United States)

    Nedjimi, Bouzid

    2018-05-01

    The rangelands of Stipa tenacissima and Lygeum spartum (Poaceae) constitute one of the main typical ecosystems in the Iberian Peninsula and North Africa. This study examines the seasonal changes in aboveground biomass accumulation and translocation of some major (Ca and K) and trace elements (Br, Cr, Cu, Fe, Mn, Sr and Zn) from topsoil to shoots of these perennial grasses. Species, season and their interaction significantly affected the dry biomass (DW) and chemical composition of both species and their surrounding soil. The maximum DW was found in spring due to high physiological activity and was correlated positively with rainfall. A significant relationship between seasons and chemical elements was found. For both species the maximum concentrations of Ca, Cu and Zn were found in spring season. However L. spartum had the highest concentrations of K, Cr, Br, and Sr in autumn season, indicating exceptional ability of these species to accumulate large contents of these elements during the active growth periods. By way of contrast, in the topsoil the highest concentrations of almost all chemical elements were found in summer and autumn. Principal component analyses (PCA) showed that growth of L. spartum was highly associated with K, Ca, Zn, Br and Sr, whereas topsoil was correlated with Cu, Cr, Fe and Mn concentrations. Translocation factor (TFx) of chemical elements was not identical across the two species, demonstrating inter-specific variability to uptake chemical elements. The maximum values of TFx were recorded for K, Ca and Sr especially for L. spartum. To cope with arid conditions, S. tenacissima and L. spartum sprout quickly by increasing their rate of growth and nutrient uptake as soon as soil water is available after the rain.

  19. Weather and plant age affect the levels of steroidal saponin and Pithomyces chartarum spores in Brachiaria grass

    Science.gov (United States)

    Brachiaria species are cultivated worldwide in tropical and subtropical climates as the main forage source for ruminants. Numerous tropical and warm-season grasses cause hepatogenous photosensitization, among them several species of Brachiaria. Steroidal saponins present in these plants may be respo...

  20. Dynamics of Necrophagous Insect and Tissue Bacteria for Postmortem Interval Estimation During the Warm Season in Romania.

    Science.gov (United States)

    Iancu, Lavinia; Sahlean, Tiberiu; Purcarea, Cristina

    2016-01-01

    The estimation of postmortem interval (PMI) is affected by several factors including the cause of death, the place where the body lay after death, and the weather conditions during decomposition. Given the climatic differences among biogeographic locations, the understanding of necrophagous insect species biology and ecology is required when estimating PMI. The current experimental model was developed in Romania during the warm season in an outdoor location. The aim of the study was to identify the necrophagous insect species diversity and dynamics, and to detect the bacterial species present during decomposition in order to determine if their presence or incidence timing could be useful to estimate PMI. The decomposition process of domestic swine carcasses was monitored throughout a 14-wk period (10 July-10 October 2013), along with a daily record of meteorological parameters. The chronological succession of necrophagous entomofauna comprised nine Diptera species, with the dominant presence of Chrysomya albiceps (Wiedemann 1819) (Calliphoridae), while only two Coleoptera species were identified, Dermestes undulatus (L. 1758) and Creophilus maxillosus Brahm 1970. The bacterial diversity and dynamics from the mouth and rectum tissues, and third-instar dipteran larvae were identified using denaturing gradient gel electrophoresis analysis and sequencing of bacterial 16S rRNA gene fragments. Throughout the decomposition process, two main bacterial chronological groups were differentiated, represented by Firmicutes and Gammaproteobacteria. Twenty-six taxa from the rectal cavity and 22 from the mouth cavity were identified, with the dominant phylum in both these cavities corresponding to Firmicutes. The present data strengthen the postmortem entomological and microbial information for the warm season in this temperate-continental area, as well as the role of microbes in carcass decomposition. © The Authors 2015. Published by Oxford University Press on behalf of

  1. Effect of frame size and season on enteric methane (CH4) and carbon dioxide (CO2)emissions in Angus brood cows grazing native tall-grass prairie in central Oklahoma USA

    Science.gov (United States)

    Effect of frame size and season on enteric methane (CH4) and carbon dioxide (CO2) emissions in Angus brood cows grazing native tall-grass prairie in central Oklahoma, USA J.P.S. Neel USDA ARS, El Reno, OK A reduction in enteric CH4 production in ruminants is associated with improved production effic...

  2. Climate and tourism in the Black Forest during the warm season.

    Science.gov (United States)

    Endler, Christina; Matzarakis, Andreas

    2011-03-01

    Climate, climate change and tourism all interact. Part of the public discussion about climate change focusses on the tourism sector, with direct and indirect impacts being of equally high relevance. Climate and tourism are closely linked. Thus, climate is a very decisive factor in choices both of destination and of type of journey (active holidays, wellness, and city tours) in the tourism sector. However, whether choices about destinations or types of trip will alter with climate change is difficult to predict. Future climates can be simulated and projected, and the tendencies of climate parameters can be estimated using global and regional climate models. In this paper, the focus is on climate change in the mountainous regions of southwest Germany - the Black Forest. The Black Forest is one of the low mountain ranges where both winter and summer tourism are vulnerable to climate change due to its southern location; the strongest climatic changes are expected in areas covering the south and southwest of Germany. Moreover, as the choice of destination is highly dependent on good weather, a climatic assessment for tourism is essential. Thus, the aim of this study was to estimate climatic changes in mountainous regions during summer, especially for tourism and recreation. The assessment method was based on human-biometeorology as well as tourism-climatologic approaches. Regional climate simulations based on the regional climate model REMO were used for tourism-related climatic analyses. Emission scenarios A1B and B1 were considered for the time period 2021 to 2050, compared to the 30-year base period of 1971-2000, particularly for the warm period of the year, defined here as the months of March-November. In this study, we quantified the frequency, but not the means, of climate parameters. The study results show that global and regional warming is reflected in an increase in annual mean air temperature, especially in autumn. Changes in the spring show a slight negative

  3. Effects of maturity and harvest season of grass-clover silage and of forage-to-concentrate ratio on milk production of dairy cows.

    Science.gov (United States)

    Alstrup, L; Søegaard, K; Weisbjerg, M R

    2016-01-01

    This study examined the effects of maturity and season of harvest of grass-clover silages and forage:concentrate ratio (FCR) on feed intake, milk production, chewing activity, digestibility, and fecal consistency of Holstein dairy cows. Comparison included 2 cuts in spring season (early and late) and 2 cuts in summer season (early and late) combined with high FCR (80:20; HFCR) and low FCR (50:50; LFCR). The experiment included 24 lactating Holstein cows arranged as 2 repeated 4 × 4 Latin squares with four 21-d periods and included measurements of feed composition, feed intake, milk production and composition, chewing activities, digestibilities, and fecal dry matter (DM) concentration and scoring. Forages were fed as two-thirds grass-clover and one-third corn silage supplemented with either 20 or 50% concentrate. Rations were fed ad libitum as total mixed rations. Early maturity cuts were more digestible than late maturity cuts, which was also reflected in a lower concentration of neutral detergent fiber (NDF) in early maturity cuts, whereas summer cuts had a higher crude protein concentration than spring cuts. Increased maturity decreased the intake of DM and energy, increased NDF intake, and decreased the yield of energy-corrected milk (ECM). Summer cuts increased the ECM yield compared with spring cuts. Milk yield (kg and kilogram of ECM) was numerically higher for cows fed early summer cut, independent of FCR in the ration. Milk protein concentration decreased, or tended to decrease, with maturity. For LFCR, the milk fat concentration increased with maturity resulting in a decreased protein:fat ratio. At HFCR, increased maturity increased the time spent chewing per kilogram of DM. Digestibility of silages was positively correlated with the fecal DM concentration. The DM intake and ECM yield showed no significant response to FCR in the ration, but the milk composition was affected. The LFCR decreased the milk fat percentage and increased the milk protein

  4. Associations between ozone, PM2.5, and four pollen types on emergency department pediatric asthma events during the warm season in New Jersey: a case-crossover study.

    Science.gov (United States)

    Gleason, Jessie A; Bielory, Leonard; Fagliano, Jerald A

    2014-07-01

    Asthma is one of the most common chronic diseases among school-aged children in the United States. Environmental respiratory irritants exacerbate asthma among children. Understanding the impact of a variety of known and biologically plausible environmental irritants and triggers among children in New Jersey - ozone, fine particulate matter (PM2.5), tree pollen, weed pollen, grass pollen and ragweed - would allow for informed public health interventions. Time-stratified case-crossover design was used to study the transient impact of ozone, PM2.5 and pollen on the acute onset of pediatric asthma. Daily emergency department visits were obtained for children aged 3-17 years with a primary diagnosis of asthma during the warm season (April through September), 2004-2007 (inclusive). Bi-directional control sampling was used to select two control periods for each case for a total of 65,562 inclusion days. Since the period of exposure prior to emergency department visit may be the most clinically relevant, lag exposures were investigated (same day (lag0), 1, 2, 3, 4, and 5 as well as 3-day and 5-day moving averages). Multivariable conditional logistic regression controlling for holiday, school-in-session indicator, and 3-day moving average for temperature and relative humidity was used to examine the associations. Odds ratios are based on interquartile range (IQR) increases or 10 unit increases when IQR ranges were narrow. Single-pollutant models as well as multipollutant models were examined. Stratification on gender, race, ethnicity and socioeconomic status was explored. The associations with ozone and PM2.5 were strongest on the same day (lag0) of the emergency department visit (RR IQR=1.05, 95% CI 1.04-1.06) and (RR IQR=1.03, 95% CI 1.02-1.04), respectively, with a decreasing lag effect. Tree and weed pollen were associated with pediatric ED visits; the largest magnitudes of association was with the 5-day average (RR IQR=1.23, 95% CI 1.21-1.25) and (RR 10=1.13, 95% CI 1

  5. Poleward shift and weakening of summer season synoptic activity over India in a warming climate

    Science.gov (United States)

    Ravindran, A. M.; Sandeep, S.; Boos, W. R.; TP, S.; Praveen, V.

    2017-12-01

    One of the main components of the Indian summer monsoon is the presence of low intensity cyclonic systems popularly known as Low Pressure Systems (LPS), which contribute more than half of the precipitation received over the fertile Central Indian region. An average of 13 (±2.5) storms develop each boreal summer, with most originating over the Bay of Bengal (BoB) and adjoining land. These systems typically follow a north-west track along the monsoon trough. Despite its significance, the future variability of these storms is not studied, due to the inadequate representation of these systems in current generation climate models. A series of numerical experiments are performed here using the High Resolution Atmospheric Model (HiRAM) with a horizontal grid spacing of 50 km globally to simulate these rain-bearing systems. One set of simulations represents the historical (HIST) period and the other a late 21st century climate scenario based on the strongest Representative Concentration Pathway (RCP8.5). Four ensemble members of these simulations are run, with sea surface temperatures (SSTs) taken from different CMIP5 GCMs selected for their skill in simulating the Indian monsoon. In addition, ten ensemble members of `decadal' experiments are run for both HIST and RCP8.5 to assess model uncertainty, in which the model is forced with annual cycles of decadal mean SSTs. We show that the strength of monsoon LPS activity would decline as much as 50% by the end of the 21st century, under business as usual emission scenario. The overall reduction in the LPS activity is contributed by a 60% decrease in the frequency of storms over the Bay of Bengal, while the weaker systems that form over the land has increased 10% in a warmer climate. Further analysis suggests that a relatively slower rate of warming over the Bay of Bengal compared to the surrounding regions has resulted in an enhanced moist stability over the main genesis region of LPS, which in turn suppressed the growth of

  6. Characterization of water quality and suspended sediment during cold-season flows, warm-season flows, and stormflows in the Fountain and Monument Creek watersheds, Colorado, 2007–2015

    Science.gov (United States)

    Miller, Lisa D.; Stogner, Sr., Robert W.

    2017-09-01

    From 2007 through 2015, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, conducted a study in the Fountain and Monument Creek watersheds, Colorado, to characterize surface-water quality and suspended-sediment conditions for three different streamflow regimes with an emphasis on characterizing water quality during storm runoff. Data collected during this study were used to evaluate the effects of stormflows and wastewater-treatment effluent discharge on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality samples were collected at 2 sites on Upper Fountain Creek, 2 sites on Monument Creek, 3 sites on Lower Fountain Creek, and 13 tributary sites during 3 flow regimes: cold-season flow (November–April), warm-season flow (May–October), and stormflow from 2007 through 2015. During 2015, additional samples were collected and analyzed for Escherichia coli (E. coli) during dry weather conditions at 41 sites, located in E. coli impaired stream reaches, to help identify source areas and scope of the impairment.Concentrations of E. coli, total arsenic, and dissolved copper, selenium, and zinc in surface-water samples were compared to Colorado in-stream standards. Stormflow concentrations of E. coli frequently exceeded the recreational use standard of 126 colonies per 100 milliliters at main-stem and tributary sites by more than an order of magnitude. Even though median E. coli concentrations in warm-season flow samples were lower than median concentrations in storm-flow samples, the water quality standard for E. coli was still exceeded at most main-stem sites and many tributary sites during warm-season flows. Six samples (three warm-season flow and three stormflow samples) collected from Upper Fountain Creek, upstream from the confluence of Monument Creek, and two stormflow samples collected from Lower Fountain Creek, downstream from the confluence with Monument Creek, exceeded the acute water

  7. A comparative simple method for human bioclimatic conditions applied to seasonally hot/warm cities of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda Martinez, A. [Universidad Veracruzana, Xalapa, Veracruz (Mexico); Garcia Cueto, O.R. [Universidad Autonoma de Baja California, Mexicali, B.C. (Mexico)

    2002-01-01

    The climate of a region is an environmental resource with important implications for things such as thermal comfort, health and productivity of the population. In this work, the bioclimatic comfort was evaluated for seven seasonally warm/hot cities of Mexico by means of the following current indexes: Discomfort Index, Enthalpy Index and Heat Strain Index. Also, the periods during which it is necessary to use air conditioning in the studied cities were calculated from estimated global radiation and hourly data of temperature and relative humidity which made it possible to establish them with high precision. Finally, the useful of the Heat Strain Index is shown. It is a simple index needing available meteorological data to compare bioclimatic conditions of similar sites. [Spanish] El clima regional tiene implicaciones en el confort, la salud y la productividad de la poblacion. En este articulo se presentan las evaluaciones bioclimaticas comparativas de siete ciudades calidas de Mexico. Se aplicaron los indices bioclimaticos de disconfort, entalpia y esfuerzo frente al calor. Se calcularon los periodos para los cuales es necesario el uso de aire acondicionado, a partir de estimaciones de radiacion solar global y de temperatura y humedad horarias medias mensuales. Finalmente se muestra la utilidad y calidad del Indice de esfuerzo frente al calor, el cual requiere solo de datos climatologicos comunes para poder comparar condiciones bioclimaticas de sitios similares.

  8. Coupled prediction of flood response and debris flow initiation during warm and cold season events in the Southern Appalachians, USA

    Science.gov (United States)

    Tao, J.; Barros, A. P.

    2013-07-01

    Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. The first objective of this study is to investigate this hypothesis. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface-groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations, availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions, and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions necessary for the initiation of slope instability, and should therefore be considered explicitly in landslide hazard assessments. Moreover, the relationships between slope stability and interflow are

  9. Effects of pasture management and off-stream water on temporal/spatial distribution of cattle and stream bank characteristics in cool-season grass pastures.

    Science.gov (United States)

    Schwarte, K A; Russell, J R; Morrical, D G

    2011-10-01

    A 2-yr grazing experiment was conducted to assess the effects of grazing management on cattle distribution and pasture and stream bank characteristics. Six 12.1-ha cool-season grass pastures in central Iowa were allotted to 1 of 3 treatments: continuous stocking with unrestricted stream access (CSU), continuous stocking with stream access restricted to 4.9-m-wide stabilized crossings (CSR), or rotational stocking with stream access restricted to a riparian paddock (RP). Pastures were stocked with 15 fall-calving Angus cows (Bos taurus L.) from mid-May to mid-October for 153 d in 2008 and 2009. A global positioning system (GPS) collar recording cow position every 10 min was placed on at least 1 cow per pasture for 2 wk of each month from May through September. Off-stream water was provided to cattle in CSU and CSR treatments during the second of the 2 wk when GPS collars were on the cattle. A black globe temperature relative humidity index (BGTHI) was measured at 10-min intervals to match the time of the GPS measurements. Each month of the grazing season, forage characteristics (sward height, forage mass, and CP, IVDMD, and P concentrations) and bare and fecal-covered ground were measured. Stream bank erosion susceptibility was visually scored in May, August, and October (pre-, mid-, and post-stocking). Cattle in RP and CSR treatments spent less time (P CSR treatment reduced the probability (P CSR and RP treatments in the stream and streamside zones in September and October and in July and September. Streams in pastures with the CSU treatment had less stable banks (P CSR treatments. Results show that time spent by cattle near pasture streams can be reduced by RP or CSR treatments, thereby decreasing risks of sediment and nutrient loading of pasture streams even during periods of increased BGTHI.

  10. Forage accumulation in brachiaria grass under continuous grazing with single or variable height during the seasons of the year

    Directory of Open Access Journals (Sweden)

    Manoel Eduardo Rozalino Santos

    2013-05-01

    Full Text Available The objective of this study was to evaluate grazing management strategies of Brachiaria decumbens cv. Basilisk managed with different heights under continuous grazing with cattle. Two grazing management strategies were evaluated: maintenance of pasture with an average height of 25 cm throughout the experimental period and maintenance of pasture on the average of 15 cm in height during winter, up to 25 cm from the beginning of spring. The split-plot scheme and the randomized block design with four replications were adopted. The grazing management strategies corresponded to the primary factor, while the seasons (winter, spring and summer corresponded to secondary factor. The reduction of the average sward height to 15 cm in the winter resulted, when compared with pasture maintained at 25 cm, in overall higher growth rates (95 kg/ha.day DM and leaf blade (66.1 kg/ha.day DM, as well as higher rates of total accumulation (81.5 kg/ha.day DM and leaf blade (52.6 kg/ha.day DM. The accumulated forage production (from winter to summer was higher in the pasture lowered to 15 cm in winter (25.6 t/ha DM compared with that managed with an average height of 25 cm (22.2 t/ha DM. Regarding the seasons of the year, in the winter, there were lower rates of overall growth (6.4 kg/ha.day DM, leaf blade (5.6 kg/ha.day DM and pseudostem (0.8 kg/ha.day DM, and also lower total (-6.6 kg/ha.day DM and leaf blade (-7.5 kg/ha.day DM accumulation rates. In the spring there was a higher rate of leaf senescence (22.4 kg/ha.day DM. The accumulation of forage is incremented when the pasture of B. decumbens is lowered to 15 cm during the winter, and in the spring and summer, its average height is increased to 25 cm.

  11. Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons, and species in a north-south European gradient

    DEFF Research Database (Denmark)

    Penuelas, J.; Gordon, C.; Llorens, L.

    2004-01-01

    -limited. In the water-stressed southern site, there was no increase in total aboveground plant biomass growth as expected since warming increases water loss, and temperatures in those ecosystems are already close to the optimum for photosynthesis. The southern site presented instead the most negative response...... a 15% increase in total aboveground plant biomass growth in the UK site. Both direct and indirect effects of warming, such as longer growth season and increased nutrient availability, are likely to be particularly important in this and the other northern sites which tend to be temperature...... to the drought treatment consisting of a soil moisture reduction at the peak of the growing season ranging from 33% in the Spanish site to 82% in The Netherlands site. In the Spanish site there was a 14% decrease in total aboveground plant biomass growth relative to control. Flowering was decreased by drought...

  12. The relationship of lightning activity and short-duration rainfall events during warm seasons over the Beijing metropolitan region

    Science.gov (United States)

    Wu, Fan; Cui, Xiaopeng; Zhang, Da-Lin; Qiao, Lin

    2017-10-01

    The relationship between lightning activity and rainfall associated with 2925 short-duration rainfall (SDR) events over the Beijing metropolitan region (BMR) is examined during the warm seasons of 2006-2007, using the cloud-to-ground (CG) and intracloud (IC) lightning data from Surveillance et Alerte Foudre par Interférometrie Radioélectrique (SAFIR)-3000 and 5-min rainfall data from automatic weather stations (AWSs). An optimal radius of 10 km around selected AWSs is used to determine the lightning-rainfall relationship. The lightning-rainfall correlations vary significantly, depending upon the intensity of SDR events. That is, correlation coefficient (R 0.7) for the short-duration heavy rainfall (SDHR, i.e., ≥ 20 mm h- 1) events is found higher than that (R 0.4) for the weak SDR (i.e., 5-10 mm h- 1) events, and lower percentage of the SDHR events (< 10%) than the weak SDR events (40-50%) are observed with few flashes. Significant time-lagged correlations between lightning and rainfall are also found. About 80% of the SDR events could reach their highest correlation coefficients when the associated lightning flashes shift at time lags of < 25 min before and after rainfall begins. Those events with lightning preceding rainfall account for 50-60% of the total SDR events. Better lightning-rainfall correlations can be attained when time lags are incorporated, with the use of total (CG and IC) lightning data. These results appear to have important implications for improving the nowcast of SDHR events.

  13. Spatial and temporal characteristics of warm season convection over Pearl River Delta region, China, based on 3 years of operational radar data

    Science.gov (United States)

    Chen, Xingchao; Zhao, Kun; Xue, Ming

    2014-11-01

    This study examines the temporal and spatial characteristics and distributions of convection over the Pearl River Delta region of Guangzhou, China, during the May-September warm season, using, for the first time for such a purpose, 3 years of operational Doppler radar data in the region. Results show that convective features occur most frequently along the southern coast and the windward slope of the eastern mountainous area of Pearl River Delta, with the highest frequency occurring in June and the lowest in September among the 5 months. The spatial frequency distribution pattern also roughly matches the accumulated precipitation pattern. The occurrence of convection in this region also exhibits strong diurnal cycles. During May and June, the diurnal distribution is bimodal, with the maximum frequency occurring in the early afternoon and a secondary peak occurring between midnight and early morning. The secondary peak is much weaker in July, August, and September. Convection near the coast is found to occur preferentially on days when a southerly low-level jet (LLJ) exists, especially during the Meiyu season. Warm, moist, and unstable air is transported from the ocean to land by LLJs on these days, and the lifting along the coast by convergence induced by differential surface friction between the land and ocean is believed to be the primary cause for the high frequency along the coast. In contrast, the high frequency over mountainous area is believed to be due to orographic lifting of generally southerly flows during the warm season.

  14. Elevated CO2 induces substantial and persistent declines in forage digestibility and protein content irrespective of warming in mixed-grass prairie

    Science.gov (United States)

    Increasing atmospheric [CO2] and temperature are expected to affect the productivity, species composition, biogeochemistry, and therefore the quantity and quality of forage available to herbivores in rangeland ecosystems. Both elevated CO2 (eCO2) and warming affect plant tissue chemistry through mul...

  15. Phenotyping Drought Tolerance and Yield Potential of Warm-Season Legumes Through Field- and Airborne-Based Hyperspectral VSWIR Sensing

    Science.gov (United States)

    Drewry, D.; Berny-Mier y Teran, J. C.; Dutta, D.; Gepts, P.

    2017-12-01

    Hyperspectral sensing in the visible through shortwave infrared (VSWIR) portion of the spectrum has been demonstrated to provide significant information on the structural and functional properties of vegetation, resulting in powerful techniques to discern species differences, characterize crop nutrient or water stress, and quantify the density of foliage in agricultural fields. Modern machine-learning techniques allow for the entire set of spectral bands, on the order of hundreds with modern field and airborne spectrometers, to be used to develop models that can simultaneously retrieve a variety of foliar chemical compounds and hydrological and structural states. The application of these techniques, in the context of leaf-level measurements of VSWIR reflectance, or more complicated remote airborne surveys, has the potential to revolutionize high-throughput methods to phenotype germplasm that optimizes yield, resource-use efficiencies, or alternate objectives related to disease resistance or biomass accumulation, for example. Here we focus on breeding trials for a set of warm-season legumes, conducted in both greenhouse and field settings, and spanning a set of diverse genotypes providing a range of adaptation to drought and yield potential in the context of the semi-arid climate cultivation. At the leaf-level, a large set of spectral reflectance measurements spanning 400-2500 nanometers were made for plants across various growth stages in field experiments that induced severe drought, along with sampling for relevant trait values. Here we will discuss the development and performance of algorithms for a range of leaf traits related to gas exchange, leaf structure, hydrological status, nutrient contents and stable isotope discrimination, along with their relationships to drought resistance and yield. We likewise discuss the effectiveness of quantifying relevant foliar and canopy traits through airborne imaging spectroscopy from small unmanned vehicles (sUAVs), and

  16. The relationship of lightning activity and short-duation rainfall events during warm seasons over the Beijing metropolitan region

    Science.gov (United States)

    Wu, F.; Cui, X.; Zhang, D. L.; Lin, Q.

    2017-12-01

    The relationship between lightning activity and rainfall associated with 2925 short-duration rainfall (SDR) events over the Beijing metropolitan region (BMR) is examined during the warm seasons of 2006-2007, using the cloud-to-ground (CG) and intracloud (IC) lightning data from Surveillance et Alerte Foudre par Interférometrie Radioélectrique (SAFIR)-3000 and 5-min rainfall data from automatic weather stations (AWSs). To facilitate the analysis of the rainfall-lightning correlations, the SDR events are categorized into six different intensity grades according to their hourly rainfall rates (HRRs), and an optimal radius of 10 km from individual AWSs for counting their associated lightning flashes is used. Results show that the lightning-rainfall correlations vary significantly with different intensity grades. Weak correlations (R 0.4) are found in the weak SDR events, and 40-50% of the events are no-flash ones. And moderate correlation (R 0.6) are found in the moderate SDR events, and > 10-20% of the events are no-flash ones. In contrast, high correlations (R 0.7) are obtained in the SDHR events, and < 10% of the events are no-flash ones. The results indicate that lightning activity is observed more frequently and correlated more robust with the rainfall in the SDHR events. Significant time lagged correlations between lightning and rainfall are also found. About 80% of the SDR events could reach their highest correlation coefficients when the associated lightning flashes shift at time lags of < 25 min before and after rainfall begins. The percentages of SDR events with CG or total lightning activity preceding, lagging or coinciding with rainfall shows that (i) in about 55% of the SDR events lightning flashes preceded rainfall; (ii) the SDR events with lightning flashes lagging behind rainfall accounted for about 30%; and (iii) the SDR events without any time shifts accounted for the remaining 15%. Better lightning-rainfall correlations can be attained when time

  17. Spatial and temporal soil moisture resource partitioning by trees and grasses in a temperate savanna, Arizona, USA.

    Science.gov (United States)

    Weltzin, Jake F; McPherson, Guy R

    1997-10-01

    Stable isotope analysis was used to determine sources of water used by coexisting trees and grasses in a temperate savanna dominated by Quercus emoryi Torr. We predicted that (1) tree seedlings and bunchgrasses utilize shallow sources of soil water, (2) mature savanna trees use deeper sources of water, and (3) trees switch from shallow to deep water sources within 1 year of germination. We found that Q. emoryi trees, saplings, and seedlings (about 2 months, 1 year, and 2 years old), and the dominant bunchgrass [Trachypogon montufari (H.B.K.) Nees.] utilized seasonally available moisture from different depths within the soil profile depending on size/age relationships. Sapling and mature Q. emoryi acquired water from >50 cm deep, 2-month-old seedlings utilized water from emoryi within extant stands of native grasses. The potential for subsequent interaction between Q. emoryi and native grasses was evidenced by similar patterns of soil water use by 1- and 2-year-old seedlings and grasses. Q. emoryi seedlings did not switch from shallow to deep sources of soil water within 2 years of germination: water use by these seedlings apparently becomes independent of water use by grasses after 2 years of age. Finally, older trees (saplings, mature trees) use water from deeper soil layers than grasses, which may facilitate the stable coexistence of mature trees and grasses. Potential shifts in the seasonality of precipitation may alter interactions between woody plants and grasses within temperate savannas characterized by bimodal precipitation regimes: reductions in summer precipitation or soil moisture may be particularly detrimental to warm-season grasses and seedlings of Q. emoryi.

  18. Linking phenology and biomass productivity in South Dakota mixed-grass prairie

    Science.gov (United States)

    Rigge, Matthew; Smart, Alexander; Wylie, Bruce; Gilmanov, Tagir; Johnson, Patricia

    2013-01-01

    Assessing the health of rangeland ecosystems based solely on annual biomass production does not fully describe plant community condition; the phenology of production can provide inferences on species composition, successional stage, and grazing impacts. We evaluate the productivity and phenology of western South Dakota mixed-grass prairie using 2000 to 2008 Moderate Resolution Imaging Spectrometer (MODIS) normalized difference vegetation index (NDVI) satellite imagery at 250 m spatial resolution. Growing season NDVI images were integrated weekly to produce time-integrated NDVI (TIN), a proxy of total annual biomass production, and integrated seasonally to represent annual production by cool (C3) and warm (C4) season species. Additionally, a variety of phenological indicators including cool season percentage of TIN were derived from the seasonal profiles of NDVI. Cool season percentage and TIN were combined to generate vegetation classes, which served as proxies of plant community condition. TIN decreased with precipitation from east to west across the study area. Alternatively, cool season percentage increased from east to west, following patterns related to the reliability (interannual coefficient of variation [CV]) and quantity of mid-summer precipitation. Cool season TIN averaged 76.8% of total. Seasonal accumulation of TIN corresponded closely (R2 > 0.90) to that of gross photosynthesis data from a carbon flux tower. Field-collected biomass and community composition data were strongly related to the TIN and cool season percentage products. The patterns of vegetation classes were responsive to topographic, edaphic, and land management influences on plant communities. Accurate maps of biomass production, cool/warm season composition, and vegetation classes can improve the efficiency of land management by adjusting stocking rates and season of use to maximize rangeland productivity and achieve conservation objectives. Further, our results clarify the spatial and

  19. The Effect of Passive Design Strategies on Thermal Performance of Female Secondary School Buildings during Warm Season in Hot Dry Climate

    Directory of Open Access Journals (Sweden)

    Sahar eZahiri

    2016-03-01

    Full Text Available This paper describes a series of field studies and simulation analysis to improve the thermal performance of school buildings in the city of Tehran in Iran during warm season. The field studies used on-site measurement and questionnaire-based survey in the warm spring season in a typical female secondary school building. The on-site monitoring assessed the indoor air temperature and humidity levels of six classrooms while the occupants completed questionnaires covering their thermal sensations and thermal preferences. Moreover, thermal simulation analysis was also carried out to evaluate and improve the thermal performance of the classrooms based on the students’ thermal requirements and passive design strategies. In this study, the environmental design guidelines for female secondary school buildings were introduced for the hot and dry climate of Tehran, using passive design strategies. The study shows that the application of passive design strategies including south and south-east orientation, 10cm thermal insulation in wall and 5cm in the roof, and the combination of 30cm side fins and overhangs as a solar shading devices, as well as all-day ventilation strategy and the use of thermal mass materials with 25cm-30cm thickness, has considerable impact on indoor air temperatures in warm season in Tehran and keeps the indoor environment in an acceptable thermal condition. The results of the field studies also indicated that most of the occupants found their thermal environment not to be comfortable and the simulation results showed that passive design techniques had a significant influence on the indoor air temperature and can keep it in an acceptable range based on the female students’ thermal requirement. Therefore, in order to enhance the indoor environment and to increase the learning performance of the students, it is necessary to use the appropriate passive design strategies, which also reduce the need for mechanical systems and

  20. EFFECT OF PRE-COOLING ON REPEAT-SPRINT PERFORMANCE IN SEASONALLY ACCLIMATISED MALES DURING AN OUTDOOR SIMULATED TEAM-SPORT PROTOCOL IN WARM CONDITIONS

    Directory of Open Access Journals (Sweden)

    Carly J. Brade

    2013-09-01

    Full Text Available Whether precooling is beneficial for exercise performance in warm climates when heat acclimatised is unclear. The purpose of this study was to determine the effect of precooling on repeat-sprint performance during a simulated team-sport circuit performed outdoors in warm, dry field conditions in seasonally acclimatised males (n = 10. They performed two trials, one with precooling (PC; ice slushy and cooling jacket and another without (CONT. Trials began with a 30-min baseline/cooling period followed by an 80 min repeat-sprint protocol, comprising 4 x 20-min quarters, with 2 x 5-min quarter breaks and a 10-min half-time recovery/cooling period. A clear and substantial (negative; PC slower effect was recorded for first quarter circuit time. Clear and trivial effects were recorded for overall circuit time, third and fourth quarter sprint times and fourth quarter best sprint time, otherwise unclear and trivial effects were recorded for remaining performance variables. Core temperature was moderately lower (Cohen's d=0.67; 90% CL=-1.27, 0.23 in PC at the end of the precooling period and quarter 1. No differences were found for mean skin temperature, heart rate, thermal sensation, or rating of perceived exertion, however, moderate Cohen's d effect sizes suggested a greater sweat loss in PC compared with CONT. In conclusion, repeat- sprint performance was neither clearly nor substantially improved in seasonally acclimatised players by using a combination of internal and external cooling methods prior to and during exercise performed in the field in warm, dry conditions. Of practical importance, precooling appears unnecessary for repeat-sprint performance if athletes are seasonally acclimatised or artificially acclimated to heat, as it provides no additional benefit

  1. Mean surface fields of heat budget components over the warm pool in the Bay of Bengal during post-monsoon season

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Rao, D.P.; Rao, B.P.

    Andaman Islands and in the MT area there is an association between SST and Q n . But, off Sri Lanka warmer waters were noticed eventhough Q n was negative. This gives a clue that the role of advection plays a dominant role in the maintenance of SST.... Maintenance of warmwaters could be due to the transport of heat from North to South during post-monsoon season. Individual contributions from advection and air-sea fluxes towards SST would throw better light on the formation of warm pool in Bay of Bengal...

  2. Post-treatment efficacy of discontinuous treatment with 300IR 5-grass pollen sublingual tablet in adults with grass pollen-induced allergic rhinoconjunctivitis

    DEFF Research Database (Denmark)

    Didier, A; Malling, H-J; Worm, Marcel

    2013-01-01

    Sustained efficacy over three pollen seasons of pre- and co-seasonal treatment with 300IR 5-grass pollen sublingual tablet has been demonstrated in adults with moderate-severe grass pollen-associated allergic rhinoconjunctivitis.......Sustained efficacy over three pollen seasons of pre- and co-seasonal treatment with 300IR 5-grass pollen sublingual tablet has been demonstrated in adults with moderate-severe grass pollen-associated allergic rhinoconjunctivitis....

  3. Projected changes of thermal growing season over Northern Eurasia in a 1.5 °C and 2 °C warming world

    Science.gov (United States)

    Zhou, Baiquan; Zhai, Panmao; Chen, Yang; Yu, Rong

    2018-03-01

    Projected changes of the thermal growing season (TGS) over Northern Eurasia at 1.5 °C and 2 °C global warming levels are investigated using 22 CMIP5 models under both RCP4.5 and RCP8.5 scenarios. The multi-model mean projections indicate Northern Eurasia will experience extended and intensified TGSs in a warmer world. The prolongation of TGSs under 1.5 °C and 2 °C warming is attributed to both earlier onset and later termination, with the latter factor playing a dominating role. Interestingly, earlier onset is of greater importance under RCP4.5 than under RCP8.5 in prolonging TGS as the world warms by an additional 0.5 °C. Under both RCPs, growing degree day sum (GDD) above 5 °C is anticipated to increase by 0 °C-450 °C days and 0 °C-650 °C days over Northern Eurasia at 1.5 °C and 2 °C warming, respectively. However, effective GDD (EGDD) which accumulates optimum temperature for the growth of wheat, exhibits a decline in the south of Central Asia under warmer climates. Therefore, for wheat production over Northern Eurasia, adverse effects incurred by scorching temperatures and resultant inadequacy in water availability may counteract benefits from lengthening and warming TGS. In response to a future 1.5 °C and 2 °C warmer world, proper management and scientifically-tailored adaptation are imperative to optimize local-regional agricultural production.

  4. Forage mass and stocking rate of elephant grass pastures managed under agroecological and conventional systems

    Directory of Open Access Journals (Sweden)

    Clair Jorge Olivo

    2014-06-01

    Full Text Available The objective was to evaluate elephant grass (Pennisetum purpureum Schum. pastures, under the agroecological and conventional systems, as forage mass and stocking rate. In the agroecological system, the elephant grass was established in rows spaced by 3.0 m from each other. During the cool season ryegrass (Lolium multiflorum Lam. was established between these rows, which allowed the development of spontaneous growth species during the warm season. In the conventional system the elephant grass was established singularly in rows spaced 1.4 m from each other. Organic and chemical fertilizers were applied at 150 kg of N/ha/year with in the pastures under agroecological and conventional systems, respectively. Lactating Holstein cows which received 5.0 kg/day supplementary concentrate feed were used for evaluation. The experimental design was completely randomized, with two treatments (agroecological and conventional systems two replications (paddocks and independent evaluations (grazing cycles. The pastures were used during the whole year for the agroecological system and for 195 days in the conventional year. The average values of forage mass were 3.5 and 4.2 t/ha and the stocking rates were 2.08 and 3.23 AU/ha for the respective systems. The results suggest that the use of the elephant grass under the agroecological system allows for best distribution of forage and stocking rate to be more uniform throughout the year than the use of elephant grass in conventional system.

  5. Cyathostomin larvae: presence on Brachiaria humidicola grass during the rainy and dry seasons of Brazil Larvas de ciatostomíneos: disponibilidade em gramínea Brachiaria humidicola nas estações chuvosa e seca do Brasil

    Directory of Open Access Journals (Sweden)

    Claudia Navarro dos Santos

    2012-03-01

    Full Text Available The presence of cyathostomin larvae is directly associated to climatic conditions of each region. This study aimed to evaluate the ecology of infective larvae on Brachiaria humidicola during the dry and rainy seasons from October 2007 to September 2008 in a tropical region, Rio de Janeiro state, southeastern Brazil. Stools were collected from the rectum of horses naturally infected with cyathostomins at the beginning of the rainy season (October to March and dry season (April to September. They were divided into four samples of 500 g and deposited on a grass patch of B. humidicola. Seven days later and every 15 days thereafter samples of feces and grass were collected and processed by the Baermann technique. The mean number of larvae recovered from the grass varied according to the season, with greater recovery of larvae during the peak of the dry season (14,700 L3.kg-¹ DM. There was a statistically significant difference between L3 recovered from feces and grass, but not between L3 recovered from the grass base and apex. These results show that the region’s climate favors the development and survival of infective cyathostomin larvae throughout the year, with a greater number of larvae during the dry season.A disponibilidade de larvas de ciatostomíneos está diretamente relacionada com as condições climáticas de cada região. Para avaliar o comportamento das larvas infectantes nos períodos seco e chuvoso em gramínea Brachiaria humidicola, realizou-se um estudo, no período de outubro/2007 a setembro/2008, na região da Baixada Fluminense, RJ, de clima tropical. Amostras de fezes foram coletadas diretamente do reto de equinos naturalmente infectados por ciatostomíneos, no início do período chuvoso (outubro a março e seco (abril a setembro, divididas em quatro amostras de 500 g e depositadas em um canteiro formado por gramínea B. humidicola. Sete dias após o depósito e, posteriormente, a cada 15 dias, amostras de fezes e gram

  6. Season exerts differential effects of ocean acidification and warming on growth and carbon metabolism of the seaweed Fucus vesiculosus in the western Baltic Sea

    Directory of Open Access Journals (Sweden)

    Angelika eGraiff

    2015-12-01

    Full Text Available Warming and acidification of the oceans as a consequence of increasing CO2-concentrations occur at large scales. Numerous studies have shown the impact of single stressors on individual species. However, studies on the combined effect of multiple stressors on a multi-species assemblage, which is ecologically much more realistic and relevant, are still scarce. Therefore, we orthogonally crossed the two factors warming and acidification in mesocosm experiments and studied their single and combined impact on the brown alga Fucus vesiculosus associated with its natural community (epiphytes and mesograzers in the Baltic Sea in all seasons (from April 2013 to April 2014. We superimposed our treatment factors onto the natural fluctuations of all environmental variables present in the Benthocosms in so-called delta-treatments. Thereby we compared the physiological responses of F. vesiculosus (growth and metabolites to the single and combined effects of natural Kiel Fjord temperatures and pCO2 conditions with a 5 °C temperature increase and/or pCO2 increase treatment (1100 ppm in the headspace above the mesocosms. Responses were also related to the factor photoperiod which changes over the course of the year. Our results demonstrate complex seasonal pattern. Elevated pCO2 positively affected growth of F. vesiculosus alone and/or interactively with warming. The response direction (additive, synergistic or antagonistic, however, depended on season and daylength. The effects were most obvious when plants were actively growing during spring and early summer. Our study revealed for the first time that it is crucial to always consider the impact of variable environmental conditions throughout all seasons. In summary, our study indicates that in future F. vesiculosus will be more affected by detrimental summer heat-waves than by ocean acidification although the latter consequently enhances growth throughout the year. The mainly negative influence of rising

  7. Elephant grass clones for silage production

    Directory of Open Access Journals (Sweden)

    Rerisson José Cipriano dos Santos

    2013-02-01

    Full Text Available Ensiling warm-season grasses often requires wilting due to their high moisture content, and the presence of low-soluble sugars in these grasses usually demands the use of additives during the ensiling process. This study evaluated the bromatological composition of the fodder and silage from five Pennisetum sp. clones (IPA HV 241, IPA/UFRPE Taiwan A-146 2.114, IPA/UFRPE Taiwan A-146 2.37, Elephant B, and Mott. The contents of 20 Polyvinyl chloride (PVC silos, which were opened after 90 days of storage, were used for the bromatological analysis and the evaluation of the pH, nitrogen, ammonia, buffer capacity, soluble carbohydrates, and fermentation coefficients. The effluent losses, gases and dry matter recovery were also calculated. Although differences were observed among the clones (p < 0.05 for the concentrations of dry matter, insoluble nitrogen in acid detergents, insoluble nitrogen in neutral detergents, soluble carbohydrates, fermentation coefficients, and in vitro digestibility in the forage before ensiling, no differences were observed for most of these variables after ensiling. All of the clones were efficient in the fermentation process. The IPA/UFRPE TAIWAN A-146 2.37 clone, however, presented a higher dry matter concentration and the best fermentation coefficient, resulting in a better silage quality, compared to the other clones.

  8. A warm-season comparison of WRF coupled to the CLM4.0, Noah-MP, and Bucket hydrology land surface schemes over the central USA

    Science.gov (United States)

    Van Den Broeke, Matthew S.; Kalin, Andrew; Alavez, Jose Abraham Torres; Oglesby, Robert; Hu, Qi

    2017-11-01

    In climate modeling studies, there is a need to choose a suitable land surface model (LSM) while adhering to available resources. In this study, the viability of three LSM options (Community Land Model version 4.0 [CLM4.0], Noah-MP, and the five-layer thermal diffusion [Bucket] scheme) in the Weather Research and Forecasting model version 3.6 (WRF3.6) was examined for the warm season in a domain centered on the central USA. Model output was compared to Parameter-elevation Relationships on Independent Slopes Model (PRISM) data, a gridded observational dataset including mean monthly temperature and total monthly precipitation. Model output temperature, precipitation, latent heat (LH) flux, sensible heat (SH) flux, and soil water content (SWC) were compared to observations from sites in the Central and Southern Great Plains region. An overall warm bias was found in CLM4.0 and Noah-MP, with a cool bias of larger magnitude in the Bucket model. These three LSMs produced similar patterns of wet and dry biases. Model output of SWC and LH/SH fluxes were compared to observations, and did not show a consistent bias. Both sophisticated LSMs appear to be viable options for simulating the effects of land use change in the central USA.

  9. Grass genomes

    OpenAIRE

    Bennetzen, Jeffrey L.; SanMiguel, Phillip; Chen, Mingsheng; Tikhonov, Alexander; Francki, Michael; Avramova, Zoya

    1998-01-01

    For the most part, studies of grass genome structure have been limited to the generation of whole-genome genetic maps or the fine structure and sequence analysis of single genes or gene clusters. We have investigated large contiguous segments of the genomes of maize, sorghum, and rice, primarily focusing on intergenic spaces. Our data indicate that much (>50%) of the maize genome is composed of interspersed repetitive DNAs, primarily nested retrotransposons that in...

  10. SQ grass sublingual allergy immunotherapy tablet for disease-modifying treatment of grass pollen allergic rhinoconjunctivitis

    DEFF Research Database (Denmark)

    Dahl, Ronald; Roberts, Graham; de Blic, Jacques

    2016-01-01

    BACKGROUND: Allergy immunotherapy is a treatment option for allergic rhinoconjunctivitis (ARC). It is unique compared with pharmacotherapy in that it modifies the immunologic pathways that elicit an allergic response. The SQ Timothy grass sublingual immunotherapy (SLIT) tablet is approved in North...... America and throughout Europe for the treatment of adults and children (≥5 years old) with grass pollen-induced ARC. OBJECTIVE: The clinical evidence for the use of SQ grass SLIT-tablet as a disease-modifying treatment for grass pollen ARC is discussed in this review. METHODS: The review included...... the suitability of SQ grass SLIT-tablet for patients with clinically relevant symptoms to multiple Pooideae grass species, single-season efficacy, safety, adherence, coseasonal initiation, and cost-effectiveness. The data from the long-term SQ grass SLIT-tablet clinical trial that evaluated a clinical effect 2...

  11. Disentangling Seasonality and Mean Annual Precipitation in the Indo-Pacific Warm Pool: Insights from Coupled Plant Wax C and H Isotope Measurements

    Science.gov (United States)

    Galy, V.; Oppo, D.; Dubois, N.; Arbuszewski, J. A.; Mohtadi, M.; Schefuss, E.; Rosenthal, Y.; Linsley, B. K.

    2016-12-01

    There is ample evidence suggesting that rainfall distribution across the Indo-Pacific Warm Pool (IPWP) - a key component of the global climate system - has substantially varied over the last deglaciation. Yet, the precise nature of these hydroclimate changes remains to be elucidated. In particular, the relative importance of variations in precipitation seasonality versus annual precipitation amount is essentially unknown. Here we use a set of surface sediments from the IPWP covering a wide range of modern hydroclimate conditions to evaluate how plant wax stable isotope composition records rainfall distribution in the area. We focus on long chain fatty acids, which are exclusively produced by vascular plants living on nearby land and delivered to the ocean by rivers. We relate the C (δ13C) and H (δD) isotope composition of long chain fatty acids preserved in surface sediments to modern precipitation distribution and stable isotope composition in their respective source area. We show that: 1) δ13C values reflect vegetation distribution (in particular the relative abundance of C3 and C4 plants) and are primarily recording precipitation seasonality (Dubois et al., 2014) and, 2) once corrected for plant fractionation effects, δD values reflect the amount-weighted average stable isotope composition of precipitation and are primarily recording annual precipitation amounts. We propose that combining the C and H isotope composition of long chain fatty acids thus allows independent reconstructions of precipitation seasonality and annual amounts in the IPWP. The practical implications for reconstructing past hydroclimate in the IPWP will be discussed.

  12. Warm Season Subseasonal Variability and Climate Extremes in the Northern Hemisphere: The Role of Stationary Rossby Waves

    Science.gov (United States)

    Schubert, Siegfried; Wang, Hailan; Suarez, Max

    2010-01-01

    This study examines the nature of boreal summer subseasonal atmospheric variability based on the new NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) for the period 1979-2010. An analysis of the June, July and August subseasonal 250hPa v-wind anomalies shows distinct Rossby wave-like structures that appear to be guided by the mean jets. On monthly subseasonal time scales, the leading waves (the first 10 rotated empirical orthogonal functions or REOFs of the 250hPa v-wind) explain about 50% of the Northern Hemisphere vwind variability, and account for more than 30% (60%) of the precipitation (surface temperature) variability over a number of regions of the northern middle and high latitudes, including the U.S. northern Great Plains, parts of Canada, Europe, and Russia. The first REOF in particular, consists of a Rossby wave that extends across northern Eurasia where it is a dominant contributor to monthly surface temperature and precipitation variability, and played an important role in the 2003 European and 2010 Russian heat waves. While primarily subseasonal in nature, the Rossby waves can at times have a substantial seasonal mean component. This is exemplified by REOF 4 which played a major role in the development of the most intense anomalies of the U.S. 1988 drought (during June) and the 1993 flooding (during July), though differed in the latter event by also making an important contribution to the seasonal mean anomalies. A stationary wave model (SWM) is used to reproduce some of the basic features of the observed waves and provide insight into the nature of the forcing. In particular, the responses to a set of idealized forcing functions are used to map the optimal forcing patterns of the leading waves. Also, experiments to reproduce the observed waves with the SWM using MERRA-based estimates of the forcing indicate that the wave forcing is dominated by sub-monthly vorticity transients.

  13. Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations.

    NARCIS (Netherlands)

    Tsyganov, A.N.; Aerts, R.; Nijs, I.; Cornelissen, J.H.C.; Beyens, L.

    2012-01-01

    Sphagnum-dwelling testate amoebae are widely used in paleoclimate reconstructions as a proxy for climate-induced changes in bogs. However, the sensitivity of proxies to seasonal climate components is an important issue when interpreting proxy records. Here, we studied the effects of summer warming,

  14. The Role of Vegetation in Mitigating Urban Land Surface Temperatures: A Case Study of Munich, Germany during the Warm Season

    Directory of Open Access Journals (Sweden)

    Sadroddin Alavipanah

    2015-04-01

    Full Text Available The Urban Heat Island (UHI is the phenomenon of altered increased temperatures in urban areas compared to their rural surroundings. UHIs grow and intensify under extreme hot periods, such as during heat waves, which can affect human health and also increase the demand for energy for cooling. This study applies remote sensing and land use/land cover (LULC data to assess the cooling effect of varying urban vegetation cover, especially during extreme warm periods, in the city of Munich, Germany. To compute the relationship between Land Surface Temperature (LST and Land Use Land Cover (LULC, MODIS eight-day interval LST data for the months of June, July and August from 2002 to 2012 and the Corine Land Cover (CLC database were used. Due to similarities in the behavior of surface temperature of different CLCs, some classes were reclassified and combined to form two major, rather simplified, homogenized classes: one of built-up area and one of urban vegetation. The homogenized map was merged with the MODIS eight-day interval LST data to compute the relationship between them. The results revealed that (i the cooling effect accrued from urban vegetation tended to be non-linear; and (ii a remarkable and stronger cooling effect in terms of LST was identified in regions where the proportion of vegetation cover was between seventy and almost eighty percent per square kilometer. The results also demonstrated that LST within urban vegetation was affected by the temperature of the surrounding built-up and that during the well-known European 2003 heat wave, suburb areas were cooler from the core of the urbanized region. This study concluded that the optimum green space for obtaining the lowest temperature is a non-linear trend. This could support urban planning strategies to facilitate appropriate applications to mitigate heat-stress in urban area.

  15. Different techniques to study rumen fermentation characteristics of maturing grass and grass silage

    NARCIS (Netherlands)

    Cone, J.W.; Gelder, van A.H.; Soliman, I.A.; Visser, de H.; Vuuren, van A.M.

    1999-01-01

    Grass samples were harvested during the 1993 growing season after a precut on April 27, 1993 and were stored frozen or left to ensile in 30-L buckets. Effects on chemical composition and fermentation kinetics of the maturation of the grass and of ensiling were investigated. Chemical composition and

  16. Post-ruminal digestibility of crude protein from grass and grass silages in cows

    NARCIS (Netherlands)

    Cone, J.W.; Gelder, van A.H.; Mathijssen-Kamman, A.A.; Hindle, V.A.

    2006-01-01

    Grass samples were grown on a clay or sandy soil, fertilised with 150 or 300 kg N/ha per year, and harvested on different days during two consecutive growing seasons. The grass samples were stored frozen or ensiled after wilting to approximately 250 or 450 g DM/kg. The recoveries of crude protein

  17. Semidiurnal temperature changes caused by tidal front movements in the warm season in seabed habitats on the georges bank northern margin and their ecological implications.

    Science.gov (United States)

    Guida, Vincent G; Valentine, Page C; Gallea, Leslie B

    2013-01-01

    Georges Bank is a large, shallow feature separating the Gulf of Maine from the Atlantic Ocean. Previous studies demonstrated a strong tidal-mixing front during the warm season on the northern bank margin between thermally stratified water in the Gulf of Maine and mixed water on the bank. Tides transport warm water off the bank during flood tide and cool gulf water onto the bank during ebb tide. During 10 days in August 2009, we mapped frontal temperatures in five study areas along ∼100 km of the bank margin. The seabed "frontal zone", where temperature changed with frontal movment, experienced semidiurnal temperature maxima and minima. The tidal excursion of the frontal boundary between stratified and mixed water ranged 6 to 10 km. This "frontal boundary zone" was narrower than the frontal zone. Along transects perpendicular to the bank margin, seabed temperature change at individual sites ranged from 7.0°C in the frontal zone to 0.0°C in mixed bank water. At time series in frontal zone stations, changes during tidal cycles ranged from 1.2 to 6.1°C. The greatest rate of change (-2.48°C hr(-1)) occurred at mid-ebb. Geographic plots of seabed temperature change allowed the mapping of up to 8 subareas in each study area. The magnitude of temperature change in a subarea depended on its location in the frontal zone. Frontal movement had the greatest effect on seabed temperature in the 40 to 80 m depth interval. Subareas experiencing maximum temperature change in the frontal zone were not in the frontal boundary zone, but rather several km gulfward (off-bank) of the frontal boundary zone. These results provide a new ecological framework for examining the effect of tidally-driven temperature variability on the distribution, food resources, and reproductive success of benthic invertebrate and demersal fish species living in tidal front habitats.

  18. Does timing of breeding matter less where the grass is greener? Seasonal declines in breeding performance differ between regions in an endangered endemic raptor

    Directory of Open Access Journals (Sweden)

    Marie-Sophie Garcia-Heras

    2016-09-01

    Full Text Available The timing of breeding can strongly influence individual breeding performance and fitness. Seasonal declines in breeding parameters have been often documented in birds, particularly in the Northern Hemisphere. Fewer studies have investigated whether seasonal declines in productivity vary in space, which would have implications for a species’ population dynamics across its distributional range. We report here on variation in the timing of breeding in the Black Harrier (Circus maurus, an endangered and endemic raptor to Southern Africa. We investigated how key breeding parameters (clutch size, nesting success and productivity varied with the timing of breeding, weather conditions (rainfall and temperature and between contrasted regions (coastal vs. interior-mountain. Black Harrier onset of breeding extended over an 8-month period, with a peak of laying between mid-August and end of September. We show a marked seasonal decline in all breeding parameters. Importantly, for clutch size and productivity these seasonal declines differed regionally, being more pronounced in interior-mountain than in coastal regions, where the breeding season was overall shorter. Timing of breeding, clutch size and productivity were also partly explained by weather conditions. In coastal regions, where environmental conditions, in particular rainfall, appear to be less variable, the timing of breeding matters less for breeding output than in interior-mountain regions, and breeding attempts thus occurred over a longer period. The former areas may act as population sources and be key in protecting the long-term population viability of this threatened endemic raptor. This study provides unique evidence for a regionally variable seasonal decline in breeding performance with implications for population biology and conservation.

  19. Variations of polycyclic aromatic hydrocarbons in ambient air during haze and non-haze episodes in warm seasons in Hangzhou, China.

    Science.gov (United States)

    Lu, Hao; Wang, Shengsheng; Wu, Zuliang; Yao, Shuiliang; Han, Jingyi; Tang, Xiujuan; Jiang, Boqiong

    2017-01-01

    To investigate the characteristics of polycyclic aromatic hydrocarbons (PAHs) during haze episodes in warm seasons, daily PM 2.5 and gaseous samples were collected from March to September 2015 in Hangzhou, China. Daily samples were further divided into four groups by the definition of haze according to visibility and relative humidity (RH), including non-haze (visibility, >10 km), light haze (visibility, 8-10 km, RH <90 %), medium haze (visibility, 5-8 km, RH <90 %), and heavy haze (visibility, <5 km, RH <90 %). Significantly higher concentrations of PM 2.5 -bound PAHs were found in haze days, but the mean PM 2.5 -bound PAH concentrations obviously decreased with the aggravation of haze pollution from light to heavy. The gas/particle partitioning coefficients of PAHs decreased from light-haze to heavy-haze episodes, which indicated that PM 2.5 -bound PAHs were restricted to adhere to the particulate phase with the aggravation of haze pollution. Absorption was considered the main mechanism of gas/particle partitioning of PAHs from gaseous to particulate phase. Analysis of air mass transport indicated that the PM 2.5 -bound PAH pollution in haze days was largely from regional sources but also significantly affected by long-range air mass transport. The inhalation cancer risk associated with PAHs exceeded the acceptable risk level markedly in both haze and non-haze days.

  20. Observed and Projected Changes in Thermal Growing Degree-Days and Growing Season and Their Divergent Responses to Warming over China

    Science.gov (United States)

    Deng, H.

    2017-12-01

    Vegetation growth and phenology are largely regulated by the growing degree-days (GDD) and growing season (GS). By choosing 0°C, 5°C and 10°C, three key based temperatures (Tb) for vegetation growth, the GDD and GS in China during the observed period (1960-2011) were developed using homogenized daily mean temperatures (Td) in 536 meteorological stations. In addition, the GDD10 and GS10 in China were projected under the representative concentration pathway scenarios (RCPs) during 1961-2099, using the Td (0.5°×0.5°) derived from five general circulation models (GCMs), after model evaluation. Advance in the start of the growing season (SOS; 4.86-6.71 days; SOS0 > SOS5 > SOS10) and delay in the end of the growing season (EOS; 4.32-6.19 days; EOS0 GDD5 > GDD10), in China as a whole. Each observed variation has a substantial acceleration mostly in 1987 or 1996, and a speed reduction or a trend reversal in the early 2000s. Increases in the GDD10 and GS10 would continue in the 21st century, causing northward shifts in the temperature zones. Finally in the long-term (2071-2099), the nationally average GDD10 and GS10 would be 279.1°C·d higher and 16.5 d longer for RCP 2.6, and 964.4°C·d higher and 50.3 d longer for RCP 8.5, relative to 1981-2010. Regionally, the GDD enhancement were stronger in the tropics, east, northeast and northwest China during the observed period, and tend to be in southern China in the future. The largest GS extensions are consistently in the eastern and southern parts of the Tibetan Alpine zone, particularly in the future. During the observed period, advance in SOS and delay in EOS drove the GS extensions in the eastern monsoon zone and northwest arid/semi-arid zone respectively. In the future, an advanced SOS drives the GS extension in the northern (> ca. 33°N) Tibetan Alpine zone, the mountainous areas in northeast China, and south of the Tropic of Cancer. The GDD and GS showed positive sensitivity to the temperature (GDD0 > GDD5 > GDD10

  1. Coupled prediction of flood response and debris flow initiation during warm- and cold-season events in the Southern Appalachians, USA

    Science.gov (United States)

    Tao, J.; Barros, A. P.

    2014-01-01

    Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm-season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold-season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. We further hypothesize that the transient mass fluxes associated with the temporal-spatial dynamics of interflow govern the timing of shallow landslide initiation, and subsequent debris flow mobilization. The first objective of this study is to investigate this relationship. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface-groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations; availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions; and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions

  2. Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations.

    Science.gov (United States)

    Tsyganov, Andrey N; Aerts, Rien; Nijs, Ivan; Cornelissen, Johannes H C; Beyens, Louis

    2012-05-01

    Sphagnum-dwelling testate amoebae are widely used in paleoclimate reconstructions as a proxy for climate-induced changes in bogs. However, the sensitivity of proxies to seasonal climate components is an important issue when interpreting proxy records. Here, we studied the effects of summer warming, winter snow addition solely and winter snow addition together with spring warming on testate amoeba assemblages after eight years of experimental field climate manipulations. All manipulations were accomplished using open top chambers in a dry blanket bog located in the sub-Arctic (Abisko, Sweden). We estimated sensitivity of abundance, diversity and assemblage structure of living and empty shell assemblages of testate amoebae in the living and decaying layers of Sphagnum. Our results show that, in a sub-arctic climate, testate amoebae are more sensitive to climate changes in the growing season than in winter. Summer warming reduced species richness and shifted assemblage composition towards predominance of xerophilous species for the living and empty shell assemblages in both layers. The higher soil temperatures during the growing season also decreased abundance of empty shells in both layers hinting at a possible increase in their decomposition rates. Thus, although possible effects of climate changes on preservation of empty shells should always be taken into account, species diversity and structure of testate amoeba assemblages in dry subarctic bogs are sensitive proxies for climatic changes during the growing season. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. Genome sequence analysis of the model grass Brachypodium distachyon: insights into grass genome evolution

    Energy Technology Data Exchange (ETDEWEB)

    Schulman, Al

    2009-08-09

    Three subfamilies of grasses, the Erhardtoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the complete genome sequence of the wild grass Brachypodium distachyon (Brachypodium), the first member of the Pooideae subfamily to be completely sequenced. Comparison of the Brachypodium, rice and sorghum genomes reveals a precise sequence- based history of genome evolution across a broad diversity of the grass family and identifies nested insertions of whole chromosomes into centromeric regions as a predominant mechanism driving chromosome evolution in the grasses. The relatively compact genome of Brachypodium is maintained by a balance of retroelement replication and loss. The complete genome sequence of Brachypodium, coupled to its exceptional promise as a model system for grass research, will support the development of new energy and food crops

  4. Semidiurnal Temperature Changes Caused by Tidal Front Movements in the Warm Season in Seabed Habitats on the Georges Bank Northern Margin and Their Ecological Implications

    Science.gov (United States)

    Guida, Vincent G.; Valentine, Page C.; Gallea, Leslie B.

    2013-01-01

    Georges Bank is a large, shallow feature separating the Gulf of Maine from the Atlantic Ocean. Previous studies demonstrated a strong tidal-mixing front during the warm season on the northern bank margin between thermally stratified water in the Gulf of Maine and mixed water on the bank. Tides transport warm water off the bank during flood tide and cool gulf water onto the bank during ebb tide. During 10 days in August 2009, we mapped frontal temperatures in five study areas along ∼100 km of the bank margin. The seabed “frontal zone”, where temperature changed with frontal movment, experienced semidiurnal temperature maxima and minima. The tidal excursion of the frontal boundary between stratified and mixed water ranged 6 to 10 km. This “frontal boundary zone” was narrower than the frontal zone. Along transects perpendicular to the bank margin, seabed temperature change at individual sites ranged from 7.0°C in the frontal zone to 0.0°C in mixed bank water. At time series in frontal zone stations, changes during tidal cycles ranged from 1.2 to 6.1°C. The greatest rate of change (−2.48°C hr−1) occurred at mid-ebb. Geographic plots of seabed temperature change allowed the mapping of up to 8 subareas in each study area. The magnitude of temperature change in a subarea depended on its location in the frontal zone. Frontal movement had the greatest effect on seabed temperature in the 40 to 80 m depth interval. Subareas experiencing maximum temperature change in the frontal zone were not in the frontal boundary zone, but rather several km gulfward (off-bank) of the frontal boundary zone. These results provide a new ecological framework for examining the effect of tidally-driven temperature variability on the distribution, food resources, and reproductive success of benthic invertebrate and demersal fish species living in tidal front habitats. PMID:23405129

  5. Mapping and modeling the biogeochemical cycling of turf grasses in the United States.

    Science.gov (United States)

    Milesi, Cristina; Running, Steven W; Elvidge, Christopher D; Dietz, John B; Tuttle, Benjamin T; Nemani, Ramakrishna R

    2005-09-01

    Turf grasses are ubiquitous in the urban landscape of the United States and are often associated with various types of environmental impacts, especially on water resources, yet there have been limited efforts to quantify their total surface and ecosystem functioning, such as their total impact on the continental water budget and potential net ecosystem exchange (NEE). In this study, relating turf grass area to an estimate of fractional impervious surface area, it was calculated that potentially 163,800 km2 (+/- 35,850 km2) of land are cultivated with turf grasses in the continental United States, an area three times larger than that of any irrigated crop. Using the Biome-BGC ecosystem process model, the growth of warm-season and cool-season turf grasses was modeled at a number of sites across the 48 conterminous states under different management scenarios, simulating potential carbon and water fluxes as if the entire turf surface was to be managed like a well-maintained lawn. The results indicate that well-watered and fertilized turf grasses act as a carbon sink. The potential NEE that could derive from the total surface potentially under turf (up to 17 Tg C/yr with the simulated scenarios) would require up to 695 to 900 liters of water per person per day, depending on the modeled water irrigation practices, suggesting that outdoor water conservation practices such as xeriscaping and irrigation with recycled waste-water may need to be extended as many municipalities continue to face increasing pressures on freshwater.

  6. A Comparison of the Diel Cycle of Modeled and Measured Latent Heat Flux During the Warm Season in a Colorado Subalpine Forest

    Science.gov (United States)

    Burns, Sean P.; Swenson, Sean C.; Wieder, William R.; Lawrence, David M.; Bonan, Gordon B.; Knowles, John F.; Blanken, Peter D.

    2018-03-01

    Precipitation changes the physiological characteristics of an ecosystem. Because land-surface models are often used to project changes in the hydrological cycle, modeling the effect of precipitation on the latent heat flux λE is an important aspect of land-surface models. Here we contrast conditionally sampled diel composites of the eddy-covariance fluxes from the Niwot Ridge Subalpine Forest AmeriFlux tower with the Community Land Model (CLM, version 4.5). With respect to measured λE during the warm season: for the day following above-average precipitation, λE was enhanced at midday by ≈40 W m-2 (relative to dry conditions), and nocturnal λE increased from ≈10 W m-2 in dry conditions to over 20 W m-2 in wet conditions. With default settings, CLM4.5 did not successfully model these changes. By increasing the amount of time that rainwater was retained by the canopy/needles, CLM was able to match the observed midday increase in λE on a dry day following a wet day. Stable nighttime conditions were problematic for CLM4.5. Nocturnal CLM λE had only a small (≈3 W m-2) increase during wet conditions, CLM nocturnal friction velocity u∗ was smaller than observed u∗, and CLM canopy air temperature was 2°C less than those measured at the site. Using observed u∗ as input to CLM increased λE; however, this caused CLM λE to be increased during both wet and dry periods. We suggest that sloped topography and the ever-present drainage flow enhanced nocturnal u∗ and λE. Such phenomena would not be properly captured by topographically blind land-surface models, such as CLM.

  7. Warm water temperatures and shifts in seasonality increase trout recruitment but only moderately decrease adult size in western North American tailwaters

    Science.gov (United States)

    Dibble, Kimberly L.; Yackulic, Charles B.; Kennedy, Theodore A.

    2018-01-01

    Dams throughout western North America have altered thermal regimes in rivers, creating cold, clear “tailwaters” in which trout populations thrive. Ongoing drought in the region has led to highly publicized reductions in reservoir storage and raised concerns about potential reductions in downstream flows. Large changes in riverine thermal regimes may also occur as reservoir water levels drop, yet this potential impact has received far less attention. We analyzed historic water temperature and fish population data to anticipate how trout may respond to future changes in the magnitude and seasonality of river temperatures. We found that summer temperatures were inversely related to reservoir water level, with warm temperatures associated with reduced storage and with dams operated as run-of-river units. Variation in rainbow trout (Oncorhynchus mykiss) recruitment was linked to water temperature variation, with a 5-fold increase in recruitment occurring at peak summer temperatures (18 °C vs. 7 °C) and a 2.5-fold increase in recruitment when peak temperatures occurred in summer rather than fall. Conversely, adult trout size was only moderately related to temperature. Rainbow and brown trout (Salmo trutta) size decreased by ~24 mm and 20 mm, respectively, as mean annual and peak summer temperatures increased. Further, rainbow trout size decreased by ~29 mm with an earlier onset of cold winter temperatures. While increased recruitment may be the more likely outcome of a warmer and drier climate, density-dependent growth constraints could exacerbate temperature-dependent growth reductions. As such, managers may consider implementing flows to reduce recruitment or altering infrastructure to maintain coldwater reservoir releases.

  8. Seasonal variation of soluble carbohydrates and starch in Echinolaena inflexa, a native grass species from the Brazilian savanna, and in the invasive grass Melinis minutiflora Variações sazonais de carboidratos solúveis e amido em Echinolaena inflexa, uma espécie nativa do cerrado, e na gramínea invasora Melinis minutiflora

    Directory of Open Access Journals (Sweden)

    A. Souza

    2010-05-01

    Full Text Available Echinolaena inflexa (Poir. Chase is an abundant C3 grass species with high biomass production in the Brazilian savanna (cerrado; Melinis minutiflora Beauv. is an African C4 forage grass widespread in cerrado and probably displacing some native herbaceous species. In the present work, we analysed seasonally the content and composition of soluble carbohydrates, the starch amounts and the above-ground biomass (phytomass of E. inflexa and M. minutiflora plants harvested in two transects at 5 and 130 m from the border in a restrict area of cerrado at the Biological Reserve and Experimental Station of Mogi-Guaçu (SP, Brazil. Results showed that water soluble carbohydrates and starch amounts from the shoots of both species varied according to the time of the year, whilst in the underground organs, variations were observed mainly in relation to the transects. Marked differences in the pattern of the above-ground biomass production between these two grasses relative to their location in the Reserve were also observed, with two peaks of the invasive species (July and January at the Reserve border. The differences in carbohydrate accumulation, partitioning and composition of individual sugars concerning time of the year and location in the Reserve were more related to the annual growth cycle of both grasses and possibly to specific physiological responses of M. minutiflora to disturbed environments in the Reserve border.Echinolaena inflexa (Poir. Chase é uma gramínea C3 muito abundante em áreas de cerrado e com alta produção de biomassa. Melinis minutiflora Beauv. é uma gramínea C4 de origem africana introduzida no Brasil para fins forrageiros, que se espalhou amplamente por áreas de cerrado, provavelmente deslocando espécies nativas. No presente trabalho, o conteúdo e a composição de carboidratos solúveis, o teor de amido e a biomassa aérea foram analisados sazonalmente em plantas de E. inflexa e M. minutiflora coletadas em dois transectos

  9. Treatment with grass allergen peptides improves symptoms of grass pollen-induced allergic rhinoconjunctivitis.

    Science.gov (United States)

    Ellis, Anne K; Frankish, Charles W; O'Hehir, Robyn E; Armstrong, Kristen; Steacy, Lisa; Larché, Mark; Hafner, Roderick P

    2017-08-01

    Synthetic peptide immunoregulatory epitopes are a new class of immunotherapy to treat allergic rhinoconjunctivitis (ARC). Grass allergen peptides, comprising 7 synthetic T-cell epitopes derived from Cyn d 1, Lol p 5, Dac g 5, Hol l 5, and Phl p 5, is investigated for treatment of grass pollen-induced ARC. We sought to evaluate the efficacy, safety, and tolerability of intradermally administered grass allergen peptides. A multicenter, randomized, double-blind, placebo-controlled study evaluated 3 regimens of grass allergen peptides versus placebo in patients with grass pollen-induced allergy (18-65 years). After a 4-day baseline challenge to rye grass in the environmental exposure unit (EEU), subjects were randomized to receive grass allergen peptides at 6 nmol at 2-week intervals for a total of 8 doses (8x6Q2W), grass allergen peptides at 12 nmol at 4-week intervals for a total of 4 doses (4x12Q4W), or grass allergen peptides at 12 nmol at 2-week intervals for a total of 8 doses (8x12Q2W) or placebo and treated before the grass pollen season. The primary efficacy end point was change from baseline in total rhinoconjunctivitis symptom score across days 2 to 4 of a 4-day posttreatment challenge (PTC) in the EEU after the grass pollen season. Secondary efficacy end points and safety were also assessed. Two hundred eighty-two subjects were randomized. Significantly greater improvement (reduction of total rhinoconjunctivitis symptom score from baseline to PTC) occurred across days 2 to 4 with grass allergen peptide 8x6Q2W versus placebo (-5.4 vs -3.8, respectively; P = .0346). Greater improvement at PTC also occurred for grass allergen peptide 8x6Q2W versus placebo (P = .0403) in patients with more symptomatic ARC. No safety signals were detected. Grass allergen peptide 8x6Q2W significantly improved ARC symptoms after rye grass allergen challenge in an EEU with an acceptable safety profile. Copyright © 2017 American Academy of Allergy, Asthma & Immunology

  10. Productivity and carbon footprint of perennial grass-forage legume intercropping strategies with high or low nitrogen fertilizer input

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Lachouani, Petra; Knudsen, Marie Trydeman

    2016-01-01

    with either a high or a low rate of mineral nitrogen (N) fertilizer. Life cycle assessment (LCA) was used to evaluate the carbon footprint (global warming potential) of the grassland management including measured nitrous oxide (N2O) emissions after sward incorporation. Without applying any mineral N......A three-season field experiment was established and repeated twice with spring barley used as cover crop for different perennial grass-legume intercrops followed by a full year pasture cropping and winter wheat after sward incorporation. Two fertilization regimes were applied with plots fertilized...... carbon footprint. Thus, a reduction in N fertilizer application rates in the low input systems offsets increased N2O emissions after forage legume treatments compared to grass plots due to the N fertilizer production-related emissions. When including the subsequent wheat yield in the total aboveground...

  11. Changing the energy climate: clean and green heat from grass biofuel pellets

    International Nuclear Information System (INIS)

    Jannasch, R.; Samson, R.; DeMaio, A.; Adams, T.; Ho Lem, C.

    2001-01-01

    Uncertain energy supplies and international agreements to reduce greenhouse gas (GHG) emissions have created unique opportunities for biofuel development. Pelleted fuels from warm season grasses such as switchgrass (Panicum virgatum) can be grown for $3-4/GigaJoule (GJ) with only minor emissions of CO 2 . Using close-coupled gasifer combustion technology, switchgrass fuel pellets emit 86%, 91%, 71% and 89% less CO 2 than electricity, heating oil, natural gas and propane, respectively. Every 100 ha of switchgrass converted into pellet form and used to displace fossil fuel for space-heating prevents the emission of 1000 tonnes of CO 2 . Heating an average Ontario house with a 90GJ heat demand costs $1213 with switchgrass pellets compared to $2234, $1664, $882 and $3251 with electricity, heating oil, natural gas and propane, respectively. An estimated 23.4 million acres of agricultural land in Canada could potentially be converted to perennial grass biofuel production. The depressed farm sector would benefit economically from energy farming. Low-grade heat energy derived from grass pellets could displace some of the 30,000 GigaWatt Hours of electricity currently used for home heating in Quebec, Ontario and Manitoba. Surplus electricity could be exported or used to replace nuclear or coal burning plants. Contrary to prevailing beliefs that reducing GHG emissions will raise societal energy costs, pelletized grass biofuels could provide consumers with less expensive and more GHG-friendly heating options than most fossil energy sources. If the political support and direction exist to implement the Kyoto Protocol as intended, grass pellets could well become a heating fuel of choice in North America. (author)

  12. Effects of global warming on ancient mammalian communities and their environments.

    Directory of Open Access Journals (Sweden)

    Larisa R G DeSantis

    2009-06-01

    Full Text Available Current global warming affects the composition and dynamics of mammalian communities and can increase extinction risk; however, long-term effects of warming on mammals are less understood. Dietary reconstructions inferred from stable isotopes of fossil herbivorous mammalian tooth enamel document environmental and climatic changes in ancient ecosystems, including C(3/C(4 transitions and relative seasonality.Here, we use stable carbon and oxygen isotopes preserved in fossil teeth to document the magnitude of mammalian dietary shifts and ancient floral change during geologically documented glacial and interglacial periods during the Pliocene (approximately 1.9 million years ago and Pleistocene (approximately 1.3 million years ago in Florida. Stable isotope data demonstrate increased aridity, increased C(4 grass consumption, inter-faunal dietary partitioning, increased isotopic niche breadth of mixed feeders, niche partitioning of phylogenetically similar taxa, and differences in relative seasonality with warming.Our data show that global warming resulted in dramatic vegetation and dietary changes even at lower latitudes (approximately 28 degrees N. Our results also question the use of models that predict the long term decline and extinction of species based on the assumption that niches are conserved over time. These findings have immediate relevance to clarifying possible biotic responses to current global warming in modern ecosystems.

  13. Investigate the plant biomass response to climate warming in permafrost ecosystem using matrix-based data assimilation

    Science.gov (United States)

    Lu, X.; Du, Z.; Schuur, E.; Luo, Y.

    2017-12-01

    Permafrost is one of the most vulnerable regions on the earth with over 40% world soil C represented in this region. Future climate warming potentially has a great impact on this region. On one hand, rising temperature accelerates permafrost soil thaw and release more C from land. On the other hand, warming may also increase the plant growing season length and therefore negatively feedback to climate change by increasing annual land C uptake. However, whether permafrost vegetation biomass change in response to warming can sequester more C has not been well understood. Manipulated air warming experiments reported that air warming has very limited impacts on grass land productivity and biomass growth in permafrost region [Mauritz et al., 2017]. It is hard to reveal the mechanisms behind the limited air warming response directly from experiment data. We employ a vegetation C cycle matrix model based on Community land model 4.5 (CLM4.5) and data assimilation technique to investigate how much do phenology and physiology processes contribute to the response respectively. Our results indicate phenology contributes the most in response to warming. The shift of vegetation parameter distributions after 2012 indicate vegetation acclimation may explain the modest response in plant biomass to air warming. The results suggest future model development need to take vegetation acclimation more seriously. The novel matrix-based model allows data assimilation to be conducted more efficiently. It provides more functional understanding of the models as well as the mechanism behind experiment data.

  14. Seasonality of fire weather strongly influences fire regimes in South Florida savanna-grassland landscapes.

    Directory of Open Access Journals (Sweden)

    William J Platt

    Full Text Available Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature. We used nonparametric cluster analyses of a 17-year (1993-2009 data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires over a 13-year period with fire records (1997-2009. Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with

  15. Seasonality of Fire Weather Strongly Influences Fire Regimes in South Florida Savanna-Grassland Landscapes

    Science.gov (United States)

    Platt, William J.; Orzell, Steve L.; Slocum, Matthew G.

    2015-01-01

    Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993–2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997–2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of

  16. Impacts of second-generation biofuel feedstock production in the central U.S. on the hydrologic cycle and global warming mitigation potential

    Science.gov (United States)

    Harding, K. J.; Twine, T. E.; VanLoocke, A.; Bagley, J. E.; Hill, J.

    2016-10-01

    Biofuel feedstocks provide a renewable energy source that can reduce fossil fuel emissions; however, if produced on a large scale they can also impact local to regional water and carbon budgets. Simulation results for 2005-2014 from a regional weather model adapted to simulate the growth of two perennial grass biofuel feedstocks suggest that replacing at least half the current annual cropland with these grasses would increase water use efficiency and drive greater rainfall downwind of perturbed grid cells, but increased evapotranspiration (ET) might switch the Mississippi River basin from having a net warm-season surplus of water (precipitation minus ET) to a net deficit. While this scenario reduces land required for biofuel feedstock production relative to current use for maize grain ethanol production, it only offsets approximately one decade of projected anthropogenic warming and increased water vapor results in greater atmospheric heat content.

  17. Genetic compatibility determines endophyte-grass combinations.

    Directory of Open Access Journals (Sweden)

    Kari Saikkonen

    Full Text Available Even highly mutually beneficial microbial-plant interactions, such as mycorrhizal- and rhizobial-plant exchanges, involve selfishness, cheating and power-struggles between the partners, which depending on prevailing selective pressures, lead to a continuum of interactions from antagonistic to mutualistic. Using manipulated grass-endophyte combinations in a five year common garden experiment, we show that grass genotypes and genetic mismatches constrain genetic combinations between the vertically (via host seeds transmitted endophytes and the out-crossing host, thereby reducing infections in established grass populations. Infections were lost in both grass tillers and seedlings in F(1 and F(2 generations, respectively. Experimental plants were collected as seeds from two different environments, i.e., meadows and nearby riverbanks. Endophyte-related benefits to the host included an increased number of inflorescences, but only in meadow plants and not until the last growing season of the experiment. Our results illustrate the importance of genetic host specificity and trans-generational maternal effects on the genetic structure of a host population, which act as destabilizing forces in endophyte-grass symbioses. We propose that (1 genetic mismatches may act as a buffering mechanism against highly competitive endophyte-grass genotype combinations threatening the biodiversity of grassland communities and (2 these mismatches should be acknowledged, particularly in breeding programmes aimed at harnessing systemic and heritable endophytes to improve the agriculturally valuable characteristics of cultivars.

  18. Climate change: consequences on the pollination of grasses in Perugia (Central Italy). A 33-year-long study.

    Science.gov (United States)

    Sofia, Ghitarrini; Emma, Tedeschini; Veronica, Timorato; Giuseppe, Frenguelli

    2017-01-01

    Many works carried out in the last decades have shown that the pollen season for taxa flowering in winter and spring, in temperate regions, has tended to be earlier, probably due to the continuous rise in temperature. The mean annual temperature in Perugia, Central Italy, was about 0.5 °C higher in the last three decades compared with that registered from 1952 to 1981. The increase of temperature took place mainly in winter and spring, while no significant variation was recorded during the summer and autumn. This scenario shows variations in the timing and behavior of flowering of many spontaneous plants such as grasses, whose phenology is strongly influenced by air temperature. This work reports fluctuations in the airborne grass pollen presence in Perugia over a 33-year period (1982-2014), in order to study the influence of the warming registered in recent years on the behavior of pollen release of this taxon. The grass pollen season in Perugia typically lasts from the beginning of May to late July. The start dates showed a marked trend to an earlier beginning of the season (-0.4 day/year), as well as a strong correlation with the average temperatures of March and April. The peak is reached around 30th May, but the annual pollen index (API) is following a decreasing trend. The correlation between starting dates and spring temperatures could be interesting for the constitution of a forecasting model capable of predicting the presence of airborne grass pollen, helping to plan therapies for allergic people.

  19. Seasonal Oxygen Dynamics in a Warm Temperate Estuary: Effects of Hydrologic Variability on Measurements of Primary Production, Respiration, and Net Metabolism

    Science.gov (United States)

    Seasonal responses in estuarine metabolism (primary production, respiration, and net metabolism) were examined using two complementary approaches. Total ecosystem metabolism rates were calculated from dissolved oxygen time series using Odum’s open water method. Water column rates...

  20. Warm Season Storms, Floods, and Tributary Sand Inputs below Glen Canyon Dam: Investigating Salience to Adaptive Management in the Context of a 10-Year Long Controlled Flooding Experiment in Grand Canyon National Park, AZ, USA

    Science.gov (United States)

    Jain, S.; Melis, T. S.; Topping, D. J.; Pulwarty, R. S.; Eischeid, J.

    2013-12-01

    The planning and decision processes in the Glen Canyon Dam Adaptive Management Program (GCDAMP) strive to balance numerous, often competing, objectives, such as, water supply, hydropower generation, low flow maintenance, maximizing conservation of downstream tributary sand supply, endangered native fish, and other sociocultural resources of Glen Canyon National Recreation Area and Grand Canyon National Park. In this context, use of monitored and predictive information on the warm season floods (at point-to-regional scales) has been identified as lead-information for a new 10-year long controlled flooding experiment (termed the High-Flow Experiment Protocol) intended to determine management options for rebuilding and maintaining sandbars in Grand Canyon; an adaptive strategy that can potentially facilitate improved planning and dam operations. In this work, we focus on a key concern identified by the GCDAMP, related to the timing and volume of tributary sand input from the Paria and Little Colorado Rivers (located 26 and 124 km below the dam, respectively) into the Colorado River in Grand Canyon National Park. Episodic and intraseasonal variations (with links to equatorial and sub-tropical Pacific sea surface temperature variability) in the southwest hydroclimatology are investigated to understand the magnitude, timing and spatial scales of warm season floods from this relatively small, but prolific sand producing drainage of the semi-arid Colorado Plateau. The coupled variations of the flood-driven sediment input (magnitude and timing) from these two drainages into the Colorado River are also investigated. The physical processes, including diagnosis of storms and moisture sources, are mapped alongside the planning and decision processes for the ongoing experimental flood releases from the Glen Canyon Dam which are aimed at achieving restoration and maintenance of sandbars and instream ecology. The GCDAMP represents one of the most visible and widely recognized

  1. Environmental-genotype responses in livestock to global warming: A ...

    African Journals Online (AJOL)

    Global warming will change Southern Africa's environments from grass dominated vegetation to dry woodland and desert with a vegetation of C4 dominated grasses, whereas the grazing capacity is expected to decline by more than 30%. Animals will also be more exposed to parasites and diseases, mainly as a result of an ...

  2. Potential of grass seed production for new lawns

    Directory of Open Access Journals (Sweden)

    Josiane Vargas de Oliveira Maximino

    2017-07-01

    Full Text Available The Paspalum and Axonopus genera are among the main warm season grasses used for lawns. The seed propagation contributes to the decrease of the cost of establishment, besides maintaining the exact characteristics of the mother plant genotype, because they are apomictic species. The objective of this work was to evaluate the seed production potential of seventeen grass accesses of the species Paspalum notatum, P. lepton, P. lividum and Axonopus parodii. The experiment was conducted at Capão do Leão, Rio Grande do Sul State, Brazil, in a randomized block design, with four replications. The evaluated variables were: number of inflorescences per area, number of florets per inflorescence and seed production potential (SPP. In order to measure the seed production potential of the accesses, the equation proposed is: SPP = number of florets per inflorescence x number of inflorescences per m2 . There were year, access and interaction between years and accesses effect for the traits number of inflorescences per area and seed production potential. For the number of florets per inflorescence, there was no year effect. Potential production for the 2013/2014 harvest, ranged from 19,152.00 to 135,062.70 seeds m- ², with PN 09 of the P. notatum species standing out. In the 2014/2015 harvest, the seed production potential ranged from 9,973.75 to 81,536.75 seeds m- ², highlighting the access PN 11 of the species P. notatum. The accesses PN 11, PN 09, PN 10 and AP 01 were in the top third of the seed production potential ranking in the two harvests, and “grama-batatais” was in the lower third. There is genotype-environment interaction for all characteristics evaluated. However, there are accesses that show seed production potential consistently superior to the “grama-batatais” control, and have a greater potential for exploitation in the establishment of lawns by seeds.

  3. resistance of napier grass clones to napier grass stunt disease

    African Journals Online (AJOL)

    ACSS

    Napier grass (Pennisetum purpureum Schumach) is the major livestock fodder under intensive and semi-intensive systems in East Africa. However, the productivity of the grass is constrained by Napier grass Stunt Disease. (NSD). The purpose of this study was to identify Napier grass clones with resistance to NSD.

  4. Resistance of Napier grass clones to Napier grass Stunt Disease ...

    African Journals Online (AJOL)

    Napier grass (Pennisetum purpureum Schumach) is the major livestock fodder under intensive and semi-intensive systems in East Africa. However, the productivity of the grass is constrained by Napier grass Stunt Disease (NSD). The purpose of this study was to identify Napier grass clones with resistance to NSD.

  5. Investigation of the differences between deepening and intensification for 500-hpa cyclones in central and East Mediterranean region during warm season of the year

    Directory of Open Access Journals (Sweden)

    S. Spanos

    2006-01-01

    Full Text Available The maximum deepening rate per cyclone track is determined by the maximum height drop at the center of the cyclone (500-hPa low on the basis of all the 6-h successive steps in its life cycle. The geopotential height gradient is calculated over the entire low area and the calculation continued with the variation of the gradient in the successive steps. The maximum intensification rate per cyclone is then determined as the maximum increase of the gradient in the life cycle. Maximum deepening rate for the 500-hPa cyclones in the area does not exceed, on average, 12 gpm/6 h. Maximum intensification which is 1.4 gpm/100 Km*6 h on average, occurs in the early stages of the cyclone's life cycle. This on the average happens approximately 9 h after the first time the low is detected. At the gulf of Genoa and the Adriatic Sea, cyclones usually show the maximum intensification after the maximum deepening. At Turkey's cyclogenesis area, however, this order is reversed. The spatial distributions of maximum intensification in the three sub-periods, indicate that it mainly occurs over Seas during late warm periods and over land during early and middle warm periods. Such a behavior underlines the role of low-level instability in cyclone development.

  6. The effects of energy grass plantations on biodiversity. 2nd annual report

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T.; Slater, F.

    2004-07-01

    This report, which covers the year 2003 growing season, is the second annual report about a project to investigate the ecological impact on biodiversity of plantations of biomass grass crops grown in Hertfordshire in the UK. Wildlife monitoring was carried out at five field sites growing the perennial rhizomatous grass crops Miscanthus, reed canary grass and switch grass. The report covers the findings from wildlife surveys for the 2003 season, the final results from the invertebrate identification from the 2002 season, data entry from the 2002 and 2003 seasons, and the continued invertebrate identification during the 2003 season. Butterfly assessments and an evaluation of crop characteristics such as plant height, plant/stem density and biomass yield were also performed. Results are presented with respect to crop field characteristics, pests and diseases, ground flora, ground beetles, birds, small mammals, butterflies and epigeal invertebrates. Plans for the next growing season are outlined.

  7. Preliminary Results of a U.S. Deep South Warm Season Deep Convective Initiation Modeling Experiment using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    Science.gov (United States)

    Medlin, Jeffrey M.; Wood, Lance; Zavodsky, Brad; Case, Jon; Molthan, Andrew

    2012-01-01

    The initiation of deep convection during the warm season is a forecast challenge in the relative high instability and low wind shear environment of the U.S. Deep South. Despite improved knowledge of the character of well known mesoscale features such as local sea-, bay- and land-breezes, observations show the evolution of these features fall well short in fully describing the location of first initiates. A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA s Short-term Prediction Research and Transition (SPoRT) Center was undertaken during the 2012 warm season to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System. The NASA products were: a 4-km Land Information System data, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with a 9 km outer grid spacing and a 3 km inner nest spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the forecast timing and location of the first initiates, with a focus on the impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  8. Seasonal ozone uptake by a warm-temperate mixed deciduous and evergreen broadleaf forest in western Japan estimated by the Penman–Monteith approach combined with a photosynthesis-dependent stomatal model

    International Nuclear Information System (INIS)

    Kitao, Mitsutoshi; Komatsu, Masabumi; Hoshika, Yasutomo; Yazaki, Kenichi; Yoshimura, Kenichi; Fujii, Saori; Miyama, Takafumi; Kominami, Yuji

    2014-01-01

    Canopy-level stomatal conductance over a warm-temperate mixed deciduous and evergreen broadleaf forest in Japan was estimated by the Penman–Monteith approach, as compensated by a semi-empirical photosynthesis-dependent stomatal model, where photosynthesis, relative humidity, and CO 2 concentration were assumed to regulate stomatal conductance. This approach, using eddy covariance data and routine meteorological observations at a flux tower site, permits the continuous estimation of canopy-level O 3 uptake, even when the Penman–Monteith approach is unavailable (i.e. in case of direct evaporation from soil or wet leaves). Distortion was observed between the AOT40 exposure index and O 3 uptake through stomata, as AOT40 peaked in April, but with O 3 uptake occurring in July. Thus, leaf pre-maturation in the predominant deciduous broadleaf tree species (Quercus serrata) might suppress O 3 uptake in springtime, even when the highest O 3 concentrations were observed. -- Highlights: • We estimate canopy-level O 3 uptake in a warm-temperate mixed forest in Japan. • The Penman–Monteith approach is compensated by a photosynthesis-dependent model. • Stomatal conductance can be estimated, even in a partly-opened or wet canopy. • The estimated O 3 dose peaks in summer though O 3 exposure peaks in spring. -- Estimation of seasonal O 3 uptake over a mixed-temperate forest compensated by a photosynthesis-dependent stomatal model

  9. Grass Rooting the System

    Science.gov (United States)

    Perlman, Janice E.

    1976-01-01

    Suggests a taxonomy of the grass roots movement and gives a general descriptive over view of the 60 groups studied with respect to origin, constituency, size, funding, issues, and ideology. (Author/AM)

  10. Microphysical and radiative effects of aerosols on warm clouds during the Amazon biomass burning season as observed by MODIS: impacts of water vapor and land cover

    Directory of Open Access Journals (Sweden)

    J. E. Ten Hoeve

    2011-04-01

    Full Text Available Aerosol, cloud, water vapor, and temperature profile data from the Moderate Resolution Imaging Spectroradiometer (MODIS are utilized to examine the impact of aerosols on clouds during the Amazonian biomass burning season in Rondônia, Brazil. It is found that increasing background column water vapor (CWV throughout this transition season between the Amazon dry and wet seasons likely exerts a strong effect on cloud properties. As a result, proper analysis of aerosol-cloud relationships requires that data be stratified by CWV to account better for the influence of background meteorological variation. Many previous studies of aerosol-cloud interactions over Amazonia have ignored the systematic changes to meteorological factors during the transition season, leading to possible misinterpretation of their results. Cloud fraction (CF is shown to increase or remain constant with aerosol optical depth (AOD, depending on the value of CWV, whereas the relationship between cloud optical depth (COD and AOD is quite different. COD increases with AOD until AOD ~ 0.3, which is assumed to be due to the first indirect (microphysical effect. At higher values of AOD, COD is found to decrease with increasing AOD, which may be due to: (1 the inhibition of cloud development by absorbing aerosols (radiative effect/semi-direct effect and/or (2 a possible retrieval artifact in which the measured reflectance in the visible is less than expected from a cloud top either from the darkening of clouds through the addition of carbonaceous biomass burning aerosols within or above clouds or subpixel dark surface contamination in the measured cloud reflectance. If (1 is a contributing mechanism, as we suspect, then an empirically-derived increasing function between cloud drop number and aerosol concentration, assumed in a majority of global climate models, is inaccurate since these models do not include treatment of aerosol absorption in and around clouds. The relationship between

  11. Accelerated development in Johnsongrass seedlings (Sorghum halepense) suppresses the growth of native grasses through size-asymmetric competition.

    Science.gov (United States)

    Schwinning, Susanne; Meckel, Heather; Reichmann, Lara G; Polley, H Wayne; Fay, Philip A

    2017-01-01

    Invasive plant species often dominate native species in competition, augmenting other potential advantages such as release from natural enemies. Resource pre-emption may be a particularly important mechanism for establishing dominance over competitors of the same functional type. We hypothesized that competitive success of an exotic grass against native grasses is mediated by establishing an early size advantage. We tested this prediction among four perennial C4 warm-season grasses: the exotic weed Johnsongrass (Sorghum halepense), big bluestem (Andropogon gerardii), little bluestem (Schizachyrium scoparius) and switchgrass (Panicum virgatum). We predicted that a) the competitive effect of Johnsongrass on target species would be proportional to their initial biomass difference, b) competitive effect and response would be negatively correlated and c) soil fertility would have little effect on competitive relationships. In a greenhouse, plants of the four species were grown from seed either alone or with one Johnsongrass neighbor at two fertilizer levels and periodically harvested. The first two hypotheses were supported: The seedling biomass of single plants at first harvest (50 days after seeding) ranked the same way as the competitive effect of Johnsongrass on target species: Johnsongrass critical mechanism by which exotic invasive species displace functionally similar native species and alter the functional dynamics of native communities.

  12. Global warming

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Canada's Green Plan strategy for dealing with global warming is being implemented as a multidepartmental partnership involving all Canadians and the international community. Many of the elements of this strategy are built on an existing base of activities predating the Green Plan. Elements of the strategy include programs to limit emissions of greenhouse gases, such as initiatives to encourage more energy-efficient practices and development of alternate fuel sources; studies and policy developments to help Canadians prepare and adapt to climate change; research on the global warming phenomenon; and stimulation of international action on global warming, including obligations arising out of the Framework Convention on Climate Change. All the program elements have been approved, funded, and announced. Major achievements to date are summarized, including improvements in the Energy Efficiency Act, studies on the socioeconomic impacts of global warming, and participation in monitoring networks. Milestones associated with the remaining global warming initiatives are listed

  13. Exploiting differential vegetation phenology for satellite-based mapping of semiarid grass vegetation in the southwestern United States and northern Mexico

    Science.gov (United States)

    Dye, Dennis G.; Middleton, Barry R.; Vogel, John M.; Wu, Zhuoting; Velasco, Miguel G.

    2016-01-01

    We developed and evaluated a methodology for subpixel discrimination and large-area mapping of the perennial warm-season (C4) grass component of vegetation cover in mixed-composition landscapes of the southwestern United States and northern Mexico. We describe the methodology within a general, conceptual framework that we identify as the differential vegetation phenology (DVP) paradigm. We introduce a DVP index, the Normalized Difference Phenometric Index (NDPI) that provides vegetation type-specific information at the subpixel scale by exploiting differential patterns of vegetation phenology detectable in time-series spectral vegetation index (VI) data from multispectral land imagers. We used modified soil-adjusted vegetation index (MSAVI2) data from Landsat to develop the NDPI, and MSAVI2 data from MODIS to compare its performance relative to one alternate DVP metric (difference of spring average MSAVI2 and summer maximum MSAVI2), and two simple, conventional VI metrics (summer average MSAVI2, summer maximum MSAVI2). The NDPI in a scaled form (NDPIs) performed best in predicting variation in perennial C4 grass cover as estimated from landscape photographs at 92 sites (R2 = 0.76, p landscapes of the Southwest, and potentially for monitoring of its response to drought, climate change, grazing and other factors, including land management. With appropriate adjustments, the method could potentially be used for subpixel discrimination and mapping of grass or other vegetation types in other regions where the vegetation components of the landscape exhibit contrasting seasonal patterns of phenology.

  14. Effects of air pollution and seasonality on the respiratory symptoms and health-related quality of life (HR-QoL) of outpatients with chronic respiratory disease in Ulaanbaatar: pilot study for the comparison of the cold and warm seasons.

    Science.gov (United States)

    Nakao, Motoyuki; Yamauchi, Keiko; Ishihara, Yoko; Solongo, Bandi; Ichinnorov, Dashtseren

    2016-01-01

    This study was performed to investigate the effects of air pollution and seasonality on the respiratory symptoms and health-related quality of life (HR-QoL) of outpatients with respiratory diseases in Ulaanbaatar, Mongolia. Subjects were outpatients who visited the hospital with chronic obstructive pulmonary diseases (COPD) or bronchial asthma (BA) in March. Their symptoms and HR-QoL were evaluated using a questionnaire including the SF-36v2 and COOP/WONCA charts in March, May and July. PM2.5 was sampled in March and July in Ulaanbaatar, and its composition was analyzed. Patients with COPD or BA showed higher prevalence of respiratory symptoms than the control subjects in each month. For HR-QoL, all subscales worsened in the patients than in the control group in March. Although the HR-QoL of the COPD and control groups were not significantly changed through the surveys, some subscales of the BA group showed remarkable improvement in July as compared to March. Daily means of PM2.5 in March were significantly higher than those in July. Carbon and ionic component concentrations, except for magnesium and calcium ions, were significantly higher in March than July. Mass concentrations of some metallic components were also significantly higher in March than July. The percentage of nitrate ion in PM2.5 was significantly higher in March when compared to that in July. These results suggested that the symptoms in the COPD and BA groups were caused by the disease, and the association with air pollution or seasonality remained unclear. However, the effects of air pollution and seasonality on the HR-QoL were significant in the patients with BA.

  15. Warm season precipitation signal in δ2 H values of wood lignin methoxyl groups from high elevation larch trees in Switzerland.

    Science.gov (United States)

    Riechelmann, Dana F C; Greule, Markus; Siegwolf, Rolf T W; Anhäuser, Tobias; Esper, Jan; Keppler, Frank

    2017-10-15

    In this study, we tested stable hydrogen isotope ratios of wood lignin methoxyl groups (δ 2 H methoxyl values) as a palaeoclimate proxy in dendrochronology. This is a quite new method in the field of dendrochronology and the sample preparation is much simpler than the methods used before to measure δ 2 H values from wood. We measured δ 2 H methoxyl values in high elevation larch trees (Larix decidua Mill.) from Simplon Valley (southern Switzerland). Thirty-seven larch trees were sampled and five individuals analysed for their δ 2 H methoxyl values at annual (1971-2009) and pentadal resolution (1746-2009). The δ 2 H methoxyl values were measured as CH 3 I released upon treatment of the dried wood samples with hydroiodic acid. 10-90 μL from the head-space were injected into the gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/HTC-IRMS) system. Testing the climate response of the δ 2 H methoxyl values, the annually resolved series show a positive correlation of r = 0.60 with June/July precipitation. The pentadally resolved δ 2 H methoxyl series do not show any significant correlation to climate parameters. Increased precipitation during June and July, which are on average warm and relatively dry months, results in higher δ 2 H values of the xylem water and, therefore, higher δ 2 H values in the lignin methoxyl groups. Therefore, we suggest that δ 2 H methoxyl values of high elevation larch trees might serve as a summer precipitation proxy. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Seasonal and annual variation in planktonic foraminiferal fluxes including warm period related El Niño in the northwestern North Pacific

    Science.gov (United States)

    Kuroyanagi, A.; Kawahata, H.; Nishi, H.; Honda, M. C.

    2007-12-01

    Planktonic foraminifera provide a record of the upper ocean environment through their species assemblage and individual tests. To investigate the relationship between foraminifera and oceanographic conditions and the impact of El Niño on foraminifera, we analyzed foraminiferal fluxes and relative abundances by using sediment trap samples collected biweekly at three sites in the northwestern North Pacific: Site 40N (39 °60'N, 165 °00'E), Site KNOT (43 °58'N, 155 °03'E), and Site 50N (50 °01'N, 165 °02'E) from 1998- 2001, a period that included an El Niño effect. Based on foraminiferal production and assemblage composition, we divided the sampling duration into several periods during which certain characteristic oceanographic properties were observed. These sampling periods were classified into five types (I-V) based upon four factors: 1) the predominant foraminiferal group, 2) total foraminiferal fluxes (TFFs), 3) organic matter (OM) fluxes, and 4) hydrographic conditions, which included sea surface temperature (SST) and thermal structure. Our results suggest that seasonal changes in foraminifera were closely related to water mass properties in addition to SST. If species compositions were the same, then water mass properties were the most important factors affecting the seasonal variation of foraminiferal abundance in the northwestern North Pacific. Although one of the major controlling factors for foraminiferal fluxes is food availability, the controlling factors for each type (types I-V) are different because of specific oceanographic situations, such as phytoplankton blooms, which result in an excess food supply for foraminifera. At Site KNOT in 1998, SST was remarkably high because of El Niño, and high surface temperatures and weak winds would have lowered nutrient supply and intensified water column stratification, resulting in the relatively low fluxes of total foraminifera, N. pachyderma, and G. bulloides, and the high fluxes of N. dutertrei that

  17. Variability in warm-season atmospheric circulation and precipitation patterns over subtropical South America: relationships between the South Atlantic convergence zone and large-scale organized convection over the La Plata basin

    Science.gov (United States)

    Mattingly, Kyle S.; Mote, Thomas L.

    2017-01-01

    Warm-season precipitation variability over subtropical South America is characterized by an inverse relationship between the South Atlantic convergence zone (SACZ) and precipitation over the central and western La Plata basin of southeastern South America. This study extends the analysis of this "South American Seesaw" precipitation dipole to relationships between the SACZ and large, long-lived mesoscale convective systems (LLCSs) over the La Plata basin. By classifying SACZ events into distinct continental and oceanic categories and building a logistic regression model that relates LLCS activity across the region to continental and oceanic SACZ precipitation, a detailed account of spatial variability in the out-of-phase coupling between the SACZ and large-scale organized convection over the La Plata basin is provided. Enhanced precipitation in the continental SACZ is found to result in increased LLCS activity over northern, northeastern, and western sections of the La Plata basin, in association with poleward atmospheric moisture flux from the Amazon basin toward these regions, and a decrease in the probability of LLCS occurrence over the southeastern La Plata basin. Increased oceanic SACZ precipitation, however, was strongly related to reduced atmospheric moisture and decreased probability of LLCS occurrence over nearly the entire La Plata basin. These results suggest that continental SACZ activity and large-scale organized convection over the northern and eastern sections of the La Plata basin are closely tied to atmospheric moisture transport from the Amazon basin, while the warm coastal Brazil Current may also play an important role as an evaporative moisture source for LLCSs over the central and western La Plata basin.

  18. Improving the energy balance of grass-based anaerobic digestion through combined harvesting and pretreatment

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Egelund, H.

    2017-01-01

    on meadow and cultivated grass silages. The results showed that relatively high methane production can be achieved from meadow and cultivated grass harvested in different seasons. The findings indicated that the bioenergy production can be improved based on the selection of the appropriate harvesting...

  19. Status and use of important native grasses adapted to sagebrush communities

    Science.gov (United States)

    Thomas A. Jones; Steven R. Larson

    2005-01-01

    Due to the emphasis on restoration, native cool-season grass species are increasing in importance in the commercial seed trade in the Western U.S. Cultivated seed production of these native grasses has often been hampered by seed dormancy, seed shattering, and pernicious awns that are advantageous outside of cultivation. Relatively low seed yields and poor seedling...

  20. GUI development for GRASS GIS

    Directory of Open Access Journals (Sweden)

    Martin Landa

    2007-12-01

    Full Text Available This article discusses GUI development for GRASS GIS. Sophisticated native GUI for GRASS is one of the key points (besides the new 2D/3D raster library, vector architecture improvements, etc. for the future development of GRASS. In 2006 the GRASS development team decided to start working on the new generation of GUI instead of improving the current GUI based on Tcl/Tk.

  1. Influence of soil fertility on waterlogging tolerance of two Brachiaria grasses

    Directory of Open Access Journals (Sweden)

    Juan de la Cruz Jiménez

    2015-04-01

    Full Text Available As a consequence of global warming, rainfall is expected to increase in several regions around the world. This, together with poor soil drainage, will result in waterlogged soil conditions. Brachiaria grasses are widely sown in the tropics and, these grasses confront seasonal waterlogged conditions. Several studies have indicated that an increase in nutrient availability could reduce the negative impact of waterlogging. Therefore, an outdoor study was conducted to evaluate the responses of two Brachiaria sp. grasses with contrasting tolerances to waterlogging, B. ruziziensis (sensitive and B. humidicola (tolerant, with two soil fertility levels. The genotypes were grown with two different soil fertilization levels (high and low and under well-drained or waterlogged soil conditions for 15 days. The biomass production, chlorophyll content, photosynthetic efficiency, and macro- (N, P, K, Ca, Mg and S and micronutrient (Fe, Mn, Cu, Zn and B contents in the shoot tissue were determined. Significant differences in the nutrient content of the genotypes and treatments were found. An increase of redoximorphic elements (Fe and Mn in the soil solution occurred with the waterlogging. The greater tolerance of B. humidicola to waterlogged conditions might be due to an efficient root system that is able to acquire nutrients (N, P, K and potentially exclude phytotoxic elements (Fe and Mn under waterlogged conditions. A high nutrient availability in the waterlogged soils did not result in an improved tolerance for B. ruziziensis. The greater growth impairment seen in the B. ruziziensis with high soil fertility and waterlogging (as opposed to low soil fertility and waterlogging was possibly due to an increased concentration of redoximorphic elements under these conditions.

  2. Changes of biomass in some perennial grass species. | M.C. ...

    African Journals Online (AJOL)

    Patterns of seasonal herbaceous biomass change in a burned, ungrazed savanna woodland are reported. A standard clipping technique was used and material farmed in the current season was separated from that formed in the previous season for three perennial grass species: Brachiaria nigropedata, Andropogon ...

  3. Overlap in nitrogen sources and redistribution of nitrogen between trees and grasses in a semi-arid savanna.

    Science.gov (United States)

    Priyadarshini, K V R; Prins, Herbert H T; de Bie, Steven; Heitkönig, Ignas M A; Woodborne, Stephan; Gort, Gerrit; Kirkman, Kevin; Fry, Brian; de Kroon, Hans

    2014-04-01

    A key question in savanna ecology is how trees and grasses coexist under N limitation. We used N stable isotopes and N content to study N source partitioning across seasons from trees and associated grasses in a semi-arid savanna. We also used (15)N tracer additions to investigate possible redistribution of N by trees to grasses. Foliar stable N isotope ratio (δ(15)N) values were consistent with trees and grasses using mycorrhiza-supplied N in all seasons except in the wet season when they switched to microbially fixed N. The dependence of trees and grasses on mineralized soil N seemed highly unlikely based on seasonal variation in mineralization rates in the Kruger Park region. Remarkably, foliar δ(15)N values were similar for all three tree species differing in the potential for N fixation through nodulation. The tracer experiment showed that N was redistributed by trees to understory grasses in all seasons. Our results suggest that the redistribution of N from trees to grasses and uptake of N was independent of water redistribution. Although there is overlap of N sources between trees and grasses, dependence on biological sources of N coupled with redistribution of subsoil N by trees may contribute to the coexistence of trees and grasses in semi-arid savannas.

  4. Productivity and carbon footprint of perennial grass-forage legume intercropping strategies with high or low nitrogen fertilizer input.

    Science.gov (United States)

    Hauggaard-Nielsen, Henrik; Lachouani, Petra; Knudsen, Marie Trydeman; Ambus, Per; Boelt, Birte; Gislum, René

    2016-01-15

    A three-season field experiment was established and repeated twice with spring barley used as cover crop for different perennial grass-legume intercrops followed by a full year pasture cropping and winter wheat after sward incorporation. Two fertilization regimes were applied with plots fertilized with either a high or a low rate of mineral nitrogen (N) fertilizer. Life cycle assessment (LCA) was used to evaluate the carbon footprint (global warming potential) of the grassland management including measured nitrous oxide (N2O) emissions after sward incorporation. Without applying any mineral N fertilizer, the forage legume pure stand, especially red clover, was able to produce about 15 t above ground dry matter ha(-1) year(-1) saving around 325 kg mineral Nfertilizer ha(-1) compared to the cocksfoot and tall fescue grass treatments. The pure stand ryegrass yielded around 3t DM more than red clover in the high fertilizer treatment. Nitrous oxide emissions were highest in the treatments containing legumes. The LCA showed that the low input N systems had markedly lower carbon footprint values than crops from the high N input system with the pure stand legumes without N fertilization having the lowest carbon footprint. Thus, a reduction in N fertilizer application rates in the low input systems offsets increased N2O emissions after forage legume treatments compared to grass plots due to the N fertilizer production-related emissions. When including the subsequent wheat yield in the total aboveground production across the three-season rotation, the pure stand red clover without N application and pure stand ryegrass treatments with the highest N input equalled. The present study illustrate how leguminous biological nitrogen fixation (BNF) represents an important low impact renewable N source without reducing crop yields and thereby farmers earnings. Copyright © 2015. Published by Elsevier B.V.

  5. Differential metabolic responses of perennial grass Cynodon transvaalensis×Cynodon dactylon (C₄) and Poa Pratensis (C₃) to heat stress.

    Science.gov (United States)

    Du, Hongmei; Wang, Zhaolong; Yu, Wenjuan; Liu, Yimin; Huang, Bingru

    2011-03-01

    Differential metabolic responses to heat stress may be associated with variations in heat tolerance between cool-season (C₃) and warm-season (C₄) perennial grass species. The main objective of this study was to identify metabolites associated with differential heat tolerance between C₄ bermudagrass and C₃ Kentucky bluegrass by performing metabolite profile analysis using gas chromatography-mass spectrometry. Plants of Kentucky bluegrass (Poa Pratensis'Midnight') and hybrid bermudagrass (Cynodon transvaalensis x Cynodon dactylon'Tifdwarf') were grown under optimum temperature conditions (20/15 °C for Kentucky bluegrass and 30/25 °C for bermudagrass) or heat stress (35/30 °C for Kentucky bluegrass and 45/40 °C for bermudagrass). Physiological responses to heat stress were evaluated by visual rating of grass quality, measuring photochemical efficiency (variable fluorescence to maximal fluorescence) and electrolyte leakage. All of these parameters indicated that bermudagrass exhibited better heat tolerance than Kentucky bluegrass. The metabolite analysis of leaf polar extracts revealed 36 heat-responsive metabolites identified in both grass species, mainly consisting of organic acids, amino acids, sugars and sugar alcohols. Most metabolites showed higher accumulation in bermudagrass compared with Kentucky bluegrass, especially following long-term (18 days) heat stress. The differentially accumulated metabolites included seven sugars (sucrose, fructose, galactose, floridoside, melibiose, maltose and xylose), a sugar alcohol (inositol), six organic acids (malic acid, citric acid, threonic acid, galacturonic acid, isocitric acid and methyl malonic acid) and nine amino acids (Asn, Ala, Val, Thr, γ-aminobutyric acid, IIe, Gly, Lys and Met). The differential accumulation of those metabolites could be associated with the differential heat tolerance between C₃ Kentucky bluegrass and C₄ bermudagrass. Copyright © Physiologia Plantarum 2010.

  6. Evapotranspiration and water use efficiency of different grass ...

    African Journals Online (AJOL)

    Evapotranspiration (Et) and water use efficiency (WUE) were determined for each of seven grass species during the 1986/87 seasons. The highest and lowest mean daily Et of 2, 39 and 1, 66 mm were recorded respectively for Themeda triandra and Sporobolus fimbriatus. Between species, the average Et for the two ...

  7. Carcass mass gains of steers grazing star grass, with different ...

    African Journals Online (AJOL)

    Carcass mass gains of steers grazing dryland Cynodon aethiopicus cv. No. 2 Star grass pastures during the growing season were determined for each of 16 treatments comprising four levels of nitrogen fertilisation in combination with four overlapping sets of stocking rates. The treatments were repeated over four growing ...

  8. Soil water use by Ceanothus velutinus and two grasses.

    Science.gov (United States)

    W. Lopushinsky; G.O. Klock

    1990-01-01

    Seasonal trends of soil water content in plots of snowbrush (Ceanothus velutinus Dougl.), orchard grass (Dactylis glomerata L), and pinegrass (Calamagrostis rubes- cens Buckl.) and in bare plots were measured on a burned-over forest watershed in north-central Washington. A comparison of soil water contents at depths of 12, 24,...

  9. The performance of a white clover-based dairy system in comparison with a grass/fertiliser-N system. II. Animal production, economics and environment

    NARCIS (Netherlands)

    Schils, R.L.M.; Boxem, T.; Jagtenberg, C.J.; Verboom, M.C.

    2000-01-01

    The performance of a white clover based dairy system in comparison with a grass/fertiliser-N system was studied during three years. Both systems had 59 cows, plus young stock, on an area of 40.6 ha for grass/clover and 34.4 ha for grass/fertiliser-N. During the grazing season, the cows in both

  10. Plant movements and climate warming

    DEFF Research Database (Denmark)

    De Frenne, Pieter; Coomes, David A.; De Schrijver, An

    2014-01-01

    environments can establish in nonlocal sites. •We assess the intraspecific variation in growth responses to nonlocal soils by planting a widespread grass of deciduous forests (Milium effusum) into an experimental common garden using combinations of seeds and soil sampled in 22 sites across its distributional...... range, and reflecting movement scenarios of up to 1600 km. Furthermore, to determine temperature and forest-structural effects, the plants and soils were experimentally warmed and shaded. •We found significantly positive effects of the difference between the temperature of the sites of seed and soil...... collection on growth and seedling emergence rates. Migrant plants might thus encounter increasingly favourable soil conditions while tracking the isotherms towards currently ‘colder’ soils. These effects persisted under experimental warming. Rising temperatures and light availability generally enhanced plant...

  11. Global Warming on Triton

    Science.gov (United States)

    Elliot, J. L.; Hammel, H. B.; Wasserman, L. H.; Franz, O. G.; McDonald, S. W.; Person, M. J.; Olkin, C. B.; Dunham, E. J.; Spencer, J. R.; Stansberry, J. A.; hide

    1998-01-01

    Triton, Neptune's largest moon, has been predicted to undergo significant seasonal changes that would reveal themselves as changes in its mean frost temperature. But whether this temperature should at the present time be increasing, decreasing or constant depends on a number of parameters (such as the thermal properties of the surface, and frost migration patterns) that are unknown. Here we report observations of a recent stellar occultation by Triton which, when combined with earlier results, show that Triton has undergone a period of global warming since 1989. Our most conservative estimates of the rate of temperature and surface-pressure increase during this period imply that the atmosphere is doubling in bulk every 10 years, significantly faster than predicted by any published frost model for Triton. Our result suggests that permanent polar caps on Triton play a c dominant role in regulating seasonal atmospheric changes. Similar processes should also be active on Pluto.

  12. Grass as a C booster for manure-biogas in Estonia

    DEFF Research Database (Denmark)

    Pehme, Sirli; Hamelin, Lorie; Veromann, Eve

    2014-01-01

    The aim of this study was to assess the environmental consequences of using grass (from both unused and cultivated boreal grasslands) as a co-substrate to dairy cow manure for biogas production. Environmental impact categories assessed were global warming, acidification and nutrient enrichment...... (distinguishing between N and P). Scenarios studied were: traditional management of dairy cow manure, monodigestion of manure, manure co-digestion with reed canary grass and manure co-digestion with residual grass from semi-natural grasslands. The latter scenario showed the best environmental performance...... for the global warming category, for other categories it did not show clear benefits. Using reed canary grass specially produced for biogas purpose resulted in a climate change impact just as big as the reference manure management, mainly as a result of indirect land use changes. Increased impacts also occurred...

  13. Global warming

    International Nuclear Information System (INIS)

    Houghton, John

    2005-01-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources

  14. Effect of Vetiver Grass on Reduction of Soil Salinity and Some Minerals

    OpenAIRE

    Masoud Noshadi; Hosein Valizadeh

    2017-01-01

    Introduction: Soil salinity is one of the major limitations of agriculture in the warm and dry regions. Soil sodification also damages soil structure and reduce soil permeability. Therefore, control of soil salinity and sodium is very important. Vetiver grass has unique characteristics that can be useful in phytoremediation. Materials and Methods: This research was conducted to investigate the effects of irrigation with different salinities on vetiver grass and the effects of this plant o...

  15. Napier Grass and Legume Silage for Smallholder Farmers in Coastal Kenya

    International Nuclear Information System (INIS)

    Muinga, R.W.; Mambo, L.C.; Bimbuzi, S.

    1999-01-01

    Inadequate feed during the dry season is a major cause of low dairy productivity in Kenya. Napier grass is grown by smallholder dairy farmers due to its high biomass yield especially during the rainy season when it can be ensiled to ensure feed available in the dry season.The objective of the study was to determine the silage quality of mixtures of Napier grass and Legume forages. Maize bran was used as the main source of readily available carbohydrates replacing molasses. The mixtures were compared to the conventional Napier grass/legume has higher nutritive value than silage made from Napier grass only and that maize bran could replace molasses as a source of readily available carbohydrates

  16. Changes in the onset of spring growth in shrubland species in response to experimental warming along a north-south gradient in Europe

    DEFF Research Database (Denmark)

    Prieto, Patricia; Penuelas, Josep; Niinemets, Üelo

    2009-01-01

    Species responsive to increased temperatures were Vaccinium myrtillus and Empetrum nigrum in Wales, Deschampsia flexuosa in Denmark, Calluna vulgaris in Netherlands, Populus alba in Hungary and Erica multiflora in Spain. Although the acceleration of spring growth was the commonest response to warming...... gradient with average annual temperatures (8.2–15.6 °C) and precipitation (511–1427 mm). Methods 'Bud break' was monitored in eight shrub and grass species in six European sites under control and experimentally warmer conditions generated by automatic roofs covering vegetation during the night. Results...... treatments, the responses at each site were species specific and year dependent. Under experimental warming 25% of cases exhibited a significantly earlier onset of the growing season and 10% had a significantly delayed onset of vegetative growth. No geographical gradient was detected in the experimental...

  17. Preliminary Results of Clover and Grass Coverage and Total Dry Matter Estimation in Clover-Grass Crops Using Image Analysis

    Directory of Open Access Journals (Sweden)

    Anders K. Mortensen

    2017-12-01

    Full Text Available The clover-grass ratio is an important factor in composing feed ratios for livestock. Cameras in the field allow the user to estimate the clover-grass ratio using image analysis; however, current methods assume the total dry matter is known. This paper presents the preliminary results of an image analysis method for non-destructively estimating the total dry matter of clover-grass. The presented method includes three steps: (1 classification of image illumination using a histogram of the difference in excess green and excess red; (2 segmentation of clover and grass using edge detection and morphology; and (3 estimation of total dry matter using grass coverage derived from the segmentation and climate parameters. The method was developed and evaluated on images captured in a clover-grass plot experiment during the spring growing season. The preliminary results are promising and show a high correlation between the image-based total dry matter estimate and the harvested dry matter ( R 2 = 0.93 with an RMSE of 210 kg ha − 1 .

  18. Supplemental energy sources for Santa Inês sheep grazing on urochloa grass in the dry season Fontes energéticas suplementares para ovinos Santa Inês em pastagens de capim urocloa na época seca

    Directory of Open Access Journals (Sweden)

    Alana Batista dos Santos

    2011-03-01

    Full Text Available The trial aimed to evaluate the effect of feeding of 1% body weight of concentrate supplementation, formulated with different ingredients (mesquite pod meal , sorghum meal or wheat bran, or without concentrate supplementation on behavioral parameters and cost of production of sheep kept in grazing urocloa grass. We used 24 Santa Inês sheep, non-castrated, weaned with body weight averaging 20 ± 2kg and an average of 120 days of age. The animals were assigned in the four treatments consisting by animals fed forage under deferred grazing of Urochloa grass (Urochloa mosambicensis. The dry matter intake was significant and the values were higher to the animals what receive concentrate supplement. The differences in the dry matter intake did not affect the feeding activity, already the time of grazing had a higher value for the animals without concentrate supplementation, in compared with other. The time of rumination was higher for treating without concentrate supplementation . The number of ruminated bolus (nº/day and chewing time/bolus (sec were not affected. The feeding efficiency (g DM/hours and rumination efficiency (g DM/hours were lower for the treatment without concentrate supplementation . The economic result was positive for all treatments with concentrate supplementation, however, the without concentrate supplementation treatment showed negative revenue. The concentrate supplementation positively influences the efficiency of feeding that reflects in minor time grazing, being that the economic return depends on the price and availability of fed.Objetivou-se avaliar os efeitos do fornecimento de 1% do peso corporal de suplementação concentrada, formulada com diferentes ingredientes (farelo da vagem de algaroba, farelo de sorgo ou farelo de trigo, ou sem suplementação concentrada sobre os parâmetros comportamentais e custo de produção de ovinos mantidos em pastagem de capim urocloa. Foram utilizados 24 ovinos Santa Inês, n

  19. Amplified Arctic warming by phytoplankton under greenhouse warming.

    Science.gov (United States)

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  20. Strong genetic differentiation in the invasive annual grass Bromus tectorum across the Mojave-Great Basin ecological transition zone

    Science.gov (United States)

    Susan E. Meyer; Elizabeth A. Leger; Desiree R. Eldon; Craig E. Coleman

    2016-01-01

    Bromus tectorum, an inbreeding annual grass, is a dominant invader in sagebrush steppe habitat in North America. It is also common in warm and salt deserts, displaying a larger environmental tolerance than most native species. We tested the hypothesis that a suite of habitat-specific B. tectorum lineages dominates warm desert habitats. We sampled 30 B....

  1. Global warming

    CERN Document Server

    Hulme, M

    1998-01-01

    Global warming-like deforestation, the ozone hole and the loss of species- has become one of the late 20the century icons of global environmental damage. The threat, is not the reality, of such a global climate change has motivated governments. businesses and environmental organisations, to take serious action ot try and achieve serious control of the future climate. This culminated last December in Kyoto in the agreement for legally-binding climate protocol. In this series of three lectures I will provide a perspective on the phenomenon of global warming that accepts the scientific basis for our concern, but one that also recognises the dynamic interaction between climate and society that has always exited The future will be no different. The challenge of global warning is not to pretend it is not happening (as with some pressure groups), nor to pretend it threatens global civilisation (as with other pressure groups), and it is not even a challenge to try and stop it from happening-we are too far down the ro...

  2. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    Science.gov (United States)

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  3. Meadow-grass gall midge

    DEFF Research Database (Denmark)

    Hansen, Lars Monrad

    The area with meadow-grass (Poa pratensis, L.) grown for seed production in Den-mark is a significant proportion of the entire seed production. The meadow-grass gall midge (Mayetiola schoberi, Barnes 1958) is of considerable economic importance since powerful attacks can reduce the yield...

  4. Ensiling as pretreatment of grass for lignocellulosic biomass conversion

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten

    for subsequent enzymatic saccharification of cellulose and hemicellulose, by using the temperate grass Festulolium Hykor. The method was additionally combined with hydrothermal treatment, in order to decrease the required severity of an industrial applied pretreatment method. The first part of the project...... conditions providing the best possible pretreatment effect. The parameters were biomass composition, varied by ensiling of four seasonal cuts of grass, different dry matter (DM) content at ensiling, and an addition of different lactic acid bacteria species. First of all, the study confirmed that ensiling can...... act as a method of pretreatment and improve the enzymatic cellulose convertibility of grass. Furthermore, low DM ensiling was found to improve the effects of pretreatment due to a higher production of organic acids in the silage. The effect of applied lactic acid bacteria species was, however...

  5. Important Considerations When Choosing Forage Grasses - Research Developments on Quality and Management

    Science.gov (United States)

    Seasonal changes in forage productivity and nutritive value will influence pasture management and ration balancing decisions by the producer. We determined seasonal yield and quality changes in the leaf and stem fraction of 10 temperate perennial grasses at two Wisconsin locations. After reaching ...

  6. Transcriptomic Identification of Drought-Related Genes and SSR Markers in Sudan Grass Based on RNA-Seq

    Directory of Open Access Journals (Sweden)

    Yongqun Zhu

    2017-05-01

    Full Text Available Sudan grass (Sorghum sudanense is an annual warm-season gramineous forage grass that is widely used as pasture, hay, and silage. However, drought stress severely impacts its yield, and there is limited information about the mechanisms of drought tolerance in Sudan grass. In this study, we used next-generation sequencing to identify differentially expressed genes (DEGs in the Sudan grass variety Wulate No.1, and we developed simple sequence repeat (SSR markers associated with drought stress. From 852,543,826 raw reads, nearly 816,854,366 clean reads were identified and used for analysis. A total of 80,686 unigenes were obtained via de novo assembly of the clean reads including 45,065 unigenes (55.9% that were identified as coding sequences (CDSs. According to Gene Ontology analysis, 31,444 unigenes were annotated, 11,778 unigenes were identified to 25 categories in the clusters of orthologous groups of proteins (KOG classification, and 11,223 unigenes were assigned to 280 Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. Additionally, there were 2,329 DEGs under a short-term of 25% polyethylene glycol (PEG treatment, while 5,101 DEGs were identified under the long-term of 25% PEG treatment. DEGs were enriched in pathways of carbon fixation in photosynthetic organisms and plant hormone signal transduction which played a leading role in short-term of drought stress. However, DEGs were mainly enriched in pathway of plant hormone signal transduction that played an important role under long-term of drought stress. To increase accuracy, we excluded all the DEGs of all controls, specifically, five DEGs that were associated with high PEG concentrations were found through RNA-Seq. All five genes were up-regulated under drought stress, but the functions of the genes remain unclear. In addition, we identified 17,548 SSRs obtained from 80,686 unigenes. The newly identified drought tolerance DEGs will contribute to transgenic breeding efforts, while

  7. Overlap in nitrogen sources and redistribution of nitrogen between trees and grasses in a semi-arid savanna

    NARCIS (Netherlands)

    Priyadarshini, K.V.R.; Prins, H.H.T.; Bie, de S.; Heitkonig, I.M.A.; Woodborne, S.; Gort, G.; Kirkman, K.; Fry, B.; Kroon, de H.

    2014-01-01

    A key question in savanna ecology is how trees and grasses coexist under N limitation. We used N stable isotopes and N content to study N source partitioning across seasons from trees and associated grasses in a semi-arid savanna. We also used 15N tracer additions to investigate possible

  8. Accelerated development in Johnsongrass seedlings (Sorghum halepense suppresses the growth of native grasses through size-asymmetric competition.

    Directory of Open Access Journals (Sweden)

    Susanne Schwinning

    Full Text Available Invasive plant species often dominate native species in competition, augmenting other potential advantages such as release from natural enemies. Resource pre-emption may be a particularly important mechanism for establishing dominance over competitors of the same functional type. We hypothesized that competitive success of an exotic grass against native grasses is mediated by establishing an early size advantage. We tested this prediction among four perennial C4 warm-season grasses: the exotic weed Johnsongrass (Sorghum halepense, big bluestem (Andropogon gerardii, little bluestem (Schizachyrium scoparius and switchgrass (Panicum virgatum. We predicted that a the competitive effect of Johnsongrass on target species would be proportional to their initial biomass difference, b competitive effect and response would be negatively correlated and c soil fertility would have little effect on competitive relationships. In a greenhouse, plants of the four species were grown from seed either alone or with one Johnsongrass neighbor at two fertilizer levels and periodically harvested. The first two hypotheses were supported: The seedling biomass of single plants at first harvest (50 days after seeding ranked the same way as the competitive effect of Johnsongrass on target species: Johnsongrass < big bluestem < little bluestem/switchgrass, while Johnsongrass responded more strongly to competition from Johnsongrass than from native species. At final harvest, native plants growing with Johnsongrass attained between 2-5% of their single-plant non-root biomass, while Johnsongrass growing with native species attained 89% of single-plant non-root biomass. Fertilization enhanced Johnsongrass' competitive effects on native species, but added little to the already severe competitive suppression. Accelerated early growth of Johnsongrass seedlings relative to native seedlings appeared to enable subsequent resource pre-emption. Size-asymmetric competition and resource

  9. Extending juvenility in grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaeppler, Shawn; de Leon Gatti, Natalia; Foerster, Jillian

    2017-04-11

    The present invention relates to compositions and methods for modulating the juvenile to adult developmental growth transition in plants, such as grasses (e.g. maize). In particular, the invention provides methods for enhancing agronomic properties in plants by modulating expression of GRMZM2G362718, GRMZM2G096016, or homologs thereof. Modulation of expression of one or more additional genes which affect juvenile to adult developmental growth transition such as Glossy15 or Cg1, in conjunction with such modulation of expression is also contemplated. Nucleic acid constructs for down-regulation of GRMZM2G362718 and/or GRMZM2G096016 are also contemplated, as are transgenic plants and products produced there from, that demonstrate altered, such as extended juvenile growth, and display associated phenotypes such as enhanced yield, improved digestibility, and increased disease resistance. Plants described herein may be used, for example, as improved forage or feed crops or in biofuel production.

  10. Characterization of gene expression associated with drought avoidance and tolerance traits in a perennial grass species.

    Directory of Open Access Journals (Sweden)

    Peng Zhou

    Full Text Available To understand molecular mechanisms of perennial grass adaptation to drought stress, genes associated with drought avoidance or tolerance traits were identified and their expression patterns were characterized in C4 hybrid bermudagrass [Cynodon dactylon (L. Pers.×C. transvaalensis Burtt Davy, cv. Tifway] and common bermudagrass (C. dactylon, cv. C299. Plants of drought-tolerant 'Tifway' and drought-sensitive 'C299' were exposed to drought for 5 d (mild stress and 10 d (severe stress by withholding irrigation in a growth chamber. 'Tifway' maintained significantly lower electrolyte leakage and higher relative water content than 'C299' at both 5 and 10 d of drought stress. Four cDNA libraries via suppression subtractive hybridization analysis were constructed and identified 277 drought-responsive genes in the two genotypes at 5 and 10 d of drought stress, which were mainly classified into the functional categories of stress defense, metabolism, osmoregulation, membrane system, signal and regulator, structural protein, protein synthesis and degradation, and energy metabolism. Quantitative-PCR analysis confirmed the expression of 36 drought up-regulated genes that were more highly expressed in drought-tolerant 'Tifway' than drought-sensitive 'C299', including those for drought avoidance traits, such as cuticle wax formation (CER1 and sterol desaturase, for drought tolerance traits, such as dehydration-protective proteins (dehydrins, HVA-22-like protein and oxidative stress defense (superoxide dismutase, dehydroascorbate reductase, 2-Cys peroxiredoxins, and for stress signaling (EREBP-4 like protein and WRKY transcription factor. The results suggest that the expression of genes for stress signaling, cuticle wax accumulation, antioxidant defense, and dehydration-protective protein accumulation could be critically important for warm-season perennial grass adaptation to long-term drought stress.

  11. Dose-response relationship of a new Timothy grass pollen allergoid in comparison with a 6-grass pollen allergoid.

    Science.gov (United States)

    Pfaar, O; Hohlfeld, J M; Al-Kadah, B; Hauswald, B; Homey, B; Hunzelmann, N; Schliemann, S; Velling, P; Worm, M; Klimek, L

    2017-11-01

    Subcutaneous allergen immunotherapy with grass pollen allergoids has been proven to be effective and safe in the treatment of patients with allergic rhinoconjunctivitis. Based on the extensive cross-reactivity among Pooideae species, it has been suggested that grass pollen extracts could be prepared from a single species, rather than from a multiple species mixture. To find the optimal dose of a Phleum pratense (P. pratense) allergoid preparation and compare its efficacy and safety to a 6-grass pollen allergoid preparation. In this double-blind, placebo-controlled study (EudraCT: 2011-000674-58), three doses of P. pratense allergoid (1800 therapeutic units (TU), standard-dose 6000 TU and 18 000 TU) were compared with placebo and the marketed 6-grass pollen allergoid (6000 TU). In a pre-seasonal dosing regimen, 102 patients were randomized to five treatment groups and received nine subcutaneous injections. The primary efficacy endpoint was the change in weal size (late-phase reaction [LPR]) in response to the intracutaneous testing (ICT) before and after treatment, comparing the active allergoids to placebo. Secondary outcomes were the change in Total Nasal Symptom Score (TNSS) assessed in the allergen exposure chamber (AEC), the changes in P. pratense-serum-specific IgG 4 and the incidence of adverse events (AEs). All three doses of the P. pratense and the 6-grass pollen allergoid preparations were significantly superior to placebo for the primary outcome, whereas there were no significant differences in the change in TNSS. Compared to the standard-dose, the high-dose of P. pratense did not produce any additional significant benefit, but showed a slight increase in AEs. Yet this increase in AEs was lower than for the 6-grass pollen preparation. The standard-dose of the new P. pratense allergoid was comparable to the marketed 6-grass pollen preparation at equal dose for the parameters measured. © 2017 The Authors. Clinical & Experimental Allergy Published by John

  12. Antarctica: Cooling or Warming?

    Science.gov (United States)

    Bunde, Armin; Ludescher, Josef; Franzke, Christian

    2013-04-01

    We consider the 14 longest instrumental monthly mean temperature records from the Antarctica and analyse their correlation properties by wavelet and detrended fluctuation analysis. We show that the stations in the western and the eastern part of the Antarctica show significant long-term memory governed by Hurst exponents close to 0.8 and 0.65, respectively. In contrast, the temperature records at the inner part of the continent (South Pole and Vostok), resemble white noise. We use linear regression to estimate the respective temperature differences in the records per decade (i) for the annual data, (ii) for the summer and (iii) for the winter season. Using a recent approach by Lennartz and Bunde [1] we estimate the respective probabilities that these temperature differences can be exceeded naturally without inferring an external (anthropogenic) trend. We find that the warming in the western part of the continent and the cooling at the South Pole is due to a gradually changes in the cold extremes. For the winter months, both cooling and warming are well outside the 95 percent confidence interval, pointing to an anthropogenic origin. In the eastern Antarctica, the temperature increases and decreases are modest and well within the 95 percent confidence interval. [1] S. Lennartz and A. Bunde, Phys. Rev. E 84, 021129 (2011)

  13. Effects of Grazing Management in Brachiaria grass-forage Peanut Pastures on Canopy Structure and Forage Intake.

    Science.gov (United States)

    Gomes, F K; Oliveira, M D B L; Homem, B G C; Boddey, R M; Bernardes, T F; Gionbelli, M P; Lara, M A S; Casagrande, D R

    2018-06-13

    Maintenance of mixed grass-legume pastures for stand longevity and improved animal utilization is a challenge in warm-season climates. The goal of this study was to assess grazing management on stand persistence, forage intake, and N balance of beef heifers grazing mixed pastures of Brachiaria brizantha and Arachis pintoi. A two-year experiment was carried out in Brazil, where four grazing management were assessed: rest period interrupted at 90%, 95%, and 100% of light interception (LI) and a fixed rest period of 42 days (90LI, 95LI, 100LI, and 42D, respectively). The LI were taken at 50 points at ground level and at five points above the canopy for each paddock using a canopy analyzer. For all treatments, the post-grazing stubble height was 15 cm. Botanical composition and canopy structure characteristics such as canopy height, forage mass, and vertical distribution of the morphological composition were evaluated pre-and post-grazing. Forage chemical composition, intake, and microbial synthesis were also determined. A randomized complete block design was used, considering the season of the year as a repeated measure over time. Grazing management and season were considered fixed, while block and year were considered random effects. In the summer, legume mass accounted for 19% of the canopy at 100LI, which was less than other treatments (a mean of 30%). The 100LI treatment had a greater grass stem mass compared with other treatments. In terms of vertical distribution for 100LI, 38.6% of the stem mass was above the stubble height, greater than the 5.7% for other treatments. The canopy structure limited neutral detergent fiber intake (P = 0.007) at 100LI (1.02% of BW/d), whereas 42D, 90LI, and 95LI treatments had NDF intake close to 1.2% of BW/d. The intake of digestible organic matter (OM; P = 0.007) and the ratio of crude protein/digestible OM (P < 0.001) were less at 100LI in relation to the other treatments. The production of microbial N (P < 0.001) and efficiency

  14. EGRADATION CHARACTERISTICS OF SOME SUDANESE GRASSES AND GAS PRODUCTION TECHNIQUES

    OpenAIRE

    A.O. Idris; C. Kijora; A.M. Salih; I. Bushara; H.A.A. Elbukhary

    2012-01-01

    Eighteen plant species, three ingredients, and six diets were studied for their degradation characteristics, using gas production techniques. The palatable grasses were selected during the rainy season from the range land of Kordofan, Sudan. The ingredients were Roselle seeds, Sorghum grain and Groundnut cake. The samples were incubated for 4, 8, 12, 24, 48, 72 and 96 h, using rumen inoculum of three of the sheep used for the nylon bag. The results showed a large variation between the differe...

  15. DESIGN OF GRASS BRIQUETTE MACHINE

    African Journals Online (AJOL)

    user

    E-mail addresses: 1 mike.ajieh@gmail.com, 2 dracigboanugo@yahoo.com, ... machine design was considered for processing biomass of grass origin. The machine operations include pulverization, compaction and extrusion of the briquettes.

  16. Breeding for Grass Seed Yield

    DEFF Research Database (Denmark)

    Boelt, Birte; Studer, Bruno

    2010-01-01

    Seed yield is a trait of major interest for many fodder and amenity grass species and has received increasing attention since seed multiplication is economically relevant for novel grass cultivars to compete in the commercial market. Although seed yield is a complex trait and affected...... by agricultural practices as well as environmental factors, traits related to seed production reveal considerable genetic variation, prerequisite for improvement by direct or indirect selection. This chapter first reports on the biological and physiological basics of the grass reproduction system, then highlights...... important aspects and components affecting the seed yield potential and the agronomic and environmental aspects affecting the utilization and realization of the seed yield potential. Finally, it discusses the potential of plant breeding to sustainably improve total seed yield in fodder and amenity grasses....

  17. Grass and weed killer poisoning

    Science.gov (United States)

    ... medlineplus.gov/ency/article/002838.htm Grass and weed killer poisoning To use the sharing features on this page, please enable JavaScript. Many weed killers contain dangerous chemicals that are harmful if ...

  18. Factors influencing seed germination in Cerrado grasses

    Directory of Open Access Journals (Sweden)

    Rosana Marta Kolb

    2016-03-01

    Full Text Available Few studies address the ecology of herbs of Cerrado grasslands, which are ecosystems where the long dry season, high temperatures, insolation, fire and invasive grasses greatly influencing germination and the establishment of plants. We assessed germination of 13 species of Poaceae from Cerrado grasslands under nursery conditions or in germination chambers, the latter with i recently collected seeds and seeds after six months storage, ii under constant and alternating temperatures, and iii in the presence and absence of light. Germinability, mean germination time (MGT and required light were quantified to elucidate factors involved in successful germination. Germinability was low for most grasses, probably because of low seed viability. For most species, germinability and MGT were not altered by seed storage. Germination percentages were higher at alternating temperatures and in the presence of light, factors that are more similar to natural environmental situations compared with constant temperature or the absence of light. Our findings indicate that alternating temperatures and light incidence are key factors for germination of species of Poaceae. The maintenance of these environmental factors, which are crucial for the conservation of Cerrado grasslands, depends on appropriate management interventions, such as fire management and the control of biological invasion.

  19. Multi-year objective analyses of warm season ground-level ozone and PM2.5 over North America using real-time observations and Canadian operational air quality models

    Science.gov (United States)

    Robichaud, A.; Ménard, R.

    2014-02-01

    Multi-year objective analyses (OA) on a high spatiotemporal resolution for the warm season period (1 May to 31 October) for ground-level ozone and for fine particulate matter (diameter less than 2.5 microns (PM2.5)) are presented. The OA used in this study combines model outputs from the Canadian air quality forecast suite with US and Canadian observations from various air quality surface monitoring networks. The analyses are based on an optimal interpolation (OI) with capabilities for adaptive error statistics for ozone and PM2.5 and an explicit bias correction scheme for the PM2.5 analyses. The estimation of error statistics has been computed using a modified version of the Hollingsworth-Lönnberg (H-L) method. The error statistics are "tuned" using a χ2 (chi-square) diagnostic, a semi-empirical procedure that provides significantly better verification than without tuning. Successful cross-validation experiments were performed with an OA setup using 90% of data observations to build the objective analyses and with the remainder left out as an independent set of data for verification purposes. Furthermore, comparisons with other external sources of information (global models and PM2.5 satellite surface-derived or ground-based measurements) show reasonable agreement. The multi-year analyses obtained provide relatively high precision with an absolute yearly averaged systematic error of less than 0.6 ppbv (parts per billion by volume) and 0.7 μg m-3 (micrograms per cubic meter) for ozone and PM2.5, respectively, and a random error generally less than 9 ppbv for ozone and under 12 μg m-3 for PM2.5. This paper focuses on two applications: (1) presenting long-term averages of OA and analysis increments as a form of summer climatology; and (2) analyzing long-term (decadal) trends and inter-annual fluctuations using OA outputs. The results show that high percentiles of ozone and PM2.5 were both following a general decreasing trend in North America, with the eastern

  20. High green fodder yielding new grass varieties

    OpenAIRE

    C. Babu, K. Iyanar and A. Kalamani

    2014-01-01

    Two high biomass yielding forage grass varieties one each in Cumbu Napier hybrid and Guinea grass have been evolved at the Department of Forage Crops, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore and identified for release at national (All India) level as Cumbu Napier hybrid grass CO (BN) 5 and Guinea grass CO (GG) 3 during 2012 and 2013 respectively. Cumbu Napier hybrid grass CO (BN) 5 secured first rank at all national level with reference to green ...

  1. Microbial Community Activity And Plant Biomass Are Insensitive To Passive Warming In A Semiarid Ecosystem

    Science.gov (United States)

    Espinosa, N. J.; Fehmi, J. S.; Rasmussen, C.; Gallery, R. E.

    2017-12-01

    Soil microorganisms drive biogeochemical and nutrient cycling through the production of extracellular enzymes that facilitate organic matter decomposition and the flux of large amounts of carbon dioxide to the atmosphere. Although dryland ecosystems occupy over 40% of land cover and are projected to expand due to climate change, much of our current understanding of these processes comes from mesic temperate ecosystems. Understanding the responses of these globally predominant dryland ecosystems is therefore important yet complicated by co-occurring environmental changes. For example, the widespread and pervasive transition from grass to woody dominated landscapes is changing the hydrology, fire regimes, and carbon storage potential of semiarid ecosystems. In this study, we used a novel passive method of warming to conduct a warming experiment with added plant debris as either woodchip or biochar, to simulate different long-term carbon additions that accompany woody plant encroachment in semiarid ecosystems. The response of heterotrophic respiration, plant biomass, and microbial activity was monitored bi-annually. We hypothesized that the temperature manipulations would have direct and indirect effects on microbial activity. Warmer soils directly reduce the activity of soil extracellular enzymes through denaturation and dehydration of soil pores and indirectly through reducing microbe-available substrates and plant inputs. Overall, reduction in extracellular enzyme activity may reduce decomposition of coarse woody debris and potentially enhance soil carbon storage in semiarid ecosystems. For all seven hydrolytic enzymes examined as well as heterotrophic respiration, there was no consistent or significant response to experimental warming, regardless of seasonal climatic and soil moisture variation. The enzyme results observed here are consistent with the few other experimental results for warming in semiarid ecosystems and indicate that the controls over soil

  2. Grass pollen symptoms interfere with the recollection of birch pollen symptoms - a prospective study of suspected, asymptomatic skin sensitization

    DEFF Research Database (Denmark)

    Assing, K; Bødtger, Uffe; Poulsen, L K

    2007-01-01

    of seasonal allergic symptoms and prospective seasonal symptom registration among subjects with AS. METHODS: On the basis of a population survey, autumn 2002, including skin prick tests (positive if > or =3 mm) and a screening questionnaire, 87 subjects with AS to birch and/or grass pollen, birch and/or grass...... days. RESULTS: Eleven AS subjects (birch: n = 10) subsequently developed allergic symptoms, yet nine admitted, at follow up, to have had symptoms before inclusion, or even denied pollen-related symptoms despite a significant diary. Compared with AS subjects sensitized to grass pollen, AS subjects...

  3. Ultra-short-course booster is effective in recurrent grass pollen-induced allergic rhinoconjunctivitis.

    Science.gov (United States)

    Pfaar, O; Lang, S; Pieper-Fürst, U; Astvatsatourov, A; Gerich, F; Klimek, L; Kramer, M F; Reydelet, Y; Shah-Hosseini, K; Mösges, R

    2018-01-01

    A relevant proportion of allergic rhinoconjunctivitis (ARC) patients experience recurrent symptoms after successfully completing allergen immunotherapy (AIT). This prospective, controlled, noninterventional study used internationally standardized instruments to determine the clinical effects of a preseasonal, ultra-short-course booster AIT on clinical outcome parameters. This two-arm study included patients aged ≥12 years with recurrent grass pollen-induced seasonal AR who had completed a successful course of any grass pollen AIT at least 5 years before enrolment. Overall, 56 patients received one preseasonal short-course booster AIT using tyrosine-absorbed grass pollen allergoids containing the adjuvant monophosphoryl lipid A (MPL ® ); 51 control patients received symptomatic medication. The combined symptom and medication score (CSMS) was recorded in the (peak) grass pollen season. Furthermore, concomitant (antiallergic) medication use, the patients' state of health, Mini Rhinoconjunctivitis Quality of Life Questionnaire (MiniRQLQ) results and safety/tolerability of the treatment were assessed. The CSMS in the peak grass pollen season was significantly lower in the booster AIT group (Δ=38.4%, Pallergoids containing the adjuvant MPL ® effectively prevents re-occurrence of symptoms in patients with grass pollen-induced ARC. © 2017 The Authors. Allergy Published by John Wiley & Sons Ltd.

  4. Efficacy and safety of 5-grass pollen sublingual immunotherapy tablets in patients with different clinical profiles of allergic rhinoconjunctivitis

    DEFF Research Database (Denmark)

    Malling, Hans-Jørgen; Montagut, A; Melac, M

    2009-01-01

    pollen sublingual tablets of 100 IR (index of reactivity), 300 IR or 500 IR, or placebo starting 4 months before the pollen season. OBJECTIVE: The aim of this complementary analysis was to determine whether 300 IR 5-grass pollen SLIT-tablets is effective in different subtypes of patients who are allergic......BACKGROUND: The optimal dose of grass pollen tablets for sublingual immunotherapy (SLIT) in allergic rhinoconjunctivitis patients was previously established in a multinational, randomized, double-blind, placebo-controlled study in 628 adults. Patients were randomized to receive once-daily 5-grass...... to grass pollen. METHODS: Different subgroups could be identified regarding comorbidities (with or without asthma during the grass-pollen season), sensitization (mono/polysensitization) and symptom severity. An additional exploratory analysis was performed within four subgroups based on pre...

  5. Rendimento de forragem e valor nutritivo de gramíneas anuais de estação fria submetidas a sombreamento por Pinus elliottii e ao sol pleno Forage yield and nutritive value of cool-season annual forage grasses shaded by Pinus elliottii trees and at full-sun

    Directory of Open Access Journals (Sweden)

    Raquel Santiago Barro

    2008-10-01

    Full Text Available Avaliou-se o efeito do sombreamento provocado por duas densidades arbóreas em uma floresta de Pinus elliottii Engelm. com 10 anos de idade sobre o rendimento e o valor nutritivo da forragem de três gramíneas de ciclo hibernal. Como tratamentos, avaliou-se a combinação de dois fatores (3 x 3 em um delineamento experimental de parcelas subdivididas com três repetições, no qual as parcelas foram as condições luminosas (proporcionadas por duas densidades arbóreas: 555 e 333 árvores/ha e luz solar plena e as subparcelas as espécies forrageiras azevém-anual (Lolium multiflorum Lam.; aveia-preta (Avena strigosa Schreb.; e aveia-branca (A. sativa L. cv. Fapa 2. A semeadura foi realizada entre 25/7/2005 e 5/8/2005 e entre 26 e 27/4/2006. O rendimento de matéria seca foi estimado em avaliações durante o estádio vegetativo (aos 104 dias após a semeadura em 2006 e em pleno florescimento (aos 132 e 170 dias, em 2005 e 2006, respectivamente. O valor nutritivo da forragem foi avaliado considerando os teores médios de proteína bruta (PB e a digestibilidade in vitro da matéria orgânica (DIVMO. O sombreamento moderado reduziu em 57% o rendimento médio de forragem dos três genótipos avaliados, mas aumentou em 2,3% o teor de proteína bruta (PB e em 5,5% a digestibilidade in vitro (DIVMO quando as plantas estavam em florescimento pleno. Entre as espécies forrageiras avaliadas, a aveia-branca e a aveia-preta apresentam maior potencial para utilização em sistemas silvipastoris na Região Sul.It was evaluated the shading effect induced by two tree densities of a ten-year-old slash pine (Pinus elliottii Engelm. forest, and at full sun, on forage dry matter yield and nutritive value of three cool-season annual grasses. Treatments were a combination of two main factors: a three light conditions induced by two tree densities (333 e 555 stems/ha and at full sun; b three cool-season annual forage grasses: Italian ryegrass (Lolium multiflorum Lam

  6. Concentrate and crude protein levels in diets for dairy Gyr lineage cows grazing elephant-grass during the rainy season Níveis de concentrado e proteína bruta em dietas para vacas da raça Gir linhagem leiteira sob pastejo de capim-elefante durante a época das águas

    Directory of Open Access Journals (Sweden)

    Rafael Monteiro Araújo Teixeira

    2011-06-01

    Full Text Available The objective of this work was to evaluate the effects of three levels of concentrate (2.0, 4.0 and 6.0 kg/cow/day and two levels of crude protein (CP (14 and 16% total dietary dry matter, in comparison to mineral mixture (control on the intake, apparent digestibility, milk composition and yield and on feed efficiency and use of concentrates of cows grazing elephant grass (Pennisetum purpureum, Schum in the rainy season. Twenty-one milking Gyr cows with average body weight of 426 kg and yield of 13.0 kg of milk/cow/day at 55 days of lactation were distributed in randomized blocks design, with seven diets (treatments in a 3 × 2 + 1 factorial arrangement and three replications, in a period of 84 days. Forage dry matter intake was not influenced by the diets, but total dietary dry matter intake increased by 45% with the inclusion of concentrate in the diet. However, milk yield increased by only 17% (1.76 kg more milk per day with the use of concentrate. For dairy Gyr cows grazing elephant-grass during the rainy season, 2 kg of concentrate/cow/day and 14% of CP in the total diet provided the best productive response without harming body weight.Objetivou-se avaliar os efeitos de três níveis de concentrado (2,0; 4,0 e 6,0 kg/vaca/dia e dois de proteína bruta (PB (14 e 16% da matéria seca total da dieta em comparação à mistura mineral (controle no consumo, na digestibilidade aparente, na produção e composição do leite e na eficiência alimentar e de utilização de concentrados de vacas sob pastejo de capim-elefante (Pennisetum purpureum, Schum na época das águas. Vinte e uma vacas Gir linhagem leiteira com média de 426 kg de peso vivo e produção de 13,0 kg de leite/vaca/dia, aos 55 dias de lactação, foram distribuídas em delineamento de blocos casualizados, com sete dietas (tratamentos, em arranjo fatorial 3 × 2 + 1 e três repetições, num período de 84 dias. O consumo de matéria seca de forragem não foi influenciado pelas

  7. Ensiling as biological pretreatment of grass (Festulolium Hykor): The effect of composition, dry matter, and inocula on cellulose convertibility

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten; Johansen, Katja Salomon; Didion, Thomas

    2013-01-01

    Grass biomass is a prospective type of lignocellulosic biomass for bioenergy and fuel production, but the low dry matter in grass at harvest calls for new pretreatment strategies for cellulosic conversion. In this study, ensiling was tested as a biological pretreatment method of the high yielding...... grass variety Festulolium Hykor. The biomass was harvested in four cuts over a growing season. Three important factors of ensiling: biomass composition, dry matter (DM) at ensiling, and inoculation of lactic acid bacteria, were assessed in relation to subsequent enzymatic cellulose hydrolysis....... The organic acid profile after ensiling was dependant on the composition of the grass and the DM, rather than on the inocula. High levels of organic acids, notably lactic acid, produced during ensiling improved enzymatic cellulose convertibility in the grass biomass. Ensiling of less mature grass gave higher...

  8. Effects of short term and long term soil warming on ecosystem phenology of a sub-arctic grassland: an NDVI-based approach

    Science.gov (United States)

    Leblans, Niki; Sigurdsson, Bjarni D.; Janssens, Ivan A.

    2014-05-01

    % greening was advanced by 23 days at +5°C and by 32 days at +10°C Ts. However, no difference in the date of maximum greening or in the onset of senescence occurred. In contrast, in the long-term warmed grassland, the start of the growing season was not affected by Ts and the 50% greening point occurred only 10 days earlier at +5°C and 15 days earlier at +10°C Ts. However, the timing of maximum greening was advanced by 19 days at +5°C and even by 32 days at +10°C Ts. Again, the onset of senescence did not change with Ts. Significant Ts effects on ecosystem phenology of subarctic grasslands only occurred at warming of 5°C or higher. This study also demonstrates that short-term Ts effects on ecosystem phenology are not necessarily good predictors for long-term changes in sub-arctic grasslands. In the short-term (5 years warming), soil warming induced an early onset of the growing season, which was later compensated by faster greening on colder soils, so that maximum greenness was reached simultaneously irrespective of Ts. In contrast, the long-term Ts warming did not induce earlier onset of the growing season, but it led to faster greening on warm soils, which again led to an advance in timing of maximum greenness. This difference between short- and long-term responses in phenology might be caused by either phenotypic plasticity (acclimation) or by a genetic selection (evolution) of the grass populations where the warming has been ongoing for centuries. Such processes are at present not included in modelling predictions of climate change responses of natural ecosystems, but may offer important negative feedback mechanisms to warming which will reduce its effects.

  9. Lâminas de irrigação e doses de nitrogênio em pastagem de capim-elefante no período chuvoso no norte de Minas Gerais Irrigation depth and nitrogen doses on elephant-grass pastures during the rainy season in the north of Minas Gerais state

    Directory of Open Access Journals (Sweden)

    Flavio Gonçalves de Oliveira

    2011-12-01

    700 kg/ha/year and six water depths (0%; 20%; 40%; 80%, 100% and 120% of the reference evapotranspiration, or ETo on the forage yield, tillers density, leaf/stem relationship, plants height and crude protein content and neutral detergent fiber of elephant grass (Pennisetum purpureum, Schum. The experimental design was in blocks at random with four replications. The water depths and doses of nitrogen increased lineally the dry matter production and the tillers density. The plants height presented a linear behavior proportionally to application of irrigation depths. The crude protein contents decreased linearly with the application of the irrigation depths and increased with the doses of nitrogen. Quadratic effect was provided by the irrigation to neutral detergent fiber content, with maximum percentage of 72,26%, when water depth of 96,25% of the ETo was applied. Nitrogen fertilization reduced the neutral detergent fiber content linearly. As much the application of the irrigation depths as the nitrogen fertilization one, acting separately or in interaction, did not affect the leaf/stem relation on the rainy season. The water depths associate to the doses of nitrogen raised the dry matter yield, thus evidencing the reduction of effect of production seasonality of the elephant grass “pioneiro” in the North of Minas Gerais.

  10. Bioenergy production from roadside grass

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup; Ehimen, Ehiazesebhor Augustine; Holm-Nielsen, Jens Bo

    2014-01-01

    This paper presents a study of the feasibility of utilising roadside vegetation for biogas production in Denmark. The potential biomass yield, methane yields, and the energy balances of using roadside grass for biogas production was investigated based on spatial analysis. The results show...

  11. Sudden Stratospheric Warming Compendium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sudden Stratospheric Warming Compendium (SSWC) data set documents the stratospheric, tropospheric, and surface climate impacts of sudden stratospheric warmings. This...

  12. Seasonal hydroclimatic impacts of Sun Corridor expansion

    International Nuclear Information System (INIS)

    Georgescu, M; Mahalov, A; Moustaoui, M

    2012-01-01

    Conversion of natural to urban land forms imparts influence on local and regional hydroclimate via modification of the surface energy and water balance, and consideration of such effects due to rapidly expanding megapolitan areas is necessary in light of the growing global share of urban inhabitants. Based on a suite of ensemble-based, multi-year simulations using the Weather Research and Forecasting (WRF) model, we quantify seasonally varying hydroclimatic impacts of the most rapidly expanding megapolitan area in the US: Arizona’s Sun Corridor, centered upon the Greater Phoenix metropolitan area. Using a scenario-based urban expansion approach that accounts for the full range of Sun Corridor growth uncertainty through 2050, we show that built environment induced warming for the maximum development scenario is greatest during the summer season (regionally averaged warming over AZ exceeds 1 °C). Warming remains significant during the spring and fall seasons (regionally averaged warming over AZ approaches 0.9 °C during both seasons), and is least during the winter season (regionally averaged warming over AZ of 0.5 °C). Impacts from a minimum expansion scenario are reduced, with regionally averaged warming ranging between 0.1 and 0.3 °C for all seasons except winter, when no warming impacts are diagnosed. Integration of highly reflective cool roofs within the built environment, increasingly recognized as a cost-effective option intended to offset the warming influence of urban complexes, reduces urban-induced warming considerably. However, impacts on the hydrologic cycle are aggravated via enhanced evapotranspiration reduction, leading to a 4% total accumulated precipitation decrease relative to the non-adaptive maximum expansion scenario. Our results highlight potentially unintended consequences of this adaptation approach within rapidly expanding megapolitan areas, and emphasize the need for undeniably sustainable development paths that account for

  13. Global warming and climate change: control methods

    International Nuclear Information System (INIS)

    Laal, M.; Aliramaie, A.

    2008-01-01

    This paper aimed at finding causes of global warming and ways to bring it under control. Data based on scientific opinion as given by synthesis reports of news, articles, web sites, and books. global warming is the observed and projected increases in average temperature of Earth's atmosphere and oceans. Carbon dioxide and other air pollution that is collecting in the atmosphere like a thickening blanket, trapping the sun's heat and causing the planet to warm up. Pollution is one of the biggest man-made problems. Burning fossil fuels is the main factor of pollution. As average temperature increases, habitats, species and people are threatened by drought, changes in rainfall, altered seasons, and more violent storms and floods. Indeed the life cycle of nuclear power results in relatively little pollution. Energy efficiency, solar, wind and other renewable fuels are other weapons against global warming . Human activity, primarily burning fossil fuels, is the major driving factor in global warming . Curtailing the release of carbon dioxide into the atmosphere by reducing use of oil, gasoline, coal and employment of alternate energy, sources are the tools for keeping global warming under control. global warming can be slowed and stopped, with practical actions thal yield a cleaner, healthier atmosphere

  14. Produção de forragem de gramíneas anuais semeadas no verão Forage yield of annual grasses seeded on the summer

    Directory of Open Access Journals (Sweden)

    Rafael Orth

    2012-09-01

    Full Text Available No Rio Grande do Sul, a base forrageira para bovinos de corte e de leite é constituída, basicamente, por pastagens de gramíneas perenes de verão, com bom valor nutritivo (VN durante a primavera e parte do verão, quando manejadas adequadamente. Entretanto, a forragem no outono e inverno tem baixa concentração de nutrientes, o que ainda é agravado pelas geadas. Um experimento com dois anos de avaliação com parcelas divididas no delineamento em blocos casualizados, com três repetições, comparou rendimento, distribuição de forragem e valor nutritivo em três épocas de semeadura (janeiro, fevereiro e março, alocadas nas parcelas principais, e cinco genótipos (milheto comum, capim-sudão ou aveia de verão, teosinto e os híbridos de sorgo BRS 800 e AG 2501C nas subparcelas. As duas primeiras épocas de semeadura resultaram em maior rendimento de forragem (mais de 6,0Mg ha-1 de MS que a semeadura de março, com elevado valor nutritivo (>15% PB. Os sorgos forrageiros foram mais produtivos que capim-sudão e teosinto. Milheto, capim-sudão e teosinto têm maior afilhamento que os sorgos forrageiros híbridos. Milheto tem maior teor de PB (20% e menor de FDA (35% nas lâminas foliares quando comparado aos sorgos e teosinto. É possível minimizar a crise forrageira conhecida como vazio forrageiro outonal com a semeadura em múltiplas datas de forrageiras anuais de verão, até o final de fevereiro na região do Planalto Médio do RS e estender o período de pastejo em até 60 dias, em período em que as pastagens perenes de verão têm baixa oferta de forragem ou baixo valor nutritivo e as forrageiras anuais de inverno não estão estabelecidas.In the Rio Grande do Sul (RS state, southern Brazil, the forage foundation of beef and dairy cattle operations is pasture of warm-season grasses, with high nutritive value (NV during spring and part of summer seasons, if managed frequently. However, during cool-season, forage NV is very low and

  15. Divergent utilization patterns of grass fructan, inulin, and other nonfiber carbohydrates by ruminal microbes

    Science.gov (United States)

    Fructans are an important nonfiber carbohydrate in cool-season grasses. Their fermentation by ruminal microbes is not well described, though such information is needed to understand their nutritional value to ruminants. Our objective was to compare kinetics and product formation of orchardgrass fruc...

  16. Warming slowdown over the Tibetan plateau in recent decades

    Science.gov (United States)

    Liu, Yaojie; Zhang, Yangjian; Zhu, Juntao; Huang, Ke; Zu, Jiaxing; Chen, Ning; Cong, Nan; Stegehuis, Annemiek Irene

    2018-03-01

    As the recent global warming hiatus and the warming on high elevations are attracting worldwide attention, this study examined the robustness of the warming slowdown over the Tibetan plateau (TP) and its related driving forces. By integrating multiple-source data from 1982 to 2015 and using trend analysis, we found that the mean temperature (T mean), maximum temperature (T max) and minimum temperature (T min) showed a slowdown of the warming trend around 1998, during the period of the global warming hiatus. This was found over both the growing season (GS) and non-growing season (NGS) and suggested a robust warming hiatus over the TP. Due to the differences in trends of T max and T min, the trend of diurnal temperature range (DTR) also shifted after 1998, especially during the GS temperature. The warming rate was spatially heterogeneous. The northern TP (NTP) experienced more warming than the southern TP (STP) in all seasons from 1982 to 1998, while the pattern was reversed in the period from 1998 to 2015. Water vapour was found to be the main driving force for the trend in T mean and T min by influencing downward long wave radiation. Sunshine duration was the main driving force behind the trend in T max and DTR through a change in downward shortwave radiation that altered the energy source of daytime temperature. Water vapour was the major driving force for temperature change over the NTP, while over the STP, sunshine duration dominated the temperature trend.

  17. Dynamic response of wind turbine towers in warm permafrost

    Institute of Scientific and Technical Information of China (English)

    Benjamin Still; ZhaoHui Joey Yang; Simon Evans; FuJun Niu

    2014-01-01

    Wind is a great source of renewable energy in western Alaska. Consistent winds blow across the barren tundra underlain by warm permafrost in the winter season, when the energy demand is the highest. Foundation engineering in warm permafrost has always been a challenge in wind energy development. Degrading warm permafrost poses engineering issues to design, construction, and operation of wind turbines. This paper describes the foundation design of a wind turbine built in western Alaska. It presents a sys-tem for response monitoring and load assessment, and data collected from September 2013 to March 2014. The dynamic proper-ties are assessed based on the monitoring data, and seasonal changes in the dynamic properties of the turbine tower-foundation system and likely resonance between the spinning blades and the tower structure are discussed. These analyses of a wind turbine in warm permafrost are valuable for designing or retrofitting of foundations in warm permafrost.

  18. Seasonality in ocean microbial communities.

    Science.gov (United States)

    Giovannoni, Stephen J; Vergin, Kevin L

    2012-02-10

    Ocean warming occurs every year in seasonal cycles that can help us to understand long-term responses of plankton to climate change. Rhythmic seasonal patterns of microbial community turnover are revealed when high-resolution measurements of microbial plankton diversity are applied to samples collected in lengthy time series. Seasonal cycles in microbial plankton are complex, but the expansion of fixed ocean stations monitoring long-term change and the development of automated instrumentation are providing the time-series data needed to understand how these cycles vary across broad geographical scales. By accumulating data and using predictive modeling, we gain insights into changes that will occur as the ocean surface continues to warm and as the extent and duration of ocean stratification increase. These developments will enable marine scientists to predict changes in geochemical cycles mediated by microbial communities and to gauge their broader impacts.

  19. Environmental life cycle assessments of producing maize, grass-clover, ryegrass and winter wheat straw for biorefinery

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Kristensen, Ib Sillebak; Knudsen, Marie Trydeman

    2017-01-01

    The aim of this study is to assess the potential environmental impacts of producing maize, grass-clover, ryegrass, and straw from winter wheat as biomass feedstocks for biorefinery. The Life Cycle Assessment (LCA) method included the following impact categories: Global Warming Potential (GWP100),...

  20. Prolonged efficacy of the 300IR 5-grass pollen tablet up to 2 years after treatment cessation, as measured by a recommended daily combined score

    DEFF Research Database (Denmark)

    Didier, Alain; Malling, Hans-Jørgen; Worm, Margitta

    2015-01-01

    BACKGROUND: The 300IR (index of reactivity) 5-grass pollen tablet has favorable short-term and sustained clinical efficacy in patients with grass pollen-induced allergic rhinoconjunctivitis (ARC). Here, we report maintenance of efficacy and safety over 2 years following treatment discontinuation....... METHODS: Randomized, double-blind, placebo-controlled, parallel-group, multicenter Phase 3 trial in patients aged 18-50 years with ARC. During study years 1-3, patients received a daily sublingual tablet containing either 300IR 5-grass pollen extract or placebo, according to a discontinuous pre...... medication score (DRMS). RESULTS: 633 patients with ARC were randomized to placebo (n = 219) or 300IR 5-grass pollen tablet, beginning 4 months (4 M, n = 207) or 2 months (2 M, n = 207) prior to the estimated start of the grass pollen season and continuing until season's end. During the first post...

  1. Target-site mutations conferring resistance to glyphosate in feathertop Rhodes grass (Chloris virgata) populations in Australia.

    Science.gov (United States)

    Ngo, The D; Krishnan, Mahima; Boutsalis, Peter; Gill, Gurjeet; Preston, Christopher

    2018-05-01

    Chloris virgata is a warm-season, C 4 , annual grass weed affecting field crops in northern Australia that has become an emerging weed in southern Australia. Four populations with suspected resistance to glyphosate were collected in South Australia, Queensland and New South Wales, Australia, and compared with one susceptible (S) population to confirm glyphosate resistance and elucidate possible mechanisms of resistance. Based on the rate of glyphosate required to kill 50% of treated plants (LD 50 ), glyphosate resistance (GR) was confirmed in four populations of C. virgata (V12, V14.2, V14.16 and V15). GR plants were 2-9.7-fold more resistant and accumulated less shikimate after glyphosate treatment than S plants. GR and S plants did not differ in glyphosate absorption and translocation. Target-site EPSPS mutations corresponding to Pro-106-Leu (V14.2) and Pro-106-Ser (V15, V14.16 and V12) substitutions were found in GR populations. The population with Pro-106-Leu substitution was 2.9-4.9-fold more resistant than the three other populations with Pro-106-Ser substitution. This report confirms glyphosate resistance in C. virgata and shows that target-site EPSPS mutations confer resistance to glyphosate in this species. The evolution of glyphosate resistance in C. virgata highlights the need to identify alternative control tactics. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Lâminas de irrigação e doses de nitrogênio em pastagem de capim-elefante no período seco do ano no norte de Minas Gerais Irrigation depth and nitrogen doses on elephant-grass pastures during the dry season in the north of Minas Gerais State

    Directory of Open Access Journals (Sweden)

    Virgílio Jamir Gonçalves Mota

    2010-06-01

    period. The experimental design was a random block split plot design with four replications. Broadcast urea was used as source of nitrogen fertilizer. The water level control and the definition of the irrigating moment were established based on the soil-water retention curve and on the water level by the gravimetric method in soil samples. Water depth and nitrogen levels increased linearly the plants height, dry matter production and tillers density, however, they decreased the crude protein content. Irrigation had a quadratic effect irrigation on NDF content, with maximum percentage of 69.38%, when water depth of 72.88% of the evapotranspiration was applied. Nitrogen fertilization decreased linearlly the NDF content. The lowest leaf/stem relation (1.98 was obtained with a combination of 65% evapotranspiration and 300 kg.ha-1.year of nitrogen. Water depth associated to N levels increase dry matter yield from 2539.08 kg/cut to 6445.72 kg/cut, showing a decrease of the seasonality effect of elephant grass "pioneiro" production in northern Minas Gerais.

  3. Herbaceous Legume Encroachment Reduces Grass Productivity and Density in Arid Rangelands.

    Directory of Open Access Journals (Sweden)

    Thomas C Wagner

    Full Text Available Worldwide savannas and arid grasslands are mainly used for livestock grazing, providing livelihood to over a billion people. While normally dominated by perennial C4 grasses, these rangelands are increasingly affected by the massive spread of native, mainly woody legumes. The consequences are often a repression of grass cover and productivity, leading to a reduced carrying capacity. While such encroachment by woody plants has been extensively researched, studies on similar processes involving herbaceous species are rare. We studied the impact of a sustained and massive spread of the native herbaceous legume Crotalaria podocarpa in Namibia's escarpment region on the locally dominant fodder grasses Stipagrostis ciliata and Stipagrostis uniplumis. We measured tussock densities, biomass production of individual tussocks and tussock dormancy state of Stipagrostis on ten 10 m x 10 m plots affected and ten similarly-sized plots unaffected by C. podocarpa over eight consecutive years and under different seasonal rainfalls and estimated the potential relative productivity of the land. We found the percentage of active Stipagrostis tussocks and the biomass production of individual tussocks to increase asymptotically with higher seasonal rainfall reaching a maximum around 300 mm while the land's relative productivity under average local rainfall conditions reached only 40% of its potential. Crotalaria podocarpa encroachment had no effect on the proportion of productive grass tussocks, but reduced he productivity of individual Stipagrostis tussocks by a third. This effect of C. podocarpa on grass productivity was immediate and direct and was not compensated for by above-average rainfall. Besides this immediate effect, over time, the density of grass tussocks declined by more than 50% in areas encroached by C. podocarpa further and lastingly reducing the lands carrying capacity. The effects of C. podocarpa on grass productivity hereby resemble those of woody

  4. The changing seasonal climate in the Arctic.

    Science.gov (United States)

    Bintanja, R; van der Linden, E C

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities.

  5. Feeding Dairy Cows to Increase Performance on Rhodes Grass Ley

    International Nuclear Information System (INIS)

    Irungu, K.R.G.; Mbugua, P.N.

    1999-01-01

    Majority of dairy farmers in Kenya produce milk from cows fed on roughage. The cow performance follows seasonal variability in quality and quantity of roughage. The objective of the current study was to increase cow performance and maintain productivity of a rhodes grass (chloris gayana) ley. Twenty-four Freisian cows in their second to third lactation were strip grazed on fertilized irrigated Rhodes grass at a stocking rate of 0.034 ha per cow. Four dietary groups of six cows were allocated to one of our diets. one group got no dairy meal while the other three groups were supplemented at a 1kg of dairy meal per 10, 5 and 2.5 kg of 4% fat corrected milk dairy. this amount to 0, 386, 750 and 1542 kg dairy meal (89.4%, DM, 93.7 OM, 16.8, CP and CF) during the lactation. during the 43 - week lactation, records on pasture nutrient yield, nutrient intake, milk yield, liveweight, reproduction and subsequent calf birth weight were collected. The Rhodes grass ley produced 20.7 (ranging from 16.7 to 28.7) t of dry matter (DM) per hectare and cows harvested 16.0 (12.0 to 24.0) t during the 43 weeks.The Rhodes grass contained 32.1, 87.7, 10.8, and 32.3% DM, organic matter (OM), crude protein (CP) and crude fiber (CF) respectively. Mean stubble of 4.7 (3.9 to 6.0) t DM per hectare was left at pasture. Feeding dairy meals significantly increased (P 0.05) affect batter fat content (3.78 to 3.96%). It maintained (P > 0.05) cow liveweight and increased (P < 0.05) calf birth weight from 32.7 to 37.2 kg. Feeding dairy meal did not affect oestrus cycling. Extreme supplementation, 1542 kg dairy meal, decreased (P < 0.05) fertility. Insemination per conception and calving interval increased (P < 0.05) from 1.5 to 3.5 and 522 days. The findings in the current study show that pasture yield can be increased by over 590% dry matter from 3.5 t obtained from natural pasture containing Kikuyu and Star grasses. The Rhodes grass yield can be increased to 232% of national average yield of 1300

  6. Experimental winter warming modifies thermal performance and primes acorn ants for warm weather

    DEFF Research Database (Denmark)

    MacLean, Heidi J.; Penick, Clint A.; Dunn, Robert R.

    2017-01-01

    The frequency of warm winter days is increasing under global climate change, but how organisms respond to warmer winters is not well understood. Most studies focus on growing season responses to warming. Locomotor performance is often highly sensitive to temperature, and can determine fitness...... outcomes through a variety of mechanisms including resource acquisition and predator escape. As a consequence, locomotor performance, and its impacts on fitness, may be strongly affected by winter warming in winter-active species. Here we use the acorn ant, Temnothorax curvispinosus, to explore how thermal...... performance (temperature-driven plasticity) in running speed is influenced by experimental winter warming of 3–5 °C above ambient in a field setting. We used running speed as a measure of performance as it is a common locomotor trait that influences acquisition of nest sites and food in acorn ants...

  7. Methane Cycling in a Warming Wetland

    Science.gov (United States)

    Noyce, G. L.; Megonigal, P.; Rich, R.; Kirwan, M. L.; Herbert, E. R.

    2017-12-01

    Coastal wetlands are global hotspots of carbon (C) storage, but the future of these systems is uncertain. In June 2016, we initiated an in-situ, active, whole-ecosystem warming experiment in the Smithsonian's Global Change Research Wetland to quantify how warming and elevated CO2 affect the stability of coastal wetland soil C pools and contemporary rates of C sequestration. Transects are located in two plant communities, dominated by C3 sedges or C4 grasses. The experiment has a gradient design with air and soil warming treatments ranging from ambient to +5.1 °C and heated plots consistently maintain their target temperature year-round. In April 2017, an elevated CO2 treatment was crossed with temperature in the C3community. Ongoing measurements include soil elevation, C fluxes, porewater chemistry and redox potential, and above- and below-ground growth and biomass. In both years, warming increased methane (CH4) emissions (measured at 3-4 week intervals) from spring through fall at the C3 site, but had little effect on emissions from the C4 site. Winter (Dec-Mar) emissions showed no treatment effect. Stable isotope analysis of dissolved CH4 and DIC also indicated that warming had differing effects on CH4 pathways in the two vegetation communities. To better understand temperature effects on rates of CH4 production and oxidation, 1 m soil cores were collected from control areas of the marsh in summer 2017 and incubated at temperatures ranging from 4 °C to 35 °C. Warming increased CH4 production and oxidation rates in surface samples and oxidation rates in the rooting zone samples from both sites, but temperature responses in deep (1 m) soil samples were minimal. In the surface and rooting zone samples, production rates were also consistently higher in C3 soils compared to C4 soils, but, contrary to our expectations, the temperature response was stronger in the C4 soils. However, oxidation in C3 rooting zone samples did have a strong temperature response. The

  8. Seasonality of Overstory and Understory Fluxes in a Semi-Arid Oak Savanna: What can be Learned from Comparing Measured and Modeled Fluxes?

    Science.gov (United States)

    Raz-Yaseef, N.; Sonnentag, O.; Kobayashi, H.; Chen, J. M.; Verfaillie, J. G.; Ma, S.; Baldocchi, D. D.

    2011-12-01

    Semi-arid climates experience large seasonal and inter-annual variability in radiation and precipitation, creating natural conditions adequate to study how year-to-year changes affect atmosphere-biosphere fluxes. Especially, savanna ecosystems, that combine tree and below-canopy components, create a unique environment in which phenology dramatically changes between seasons. We used a 10-year flux database in order to define seasonal and interannual variability of climatic inputs and fluxes, and evaluate model capability to reproduce observed variability. This is based on the perception that model capability to construct the deviation, and not the average, is important in order to correctly predict ecosystem sensitivity to climate change. Our research site is a low density and low LAI (0.8) semi-arid savanna, located at Tonzi Ranch, Northern California. In this system, trees are active during the warm season (Mar - Oct), and grasses are active during the wet season (Dec - May). Measurements of carbon and water fluxes above and below the tree canopy using eddy covariance and supplementary measurements have been made since 2001. Fluxes were simulated using bio-meteorological process-oriented ecosystem models: BEPS and 3D-CAONAK. Models were partly capable of reproducing fluxes on daily scales (R2=0.66). We then compared model outputs for different ecosystem components and seasons, and found distinct seasons with high correlations while other seasons were purely represented. Comparison was much higher for ET than for GPP. The understory was better simulated than the overstory. CANOAK overestimated spring understory fluxes, probably due to the capability to directly calculated 3D radiative transfer. BEPS underestimated spring understory fluxes, following the pre-description of grass die-off. Both models underestimated peak spring overstory fluxes. During winter tree dormant, modeled fluxes were null, but occasional high fluxes of both ET and GPP were measured following

  9. Scaling Potential Evapotranspiration with Greenhouse Warming (Invited)

    Science.gov (United States)

    Scheff, J.; Frierson, D. M.

    2013-12-01

    Potential evapotranspiration (PET) is a supply-independent measure of the evaporative demand of a terrestrial climate, of basic importance in climatology, hydrology, and agriculture. Future increases in PET from greenhouse warming are often cited as key drivers of global trends toward drought and aridity. The present work computes recent and business-as-usual-future Penman-Monteith (i.e. physically-based) PET fields at 3-hourly resolution in 14 modern global climate models. The %-change in local annual-mean PET over the upcoming century is almost always positive, modally low double-digit in magnitude, usually increasing with latitude, yet quite divergent between models. These patterns are understood as follows. In every model, the global field of PET %-change is found to be dominated by the direct, positive effects of constant-relative-humidity warming (via increasing vapor pressure deficit and increasing Clausius-Clapeyron slope.) This direct-warming term very accurately scales as the PET-weighted (warm-season daytime) local warming, times 5-6% per degree (related to the Clausius-Clapeyron equation), times an analytic factor ranging from about 0.25 in warm climates to 0.75 in cold climates, plus a small correction. With warming of several degrees, this product is of low double-digit magnitude, and the strong temperature dependence gives the latitude dependence. Similarly, the inter-model spread in the amount of warming gives most of the spread in this term. Additional spread in the total change comes from strong disagreement on radiation, relative-humidity, and windspeed changes, which make smaller yet substantial contributions to the full PET %-change fields.

  10. Seasonal forecasts: communicating current climate variability in southern Africa

    CSIR Research Space (South Africa)

    Landman, WA

    2011-11-01

    Full Text Available seasonal time scale. Seasonal climate forecasts are defined as probabilistic predictions of how much rain is expected during the season and how warm or cool it will be, based primarily on the principle that the ocean (sea-surface temperatures) influences...

  11. Seasonal and cryopreservation impacts on semen quality in boars

    Science.gov (United States)

    Seasonal boar infertility occurs worldwide and contributes to economic loss to the pork industry. The current study evaluated cooled vs cryopreserved semen quality of 11 Duroc boars collected in June (cool season) and August 2014 (warm season). Semen was cooled to 16°C (cooled) or frozen over liquid...

  12. Invasive Andropogon gayanus (gamba grass) is an ecosystem transformer of nitrogen relations in Australian savanna.

    Science.gov (United States)

    Rossiter-Rachor, N A; Setterfield, S A; Douglas, M M; Hutley, L B; Cook, G D; Schmidt, S

    2009-09-01

    Invasion by the African grass Andropogon gayanus is drastically altering the understory structure of oligotrophic savannas in tropical Australia. We compared nitrogen (N) relations and phenology of A. gayanus and native grasses to examine the impact of invasion on N cycling and to determine possible reasons for invasiveness of A. gayanus. Andropogon gayanus produced up to 10 and four times more shoot phytomass and root biomass, with up to seven and 2.5 times greater shoot and root N pools than native grass understory. These pronounced differences in phytomass and N pools between A. gayanus and native grasses were associated with an altered N cycle. Most growth occurs in the wet season when, compared with native grasses, dominance of A. gayanus was associated with significantly lower total soil N pools, lower nitrification rates, up to three times lower soil nitrate availability, and up to three times higher soil ammonium availability. Uptake kinetics for different N sources were studied with excised roots of three grass species ex situ. Excised roots of A. gayanus had an over six times higher-uptake rate of ammonium than roots of native grasses, while native grass Eriachne triseta had a three times higher uptake rate of nitrate than A. gayanus. We hypothesize that A. gayanus stimulates ammonification but inhibits nitrification, as was shown to occur in its native range in Africa, and that this modification of the soil N cycle is linked to the species' preference for ammonium as an N source. This mechanism could result in altered soil N relations and could enhance the competitive superiority and persistence of A. gayanus in Australian savannas.

  13. Checklist of Serengeti Ecosystem Grasses

    Science.gov (United States)

    Ficinski, Paweł; Vorontsova, Maria

    2016-01-01

    Abstract We present the first taxonomic checklist of the Poaceae species of the Serengeti, Tanzania. A review of the literature and herbarium specimens recorded 200 species of grasses, in line with similar studies in other parts of East Africa. The checklist is supported by a total of 939 herbarium collections. Full georeferenced collection data is made available alongside a summary checklist in pdf format. More than a quarter of the species are known from a single collection highlighting the need for further research, especially concerning the rare species and their distribution. PMID:27226761

  14. Checklist of Serengeti Ecosystem Grasses.

    Science.gov (United States)

    Williams, Emma Victoria; Elia Ntandu, John; Ficinski, Paweł; Vorontsova, Maria

    2016-01-01

    We present the first taxonomic checklist of the Poaceae species of the Serengeti, Tanzania. A review of the literature and herbarium specimens recorded 200 species of grasses, in line with similar studies in other parts of East Africa. The checklist is supported by a total of 939 herbarium collections. Full georeferenced collection data is made available alongside a summary checklist in pdf format. More than a quarter of the species are known from a single collection highlighting the need for further research, especially concerning the rare species and their distribution.

  15. Review of the integrated process for the production of grass biomethane.

    Science.gov (United States)

    Nizami, Abdul-Sattar; Korres, Nicholas E; Murphy, Jerry D

    2009-11-15

    Production of grass biomethane is an integrated process which involves numerous stages with numerous permutations. The grass grown can be of numerous species, and it can involve numerous cuts. The lignocellulosic content of grass increases with maturity of grass; the first cut offers more methane potential than the later cuts. Water-soluble carbohydrates (WSC) are higher (and as such methane potential is higher) for grass cut in the afternoon as opposed to that cut in the morning. The method of ensiling has a significant effect on the dry solids content of the grass silage. Pit or clamp silage in southern Germany and Austria has a solids content of about 40%; warm dry summers allow wilting of the grass before ensiling. In temperate oceanic climates like Ireland, pit silage has a solids content of about 21% while bale silage has a solids content of 32%. Biogas production is related to mass of volatile solids rather than mass of silage; typically one ton of volatile solid produces 300 m(3) of methane. The dry solids content of the silage has a significant impact on the biodigester configuration. Silage with a high solids content would lend itself to a two-stage process; a leach bed where volatile solids are converted to a leachate high in chemical oxygen demand (COD), followed by an upflow anaerobic sludge blanket where the COD can be converted efficiently to CH(4). Alternative configurations include wet continuous processes such as the ubiquitous continuously stirred tank reactor; this necessitates significant dilution of the feedstock to effect a solids content of 12%. Various pretreatment methods may be employed especially if the hydrolytic step is separated from the methanogenic step. Size reduction, thermal, and enzymatic methodologies are used. Good digester design is to seek to emulate the cow, thus rumen fluid offers great potential for hydrolysis.

  16. Towards evidence-based medicine in specific grass pollen immunotherapy.

    Science.gov (United States)

    Calderon, M; Mösges, R; Hellmich, M; Demoly, P

    2010-04-01

    When initiating grass pollen immunotherapy for seasonal allergic rhinoconjunctivitis, specialist physicians in many European countries must choose between modalities of differing pharmaceutical and regulatory status. We applied an evidence-based medicine (EBM) approach to commercially available subcutaneous and sublingual Gramineae grass pollen immunotherapies (SCIT and SLIT) by evaluating study design, populations, pollen seasons, treatment doses and durations, efficacy, quality of life, safety and compliance. After searching MEDLINE, Embase and the Cochrane Library up until January 2009, we identified 33 randomized, double-blind, placebo-controlled trials (including seven paediatric trials) with a total of 440 specific immunotherapy (SIT)-treated subjects in seven trials (0 paediatric) for SCIT with natural pollen extracts, 168 in three trials (0 paediatric) for SCIT with allergoids, 906 in 16 trials (five paediatric) for natural extract SLIT drops, 41 in two trials (one paediatric) for allergoid SLIT tablets and 1605 in five trials (two paediatric) for natural extract SLIT tablets. Trial design and quality varied significantly within and between SIT modalities. The multinational, rigorous trials of natural extract SLIT tablets correspond to a high level of evidence in adult and paediatric populations. The limited amount of published data on allergoids prevented us from judging the level of evidence for this modality.

  17. Warm Mix Asphalt

    Science.gov (United States)

    2009-04-17

    State of Alaska State of Alaska - Warm Mix Project Warm Mix Project: Location - Petersburg, Alaska which is Petersburg, Alaska which is located in the heart of Southeast Alaska located in the heart of Southeast Alaska's Inside Passage at the tip of M...

  18. Observing Seasonal and Diurnal Hydrometeorological Variability Within a Tropical Alpine Valley: Implications for Evapotranspiration

    Science.gov (United States)

    Hellstrom, R. A.; Mark, B. G.

    2007-12-01

    Conditions of glacier recession in the seasonally dry tropical Peruvian Andes motivate research to better constrain the hydrological balance in alpine valleys. There is an outstanding need to better understand the impact of the pronounced tropical hygric seasonality on energy and water budgets within pro-glacial valleys that channel glacier runoff to stream flow. This paper presents a novel embedded network installed in the glacierized Llanganuco valley of the Cordillera Blanca (9°S) comprising eight low-cost, discrete temperature and humidity microloggers ranging from 3470 to 4740 masl and an automatic weather station at 3850 masl. Data are aggregated into distinct dry and wet periods sampled from two full annual cycles (2004-2006) to explore patterns of diurnal and seasonal variability. The magnitude of diurnal solar radiation varies little within the valley between the dry and wet periods, while wet season near-surface air temperatures are cooler. Seasonally characteristic diurnal fluctuations in lapse rate partially regulate convection and humidity. Steep lapse rates during the wet season afternoon promote up-slope convection of warm, moist air and nocturnal rainfall events. Standardized grass reference evapotranspiration (ET0) was estimated using the FAO-56 algorithm of the United Nations Food and Agriculture Organization and compared with estimates of actual ET from the process-based BROOK90 model that incorporates more realistic vegetation parameters. Comparisons of composite diurnal cycles of ET for the wet and dry periods suggest about twice the daily ET0 during the dry period, attributed primarily to the 500% higher vapor pressure deficit and 20% higher daily total solar irradiance. Conversely, the near absence of rainfall during the dry season diminishes actual ET below that of the wet season by two orders of magnitude. Nearly cloud-free daylight conditions are critical for ET during the wet season. We found significant variability of ET with elevation

  19. Double-blind, placebo-controlled immunotherapy with mixed grass-pollen allergoids. I. Rush immunotherapy with allergoids and standardized orchard grass-pollen extract.

    Science.gov (United States)

    Bousquet, J; Hejjaoui, A; Skassa-Brociek, W; Guérin, B; Maasch, H J; Dhivert, H; Michel, F B

    1987-10-01

    Forty-five grass pollen-allergic patients were randomly assigned to three groups according to their skin test and RAST sensitivities and the severity of seasonal rhinitis. Eleven patients were treated with placebo (group 1), 19 patients (group 2) were treated with a six-mixed grass-pollen allergoid prepared by mild formalinization with a two-step procedure, and 15 other patients were treated with a standardized orchard grass-pollen extract (group 3). Because of a different immunotherapy schedule, only patients placed in groups 1 and 2 received the extracts in a double-blind fashion. Rush immunotherapy was performed in 3 to 6 days, and the maintenance dose was subsequently administered weekly for 4 weeks and every 2 weeks until the end of the grass-pollen season. During the season, a coseasonal treatment was administered. Systemic reactions occurred during the rush protocol in 36.8% of patients treated with allergoid and 20% of patients who received the standardized extract. Only patients treated with allergoid had systemic reactions during maintenance dose. The reactions observed with the standardized extract were more severe. Total doses of allergoid ranged from 2350 to 13,500 protein nitrogen units. Symptoms and medication scores during the peak of the season were analyzed. Patients treated with the standardized allergen had a significant reduction of the number of days of symptoms during the month of June (9.5 +/- 6.7 days; p less than 0.005) and of medication scores (1.3 +/- 1.4; p less than 0.01) compared to patients receiving placebo (19.4 +/- 8.1 days; medication score, 2.8 +/- 2.1).(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Enhancing GRASS data communication with videographic technology

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.G. [Argonne National Lab., IL (United States); Gerdes, D.; Youngs, D. [Army Construction Engineering Research Lab., Champaign, IL (United States)

    1992-07-01

    Research at Argonne National Laboratory and the US Army Construction Engineering Research Laboratory has shown that computer videographic technology can be used to assist visualization and communication of GIS-generated geographic information. Videographic tools can be used to make results of GRASS analyses clear to decision-makers and to public interest groups, as well as to help GRASS users visualize geographic data more easily. Useful videographic visualization tools include graphic overlay of GRASS layers onto panchromatic images, allowing landscape features to be associated with GIS classifications; draping of GIS layers onto terrain models to create shaded relief maps; and incorporation of photographic imagery into GIS graphics. Useful videographic communications capabilities include convenient, direct interface to video formats, allowing incorporation of live video into GRASS graphics and output of GRASS graphics to video; convenient output of high-quality slides and prints; and enhanced labeling and editing of GRASS images. Conversion of GRASS imagery to standard videographic file formats also facilitates incorporation of GRASS images into other software programs, such as database and work-processing packages.

  1. Enhancing GRASS data communication with videographic technology

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.G. (Argonne National Lab., IL (United States)); Gerdes, D.; Youngs, D. (Army Construction Engineering Research Lab., Champaign, IL (United States))

    1992-01-01

    Research at Argonne National Laboratory and the US Army Construction Engineering Research Laboratory has shown that computer videographic technology can be used to assist visualization and communication of GIS-generated geographic information. Videographic tools can be used to make results of GRASS analyses clear to decision-makers and to public interest groups, as well as to help GRASS users visualize geographic data more easily. Useful videographic visualization tools include graphic overlay of GRASS layers onto panchromatic images, allowing landscape features to be associated with GIS classifications; draping of GIS layers onto terrain models to create shaded relief maps; and incorporation of photographic imagery into GIS graphics. Useful videographic communications capabilities include convenient, direct interface to video formats, allowing incorporation of live video into GRASS graphics and output of GRASS graphics to video; convenient output of high-quality slides and prints; and enhanced labeling and editing of GRASS images. Conversion of GRASS imagery to standard videographic file formats also facilitates incorporation of GRASS images into other software programs, such as database and work-processing packages.

  2. Thermogravimetric analysis of forest understory grasses

    Science.gov (United States)

    Thomas Elder; John S. Kush; Sharon M. Hermann

    2011-01-01

    Forest understory grasses are of significance in the initiation, establishment and maintenance of fire, whether used as a management tool or when occurring as wildfire. The fundamental thermal properties of such grasses are critical to their behavior in fire situations and have been investigated in the current work by the application of thermogravimetric analysis (TGA...

  3. Variability of Pyrrolizidine Alkaloid Occurrence in Species of the Grass Subfamily Pooideae (Poaceae)

    Science.gov (United States)

    Wesseling, Anne-Maria; Demetrowitsch, Tobias J.; Schwarz, Karin; Ober, Dietrich

    2017-01-01

    Pyrrolizidine alkaloids (PAs) are a class of secondary metabolites found in various unrelated angiosperm lineages including cool-season grasses (Poaceae, subfamily Pooideae). Thesinine conjugates, saturated forms of PA that are regarded as non-toxic, have been described to occur in the two grass species Lolium perenne and Festuca arundinacea (Poaceae, subfamily Pooideae). In a wider screen, we tested various species of the Pooideae lineage, grown under controlled conditions, for their ability to produce thesinine conjugates or related structures. Using an LC-MS based targeted metabolomics approach we were able to show that PA biosynthesis in grasses is limited to a group of very closely related Pooideae species that produce a limited diversity of PA structures. High variability in PA levels was observed even between individuals of the same species. These individual accumulation patterns are discussed with respect to a possible function and evolution of this type of alkaloid. PMID:29250094

  4. Variability of Pyrrolizidine Alkaloid Occurrence in Species of the Grass Subfamily Pooideae (Poaceae

    Directory of Open Access Journals (Sweden)

    Anne-Maria Wesseling

    2017-11-01

    Full Text Available Pyrrolizidine alkaloids (PAs are a class of secondary metabolites found in various unrelated angiosperm lineages including cool-season grasses (Poaceae, subfamily Pooideae. Thesinine conjugates, saturated forms of PA that are regarded as non-toxic, have been described to occur in the two grass species Lolium perenne and Festuca arundinacea (Poaceae, subfamily Pooideae. In a wider screen, we tested various species of the Pooideae lineage, grown under controlled conditions, for their ability to produce thesinine conjugates or related structures. Using an LC-MS based targeted metabolomics approach we were able to show that PA biosynthesis in grasses is limited to a group of very closely related Pooideae species that produce a limited diversity of PA structures. High variability in PA levels was observed even between individuals of the same species. These individual accumulation patterns are discussed with respect to a possible function and evolution of this type of alkaloid.

  5. How does the dengue vector mosquito Aedes albopictus respond to global warming?

    Science.gov (United States)

    Jia, Pengfei; Chen, Xiang; Chen, Jin; Lu, Liang; Liu, Qiyong; Tan, Xiaoyue

    2017-03-11

    Global warming has a marked influence on the life cycle of epidemic vectors as well as their interactions with human beings. The Aedes albopictus mosquito as the vector of dengue fever surged exponentially in the last decade, raising ecological and epistemological concerns of how climate change altered its growth rate and population dynamics. As the global warming pattern is considerably uneven across four seasons, with a confirmed stronger effect in winter, an emerging need arises as to exploring how the seasonal warming effects influence the annual development of Ae. albopictus. The model consolidates a 35-year climate dataset and designs fifteen warming patterns that increase the temperature of selected seasons. Based on a recently developed mechanistic population model of Ae. albopictus, the model simulates the thermal reaction of blood-fed adults by systematically increasing the temperature from 0.5 to 5 °C at an interval of 0.5 °C in each warming pattern. The results show the warming effects are different across seasons. The warming effects in spring and winter facilitate the development of the species by shortening the diapause period. The warming effect in summer is primarily negative by inhibiting mosquito development. The warming effect in autumn is considerably mixed. However, these warming effects cannot carry over to the following year, possibly due to the fact that under the extreme weather in winter the mosquito fully ceases from development and survives in terms of diapause eggs. As the historical pattern of global warming manifests seasonal fluctuations, this study provides corroborating and previously ignored evidence of how such seasonality affects the mosquito development. Understanding this short-term temperature-driven mechanism as one chain of the transmission events is critical to refining the thermal reaction norms of the epidemic vector under global warming as well as developing effective mosquito prevention and control strategies.

  6. Seasonal soil moisture patterns in contrasting habitats in the Willamette Valley, Oregon

    Science.gov (United States)

    Changing seasonal soil moisture regimes caused by global warming may alter plant community composition in sensitive habitats such as wetlands and oak savannas. To evaluate such changes, an understanding of typical seasonal soil moisture regimes is necessary. The primary objective...

  7. Soil warming opens the nitrogen cycle at the alpine treeline.

    Science.gov (United States)

    Dawes, Melissa A; Schleppi, Patrick; Hättenschwiler, Stephan; Rixen, Christian; Hagedorn, Frank

    2017-01-01

    Climate warming may alter ecosystem nitrogen (N) cycling by accelerating N transformations in the soil, and changes may be especially pronounced in cold regions characterized by N-poor ecosystems. We investigated N dynamics across the plant-soil continuum during 6 years of experimental soil warming (2007-2012; +4 °C) at a Swiss high-elevation treeline site (Stillberg, Davos; 2180 m a.s.l.) featuring Larix decidua and Pinus uncinata. In the soil, we observed considerable increases in the NH4+ pool size in the first years of warming (by >50%), but this effect declined over time. In contrast, dissolved organic nitrogen (DON) concentrations in soil solutions from the organic layer increased under warming, especially in later years (maximum of +45% in 2012), suggesting enhanced DON leaching from the main rooting zone. Throughout the experimental period, foliar N concentrations showed species-specific but small warming effects, whereas δ 15 N values showed a sustained increase in warmed plots that was consistent for all species analysed. The estimated total plant N pool size at the end of the study was greater (+17%) in warmed plots with Pinus but not in those containing Larix, with responses driven by trees. Irrespective of plot tree species identity, warming led to an enhanced N pool size of Vaccinium dwarf shrubs, no change in that of Empetrum hermaphroditum (dwarf shrub) and forbs, and a reduction in that of grasses, nonvascular plants, and fine roots. In combination, higher foliar δ 15 N values and the transient response in soil inorganic N indicate a persistent increase in plant-available N and greater cumulative plant N uptake in warmer soils. Overall, greater N availability and increased DON concentrations suggest an opening of the N cycle with global warming, which might contribute to growth stimulation of some plant species while simultaneously leading to greater N losses from treeline ecosystems and possibly other cold biomes. © 2016 John Wiley & Sons

  8. Seasonal Changes in Central England Temperatures

    DEFF Research Database (Denmark)

    Proietti, Tommaso; Hillebrand, Eric

    The aim of this paper is to assess how climate change is reflected in the variation of the seasonal patterns of the monthly Central England Temperature time series between 1772 and 2013. In particular, we model changes in the amplitude and phase of the seasonal cycle. Starting from the seminal work...... by Thomson (“The Seasons, Global Temperature and Precession”, Science, 7 April 1995, vol 268, p. 59–68), a number of studies have documented a shift in the phase of the annual cycle implying an earlier onset of the spring season at various European locations. A significant reduction in the amplitude...... and stochastic trends, as well as seasonally varying autocorrelation and residual variances. The model can be summarized as containing a permanent and a transitory component, where global warming is captured in the permanent component, on which the seasons load differentially. The phase of the seasonal cycle...

  9. Safety of sublingual immunotherapy Timothy grass tablet in subjects with allergic rhinitis with or without conjunctivitis and history of asthma

    DEFF Research Database (Denmark)

    Maloney, J; Durham, S; Skoner, D

    2015-01-01

    BACKGROUND: Patients with asthma may be more susceptible to adverse events (AEs) with sublingual immunotherapy tablet (SLIT-tablet) treatment, such as severe systemic reactions and asthma-related events. Using data from eight trials of grass SLIT-tablet in subjects with allergic rhinitis with....../without conjunctivitis (AR/C), AE frequencies were determined in adults and children with and without reported asthma. METHODS: Data from randomized, double-blind, placebo-controlled trials of Timothy grass SLIT-tablet MK-7243 (2800 BAU/75 000 SQ-T, Merck/ALK-Abelló) were pooled for post hoc analyses. Subjects...... with asthma treated with grass SLIT-tablet versus subjects without asthma in or outside of pollen season. There were 6/120 asthma-related TRAEs assessed as severe with grass SLIT-tablet and 2/60 with placebo, without a consistent trend among subjects with and without asthma (5 and 3 events, respectively...

  10. Global Warming: A Myth?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 7. Global Warming: A Myth? - Credibility of Climate Scenarios Predicted by Systems Simulations. Deepanjan Majumdar. General Article Volume 6 Issue 7 July 2001 pp 13-21 ...

  11. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  12. Intensified Arctic warming under greenhouse warming by vegetation–atmosphere–sea ice interaction

    International Nuclear Information System (INIS)

    Jeong, Jee-Hoon; Kug, Jong-Seong; Linderholm, Hans W; Chen, Deliang; Kim, Baek-Min; Jun, Sang-Yoon

    2014-01-01

    Observations and modeling studies indicate that enhanced vegetation activities over high latitudes under an elevated CO 2 concentration accelerate surface warming by reducing the surface albedo. In this study, we suggest that vegetation-atmosphere-sea ice interactions over high latitudes can induce an additional amplification of Arctic warming. Our hypothesis is tested by a series of coupled vegetation-climate model simulations under 2xCO 2 environments. The increased vegetation activities over high latitudes under a 2xCO 2 condition induce additional surface warming and turbulent heat fluxes to the atmosphere, which are transported to the Arctic through the atmosphere. This causes additional sea-ice melting and upper-ocean warming during the warm season. As a consequence, the Arctic and high-latitude warming is greatly amplified in the following winter and spring, which further promotes vegetation activities the following year. We conclude that the vegetation-atmosphere-sea ice interaction gives rise to additional positive feedback of the Arctic amplification. (letter)

  13. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects

    Science.gov (United States)

    Chen, Xing; Jeong, Su-Jong

    2018-02-01

    To meet the growing demand for food, land is being managed to be more productive using agricultural intensification practices, such as the use of irrigation. Understanding the specific environmental impacts of irrigation is a critical part of using it as a sustainable way to provide food security. However, our knowledge of irrigation effects on climate is still limited to daytime effects. This is a critical issue to define the effects of irrigation on warming related to greenhouse gases (GHGs). This study shows that irrigation led to an increasing temperature (0.002 °C year-1) by enhancing nighttime warming (0.009 °C year-1) more than daytime cooling (-0.007 °C year-1) during the dry season from 1961-2004 over the North China Plain (NCP), which is one of largest irrigated areas in the world. By implementing irrigation processes in regional climate model simulations, the consistent warming effect of irrigation on nighttime temperatures over the NCP was shown to match observations. The intensive nocturnal warming is attributed to energy storage in the wetter soil during the daytime, which contributed to the nighttime surface warming. Our results suggest that irrigation could locally amplify the warming related to GHGs, and this effect should be taken into account in future climate change projections.

  14. Global warming yearbook: 1998

    Energy Technology Data Exchange (ETDEWEB)

    Arris, L. [ed.

    1999-02-01

    The report brings together a year`s worth of global warming stories - over 280 in all - in one convenient volume. It provides a one-stop report on the scientific, political and industrial implications of global warming. The report includes: detailed coverage of negotiations on the Kyoto Protocol; scientific findings on carbon sources and sinks, coral bleaching, Antarctic ice shelves, plankton, wildlife and tree growth; new developments on fuel economy, wind power, fuel cells, cogeneration, energy labelling and emissions trading.

  15. Media Pembelajaran Global Warming

    OpenAIRE

    Tham, Fikri Jufri; Liliana, Liliana; Purba, Kristo Radion

    2016-01-01

    Computer based learning media is one of the media has an important role in learning. Learning media will be attractive when packaged through interactive media , such as interactive media created in paper manufacture " instructional media global warming" . The advantage gained is that it can increase knowledge, generally educate people to be more concerned about the environment , and also can be a means of entertainment. This application is focused to learn about global warming and packaged in...

  16. Seasonal Variations in Color Preference.

    Science.gov (United States)

    Schloss, Karen B; Nelson, Rolf; Parker, Laura; Heck, Isobel A; Palmer, Stephen E

    2017-08-01

    We investigated how color preferences vary according to season and whether those changes could be explained by the ecological valence theory (EVT). To do so, we assessed the same participants' preferences for the same colors during fall, winter, spring, and summer in the northeastern United States, where there are large seasonal changes in environmental colors. Seasonal differences were most pronounced between fall and the other three seasons. Participants liked fall-associated dark-warm colors-for example, dark-red, dark-orange (brown), dark-yellow (olive), and dark-chartreuse-more during fall than other seasons. The EVT could explain these changes with a modified version of Palmer and Schloss' (2010) weighted affective valence estimate (WAVE) procedure that added an activation term to the WAVE equation. The results indicate that color preferences change according to season, as color-associated objects become more/less activated in the observer. These seasonal changes in color preferences could not be characterized by overall shifts in weights along cone-contrast axes. Copyright © 2016 Cognitive Science Society, Inc.

  17. Mass spectrometric analysis of electrophoretically separated allergens and proteases in grass pollen diffusates

    Directory of Open Access Journals (Sweden)

    Geczy Carolyn L

    2003-09-01

    Full Text Available Abstract Background Pollens are important triggers for allergic asthma and seasonal rhinitis, and proteases released by major allergenic pollens can injure airway epithelial cells in vitro. Disruption of mucosal epithelial integrity by proteases released by inhaled pollens could promote allergic sensitisation. Methods Pollen diffusates from Kentucky blue grass (Poa pratensis, rye grass (Lolium perenne and Bermuda grass (Cynodon dactylon were assessed for peptidase activity using a fluorogenic substrate, as well as by gelatin zymography. Following one- or two-dimensional gel electrophoresis, Coomassie-stained individual bands/spots were excised, subjected to tryptic digestion and analysed by mass spectrometry, either MALDI reflectron TOF or microcapillary liquid chromatography MS-MS. Database searches were used to identify allergens and other plant proteins in pollen diffusates. Results All pollen diffusates tested exhibited peptidase activity. Gelatin zymography revealed high Mr proteolytic activity at ~ 95,000 in all diffusates and additional proteolytic bands in rye and Bermuda grass diffusates, which appeared to be serine proteases on the basis of inhibition studies. A proteolytic band at Mr ~ 35,000 in Bermuda grass diffusate, which corresponded to an intense band detected by Western blotting using a monoclonal antibody to the timothy grass (Phleum pratense group 1 allergen Phl p 1, was identified by mass spectrometric analysis as the group 1 allergen Cyn d 1. Two-dimensional analysis similarly demonstrated proteolytic activity corresponding to protein spots identified as Cyn d 1. Conclusion One- and two-dimensional electrophoretic separation, combined with analysis by mass spectrometry, is useful for rapid determination of the identities of pollen proteins. A component of the proteolytic activity in Bermuda grass diffusate is likely to be related to the allergen Cyn d 1.

  18. Phenology largely explains taller grass at successful nests in greater sage-grouse.

    Science.gov (United States)

    Smith, Joseph T; Tack, Jason D; Doherty, Kevin E; Allred, Brady W; Maestas, Jeremy D; Berkeley, Lorelle I; Dettenmaier, Seth J; Messmer, Terry A; Naugle, David E

    2018-01-01

    Much interest lies in the identification of manageable habitat variables that affect key vital rates for species of concern. For ground-nesting birds, vegetation surrounding the nest may play an important role in mediating nest success by providing concealment from predators. Height of grasses surrounding the nest is thought to be a driver of nest survival in greater sage-grouse ( Centrocercus urophasianus ; sage-grouse), a species that has experienced widespread population declines throughout their range. However, a growing body of the literature has found that widely used field methods can produce misleading inference on the relationship between grass height and nest success. Specifically, it has been demonstrated that measuring concealment following nest fate (failure or hatch) introduces a temporal bias whereby successful nests are measured later in the season, on average, than failed nests. This sampling bias can produce inference suggesting a positive effect of grass height on nest survival, though the relationship arises due to the confounding effect of plant phenology, not an effect on predation risk. To test the generality of this finding for sage-grouse, we reanalyzed existing datasets comprising >800 sage-grouse nests from three independent studies across the range where there was a positive relationship found between grass height and nest survival, including two using methods now known to be biased. Correcting for phenology produced equivocal relationships between grass height and sage-grouse nest survival. Viewed in total, evidence for a ubiquitous biological effect of grass height on sage-grouse nest success across time and space is lacking. In light of these findings, a reevaluation of land management guidelines emphasizing specific grass height targets to promote nest success may be merited.

  19. Pesticide-contaminated feeds in integrated grass carp aquaculture: toxicology and bioaccumulation.

    Science.gov (United States)

    Pucher, J; Gut, T; Mayrhofer, R; El-Matbouli, M; Viet, P H; Ngoc, N T; Lamers, M; Streck, T; Focken, U

    2014-02-19

    Effects of dissolved pesticides on fish are widely described, but little is known about effects of pesticide-contaminated feeds taken up orally by fish. In integrated farms, pesticides used on crops may affect grass carp that feed on plants from these fields. In northern Vietnam, grass carp suffer seasonal mass mortalities which may be caused by pesticide-contaminated plants. To test effects of pesticide-contaminated feeds on health and bioaccumulation in grass carp, a net-cage trial was conducted with 5 differently contaminated grasses. Grass was spiked with 2 levels of trichlorfon/fenitrothion and fenobucarb. Unspiked grass was used as a control. Fish were fed at a daily rate of 20% of body mass for 10 d. The concentrations of fenitrothion and fenobucarb in pond water increased over time. Effects on fish mortality were not found. Fenobucarb in feed showed the strongest effects on fish by lowering feed uptake, deforming the liver, increasing blood glucose and reducing cholinesterase activity in blood serum, depending on feed uptake. Fenobucarb showed increased levels in flesh in all treatments, suggesting bio-concentration. Trichlorfon and fenitrothion did not significantly affect feed uptake but showed concentration-dependent reduction of cholinesterase activity and liver changes. Fenitrothion showed bioaccumulation in flesh which was dependant on feed uptake, whereas trichlorfon was only detected in very low concentrations in all treatments. Pesticide levels were all detected below the maximum residue levels in food. The pesticide-contaminated feeds tested did not cause mortality in grass carp but were associated with negative physiological responses and may increase susceptibility to diseases.

  20. Níveis de energia em suplementos múltiplos para terminação de novilhos em pastagem de capim-braquiária no período de transição águas-seca Energy levels in multiple supplements for finishing beef cattle grazing palisade grass pasture during the rainy to dry transition season

    Directory of Open Access Journals (Sweden)

    Maykel Franklin Lima Sales

    2008-04-01

    finishing beef cattle grazing palisade grass (Brachiaria brizantha cv. Marandu, during the rainy to dry transition season. For the performance evaluation, 24 crossbred bulls, 18 month old and 330 kg of initial body weight (BW, were distributed to a completely randomized design, in four paddocks of 1.5 ha each. Four treatments were evaluated: mineral mix (MM and corn and whole soybean grain based supplements offered in three levels: 1.0; 1.5 and 2.0 kg/d, allowing TDN intake of, respectively, 0.832; 1.163 and 1.496 kg/d. There was a positive linear effect of the energy levels on the average daily gain and on the final body weight. The nutritional parameters were assessed in four crossbred bulls , with average initial 300 kg BW, fitted with esophageal, ruminal and abomasal cannula, and fed similar diets of those animals used in the performance. There was no ffect of supplementation on dry matter intake (DMI, although it was observed a linear reduction in forage intake. The intakes organic matter from pasture, of the NDF from the total diet and of the pasture was negative linearly affected by the energy levels. There were not observed effects of supplementation levels on the total apparent digestibility of the nutrients, except for CP, which showed a quadratic effect by the level of supplementation. Additional weight gain, ranging from 20 to 30%, can be obtained in beef cattle supplemented with increasing amounts of energy during the finishing phase; however, those gains depend of the substitution of forage intake by the supplement.

  1. Comparing soil organic carbon dynamics in perennial grasses and shrubs in a saline-alkaline arid region, northwestern China.

    Science.gov (United States)

    Zhou, Yong; Pei, Zhiqin; Su, Jiaqi; Zhang, Jingli; Zheng, Yuanrun; Ni, Jian; Xiao, Chunwang; Wang, Renzhong

    2012-01-01

    Although semi-arid and arid regions account for about 40% of terrestrial surface of the Earth and contain approximately 10% of the global soil organic carbon stock, our understanding of soil organic carbon dynamics in these regions is limited. A field experiment was conducted to compare soil organic carbon dynamics between a perennial grass community dominated by Cleistogenes squarrosa and an adjacent shrub community co-dominated by Reaumuria soongorica and Haloxylon ammodendron, two typical plant life forms in arid ecosystems of saline-alkaline arid regions in northwestern China during the growing season 2010. We found that both fine root biomass and necromass in two life forms varied greatly during the growing season. Annual fine root production in the perennial grasses was 45.6% significantly higher than in the shrubs, and fine root turnover rates were 2.52 and 2.17 yr(-1) for the perennial grasses and the shrubs, respectively. Floor mass was significantly higher in the perennial grasses than in the shrubs due to the decomposition rate of leaf litter in the perennial grasses was 61.8% lower than in the shrubs even though no significance was detected in litterfall production. Soil microbial biomass and activity demonstrated a strong seasonal variation with larger values in May and September and minimum values in the dry month of July. Observed higher soil organic carbon stocks in the perennial grasses (1.32 Kg C m(-2)) than in the shrubs (1.12 Kg C m(-2)) might be attributed to both greater inputs of poor quality litter that is relatively resistant to decay and the lower ability of microorganism to decompose these organic matter. Our results suggest that the perennial grasses might accumulate more soil organic carbon with time than the shrubs because of larger amounts of inputs from litter and slower return of carbon through decomposition.

  2. Refrigeration and global warming

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Some aspects of global warming in general, and the implications for refrigerants and refrigerator efficiency in particular, are briefly considered in a question and answer format. The concepts of Global Warming Potential (GWP) and Total Equivalent Warming Impact (TEWI) are explained. GWP is an index which allows a simple comparison to be make between the warming effects of different gases on a kg to kg basis relative to carbon. The GWP depends both on the lifetime of a substance in the atmosphere and its infra-red absorption capacity. The overall warming effect of operating a refrigeration system for its entire life is measured by its TEWI. Chloroflourocarbons (CFCs) which have been widely used as refrigerants are powerful greenhouse gases with high GWPs. Because of the bank of CFCs in refrigerating systems, their levels in the atmosphere are still increasing and it will be some time before refrigerant changes will be effective in reducing the warming effects of refrigerant releases. Hydrocarbons, hydroflourocarbons and ammonia all have a part to play as substitute refrigerants. Refrigerator efficiency is very important in terms of reducing CO 2 emissions. (UK)

  3. Divergent evapotranspiration partition dynamics between shrubs and grasses in a shrub-encroached steppe ecosystem.

    Science.gov (United States)

    Wang, Pei; Li, Xiao-Yan; Wang, Lixin; Wu, Xiuchen; Hu, Xia; Fan, Ying; Tong, Yaqin

    2018-06-04

    Previous evapotranspiration (ET) partitioning studies have usually neglected competitions and interactions between antagonistic plant functional types. This study investigated whether shrubs and grasses have divergent ET partition dynamics impacted by different water-use patterns, canopy structures, and physiological properties in a shrub-encroached steppe ecosystem in Inner Mongolia, China. The soil water-use patterns of shrubs and grasses have been quantified by an isotopic tracing approach and coupled into an improved multisource energy balance model to partition ET fluxes into soil evaporation, grass transpiration, and shrub transpiration. The mean fractional contributions to total ET were 24 ± 13%, 20 ± 4%, and 56 ± 16% for shrub transpiration, grass transpiration, and soil evaporation respectively during the growing season. Difference in ecohydrological connectivity and leaf development both contributed to divergent transpiration partitioning between shrubs and grasses. Shrub-encroachment processes result in larger changes in the ET components than in total ET flux, which could be well explained by changes in canopy resistance, an ecosystem function dominated by the interaction of soil water-use patterns and ecosystem structure. The analyses presented here highlight the crucial effects of vegetation structural changes on the processes of land-atmosphere interaction and climate feedback. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  4. Grass leaves as potential hominin dietary resources.

    Science.gov (United States)

    Paine, Oliver C C; Koppa, Abigale; Henry, Amanda G; Leichliter, Jennifer N; Codron, Daryl; Codron, Jacqueline; Lambert, Joanna E; Sponheimer, Matt

    2018-04-01

    Discussions about early hominin diets have generally excluded grass leaves as a staple food resource, despite their ubiquity in most early hominin habitats. In particular, stable carbon isotope studies have shown a prevalent C 4 component in the diets of most taxa, and grass leaves are the single most abundant C 4 resource in African savannas. Grass leaves are typically portrayed as having little nutritional value (e.g., low in protein and high in fiber) for hominins lacking specialized digestive systems. It has also been argued that they present mechanical challenges (i.e., high toughness) for hominins with bunodont dentition. Here, we compare the nutritional and mechanical properties of grass leaves with the plants growing alongside them in African savanna habitats. We also compare grass leaves to the leaves consumed by other hominoids and demonstrate that many, though by no means all, compare favorably with the nutritional and mechanical properties of known primate foods. Our data reveal that grass leaves exhibit tremendous variation and suggest that future reconstructions of hominin dietary ecology take a more nuanced approach when considering grass leaves as a potential hominin dietary resource. Copyright © 2017. Published by Elsevier Ltd.

  5. Grass pollen (Poaceae in the air of Sosnowiec (Poland, 1997 - 2006

    Directory of Open Access Journals (Sweden)

    Kazimiera Chłopek

    2012-12-01

    Full Text Available The article presents the analysis results of the grass pollen seasons from 1997 to 2006 in Sosnowiec. The research was carried out by means of the volumetric method with the use of a Burkard device. The duration of the pollen seasons was determined by means of the 98% method. The influence of meteorological conditions on the starting date and duration of the grass pollen seasons has been estimated in the article. The beginning of the pollen seasons was recorded between 23 April and 23 May. It has been demonstrated that the average duration of the pollen season amounted to 138 days. The period of maximum concentrations was recorded in June and the first half of July. The highest daily concentration was found in 2000 (495 grains in m3 and the highest annual sums in 2002 and 2000. The daily concentration distribution curve has shown three peaks. The highest values were recorded from 7 am until 11 am, from 13 pm until 17 pm and from 19 pm until 21 pm. It has been found that there is a significant influence of weather conditions (temperature, precipitation and relative humidity on the beginning and duration of the pollen seasons and the period of maximum concentrations.

  6. Submesoscale processes promote seasonal restratification in the Subantarctic Ocean

    CSIR Research Space (South Africa)

    Du Plessis, M

    2017-04-01

    Full Text Available Traditionally, the mechanism driving the seasonal restratification of the Southern Ocean mixed layer (ML) is thought to be the onset of springtime warming. Recent developments in numerical modeling and North Atlantic observations have shown...

  7. Grass Biomethane for Agriculture and Energy

    DEFF Research Database (Denmark)

    Korres, N.E.; Thamsiriroj, T.; Smith, B.

    2011-01-01

    have advanced the role of grassland as a renewable source of energy in grass biomethane production with various environmental and socio-economic benefits. It is underlined that the essential question whether the gaseous biofuel meets the EU sustainability criteria of 60% greenhouse gas emission savings...... by 2020 can be met since savings up to 89.4% under various scenarios can be achieved. Grass biomethane production compared to other liquid biofuels either when these are produced by indigenous of imported feedstocks is very promising. Grass biomethane, given the mature and well known technology...

  8. Spatial and temporal variability of grass cover in two olive grove catchments on contrasting soil types

    Science.gov (United States)

    Aguilera, Laura; Taguas, Encarnación V.; Gimeno, Enrique; Gómez, José A.

    2013-04-01

    Mediterranean climate conditions -characterized by the concentration of the precipitation in the seasons of autumn and spring, the low temperatures in winter and extremely warm and dry summers- determine that ground cover by adventitious (or cover crop) vegetation shows significant seasonal and annual variability. In addition, its spatial variability associates also, partially, to water availability among the landscape. This is especially relevant in olive orchards, an agricultural system under high erosion risk in the region where the establishment of herbaceous cover has proved to improve soil protection reducing erosion risk, as well as the improvement of soil properties (Gómez et al., 2009). All these benefits are based on small scale studies where full ground cover by the cover crop is relatively easy to obtain. However, few information is available about the actual ground cover achieved at farm scale, although preliminary observations suggests that this might be extremely variable (Gómez and Giráldez, 2009). This study presents the preliminary results evaluating the spatial and temporal evolution of ground cover by adventitious vegetation (the preferred option by farmers to achieve a cover crop) in two commercial olive farms during 2 hydrological years (2011-2012). The study was conducted in two farms located in the province of Cordoba, Southern Spain. Both were olive orchards grown under deficit irrigation systems and present a gauge station where rainfall, runoff and sediment loads have been measured from the year 2005. The soil management in "La Conchuela" farm was based in the use of herbicide in the line of olive trees to keep the bare soil all year round, and the application of selective herbicide in the lane between the olive trees to promote the grown of graminaceae grasses . In addition, the grass is mechanically killed in June. In the another farm, "Arroyo Blanco", the grass spontaneous cover is allowed until mid-spring in which is also

  9. Flora and fauna associated with prairie dog colonies and adjacent ungrazed mixed-grass prairie in western South Dakota

    Science.gov (United States)

    William Agnew; Daniel W. Uresk; Richard M. Hansen

    1986-01-01

    Vegetation, small rodents, and birds were sampled during the growing seasons of 2 years on prairie dog (Cynomys ludovicianus) colonies and adjacent mixed-grass prairie in western South Dakota. Prairie dog grazing decreased mulch cover, maximum height of vegetation, plant species richness, and tended to decrease live plant canopy cover compared to...

  10. Evaluating poverty grass (Danthonia spicata L.) for use in tees, fairways, or rough areas in golf courses in the midwest

    Science.gov (United States)

    Nadia E. Navarrete-Tindall; Brad Fresenburg; J.W. Van Sambeek

    2007-01-01

    Poverty grass (Danthonia spicata L.), a native, cool-season perennial bunchgrass with wide distribution in the United States, is being evaluated for its suitability for use on golf courses. The goal is to identify practices to improve seed germination and successfully establish field plots as monocultures or with other native species to mimic natural...

  11. Global warming on trial

    International Nuclear Information System (INIS)

    Broeker, W.S.

    1992-01-01

    Jim Hansen, a climatologist at NASA's Goddard Space Institute, is convinced that the earth's temperature is rising and places the blame on the buildup of greenhouse gases in the atmosphere. Unconvinced, John Sununu, former White House chief of staff, doubts that the warming will be great enough to produce serious threat and fears that measures to reduce the emissions would throw a wrench into the gears that drive the Unites States' troubled economy. During his three years at the White House, Sununu's view prevailed, and although his role in the debate has diminished, others continue to cast doubt on the reality of global warming. A new lobbying group called the Climate Council has been created to do just this. Burning fossil fuels is not the only problem; a fifth of emissions of carbon dioxide now come from clearing and burning forests. Scientists are also tracking a host of other greenhouse gases that emanate from a variety of human activities; the warming effect of methane, chlorofluorocarbons and nitrous oxide combined equals that of carbon dioxide. Although the current warming from these gases may be difficult to detect against the background noise of natural climate variation, most climatologists are certain that as the gases continue to accumulate, increases in the earth's temperature will become evident even to skeptics. If the reality of global warming were put on trial, each side would have trouble making its case. Jim Hansen's side could not prove beyond a reasonable doubt that carbon dioxide and other greenhouse gases have warmed the planet. But neither could John Sununu's side prove beyond a reasonable doubt that the warming expected from greenhouse gases has not occurred. To see why each side would have difficulty proving its case, this article reviews the arguments that might be presented in such a hearing

  12. Long range global warming

    International Nuclear Information System (INIS)

    Rolle, K.C.; Pulkrabek, W.W.; Fiedler, R.A.

    1995-01-01

    This paper explores one of the causes of global warming that is often overlooked, the direct heating of the environment by engineering systems. Most research and studies of global warming concentrate on the modification that is occurring to atmospheric air as a result of pollution gases being added by various systems; i.e., refrigerants, nitrogen oxides, ozone, hydrocarbons, halon, and others. This modification affects the thermal radiation balance between earth, sun and space, resulting in a decrease of radiation outflow and a slow rise in the earth's steady state temperature. For this reason the solution to the problem is perceived as one of cleaning up the processes and effluents that are discharged into the environment. In this paper arguments are presented that suggest, that there is a far more serious cause for global warming that will manifest itself in the next two or three centuries; direct heating from the exponential growth of energy usage by humankind. Because this is a minor contributor to the global warming problem at present, it is overlooked or ignored. Energy use from the combustion of fuels and from the output of nuclear reactions eventually is manifest as warming of the surroundings. Thus, as energy is used at an ever increasing rate the consequent global warming also increases at an ever increasing rate. Eventually this rate will become equal to a few percent of solar radiation. When this happens the earth's temperature will have risen by several degrees with catastrophic results. The trends in world energy use are reviewed and some mathematical models are presented to suggest future scenarios. These models can be used to predict when the global warming problem will become undeniably apparent, when it will become critical, and when it will become catastrophic

  13. Disaggregating tree and grass phenology in tropical savannas

    Science.gov (United States)

    Zhou, Qiang

    Savannas are mixed tree-grass systems and as one of the world's largest biomes represent an important component of the Earth system affecting water and energy balances, carbon sequestration and biodiversity as well as supporting large human populations. Savanna vegetation structure and its distribution, however, may change because of major anthropogenic disturbances from climate change, wildfire, agriculture, and livestock production. The overstory and understory may have different water use strategies, different nutrient requirements and have different responses to fire and climate variation. The accurate measurement of the spatial distribution and structure of the overstory and understory are essential for understanding the savanna ecosystem. This project developed a workflow for separating the dynamics of the overstory and understory fractional cover in savannas at the continental scale (Australia, South America, and Africa). Previous studies have successfully separated the phenology of Australian savanna vegetation into persistent and seasonal greenness using time series decomposition, and into fractions of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and bare soil (BS) using linear unmixing. This study combined these methods to separate the understory and overstory signal in both the green and senescent phenological stages using remotely sensed imagery from the MODIS (MODerate resolution Imaging Spectroradiometer) sensor. The methods and parameters were adjusted based on the vegetation variation. The workflow was first tested at the Australian site. Here the PV estimates for overstory and understory showed best performance, however NPV estimates exhibited spatial variation in validation relationships. At the South American site (Cerrado), an additional method based on frequency unmixing was developed to separate green vegetation components with similar phenology. When the decomposition and frequency methods were compared, the frequency

  14. Grass survey of the Itremo Massif records endemic central highland ...

    African Journals Online (AJOL)

    Twenty species are endemic to the central highlands, and a further 1 4 species are restricted to Madagascar. Five ecological groups of grasses were identified in the Itremo Massif: shade species in gallery forests, open wet area species, fire grasses, anthropogenic disturbance associated grasses and rock-dwelling grasses.

  15. Pampas Grass - Orange Co. [ds351

    Data.gov (United States)

    California Natural Resource Agency — This dataset provides the known distribution of pampas grass (Cortaderia selloana) in southern Orange County. The surveys were conducted from May to June, 2007 and...

  16. Tree-grass interactions in savannas

    CSIR Research Space (South Africa)

    Scholes, RJ

    1997-01-01

    Full Text Available Savannas occur where trees and grasses interact to create a biome that is neither grassland nor forest. Woody and gramineous plants interact by many mechanisms, some negative (competition) and some positive (facilitation). The strength and sign...

  17. POTENTIALS OF AGRICULTURAL WASTE AND GRASSES IN ...

    African Journals Online (AJOL)

    Shima

    Potentials of some agricultural waste and grasses were investigated. ... to education, printing, publishing and ... technical form, paper is an aqueous deposit ..... Period of. Soaking. Overnight. Overnight. Overnight. Overnight. Overnight.

  18. Grasses for energy production: hydrological guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.L.

    2003-07-01

    This report provides hydrological guidelines for growers, land and water resource managers, environmental groups and other parties interested in utilising grasses for energy production. The aim of the report is to help interested parties decide if a location is suitable for planting energy grasses by considering whether potential hydrological impacts will have an adverse effect on crop productivity and yield. The guidelines consider: the water use of energy grasses compared with other crops; the factors governing water use; the water requirements for a productive crop; and the likely impacts on the availability and quantity of water. The report points out that there are still gaps in our knowledge of the processes controlling the water use and growth of energy grasses and notes that, in some situations, there will be considerable uncertainty in predictions of water use and the magnitude of the associated hydrological impacts.

  19. Imaging spectroscopy for characterisation of grass swards

    NARCIS (Netherlands)

    Schut, A.G.T.

    2003-01-01

    Keywords: Imaging spectroscopy, imaging spectrometry, remote sensing, reflection, reflectance, grass sward, white clover, recognition, characterisation, ground cover, growth monitoring, stress detection, heterogeneity quantification

    The potential of imaging spectroscopy as a tool for

  20. Karl Konrad Grass jumalainimeste uurijana / Alar Laats

    Index Scriptorium Estoniae

    Laats, Alar

    2006-01-01

    Karl Konrad Grass oli 19. sajandil Dorpati keiserliku ülikooli usuteaduskonna Uue Testamendi õppejõud, kes tegeles hobi korras idakristluse (vene sektid) uurimisega. Tema peateoseks on uurimus "Die russischen Sekten". Ettekanne konverentsil 15.-16. aprill 2005. a.

  1. BUFFEL GRASS MORPHOAGRONOMIC CHARACTERIZATION FROM Cenchrus GERMPLASM ACTIVE BANK

    Directory of Open Access Journals (Sweden)

    LEILA REGINA GOMES PASSOS BRUNO

    2017-01-01

    Full Text Available his study aimed to characterize buffel grass accessions of the Cenchrus Germplasm Active Bank (CGAB from Embrapa Semi - Arid in a morphoagronomic way, checking the descriptors variability and efficiency in accessions on two consecutive cuts. Twenty - five accessions and five buffel grass cultivars were used in randomized complete block design with three replications. Evaluations were conducted after two consecutive cuts, each evaluation performed 90 days after each cut. Characterization was based on 15 quantitative and qualitative morphoagronomic descriptors. Quantitative descriptors were subjected to individual and joint univariate analysis of variance, followed by the Scott - Knott’s test at 5% significance. Yet qualitative descriptors were submitted to descriptive analysis. Both quantitative and qualitative descriptors were grouped based on the Gower algorithm for divergence analysis. A dendrogram and calculations of the characters relative importance for divergence were established. Genotype and cutting effects were significant for almost all descriptors in the joint analysis. This result indicates a genetic variability between genotypes and, regarding the cut, it indicates mainly differences in growth rate of each genotype in each cutting season. Genotypes were separated into three groups, which showed good genotype variation. The number of tillers per clump, followed by number of inflorescence and color of seeds, were the most relevant characters in genotype separation.

  2. G-warm inflation

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Ramón, E-mail: ramon.herrera@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Casilla 4059, Valparaíso (Chile)

    2017-05-01

    A warm inflationary universe in the context of Galileon model or G-model is studied. Under a general formalism we study the inflationary dynamics and the cosmological perturbations considering a coupling of the form G (φ, X )= g (φ) X . As a concrete example, we consider an exponential potential together with the cases in which the dissipation and Galilean coefficients are constants. Also, we study the weak regime given by the condition R <1+3 gH φ-dot , and the strong regime in which 1< R +3 gH φ-dot . Additionally, we obtain constraints on the parameters during the evolution of G-warm inflation, assuming the condition for warm inflation in which the temperature T > H , the conditions or the weak and strong regimes, together with the consistency relation r = r ( n {sub s} ) from Planck data.

  3. G-warm inflation

    Science.gov (United States)

    Herrera, Ramón

    2017-05-01

    A warm inflationary universe in the context of Galileon model or G-model is studied. Under a general formalism we study the inflationary dynamics and the cosmological perturbations considering a coupling of the form G(phi,X)=g(phi) X. As a concrete example, we consider an exponential potential together with the cases in which the dissipation and Galilean coefficients are constants. Also, we study the weak regime given by the condition RR+3gHdot phi. Additionally, we obtain constraints on the parameters during the evolution of G-warm inflation, assuming the condition for warm inflation in which the temperature T>H, the conditions or the weak and strong regimes, together with the consistency relation r=r(ns) from Planck data.

  4. The global warming problem

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this chapter, a discussion is presented of the global warming problem and activities contributing to the formation of acid rain, urban smog and to the depletion of the ozone layer. Globally, about two-thirds of anthropogenic carbon dioxide emissions arise from fossil-fuel burning; the rest arise primarily from deforestation. Chlorofluorocarbons are the second largest contributor to global warming, accounting for about 20% of the total. The third largest contributor is methane, followed by ozone and nitrous oxide. A study of current activities in the US that contribute to global warming shows the following: electric power plants account for about 33% of carbon dioxide emissions; motor vehicles, planes and ships (31%); industrial plants (24%); commercial and residential buildings (11%)

  5. Early onset of significant local warming in low latitude countries

    International Nuclear Information System (INIS)

    Mahlstein, I; Knutti, R; Solomon, S; Portmann, R W

    2011-01-01

    The Earth is warming on average, and most of the global warming of the past half-century can very likely be attributed to human influence. But the climate in particular locations is much more variable, raising the question of where and when local changes could become perceptible enough to be obvious to people in the form of local warming that exceeds interannual variability; indeed only a few studies have addressed the significance of local signals relative to variability. It is well known that the largest total warming is expected to occur in high latitudes, but high latitudes are also subject to the largest variability, delaying the emergence of significant changes there. Here we show that due to the small temperature variability from one year to another, the earliest emergence of significant warming occurs in the summer season in low latitude countries (∼25 deg. S-25 deg. N). We also show that a local warming signal that exceeds past variability is emerging at present, or will likely emerge in the next two decades, in many tropical countries. Further, for most countries worldwide, a mean global warming of 1 deg. C is sufficient for a significant temperature change, which is less than the total warming projected for any economically plausible emission scenario. The most strongly affected countries emit small amounts of CO 2 per capita and have therefore contributed little to the changes in climate that they are beginning to experience.

  6. 0-6613 : evaluate binder and mixture aging for warm mix asphalt.

    Science.gov (United States)

    2013-08-01

    Warm mix asphalt (WMA) technologies employ reduced : mixing and placement temperatures, thereby allowing : reduced fuel consumption, enhanced compaction, : increased haul distances, and an extended paving : season. However, there have been issues of ...

  7. Performance Measures of Warm Asphalt Mixtures for Safe and Reliable Freight Transportation

    Science.gov (United States)

    2009-04-01

    Warm mix asphalt (WMA) is an emerging technology that can allow asphalt to flow at a lower temperature for mixing, placing and compaction. The advantages of WMA include reduced fuel consumption, less carbon dioxide emission, longer paving season, lon...

  8. Características de carcaça, componentes não-carcaça e composição tecidual e química da 12ª costela de cordeiros Santa Inês terminados em pasto com três gramíneas no período seco Carcass traits, non-carcass components and tissues and chemical composition the 12th rib of Santa Inês sheep finished on three different grasses during the dry season

    Directory of Open Access Journals (Sweden)

    Luizângele Figueiredo de Oliveira Menezes

    2008-07-01

    mais satisfatório em comparação aos terminados em pasto de capim-andropogon.Carcass traits, non-carcass components and 12th rib yield of Santa Inês sheep finished in rotational grazing with three different tropical grasses (A. gayanus Kunth. cv. Planaltina, P. maximum Jacq. cv. Aruana and P. maximum Jacq. cv. Tanzania were evaluated in the dry season of the year. A completely randomized design with 11 sheep (3 months old and 18.8 ± 2.88 kg LW in each treatment was used. Animals were supplemented with increasing levels of concentrate, as advancing of the dry season, besides ad libitum mineral salt. At the end of 82 days of experiment, the animals were slaughtered, in the previous day of the slaughter; loin eye area (LYA was measured using ultra-sound (EMUS. Carcasses were evaluated for slaughter weight (SW, hot carcass weight (HCW, hot carcass dressing (HCD, carcass length (CL, subcutaneous fat score (SFATS, hot half carcass weight (HHCW, half carcass cuts (Rib/Belly, Rack, Back, Shoulder, Leg and Neck, skin weight (SKIN, thoracic (TV and abdominal (AV viscera and testicular (TE. The 12th rib was evaluated for total weight (TW, LYA, amount and percentage of muscle (MUSC, bone (BONE and fat (FAT as well as chemical composition. The characteristics SW, HCD, HHCW, SKIN and FAT did not differ between animals finished on Aruana and Tanzania grass, however were superior to those on andropogon grass. The yields on Neck, Rib/Belly and Rack in animals finished in tanzânia grass was superior to those on andropogon grass and aruana grass, which did not differ between itself. The other carcass traits, non-carcass components and 12th rib analyses did not differ between treatments. Sheep kept on aruana grass and tanzania grass howed better carcass traits with more satisfactory production levels when compared to the animals finished on andropogon grass.

  9. Genetic diversity and population structure analysis of the tropical pasture grass Brachiaria humidicola based on microsatellites, cytogenetics, morphological traits, and geographical origin.

    Science.gov (United States)

    Jungmann, L; Vigna, B B Z; Boldrini, K R; Sousa, A C B; do Valle, C B; Resende, R M S; Pagliarini, M S; Zucchi, M I; de Souza, A P

    2010-09-01

    Brachiaria humidicola (Rendle) Schweick. is a warm-season grass commonly used as forage in the tropics. Accessions of this species were collected in eastern Africa and massively introduced into South America in the 1980s. Several of these accessions form a germplasm collection at the Brazilian Agricultural Research Corporation. However, apomixis, ploidy, and limited knowledge of the genetic basis of this germplasm collection have constrained breeding activities. The objectives of this work were to identify genetic variability in the Brazilian B. humidicola germplasm collection using microsatellite markers and to compare the results with information on the following: (1) collection sites of the accessions; (2) reproductive mode and ploidy levels; and (3) genetic diversity revealed by morphological traits. The evaluated germplasm population is highly structured into four major groups. The sole sexual accession did not group with any of the clusters. Genetic dissimilarities did not correlate with either geographic distances or genetic distances inferred from morphological descriptors. Additionally, the genetic structure identified in this collection did not correspond to differences in ploidy level. Alleles exclusive to either sexual or apomictic accessions were identified, suggesting that further evaluation of the association of these loci with apospory should be carried out.

  10. Greenhouse Warming Research

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    2016-01-01

    The changing greenhouse effect caused by natural and anthropogenic causes is explained and efforts to model the behavior of the near-surface constituents of the Earth's land, ocean and atmosphere are discussed. Emissions of various substances and other aspects of human activity influence...... the greenhouse warming, and the impacts of the warming may again impact the wellbeing of human societies. Thus physical modeling of the near-surface ocean-soil-atmosphere system cannot be carried out without an idea of the development of human activities, which is done by scenario analysis. The interactive...

  11. Grass and forb species for revegetation of mixed soil-lignite overburden in East Central Texas

    Energy Technology Data Exchange (ETDEWEB)

    Skousen, J.G.; Call, C.A. (West Virginia University, Morgantown, WV (USA). Division of Plant and Soil Sciences)

    Ten grasses and seven forbs were seeded into mixed soil-lignite overburden in the Post Oak Savannah region of Texas and monitored for establishment and growth over a 3-year period without fertilization. Buffelgrass (Cenchrus ciliaris), green sprangletop (Leptochloa dubia), switchgrass (Panicum virgatum), and kleingrass (P. coloratum) developed monotypic stands with sufficent density, aerial cover, and aboveground biomass to stabilize the mixed soil-lignite overburden surface by the end of the first growing season. Plant mortality eliminated buffelgrass and green sprangletop stands by the end of the third growing season. Indiangrass (Sorghastrum nutans) developed a satisfactory stand by the end of the third growing season, while Oldworld bluestem (Bothriochloa X Dicanthium), yellow bluestem (Bothriochloa ischaemum), and sideoats grama (Bouteloua curtipendula) established at a slower rate. Cover and biomass measurements from an adjacent, unfertilized stand of Coastal bermudagrass (Cynodon dactylon) were compared with those of seeded grasses throughout the study. Partidge pea (Cassia fasciculata) established rapidly and had the greatest cover and biomass of all seeded forbs by the end of the first growing season. Sericea lespedeza (Lespedeza cuneata), Illinois bundleflower (Desmanthus illinoensis), and western indigo (Indigofera miniata) developed adequate stands for surface stabilization by the end of the third growing season, while faseanil indigo (Indigofera suffruticosa), virgata lespedeza (Lespedeza virgata), and awnless bushsunflower (Simsia calva) showed slower establishment. 27 refs., 3 tabs.

  12. Fire Safety During the Holiday Season | Poster

    Science.gov (United States)

    Winter is here, and that means holiday decorations, a warm hearth, and (hopefully) plenty of homecooked meals. Unfortunately, winter also brings numerous fire hazards both at work and around the house. This year, as you shop, decorate, and celebrate, keep these safety tips in mind to ensure a safe and enjoyable holiday season.

  13. Studies on the 'air-grass-cow-milk' exposure pathway of airborne /sup 131/I from Wuergassen nuclear power plant in the 1980 grazing season. Untersuchungen zum Expositionspfad 'Luft-Gas-Kuh-Milch' fuer Jod 131 in der Abluft des Kernkraftwerkes Wuergassen waehrend der Weidezeit 1980

    Energy Technology Data Exchange (ETDEWEB)

    Haubelt, R; Burkhardt, J

    1983-12-01

    The measurements and statistics, which were much more detailed than the annual routine measurements, included /sup 131/I emission measurements on the stack, the registration of meteorological parameters, measurements of /sup 131/I concentrations in air, grass, and milk, and supplementary statistics on the farmers' animal keeping habits. The infant thyroid dose resulting from /sup 131/I in milk was found to be lower by at least one order of magnitude than the value calculated from the emission data for the point of maximum exposure according to the Guideline to Explain Sect. 45 StrlSchV. This result confirms the results of earlier investigations. The model calculation according to the Guideline yields a value of 30 mrem for incorporation of /sup 131/I into the infant thyroid via the ingestion pathway for the year 1980, i.e. 25 times the measured value. The possible reasons for this are discussed.

  14. Terrestrial carbon cycle affected by non-uniform climate warming

    International Nuclear Information System (INIS)

    Jianyang Xia; Yiqi Luo; Jiquan Chen; Shilong Piao; Ciais, Philippe; Shiqiang Wan

    2014-01-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30 degrees and 90 degrees N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research. (authors)

  15. Towards reconstructing herbaceous biome dynamics and associated precipitation in Africa: insights from the classification of grass morphological traits

    Science.gov (United States)

    Pasturel, Marine; Alexandre, Anne; Novello, Alice; Moctar Dieye, Amadou; Wele, Abdoulaye; Paradis, Laure; Hely, Christelle

    2014-05-01

    Inter-tropical herbaceous ecosystems occupy a 1/5th of terrestrial surface, a half of the African continent, and are expected to extend in the next decades. Dynamic of these ecosystems is simulated with poor accuracy by Dynamic Global Vegetation Models (DGVMs). One of the bias results from the fact that the diversity of the grass layer dominating these herbaceous ecosystems is poorly taken into account. Mean annual precipitation and the length of the dry season are the main constrains of the dynamics of these ecosystems. Conversely, changes in vegetation affect the water cycle. Inaccuracy in herbaceous ecosystem simulation thus impacts simulations of the water cycle (including precipitation) and vice versa. In order to increase our knowledge of the relationships between grass morphological traits, taxonomy, biomes and climatic niches in Western and South Africa, a 3-step methodology was followed: i) values of culm height, leaf length and width of dominant grass species from Senegal were gathered from flora and clustered using the Partition Around Medoids (PAM) method; ii) trait group ability to sign climatic domains and biomes was assessed using Kruskal-Wallis tests; iii) genericity and robustness of the trait groups were evaluated through their application to Chadian and South African botanical datasets. Results show that 8 grass trait groups are present either in Senegal, Chad or South Africa. These 8 trait groups are distributed along mean annual precipitation and dry season length gradients. The combination of three of them allow to discriminate mean annual precipitation domains (1000 mm) and herbaceous biomes (steppes, savannas, South African grasslands and Nama-Karoo). With these results in hand, grass Plant Functional Types (PFTs) of the DGMV LPJ-GUESS will be re-parameterized and particular attention will be given to the herbaceous biomass assigned to each grass trait group. Simultaneously, relationships between grass trait groups and phytolith vegetation

  16. Warm pre-stressing

    International Nuclear Information System (INIS)

    Hedner, G.

    1983-01-01

    Literature survey and critical evaluation of the phenomenon of warm pre-stressing (WPS) is presented. It is found that the cause of it is not clear and a calculated control is missing. The effect of irradiation is unknown, and the influence of WPS on the behaviour of reactor vessels is discussed. (G.B.)

  17. Being Warm-Hearted

    Institute of Scientific and Technical Information of China (English)

    李函; 任汉鼎

    2017-01-01

    Good morning,ladies and gentlemen.It’s my honor to address[向……致辞] you.My English name is Isabella.I’m a high school student of 17.I have some good personality traits[特点],including being warm-hearted.So here comes my topic:Being

  18. Warm and Cool Cityscapes

    Science.gov (United States)

    Jubelirer, Shelly

    2012-01-01

    Painting cityscapes is a great way to teach first-grade students about warm and cool colors. Before the painting begins, the author and her class have an in-depth discussion about big cities and what types of buildings or structures that might be seen in them. They talk about large apartment and condo buildings, skyscrapers, art museums,…

  19. The global warming scare

    International Nuclear Information System (INIS)

    Sunavala, P.D.

    1992-01-01

    It is argued that the present propaganda about the global warming with its disastrous consequences is a scare spread by some First World countries, especially the United States, to prevent the rapid industrialization of developing third world countries. (author). 6 refs., 1 tab

  20. Paralyzed warming world

    Czech Academy of Sciences Publication Activity Database

    Ač, Alexander

    2010-01-01

    Roč. 2, č. 2 (2010), s. 81-86 ISSN 1876-8156 Institutional research plan: CEZ:AV0Z60870520 Keywords : global warming * climate Subject RIV: EH - Ecology, Behaviour http://ojs.ubvu.vu.nl/alf/article/view/134/250

  1. Seasonal Climate Extremes : Mechanism, Predictability and Responses to Global Warming

    NARCIS (Netherlands)

    Shongwe, M.E.

    2010-01-01

    Climate extremes are rarely occurring natural phenomena in the climate system. They often pose one of the greatest environmental threats to human and natural systems. Statistical methods are commonly used to investigate characteristics of climate extremes. The fitted statistical properties are often

  2. Warm season performance of horizontal subsurface flow constructed ...

    African Journals Online (AJOL)

    user

    2013-06-14

    Jun 14, 2013 ... degradation and population risk of diseases particularly ..... 5G: gravel substrate with a HRT of 5 days; 5S: sand substrate with a HRT of 5 days; 10G: gravel substrate with a .... American Public Health Association; American.

  3. Nutritional value of cabbage and kikuyu grass as food for grass carp ...

    African Journals Online (AJOL)

    and digestibility coefficients were obtained for the protein, fibre, ash and fat contents of both ... Cabbage is a superior feed compared to grass for raising grass carp and a suitable low-cost alternative ... Materials and Methods ... from jumping out and was fitted with an air lift under- .... In: Aquatic weeds in South East Asia.

  4. Gene Expression Profiling of Grass Carp (Ctenopharyngodon idellus and Crisp Grass Carp

    Directory of Open Access Journals (Sweden)

    Ermeng Yu

    2014-01-01

    Full Text Available Grass carp (Ctenopharyngodon idellus is one of the most important freshwater fish that is native to China, and crisp grass carp is a kind of high value-added fishes which have higher muscle firmness. To investigate biological functions and possible signal transduction pathways that address muscle firmness increase of crisp grass carp, microarray analysis of 14,900 transcripts was performed. Compared with grass carp, 127 genes were upregulated and 114 genes were downregulated in crisp grass carp. Gene ontology (GO analysis revealed 30 GOs of differentially expressed genes in crisp grass carp. And strong correlation with muscle firmness increase of crisp grass carp was found for these genes from differentiation of muscle fibers and deposition of ECM, and also glycolysis/gluconeogenesis pathway and calcium metabolism may contribute to muscle firmness increase. In addition, a number of genes with unknown functions may be related to muscle firmness, and these genes are still further explored. Overall, these results had been demonstrated to play important roles in clarifying the molecular mechanism of muscle firmness increase in crisp grass carp.

  5. Analysis of the soil food web structure under grass and grass clover

    NARCIS (Netherlands)

    Eekeren, van N.J.M.; Smeding, F.W.; Vries, de F.T.; Bloem, J.

    2006-01-01

    The below ground biodiversity of soil organisms plays an important role in the functioning of the the soil ecosystem, and consequently the above ground plant production. The objective of this study is to investigate the effect of grass or grass-clover in combination with fertilisation on the soil

  6. Northern bobwhite breeding season ecology on a reclaimed surface mine

    Science.gov (United States)

    Brooke, Jarred M.; Tanner, Evan P.; Peters, David C.; Tanner, Ashley M.; Harper, Craig A.; Keyser, Patrick D.; Clark, Joseph D.; Morgan, John J.

    2017-01-01

    and were located closer to firebreaks and disked native-warm season grass stands than would be expected at random. Our results suggest the vegetation at Peabody was sufficient without manipulation to support nesting and brood-rearing northern bobwhite at a low level, but habitat management practices improved vegetation for nesting and brood-rearing resource selection. Reproductive rates (e.g., nest survival and re-nesting rates) at Peabody were lower than reported in other studies, which may be related to nutritional deficiencies caused by the abundance of sericea lespedeza. On reclaimed mine lands dominated by sericea lespedeza, we suggest continuing practices such as disking and herbicide application that are targeted at reducing sericea lespedeza to improve the vegetation for nesting and brood-rearing bobwhite.

  7. Airborne grass (Poaceae) pollen in southern Spain. Results of a 10-year study (1987-96).

    Science.gov (United States)

    González Minero, F J; Candau, P; Tomás, C; Morales, J

    1998-03-01

    This work reports an exhaustive study of the aerobiology of the Gramineae in Seville, Spain, which is typical of coastal Mediterranean areas. Sampling was done with a Cour trap installed on the roof terrace of the School of Pharmacy, Seville, from 1987 to 1996, both inclusive. The climatic pattern of that period was characterized by two exceptionally wet years (1989 and 1996), between which were 5 consecutive years of drought (1990-5). This typically Mediterranean climate affects grass aerobiology. The annual amounts of total grass pollen are low, never exceeding 2500 grains/m3. The start, length, and intensity of the pollen season are significantly correlated with preseasonal meteorologic factors (precipitation and temperature), but intraseasonal meteorologic conditions have no effect on the three variables. The relationships are stated by three equations that, while further years of observations are anticipated, can be considered models to forecast the characteristics of the pollen season: the starting date depends on the mean temperatures of January and February, and the length and intensity of the season depend on the rainfall between the beginning of January and the starting date of the season. For the study period, the weekly concentrations (pollen curves) throughout the year showed no typical pattern of variation over the years, so that it was impossible to make mid- and long-term forecasts of the variation in weekly concentration. The most noteworthy aspects of grass pollen curves are a long pollen season, which starts in February or March and lasts until September or October; peaks of higher concentration (> 100 grains/m3) in May and June, associated with increases in temperature and absence of precipitation; and other peaks in the summer months that may be as high as the spring peaks.

  8. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation.

    Science.gov (United States)

    Linder, H P; Lehmann, Caroline E R; Archibald, Sally; Osborne, Colin P; Richardson, David M

    2018-05-01

    , fostering high biomass and diversity of mammalian herbivores. Many grasses have a suite of architectural and functional traits that facilitate frequent fire, including a tufted growth form, and tannin-like substances in leaves which slow decomposition. We mapped these traits over the phylogeny of the Poales, spanning the grasses and their relatives, and demonstrated the accumulation of traits since monocots originated in the mid-Cretaceous. Although the sympodial growth form is a monocot trait, tillering resulting in the tufted growth form most likely evolved within the grasses. Similarly, although an ovary apparently constructed of a single carpel evolved in the most recent grass ancestor, spikelets and the awned lemma dispersal units evolved within the grasses. Frost tolerance and C 4 photosynthesis evolved relatively late (late Palaeogene), and the last significant trait to evolve was probably the production of tannins, associated with pyrophytic savannas. This fits palaeobotanical data, suggesting several phases in the grass success story: from a late Cretaceous origin, to occasional tropical grassland patches in the later Palaeogene, to extensive C 3 grassy woodlands in the early-middle Miocene, to the dramatic expansion of the tropical C 4 grass savannas and grasslands in the Pliocene, and the C 3 steppe grasslands during the Pleistocene glacial periods. Modern grasslands depend heavily on strongly seasonal climates, making them sensitive to climate change. © 2017 Cambridge Philosophical Society.

  9. Comparison of silage and hay of dwarf Napier grass (Pennisetum purpureum) fed to Thai native beef bulls.

    Science.gov (United States)

    Mapato, Chaowarit; Wanapat, Metha

    2018-03-23

    Both quantity and quality of forages are important in dry season feeding. Eight Thai native beef bulls were arranged in a Completely randomized design to evaluate dwarf Napier namely Sweet grass (Pennisetum purpureum cv. Mahasarakham) preserved as silage or hay on feed intake, digestibility, and rumen fermentation. The animals were fed with forage ad libitum supplemented with concentrate mixture at 1.0% of BW for 21 days; data were collected during the last 7 days. The results showed that there were differences (P  0.05) in animals fed silage and hay. Sweet grass is better preserved as hay rather than silage.

  10. Seasonal temperature extremes in Potsdam

    Science.gov (United States)

    Kundzewicz, Zbigniew; Huang, Shaochun

    2010-12-01

    The awareness of global warming is well established and results from the observations made on thousands of stations. This paper complements the large-scale results by examining a long time-series of high-quality temperature data from the Secular Meteorological Station in Potsdam, where observation records over the last 117 years, i.e., from January 1893 are available. Tendencies of change in seasonal temperature-related climate extremes are demonstrated. "Cold" extremes have become less frequent and less severe than in the past, while "warm" extremes have become more frequent and more severe. Moreover, the interval of the occurrence of frost has been decreasing, while the interval of the occurrence of hot days has been increasing. However, many changes are not statistically significant, since the variability of temperature indices at the Potsdam station has been very strong.

  11. Phytoplankton response to winter warming modified by large-bodied zooplankton: an experimental microcosm study

    Directory of Open Access Journals (Sweden)

    Hu He

    2015-03-01

    Full Text Available While several field investigations have demonstrated significant effects of cool season (winter or spring warming on phytoplankton development, the role played by large-bodied zooplankton grazers for the responses of phytoplankton to winter warming is ambiguous. We conducted an outdoor experiment to compare the effect of winter warming (heating by 3°C in combination with presence and absence of Daphnia grazing (D. similis on phytoplankton standing crops and community structure under eutrophic conditions. When Daphnia were absent, warming was associated with significant increases in phytoplankton biomass and cyanobacterial dominance. In contrast, when Daphnia were present, warming effects on phytoplankton dynamics were offset by warming-enhanced grazing, resulting in no significant change in biomass or taxonomic dominance. These results emphasize that large-bodied zooplankton like Daphnia spp. may play an important role in modulating the interactions between climate warming and phytoplankton dynamics in nutrient rich lake ecosystems.

  12. Associations between grass and weed pollen and emergency department visits for asthma among children in Montreal.

    Science.gov (United States)

    Héguy, Léa; Garneau, Michelle; Goldberg, Mark S; Raphoz, Marie; Guay, Frédéric; Valois, Marie-France

    2008-02-01

    Asthma among children is a major public health problem worldwide. There are increasing number of studies suggesting a possible association between allergenic pollen and exacerbations of asthma. In the context of global climate change, a number of future climate and air pollution scenarios predict increases in concentrations of pollen, an extension of the pollen season, and an increase in the allergenicity of pollen. The goal of the present study is to evaluate the short-term effects of exposure to grass and weed pollen on emergency department visits and readmissions for asthma among children aged 0-9 years living in Montreal between April and October, 1994-2004. Time-series analyses were carried out using parametric log-linear overdispersed Poisson models that were adjusted for temporal variations, daily weather conditions (temperature, atmospheric pressure), and gaseous air pollutants (ozone and nitrogen dioxide). We have found positive associations between emergency department visits and concentrations of grass pollen 3 days after exposure. The effect of grass pollen was higher on emergency department readmissions as compared to initial visits. Weak negative associations were found between weed pollen (including ragweed pollen) and emergency department visits 2 days after exposure. The data indicate that among children, emergency department visits increased with increasing concentrations of grass pollen.

  13. Invertebrate populations in miscanthus (Miscanthusxgiganteus) and reed canary-grass (Phalaris arundinacea) fields

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T.; Slater, F.M. [Llysdinam Field Centre, School of Biosciences, Cardiff University, Newbridge-on-Wye, Llandrindod Wells, Powys, LD1 6NB (United Kingdom)

    2007-01-15

    Monitoring of invertebrates at four field sites in Herefordshire, England, growing miscanthus and reed canary-grass was carried out in 2002, 2003 and 2004 to investigate the ecological impact of these crops on ground beetles, butterflies and arboreal invertebrates. Ground beetles were sampled by pitfall trapping; and arboreal invertebrates by sweep netting and stem beating. The Centre for Ecology and Hydrology's Butterflies Monitoring Scheme methodology was used to record butterflies. The effects of the biomass crops on invertebrates were indirect, through the use of weeds as food resources and habitat. The greater diversity of weed flora within miscanthus fields than within reed canary-grass fields had a greater positive effect on invertebrates. Ground beetles, butterflies and arboreal invertebrates were more abundant and diverse in the most floristically diverse miscanthus fields. The difference in crop architecture and development between miscanthus and reed canary-grass was reflected in their differences in crop height and ground cover early on in the season. However, most of the difference in arthropod abundance between the two crops was attributed to the difference in the agronomic practice of growing the crops such as plant density, and the effect of this on weed growth. Since perennial rhizomatous grasses require a single initial planting and related tillage, and also no major chemical inputs; and because the crops are harvested in the spring and the land is not disturbed by cultivation every year, the fields were used as over-wintering sites for invertebrates suggesting immediate benefits to biodiversity. (author)

  14. Reconstructing warm inflation

    Science.gov (United States)

    Herrera, Ramón

    2018-03-01

    The reconstruction of a warm inflationary universe model from the scalar spectral index n_S(N) and the tensor to scalar ratio r( N) as a function of the number of e-folds N is studied. Under a general formalism we find the effective potential and the dissipative coefficient in terms of the cosmological parameters n_S and r considering the weak and strong dissipative stages under the slow roll approximation. As a specific example, we study the attractors for the index n_S given by nS-1∝ N^{-1} and for the ratio r∝ N^{-2}, in order to reconstruct the model of warm inflation. Here, expressions for the effective potential V(φ ) and the dissipation coefficient Γ (φ ) are obtained.

  15. Thinking About Global Warming

    International Nuclear Information System (INIS)

    Baron, J.

    2006-01-01

    Attitudes toward global warming are influenced by various heuristics, which may distort policy away from what is optimal for the well-being of people. These possible distortions, or biases, include: a focus on harms that we cause, as opposed to those that we can remedy more easily; a feeling that those who cause a problem should fix it; a desire to undo a problem rather than compensate for its presence; parochial concern with one's own group (nation); and neglect of risks that are not available. Although most of these biases tend to make us attend relatively too much to global warming, other biases, such as wishful thinking, cause us to attend too little. I discuss these possible effects and illustrate some of them with an experiment conducted on the World Wide Web

  16. Climate change - global warming

    International Nuclear Information System (INIS)

    Ciconkov, Risto

    2001-01-01

    An explanation about climate, weather, climate changes. What is a greenhouse effect, i.e. global warming and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warming Potential) as a factor for estimating their influence on the greenhouse effect. Indicators of the climate changes in the previous period by known international institutions, higher concentrations of global average temperature. Projecting of likely scenarios for the future climate changes and consequences of them on the environment and human activities: industry, energy, agriculture, water resources. The main points of the Kyoto Protocol and problems in its realization. The need of preparing a country strategy concerning the acts of the Kyoto Protocol, suggestions which could contribute in the preparation of the strategy. A special attention is pointed to the energy, its resources, the structure of energy consumption and the energy efficiency. (Author)

  17. Warm natural inflation

    International Nuclear Information System (INIS)

    Mishra, Hiranmaya; Mohanty, Subhendra; Nautiyal, Akhilesh

    2012-01-01

    In warm inflation models there is the requirement of generating large dissipative couplings of the inflaton with radiation, while at the same time, not de-stabilising the flatness of the inflaton potential due to radiative corrections. One way to achieve this without fine tuning unrelated couplings is by supersymmetry. In this Letter we show that if the inflaton and other light fields are pseudo-Nambu-Goldstone bosons then the radiative corrections to the potential are suppressed and the thermal corrections are small as long as the temperature is below the symmetry breaking scale. In such models it is possible to fulfil the contrary requirements of an inflaton potential which is stable under radiative corrections and the generation of a large dissipative coupling of the inflaton field with other light fields. We construct a warm inflation model which gives the observed CMB-anisotropy amplitude and spectral index where the symmetry breaking is at the GUT scale.

  18. Slowing global warming

    International Nuclear Information System (INIS)

    Flavin, C.

    1990-01-01

    According to the authors, global warming promises to be one of the central environmental issues of the nineties. After a decade of scientific concern but popular neglect, the eighties ended with a growing political as well as scientific consensus that the world can no longer afford to procrastinate about this issue. This paper reports on coping with global warming which, according to the author, will force societies to move rapidly into uncharted terrain, reversing powerful trends that have dominated the industrial age. This challenge cannot be met without a strong commitment on the part of both individual consumers and governments. In terms of the earth's carbon balance, the unprecedented policy changes that have now become urgent include a new commitment to greater energy efficiency and renewable energy sources, a carbon tax on fossil fuels, a reversal of deforestation in tropical countries, and the rapid elimination of CFCs

  19. Military Implications of Global Warming.

    Science.gov (United States)

    1999-05-20

    U.S. environmental issues also have important global implications. This paper analyzes current U.S. Policy as it pertains to global warming and climate...for military involvement to reduce global warming . Global warming and other environmental issues are important to the U.S. military. As the United

  20. Role of carbohydrate metabolism in grass tetany

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.K.; Madsen, F.C.; Lentz, D.E.; Hansard, S.L.

    1977-01-01

    Clinical hypomagnesemia is confined primarily to beef cattle in the United States but also occurs in dairy cattle in other countries, probably due to different management practices. During periods when grass tetany is likely, early vegetative temperate zone grasses are usually low in total readily available carbohydrates and magnesium but high in potassium and nitrogen. The tetany syndrome may include hypoglycemia and ketosis, suggesting an imbalance in intermediary energy metabolism. Many enzyme systems critical to cellular metabolism, including those which hydrolyze and transfer phosphate groups, are activated by Mg. Thus, by inference, Mg is required for normal glucose utilization, fat, protein, nucleic acid and coenzyme synthesis, muscle contraction, methyl group transfer, and sulfate, acetate, and formate activation. Numerous clinical and experimental studies suggest an intimate relationship between metabolism of Mg and that of carbohydrate, glucagon, and insulin. The objective is to review this literature and suggest ways in which these relationships might contribute to a chain of events leading to grass tetany.

  1. Controlling grass weeds on hard surfaces

    DEFF Research Database (Denmark)

    Rask, Anne Merete; Kristoffersen, Palle; Andreasen, Christian

    2012-01-01

    An experiment was conducted on a specially designed hard surface to study the impact of time interval between flaming treatments on the regrowth and flower production of two grass weeds. The goal of this experiment was to optimize the control of annual bluegrass and perennial ryegrass, both species...... that are very difficult to control without herbicides. Aboveground biomass from 72 plants per treatment was harvested and dry weights were recorded at regular intervals to investigate how the plants responded to flaming. Regrowth of the grasses was measured by harvesting aboveground biomass 2 wk after......, as they did not increase the reduction of aboveground biomass compared with the 7-d treatment interval. Knowledge on the regrowth of grass weeds after flaming treatments provided by this study can help improve recommendations given to road keepers and park managers for management on these weeds. Nomenclature...

  2. Biogas and Methane Yield from Rye Grass

    Directory of Open Access Journals (Sweden)

    Tomáš Vítěz

    2015-01-01

    Full Text Available Biogas production in the Czech Republic has expanded substantially, including marginal regions for maize cultivation. Therefore, there are increasingly sought materials that could partially replace maize silage, as a basic feedstock, while secure both biogas production and its quality.Two samples of rye grass (Lolium multiflorum var. westerwoldicum silage with different solids content 21% and 15% were measured for biogas and methane yield. Rye grass silage with solid content of 15% reached an average specific biogas yield 0.431 m3·kg−1 of organic dry matter and an average specific methane yield 0.249 m3·kg−1 of organic dry matter. Rye grass silage with solid content 21% reached an average specific biogas yield 0.654 m3·kg−1 of organic dry matter and an average specific methane yield 0.399 m3·kg−1 of organic dry matter.

  3. Rehabilitation experiment by phytoremediation using lawn grass

    International Nuclear Information System (INIS)

    2012-08-01

    Measures against environmental contamination by radioactive materials originated from the Fukushima Nuclear Accident (May, 2011), are being conducted in Fukushima and surrounding prefectures. Regarding to the measures, a phytoremediation experiment with several types of lawn grasses in a field scale have been carried out. Lawn grasses are generally characterized by shallow rhizosphere, high density and root mat formation. Decontamination effectiveness of radioactive cesium by plant uptake and by sod removing was investigated. As a result, the range of decontamination factors by plant uptake was below than 1% because of low transfer rate form soil to plant. On the other hand, maximum decontamination factor by sod removing reached about 100%. Decontamination activities with various methods will be implemented according to the national decontamination policy and related plans in each municipality. The phytoremediation method with lawn grass would be applicable in limited circumstances. (author)

  4. EFFECTS OF GLOBAL WARMING

    OpenAIRE

    Dr. Basanti Jain

    2017-01-01

    The abnormal increase in the concentration of the greenhouse gases is resulting in higher temperatures. We call this effect is global warming. The average temperature around the world has increased about 1'c over 140 years, 75% of this has risen just over the past 30 years. The solar radiation, as it reaches the earth, produces "greenhouse effect" in the atmosphere. The thick atmospheric layers over the earth behaves as a glass surface, as it permits short wave radiations from coming in, but ...

  5. Warm natural inflation

    International Nuclear Information System (INIS)

    Mishra, Hiranmaya; Mohanty, Subhendra; Nautiyal, Akhilesh

    2013-01-01

    In warm inflation models there is the requirement of generating large dissipative couplings of the inflation with radiation, while at the same Âătime, not de-stabilising the flatness of the inflation potential due to radiative corrections. One way to achieve this without fine tuning unrelated couplings is by supersymmetry. In this talk we will discuss warm inflation with Pseudo-Nambu-Goldstone Bosons (PNGB). In this case inflation and other light fields are PNGB. So, the radiative corrections to the potential are suppressed and the thermal Âăcorrections are small as long as the temperature is below the symmetry breaking scale. In such models it is possible to fulfill the contrary requirements of an inflation potential which is stable under radiative corrections and the generation of a large dissipative coupling of the inflation field with other light fields. This warm inflation model with PNGB gives the observed CMB-anisotropy amplitude and spectral index having the symmetry breaking scale at the GUT scale. (author)

  6. Potential and limitations of using digital repeat photography to track structural and physiological phenology in Mediterranean tree-grass ecosystems

    Science.gov (United States)

    Luo, Yunpeng; EI-Madany, Tarek; Filippa, Gianluca; Carrara, Arnaud; Cremonese, Edoardo; Galvagno, Marta; Hammer, Tiana; Pérez-Priego, Oscar; Reichstein, Markus; Martín Isabel, Pilar; González Cascón, Rosario; Migliavacca, Mirco

    2017-04-01

    Tree-Grass ecosystems are global widely distributed (16-35% of the land surface). However, its phenology (especially in water-limited areas) has not yet been well characterized and modeled. By using commercial digital cameras, continuous and relatively vast phenology data becomes available, which provides a good opportunity to monitor and develop a robust method used to extract the important phenological events (phenophases). Here we aimed to assess the usability of digital repeat photography for three Tree-Grass Mediterranean ecosystems over two different growing seasons (Majadas del Tietar, Spain) to extract critical phenophases for grass and evergreen broadleaved trees (autumn regreening of grass- Start of growing season; resprouting of tree leaves; senescence of grass - End of growing season), assess their uncertainty, and to correlate them with physiological phenology (i.e. phenology of ecosystem scale fluxes such as Gross Primary Productivity, GPP). We extracted green chromatic coordinates (GCC) and camera based normalized difference vegetation index (Camera-NDVI) from an infrared enabled digital camera using the "Phenopix" R package. Then we developed a novel method to retrieve important phenophases from GCC and Camera-NDVI from various region of interests (ROIs) of the imagery (tree areas, grass, and both - ecosystem) as well as from GPP, which was derived from Eddy Covariance tower in the same experimental site. The results show that, at ecosystem level, phenophases derived from GCC and Camera-NDVI are strongly correlated (R2 = 0.979). Remarkably, we observed that at the end of growing season phenophases derived from GCC were systematically advanced (ca. 8 days) than phenophase from Camera-NDVI. By using the radiative transfer model Soil Canopy Observation Photochemistry and Energy (SCOPE) we demonstrated that this delay is related to the different sensitivity of GCC and NDVI to the fraction of green/dry grass in the canopy, resulting in a systematic

  7. Perennial Grass and Native Wildflowers: A Synergistic Approach to Habitat Management

    Directory of Open Access Journals (Sweden)

    Shereen S. Xavier

    2017-09-01

    Full Text Available Marginal agricultural land provides opportunities to diversify landscapes by producing biomass for biofuel, and through floral provisioning that enhances arthropod-mediated ecosystem service delivery. We examined the effects of local spatial context (adjacent to woodland or agriculture and irrigation (irrigation or no irrigation on wildflower bloom and visitation by arthropods in a biofeedstocks-wildflower habitat buffer design. Twenty habitat buffer plots were established containing a subplot of Napier grass (Pennisetum perpureum Schumach for biofeedstock, three commercial wildflower mix subplots, and a control subplot containing spontaneous weeds. Arthropods and flowers were visually observed in quadrats throughout the season. At the end of the season we measured soil nutrients and harvested Napier biomass. We found irrespective of buffer location or irrigation, pollinators were observed more frequently early in the season and on experimental plots with wildflowers than on weeds in the control plots. Natural enemies showed a tendency for being more common on plots adjacent to a wooded border, and were also more commonly observed early in the season. Herbivore visits were infrequent and not significantly influenced by experimental treatments. Napier grass yields were high and typical of first-year yields reported regionally, and were not affected by location context or irrigation. Our results suggest habitat management designs integrating bioenergy crop and floral resources provide marketable biomass and habitat for beneficial arthropods.

  8. Root proliferation in native perennial grasses of arid Patagonia, Argentina

    Institute of Scientific and Technical Information of China (English)

    Yanina A. TORRES; Mara M. MUJICA; Sandra S. BAIONI; Jos ENTO; Mara N. FIORETTI; Guillermo TUCAT; Carlos A. BUSSO; Oscar A. MONTENEGRO; Leticia ITHURRART; Hugo D. GIORGETTI; Gustavo RODRGUEZ; Diego BENTIVEGNA; Roberto E. BREVEDAN; Osvaldo A. FERNNDEZ

    2014-01-01

    Pappophorum vaginatum is the most abundant C4 perennial grass desirable to livestock in rangelands of northeastern Patagonia, Argentina. We hypothesized that (1) defoliation reduce net primary productivity, and root length density and weight in the native species, and (2) root net primary productivity, and root length density and weight, are greater in P. vaginatum than in the other, less desirable, native species (i.e., Aristida spegazzinii, A. subulata and Sporobolus cryptandrus). Plants of all species were either exposed or not to a severe defoliation twice a year during two growing seasons. Root proliferation was measured using the cylinder method. Cylindrical, iron structures, wrapped up using nylon mesh, were buried diagonally from the periphery to the center on individual plants. These structures, initially filled with soil without any organic residue, were dug up from the soil on 25 April 2008, after two successive defoliations in mid-spring 2007. During the second growing season (2008-2009), cylinders were destructively harvested on 4 April 2009, after one or two defoliations in mid-and/or late-spring, respectively. Roots grown into the cylinders were obtained after washing the soil manually. Defoliation during two successive years did reduce the study variables only after plants of all species were defoliated twice, which supported the first hypothesis. The greater root net primary productivity, root length den-sity and weight in P. vaginatum than in the other native species, in support of the second hypothesis, could help to explain its greater abundance in rangelands of Argentina.

  9. Global warming and prairie wetlands: potential consequences for waterfowl habitat

    Science.gov (United States)

    Poiani, Karen A.; Johnson, W. Carter

    1991-01-01

    The accumulation of greenhouse gasses in the atmosphere is expected to warm the earth's climate at an unprecedented rate (Ramanathan 1988, Schneider 1989). If the climate models are correct, within 100 years the earth will not only be warmer than it has been during the past million years, but the change will have occurred more rapidly than any on record. Many profound changes in the earth's environment are expected, including rising sea level, increasing aridity in continental interiors, and melting permafrost. Ecosystems are expected to respond variously to a rapidly changing climate. Tree ranges in eastern North American are expected to shift northward, and seed dispersal may not be adequate to maintain current diversity (Cohn 1989, Johnson and Webb 1989). In coastal wetlands, rising sea level from melting icecaps and thermal expansion could flood salt-grass marshes and generally reduce the size and productivity of the intertidal zone (Peters and Darling 1985). As yet, little attention has been given to the possible effects of climatic warming on inland prairie wetland ecosystems. These wetlands, located in the glaciated portion of the North American Great Plains (Figure 1), constitute the single most important breeding area for waterfowl on this continent (Hubbard 1988). This region annually produces 50-80% of the continent's total duck production (Batt et al. 1989). These marshes also support a variety of other wildlife, including many species of nongame birds, muskrat, and mink (Kantrud et al. 1989a). Prairie wetlands are relatively shallow, water-holding depressions that vary in size, water permanence, and water chemistry. Permanence types include temporary ponds (typically holding water for a few weeks in the springs), seasonal ponds (holding water from spring until early summer), semipermanent ponds (holding water throughout the growing season during most years), and large permanent lakes (Stewart and Kantrud 1971). Refilling usually occurs in spring from

  10. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor

    DEFF Research Database (Denmark)

    Vigeland, Magnus D; Spannagl, Manuel; Asp, Torben

    2013-01-01

    Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular...... evolution of LTI pathway genes was important for Pooideae evolution. Substitution rates and signatures of positive selection were analyzed using 4330 gene trees including three warm climate-adapted species (maize (Zea mays), sorghum (Sorghum bicolor), and rice (Oryza sativa)) and five temperate Pooideae...... species (Brachypodium distachyon, wheat (Triticum aestivum), barley (Hordeum vulgare), Lolium perenne and Festuca pratensis). Nonsynonymous substitution rate differences between Pooideae and warm habitat-adapted species were elevated in LTI trees compared with all trees. Furthermore, signatures...

  11. Sublingual Immunotherapy with a Five-Grass Pollen Tablet in Adult Patients with Allergic Rhinitis: An Open, Prospective, Noninterventional, Multicenter Study

    Directory of Open Access Journals (Sweden)

    Oliver Pfaar

    2015-01-01

    Full Text Available Background. Although the safety and efficacy of sublingual immunotherapy (SLIT with a five-grass pollen tablet have been demonstrated in randomized clinical trials (RCTs, these outcomes must always be evaluated in real-life medical practice. Methods. In a prospective, open-label, noninterventional, “real-life” study in Germany, we evaluated the safety, tolerability, and effectiveness of SLIT with a five-grass pollen tablet in adults with grass-pollen-induced allergic rhinoconjunctivitis. Results. 808 adults were enrolled between September 2008 and December 2009. 35.3% of the participants experienced at least one adverse drug reaction (ADR, the most common of which were mild-to-moderate gastrointestinal and respiratory disorders. Serious ADRs considered causally related to SLIT treatment occurred in four patients. Overall, the five-grass pollen tablet was considered to have good or very good tolerability by most investigators and patients. Treatment was associated with the relief of nasal, ocular, and bronchial symptoms and decreased symptomatic medication use. However, interpretation of clinical improvements was limited by lower atmospheric grass pollen levels during the study season (relative to the preceding season. Conclusions. In a large population of patients treated in real-life medical practice, SLIT with a five-grass pollen tablet was safe and well tolerated. The patient-reported symptom relief suggests that SLIT was associated with clinical benefits.

  12. Global warming and allergy in Asia Minor.

    Science.gov (United States)

    Bajin, Munir Demir; Cingi, Cemal; Oghan, Fatih; Gurbuz, Melek Kezban

    2013-01-01

    The earth is warming, and it is warming quickly. Epidemiological studies have demonstrated that global warming is correlated with the frequency of pollen-induced respiratory allergy and allergic diseases. There is a body of evidence suggesting that the prevalence of allergic diseases induced by pollens is increasing in developed countries, a trend that is also evident in the Mediterranean area. Because of its mild winters and sunny days with dry summers, the Mediterranean area is different from the areas of central and northern Europe. Classical examples of allergenic pollen-producing plants of the Mediterranean climate include Parietaria, Olea and Cupressaceae. Asia Minor is a Mediterranean region that connects Asia and Europe, and it includes considerable coastal areas. Gramineae pollens are the major cause of seasonal allergic rhinitis in Asia Minor, affecting 1.3-6.4 % of the population, in accordance with other European regions. This article emphasizes the importance of global climate change and anticipated increases in the prevalence and severity of allergic disease in Asia Minor, mediated through worsening air pollution and altered local and regional pollen production, from an otolaryngologic perspective.

  13. Impact of Soil Warming on the Plant Metabolome of Icelandic Grasslands

    Science.gov (United States)

    Gargallo-Garriga, Albert; Ayala-Roque, Marta; Granda, Victor; Sigurdsson, Bjarni D.; Leblans, Niki I. W.; Oravec, Michal; Urban, Otmar; Janssens, Ivan A.

    2017-01-01

    Climate change is stronger at high than at temperate and tropical latitudes. The natural geothermal conditions in southern Iceland provide an opportunity to study the impact of warming on plants, because of the geothermal bedrock channels that induce stable gradients of soil temperature. We studied two valleys, one where such gradients have been present for centuries (long-term treatment), and another where new gradients were created in 2008 after a shallow crustal earthquake (short-term treatment). We studied the impact of soil warming (0 to +15 °C) on the foliar metabolomes of two common plant species of high northern latitudes: Agrostis capillaris, a monocotyledon grass; and Ranunculus acris, a dicotyledonous herb, and evaluated the dependence of shifts in their metabolomes on the length of the warming treatment. The two species responded differently to warming, depending on the length of exposure. The grass metabolome clearly shifted at the site of long-term warming, but the herb metabolome did not. The main up-regulated compounds at the highest temperatures at the long-term site were saccharides and amino acids, both involved in heat-shock metabolic pathways. Moreover, some secondary metabolites, such as phenolic acids and terpenes, associated with a wide array of stresses, were also up-regulated. Most current climatic models predict an increase in annual average temperature between 2–8 °C over land masses in the Arctic towards the end of this century. The metabolomes of A. capillaris and R. acris shifted abruptly and nonlinearly to soil warming >5 °C above the control temperature for the coming decades. These results thus suggest that a slight warming increase may not imply substantial changes in plant function, but if the temperature rises more than 5 °C, warming may end up triggering metabolic pathways associated with heat stress in some plant species currently dominant in this region. PMID:28832555

  14. Variation in important pasture grasses: I. Morphological and ...

    African Journals Online (AJOL)

    Variation in important pasture grasses: I. Morphological and geographical variation. ... Seven species are important pasture grasses throughout the western Transvaal, Orange Free State, northern Cape and Natal. ... Language: English.

  15. Assessment of some macromineral concentration of a grass/ legume ...

    African Journals Online (AJOL)

    Assessment of some macromineral concentration of a grass/ legume sward in ... Bulletin of Animal Health and Production in Africa ... The study aimed to determine the concentration of some macromineral elements in the grass/legume pasture ...

  16. Modelling of excess noise attnuation by grass and forest | Onuu ...

    African Journals Online (AJOL)

    , guinea grass (panicum maximum) and forest which comprises iroko (milicia ezcelea) and white afara (terminalia superba) trees in the ratio of 2:1 approximately. Excess noise attenuation spectra have been plotted for the grass and forest for ...

  17. Agronomic, morphogenic and structural characteristics of Marandu grass in silvopastoral systems composed of babassu palm and grass monoculture

    Directory of Open Access Journals (Sweden)

    Rosane Cláudia Rodrigues

    2016-09-01

    Full Text Available This study evaluated the agronomic, morphogenic and structural characteristics of palisadegrass (Urochloa brizantha in silvopastoral systems (SSP’s composed of babassu palms (Attalea speciosa and grass monoculture in the Pre-Amazon region of the state of Maranhão, Brazil. The study followed a completely randomized design, with the arrangement in split plots with six replicates for the evaluation of agronomic characteristics and 30 repetitions for the morphogenic and structural characteristics. The plots were divided into pasture environments with different palm densities (monoculture, 80, 131, 160 palms.ha-¹, and the subplots were divided into the different seasons (rainy and dry. Total forage production was affected (P 0.05 by pastoral system during the rainy season, but in the dry period, higher responses were obtained in SSPs. Overall, SSPs with 80 palms.ha-¹ favored the agronomic characteristics of pastures. Morphogenic and structural characteristics were favored by increasing palm densities. Leaf senescence and duration were not affected by the system.

  18. Satisfaction and quality of life of allergic patients following sublingual five-grass pollen tablet immunotherapy in Spain

    Science.gov (United States)

    Antolín-Amerigo, Darío; Tabar, Isabel A; del Mar Fernández-Nieto, Maria; Callejo-Melgosa, Anna M; Muñoz-Bellido, Francisco J; Martínez-Alonso, José C; Méndez-Alcalde, Jorge D; Reche, Marta; Rodríguez-Trabado, Ana; Rosado-Ingelmo, Ana; Alonso-Gómez, Alicia; Blanco-González, Rosa; Alvarez-Fernandez, José A; Botella, Isabel; Valls, Ana; Cimarra, Mercedes; Blanco, Carlos

    2017-01-01

    Background Five-grass pollen tablet is an effective and well-tolerated therapy for patients with allergic rhinoconjunctivitis (ARC). This trial sought to determine the satisfaction and health-related quality of life (HRQoL) of patients undergoing this treatment. Methods This was a cross-sectional, multicentre, observational, naturalistic study, following a discontinuous pre- and co-seasonal five-grass pollen regimen over two seasons in Spain (2012, 2013). The HRQoL of the patients was measured with the specific Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) for adults, adolescent (AdolRQLQ), or paediatric (PRQLQ) patients. Treatment satisfaction was assessed by the Satisfaction Scale for Patients Receiving Allergen Immunotherapy (ESPIA) questionnaire. Patients/investigators were surveyed on beliefs and attitudes towards the five-grass pollen tablet. ARC evolution according to allergic rhinitis and its impact on asthma (ARIA) criteria and treatment adherence were evaluated. Results Among the 591 ARC patients included, the mean (SD) HRQoL scores were 1.40 (1.1) in adults, 1.33 (1.1) in adolescents, and 1.15 (1.1) in children, indicating low levels of impairment (scale 0–6). ESPIA answers showed high levels of satisfaction, with an average score of 69.2 (scale 0–100). According to ARIA criteria, 88.2% of patients reported improvement of ARC. Moreover, this was accompanied by a reduced use of symptomatic medication. Adherence to treatment was estimated at 96.8%. In general, both patients and specialists exhibited a positive attitude towards five-grass pollen tablet treatment. Conclusion ARC patients treated with five-grass pollen tablet showed favourable levels of HRQoL and treatment satisfaction, with concomitant improvements in ARC and symptomatic medication use, which translated into high levels of treatment adherence and a positive attitude towards five-grass pollen tablet. PMID:29225657

  19. Photosynthetic light response of the C4 grasses Brachiaria brizantha and B. humidicola under shade

    Directory of Open Access Journals (Sweden)

    Dias-Filho Moacyr Bernardino

    2002-01-01

    Full Text Available Forage grasses in tropical pastures can be subjected to considerable diurnal and seasonal reductions in available light. To evaluate the physiological behavior of the tropical forage grasses Brachiaria brizantha cv. Marandu and B. humidicola to low light, the photosynthetic light response and chlorophyll contents of these species were compared for plants grown outdoors, on natural soil, in pots, in full sunlight and those shaded to 30 % of full sunlight, over a 30-day period. Both species showed the ability to adjust their photosynthetic behavior in response to shade. Photosynthetic capacity and light compensation point were lower for shade plants of both species, while apparent quantum yield was unaffected by the light regime. Dark respiration and chlorophyll a:b ratio were significantly reduced by shading only in B. humidicola. B. humidicola could be relatively more adapted to succeed, at least temporarily, in light-limited environments.

  20. Notes on Alien Bromus Grasses in Taiwan

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jung

    2006-06-01

    Full Text Available Bromus carinatus Hook. & Arn., Bromus hordeaceus L., Bromus pubescens Muhl. ex Willd. and Bromus secalinus L. were recently found at middle elevations of southern and central Taiwan, respectively. We present taxonomic treatments, distribution map, and line-drawings of these introduced alien brome grasses.

  1. Notes on the nomenclature of some grasses

    NARCIS (Netherlands)

    Henrard, J.Th.

    1941-01-01

    In a former article 1) many new combinations and critical observations were published on various grasses all over the world. New investigations in critical genera together with the study of the existing literature made it necessary to accept various other arrangements in this important family. The

  2. Grass Pollen Pollution from Biofuels Farming

    Czech Academy of Sciences Publication Activity Database

    Ratajová, A.; Tříska, Jan; Vrchotová, Naděžda; Kolář, L.; Kužel, S.

    2013-01-01

    Roč. 26, č. 4 (2013), s. 199-203 ISSN 2151-321X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : grass pollen pollution * biofuels farming * temperate climate * PK-fertilization * N-fertilization * phenolic Subject RIV: EH - Ecology, Behaviour Impact factor: 0.556, year: 2013

  3. Germination of Themeda triandra (Kangaroo grass) as affected by ...

    African Journals Online (AJOL)

    Low rainfall in range areas restricts germination, growth and development of majority of range grasses. However, germination and establishment potential of forage grasses vary and depends on environmental conditions. Themeda triandra is an excellent known grass to grow under different environmental conditions.

  4. Convex relationships in ecosystems containing mixtures of trees and grass

    CSIR Research Space (South Africa)

    Scholes, RJ

    2003-12-01

    Full Text Available The relationship between grass production and the quantity of trees in mixed tree-grass ecosystems (savannas) is convex for all or most of its range. In other words, the grass production declines more steeply per unit increase in tree quantity...

  5. Names of Southern African grasses: Name changes and additional ...

    African Journals Online (AJOL)

    The main reasons for changes in botanical names are briefly reviewed, with examples from the lists. At this time, about 1040 grass species and subspecific taxa are recognized in the subcontinent. Keywords: botanical research; botanical research institute; botany; grass; grasses; identification; name change; nomenclature; ...

  6. Comparing and contrasting Holocene and Eemian warm periods with greenhouse-gas-induced warming

    International Nuclear Information System (INIS)

    MacCracken, M.C.; Kutzbach, J.

    1990-01-01

    Periods of the past that are estimated to have been warmer than present are of great potential interest for comparison with simulations of future climates associated with greenhouse-gas-induced warming. Certain features of the climates of the mid-Holocene and Eemian periods, both interglacial maxima, are described. The simulated climatic responses to both types of forcing, in terms of land/ocean and latitudinal averages, are also compared. The zonal average and annual (or seasonal) average radiation fluxes associated with the different-from-present orbital conditions that existed for those interglacials are compared to the radiation flux associated with CO 2 -induced warming. There are some similarities but also significant differences in the two types of radiation flux perturbations, and there are both similarities and differences in the simulated climatic responses

  7. Contrasting patterns of groundwater evapotranspiration in grass and tree dominated riparian zones of a temperate agricultural catchment

    Science.gov (United States)

    Satchithanantham, Sanjayan; Wilson, Henry F.; Glenn, Aaron J.

    2017-06-01

    Consumptive use of shallow groundwater by phreatophytic vegetation is a significant part of the water budget in many regions, particularly in riparian areas. The influence of vegetation type on groundwater level fluctuations and evapotranspiration has rarely been quantified for contrasting plant communities concurrently although it has implications for downstream water yield and quality. Hourly groundwater evapotranspiration (ETG) rates were estimated for grass and tree riparian vegetation in southwestern Manitoba, Canada using two modified White methods. Groundwater table depth was monitored in four 21 m transects of five 3 m deep monitoring wells in the riparian zone of a stream reach including tree (Acer negundo; boxelder) and grass (Bromus inermis; smooth brome) dominated segments. The average depths to the groundwater table from the surface were 1.4 m and 1 m for the tree and grass segments, respectively, over the two-year study. During rain free periods of the growing season ETG was estimated for a total of 70 days in 2014 and 79 days in 2015 when diurnal fluctuations were present in groundwater level. Diurnal groundwater level fluctuations were observed during dry periods under both segments, however, ETG was significantly higher (p < 0.001) under trees compared to grass cover in 2014 (a wet year with 72% higher than normal growing season precipitation) and 2015 (a drier year with 15% higher than normal growing season precipitation). The two methods used to estimate ETG produced similar daily and seasonal values for the two segments. In 2014, total ETG was approximately 50% (148 mm) and 100% (282-285 mm) of reference evapotranspiration (ETref, 281 mm) for the grass and tree segments, respectively. In 2015, total ETG was approximately 40% (106-127 mm) and 120% (369-374 mm) of ETref (307 mm) for the grass and tree segments, respectively. Results from the study show the tree dominated portions of the stream reach consumed approximately 2.4 ML ha-1 yr-1 more

  8. Global warning, global warming

    International Nuclear Information System (INIS)

    Benarde, M.A.

    1992-01-01

    This book provides insights into the formidable array of issues which, in a warmer world, could impinge upon every facet of readers lives. It examines climatic change and long-term implications of global warming for the ecosystem. Topics include the ozone layer and how it works; the greenhouse effect; the dangers of imbalance and its effects on human and animal life; disruptions to the basic ecology of the planet; and the real scientific evidence for and against aberrant climatic shifts. The author also examines workable social and political programs and changes that must be instituted to avoid ecological disaster

  9. Global Warming: A Reduced Threat?.

    Science.gov (United States)

    Michaels, Patrick J.; Stooksbury, David E.

    1992-10-01

    One popular and apocalyptic vision of the world influenced by increasing concentrations of infrared-absorbing trace gases is that of ecological disaster brought about by rapidly rising temperatures, sea level, and evaporation rates. This vision developed from a suite of climate models that have since considerably changed in both their dynamics and their estimates of prospective warming. Observed temperatures indicate that much more warming should already have taken place than predicted by earlier models in the Northern Hemisphere, and that night, rather than day, readings in that hemisphere show a relative warming. A high-latitude polar-night warming or a general night warming could be either benign or beneficial. A large number of plant species show both increased growth and greater water-use efficiency under enhanced carbon dioxide.An extensive body of evidence now indicates that anthropo-generated sulfate emissions are mitigating some of the warming, and that increased cloudiness as a result of these emissions will further enhance night, rather than day, warming. The sulfate emissions, though, are not sufficient to explain all of the night warming. However, the sensitivity of climate to anthropogenerated aerosols, and the general lack of previously predicted warming, could drastically alter the debate on global warming in favor of less expensive policies.

  10. Performance and goats behavior in pasture of Andropogon grass under different forage allowances

    Directory of Open Access Journals (Sweden)

    Daniel Louçana da Costa Araújo

    2015-07-01

    Full Text Available This study was accomplished to evaluate the behavior and performance of goats in to grazing on grass Andropogon gayanus Kunth var. Bisquamulatus (Hochst Hack. cv. Planaltina submitted to three forage allowances: 11, 15 and 19% BW/day, under continuous grazing. The experimental design to assess the grazing behaviour was randomized blocks in a split-plot with five replicates within the block. In the plots, we evaluated the effect of forage allowances and in the subplots, the months May and June. While for evaluation of animal performance was in complete block design with five replicates within the block. The different forage allowance did not cause structural changes in the pasture, except in height. However, there was an increase of dead material, leaf/stem ratio and reducing of height during the grazing period. The behavioral variables were not affected by forage allowance, except for the time of displacement, whereby goats spent more time in pastures with offer of 11% BW. The goats remained most part of the time in grazing and idle, corresponding to 89% and 5% of the evaluation time, respectively. Higher bit rate was observed in June, among the offerings, and 15 and 19% BW. The ingestive and grazing behaviour in goats is changed by the accumulation of dead material and stem in pasture from Andropogon grass during at rainy season. The forage supply 11% of BW increases the time of displacement of goats grazing on Andropogon grass. The management of grazing Andropogon grass with forage allowance being 11 and 19% of BW provides low weight gains in goats during the rainy season.

  11. Estimating grass and grass silage degradation characteristics by in situ and in vitro gas production methods

    Directory of Open Access Journals (Sweden)

    Danijel Karolyi

    2010-01-01

    Full Text Available Fermentation characteristics of grass and grass silage at different maturities were studied using in situ and in vitro gas production methods. In situ data determined difference between grass and silage. Degradable fraction decreased as grass matured while the undegradable fraction increased. Rate of degradation (kd was slower for silage than fresh grass. Gas production method (GP data showed that fermentation of degradable fraction was different between stage of maturity in both grass and silage. Other data did not show any difference with the exception for the rate of GP of soluble and undegradable fraction. The in situ degradation characteristics were estimated from GP characteristics. The degradable and undegradable fractions could be estimated by multiple relationships. Using the three-phases model for gas production kd and fermentable organic matter could be estimated from the same parameters. The only in situ parameter that could not be estimated with GP parameters was the soluble fraction. The GP method and the three phases model provided to be an alternative to the in situ method for animal feed evaluations.

  12. Grass pollen immunotherapy induces highly cross-reactive IgG antibodies to group V allergen from different grass species

    NARCIS (Netherlands)

    van Ree, R.; Brewczyński, P. Z.; Tan, K. Y.; Mulder-Willems, H. J.; Widjaja, P.; Stapel, S. O.; Aalberse, R. C.; Kroon, A. M.

    1995-01-01

    Sera from two groups of patients receiving grass pollen immunotherapy were tested on IgG reactivity with group V allergen from six different grass species. One group of patients was treated with a mixture of 10 grass species, and the other with a mixture of five. Only Lolium perenne, Dactylis

  13. Focus: Assessing the regional impacts of global warming

    International Nuclear Information System (INIS)

    Woo, Mingko

    1992-01-01

    Five studies are presented which assess the impacts of global warming on physical, economic, and social systems in Canada. A study on the use of climatic change scenarios to estimate ecoclimatic impacts was carried out. These scenarios may include synthetic scenarios produced from historical data, global climate model (GCM) simulations, and hybrid scenarios. The advantages and drawbacks of various scenarios are discussed along with the criteria for selecting impact assessment models. An examination of water resources in the Great Lakes and the Saskatchewan River subbasin uses case studies of two areas that have experienced wide hydrological variations due to climatic variability in order to determine the impacts of global warming scenarios on net basin supply. Problems of developing regional models are discussed and results of projected changes in net basin supply are presented for GCM-based simulations and hypothetical warming scenarios. A study of the impacts of climate warming on transportation and the regional economy in northern Canada uses stochastic models to provide examples of how Mackenzie River barge traffic will be affected. The economic impacts of the resultant lengthened shipping season are outlined under three scenarios. The implications of climatic change on Ontario agriculture are assessed according to GCM scenarios. Results are presented for crop yields and production as well as land resource suitability. Finally, sociocultural implications of global warming on the Arctic and the Inuit are summarized, with reference to a past warming episode occurring around the year 1000. 45 refs., 4 figs., 3 tabs

  14. Nowcasting daily minimum air and grass temperature

    Science.gov (United States)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  15. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    OpenAIRE

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatmen...

  16. Structure of Warm Nuclei

    International Nuclear Information System (INIS)

    Aaberg, S.; Uhrenholt, H.

    2009-01-01

    We study the structure of nuclei in the energy region between the ground state and the neutron separation energy, here called warm nuclei. The onset of chaos in the nucleus as excitation energy is increased is briefly reviewed. Chaos implies fluctuations of energies and wave functions qualitatively the same for all chaotic nuclei. On the other hand, large structure effects are seen, e.g. in the level-density function at same excitation energies. A microscopic model for the level density is reviewed and we discuss effects on structure of the total level-density function, parity enhancement, and the spin distribution function. Comparisons to data are performed at the neutron separation energy for all observed nuclei, and structure of the level-density function for a few measured cases. The role of structure effects in the level-density function for fission dynamics is exemplified.

  17. Interacting warm dark matter

    International Nuclear Information System (INIS)

    Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo

    2013-01-01

    We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ m α ρ e β form, where ρ m and ρ e are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w m and w e of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used

  18. Physiological response curves reveal differences among season advancement and timing of grazing experimental treatments in a coastal Alaskan wetland

    Science.gov (United States)

    Leffler, A. J.; Kelsey, K.; Beard, K. H.; Choi, R. T.; Welker, J. M.

    2016-12-01

    The phenology of northern ecosystems is rapidly changing as high latitude regions warm. Spring green-up has advanced 1-3 days per decade since the early 1980's and sea ice retreat is likely to further accelerate the arrival of spring in coastal Alaska. One result of spring advancement is a phenological mismatch with the arrival of migratory geese that bread in the region. As green-up advances, geese arrive into a phenologically older system where vegetation has a higher C:N ratio than younger grasses with potential consequences for goose nutrition and C and N cycling. In 2014 and 2015 we established a season advancement X timing of grazing experiment to examine the ecosystem consequences of this mismatch. We used a LI-Cor 8100 automated, chamber-based C flux system to monitor hourly net ecosystem exchange (NEE) in eight plots: four were warmed in June to advance the growing season, four received ambient temperatures; two each experienced early, typical, late, or no grazing. The experiment is replicated six times, but the automated system is capable of measuring only one block; other blocks are measured twice weekly with a portable system. We fit physiological light response curves to weekly data and used incident sunlight to estimate daily NEE. Results suggest that daily carbon uptake ranged from ca. 0.6 to 4.5 g m-2 d-1 in the different treatments. Carbon uptake in the season advancement plots was lower than in the ambient plots by ca. 0.5 g m-2 d-1 averaged during the summer. Delaying grazing into the later season, the expectation of climate change, greatly increased NEE to 4.5 g m-2 d-1, a value much greater than the typical grazing period in 2015. Completely eliminating grazing from the system resulted in NEE of 2.9 g m-2 d-1. Differences were likely driven by warmer soils enhancing respiration, removal of photosynthetic biomass, and grazing maintaining tissue in a young, highly photosynthetic form. Overall our results suggest that timing of grazing in the

  19. Local warming: daily temperature change influences belief in global warming.

    Science.gov (United States)

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  20. Specificity Responses of Grasshoppers in Temperate Grasslands to Diel Asymmetric Warming

    Science.gov (United States)

    Wu, Tingjuan; Hao, Shuguang; Sun, Osbert Jianxin; Kang, Le

    2012-01-01

    Background Global warming is characterized by not only an increase in the daily mean temperature, but also a diel asymmetric pattern. However, most of the current studies on climate change have only concerned with the mean values of the warming trend. Although many studies have been conducted concerning the responses of insects to climate change, studies that address the issue of diel asymmetric warming under field conditions are not found in the literature. Methodology/Principal Findings We conducted a field climate manipulative experiment and investigated developmental and demographic responses to diel asymmetric warming in three grasshopper species (an early-season species Dasyhippus barbipes, a mid-season species Oedaleus asiaticus, and a late-season species Chorthippus fallax). It was found that warming generally advanced the development of eggs and nymphs, but had no apparent impacts on the hatching rate of eggs, the emergence rate of nymphs and the survival and fecundity of adults in all the three species. Nighttime warming was more effective in advancing egg development than the daytime warming. The emergence time of adults was differentially advanced by warming in the three species; it was advanced by 5.64 days in C. fallax, 3.55 days in O. asiaticus, and 1.96 days in D. barbipes. This phenological advancement was associated with increases in the effective GDDs accumulation. Conclusions/Significance Results in this study indicate that the responses of the three grasshopper species to warming are influenced by several factors, including species traits, developmental stage, and the thermal sensitivity of the species. Moreover, species with diapausing eggs are less responsive to changes in temperature regimes, suggesting that development of diapausing eggs is a protective mechanism in early-season grasshopper for avoiding the risk of pre-winter hatching. Our results highlight the need to consider the complex relationships between climate change and

  1. Influenza Seasonal Summary, 2014-2015 Season

    Science.gov (United States)

    2015-08-14

    Influenza Seasonal Summarv 2014-2015 Season EpiData Center Department Communicable Disease Division NMCPHC-EDC-TR-394-2015 REPORT DOCUMENTATION... Influenza Seasonal Summary, 2014-2015 Season Sb. GRANT NUMBER $c. PROGRAM ELEMENT NUMBER 6. AUTHORjS) Sd. PROJECT NUMBER Ashleigh K McCabe, Kristen R...SUPPLEMENTARY NOTES 1<l. ABSTRACT This report summartzes influenza activity among Department of Navy (DON) and Depar1ment of Defense (DOD

  2. Lead-210 and polonium-210 in grass

    Energy Technology Data Exchange (ETDEWEB)

    Hill, C R

    1960-07-16

    It appears that an important contribution to the observed ..cap alpha..-activity of grass may be provided by a process of natural fall-out in which lead-210 resulting from decay of atmospheric radon, together with a fraction of the equilibrium amount of its descendant polonium-210 are deposited by rainfall directly on to foliage. Metabolic uptake of part of this activity by sheep is indicated by the presence in the kidney of polonium-210. 6 references, 1 figure, 2 tables.

  3. Seasonality, mobility, and livability.

    Science.gov (United States)

    2012-01-31

    Signature project 4a, Seasonality, Mobility, and Livability investigated the effects of weather, season, built environment, community amenities, attitudes, and demographics on mobility and quality of life (QOL). A four season panel survey exami...

  4. The challenge of global warming

    International Nuclear Information System (INIS)

    Bryner, G.C.

    1992-01-01

    The chapter outlines the science of global warming, the likely consequences of global warming and some of the major challenges in dealing with global climate change. Some of the major international organisations concerned with environmental issues are listed. International agreements might be used to limit emissions of greenhouse gases. 32 refs., 2 tabs

  5. Global warming and prairie wetlands

    International Nuclear Information System (INIS)

    Poiani, K.A.; Johnson, W.C.

    1991-01-01

    In this article, the authors discuss current understanding and projections of global warming; review wetland vegetation dynamics to establish the strong relationship among climate, wetland hydrology, vegetation patterns and waterfowl habitat; discuss the potential effects of a greenhouse warming on these relationships; and illustrate the potential effects of climate change on wetland habitat by using a simulation model

  6. Warm Bodies: A Student Perspective.

    Science.gov (United States)

    Schario, Tracy A.

    A participant in forensic tournament competition presents her perspective as well as overall student reaction to the function of "warm bodies," competitors who are entered in a tournament by the coach or tournament director only to meet qualifying requirements. Overall, participants in an informal survey believed that the warm body…

  7. Ganho de peso vivo e fermentação ruminal em novilhos mantidos em pastagem cultivada de clima temperado e recebendo diferentes suplementos Live weight gain and ruminal fermentation by steers grazing cool-season grass pasture and given different supplements

    Directory of Open Access Journals (Sweden)

    Magali Floriano da Silveira

    2006-06-01

    Full Text Available Foram conduzidos dois experimentos para avaliar o ganho de peso vivo (Experimento 1 e parâmetros da fermentação ruminal (Experimento 2 em quarenta novilhos cruzados Charolês e Nelore, mantidos em pastagem cultivada de inverno, por quatro horas diárias e não suplementados, ou por somente duas horas, mas suplementados (1% do peso vivo com silagem de planta inteira, silagem de grão úmido ou com grão seco de sorgo. Os animais alimentados somente com pastagem obtiveram os maiores ganhos de peso vivo (P0,05 pela suplementação, as de amônia e açúcares foram maiores nos animais mantidos somente com pastagem e nos suplementados com silagem de grão úmido, e menores nos animais suplementados com silagem de planta inteira ou com grão seco de sorgo (PTwo experiments to evaluate daily weight gain (Experiment 1 and ruminal fermentation parameters (Experiment 2 were carried out. Nelore and Charolais crossbreed steers grazing on cool-season pasture during four hours daily or during only two hours daily but supplemented (1% of live weight with sorghum whole plant silage, wet grain silage or dry grain were used. Animals fed only with pasture obtained the highest and, those supplemented with whole plant silage, the lowest daily weight gain (P0.05 by supplementation. Ammonia and sugar concentrations were higher by animals fed only with pasture or supplemented with sorghum wet grain silage and lower by those supplemented with whole plant silage or dry grain (P<0.05. Ruminal pH values were lower by animals supplemented with sorghum wet grain silage (P<0.05. Supplements did not improve weight gain of steers grazing cool-season pasture but ruminal fermentation varied through a day and was different among supplements. Results also indicate that, besides supplement type, synchrony between grazing and supplementation schedule may represent a conditioning factor to improve feed efficiency use by animals.

  8. Forage plants of an Arctic-nesting herbivore show larger warming response in breeding than wintering grounds, potentially disrupting migration phenology

    NARCIS (Netherlands)

    Lameris, T.K.; Jochems, Femke; van der Graaf, A.J.; Andersson, M.; Limpens, J.; Nolet, B.A.

    2017-01-01

    During spring migration, herbivorous waterfowl breeding in the Arctic depend on peaks in the supply of nitrogen-rich forage plants, following a “green wave” of grass growth along their flyway to fuel migration and reproduction. The effects of climate warming on forage plant growth are expected to be

  9. [Effects of Warming and Straw Application on Soil Respiration and Enzyme Activity in a Winter Wheat Cropland].

    Science.gov (United States)

    Chen, Shu-tao; Sang, Lin; Zhang, Xu; Hu, Zheng-hua

    2016-02-15

    In order to investigate the effects of warming and straw application on soil respiration and enzyme activity, a field experiment was performed from November 2014 to May 2015. Four treatments, which were control (CK), warming, straw application, and warming and straw application, were arranged in field. Seasonal variability in soil respiration, soil temperature and soil moisture for different treatments were measured. Urease, invertase, and catalase activities for different treatments were measured at the elongation, booting, and anthesis stages. The results showed that soil respiration in different treatments had similar seasonal variation patterns. Seasonal mean soil respiration rates for the CK, warming, straw application, and warming and straw application treatments were 1.46, 1.96, 1.92, and 2.45 micromol x (m2 x s)(-1), respectively. ANOVA indicated that both warming and straw applications significantly (P soil respiration compared to the control treatment. The relationship between soil respiration and soil temperature in different treatments fitted with the exponential regression function. The exponential regression functions explained 34.3%, 28.1%, 24.6%, and 32.0% variations of soil respiration for CK, warming, straw application, and warming and straw application treatments, respectively. Warming and straw applications significantly (P soil respiration and urease activity fitted with a linear regression function, with the P value of 0.061. The relationship between soil respiration and invertase (P = 0.013), and between soil respiration and catalase activity (P = 0.002) fitted well with linear regression functions.

  10. American lay conceptions of global warming

    International Nuclear Information System (INIS)

    Kempton, W.

    1990-01-01

    Ethnographic interviews were conducted with Americans from all walks of life in order to understand how ordinary citizens conceptualize global climate change and make value judgments about it. Most informants had heard of the greenhouse effect, but they held fundamental misconceptions that were shared across individuals. Many of these misconceptions derive from the process of fitting a new concept, global warming, into four preexisting categories: stratospheric ozone depletion, plant photosynthesis, tropospheric pollution, and personally-experienced seasonal and geographic temperature variation. Informants readily accepted that human activities could change climate and weather patterns. Indeed, most reported they had already observed changes in weather patterns, some citing space shots or atomic bomb testing as causes. Few informants connected the greenhouse effect to energy or fuel consumption, although the connection was easily understood when explained by the interviewers

  11. Using Grass Cuttings from Sports Fields for Anaerobic Digestion and Combustion

    Directory of Open Access Journals (Sweden)

    Meike Nitsche

    2017-03-01

    Full Text Available Sports fields provide a recreation space for citizens, but also generate grass biomass, which is cut weekly during the main seasons and therefore could be used in energy generation (combustion or anaerobic digestion. To evaluate the technical suitability of the grass cuttings, silage was produced from four sports fields during one vegetation period and investigated for relevant properties. Potential methane yield was determined with batch tests. Mean methane yield was 291.86 lN·kg−1 VSadded (VS, volatile solid. Neutral detergent fiber concentration was low (44.47% DM, dry matter, yet mineral concentration was high in comparison to grass types cut at a lower frequency. Concentrations of Cl, N, and S, which may lead to unfavorable emissions, fouling, and corrosion during combustion, were too high for an unproblematic combustion process. This was still the case even after applying a mineral-reducing pretreatment, which generates a fiber-rich press cake and a press fluid rich in easy soluble substances. Digestion of the press fluid led to methane yields of 340.10 lN·kg−1 VSadded and the press cake had a higher heating value of 19.61 MJ·kg−1 DM, which is close to that of coniferous wood. It can be concluded that biomass from sports fields could be a suitable co-substrate in bio-energy generation.

  12. Prediction of genetic gains by selection indices using mixed models in elephant grass for energy purposes.

    Science.gov (United States)

    Silva, V B; Daher, R F; Araújo, M S B; Souza, Y P; Cassaro, S; Menezes, B R S; Gravina, L M; Novo, A A C; Tardin, F D; Júnior, A T Amaral

    2017-09-27

    Genetically improved cultivars of elephant grass need to be adapted to different ecosystems with a faster growth speed and lower seasonality of biomass production over the year. This study aimed to use selection indices using mixed models (REML/BLUP) for selecting families and progenies within full-sib families of elephant grass (Pennisetum purpureum) for biomass production. One hundred and twenty full-sib progenies were assessed from 2014 to 2015 in a randomized block design with three replications. During this period, the traits dry matter production, the number of tillers, plant height, stem diameter, and neutral detergent fiber were assessed. Families 3 and 1 were the best classified, being the most indicated for selection effect. Progenies 40, 45, 46, and 49 got the first positions in the three indices assessed in the first cut. The gain for individual 40 was 161.76% using Mulamba and Mock index. The use of selection indices using mixed models is advantageous in elephant grass since they provide high gains with the selection, which are distributed among all the assessed traits in the most appropriate situation to breeding programs.

  13. Forests and global warming

    International Nuclear Information System (INIS)

    Curren, T.

    1991-04-01

    The importance of forests to Canada, both in economic and environmental terms, is indisputable. A warmer global climate may well have profound effects on the Canadian boreal forest, and at least some of the effects will not be beneficial. With the state of the current knowledge of climate processes and climate change it is not possible to predict the extent or rate of projected changes of anthropogenic origin. Given these uncertainties, the appropriate course of action for the Canadian forest sector is to develop policies and strategies which will make good sense under the current climatic regime, and which will also be appropriate for actions in a warmer climate scenario. The business as usual approach is not acceptable in the context of pollution control as it has become clear that anthropogenic emissions of greenhouse gases and other pollutants must be substantially reduced, both to prevent (or at least slow the rate of) possible global warming, and to reduce impacts on the biophysical environment and human health. Effective mitigative actions must be introduced on both a national and global scale. Forest management policies more effectively geared to the sustainability of forests are needed. The programs that are developed out of such policies must be cognizant of the real possibility that climate in the present boreal forest regions may change in the near future. 13 refs

  14. Seasonal habitat selection by African buffalo Syncerus caffer in the Savuti–Mababe–Linyanti ecosystem of northern Botswana

    Directory of Open Access Journals (Sweden)

    Keoikantse Sianga

    2017-05-01

    Full Text Available This study aimed to establish seasonal movement and habitat selection patterns of African buffalo Syncerus caffer in relation to a detailed habitat map and according to seasonal changes in forage quality and quantity in the Savuti–Mababe–Linyanti ecosystem (Botswana. Two buffalo were collared in November 2011 and another in October 2012. All three buffalo had greater activities in the mopane–sandveld woodland mosaic during the wet season, which provided high-quality leafy grasses and ephemeral water for drinking, but moved to permanent water and reliable forage of various wetlands (swamps and floodplains and riverine woodlands during the dry season. Wetlands had higher grass greenness, height and biomass than woodlands during the dry season. Buffalo had similar wet season concentration areas in the 2011–2012 and 2012–2013 wet seasons and similar dry season concentration areas over the 2012 and 2013 dry seasons. However, their dry season location of collaring in 2011 differed dramatically from their 2012 and 2013 dry season concentration areas, possibly because of the exceptionally high flood levels in 2011, which reduced accessibility to their usual dry season concentration areas. The study demonstrates that extremely large and heterogeneous landscapes are needed to conserve buffalo in sandy, dystrophic ecosystems with variable rainfall. Conservation implications: This study emphasises the importance of large spatial scale available for movement, which enables adaptation to changing conditions between years and seasons.

  15. The importance of cross-reactivity in grass pollen allergy

    Directory of Open Access Journals (Sweden)

    Aleksić Ivana

    2014-01-01

    Full Text Available According to the data obtained from in vivo and in vitro testing in Serbia, a significant number of patients have allergic symptoms caused by grass pollen. We examined the protein composition of grass pollens (Dactylis glomerata, Lolium perenne and Phleum pratense and cross-reactivity in patients allergic to grass pollen from our region. The grass pollen allergen extract was characterized by SDS-PAGE, while cross-reactivity of single grass pollens was revealed by immunoblot analysis. A high degree of cross-reactivity was demonstrated for all three single pollens in the sera of allergic patients compared to the grass pollen extract mixture. Confirmation of the existence of cross-reactivity between different antigenic sources facilitates the use of monovalent vaccines, which are easier to standardize and at the same time prevent further sensitization of patients and reduces adverse reactions. [Projekat Ministarstva nauke Republike Srbije, br. 172049 i br. 172024

  16. Evaluating grasses as a long-term energy resource

    Energy Technology Data Exchange (ETDEWEB)

    Christian, D.G.; Riche, A.B.

    2001-07-01

    The work reported here is part of an ongoing project that aims to evaluate the yields of three perennial rhizomatous grasses and determine their suitability as bio-energy crops. The work began in 1993, and the grasses have been monitored continuously since that time. This report covers the period 1999/2000, and includes: the performance of plots of the energy grasses Miscanthus grass, switchgrass and reed canary grass seven years after they were planted; assessment of the yield of 15 genotypes of Miscanthus planted in 1997; monitoring all the species throughout the growing period for the presence of pests, weeds and diseases; measurement of the amount of nitrate leached from below Miscanthus grass; investigating the occurrence of lodging in switchgrass. (Author)

  17. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection

    Science.gov (United States)

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-01-01

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053

  18. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.

    Science.gov (United States)

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-02-03

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.

  19. Recent warming of lake Kivu.

    Science.gov (United States)

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  20. Recent warming of lake Kivu.

    Directory of Open Access Journals (Sweden)

    Sergei Katsev

    Full Text Available Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  1. Responses of Ecosystem CO2 Fluxes to Short-Term Experimental Warming and Nitrogen Enrichment in an Alpine Meadow, Northern Tibet Plateau

    Science.gov (United States)

    Shi, Peili; Jiang, Jing; Song, Minghua; Xiong, Dingpeng; Ma, Weiling; Fu, Gang; Zhang, Xianzhou; Shen, Zhenxi

    2013-01-01

    Over the past decades, the Tibetan Plateau has experienced pronounced warming, yet the extent to which warming will affect alpine ecosystems depends on how warming interacts with other influential global change factors, such as nitrogen (N) deposition. A long-term warming and N manipulation experiment was established to investigate the interactive effects of warming and N deposition on alpine meadow. Open-top chambers were used to simulate warming. N addition, warming, N addition × warming, and a control were set up. In OTCs, daytime air and soil temperature were warmed by 2.0°C and 1.6°C above ambient conditions, but soil moisture was decreased by 4.95 m3 m−3. N addition enhanced ecosystem respiration (Reco); nevertheless, warming significantly decreased Reco. The decline of Reco resulting from warming was cancelled out by N addition in late growing season. Our results suggested that N addition enhanced Reco by increasing soil N availability and plant production, whereas warming decreased Reco through lowering soil moisture, soil N supply potential, and suppression of plant activity. Furthermore, season-specific responses of Reco indicated that warming and N deposition caused by future global change may have complicated influence on carbon cycles in alpine ecosystems. PMID:24459432

  2. Determining the regional potential for a grass biomethane industry

    International Nuclear Information System (INIS)

    Smyth, Beatrice M.; Smyth, Henry; Murphy, Jerry D.

    2011-01-01

    Research highlights: → We identified assessment criteria for determining the regional potential for grass biomethane. → Grass biomethane is distributed via the natural gas grid. → The criteria include: land use; grass yields; gas grid coverage; availability of co-substrates. → The county with the highest potential can fuel 50% of cars or supply 130% of domestic gas consumption. - Abstract: Grass biogas/biomethane has been put forward as a renewable energy solution and it has been shown to perform well in terms of energy balance, greenhouse gas emissions and policy constraints. Biofuel and energy crop solutions are country-specific and grass biomethane has strong potential in countries with temperate climates and a high proportion of grassland, such as Ireland. For a grass biomethane industry to develop in a country, suitable regions (i.e. those with the highest potential) must be identified. In this paper, factors specifically related to the assessment of the potential of a grass biogas/biomethane industry are identified and analysed. The potential for grass biogas and grass biomethane is determined on a county-by-county basis using multi-criteria decision analysis. Values are assigned to each county and ratings and weightings applied to determine the overall county potential. The potential for grass biomethane with co-digestion of slaughter waste (belly grass) is also determined. The county with the highest potential (Limerick) is analysed in detail and is shown to have ready potential for production of gaseous biofuel to meet either 50% of the vehicle fleet or 130% of the domestic natural gas demand, through 25 facilities at a scale of ca. 30 kt yr -1 of feedstock. The assessment factors developed in this paper can be used in other resource studies into grass biomethane or other energy crops.

  3. How does the dengue vector mosquito Aedes albopictus respond to global warming?

    OpenAIRE

    Jia, Pengfei; Chen, Xiang; Chen, Jin; Lu, Liang; Liu, Qiyong; Tan, Xiaoyue

    2017-01-01

    Background Global warming has a marked influence on the life cycle of epidemic vectors as well as their interactions with human beings. The Aedes albopictus mosquito as the vector of dengue fever surged exponentially in the last decade, raising ecological and epistemological concerns of how climate change altered its growth rate and population dynamics. As the global warming pattern is considerably uneven across four seasons, with a confirmed stronger effect in winter, an emerging need arises...

  4. Global warming: the complete briefing

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, J

    1994-01-01

    The science of global warming, its impacts, and what action might be taken, are described in this book, in a way which the intelligent non-scientist can understand. It also examines ethical and moral issues of concern about global warming, considering mankind as stewards of the earth. Chapter headings of the book are: global warming and climate change; the greenhouse effect; the greenhouse gases; climates of the past; modelling the climate; climate change and business-as-usual; the impacts of climate change; why should we be concerned ; weighing the uncertainty; action to slow and stabilize climate change; energy and transport for the future; and the global village.

  5. Nutrient and Light Limitations on Grass Productivity in a Southern African Savanna

    Science.gov (United States)

    Ries, L. P.; Shugart, H. H.; Caylor, K. K.; Okin, G. S.; Kgope, B.

    2006-12-01

    Despite the ubiquity of sub-tropical savannas throughout the earth, limitations of savanna productivity are understudied relative to other terrestrial systems. In particular, there has been little attention on the role of phosphorus (P) in savanna productivity and structure. This study examined the role of increased nitrogen (N) and P in grass productivity in a woodland savanna in Botswana. We added aqueous forms of N and P individually and together to selected grasses. During the following growing season we measured foliar nutrient concentrations, aboveground biomass productivity and photosynthetic response at various levels of incident photosynthetically active radiation to estimate the productivity response. As expected, we observed an increase in foliar P concentrations in P and N+P treatments. However, there was no increase in foliar N for any treatments. We also observed a significant increase in net carbon assimilation and Amax for all treatments relative to the control grasses. Despite a higher rate of leaf level carbon assimilation in the N treatment, the aboveground biomass production was smaller than that of the N+P treatment. These results suggest that the aboveground productivity of these woodland savanna grasses is limited by both N and P. Additionally, under constant CO2 availability, photosynthesis appears to be limited by nutrients for light levels greater than 500 μmol m-2s-1. This research will help broaden our understanding of the biogeochemical processes that govern savanna productivity. Ultimately, these data can be used to model canopy productivity and ecological succession of savannas under scenarios in which bush encroachment and desertification may alter light and nutrients availability.

  6. Are biodiversity indices of spontaneous grass covers in olive orchards good indicators of soil degradation?

    Science.gov (United States)

    Taguas, E. V.; Arroyo, C.; Lora, A.; Guzmán, G.; Vanderlinden, K.; Gómez, J. A.

    2015-03-01

    Spontaneous grass covers are an inexpensive soil erosion control measure in olive orchards. Olive farmers allow grass to grow on sloping terrain to comply with the basic environmental standards derived from the Common Agricultural Policy (CAP). However, to date there are very few studies assessing the environmental quality and extent of such covers. In this study, we described and compared the biodiversity indicators associated to herbaceous vegetation in two contrasting olive orchards in order to evaluate its relevance and quality. In addition, biodiversity patterns and their relationships with environmental factors such as soil type and properties, precipitation, topography and soil management were analyzed. Different grass cover biodiversity indices were evaluated in two olive orchard catchments under conventional tillage and no tillage with grass cover, during 3 hydrological years (2011-2013). Seasonal samples of vegetal material and pictures in a permanent grid (4 samples ha-1) were taken to characterize the temporal variations of the number of species, frequency, diversity and transformed Shannon's and Pielou's indices. Sorensen's index obtained in the two olive orchard catchments showed notable differences in composition, probably linked with the different site conditions. The catchment with the best site conditions (deeper soil and higher precipitation), with average annual soil losses over 10 t ha-1 and a more intense management, presented the highest biodiversity indices. In absolute terms, the diversity indices were reasonably high in both catchments, despite the fact that agricultural activity usually severely limits the landscape and the variety of species. Finally, a significantly higher content of organic matter in the first 10 cm of soil was found in the catchment with the worst site conditions, average annual soil losses of 2 t ha-1 and the least intense management. Therefore, the biodiversity indicators associated to weeds were not found to be

  7. Investigation of Desso GrassMaster® as application in hydraulic engineering

    NARCIS (Netherlands)

    Steeg, van der P.; Paulissen, M.P.C.P.; Roex, E.; Mommer, L.

    2015-01-01

    Dessa GrassMaster® is a reinforced grass system which is applied successfully on sports fields and enables to use a sports field more intensively than a normal grass field. In this report the possibility of an application of Dessa GrassMaster®in hydraulic conditions, with a focus on grass dikes, is

  8. Seasonally asymmetric enhancement of northern vegetation productivity

    Science.gov (United States)

    Park, T.; Myneni, R.

    2017-12-01

    Multiple evidences of widespread greening and increasing terrestrial carbon uptake have been documented. In particular, enhanced gross productivity of northern vegetation has been a critical role leading to observed carbon uptake trend. However, seasonal photosynthetic activity and its contribution to observed annual carbon uptake trend and interannual variability are not well understood. Here, we introduce a multiple-source of datasets including ground, atmospheric and satellite observations, and multiple process-based global vegetation models to understand how seasonal variation of land surface vegetation controls a large-scale carbon exchange. Our analysis clearly shows a seasonally asymmetric enhancement of northern vegetation productivity in growing season during last decades. Particularly, increasing gross productivity in late spring and early summer is obvious and dominant driver explaining observed trend and variability. We observe more asymmetric productivity enhancement in warmer region and this spatially varying asymmetricity in northern vegetation are likely explained by canopy development rate, thermal and light availability. These results imply that continued warming may facilitate amplifying asymmetric vegetation activity and cause these trends to become more pervasive, in turn warming induced regime shift in northern land.

  9. Interactive effects of warming and increased precipitation on community structure and composition in an annual forb dominated desert steppe.

    Directory of Open Access Journals (Sweden)

    Yanhui Hou

    Full Text Available To better understand how warming, increased precipitation and their interactions influence community structure and composition, a field experiment simulating hydrothermal interactions was conducted at an annual forb dominated desert steppe in northern China over 2 years. Increased precipitation increased species richness while warming significantly decreased species richness, and their effects were additive rather than interactive. Although interannual variations in weather conditions may have a major affect on plant community composition on short term experiments, warming and precipitation treatments affected individual species and functional group composition. Warming caused C4 grasses such as Cleistogenes squarrosa to increase while increased precipitation caused the proportions of non-perennial C3 plants like Artemisia capillaris to decrease and perennial C4 plants to increase.

  10. Achieving high milk production performance at grass with minimal concentrate supplementation with spring-calving dairy cows: actual performance compared to simulated performance

    OpenAIRE

    O'Donovan, M.; Ruelle, Elodie; Coughlan, F.; Delaby, Luc

    2015-01-01

    The aim of high-profitability grazing systems is to produce milk efficiency from grazed pasture. There is very limited information available on the milk production capacity of dairy cows offered a grass-only diet for the main part of her lactation. In this study, spring-calving dairy cows were managed to achieve high milk production levels throughout the grazing season without supplementation. The calving date of the herd was 12 April; the herd had access to grass as they calved a...

  11. Early inflorescence development in the grasses (Poaceae

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Kellogg

    2013-07-01

    Full Text Available The shoot apical meristem of grasses produces the primary branches of the inflorescence, controlling inflorescence architecture and hence seed production. Whereas leaves are produced in a distichous pattern, with the primordia separated from each other by an angle of 180o, inflorescence branches are produced in a spiral in most species. The morphology and developmental genetics of the shift in phyllotaxis have been studied extensively in maize and rice. However, in wheat, Brachypodium, and oats, all in the grass subfamily Pooideae, the change in phyllotaxis does not occur; primary inflorescence branches are produced distichously. It is unknown whether the distichous inflorescence originated at the base of Pooideae, or whether it appeared several times independently. In this study, we show that Brachyelytrum, the genus sister to all other Pooideae has spiral phyllotaxis in the inflorescence, but that in the remaining 3000+ species of Pooideae, the phyllotaxis is two-ranked. These two-ranked inflorescences are not perfectly symmetrical, and have a clear front and back; this developmental axis has never been described in the literature and it is unclear what establishes its polarity. Strictly distichous inflorescences appear somewhat later in the evolution of the subfamily. Two-ranked inflorescences also appear in a few grass outgroups and sporadically elsewhere in the family, but unlike in Pooideae do not generally correlate with a major radiation of species. After production of branches, the inflorescence meristem may be converted to a spikelet meristem or may simply abort; this developmental decision appears to be independent of the branching pattern.

  12. ANATOMIC STRUCTURE OF CAMPANULA ROTUNDIFOLIA L. GRASS

    Directory of Open Access Journals (Sweden)

    V. N. Bubenchikova

    2017-01-01

    Full Text Available The article present results of the study for a anatomic structure of Campanula rotundifolia grass from Campanulaceae family. Despite its dispersion and application in folk medicine, there are no data about its anatomic structure, therefore to estimate the indices of authenticity and quality of raw materials it is necessary to develop microdiagnostical features in the first place, which could help introducing of thisplant in a medical practice. The purpose of this work is to study anatomical structureof Campanula rotundifolia grass to determine its diagnostic features. Methods. Thestudy for anatomic structure was carried out in accordance with the requirements of State Pharmacopoeia, edition XIII. Micromed laboratory microscope with digital adjutage was used to create microphotoes, Photoshop CC was used for their processing. Result. We have established that stalk epidermis is prosenchymal, slightly winding with straight of splayed end cells. After study for the epidermis cells we established that upper epidermis cells had straight walls and are slightly winding. The cells of lower epidermishave more winding walls with prolong wrinkled cuticule. Presence of simple one-cell, thin wall, rough papillose hair on leaf and stalk epidermis. Cells of epidermis in fauces of corolla are prosenchymal, with winding walls, straight or winding walls in a cup. Papillary excrescences can be found along the cup edges. Stomatal apparatus is anomocytic. Conclusion. As the result of the study we have carried out the research for Campanula rotundifolia grass anatomic structure, and determined microdiagnostic features for determination of raw materials authenticity, which included presence of simple, one-cell, thin-walled, rough papillose hair on both epidermises of a leaf, along the veins, leaf edge, and stalk epidermis, as well as the presence of epidermis cells with papillary excrescences along the edges of leaves and cups. Intercellular canals are situatedalong the

  13. Upgrated fuel from reed canary grass

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H. [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    Results described in this presentation are from a large EU-project - Development of a new crop production system based on delayed harvesting and system for its combined processing to chemical pulp and biofuel powder. This is a project to develop the use of Reed Canary Grass (Phalaris Arundinaceae) both for pulp industry and energy production. The main contractor of the project is Swedish University of Agricultural Sciences (coordinator), task coordinators are United Milling Systems A/S from Denmark, and Jaakko Poeyry Oy and VTT Energy from Finland In addition, there are partners from several countries participating in the project

  14. Prospects for Hybrid Breeding in Bioenergy Grasses

    DEFF Research Database (Denmark)

    Aguirre, Andrea Arias; Studer, Bruno; Frei, Ursula

    2012-01-01

    , we address crucial topics to implement hybrid breeding, such as the availability and development of heterotic groups, as well as biological mechanisms for hybridization control such as self-incompatibility (SI) and male sterility (MS). Finally, we present potential hybrid breeding schemes based on SI...... of different hybrid breeding schemes to optimally exploit heterosis for biomass yield in perennial ryegrass (Lolium perenne L.) and switchgrass (Panicum virgatum), two perennial model grass species for bioenergy production. Starting with a careful evaluation of current population and synthetic breeding methods...

  15. Grass-on-grass competition along a catenal gradient in mesic ...

    African Journals Online (AJOL)

    Three aboveground treatments (full light competition, no light competition and clipping to simulate grazing), and two belowground treatments (full belowground competition and belowground competition excluded by a root tube), were used. On all soil depths the three grass species differed in mean mass, with E. racemosa ...

  16. Fewer bacteria in warm water

    International Nuclear Information System (INIS)

    Bagh, Lene

    1999-01-01

    There has been many suggestions to how the ideal warm water system should be. Particularly whether warm water containers or heat exchangers in larger houses are the best solutions in order to maintain a water quality with low levels of bacteria. In an investigation made by Statens Byggeforskningsinstitutt (Denmark) regarding ''Bacterial growth in warm water installations with heat exchangers'' there were used several heat exchangers made by Gjelsted and Lund of three of which had HWAT heating cables. The bacterial content was low from these exchangers compared to exchangers with circulation. The article presents promising results from a study where the method was investigated over a longer period in two new larger warm water systems. Some energy conservation aspects are discussed

  17. Warm mix asphalt : final report.

    Science.gov (United States)

    2014-11-01

    The performance of pavements constructed using warm mix asphalt (WMA) technology were : compared to the performance of conventional hot mix asphalt (HMA) pavements placed on the : same project. Measurements of friction resistance, rutting/wear, ride ...

  18. Authropogenic Warming in North Alaska?.

    Science.gov (United States)

    Michaels, Patrick J.; Sappington, David E.; Stooksbury, David E.

    1988-09-01

    Using permafrost boreholes, Lachenbruch and Marshall recently reported evidence for a 2°-4°C warming in North Alaska occurring at some undetermined time during the last century. Popular accounts suggest their findings are evidence for anthropogenic warming caused by trace gases. Analyses of North Alaskan 1000-500 mb thickness onwards back to 1948 indicate that the warming was prior to that date. Relatively sparse thermometric data for the early twentieth century from Jones et al. are too noisy to support any trend since the data record begins in 1910, or to apply to any subperiod of climatic significance. Any warming detected from the permafrost record therefore occurred before the major emissions of thermally active trace gases.

  19. Changes in the seasonality of Arctic sea ice and temperature

    Science.gov (United States)

    Bintanja, R.

    2012-04-01

    Observations show that the Arctic sea ice cover is currently declining as a result of climate warming. According to climate models, this retreat will continue and possibly accelerate in the near-future. However, the magnitude of this decline is not the same throughout the year. With temperatures near or above the freezing point, summertime Arctic sea ice will quickly diminish. However, at temperatures well below freezing, the sea ice cover during winter will exhibit a much weaker decline. In the future, the sea ice seasonal cycle will be no ice in summer, and thin one-year ice in winter. Hence, the seasonal cycle in sea ice cover will increase with ongoing climate warming. This in itself leads to an increased summer-winter contrast in surface air temperature, because changes in sea ice have a dominant influence on Arctic temperature and its seasonality. Currently, the annual amplitude in air temperature is decreasing, however, because winters warm faster than summer. With ongoing summer sea ice reductions there will come a time when the annual temperature amplitude will increase again because of the large seasonal changes in sea ice. This suggests that changes in the seasonal cycle in Arctic sea ice and temperature are closely, and intricately, connected. Future changes in Arctic seasonality (will) have an profound effect on flora, fauna, humans and economic activities.

  20. Global warming and nuclear power

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1999-01-01

    The problems of pollution, global warming and renewable energy sources are not going to go away. Governments need to act with urgency if they are to produce a long-term energy policy. This paper looks at the current energy situation, and how this would project into the future without the instigation of radical changes. It concludes that nuclear is the best option available for averting a growing energy, pollution and global warming crisis. (author)

  1. Global warming: A vicious circle

    International Nuclear Information System (INIS)

    Sinclair, J.

    1991-01-01

    As a result of increasing atmospheric concentrations of greenhouse gases the planet is already committed to regional droughts, storms, disruption of fisheries and the extinction of many plant and animal species. But current predictions of global warming do not take into account the reactions and interactions of the planet's land, ocean and ice masses to the rise in temperatures. It seems likely that the greenhouse effect will give rise to positive feedback reactions, leading to greater global warming than predicted

  2. A farm-level analysis of economic and agronomic impacts of gradual climate warming

    International Nuclear Information System (INIS)

    Kaiser, H.M.; Sampath, R.; Riha, S.J.; Wilks, D.S.; Rossiter, D.G.

    1993-01-01

    The potential economic and agronomic impacts of gradual climate warming are examined at the farm level. Three models of the relevant climatic, agronomic, and economic processes are developed and linked to address climate change impacts and agricultural adaptability. Several climate warming severity. The results indicate that grain farmers in southern Minnesota can effectively adapt to a gradually changing climate (warmer and either wetter or drier) by adopting later maturing cultivars, changing crop mix, and altering the timing of field operations to take advantage of a longer growing season resulting from climate warming

  3. Aerosol Indirect Effect on Warm Clouds over Eastern China Using Combined CALIOP and MODIS Observations

    Science.gov (United States)

    Guo, Jianping; Wang, Fu; Huang, Jingfeng; Li, Xiaowen

    2015-04-01

    Aerosol, one of key components of the climate system, is highly variable, both temporally and spatially. It often exerts great influences on the cloud-precipitation chain processes by serving as CCN/IN, altering cloud microphysics and its life cycle. Yet, the aerosol indirect effect on clouds remains largely unknown, because the initial changes in clouds due to aerosols may be enhanced or dampened by such feedback processes as modified cloud dynamics, or evaporation of the smaller droplets due to the competition for water vapor. In this study, we attempted to quantify the aerosol effects on warm cloud over eastern China, based on near-simultaneous retrievals from MODIS/AQUA, CALIOP/CALIPSO and CPR/CLOUDSAT during the period 2006 to 2010. The seasonality of aerosol from ground-based PM10 is quite different from that estimated from MODIS AOD. This result is corroborated by lower level profile of aerosol occurrence frequency from CALIOP, indicating the significant role CALIOP could play in aerosol-cloud interaction. The combined use of CALIOP and CPR facilitate the process to exactly determine the (vertical) position of warm cloud relative to aerosol, out of six scenarios in terms of aerosol-cloud mixing status in terms of aerosol-cloud mixing status, which shows as follows: AO (Aerosol only), CO (Cloud only), SASC (Single aerosol-single cloud), SADC (single aerosol-double cloud), DASC (double aerosol-single cloud), and others. Results shows that about 54% of all the cases belong to mixed status, among all the collocated aerosol-cloud cases. Under mixed condition, a boomerang shape is observed, i.e., reduced cloud droplet radius (CDR) is associated with increasing aerosol at moderate aerosol pollution (AODcases. We categorize dataset into warm-season and cold-season subsets to figure out how the boomerang shape varies with season. For moderate aerosol loading (AODMixed" cases is greater during cold season (denoted by a large slope), as compared with that during warm

  4. Free boundary models for mosquito range movement driven by climate warming.

    Science.gov (United States)

    Bao, Wendi; Du, Yihong; Lin, Zhigui; Zhu, Huaiping

    2018-03-01

    As vectors, mosquitoes transmit numerous mosquito-borne diseases. Among the many factors affecting the distribution and density of mosquitoes, climate change and warming have been increasingly recognized as major ones. In this paper, we make use of three diffusive logistic models with free boundary in one space dimension to explore the impact of climate warming on the movement of mosquito range. First, a general model incorporating temperature change with location and time is introduced. In order to gain insights of the model, a simplified version of the model with the change of temperature depending only on location is analyzed theoretically, for which the dynamical behavior is completely determined and presented. The general model can be modified into a more realistic one of seasonal succession type, to take into account of the seasonal changes of mosquito movements during each year, where the general model applies only for the time period of the warm seasons of the year, and during the cold season, the mosquito range is fixed and the population is assumed to be in a hibernating status. For both the general model and the seasonal succession model, our numerical simulations indicate that the long-time dynamical behavior is qualitatively similar to the simplified model, and the effect of climate warming on the movement of mosquitoes can be easily captured. Moreover, our analysis reveals that hibernating enhances the chances of survival and successful spreading of the mosquitoes, but it slows down the spreading speed.

  5. The Role of Frozen Soil in Groundwater Discharge Predictions for Warming Alpine Watersheds

    Science.gov (United States)

    Evans, Sarah G.; Ge, Shemin; Voss, Clifford I.; Molotch, Noah P.

    2018-03-01

    Climate warming may alter the quantity and timing of groundwater discharge to streams in high alpine watersheds due to changes in the timing of the duration of seasonal freezing in the subsurface and snowmelt recharge. It is imperative to understand the effects of seasonal freezing and recharge on groundwater discharge to streams in warming alpine watersheds as streamflow originating from these watersheds is a critical water resource for downstream users. This study evaluates how climate warming may alter groundwater discharge due to changes in seasonally frozen ground and snowmelt using a 2-D coupled flow and heat transport model with freeze and thaw capabilities for variably saturated media. The model is applied to a representative snowmelt-dominated watershed in the Rocky Mountains of central Colorado, USA, with snowmelt time series reconstructed from a 12 year data set of hydrometeorological records and satellite-derived snow covered area. Model analyses indicate that the duration of seasonal freezing in the subsurface controls groundwater discharge to streams, while snowmelt timing controls groundwater discharge to hillslope faces. Climate warming causes changes to subsurface ice content and duration, rerouting groundwater flow paths but not altering the total magnitude of future groundwater discharge outside of the bounds of hydrologic parameter uncertainties. These findings suggest that frozen soil routines play an important role for predicting the future location of groundwater discharge in watersheds underlain by seasonally frozen ground.

  6. The role of frozen soil in groundwater discharge predictions for warming alpine watersheds

    Science.gov (United States)

    Evans, Sarah G.; Ge, Shemin; Voss, Clifford I.; Molotch, Noah P.

    2018-01-01

    Climate warming may alter the quantity and timing of groundwater discharge to streams in high alpine watersheds due to changes in the timing of the duration of seasonal freezing in the subsurface and snowmelt recharge. It is imperative to understand the effects of seasonal freezing and recharge on groundwater discharge to streams in warming alpine watersheds as streamflow originating from these watersheds is a critical water resource for downstream users. This study evaluates how climate warming may alter groundwater discharge due to changes in seasonally frozen ground and snowmelt using a 2‐D coupled flow and heat transport model with freeze and thaw capabilities for variably saturated media. The model is applied to a representative snowmelt‐dominated watershed in the Rocky Mountains of central Colorado, USA, with snowmelt time series reconstructed from a 12 year data set of hydrometeorological records and satellite‐derived snow covered area. Model analyses indicate that the duration of seasonal freezing in the subsurface controls groundwater discharge to streams, while snowmelt timing controls groundwater discharge to hillslope faces. Climate warming causes changes to subsurface ice content and duration, rerouting groundwater flow paths but not altering the total magnitude of future groundwater discharge outside of the bounds of hydrologic parameter uncertainties. These findings suggest that frozen soil routines play an important role for predicting the future location of groundwater discharge in watersheds underlain by seasonally frozen ground.

  7. From pasture grass to cattle milk

    International Nuclear Information System (INIS)

    Miyamoto, Susumu

    1979-01-01

    Iodine-131 is one of the important fission products since it is selectively accumulated in the thyroid gland of man. The transfer of this isotope from contaminated grass to cows' milk is therefore of particular importance since milk is a major constituent of the diet especially for infants. The purpose of this paper is to discuss the transfer rate of this isotope from grass to milk of lactuating cows and its distribution in milk. It is said that the orally administered iodide is rapidly absorbed through the rumen wall and excreted mainly to urine. The absorbed iodine is accumulated highly in the thyroid gland and the considerable amount is secreted to milk. Garner et al. showed that about 5% of a dose of 131 I was found in the milk within 7 days. The extremes were 1.43 to 16.4%. Present author obtained that 18 - 30% of the dosed 131 I was secreted into milk within 7 days, indicating somewhat higher transfer rate than that of Garner et al. It was reported that more than 90% of 131 I was found in milk serum in the ionic form. The countermeasures for diminishing 131 I in milk were also presented. (author)

  8. Genetic modification of wetland grasses for phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Czako, M.; Liang Dali; Marton, L. [Dept. of Biological Sciences, Univ. of South Carolina, Columbia, SC (United States); Feng Xianzhong; He Yuke [National Lab. of Plant Molecular Genetics, Shanghai Inst. of Plant Physiology, Chinese Academy of Sciences, Shanghai, SH (China)

    2005-04-01

    Wetland grasses and grass-like monocots are very important natural remediators of pollutants. Their genetic improvement is an important task because introduction of key transgenes can dramatically improve their remediation potential. Tissue culture is prerequisite for genetic manipulation, and methods are reported here for in vitro culture and micropropagation of a number of wetland plants of various ecological requirements such as salt marsh, brackish water, riverbanks, and various zones of lakes and ponds, and bogs. The monocots represent numerous genera in various families such as Poaceae, Cyperaceae, Juncaceae, and Typhaceae. The reported species are in various stages of micropropagation and Arundo donax is scaled for mass propagation for selecting elite lines for pytoremediation. Transfer of key genes for mercury phytoremediation into the salt marsh cordgrass (Spartina alterniflora) is also reported here. All but one transgenic lines contained both the organomercurial lyase (merB) and mercuric reductase (merA) sequences showing that co-introduction into Spartina of two genes from separate Agrobacterium strains is possible. (orig.)

  9. Unexpected Impacts of Global warming on Extreme Warm Spells

    Science.gov (United States)

    Sardeshmukh, P. D.; Compo, G. P.; McColl, C.; Penland, C.

    2017-12-01

    It is generally presumed that the likelihood of extreme warm spells around the globe has increased, and will continue to increase, due to global warming. However, we find that this is generally not true in three very different types of global observational datasets and uncoupled atmospheric model simulations of the 1959 to 2012 period with prescribed observed global SSTs, sea ice, and radiative forcing changes. While extreme warm spells indeed became more common in many regions, in many other regions their likelihood remained almost the same or even decreased from the first half to the second half of this period. Such regions of unexpected changes covered nearly 40 percent of the globe in both winter and summer. The basic reason for this was a decrease of temperature variability in such regions that offset or even negated the effect of the mean temperature shift on extreme warm spell probabilities. The possibility of such an impact on extreme value probabilities was highlighted in a recent paper by Sardeshmukh, Compo, and Penland (Journal of Climate 2015). The consistency of the changes in extreme warm spell probabilities among the different observational datasets and model simulations examined suggests that they are robust regional aspects of global warming associated with atmospheric circulation changes. This highlights the need for climate models to represent not just the mean regional temperature signals but also the changes in subseasonal temperature variability associated with global warming. However, current climate models (both CMIP3 and CMIP5) generally underestimate the magnitude of the changes in the atmospheric circulation and associated temperature variability. A likely major cause of this is their continuing underestimation of the magnitude of the spatial variation of tropical SST trends. By generating an overly spatially bland tropical SST warming in response to changes in radiative forcing, the models spuriously mute tropically

  10. Perennial Grass Bioenergy Cropping on Wet Marginal Land

    NARCIS (Netherlands)

    Das, Srabani; Teuffer, Karin; Stoof, Cathelijne R.; Walter, Michael F.; Walter, M.T.; Steenhuis, Tammo S.; Richards, Brian K.

    2018-01-01

    The control of soil moisture, vegetation type, and prior land use on soil health parameters of perennial grass cropping systems on marginal lands is not well known. A fallow wetness-prone marginal site in New York (USA) was converted to perennial grass bioenergy feedstock production. Quadruplicate

  11. No positive feedback between fire and a nonnative perennial grass

    Science.gov (United States)

    Erika L. Geiger; Guy R. McPherson

    2005-01-01

    Semi-desert grasslands flank the “Sky Island” mountains in southern Arizona and Northern Mexico. Many of these grasslands are dominated by nonnative grasses, which potentially alter native biotic communities. One specific concern is the potential for a predicted feedback between nonnative grasses and fire. In a large-scale experiment in southern Arizona we investigated...

  12. Analysis of Fusarium causing dermal toxicosis in marram grass planters

    NARCIS (Netherlands)

    Snijders, CHA; Samson, RA; Hoekstra, ES; Ouellet, T; Miller, JD; deRooijvanderGoes, PCEM; Baar, AJM; Dubois, AEJ; Kauffman, HF

    1996-01-01

    In the European coastal dunes, marram grass (Ammophila arenaria) is planted in order to control sand erosion. In the years 1986 to 1991, workers on the Wadden islands in the Netherlands planting marram grass showed lesions of skin and mucous membranes, suggesting a toxic reaction. Fusarium culmorum

  13. Conceptual model for reinforced grass on inner dike slopes

    NARCIS (Netherlands)

    Verhagen, H.J.; ComCoast

    2005-01-01

    A desk study has been carried out in order to develop a conceptual model for the erosion of inner dike slopes with reinforced grass cover. Based on the results the following can be concluded: The presence of a geosynthetic in a grass slope can be taken into account in the EPM method by increasing

  14. Grass defoliation affecting survival and growth of seedlings of ...

    African Journals Online (AJOL)

    Two experiments were conducted, one in the field and the other in the greenhouse, to investigate the effects of the intensity and frequency of grass defoliation on the survival and growth of Acacia karroo seedlings. In the greenhouse, seedlings growing with heavily clipped grasses had higher biomass production than those ...

  15. Defoliation effects of perennial grasses – continuing confusion | DL ...

    African Journals Online (AJOL)

    Although an adequate knowledge of growth patterns and defoliation effects in perennial grasses is a prerequisite for the rational use of veld and pastures for animal production, our knowledge of this subject is far from adequate. The results of various physiological and clipping studies on tropical and sub-tropical grasses are ...

  16. MACRO NUTRIENTS UPTAKE OF FORAGE GRASSES AT DIFFERENT SALINITY STRESSES

    Directory of Open Access Journals (Sweden)

    F. Kusmiyati

    2014-10-01

    Full Text Available The high concentration of sodium chloride (NaCl in saline soils has negative effects on the growth ofmost plants. The experiment was designed to evaluate macro nutrient uptake (Nitrogen, Phosphorus andPotassium of forage grasses at different NaCl concentrations in growth media. The experiment wasconducted in a greenhouse at Forage Crops Laboratory of Animal Agriculture Faculty, Diponegoro University.Split plot design was used to arrange the experiment. The main plot was forage grasses (Elephant grass(Pennisetum purpureum and King grass (Pennisetum hybrida. The sub plot was NaCl concentrationin growth media (0, 150, and 300 mM. The nitrogen (N, phosphorus (P and potassium (K uptake in shootand root of plant were measured. The result indicated increasing NaCl concentration in growth mediasignificantly decreased the N, P and K uptake in root and shoot of the elephant grass and king grass. Thepercentage reduction percentage of N, P and K uptake at 150 mM and 300 mM were high in elephant grassand king grass. It can be concluded that based on nitrogen, phosphorus and potassium uptake, elephantgrass and king grass are not tolerant to strong and very strong saline soil.

  17. EBIPM | Finding the Tools to Manage Invasive Annual Grasses

    Science.gov (United States)

    management decisions for a given landscape based on ecological principles. Take a look at our video " Grass Management How much could prevention save you? Guidelines to Implement EBIPM Weed Prevention Areas Grass Facts/ID The EBIPM Model Crooked River Weed Management Area Guide Tools for Educators EBIPM High

  18. Lessons learned in managing alfalfa-grass mixtures

    Science.gov (United States)

    Grass-alfalfa mixtures have a number of benefits that make them attractive to producers. However, they can be problematic to establish and maintain. Research programs have made progress in understanding the benefits and challenges of alfalfa-grass mixtures. Mixtures may have greater winter survival ...

  19. Agricultural field reclamation utilizing native grass crop production

    Science.gov (United States)

    J. Cure

    2013-01-01

    Developing a method of agricultural field reclamation to native grasses in the Lower San Pedro Watershed could prove to be a valuable tool for educational and practical purposes. Agricultural field reclamation utilizing native grass crop production will address water table depletion, soil degradation and the economic viability of the communities within the watershed....

  20. Effect of grass species on NDF ruminal degradability and ...

    African Journals Online (AJOL)

    uzivatel

    Abstract. The objective of this study was to compare the ruminal degradability of neutral detergent fibre (NDF) .... Felina were evaluated in the present study. The grass was harvested from the primary growth of monocultured grasses on 19 and 26 May of 2004 and 27 May and 10 ...... Nutritional Ecology of the Ruminant.

  1. Soil nitrogen mineralization not affected by grass species traits

    Science.gov (United States)

    Maged Ikram Nosshi; Jack Butler; M. J. Trlica

    2007-01-01

    Species N use traits was evaluated as a mechanism whereby Bromus inermis (Bromus), an established invasive, might alter soil N supply in a Northern mixed-grass prairie. We compared soils under stands of Bromus with those from three representative native grasses of different litter C/N: Andropogon...

  2. Seed production and establishment of western Oregon native grasses

    Science.gov (United States)

    Dale C. Darris

    2005-01-01

    It is well understood that native grasses are ecologically important and provide numerous benefits. However, unfavorable economics, low seed yields for some species, genetic issues, and a lack of experience behind the production and establishment of most western Oregon native grasses remain significant impediments for their expanded use. By necessity, adaptation of...

  3. Analysis of Some Heavy Metals in Grass ( Paspalum Orbiculare ...

    African Journals Online (AJOL)

    The increased deposition of trace metals from vehicle exhausts on plants has raised concerns about the risks of the quality of food consumed by humans since the heavy metals emitted through the exhaust by vehicles can enter food chain through deposition on grass grazed by animals. Grass (Paspalum Orbiculare) and ...

  4. Identification of grazed grasses using epidermal characters | R ...

    African Journals Online (AJOL)

    The use of anatomical features of the abaxial epidermis of grasses is discussed for the identification of fragments of epidermis present in samples of rumen. The reliability of this technique, and the variation of the epidermal characters in two widely distributed species of grass, is given. A "Key" to identity certain genera of ...

  5. Invasive grasses change landscape structure and fire behavior in Hawaii

    Science.gov (United States)

    Lisa M. Ellsworth; Creighton M. Litton; Alexander P. Dale; Tomoaki Miura

    2014-01-01

    How does potential fire behavior differ in grass-invaded non-native forests vs open grasslands? How has land cover changed from 1950–2011 along two grassland/forest ecotones in Hawaii with repeated fires? A study on non-native forest with invasive grass understory and invasive grassland (Megathyrsus maximus) ecosystems on Oahu, Hawaii, USA was...

  6. The Great Warming Brian Fagan

    Science.gov (United States)

    Fagan, B. M.

    2010-12-01

    The Great Warming is a journey back to the world of a thousand years ago, to the Medieval Warm Period. Five centuries of irregular warming from 800 to 1250 had beneficial effects in Europe and the North Atlantic, but brought prolonged droughts to much of the Americas and lands affected by the South Asian monsoon. The book describes these impacts of warming on medieval European societies, as well as the Norse and the Inuit of the far north, then analyzes the impact of harsh, lengthy droughts on hunting societies in western North America and the Ancestral Pueblo farmers of Chaco Canyon, New Mexico. These peoples reacted to drought by relocating entire communities. The Maya civilization was much more vulnerable that small-scale hunter-gatherer societies and subsistence farmers in North America. Maya rulers created huge water storage facilities, but their civilization partially collapsed under the stress of repeated multiyear droughts, while the Chimu lords of coastal Peru adapted with sophisticated irrigation works. The climatic villain was prolonged, cool La Niñalike conditions in the Pacific, which caused droughts from Venezuela to East Asia, and as far west as East Africa. The Great Warming argues that the warm centuries brought savage drought to much of humanity, from China to Peru. It also argues that drought is one of the most dangerous elements in today’s humanly created global warming, often ignored by preoccupied commentators, but with the potential to cause over a billion people to starve. Finally, I use the book to discuss the issues and problems of communicating multidisciplinary science to the general public.

  7. Active Movement Warm-Up Routines

    Science.gov (United States)

    Walter, Teri; Quint, Ashleigh; Fischer, Kim; Kiger, Joy

    2011-01-01

    This article presents warm-ups that are designed to physiologically and psychologically prepare students for vigorous physical activity. An active movement warm-up routine is made up of three parts: (1) active warm-up movement exercises, (2) general preparation, and (3) the energy system. These warm-up routines can be used with all grade levels…

  8. Inverse gradients in leaf wax δD and δ13C values along grass blades of Miscanthus sinensis: implications for leaf wax reproduction and plant physiology.

    Science.gov (United States)

    Gao, Li; Huang, Yongsong

    2013-06-01

    Compound specific hydrogen and carbon isotopic ratios of higher plant leaf waxes have been extensively used in paleoclimate and paleoenvironmental reconstructions. However, studies so far have focused on the comparison of leaf wax isotopic differences in bulk leaf samples between different plant species. We sampled three different varieties of tall grasses (Miscanthus sinensis) in six segments from base to tip and determined hydrogen and carbon isotopic ratios of leaf waxes, as well as hydrogen and oxygen isotopic ratios of leaf water samples. We found an increasing, base-to-tip hydrogen isotopic gradient along the grass blades that can probably be attributed to active leaf wax regeneration over the growth season. Carbon isotopic ratios, on the other hand, show opposite trends to hydrogen isotopic ratios along the grass blades, which may reflect different photosynthetic efficiencies at different blade locales.

  9. How warm days increase belief in global warming

    Science.gov (United States)

    Zaval, Lisa; Keenan, Elizabeth A.; Johnson, Eric J.; Weber, Elke U.

    2014-02-01

    Climate change judgements can depend on whether today seems warmer or colder than usual, termed the local warming effect. Although previous research has demonstrated that this effect occurs, studies have yet to explain why or how temperature abnormalities influence global warming attitudes. A better understanding of the underlying psychology of this effect can help explain the public's reaction to climate change and inform approaches used to communicate the phenomenon. Across five studies, we find evidence of attribute substitution, whereby individuals use less relevant but available information (for example, today's temperature) in place of more diagnostic but less accessible information (for example, global climate change patterns) when making judgements. Moreover, we rule out alternative hypotheses involving climate change labelling and lay mental models. Ultimately, we show that present temperature abnormalities are given undue weight and lead to an overestimation of the frequency of similar past events, thereby increasing belief in and concern for global warming.

  10. Global warming: it's not only size that matters

    Science.gov (United States)

    Hegerl, Gabriele C.

    2011-09-01

    impacts than temperatures that have occurred frequently due to internal climate variability. Determining when exactly temperatures enter unusual ranges may be done in many different ways (and the paper shows several, and more could be imagined), but the main result of first local emergence in low latitudes remains robust. A worrying factor is that the regions where the signal is expected to emerge first, or is already emerging are largely regions in Africa, parts of South and Central America, and the Maritime Continent; regions that are vulnerable to climate change for a variety of regions (see IPCC 2007), and regions which contribute generally little to global greenhouse gas emissions. In contrast, strong emissions of greenhouse gases occur in regions of low warming-to-variability ratio. To get even closer to the relevance of this finding for impacts, it would be interesting to place the emergence of highly unusual summer temperatures in the context not of internal variability, but in the context of variability experienced by the climate system prior to the 20th century, as, e.g. documented in palaeoclimatic reconstructions and simulated in simulations of the last millennium (see Jansen et al 2007). External forcing has moved the temperature range around more strongly for some regions and in some seasons than others. For example, while reconstructions of summer temperatures in Europe appear to show small long-term variations, winter shows deep drops in temperature in the little Ice Age and a long-term increase since then (Luterbacher et al 2004), which was at least partly caused by external forcing (Hegerl et al 2011a) and therefore 'natural variability' may be different from internal variability. A further interesting question in attempts to provide a climate-based proxy for impacts of climate change is: to what extent does the rapidity of change matter, and how does it compare to trends due to natural variability? It is reasonable to assume that fast changes impact

  11. Dispersal of the invasive pasture pest Heteronychus arator into areas of low population density: effects of sex and season, and implications for pest management

    Directory of Open Access Journals (Sweden)

    Sarah Mansfield

    2016-08-01

    Full Text Available African black beetle, Heteronychus arator (Scarabaeidae, is an exotic pest of pastures in northern New Zealand. Both adults and larvae feed on pasture grasses. Adults disperse by walking (short range or flying (long range. Dispersal flights are triggered by warm night temperatures in spring and autumn. Short range adult dispersal in search of mates, food or oviposition sites is poorly understood. This study investigated walking activity of H. arator adults over three seasons in New Zealand pastures. Adult walking activity was monitored using pitfall traps along fence lines and in pasture plots on a dairy farm in Waikato, New Zealand, in spring 2013, spring 2014 and autumn 2015. Beetle populations were reduced by application of a biopesticide bait to compare walking activity between treated and control plots for up to 26 days post-treatment. Marked beetles were released into the pasture plots to measure the distance travelled by recaptured individuals. Trap catches along the fence lines were correlated with air temperatures in 2013. Trap catches were male biased in spring 2014 compared with autumn 2015. Trap numbers in the control plots were nearly double that of treated plots in both seasons. More beetles were caught in the pitfall traps at the edges of the treated plots than in the centre. Trap catches were consistent throughout the control plot in spring 2014, but in autumn 2015 more beetles were caught in the centre of the control plot than at the edges. Few marked beetles were recaptured with dispersal rates estimated as <0.5m per day. Warmer temperatures encouraged short range dispersal in H. arator. Males were more active than females during the spring mating season. Edge effects were strong and should be considered in the design of field experiments.

  12. Rumen escape protein in grass and grass silage deterimened with a nylon bag and an enzymatic technique

    NARCIS (Netherlands)

    Cone, J.W.; Gelder, van A.H.; Mathijssen-Kamman, A.A.; Hindle, V.A.

    2004-01-01

    Rumen escape protein (REP) was determined for six grasses and 16 grass silages using a nylon bag technique and an in vitro technique using a proteolytic enzyme preparation of Streptomyces griseus. In vitro, the samples were incubated for 0, 1, 6 and 24 h. The highest correlation observed between

  13. EroGRASS : Failure of grass cover layers at seaward and shoreward dike slopes. design, construction and performance

    NARCIS (Netherlands)

    Verhagen, H.J.; Verheij, H.J.; Cao, T.M.; Dassanayake, D.; Roelvink, D.; Piontkowitz, T.

    2009-01-01

    A large number of the dikes in the North Sea and Baltic Sea regions are covered with grass that is exposed to hydraulic loading from waves and currents during storm surges. During previous storm surges the grass cover layers often showed large strength and remained undamaged. A clear physical

  14. Established native perennial grasses out-compete an invasive annual grass regardless of soil water and nutrient availability

    Science.gov (United States)

    Christopher M. McGlone; Carolyn Hull Sieg; Thomas E. Kolb; Ty Nietupsky

    2012-01-01

    Competition and resource availability influence invasions into native perennial grasslands by nonnative annual grasses such as Bromus tectorum. In two greenhouse experiments we examined the influence of competition, water availability, and elevated nitrogen (N) and phosphorus (P) availability on growth and reproduction of the invasive annual grass B. tectorum and two...

  15. Warm measurements of CBA superconducting magnets

    International Nuclear Information System (INIS)

    Engelmann, R.; Herrera, J.; Kahn, S.; Kirk, H.; Willen, E.; Yamin, P.

    1983-01-01

    We present results on magnetic field measurements of CBA dipole magnets in the warm (normal conductor) and cryogenic (superconducting) states. We apply two methods for the warm measurements, a dc and ac method. We find a good correlation between warm and cryogenic measurements which lends itself to a reliable diagnosis of magnet field errors using warm measurements early in the magnet assembly process. We further find good agreement between the two warm measurement methods, both done at low currents

  16. Peranan Environmental Accounting Terhadap Global Warming

    OpenAIRE

    Martusa, Riki

    2009-01-01

    This article explores about is global warming. The distortion of nature causes global warming. Industrial sector is one of global warming incurred. Some nations create a group to cope this matter. They try to reduce carbon emission as one of global warming causes by controlling industrial carbon emission through financial reporting. This article explores normatively roles of environmental accounting in cope with global warming.  

  17. Sorting Out Seasonal Allergies

    Science.gov (United States)

    ... Close ‹ Back to Healthy Living Sorting Out Seasonal Allergies Sneezing, runny nose, nasal congestion. Symptoms of the ... How do I know if I have seasonal allergies? According to Dr. Georgeson, the best way to ...

  18. Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert grassland.

    Science.gov (United States)

    Throop, Heather L; Reichmann, Lara G; Sala, Osvaldo E; Archer, Steven R

    2012-06-01

    Increases in woody vegetation and declines in grasses in arid and semi-arid ecosystems have occurred globally since the 1800s, but the mechanisms driving this major land-cover change remain uncertain and controversial. Working in a shrub-encroached grassland in the northern Chihuahuan Desert where grasses and shrubs typically differ in leaf-level nitrogen allocation, photosynthetic pathway, and root distribution, we asked if differences in leaf-level ecophysiology could help explain shrub proliferation. We predicted that the relative performance of grasses and shrubs would vary with soil moisture due to the different morphological and physiological characteristics of the two life-forms. In a 2-year experiment with ambient, reduced, and enhanced precipitation during the monsoon season, respectively, the encroaching C(3) shrub (honey mesquite Prosopis glandulosa) consistently and substantially outperformed the historically dominant C(4) grass (black grama Bouteloua eriopoda) in terms of photosynthetic rates while also maintaining a more favorable leaf water status. These differences persisted across a wide range of soil moisture conditions, across which mesquite photosynthesis was decoupled from leaf water status and moisture in the upper 50 cm of the soil profile. Mesquite's ability to maintain physiologically active leaves for a greater fraction of the growing season than black grama potentially amplifies and extends the importance of physiological differences. These physiological and phenological differences may help account for grass displacement by shrubs in drylands. Furthermore, the greater sensitivity of the grass to low soil moisture suggests that grasslands may be increasingly susceptible to shrub encroachment in the face of the predicted increases in drought intensity and frequency in the desert of the southwestern USA.

  19. Energy crop cultivations of reed canary grass - An inferior breeding habitat for the skylark, a characteristic farmland bird species

    Energy Technology Data Exchange (ETDEWEB)

    Vepsaelaeinen, Ville [Finnish Museum of Natural History, P.O. Box 17, University of Helsinki, FI-00014 Helsinki (Finland)

    2010-07-15

    Here, I present the first comparison of the abundance of farmland birds in energy grass fields and in cereal-dominated conventionally cultivated fields (CCFs). I demonstrate that in boreal farmland, skylark (Alauda arvensis) densities were significantly lower in reed canary grass (RCG) (Phalaris arundinacea) fields than in CCFs. I found that during the early breeding season RCG fields and CCFs are equally good habitats, but over the ensuing couple of weeks RCG rapidly grows too tall and dense for field-nesting species. Consequently, RCG is an inferior habitat for skylark for laying replacement clutches (after failure of first nesting) or for a second clutch after one successful nesting. The results imply that if RCG cultivation is to be expanded, the establishment of large monocultures should be avoided in farmland landscapes; otherwise the novel habitat may affect detrimentally the seriously depleted skylark population, and probably also other field-nesting bird species with similar breeding habitats. (author)

  20. Climatic warming strengthens a positive feedback between alpine shrubs and fire.

    Science.gov (United States)

    Camac, James S; Williams, Richard J; Wahren, Carl-Henrik; Hoffmann, Ary A; Vesk, Peter A

    2017-08-01

    Climate change is expected to increase fire activity and woody plant encroachment in arctic and alpine landscapes. However, the extent to which these increases interact to affect the structure, function and composition of alpine ecosystems is largely unknown. Here we use field surveys and experimental manipulations to examine how warming and fire affect recruitment, seedling growth and seedling survival in four dominant Australian alpine shrubs. We found that fire increased establishment of shrub seedlings by as much as 33-fold. Experimental warming also doubled growth rates of tall shrub seedlings and could potentially increase their survival. By contrast, warming had no effect on shrub recruitment, postfire tussock regeneration, or how tussock grass affected shrub seedling growth and survival. These findings indicate that warming, coupled with more frequent or severe fires, will likely result in an increase in the cover and abundance of evergreen shrubs. Given that shrubs are one of the most flammable components in alpine and tundra environments, warming is likely to strengthen an existing feedback between woody species abundance and fire in these ecosystems. © 2017 John Wiley & Sons Ltd.

  1. Performances of legume-grass mixtures under different cutting managements in mediterranean environments

    Directory of Open Access Journals (Sweden)

    Pasquale Martiniello

    2011-02-01

    Full Text Available Annual forage crops have great importance for sustaining animal production in southern Italy. Knowledge of the performance of legume-grass associations under management similar to systems encountered in farm practice is essential for their effective exploitation of the available environmental resources. The purpose of this investigation was to estimate the effects of five cutting managements on the productivity and botanical composition of ten annual fodder crop mixtures in two Mediterranean environments. Ten ternary combinations of one grass (Avena sativa L., oat and Lolium multiflorum Lam., Italian ryegrass, one clover (Trifolium alexandrinum L., berseem; Trifolium incarnatum L., crimson and Trifolium squarrosum L., squarrosum or burr medic (Medicago polymorpha L. and common vetch (Vicia sativa L. were compared in a field trial (split-plot design, 3 replicates in two locations (Cagliari and Foggia, Italy during the 2000-2001 growing season. The cutting treatments included a winter grazing simulation (G, a cutting only regime at early (EF or late flowering (F of legumes and a combination of treatments (GEF and GF. Plant density (no. m-2 prior to cutting, dry matter yield (g m-2 and botanical composition (% were evaluated. Considerable differences were observed in the harvestable dry matter yields of mixtures among cutting treatments in both localities, with treatment F showing the higher values (787.1 and 415.7 g m-2 for Cagliari and Foggia, respectively. The forage species were able to compete and establish good growth during their initial phase in both localities. However, the botanical composition between the two sites differed considerably after the winter period. Particularly, at Foggia, grass dominance was a permanent feature of all treatments, and all the mixtures contained about 84% of grass. Italian ryegrass was the most representative species under all treatments in both sites. Mixtures with Italian ryegrass, crimson or berseem

  2. Perrenial Grasses for Sustainable European Protein Production

    DEFF Research Database (Denmark)

    Jørgensen, Uffe; Lærke, Poul Erik

    2016-01-01

    reduction goals for agriculture. Denmark has an especially vulnerable aquatic environment due to sandy soils, a long coast line, and high precipitation. Thus, fulfilling the WFD means some areas must halve their nitrate leaching, and radical changes are required to reduce losses while maintaining profitable...... crop production. National scenarios show that up to ten million tonnes of additional biomass can be sourced in Denmark without reducing food production or increasing the area under cultivation if a biorefinery industry is established. In one of the scenarios optimized for additional environmental...... in the “environment” scenario. This scenario was achieved by converting approx. 9 % of agricultural land from annual crops into perennial grass. New experimental results support the anticipated increase in total biomass yield and reduction in nitrate leaching, when converting land currently used for grain crop...

  3. The politics of global warming

    International Nuclear Information System (INIS)

    Moss, N.

    1991-01-01

    The probable warming of the world over the next few decades due to human activity presents a unique threat. The threat of global warming has been brought about by the activities of the entire human race, and only action by a large part of the human race can slow down the process or halt it. Other unwanted effects of industrial activity are trans-national, and require international agreements to regulate them, most obviously radioactivity from nuclear power accidents, acid rain and river pollution; but climatic change, unlike these, is global. International negotiations are going on now to deal with the problem of global warming, mostly by reducing the emission of gases that contribute to it. These are preliminary, yet already different perceptions and conflicting interests are emerging. The aim of the present negotiations is a convention for the UN Conference on Environment and Development (UNCED) to be held in June 1992, the so-called ''Earth Summit''. (author)

  4. Ducks and passerines nesting in northern mixed-grass prairie treated with fire

    Science.gov (United States)

    Grant, Todd A.; Shaffer, Terry L.; Madden, Elizabeth M.; Berkey, Gordon B.

    2011-01-01

    Prescribed fire is an important, ecology-driven tool for restoration of grassland systems. However, prescribed fire remains controversial for some grassland managers because of reported reductions in bird use of recently burned grasslands. Few studies have evaluated effects of fire on grassland bird populations in the northern mixed-grass prairie region. Fewer studies yet have examined the influence of fire on nest density or survival. In our review, we found no studies that simultaneously examined effects of fire on duck and passerine nesting. During 1998—2003, we examined effects of prescribed fire on the density of upland-nesting ducks and passerines nesting in north-central North Dakota, USA. Apparent nest densities of gadwall (Anas strepera), mallard (A. platyrhynchos), and all duck species combined, were influenced by fire history of study units, although the degree of influence was not compelling. Fire history was not related to nest densities of blue-winged teal (A. discors), northern shoveler (A. clypeata), or northern pintail (A. acuta); however, apparent nest densities in relation to the number of postfire growing seasons exhibited a strikingly similar pattern among all duck species. When compared to ducks, fire history strongly influenced apparent nest densities of clay-colored sparrow (Spizella pallida), Savannah sparrow (Passerculus sandwichensis), and bobolink (Dolichonyx oryzivorus). For most species examined, apparent nest densities were lowest in recently burned units, increased during the second postfire growing season, and stabilized or, in some cases, decreased thereafter. Prescribed fire is critical for restoring the ecology of northern mixed-grass prairies and our findings indicate that reductions in nest densities are limited mostly to the first growing season after fire. Our results support the premise that upland-nesting ducks and several grassland passerine species are adapted to periodic fires occurring at a frequency similar to that

  5. Seasonal Allergies (Hay Fever)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Seasonal Allergies (Hay Fever) KidsHealth / For Parents / Seasonal Allergies (Hay ... español Alergia estacional (fiebre del heno) About Seasonal Allergies "Achoo!" It's your son's third sneezing fit of ...

  6. Seasonal Variation in Epidemiology

    Science.gov (United States)

    Marrero, Osvaldo

    2013-01-01

    Seasonality analyses are important in medical research. If the incidence of a disease shows a seasonal pattern, then an environmental factor must be considered in its etiology. We discuss a method for the simultaneous analysis of seasonal variation in multiple groups. The nuts and bolts are explained using simple trigonometry, an elementary…

  7. Perennial grasses traits as functional markers of grazing intensity in basaltic grasslands of Uruguay Rasgos de gramíneas perennes como marcadores funcionales de la intensidad de pastoreo en pastizales de basalto en Uruguay

    Directory of Open Access Journals (Sweden)

    Martin Jaurena

    2012-12-01

    Full Text Available Natural grasslands in the basaltic region of Uruguay are threatened by an increase in stocking rates and changes in land use. To assess the effect of grazing intensification, plant functional types are proposed as simple tools to aid the monitoring and management of vegetation. In the present study we evaluated the effect of stocking rate increase at community level taking into account plant traits of 23 dominant perennial grass species. In order to identify plant functional types, we determined the grazing response in an experiment with two wethers stocking rates (0.78 and 1.56 livestock units ha-1 quantifying species cover and traits values. Leaf dry matter content (LDMC and specific leaf area (SLA were the traits that best described the perennial grasses response to the stocking rate increase and therefore are suggested to be used as functional markers. Three functional types were identified. Low stocking rates were related to functional type A (tall, warm season species with low SLA and high LDMC and functional type B (tall, cool-season species, with intermediate levels of leaf traits. On the other hand, high stocking rate encouraged functional type C (prostrate, warm season species, with high SLA and low LDMC. The classification of a highly diverse community into three functional types and the selection of traits as functional markers candidates is an innovative approach to develop simple and general methods to diagnosis the state of basaltic grasslands in Uruguay and to advise on its management.Las praderas naturales de la region bas áltica de Uruguay están amenazadas por el incremento de la carga animal y cambios en el uso del suelo. Para evaluar el efecto del pastoreo se han propuesto los grupos funcionales como una herramienta simple para el monitoreo y manejo de la vegetación. El presente estudio evaluó el efecto del incremento de la carga animal considerando rasgos de 23 especies de gramineas perennes dominantes. Para identificar

  8. Interspecific competition changes photosynthetic and oxidative stress response of barley and barnyard grass to elevated CO2 and temperature

    Directory of Open Access Journals (Sweden)

    Irena Januskaitiene

    2018-03-01

    Full Text Available This work focuses on the investigation of competition interaction between C3 crop barley (Hordeum vulgare L. and C4 weed barnyard grass (Echinochloa crus-galli L. at 2 times higher than ambient [CO2] and +4 0C higher ambient temperature climate conditions. It was hypothesized that interspecific competition will change the response of the investigated plants to increased [CO2] and temperature. The obtained results showed that in the current climate conditions, a higher biomass and photosynthetic rate and a lower antioxidant activity were detected for barley grown under interspecific competition effect. While in the warmed climate and under competition conditions opposite results were detected: a higher water use efficiency, a higher photosynthetic performance, a lower dissipated energy flux and a lower antioxidant enzymes activity were detected for barnyard grass plants. This study highlights that in the future climate conditions, barnyard grass will become more efficient in performance of the photosynthetic apparatus and it will suffer from lower oxidative stress caused by interspecific competition as compared to barley.

  9. [The innovation of warm disease theory in the Ming Dynasty before Wen yi lun On Pestilence].

    Science.gov (United States)

    Zhang, Zhi-bin

    2008-10-01

    Some doctors of the Ming dynasty raised subversive doubts against the traditional viewpoints of "exogenous cold disease is warm-heat" before the emergence of Wen yi lun (On Pestilence), holding that warm-heat disease "is contracted in different seasons instead of being transformed from cold to warm and/or heat". The conception of the separation of warm-heat disease and exogenous cold disease had changed from obscure to clear. As the idea became clear, the recognition on the new affection of warm, heat, summer-heat, pestilent pathogen was formed, and the idea that the pathogens of summer-heat and warm entered the human body through the mouth and nostrils was put forward. The six-channel syndrome differentiation of warm disease and the five sweat-resolving methods in pestilence raised by the doctors of this period are the aspects of the differential diagnosis of syndrome and treatment in warm diseases, and deserve to be paid attention to.

  10. Efficiency, sustainability and global warming

    International Nuclear Information System (INIS)

    Woodward, Richard T.; Bishop, Richard C.

    1995-01-01

    Economic analyses of global warming have typically been grounded in the theory of economic efficiency. Such analyses may be inappropriate because many of the underlying concerns about climate change are rooted not in efficiency, but in the intergenerational allocation of economic endowments. A simple economic model is developed which demonstrates that an efficient economy is not necessarily a sustainable economy. This result leads directly to questions about the policy relevance of several economic studies of the issue. We then consider policy alternatives to address global warming in the context of economies with the dual objectives of efficiency and sustainability, with particular attention to carbon-based taxes

  11. Global Warming: Physics and Facts

    International Nuclear Information System (INIS)

    Levi, B.G.; Hafemeister, D.; Scribner, R.

    1992-01-01

    This report contains papers on: A tutorial on global atmospheric energetics and the greenhouse effect; global climate models: what and how; comparison of general circulation models; climate and the earth's radiation budget; temperature and sea level change; short-term climate variability and predictions; the great ocean conveyor; trace gases in the atmosphere: temporal and spatial trends; the geochemical carbon cycle and the uptake of fossil fuel CO 2 ; forestry and global warming; the physical and policy linkages; policy implications of greenhouse warming; options for lowering US carbon dioxide emissions; options for reducing carbon dioxide emissions; and science and diplomacy: a new partnership to protect the environment

  12. Double-blind, placebo-controlled immunotherapy with mixed grass-pollen allergoids. II. Comparison between parameters assessing the efficacy of immunotherapy.

    Science.gov (United States)

    Bousquet, J; Maasch, H; Martinot, B; Hejjaoui, A; Wahl, R; Michel, F B

    1988-09-01

    Specific immunotherapy is effective in alleviating symptoms in grass pollen-induced rhinitis, but there are no clear data demonstrating a correlation between symptom-medication scores and objective parameters. Twenty-five patients taking part in a double-blind, placebo-controlled immunotherapy with mixed grass pollen-formalinized allergoids were studied. All patients had the same investigations. Symptom-medication scores were significantly (p less than 0.005, Mann-Whitney U test) reduced in the treated group by comparison to the placebo-treated patients. Nasal challenges performed with threefold increasing numbers of orchard grass-pollen grains demonstrated that patients treated with allergoid tolerated a significantly (p less than 0.005, Wilcoxon W test) greater number of grains after treatment, whereas there was no mean difference in the placebo-treated patients. There was a significant (p less than 0.005, Spearman rank-correlation) correlation between nasal challenges and symptom scores during the season. The skin prick test end point was significantly (p less than 0.001, Wilcoxon W test) reduced after treatment in the allergoid-treated group and remained unchanged in the placebo-treated group. There was a significant (p less than 0.001) correlation between the skin prick test end point and symptom scores during the season. Serum grass-pollen IgG titrated by a solid-phase radioimmunoassay with Staphylococcus A protein was significantly (p less than 0.01, Wilcoxon W test) increased after treatment with allergoid, but there was no significant correlation between IgG titer and symptom scores during the season. Serum grass-pollen IgE increased (p less than 0.04, Wilcoxon W test) in the treated group but there was no correlation with symptom scores.

  13. Water use, root activity and deep drainage within a perennial legume-grass pasture: A case study in southern inland Queensland, Australia

    Directory of Open Access Journals (Sweden)

    A. Nahuel A. Pachas

    2016-09-01

    Full Text Available Water use and depth of water extraction of leucaena (Leucaena leucocephala and Rhodes grass (Chloris gayana pasture, irrigated with desalinated coal seam water (a by-product of the coal seam gas industry, were monitored to provide background information on root activity, spatial and temporal water use and deep drainage over a 757-day period from August 2011 to August 2013. Methodology comprised measurement of soil water from surface to 4 m depth using 8 EnviroSCAN probes connected to dataloggers positioned within leucaena twin rows and within the Rhodes grass inter-row. Just over 581,000 individual moisture measurements were collated and are reported here. Water extraction (and by inference root activity of leucaena and Rhodes grass showed marked seasonal fluctuation with deepest and highest water extraction occurring during the first growing season; water extraction was greatly diminished during the following drier and cooler seasons due to the negative influences of lower soil moisture contents, lower temperatures and increased defoliation on pasture growth. The highest values of deep drainage below 4 m depth occurred when high rainfall events corresponded with high soil water storage in the entire profile (0–4 m depth. Given that water usage by both leucaena and Rhodes grass was greatest in the upper layers of soil (<1.5 m, future research should focus on how the level of competitive interaction might be managed by choice of row spacing and frequency of irrigation. Further studies are needed, including: (a physical sampling to determine the depth of active roots; (b how defoliation affects rooting behaviours and water use of leucaena; and (c modelling of the water and salt balances of leucaena and grass inter-row systems using data from this study, with various levels of irrigation, to investigate the risks of deep drainage over an extended climate sequence.Keywords: Active rooting depth, agroforestry, Chloris gayana, Leucaena leucocephala

  14. Adaptation to seasonality and the winter freeze

    Directory of Open Access Journals (Sweden)

    Jill Christine Preston

    2013-06-01

    Full Text Available Flowering plants initially diversified during the Mesozoic era at least 140 million years ago in regions of the world where temperate seasonal environments were not encountered. Since then several cooling events resulted in the contraction of warm and wet environments and the establishment of novel temperate zones in both hemispheres. In response, less than half of modern angiosperm families have members that evolved specific adaptations to cold seasonal climates, including cold acclimation, freezing tolerance, endodormancy, and vernalization responsiveness. Despite compelling evidence for multiple independent origins, the level of genetic constraint on the evolution of adaptations to seasonal cold is not well understood. However, the recent increase in molecular genetic studies examining the response of model and crop species to seasonal cold offers new insight into the evolutionary lability of these traits. This insight has major implications for our understanding of complex trait evolution, and the potential role of local adaptation in response to past and future climate change. In this review, we discuss the biochemical, morphological, and developmental basis of adaptations to seasonal cold, and synthesize recent literature on the genetic basis of these traits in a phylogenomic context. We find evidence for multiple genetic links between distinct physiological responses to cold, possibly reinforcing the coordinated expression of these traits. Furthermore, repeated recruitment of the same or similar ancestral pathways suggests that land plants might be somewhat pre-adapted to dealing with temperature stress, perhaps making inducible cold traits relatively easy to evolve.

  15. A Remote Sensing Based Forage Biomass Yield Inversion Model of Alpine-cold Meadow during Grass-withering Period in Sanjiangyuan Area

    International Nuclear Information System (INIS)

    Song, Weize; Jia, Haifeng; Liang, Shidong; Wang, Zheng; Liu, Shujie; Hao, Lizhuang; Chai, Shatuo

    2014-01-01

    Estimating forage biomass yield remotely from space is still challenging nowadays. Field experiments were conducted and ground measurements correlated to remote sensing data to estimate the forage biomass yield of Alpine-cold meadow grassland during the grass and grass-withering period in Sanjiangyuan area in Yushu county. Both Shapiro-Wilk and Kolmogorov-Smirnov two-tailed tests showed that the field training samples are normally distributed, the Spearman coefficient indicated that the parametric correlation analysis had significant differences. The optimal regression models were developed based on the Landsat Thematic Mapper Normalized Difference Vegetation Index (TM-NDVI) and the forage biomass field data during the grass and the grass-withering periods, respectively. Then an integration model was used to predict forage biomass yield of alpine-cold meadow in the grass-withering period. The model showed good prediction accuracy and reliability. It was found that this approach can not only estimate forage yield in large scale efficiently but also overcome the seasonal limitation of remote sensing inversion. This technique can provides valuable guidance to animal husbandry to resource more efficiently in winter

  16. A zero-power warming chamber for investigating plant responses to rising temperature

    Science.gov (United States)

    Lewin, Keith F.; McMahon, Andrew M.; Ely, Kim S.; Serbin, Shawn P.; Rogers, Alistair

    2017-09-01

    Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. However, current passive warming approaches are only able to elevate the mean daily air temperature by ˜ 1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be ˜ 2-3 °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW) chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. The approach we describe is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming approaches is desired.

  17. Effects of different re-warm up activities in football players' performance.

    Directory of Open Access Journals (Sweden)

    Eduardo Abade

    Full Text Available Warm up routines are commonly used to optimize football performance and prevent injuries. Yet, official pre-match protocols may require players to passively rest for approximately 10 to 15 minutes between the warm up and the beginning of the match. Therefore, the aim of this study was to explore the effect of different re-warm up activities on the physical performance of football players. Twenty-Two Portuguese elite under-19 football players participated in the study conducted during the competitive season. Different re-warm up protocols were performed 6 minutes after the same standardized warm up in 4 consecutive days in a crossover controlled approach: without, eccentric, plyometric and repeated changes of direction. Vertical jump and Sprint performances were tested immediately after warm up and 12 minutes after warm up. Results showed that repeated changes of direction and plyometrics presented beneficial effects to jump and sprint. Different practical implications may be taken from the eccentric protocol since a vertical jump impairment was observed, suggesting a possibly harmful effect. The absence of re-warm up activities may be detrimental to players' physical performance. However, the inclusion of re-warm up prior to match is a complex issue, since the manipulation of volume, intensity and recovery may positively or negatively affect the subsequent performance. In fact, this exploratory study shows that eccentric exercise may be harmful for physical performance when performed prior a football match. However, plyometric and repeated changes of direction exercises seem to be simple, quick and efficient activities to attenuate losses in vertical jump and sprint capacity after warm up. Coaches should aim to develop individual optimal exercise modes in order to optimize physical performance after re warm activities.

  18. A zero-power warming chamber for investigating plant responses to rising temperature

    Directory of Open Access Journals (Sweden)

    K. F. Lewin

    2017-09-01

    Full Text Available Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. However, current passive warming approaches are only able to elevate the mean daily air temperature by  ∼  1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be  ∼  2–3 °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. The approach we describe is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming

  19. Autumn photosynthetic decline and growth cessation in seedlings of white spruce are decoupled under warming and photoperiod manipulations.

    Science.gov (United States)

    Stinziano, Joseph R; Way, Danielle A

    2017-08-01

    Climate warming is expected to increase the seasonal duration of photosynthetic carbon fixation and tree growth in high-latitude forests. However, photoperiod, a crucial cue for seasonality, will remain constant, which may constrain tree responses to warming. We investigated the effects of temperature and photoperiod on weekly changes in photosynthetic capacity, leaf biochemistry and growth in seedlings of a boreal evergreen conifer, white spruce [Picea glauca (Moench) Voss]. Warming delayed autumn declines in photosynthetic capacity, extending the period when seedlings had high carbon uptake. While photoperiod was correlated with photosynthetic capacity, short photoperiods did not constrain the maintenance of high photosynthetic capacity under warming. Rubisco concentration dynamics were affected by temperature but not photoperiod, while leaf pigment concentrations were unaffected by treatments. Respiration rates at 25 °C were stimulated by photoperiod, although respiration at the growth temperatures was increased in warming treatments. Seedling growth was stimulated by increased photoperiod and suppressed by warming. We demonstrate that temperature is a stronger control on the seasonal timing of photosynthetic down-regulation than is photoperiod. Thus, while warming can stimulate carbon uptake in boreal conifers, the extra carbon may be directed towards respiration rather than biomass, potentially limiting carbon sequestration under climate change. © 2017 John Wiley & Sons Ltd.

  20. Impacts of +2 °C global warming on winter tourism demand in Europe

    NARCIS (Netherlands)

    Damm, Andrea; Greuell, Wouter; Landgren, Oskar; Prettenthaler, Franz

    2017-01-01

    Increasing temperatures and snow scarce winter seasons challenge the winter tourism industry. In this study the impacts of +2 °C global warming on winter tourism demand in Europe's ski tourism related NUTS-3 regions are quantified. Using time series regression models, the relationship between