WorldWideScience

Sample records for warm ionized gas

  1. The GBT Diffuse Ionized Gas Survey (GDIGS)

    Science.gov (United States)

    Luisi, Matteo; Anderson, Loren Dean; Liu, Bin; Bania, Thomas; Balser, Dana; Wenger, Trey; Haffner, Lawrence Matthew

    2018-01-01

    Diffuse ionized gas in the Galactic mid-plane known as the "Warm Ionized Medium" (WIM) makes up ~20% of the gas mass of the Milky Way and >90% of its ionized gas. It is the last major component of the interstellar medium (ISM) that has not yet been studied at high spatial and spectral resolution, and therefore many of its fundamental properties remain unclear. The Green Bank Telescope (GBT) Diffuse Ionized Gas Survey (GDIGS) is a new large survey of the Milky Way disk at C-band (4-8 GHz). The main goals of GDIGS are to investigate the properties of the WIM and to determine the connection between the WIM and high-mass star formation over the Galactic longitude and latitude range of 32 deg > l > -5 deg, |b| resolution of 0.5 km/s and rms sensitivities of ~3 mJy per beam. GDIGS observations are currently underway and are expected to be completed by late 2018. These data will allow us to: 1) Study for the first time the inner-Galaxy WIM unaffected by confusion from discrete HII regions, 2) determine the distribution of the inner Galaxy WIM, 3) investigate the ionization state of the WIM, 4) explore the connection between the WIM and HII regions, and 5) analyze the effect of leaked photons from HII regions on ISM dust temperatures.

  2. SOFIA Observations of S106: Dynamics of the Warm Gas

    Science.gov (United States)

    Simon, R.; Schneider, N.; Stutzki, J.; Gusten, R.; Graf, U. U.; Hartogh, P.; Guan, X.; Staguhn, J. G.; Benford, D. J.

    2012-01-01

    Context The H II region/PDR/molecular cloud complex S106 is excited by a single O-star. The full extent of the warm and dense gas close to the star has not been mapped in spectrally resolved high-J CO or [C II] lines, so the kinematics of the warm. partially ionized gas, are unknown. Whether the prominent dark lane bisecting the hourglass-shaped nebula is due solely to the shadow cast by a small disk around the exciting star or also to extinction in high column foreground gas was an open question until now. Aims. To disentangle the morphology and kinematics of warm neutral and ionized gas close to the star, study their relation to the bulk of the molecular gas. and to investigate the nature of the dark lane. Methods. We use the heterodyne receiver GREAT on board SOFIA to observe velocity resolved spectral lines of [C II] and CO 11 yields 10 in comparison with so far unpublished submm continuum data at 350 micron (8HARC-Il) and complementary molecular line data. Results. The high angular and spectral resolution observations show a very complex morphology and kinematics of the inner S106 region, with many different components at different excitation conditions contributing to the observed emission. The [C II] lines are found to be bright and very broad. tracing high velocity gas close to the interface of molecular cloud and H II region. CO 11 yields 10 emission is more confined.. both spatially and in velocity, to the immediate surroundings of S 106 IR showing the presence of warm, high density (clumpy) gas. Our high angular resolution submm continuum observations rule out the scenario where the dark lane separating the two lobes is due solely to the shadow cast by a small disk close to the star. The lane is clearly seen also as warm, high column density gas at the boundary of the molecular cloud and H II region.

  3. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction.

    Science.gov (United States)

    Dai, Jiayu; Hou, Yong; Yuan, Jianmin

    2010-06-18

    Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.

  4. The Formation and Physical Origin of Highly Ionized Cooling Gas

    Energy Technology Data Exchange (ETDEWEB)

    Bordoloi, Rongmon [MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States); Wagner, Alexander Y. [University of Tsukuba, Center for Computational Sciences, Tennodai 1-1-1, Tsukuba, Ibaraki (Japan); Heckman, Timothy M.; Norman, Colin A., E-mail: bordoloi@mit.edu, E-mail: bordoloi@mit.edu [Department of Physics and Astronomy, John Hopkins University, 21218, Baltimore, MD (United States)

    2017-10-20

    We present a simple model that explains the origin of warm, diffuse gas seen primarily as highly ionized absorption-line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O vi, O vii, Ne viii, N v, and Mg x, and we present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium, and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explained by a simple model of radiatively cooling gas. We show that most such absorption-line systems are consistent with being collisionally ionized, and we estimate the maximum-likelihood temperature of the gas in each observation. This model satisfactorily explains why O vi is regularly observed around star-forming low- z L* galaxies, and why N v is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O vi absorbers in the interstellar, circumgalactic, intragroup, and intergalactic media, as well as the available data on other absorption lines from highly ionized species.

  5. Ionized gas at the edge of the central molecular zone

    Science.gov (United States)

    Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.; Velusamy, T.; Requena-Torres, M. A.; Wiesemeyer, H.

    2015-04-01

    Context. The edge of the central molecular zone (CMZ) is the location where massive dense molecular clouds with large internal velocity dispersions transition to the surrounding more quiescent and lower CO emissivity region of the Galaxy. Little is known about the ionized gas surrounding the molecular clouds and in the transition region. Aims: We determine the properties of the ionized gas at the edge of the CMZ near Sgr E using observations of N+ and C+. Methods: We observed a small portion of the edge of the CMZ near Sgr E with spectrally resolved [C ii] 158 μm and [N ii] 205 μm fine structure lines at six positions with the GREAT instrument on SOFIA and in [C ii] using Herschel HIFI on-the-fly strip maps. We use the [N ii] spectra along with a radiative transfer model to calculate the electron density of the gas and the [C ii] maps to illuminate the morphology of the ionized gas and model the column density of CO-dark H2. Results: We detect two [C ii] and [N ii] velocity components, one along the line of sight to a CO molecular cloud at - 207 km s-1 associated with Sgr E and the other at -174 km s-1 outside the edge of another CO cloud. From the [N ii] emission we find that the average electron density is in the range of ~5 to 21 cm-3 for these features. This electron density is much higher than that of the disk's warm ionized medium, but is consistent with densities determined for bright diffuse H ii nebula. The column density of the CO-dark H2 layer in the -207 km s-1 cloud is ~1-2 × 1021 cm-2 in agreement with theoretical models. The CMZ extends further out in Galactic radius by ~7 to 14 pc in ionized gas than it does in molecular gas traced by CO. Conclusions: The edge of the CMZ likely contains dense hot ionized gas surrounding the neutral molecular material. The high fractional abundance of N+ and high electron density require an intense EUV field with a photon flux of order 106 to 107 photons cm-2 s-1, and/or efficient proton charge exchange with

  6. EVIDENCE FOR DCO+ AS A PROBE OF IONIZATION IN THE WARM DISK SURFACE

    International Nuclear Information System (INIS)

    Favre, Cécile; Bergin, Edwin A.; Cleeves, L. Ilsedore; Hersant, Franck; Qi, Chunhua; Aikawa, Yuri

    2015-01-01

    In this Letter, we model the chemistry of DCO + in protoplanetary disks. We find that the overall distribution of the DCO + abundance is qualitatively similar to that of CO but is dominated by a thin layer located at the inner disk surface. To understand its distribution, we investigate the different key gas-phase deuteration pathways that can lead to the formation of DCO + . Our analysis shows that the recent update in the exothermicity of the reaction involving CH 2 D + as a parent molecule of DCO + favors deuterium fractionation in warmer conditions. As a result, the formation of DCO + is enhanced in the inner warm surface layers of the disk where X-ray ionization occurs. Our analysis points out that DCO + is not a reliable tracer of the CO snow line as previously suggested. We thus predict that DCO + is a tracer of active deuterium and, in particular, X-ray ionization of the inner disk

  7. State and trends of ionization gas analysis. 1

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Grosse, H.J.; Popp, P.

    1980-01-01

    The ionization gas analysis makes use of the fact that the ionization-induced conductivity of gases and gas mixtures changes with the composition of such mixtures. A general description is given of ionization detectors based on this principle and theory, properties, and main fields of application of electron capture detectors are discussed

  8. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula.

    Science.gov (United States)

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-06-09

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)-CO-N2-noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system.

  9. Research on insulating material affecting the property of gas ionization chamber

    International Nuclear Information System (INIS)

    Wang Liqiang; Wang Zhentao; Zheng Jian

    2014-01-01

    The insulating material in ionization chamber affects the internal gas pressure and ionic pulse shape in the research process of the ion drift velocity in high pressure gas ionization chamber. It will affect the ion drift velocity measurement. It is required to isolate by insulating material between electrode to electrode and between electrodes to the shell of gas ionization chamber. Insulating material in gas ionization chamber is indispensable. Therefore it needs to carefully study the insulating material affecting the performance of gas ionization chamber. First of all, it is found that Teflon can slowly adsorb the working gas in ionization chamber, and the gas pressure in it is reduced when we measure the sensitivity of gas ionization chamber over time. It is verified by experiment that insulating materials absorbing and releasing gas is dynamically reversible process. Then the adsorbing gas property of 95% aluminium oxide ceramic and Teflon is studied through experimental comparision. Gas adsorption equilibrium time of ceramic material is faster, generally it is about a few hours, and the gas adsorption capacity is relatively less. Gas adsorption equilibrium time of Teflon is slower, it is about a few days, and the gas adsorption capacity is relatively more. It is found that Teflon will release part of the gas at higher temperature through experimental research on the influence of Teflon adsorbing gas. Finally it is studied that the distribution of insulation in ionization chamber affects the time response speed of ionization chamber by measuring the signal pulse shape of ionization chamber under the pulse X-ray. Through these experimental research, it is presented that it need to pay attention to select insulation material and to design the internal structure and arrangement of insulating material when we design gas ionization chamber. (authors)

  10. Gas ionization by focused laser beams

    International Nuclear Information System (INIS)

    Brito, A.L. de.

    1984-01-01

    It is shown that the effect of line broadening by focusing may considerably contribute to the observed laser-induced ionization of gases when the ionization energy of the gas molecules is well above the mean photon energy of the laser radiation. (Author) [pt

  11. High concentration tritium gas measurement with small volume ionization chambers for fusion fuel gas monitors

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Okuno, Kenji; Matsuda, Yuji; Naruse, Yuji

    1991-01-01

    To apply ionization chambers to fusion fuel gas processing systems, high concentration tritium gas was experimentally measured with small volume 0.16 and 21.6 cm 3 ionization chambers. From plateau curves, the optimum electric field strength was obtained as 100∼200 V/cm. Detection efficiency was confirmed as dependent on the ionization ability of the filled gas, and moreover on its stopping power, because when the range of the β-rays was shortened, the probability of energy loss by collisions with the electrode and chamber wall increased. Loss of ions by recombination was prevented by using a small volume ionization chamber. For example the 0.16 cm 3 ionization chamber gave measurement with linearity to above 40% tritium gas. After the tritium gas measurements, the concentration levels inside the chamber were estimated from their memory currents. Although more than 1/4,000 of the maximum, current was observed as a memory effect, the smaller ionization chamber gave a smaller memory effect. (author)

  12. PRESENT-DAY GALACTIC EVOLUTION: LOW-METALLICITY, WARM, IONIZED GAS INFLOW ASSOCIATED WITH HIGH-VELOCITY CLOUD COMPLEX A

    Energy Technology Data Exchange (ETDEWEB)

    Barger, K. A.; Haffner, L. M.; Wakker, B. P.; Hill, Alex S. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Madsen, G. J. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Duncan, A. K., E-mail: kbarger@astro.wisc.edu, E-mail: haffner@astro.wisc.edu, E-mail: Alex.Hill@csiro.au, E-mail: wakker@astro.wisc.edu, E-mail: greg.madsen@sydney.edu.au [Rose-Hulman Institute of Technology, Terre Haute, IN 47803 (United States)

    2012-12-20

    The high-velocity cloud Complex A is a probe of the physical conditions in the Galactic halo. The kinematics, morphology, distance, and metallicity of Complex A indicate that it represents new material that is accreting onto the Galaxy. We present Wisconsin H{alpha} Mapper kinematically resolved observations of Complex A over the velocity range of -250 to -50 km s{sup -1} in the local standard of rest reference frame. These observations include the first full H{alpha} intensity map of Complex A across (l, b) = (124 Degree-Sign , 18 Degree-Sign ) to (171 Degree-Sign , 53 Degree-Sign ) and deep targeted observations in H{alpha}, [S II] {lambda}6716, [N II] {lambda}6584, and [O I] {lambda}6300 toward regions with high H I column densities, background quasars, and stars. The H{alpha} data imply that the masses of neutral and ionized material in the cloud are similar, both being greater than 10{sup 6} M{sub Sun }. We find that the Bland-Hawthorn and Maloney model for the intensity of the ionizing radiation near the Milky Way is consistent with the known distance of the high-latitude part of Complex A and an assumed cloud geometry that puts the lower-latitude parts of the cloud at a distance of 7-8 kpc. This compatibility implies a 5% ionizing photon escape fraction from the Galactic disk. We also provide the nitrogen and sulfur upper abundance solutions for a series of temperatures, metallicities, and cloud configurations for purely photoionized gas; these solutions are consistent with the sub-solar abundances found by previous studies, especially for temperatures above 10{sup 4} K or for gas with a high fraction of singly ionized nitrogen and sulfur.

  13. Greenhouse gas emissions increase global warming

    OpenAIRE

    Mohajan, Haradhan

    2011-01-01

    This paper discusses the greenhouse gas emissions which cause the global warming in the atmosphere. In the 20th century global climate change becomes more sever which is due to greenhouse gas emissions. According to International Energy Agency data, the USA and China are approximately tied and leading global emitters of greenhouse gas emissions. Together they emit approximately 40% of global CO2 emissions, and about 35% of total greenhouse gases. The developed and developing industrialized co...

  14. Microscopic theory of warm ionized gases: equation of state and kinetic Schottky anomaly

    International Nuclear Information System (INIS)

    Capolupo, A; Giampaolo, S M; Illuminati, F

    2013-01-01

    Based on accurate Lennard-Jones type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analogue in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed.

  15. Structure of anode plasma of gas discharge taking into account gas ionization burnout

    International Nuclear Information System (INIS)

    Zharinov, A.V.; Shumilin, V.P.

    2006-01-01

    One deals with a structure of an anode plasma of a gas discharge with intensive ionization ( b urnout ) of neutral atoms (neutrals). One derived analytical solutions of the quasi-neutrality equation for potential distribution, as well as, a condition of anode plasma existence in a unidimensional case at the arbitrary dependences of neutral burnout frequency and of electron concentration on the potential. One studied particular cases of the level frequency of neutral burnout, of ionization by the Maxwell electrons and of ionization by the intensive beam at collision-free motion of ions and the Boltzmann distribution of thermal electrons. Solutions for the first two cases at zero parameter of burnout, that is, at the level concentration of a gas coincide with the solutions obtained [1] by the power series expansion. It is shown that in case of ionization by the Maxwell electrons, anode plasma at the rational flow rates of a working gas may be produced under rather high temperature of electrons (if, for example, xenon serves as a working gas, so T e ≥5 eV). The stationary solutions of the quasi-neutrality at ionization by the intensive electron beam are found exclusively when the ratio between the electron beam density and the maximum density of thermal neutrons does not exceed a certain limiting value [ru

  16. Natural gas industry and global warming

    International Nuclear Information System (INIS)

    Staropoli, R.; Darras, M.

    1997-01-01

    Natural gas has a very good potential compared to other fossil fuels as regard to global warming because of its high content of hydrogen, and its versatility in uses. To take full advantage of this potential, further development of gas designed boilers and furnaces, gas catalytic combustion, fuel cells are needed, but progresses in the recent years have been very promising. The natural gas industry' environmental potential is discussed. Regarding methane emission, progresses have been done is Western Europe on the distribution network, and some improvement are underway. It is however important to rationalize the effort by acting on the most emitting subsystem: this can be achieved by cooperation along the whole gas chain. (R.P.)

  17. Theory of warm ionized gases: equation of state and kinetic Schottky anomaly.

    Science.gov (United States)

    Capolupo, A; Giampaolo, S M; Illuminati, F

    2013-10-01

    Based on accurate Lennard-Jones-type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analog in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed. In particular, the predicted plasma electron density in a sonoluminescent bubble turns out to be in good agreement with the value measured in recent experiments.

  18. Net global warming potential and greenhouse gas intensity

    Science.gov (United States)

    Various methods exist to calculate global warming potential (GWP) and greenhouse gas intensity (GHG) as measures of net greenhouse gas (GHG) emissions from agroecosystems. Little is, however, known about net GWP and GHGI that account for all sources and sinks of GHG emissions. Sources of GHG include...

  19. Shock Structure Analysis and Aerodynamics in a Weakly Ionized Gas Flow

    Science.gov (United States)

    Saeks, R.; Popovic, S.; Chow, A. S.

    2006-01-01

    The structure of a shock wave propagating through a weakly ionized gas is analyzed using an electrofluid dynamics model composed of classical conservation laws and Gauss Law. A viscosity model is included to correctly model the spatial scale of the shock structure, and quasi-neutrality is not assumed. A detailed analysis of the structure of a shock wave propagating in a weakly ionized gas is presented, together with a discussion of the physics underlying the key features of the shock structure. A model for the flow behind a shock wave propagating through a weakly ionized gas is developed and used to analyze the effect of the ionization on the aerodynamics and performance of a two-dimensional hypersonic lifting body.

  20. Comparing the sensitivity of permafrost and marine gas hydrate to climate warming

    International Nuclear Information System (INIS)

    Taylor, A.E.; Dallimore, S.R.; Hyndman, R.D.; Wright, F.

    2005-01-01

    The sensitivity of Arctic subpermafrost gas hydrate at the Mallik borehole was compared to temperate marine gas hydrate located offshore southwestern Canada. In particular, a finite element geothermal model was used to determine the sensitivity to the end of the ice age, and contemporary climate warming of a 30 m thick methane hydrate layer lying at the base of a gas hydrate stability zone prior to 13.5 kiloannum (ka) before present (BP). It was suggested that the 30 m gas-hydrate-bearing layer would have disappeared by now, according to the thermal signal alone. However, the same gas-hydrate-bearing layer underlying permafrost would persist until at least 4 ka after present, even with contemporary climate warming. The longer time for subpermafrost gas hydrate comes from the thawing pore ice at the base of permafrost, at the expense of dissociation of the deeper gas hydrate. The dissociation of underlying gas hydrate from climate surface warming is buffered by the overlying permafrost

  1. WARM GAS IN THE VIRGO CLUSTER. I. DISTRIBUTION OF Lyα ABSORBERS

    International Nuclear Information System (INIS)

    Yoon, Joo Heon; Putman, Mary E.; Bryan, Greg L.; Thom, Christopher; Chen, Hsiao-Wen

    2012-01-01

    The first systematic study of the warm gas (T = 10 4–5 K) distribution across a galaxy cluster is presented using multiple background QSOs in and around the Virgo Cluster. We detect 25 Lyα absorbers (N HI = 10 13.1–15.4 cm –2 ) in the Virgo velocity range toward 9 of 12 QSO sightlines observed with the Cosmic Origin Spectrograph, with a cluster impact parameter range of 0.36-1.65 Mpc (0.23-1.05 R vir ). Including 18 Lyα absorbers previously detected by STIS or GHRS toward 7 of 11 background QSOs in and around the Virgo Cluster, we establish a sample of 43 absorbers toward a total of 23 background probes for studying the incidence of Lyα absorbers in and around the Virgo Cluster. With these absorbers, we find (1) warm gas is predominantly in the outskirts of the cluster and avoids the X-ray-detected hot intracluster medium (ICM). Also, Lyα absorption strength increases with cluster impact parameter. (2) Lyα-absorbing warm gas traces cold H I-emitting gas in the substructures of the Virgo Cluster. (3) Including the absorbers associated with the surrounding substructures, the warm gas covering fraction (100% for N HI > 10 13.1 cm –2 ) is in agreement with cosmological simulations. We speculate that the observed warm gas is part of large-scale gas flows feeding the cluster both in the ICM and galaxies.

  2. A novel method for producing multiple ionization of noble gas

    International Nuclear Information System (INIS)

    Wang Li; Li Haiyang; Dai Dongxu; Bai Jiling; Lu Richang

    1997-01-01

    We introduce a novel method for producing multiple ionization of He, Ne, Ar, Kr and Xe. A nanosecond pulsed electron beam with large number density, which could be energy-controlled, was produced by incidence a focused 308 nm laser beam onto a stainless steel grid. On Time-of-Flight Mass Spectrometer, using this electron beam, we obtained multiple ionization of noble gas He, Ne, Ar and Xe. Time of fight mass spectra of these ions were given out. These ions were supposed to be produced by step by step ionization of the gas atoms by electron beam impact. This method may be used as a ideal soft ionizing point ion source in Time of Flight Mass Spectrometer

  3. SDSS-IV MaNGA: A Serendipitous Observation of a Potential Gas Accretion Event

    Science.gov (United States)

    Cheung, Edmond; Stark, David V.; Huang, Song; Rubin, Kate H. R.; Lin, Lihwai; Tremonti, Christy; Zhang, Kai; Yan, Renbin; Bizyaev, Dmitry; Boquien, Médéric; Brownstein, Joel R.; Drory, Niv; Gelfand, Joseph D.; Knapen, Johan H.; Maiolino, Roberto; Malanushenko, Olena; Masters, Karen L.; Merrifield, Michael R.; Pace, Zach; Pan, Kaike; Riffel, Rogemar A.; Roman-Lopes, Alexandre; Rujopakarn, Wiphu; Schneider, Donald P.; Stott, John P.; Thomas, Daniel; Weijmans, Anne-Marie

    2016-12-01

    The nature of warm, ionized gas outside of galaxies may illuminate several key galaxy evolutionary processes. A serendipitous observation by the MaNGA survey has revealed a large, asymmetric Hα complex with no optical counterpart that extends ≈8″ (≈6.3 kpc) beyond the effective radius of a dusty, starbursting galaxy. This Hα extension is approximately three times the effective radius of the host galaxy and displays a tail-like morphology. We analyze its gas-phase metallicities, gaseous kinematics, and emission-line ratios and discuss whether this Hα extension could be diffuse ionized gas, a gas accretion event, or something else. We find that this warm, ionized gas structure is most consistent with gas accretion through recycled wind material, which could be an important process that regulates the low-mass end of the galaxy stellar mass function.

  4. SDSS-IV MaNGA: A SERENDIPITOUS OBSERVATION OF A POTENTIAL GAS ACCRETION EVENT

    International Nuclear Information System (INIS)

    Cheung, Edmond; Stark, David V.; Huang, Song; Rubin, Kate H. R.; Lin, Lihwai; Tremonti, Christy; Zhang, Kai; Yan, Renbin; Bizyaev, Dmitry; Malanushenko, Olena; Boquien, Médéric; Brownstein, Joel R.; Drory, Niv; Gelfand, Joseph D.; Knapen, Johan H.; Maiolino, Roberto; Masters, Karen L.

    2016-01-01

    The nature of warm, ionized gas outside of galaxies may illuminate several key galaxy evolutionary processes. A serendipitous observation by the MaNGA survey has revealed a large, asymmetric H α complex with no optical counterpart that extends ≈8″ (≈6.3 kpc) beyond the effective radius of a dusty, starbursting galaxy. This H α extension is approximately three times the effective radius of the host galaxy and displays a tail-like morphology. We analyze its gas-phase metallicities, gaseous kinematics, and emission-line ratios and discuss whether this H α extension could be diffuse ionized gas, a gas accretion event, or something else. We find that this warm, ionized gas structure is most consistent with gas accretion through recycled wind material, which could be an important process that regulates the low-mass end of the galaxy stellar mass function.

  5. SDSS-IV MaNGA: A SERENDIPITOUS OBSERVATION OF A POTENTIAL GAS ACCRETION EVENT

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Edmond; Stark, David V.; Huang, Song [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Rubin, Kate H. R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lin, Lihwai [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Tremonti, Christy [Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706 (United States); Zhang, Kai; Yan, Renbin [Department of Physics and Astronomy, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055 (United States); Bizyaev, Dmitry; Malanushenko, Olena [Apache Point Observatory and New Mexico State University, P.O. Box 59, Sunspot, NM, 88349-0059 (United States); Boquien, Médéric [Unidad de Astronomía, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta 1270300 (Chile); Brownstein, Joel R. [Department of Physics and Astronomy, University of Utah, 115 S. 1400 E., Salt Lake City, UT 84112 (United States); Drory, Niv [McDonald Observatory, Department of Astronomy, University of Texas at Austin, 1 University Station, Austin, TX 78712-0259 (United States); Gelfand, Joseph D. [NYU Abu Dhabi, P.O. Box 129188, Abu Dhabi (United Arab Emirates); Knapen, Johan H. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Maiolino, Roberto [Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Masters, Karen L., E-mail: ec2250@gmail.com [Institute for Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); and others

    2016-12-01

    The nature of warm, ionized gas outside of galaxies may illuminate several key galaxy evolutionary processes. A serendipitous observation by the MaNGA survey has revealed a large, asymmetric H α complex with no optical counterpart that extends ≈8″ (≈6.3 kpc) beyond the effective radius of a dusty, starbursting galaxy. This H α extension is approximately three times the effective radius of the host galaxy and displays a tail-like morphology. We analyze its gas-phase metallicities, gaseous kinematics, and emission-line ratios and discuss whether this H α extension could be diffuse ionized gas, a gas accretion event, or something else. We find that this warm, ionized gas structure is most consistent with gas accretion through recycled wind material, which could be an important process that regulates the low-mass end of the galaxy stellar mass function.

  6. State and trends of ionization gas analysis. 3

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Grosse, H.J.; Popp, P.

    1980-01-01

    Theory, properties, and main fields of application of noble gas detectors are discussed. The theory and design of the indirect electron mobility detector is presented. Conclusions are drawn with regard to possibilities of further development of detectors for the ionization gas analysis

  7. Gauging Metallicity of Diffuse Gas under an Uncertain Ionizing Radiation Field

    Science.gov (United States)

    Chen, Hsiao-Wen; Johnson, Sean D.; Zahedy, Fakhri S.; Rauch, Michael; Mulchaey, John S.

    2017-06-01

    Gas metallicity is a key quantity used to determine the physical conditions of gaseous clouds in a wide range of astronomical environments, including interstellar and intergalactic space. In particular, considerable effort in circumgalactic medium (CGM) studies focuses on metallicity measurements because gas metallicity serves as a critical discriminator for whether the observed heavy ions in the CGM originate in chemically enriched outflows or in more chemically pristine gas accreted from the intergalactic medium. However, because the gas is ionized, a necessary first step in determining CGM metallicity is to constrain the ionization state of the gas which, in addition to gas density, depends on the ultraviolet background radiation field (UVB). While it is generally acknowledged that both the intensity and spectral slope of the UVB are uncertain, the impact of an uncertain spectral slope has not been properly addressed in the literature. This Letter shows that adopting a different spectral slope can result in an order of magnitude difference in the inferred CGM metallicity. Specifically, a harder UVB spectrum leads to a higher estimated gas metallicity for a given set of observed ionic column densities. Therefore, such systematic uncertainties must be folded into the error budget for metallicity estimates of ionized gas. An initial study shows that empirical diagnostics are available for discriminating between hard and soft ionizing spectra. Applying these diagnostics helps reduce the systematic uncertainties in CGM metallicity estimates.

  8. Gauging Metallicity of Diffuse Gas under an Uncertain Ionizing Radiation Field

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsiao-Wen; Zahedy, Fakhri S. [Department of Astronomy and Astrophysics, The University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States); Johnson, Sean D. [Department of Astrophysics, Princeton University, Princeton, NJ (United States); Rauch, Michael; Mulchaey, John S., E-mail: hchen@oddjob.uchicago.edu [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2017-06-20

    Gas metallicity is a key quantity used to determine the physical conditions of gaseous clouds in a wide range of astronomical environments, including interstellar and intergalactic space. In particular, considerable effort in circumgalactic medium (CGM) studies focuses on metallicity measurements because gas metallicity serves as a critical discriminator for whether the observed heavy ions in the CGM originate in chemically enriched outflows or in more chemically pristine gas accreted from the intergalactic medium. However, because the gas is ionized, a necessary first step in determining CGM metallicity is to constrain the ionization state of the gas which, in addition to gas density, depends on the ultraviolet background radiation field (UVB). While it is generally acknowledged that both the intensity and spectral slope of the UVB are uncertain, the impact of an uncertain spectral slope has not been properly addressed in the literature. This Letter shows that adopting a different spectral slope can result in an order of magnitude difference in the inferred CGM metallicity. Specifically, a harder UVB spectrum leads to a higher estimated gas metallicity for a given set of observed ionic column densities. Therefore, such systematic uncertainties must be folded into the error budget for metallicity estimates of ionized gas. An initial study shows that empirical diagnostics are available for discriminating between hard and soft ionizing spectra. Applying these diagnostics helps reduce the systematic uncertainties in CGM metallicity estimates.

  9. Resonance ionization in a gas cell: a feasibility study for a laser ion source

    International Nuclear Information System (INIS)

    Qamhieh, Z.N.; Vandeweert, E.; Silverans, R.E.; Duppen, P. van; Huyse, M.; Vermeeren, L.

    1992-01-01

    A laser ion source based on resonance photo-ionization in a gas cell is proposed. The gas cell, filled with helium, consists of a target chamber in which the recoil products are stopped and neutralized, and an ionization chamber where the atoms of interest are selectively ionized by the laser light. The extraction of the ions from the ionization chamber through the exit hole-skimmer setup is similar to the ion-guide system. The conditions to obtain an optimal system are given. The results of a two-step one-laser resonance photo-ionization of nickel and the first results of laser ionization in a helium buffer gas cell are presented. (orig.)

  10. The critical ionization velocity mechnism for the case of gas mixture

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1982-08-01

    The theory of the critical ionization velocity mechnisms is discussed. In the case of gas mixture the critical velocity is expected to depend on the ionization cross sections. An analytic approximation is introduced which can be used to set limits on a generalized expression for the critical velocity of gas mixtures. (Author)

  11. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    International Nuclear Information System (INIS)

    Álvarez, V; Cárcel, S; Cervera, A; Díaz, J; Ferrario, P; Gil, A; Gómez-Cadenas, J J; Borges, F I G; Conde, C A N; Fernandes, L M P; Freitas, E D C; Cebrián, S; Dafni, T; Gómez, H; Egorov, M; Gehman, V M; Goldschmidt, A; Esteve, R; Evtoukhovitch, P; Ferreira, A L

    2013-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas.

  12. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    Science.gov (United States)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  13. Influence of ionization on ultrafast gas-based nonlinear fiber optics.

    Science.gov (United States)

    Chang, W; Nazarkin, A; Travers, J C; Nold, J; Hölzer, P; Joly, N Y; Russell, P St J

    2011-10-10

    We numerically investigate the effect of ionization on ultrashort high-energy pulses propagating in gas-filled kagomé-lattice hollow-core photonic crystal fibers by solving an established uni-directional field equation. We consider the dynamics of two distinct regimes: ionization induced blue-shift and resonant dispersive wave emission in the deep-UV. We illustrate how the system evolves between these regimes and the changing influence of ionization. Finally, we consider the effect of higher ionization stages.

  14. Warm gas towards young stellar objects in Corona Australis

    DEFF Research Database (Denmark)

    Lindberg, Johan; Jørgensen, Jes Kristian; D. Green, Joel

    2014-01-01

    The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated by an interm......The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated...... by an intermediate-mass young star. We study the effects on the warm gas and dust in a group of low-mass young stellar objects from the irradiation by the young luminous Herbig Be star R CrA. Herschel/PACS far-infrared datacubes of two low-mass star-forming regions in the R CrA dark cloud are presented...... Be star R CrA. Our results show that a nearby luminous star does not increase the molecular excitation temperatures in the warm gas around a young stellar object (YSO). However, the emission from photodissociation products of H2O, such as OH and O, is enhanced in the warm gas associated...

  15. Penning ionization cross sections of excited rare gas atoms

    International Nuclear Information System (INIS)

    Ukai, Masatoshi; Hatano, Yoshihiko.

    1988-01-01

    Electronic energy transfer processes involving excited rare gas atoms play one of the most important roles in ionized gas phenomena. Penning ionization is one of the well known electronic energy transfer processes and has been studied extensively both experimentally and theoretically. The present paper reports the deexcitation (Penning ionization) cross sections of metastable state helium He(2 3 S) and radiative He(2 1 P) atoms in collision with atoms and molecules, which have recently been obtained by the authors' group by using a pulse radiolysis method. Investigation is made of the selected deexcitation cross sections of He(2 3 S) by atoms and molecules in the thermal collisional energy region. Results indicate that the cross sections are strongly dependent on the target molecule. The deexcitation probability of He(2 3 S) per collision increases with the excess electronic energy of He(2 3 S) above the ionization potential of the target atom or molecule. Another investigation, made on the deexcitation of He(2 1 P), suggests that the deexcitation cross section for He(2 1 P) by Ar is determined mainly by the Penning ionization cross section due to a dipole-dipole interaction. Penning ionization due to the dipole-dipole interaction is also important for deexcitation of He(2 1 P) by the target molecules examined. (N.K.)

  16. Two-step laser ionization schemes for in-gas laser ionization and spectroscopy of radioactive isotopesa

    OpenAIRE

    Kudryavtsev, Yuri; Ferrer, Rafael; Huyse, Mark; Van den Bergh, Paul; Van Duppen, Piet; Vermeeren, L.

    2014-01-01

    The in-gas laser ionization and spectroscopy technique has been developed at the Leuven isotope separator on-line facility for the production and in-source laser spectroscopy studies of short-lived radioactive isotopes. In this article, results from a study to identify efficient optical schemes for the two-step resonance laser ionization of 18 elements are presented. © 2013 AIP Publishing LLC.

  17. PHYSICS OF A PARTIALLY IONIZED GAS RELEVANT TO GALAXY FORMATION SIMULATIONS—THE IONIZATION POTENTIAL ENERGY RESERVOIR

    International Nuclear Information System (INIS)

    Vandenbroucke, B.; De Rijcke, S.; Schroyen, J.; Jachowicz, N.

    2013-01-01

    Simulation codes for galaxy formation and evolution take on board as many physical processes as possible beyond the standard gravitational and hydrodynamical physics. Most of this extra physics takes place below the resolution level of the simulations and is added in a ''sub-grid'' fashion. However, these sub-grid processes affect the macroscopic hydrodynamical properties of the gas and thus couple to the ''on-grid'' physics that is explicitly integrated during the simulation. In this paper, we focus on the link between partial ionization and the hydrodynamical equations. We show that the energy stored in ions and free electrons constitutes a potential energy term which breaks the linear dependence of the internal energy on temperature. Correctly taking into account ionization hence requires modifying both the equation of state and the energy-temperature relation. We implemented these changes in the cosmological simulation code GADGET2. As an example of the effects of these changes, we study the propagation of Sedov-Taylor shock waves through an ionizing medium. This serves as a proxy for the absorption of supernova feedback energy by the interstellar medium. Depending on the density and temperature of the surrounding gas, we find that up to 50% of the feedback energy is spent ionizing the gas rather than heating it. Thus, it can be expected that properly taking into account ionization effects in galaxy evolution simulations will drastically reduce the effects of thermal feedback. To the best of our knowledge, this potential energy term is not used in current simulations of galaxy formation and evolution.

  18. Several versions of forward gas ionization calorimeter

    International Nuclear Information System (INIS)

    Babintsev, V.V.; Kholodenko, A.G.; Rodnov, Yu.V.

    1994-01-01

    The properties of several versions of a gas ionization calorimeter are analyzed by means of the simulation with the GEANT code. The jet energy and coordinate resolutions are evaluated. Some versions of the forward calorimeter meet the ATLAS requirements. 13 refs., 15 figs., 7 tabs

  19. The first experience with LHC beam gas ionization monitor

    CERN Document Server

    Sapinski, M; Dehning, B; Guerrero, A; Patecki, M; Versteegen, R

    2012-01-01

    The Beam Gas Ionization Monitors (BGI) are used to measure beam emittance on LHC. This paper describes the detectors and their operation and discusses the issues met during the commissioning. It also discusses the various calibration procedures used to correct for non-uniformity of Multi-Channel plates and to correct the beam size for effects affecting the electron trajectory after ionization.

  20. Lyman-continuum leakage as dominant source of diffuse ionized gas in the Antennae galaxy

    Science.gov (United States)

    Weilbacher, Peter M.; Monreal-Ibero, Ana; Verhamme, Anne; Sandin, Christer; Steinmetz, Matthias; Kollatschny, Wolfram; Krajnović, Davor; Kamann, Sebastian; Roth, Martin M.; Erroz-Ferrer, Santiago; Marino, Raffaella Anna; Maseda, Michael V.; Wendt, Martin; Bacon, Roland; Dreizler, Stefan; Richard, Johan; Wisotzki, Lutz

    2018-04-01

    The Antennae galaxy (NGC 4038/39) is the closest major interacting galaxy system and is therefore often studied as a merger prototype. We present the first comprehensive integral field spectroscopic dataset of this system, observed with the MUSE instrument at the ESO VLT. We cover the two regions in this system which exhibit recent star formation: the central galaxy interaction and a region near the tip of the southern tidal tail. In these fields, we detect HII regions and diffuse ionized gas to unprecedented depth. About 15% of the ionized gas was undetected by previous observing campaigns. This newly detected faint ionized gas is visible everywhere around the central merger, and shows filamentary structure. We estimate diffuse gas fractions of about 60% in the central field and 10% in the southern region. We are able to show that the southern region contains a significantly different population of HII regions, showing fainter luminosities. By comparing HII region luminosities with the HST catalog of young star clusters in the central field, we estimate that there is enough Lyman-continuum leakage in the merger to explain the amount of diffuse ionized gas that we detect. We compare the Lyman-continuum escape fraction of each HII region against emission line ratios that are sensitive to the ionization parameter. While we find no systematic trend between these properties, the most extreme line ratios seem to be strong indicators of density bounded ionization. Extrapolating the Lyman-continuum escape fractions to the southern region, we conclude that simply from the comparison of the young stellar populations to the ionized gas there is no need to invoke other ionization mechanisms than Lyman-continuum leaking HII regions for the diffuse ionized gas in the Antennae. FITS images and Table of HII regions are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A95 and at http://muse-vlt.eu/science/antennae/

  1. PHYSICS OF A PARTIALLY IONIZED GAS RELEVANT TO GALAXY FORMATION SIMULATIONS-THE IONIZATION POTENTIAL ENERGY RESERVOIR

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbroucke, B.; De Rijcke, S.; Schroyen, J. [Department of Physics and Astronomy, Ghent University, Krijgslaan 281, S9, B-9000 Gent (Belgium); Jachowicz, N. [Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Gent (Belgium)

    2013-07-01

    Simulation codes for galaxy formation and evolution take on board as many physical processes as possible beyond the standard gravitational and hydrodynamical physics. Most of this extra physics takes place below the resolution level of the simulations and is added in a ''sub-grid'' fashion. However, these sub-grid processes affect the macroscopic hydrodynamical properties of the gas and thus couple to the ''on-grid'' physics that is explicitly integrated during the simulation. In this paper, we focus on the link between partial ionization and the hydrodynamical equations. We show that the energy stored in ions and free electrons constitutes a potential energy term which breaks the linear dependence of the internal energy on temperature. Correctly taking into account ionization hence requires modifying both the equation of state and the energy-temperature relation. We implemented these changes in the cosmological simulation code GADGET2. As an example of the effects of these changes, we study the propagation of Sedov-Taylor shock waves through an ionizing medium. This serves as a proxy for the absorption of supernova feedback energy by the interstellar medium. Depending on the density and temperature of the surrounding gas, we find that up to 50% of the feedback energy is spent ionizing the gas rather than heating it. Thus, it can be expected that properly taking into account ionization effects in galaxy evolution simulations will drastically reduce the effects of thermal feedback. To the best of our knowledge, this potential energy term is not used in current simulations of galaxy formation and evolution.

  2. In-gas-cell laser ionization studies of plutonium isotopes at IGISOL

    Science.gov (United States)

    Pohjalainen, I.; Moore, I. D.; Kron, T.; Raeder, S.; Sonnenschein, V.; Tomita, H.; Trautmann, N.; Voss, A.; Wendt, K.

    2016-06-01

    In-gas-cell resonance laser ionization has been performed on long-lived isotopes of Pu at the IGISOL facility, Jyväskylä. This initiates a new programme of research towards high-resolution optical spectroscopy of heavy actinide elements which can be produced in sufficient quantities at research reactors and transported to facilities elsewhere. In this work a new gas cell has been constructed for fast extraction of laser-ionized elements. Samples of 238-240,242Pu and 244Pu have been evaporated from Ta filaments, laser ionized, mass separated and delivered to the collinear laser spectroscopy station. Here we report on the performance of the gas cell through studies of the mass spectra obtained in helium and argon, before and after the radiofrequency quadrupole cooler-buncher. This provides valuable insight into the gas phase chemistry exhibited by Pu, which has been additionally supported by measurements of ion time profiles. The resulting monoatomic yields are sufficient for collinear laser spectroscopy. A gamma-ray spectroscopic analysis of the Pu samples shows a good agreement with the assay provided by the Mainz Nuclear Chemistry department.

  3. Determination of equilibrium composition of thermally ionized monoatomic gas under different physical conditions

    Science.gov (United States)

    Romanova, M. S.; Rydalevskaya, M. A.

    2017-05-01

    Perfect gas mixtures that result from thermal ionization of spatially and chemically homogeneous monoatomic gases are considered. Equilibrium concentrations of the components of such mixtures are determined using integration over the momentum space and summation with respect to energy levels of the distribution functions that maximize the entropy of system under condition for constancy of the total number of nuclei and electrons. It is demonstrated that such a method allows significant simplification of the calculation of the equilibrium composition for ionized mixtures at different temperatures and makes it possible to study the degree of ionization of gas versus gas density and number in the periodic table of elements.

  4. Detection of low-metallicity warm plasma in a galaxy overdensity environment at z ˜ 0.2

    Science.gov (United States)

    Narayanan, Anand; Savage, Blair D.; Mishra, Preetish K.; Wakker, Bart P.; Khaire, Vikram; Wadadekar, Yogesh

    2018-04-01

    We present results from the analysis of a multiphase O VI-broad Ly α (BLA) absorber at z = 0.19236 in the HubbleSpaceTelescope/Cosmic Origins Spectrograph spectrum of PG 1121 + 422. The low and intermediate ionization metal lines in this absorber have a single narrow component, whereas the Ly α has a possible broad component with b({H {I}}) ˜ 71 km s-1. Ionization models favour the low and intermediate ions coming from a T ˜ 8500 K, moderately dense (n H ˜ 10 - 3 cm-3) photoionized gas with near solar metallicities. The weak O VI requires a separate gas phase that is collisionally ionized. The O VI coupled with BLA suggests T ˜ 3.2 × 105 K, with significantly lower metal abundance and ˜1.8 orders of magnitude higher total hydrogen column density compared to the photoionized phase. Sloan Digitial Sky Survey (SDSS) shows 12 luminous (>L*) galaxies in the ρ ≤ 5 Mpc, |Δv| ≤ 800 km s-1 region surrounding the absorber, with the absorber outside the virial bounds of the nearest galaxy. The warm phase of this absorber is consistent with being transition temperature plasma either at the interface regions between the hot intragroup gas and cooler photoionized clouds within the group, or associated with high velocity gas in the halo of a ≲L* galaxy. The absorber highlights the advantage of O VI-BLA absorbers as ionization model independent probes of warm baryon reserves.

  5. FUNDAMENTAL PROPERTIES OF THE HIGHLY IONIZED PLASMAS IN THE MILKY WAY

    International Nuclear Information System (INIS)

    Lehner, N.; Zech, W. F.; Howk, J. C.; Savage, B. D.

    2011-01-01

    The cooling transition temperature gas in the interstellar medium (ISM), traced by the high ions, Si IV, C IV, N V, and O VI, helps to constrain the flow of energy from the hot ISM with T>10 6 K to the warm ISM with T 4 K. We investigate the properties of this gas along the lines of sight to 38 stars in the Milky Way disk using 1.5-2.7 km s -1 resolution spectra of Si IV, C IV, and N V absorption from the Space Telescope Imaging Spectrograph, and 15 km s -1 resolution spectra of O VI absorption from the Far Ultraviolet Spectroscopic Explorer. The absorption by Si IV and C IV exhibits broad and narrow components while only broad components are seen in N V and O VI. The narrow components imply gas with T 4 K and trace two distinct types of gas. The strong, saturated, and narrow Si IV and C IV components trace the gas associated with the vicinities of O-type stars and their supershells. The weaker narrow Si IV and C IV components trace gas in the general ISM that is photoionized by the EUV radiation from cooling hot gas or has radiatively cooled in a non-equilibrium manner from the transition temperature phase, but rarely the warm-ionized medium probed by Al III. The broad Si IV, C IV, N V, and O VI components trace collisionally ionized gas that is very likely undergoing a cooling transition from the hot ISM to the warm ISM. The cooling process possibly provides the regulation mechanism that produces (N(C IV)/N(Si IV)) = 3.9 ± 1.9. The cooling process also produces absorption lines where the median and mean values of the line widths increase with the energy required to create the ion.

  6. Study on time response character for high pressure gas ionization chamber of krypton and xenon

    International Nuclear Information System (INIS)

    Tan Chunming; Wu Haifeng; Qing Shangyu; Wang Liqiang

    2006-01-01

    The time response character for Kr and Xe high pressure gas ionization chamber is analyzed and deduced. Compared with the measure data of pulse rising time for three gas-filled ionization chambers, the calculated and experimental results are equal to each other. The rising time less than 10 ms for this kind of ionization chamber can be achieved, so this ionization chamber is able to meet the requirement for imaging detection. (authors)

  7. Development of a sodium ionization detector for sodium-to-gas leaks

    International Nuclear Information System (INIS)

    Swaminathan, K.; Elumalai, G.

    1984-01-01

    A sensitive sodium-to-gas leak detector has been indigenously developed for use in liquid metal cooled fast breeder reactor. The detector relies on the relative ease with which sodium vapour or its aerosols including its oxides and hydroxides can be thermally ionized compared with other possible constituents such as nitrogen, oxygen, water vapour etc. in a carrier gas and is therefore called sodium ionization detector (SID). The ionization current is a measure of sodium concentration in the carrier gas sampled through the detector. Different sensor designs using platinum and rhodium as filament materials in varying sizes were constructed and their responses to different sodium aerosol concentrations in the carrier gas were investigated. Nitrogen was used as the carrier gas. Both the background current and speed of response were found to depend on the diameter of the filament. There was also a particular collector voltage which yielded maximum sensitivity of the detector. The sensor was therefore optimised considering influence of above factors and a detector has been built which demonstrates a sensitivity better than 0.3 nanogram of sodium per cubic centimetre of carrier gas for a signal to background ratio of 1:1. Its usefulness in detecting sodium fires in experimental area was also demonstrated. Currently efforts are under way to improve the life time of the filament used in the above detector. (author)

  8. Evaluation of RSG-GAS purification system and pool warm water layer supplier performance

    International Nuclear Information System (INIS)

    Sudiyono; Suhadi; Diah-Erlina-Lestari

    2005-01-01

    Function of RSG-GAS purification system and warm water supplier (KBE 02) are to pick up dissolve activation result and another dirts of warm water layer. To keep quality of water at the decided level. The system is equipped by heater to supply warm water layer on the reactor pool surface the distribution is to reduce radiation level in the operation hall area a speciality on the reactor pool surface. Line KBE 02 tomord beam tube headitty system supplies water necessary to be shielding to beam tube in use off time. Of the RSG-GAS purification system and pool warm water layer performance date can be shown north of water is always in good condition. To require the dechded requirement. Resin live time is two years and then months

  9. WARM EXTENDED DENSE GAS AT THE HEART OF A COLD COLLAPSING DENSE CORE

    International Nuclear Information System (INIS)

    Shinnaga, Hiroko; Phillips, Thomas G.; Furuya, Ray S.; Kitamura, Yoshimi

    2009-01-01

    In order to investigate when and how the birth of a protostellar core occurs, we made survey observations of four well-studied dense cores in the Taurus molecular cloud using CO transitions in submillimeter bands. We report here the detection of unexpectedly warm (∼30-70 K), extended (radius of ∼2400 AU), dense (a few times 10 5 cm -3 ) gas at the heart of one of the dense cores, L1521F (MC27), within the cold dynamically collapsing components. We argue that the detected warm, extended, dense gas may originate from shock regions caused by collisions between the dynamically collapsing components and outflowing/rotating components within the dense core. We propose a new stage of star formation, 'warm-in-cold core stage (WICCS)', i.e., the cold collapsing envelope encases the warm extended dense gas at the center due to the formation of a protostellar core. WICCS would constitute a missing link in evolution between a cold quiescent starless core and a young protostar in class 0 stage that has a large-scale bipolar outflow.

  10. In-gas-cell laser ionization studies of plutonium isotopes at IGISOL

    International Nuclear Information System (INIS)

    Pohjalainen, I.; Moore, I.D.; Kron, T.; Raeder, S.; Sonnenschein, V.; Tomita, H.; Trautmann, N.; Voss, A.; Wendt, K.

    2016-01-01

    In-gas-cell resonance laser ionization has been performed on long-lived isotopes of Pu at the IGISOL facility, Jyväskylä. This initiates a new programme of research towards high-resolution optical spectroscopy of heavy actinide elements which can be produced in sufficient quantities at research reactors and transported to facilities elsewhere. In this work a new gas cell has been constructed for fast extraction of laser-ionized elements. Samples of "2"3"8"–"2"4"0","2"4"2Pu and "2"4"4Pu have been evaporated from Ta filaments, laser ionized, mass separated and delivered to the collinear laser spectroscopy station. Here we report on the performance of the gas cell through studies of the mass spectra obtained in helium and argon, before and after the radiofrequency quadrupole cooler-buncher. This provides valuable insight into the gas phase chemistry exhibited by Pu, which has been additionally supported by measurements of ion time profiles. The resulting monoatomic yields are sufficient for collinear laser spectroscopy. A gamma-ray spectroscopic analysis of the Pu samples shows a good agreement with the assay provided by the Mainz Nuclear Chemistry department.

  11. Tentative detection of warm intervening gas towards PKS 0548-322 with XMM-Newton

    Energy Technology Data Exchange (ETDEWEB)

    Barcons, X.

    2005-03-17

    We present the results of a long ({approx} 93 ksec) XMM-Newton observation of the bright BL-Lac object PKS 0548-322 (z = 0.069). Our Reflection Grating Spectrometer (RGS) spectrum shows a single absorption feature at an observed wavelength {lambda} = 23.33 {+-} 0.01 {angstrom} which we interpret as OVI K{alpha} absorption at z = 0.058, i.e., {approx} 3000 km s{sup -1} from the background object. The observed equivalent width of the absorption line {approx} 30m {angstrom}, coupled with the lack of the corresponding absorption edge in the EPIC pn data, implies a column density N{sub OVI} {approx} 2 x 10{sup 16} cm{sup -2} and turbulence with a Doppler velocity parameter b > 100 km s{sup -1}. Within the limitations of our RGS spectrum, no OVII or OV K{alpha} absorption are detected. Under the assumption of ionization equilibrium by both collisions and the extragalactic background, this is only marginally consistent if the gas temperature is {approx} 2.5 x 10{sup 5} K, with significantly lower or higher values being excluded by our limits on OV or OVII. If confirmed, this would be the first X-ray detection of a large amount of intervening warm absorbing gas through OVI absorption. The existence of such a high column density absorber, much stronger than any previously detected one in OVI, would place stringent constraints on the large-scale distribution of baryonic gas in the Universe.

  12. Comparing and contrasting Holocene and Eemian warm periods with greenhouse-gas-induced warming

    International Nuclear Information System (INIS)

    MacCracken, M.C.; Kutzbach, J.

    1990-01-01

    Periods of the past that are estimated to have been warmer than present are of great potential interest for comparison with simulations of future climates associated with greenhouse-gas-induced warming. Certain features of the climates of the mid-Holocene and Eemian periods, both interglacial maxima, are described. The simulated climatic responses to both types of forcing, in terms of land/ocean and latitudinal averages, are also compared. The zonal average and annual (or seasonal) average radiation fluxes associated with the different-from-present orbital conditions that existed for those interglacials are compared to the radiation flux associated with CO 2 -induced warming. There are some similarities but also significant differences in the two types of radiation flux perturbations, and there are both similarities and differences in the simulated climatic responses

  13. The Ionization Fraction in the Obscuring ``Torus'' of an Active Galactic Nucleus

    Science.gov (United States)

    Wilson, A. S.; Roy, A. L.; Ulvestad, J. S.; Colbert, E. J. M.; Weaver, K. A.; Braatz, J. A.; Henkel, C.; Matsuoka, M.; Xue, S.; Iyomoto, N.; Okada, K.

    1998-10-01

    The LINER galaxy NGC 2639 contains a water vapor megamaser, suggesting the presence of a nuclear accretion disk or torus viewed close to edge-on. This galaxy is thus a good candidate for revealing absorption by the torus of any compact nuclear continuum emission. In this paper, we report VLBA radio maps at three frequencies and an ASCA X-ray spectrum obtained to search for free-free and photoelectric absorptions, respectively. The radio observations reveal a compact (~1.3 × 10-5, which is comparable to the theoretical upper limit derived by Neufeld, Maloney, and Conger for X-ray heated molecular gas. The two values may be reconciled if the molecular gas is very dense: nH2>~109 cm-3. The measured ionization fraction is also consistent with the idea that both absorptions occur in a hot (~6000 K), weakly ionized (ionization fraction a few times 10-2) atomic region that may coexist with the warm molecular gas. If this is the case, the absorbing gas is ~1 pc from the nucleus. We rule out the possibility that both absorptions occur in a fully ionized gas near 104 K. If our line of sight passes through more than one phase, the atomic gas probably dominates the free-free absorption, while the molecular gas may dominate the photoelectric absorption.

  14. Heat transfer to a particle exposed to a rarefield ionized-gas flow

    International Nuclear Information System (INIS)

    Chen, X.; He, P.

    1986-01-01

    Analytical results are presented concerning the heat transfer to a spherical particle exposed to a high temperature, ionized- gas flow for the extreme case of free-molecule flow regime. It has been shown that the presence of relative velocity between the particle and the ionized gas reduces the floating potential on the particle, enhances the heat flux and causes appreciably non-uniform distribution of the local heat flux. Pronounced difference is found between metallic and non-metallic particles in the floating potential and the local heat flux distributions, in particular for the case with high gas-flow temperature. Relative contribution of atoms to the total heat flux is dominant for the case of low gas-flow temperature, while the heat flux is mainly caused by ions and electrons for the case of high gas-flow temperature

  15. Characteristics of Noble Gas-filled Ionization Chambers for a Low Dose Rate Monitoring

    International Nuclear Information System (INIS)

    Kim, Han Soo; Park, Se Hwan; Ha, Jan Ho; Lee, Jae Hyung; Lee, Nam Ho; Kim, Jung Bok; Kim, Yong Kyun; Kim, Do Hyun; Cho, Seung Yeon

    2007-01-01

    An ionization chamber is still widely used in fields such as an environmental radiation monitoring, a Radiation Monitoring System (RMS) in nuclear facilities, and an industrial application due to its operational stability for a long period and its designs for its applications. Ionization chambers for RMS and an environmental radiation monitoring are requested to detect a low dose rate at as low as 10-2 mR/h and several 3R/h, respectively. Filling gas and its pressure are two of the important factors for an ionization chamber development to use it in these fields, because these can increase the sensitivity of an ionization chamber. We developed cylindrical and spherical ionization chambers for a low dose rate monitoring. Response of a cylindrical ionization chamber, which has a 1 L active volume, was compared when it was filled with Air, Ar, and Xe gas respectively. Response of a spherical ionization chamber was also compared in the case of 9 atm and 25 atm filling-pressures. An inter-comparison with a commercially available high pressure Ar ionization chamber and a fabricated ionization chamber was also performed. A High Pressure Xenon (HPXe) ionization chamber, which was configured with a shielding mesh to eliminate an induced charge of positive ions, was fabricated both for the measurement of an environmental dose rate and for the measurement of an energy spectrum

  16. Ionization chamber for measurements of high-level tritium gas

    International Nuclear Information System (INIS)

    Carstens, D.H.W.; David, W.R.

    1980-01-01

    The construction and calibration of a simple ionization-chamber apparatus for measurement of high level tritium gas is described. The apparatus uses an easily constructed but rugged chamber containing the unknown gas and an inexpensive digital multimeter for measuring the ion current. The equipment after calibration is suitable for measuring 0.01 to 100% tritium gas in hydrogen-helium mixes with an accuracy of a few percent. At both the high and low limits of measurements deviations from the predicted theoretical current are observed. These are briefly discussed

  17. Collisional energy dependence of molecular ionization by metastable rare gas atoms

    International Nuclear Information System (INIS)

    Martin, R.M.; Parr, T.P.

    1979-01-01

    The collisional energy dependence of several molecular total ionization cross sections by metastable rare gas atoms was studied over the thermal energy region using the crossed molecular beam time-of-flight method. Results are reported for the collision systems He, Ne, and Ar ionizing the geometric isomers cis- and trans-dichloroethylene and ortho- and para-dichlorobenzene. The He ionization cross sections oscillate about an energy dependence of E/sup -1/2/ over the energy range 0.004--1.0 eV, and the Ar*+para-dichlorobenzene cross section oscillates about an energy dependence of E/sup -2/5/ over the energy range 0.011--0.64 eV. The remaining systems are characterized by ''bent'' E/sup -m/ dependences with m values of 0.56--0.70 at low energies changing to 0.07--0.29 at higher energies. Comparison with the slopes of the He* systems and the Ar*+para-dichlorobenzene system shows that the ''bent'' and ''oscillating'' energy dependences are similar except for the form of the cross section functions at the lowest energies. No systematic differences are found between the cross section energy dependences for ionization of different geometric isomers or for ionization by the different metastable rare gas atoms

  18. Switch-shock wave structure in a magnetized partly-ionized gas

    International Nuclear Information System (INIS)

    Cramer, N.F.

    1975-01-01

    The effect of the interaction of plasma and neutral gas on the structure of switch-type shock waves propagating in a partly-ionized gas is studied. These shocks, in which the magnetic field is perpendicular to the shock front either upstream or downstream, exhibit a spiralling behaviour of the magnetic field in the shock transition region, if the Hall term is important in the Ohm's law. Observations of this behaviour for shocks propagating into a plasma with a residual neutral content of about 15% has implied an anomalously high resistivity of the plasma. We show that this can be partly explained by considering the collisions of ions with the neutral atoms in a magnetic field. We show that the extra dissipation due to the increase in resistivity goes primarily to the ions and neutrals. Thus even in the absence of viscous dissipation within each species, the heavy particles can be appreciably heated in a shock propagating into a partly-ionized gas in a magnetic field. (author)

  19. What fills the space between the partially ionized clouds in the local interstellar medium

    International Nuclear Information System (INIS)

    Linsky, Jeffrey; Redfield, Seth

    2015-01-01

    The interstellar matter located between the warm clouds in the LISM and in the Local Cavity is now thought to be photoionized gas with temperatures in the range 10,000-20,000 K. While the hot stars ε CMa and β CMa are the primary photoionizing sources in the LISM, hot white dwarfs also contribute. We consider whether the Stromgren sphere gas produced by very local hot white dwarfs like Sirius B can be important in explaining the local intercloud gas. We find that the Stromgren sphere of Sirius can at least partially explain the intercloud gas in the lines of sight to several nearby stars. We also suggest that the partially ionized warm clouds like the Local Interstellar Cloud in which the Sun is located may be in part Strömgren sphere shells

  20. Warm Pressurant Gas Effects on the Static Bubble Point Pressure for Cryogenic LADs

    Science.gov (United States)

    Hartwig, Jason W.; McQuillen, John; Chato, Daniel J.

    2014-01-01

    This paper presents experimental results for the liquid hydrogen and nitrogen bubble point tests using warm pressurant gases conducted at the NASA Glenn Research Center. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device (LAD). Three fine mesh screen samples (325x2300, 450x2750, 510x3600) were tested in liquid hydrogen and liquid nitrogen using cold and warm non-condensable (gaseous helium) and condensable (gaseous hydrogen or nitrogen) pressurization schemes. Gases were conditioned from 0K - 90K above the liquid temperature. Results clearly indicate degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over non-condensable pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  1. Ultraviolet/Optical Emission of the Ionized Gas in AGN: Diagnostics of the Ionizing Source and Gas Properties

    Energy Technology Data Exchange (ETDEWEB)

    Feltre, Anna [Univ Lyon, Univ Lyon1, Ens de Lyon, Centre National de la Recherche Scientifique, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval (France); Sorbonne Universités, UPMC-Centre National de la Recherche Scientifique, UMR7095, Institut d' Astrophysique de Paris, Paris (France); Charlot, Stephane [Sorbonne Universités, UPMC-Centre National de la Recherche Scientifique, UMR7095, Institut d' Astrophysique de Paris, Paris (France); Mignoli, Marco [INAF-Osservatorio Astronomico di Bologna, Bologna (Italy); Bongiorno, Angela [INAF-Osservatorio Astronomico di Roma, Monteporzio Catone (Italy); Calura, Francesco [INAF-Osservatorio Astronomico di Bologna, Bologna (Italy); Chevallard, Jacopo [Scientific Support Office, Directorate of Science and Robotic Exploration, European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk (Netherlands); Curtis-Lake, Emma [Sorbonne Universités, UPMC-Centre National de la Recherche Scientifique, UMR7095, Institut d' Astrophysique de Paris, Paris (France); Gilli, Roberto [INAF-Osservatorio Astronomico di Bologna, Bologna (Italy); Plat, Adele, E-mail: anna.feltre@univ-lyon1.fr [Sorbonne Universités, UPMC-Centre National de la Recherche Scientifique, UMR7095, Institut d' Astrophysique de Paris, Paris (France)

    2017-11-02

    Spectroscopic studies of active galactic nuclei (AGN) are powerful means of probing the physical properties of the ionized gas within them. In particular, near future observational facilities, such as the James Webb Space Telescope (JWST), will allow detailed statistical studies of rest-frame ultraviolet and optical spectral features of the very distant AGN with unprecedented accuracy. In this proceedings, we discuss the various ways of exploiting new dedicated photoionization models of the narrow-line emitting regions (NLR) of AGN for the interpretation of forthcoming revolutionary datasets.

  2. First ECR-Ionized Noble Gas Radioisotopes at ISOLDE

    CERN Document Server

    Wenander, F; Gaubert, G; Jardin, P; Lettry, Jacques

    2004-01-01

    The production of light noble gas radioisotopes with high ionization potentials has been hampered by modest ionization efficiencies for standard plasma ion-sources. However, the decay losses are minimal as the lingering time of light noble gases within plasma ion-sources is negligible when compared to its diffusion out of the target material. Previous singly charged ECRIS have shown a higher efficiency but also a lingering time of the order of 1 s and a total weight that prevents remote handling by the ISOLDE robot. The compact MINIMONO efficiently addressed the lingering time and weight issues. In addition, the MINIMONO maintained the high off-line ionization efficiency for light noble gases. This paper describes a standard ISOLDE target unit equipped with a MINIMONO ion-source and the first tests. The ion-source has been tested off-line and equipped with a CaO target for on-line tests. Valuable information was gained about high current (100-500 muA) transport through the ISOLDE mass separators designed for ...

  3. X-ray detector for automatic exposure control using ionization chamber filled with xenon gas

    CERN Document Server

    Nakagawa, A; Yoshida, T

    2003-01-01

    This report refers to our newly developed X-ray detector for reliable automatic X-ray exposure control, which is to be widely used for X-ray diagnoses in various clinical fields. This new detector utilizes an ionization chamber filled with xenon gas, in contrast to conventional X-ray detectors which use ionization chambers filled with air. Use of xenon gas ensures higher sensitivity and thinner design of the detector. The xenon gas is completely sealed in the chamber, so that the influence of the changes in ambient environments is minimized. (author)

  4. Air ionization as a control technology for off-gas emissions of volatile organic compounds.

    Science.gov (United States)

    Kim, Ki-Hyun; Szulejko, Jan E; Kumar, Pawan; Kwon, Eilhann E; Adelodun, Adedeji A; Reddy, Police Anil Kumar

    2017-06-01

    High energy electron-impact ionizers have found applications mainly in industry to reduce off-gas emissions from waste gas streams at low cost and high efficiency because of their ability to oxidize many airborne organic pollutants (e.g., volatile organic compounds (VOCs)) to CO 2 and H 2 O. Applications of air ionizers in indoor air quality management are limited due to poor removal efficiency and production of noxious side products, e.g., ozone (O 3 ). In this paper, we provide a critical evaluation of the pollutant removal performance of air ionizing system through comprehensive review of the literature. In particular, we focus on removal of VOCs and odorants. We also discuss the generation of unwanted air ionization byproducts such as O 3 , NOx, and VOC oxidation intermediates that limit the use of air-ionizers in indoor air quality management. Copyright © 2017. Published by Elsevier Ltd.

  5. Ionization processes in combined high-voltage nanosecond - laser discharges in inert gas

    Science.gov (United States)

    Starikovskiy, Andrey; Shneider, Mikhail; PU Team

    2016-09-01

    Remote control of plasmas induced by laser radiation in the atmosphere is one of the challenging issues of free space communication, long-distance energy transmission, remote sensing of the atmosphere, and standoff detection of trace gases and bio-threat species. Sequences of laser pulses, as demonstrated by an extensive earlier work, offer an advantageous tool providing access to the control of air-plasma dynamics and optical interactions. The avalanche ionization induced in a pre-ionized region by infrared laser pulses where investigated. Pre-ionization was created by an ionization wave, initiated by high-voltage nanosecond pulse. Then, behind the front of ionization wave extra avalanche ionization was initiated by the focused infrared laser pulse. The experiment was carried out in argon. It is shown that the gas pre-ionization inhibits the laser spark generation under low pressure conditions.

  6. Ultraviolet/Optical Emission of the Ionized Gas in AGN: Diagnostics of the Ionizing Source and Gas Properties

    Directory of Open Access Journals (Sweden)

    Anna Feltre

    2017-11-01

    Full Text Available Spectroscopic studies of active galactic nuclei (AGN are powerful means of probing the physical properties of the ionized gas within them. In particular, near future observational facilities, such as the James Webb Space Telescope (JWST, will allow detailed statistical studies of rest-frame ultraviolet and optical spectral features of the very distant AGN with unprecedented accuracy. In this proceedings, we discuss the various ways of exploiting new dedicated photoionization models of the narrow-line emitting regions (NLR of AGN for the interpretation of forthcoming revolutionary datasets.

  7. STAR FORMATION SUPPRESSION DUE TO JET FEEDBACK IN RADIO GALAXIES WITH SHOCKED WARM MOLECULAR GAS

    International Nuclear Information System (INIS)

    Lanz, Lauranne; Ogle, Patrick M.; Appleton, Philip N.; Alatalo, Katherine

    2016-01-01

    We present Herschel observations of 22 radio galaxies, selected for the presence of shocked, warm molecular hydrogen emission. We measured and modeled spectral energy distributions in 33 bands from the ultraviolet to the far-infrared to investigate the impact of jet feedback on star formation activity. These galaxies are massive, early-type galaxies with normal gas-to-dust ratios, covering a range of optical and infrared colors. We find that the star formation rate (SFR) is suppressed by a factor of ∼3–6, depending on how molecular gas mass is estimated. We suggest that this suppression is due to the shocks driven by the radio jets injecting turbulence into the interstellar medium (ISM), which also powers the luminous warm H 2 line emission. Approximately 25% of the sample shows suppression by more than a factor of 10. However, the degree of SFR suppression does not correlate with indicators of jet feedback including jet power, diffuse X-ray emission, or intensity of warm molecular H 2 emission, suggesting that while injected turbulence likely impacts star formation, the process is not purely parameterized by the amount of mechanical energy dissipated into the ISM. Radio galaxies with shocked warm molecular gas cover a wide range in SFR–stellar mass space, indicating that these galaxies are in a variety of evolutionary states, from actively star-forming and gas-rich to quiescent and gas-poor. SFR suppression appears to have the largest impact on the evolution of galaxies that are moderately gas-rich.

  8. Gas pre-warming for improving performances of heated humidifiers in neonatal ventilation.

    Science.gov (United States)

    Schena, E; De Paolis, E; Silvestri, S

    2011-01-01

    Adequate temperature and humidification of gas delivered must be performed during long term neonatal ventilation to avoid potential adverse health effects. Literature shows that performances of heated humidifiers are, at least in some cases, quite poor. In this study, a novel approach to gas conditioning, consisting of gas warming upstream the humidification chamber, is presented. Gas pre-warming, in combination with a control strategy based on a mathematical model taking into account a number of parameters, allows to significantly improve the heated humidifier performances. The theoretical model has been validated and experimental trials have been carried out in the whole volumetric flow-rate (Q) range of neonatal ventilation (lower than 10 L · min(-1)). Experimental results (temperature values ranging from 36 °C to 38 °C and relative humidity values from 90 % to 98 % in the whole range of Q) show values very close to the ideal thermo-hygrometric conditions. The proposed solution allows to avoid vapor condensation at low flow rates and decrease of relative humidity at high flow rates.

  9. The state of the warm and cold gas in the extreme starburst at the core of the Phoenix galaxy cluster (SPT-CLJ2344-4243)

    International Nuclear Information System (INIS)

    McDonald, Michael; Bautz, Marshall W.; Swinbank, Mark; Edge, Alastair C.; Hogan, Michael T.; Wilner, David J.; Bayliss, Matthew B.; Veilleux, Sylvain; Benson, Bradford A.; Marrone, Daniel P.; McNamara, Brian R.; Wei, Lisa H.

    2014-01-01

    We present new optical integral field spectroscopy (Gemini South) and submillimeter spectroscopy (Submillimeter Array) of the central galaxy in the Phoenix cluster (SPT-CLJ2344-4243). This cluster was previously reported to have a massive starburst (∼800 M ☉ yr –1 ) in the central, brightest cluster galaxy, most likely fueled by the rapidly cooling intracluster medium. These new data reveal a complex emission-line nebula, extending for >30 kpc from the central galaxy, detected at [O II]λλ3726, 3729, [O III]λλ4959, 5007, Hβ, Hγ, Hδ, [Ne III]λ3869, and He II λ4686. The total Hα luminosity, assuming Hα/Hβ = 2.85, is L Hα = 7.6 ± 0.4 ×10 43 erg s –1 , making this the most luminous emission-line nebula detected in the center of a cool core cluster. Overall, the relative fluxes of the low-ionization lines (e.g., [O II], Hβ) to the UV continuum are consistent with photoionization by young stars. In both the center of the galaxy and in a newly discovered highly ionized plume to the north of the galaxy, the ionization ratios are consistent with both shocks and active galactic nucleus (AGN) photoionization. We speculate that this extended plume may be a galactic wind, driven and partially photoionized by both the starburst and central AGN. Throughout the cluster we measure elevated high-ionization line ratios (e.g., He II/Hβ, [O III]/Hβ), coupled with an overall high-velocity width (FWHM ≳ 500 km s –1 ), suggesting that shocks are likely important throughout the interstellar medium of the central galaxy. These shocks are most likely driven by a combination of stellar winds from massive young stars, core-collapse supernovae, and the central AGN. In addition to the warm, ionized gas, we detect a substantial amount of cold, molecular gas via the CO(3-2) transition, coincident in position with the galaxy center. We infer a molecular gas mass of M H 2 = 2.2 ± 0.6 × 10 10 M ☉ , which implies that the starburst will consume its fuel in ∼30 Myr if

  10. Dynamics of polynomial Chaplygin gas warm inflation

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Chaudhary, Shahid [Sharif College of Engineering and Technology, Department of Mathematics, Lahore (Pakistan); Videla, Nelson [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile)

    2017-11-15

    In the present work, we study the consequences of a recently proposed polynomial inflationary potential in the context of the generalized, modified, and generalized cosmic Chaplygin gas models. In addition, we consider dissipative effects by coupling the inflation field to radiation, i.e., the inflationary dynamics is studied in the warm inflation scenario. We take into account a general parametrization of the dissipative coefficient Γ for describing the decay of the inflaton field into radiation. By studying the background and perturbative dynamics in the weak and strong dissipative regimes of warm inflation separately for the positive and negative quadratic and quartic potentials, we obtain expressions for the most relevant inflationary observables as the scalar power spectrum, the scalar spectral, and the tensor-to-scalar ratio. We construct the trajectories in the n{sub s}-r plane for several expressions of the dissipative coefficient and compare with the two-dimensional marginalized contours for (n{sub s}, r) from the latest Planck data. We find that our results are in agreement with WMAP9 and Planck 2015 data. (orig.)

  11. Gas chromatography/chemical ionization triple quadrupole mass spectrometry analysis of anabolic steroids: ionization and collision-induced dissociation behavior.

    Science.gov (United States)

    Polet, Michael; Van Gansbeke, Wim; Van Eenoo, Peter; Deventer, Koen

    2016-02-28

    The detection of new anabolic steroid metabolites and new designer steroids is a challenging task in doping analysis. Switching from electron ionization gas chromatography triple quadrupole mass spectrometry (GC/EI-MS/MS) to chemical ionization (CI) has proven to be an efficient way to increase the sensitivity of GC/MS/MS analyses and facilitate the detection of anabolic steroids. CI also extends the possibilities of GC/MS/MS analyses as the molecular ion is retained in its protonated form due to the softer ionization. In EI it can be difficult to find previously unknown but expected metabolites due to the low abundance or absence of the molecular ion and the extensive (and to a large extent unpredictable) fragmentation. The main aim of this work was to study the CI and collision-induced dissociation (CID) behavior of a large number of anabolic androgenic steroids (AAS) as their trimethylsilyl derivatives in order to determine correlations between structures and CID fragmentation. Clarification of these correlations is needed for the elucidation of structures of unknown steroids and new metabolites. The ionization and CID behavior of 65 AAS have been studied using GC/CI-MS/MS with ammonia as the reagent gas. Glucuronidated AAS reference standards were first hydrolyzed to obtain their free forms. Afterwards, all the standards were derivatized to their trimethylsilyl forms. Full scan and product ion scan analyses were used to examine the ionization and CID behavior. Full scan and product ion scan analyses revealed clear correlations between AAS structure and the obtained mass spectra. These correlations were confirmed by analysis of multiple hydroxylated, methylated, chlorinated and deuterated analogs. AAS have been divided into three groups according to their ionization behavior and into seven groups according to their CID behavior. Correlations between fragmentation and structure were revealed and fragmentation pathways were postulated. Copyright © 2016 John Wiley

  12. Angular intensity of a gas-phase field ionization source

    International Nuclear Information System (INIS)

    Orloff, J.; Swanson, L.W.

    1979-01-01

    Angular intensities of 1 μA sr -1 have been measured for a gas-phase field ionization source in an optical column under practical operating conditions. The source, which was differentially pumped and cooled to 77 K, utilized a -oriented iridium emitter and precooled hydrogen gas at 10 -2 Torr. The ion beam was collimated with an electrostatic lens and detected below an aperture subtending 0.164 msr. A transmitted current of approx.10 -10 A was measured at voltages corresponding to a field of approx. =2.2 V/A at the emitter

  13. Alpha-ionization gas analyzer for air traces in hydrogen or deuterium at atmospheric pressure

    International Nuclear Information System (INIS)

    Mitrofanov, A.V.

    1975-01-01

    The constructional features and the principle of operation of and α-ionization gas analyzer are described. The analyzer is based on a radioactive monometric transducer MP-2 with a plutonium source, which makes it possible to measure the volume admixture of air in H 2 or D 2 in the range from 0 to 30% with an accuracy to about 0.3%. The operating principle of the instrument involves the dependence of the saturation current in the ionization chamber on the molecular weight of the gas analysed. As the output unit of the gas analyzer, either a microamperometer or a recording potentiometer is used. The sensitivity of the gas analyzer is about the same as that of instruments based on the phenomenon of heat conduction. The gas analyzer is explosion proof and reliable in operation, which enables it to compete with thermal gas analyzers [ru

  14. On general features of warm dark matter with reduced relativistic gas

    Science.gov (United States)

    Hipólito-Ricaldi, W. S.; vom Marttens, R. F.; Fabris, J. C.; Shapiro, I. L.; Casarini, L.

    2018-05-01

    Reduced relativistic gas (RRG) is a useful approach to describe the warm dark matter (WDM) or the warmness of baryonic matter in the approximation when the interaction between the particles is irrelevant. The use of Maxwell distribution leads to the complicated equation of state of the Jüttner model of relativistic ideal gas. The RRG enables one to reproduce the same physical situation but in a much simpler form. For this reason RRG can be a useful tool for the theories with some sort of a "new Physics". On the other hand, even without the qualitatively new physical implementations, the RRG can be useful to describe the general features of WDM in a model-independent way. In this sense one can see, in particular, to which extent the cosmological manifestations of WDM may be dependent on its Particle Physics background. In the present work RRG is used as a complementary approach to derive the main observational features for the WDM in a model-independent way. The only assumption concerns a non-negligible velocity v for dark matter particles which is parameterized by the warmness parameter b. The relatively high values of b ( b^2˜ 10^{-6}) erase the radiation (photons and neutrinos) dominated epoch and cause an early warm matter domination after inflation. Furthermore, RRG approach enables one to quantify the lack of power in linear matter spectrum at small scales and in particular, reproduces the relative transfer function commonly used in context of WDM with accuracy of ≲ 1%. A warmness with b^2≲ 10^{-6} (equivalent to v≲ 300 km/s) does not alter significantly the CMB power spectrum and is in agreement with the background observational tests.

  15. III. Penning ionization, associative ionization and chemi-ionization processes

    International Nuclear Information System (INIS)

    Cermak, V.

    1975-01-01

    Physical mechanisms of three important ionization processes in a cold plasma and the methods of their experimental study are discussed. An apparatus for the investigation of the Penning ionization using ionization processes of long lived metastable rare gas atoms is described. Methods of determining interaction energies and ionization rates from the measured energy spectra of the originating electrons are described and illustrated by several examples. Typical associative ionization processes are listed and the ionization rates are compared with those of the Penning ionization. Interactions with short-lived excited particles and the transfer of excitation without ionization are discussed. (J.U.)

  16. Resonance ionization spectroscopy: Counting noble gas atoms

    International Nuclear Information System (INIS)

    Hurst, G.S.; Payne, M.G.; Chen, C.H.; Willis, R.D.; Lehmann, B.E.; Kramer, S.D.

    1981-01-01

    The purpose of this paper is to describe new work on the counting of noble gas atoms, using lasers for the selective ionization and detectors for counting individual particles (electrons or positive ions). When positive ions are counted, various kinds of mass analyzers (magnetic, quadrupole, or time-of-flight) can be incorporated to provide A selectivity. We show that a variety of interesting and important applications can be made with atom-counting techniques which are both atomic number (Z) and mass number (A) selective. (orig./FKS)

  17. Thermoregulated Nitric Cryosystem for Cooling Gas-Filled Detectors of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Zharkov I.P.

    2015-09-01

    Full Text Available Cryosystem for cooling and filling of gas-filled detectors of ionizing radiation with compressed inert gas on the basis of wide-nitrogen cryostat, which provides detetector temperature control in a range of 173 — 293 K and its stabilization with accuracy of ± 1°. The work was carried out within the Ukraine — NATO Program of Collaboration, Grant SfP #984655.

  18. Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming.

    Science.gov (United States)

    Wallmann, Klaus; Riedel, M; Hong, W L; Patton, H; Hubbard, A; Pape, T; Hsu, C W; Schmidt, C; Johnson, J E; Torres, M E; Andreassen, K; Berndt, C; Bohrmann, G

    2018-01-08

    Methane seepage from the upper continental slopes of Western Svalbard has previously been attributed to gas hydrate dissociation induced by anthropogenic warming of ambient bottom waters. Here we show that sediment cores drilled off Prins Karls Foreland contain freshwater from dissociating hydrates. However, our modeling indicates that the observed pore water freshening began around 8 ka BP when the rate of isostatic uplift outpaced eustatic sea-level rise. The resultant local shallowing and lowering of hydrostatic pressure forced gas hydrate dissociation and dissolved chloride depletions consistent with our geochemical analysis. Hence, we propose that hydrate dissociation was triggered by postglacial isostatic rebound rather than anthropogenic warming. Furthermore, we show that methane fluxes from dissociating hydrates were considerably smaller than present methane seepage rates implying that gas hydrates were not a major source of methane to the oceans, but rather acted as a dynamic seal, regulating methane release from deep geological reservoirs.

  19. Aerosol ionization gas analyzer for continious detection of toxic compounds in industrial gaseous effluents

    International Nuclear Information System (INIS)

    Groze, Kh.; Dering, Kh.; Gleizberg, F.

    1979-01-01

    In is noted that the problem of the environment protection as well as protection of the personnel at their working places against influence of harmful substances in air, demands continious measuring of an increasing number of harmful substances with provision of high sensitivity and accuracy of measurements. The demands are listed to the gas analyzers developed for these purposes: flexibility towards solution of different problems of measurement; great number of the substances to be measured; acceptable threshold of determination of different substances concentration in air and small measurement error; simplicity of maintanance and technical service and high reliability in exploitation; economy of fabrication and application. The data are given for the aerosol ionization gas analyzer which, in many cases, met the requirements listed. In the gas analyzer described, the analysed substance is converted for measuring its concentration into an aerosol by means of the aerosol generator, especially designed for this substance or group of substances. The produced aerosol is introduced into an ionization chamber with build-in radiation source and caused decrease of the ionization current in it. According to the decrease of the ionization current, concentration of the harmful substance in air is determined. Characteristics and possibilities of the gas analyzer exploitation are given and discussed on the base of the results of determination of some harmful substances concentrations in air in the laboratory conditions and in the real conditions of industrial production and in the health protection system [ru

  20. Gas chromatography interfaced with atmospheric pressure ionization-quadrupole time-of-flight-mass spectrometry by low-temperature plasma ionization

    DEFF Research Database (Denmark)

    Norgaard, Asger W.; Kofoed-Sorensen, Vivi; Svensmark, Bo

    2013-01-01

    A low temperature plasma (LTP) ionization interface between a gas chromatograph (GC) and an atmospheric pressure inlet mass spectrometer, was constructed. This enabled time-of-flight mass spectrometric detection of GC-eluting compounds. The performance of the setup was evaluated by injection...

  1. Pressure of a partially ionized hydrogen gas : numerical results from exact low temperature expansions

    OpenAIRE

    Alastuey , Angel; Ballenegger , Vincent

    2010-01-01

    8 pages; International audience; We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing systematic low-temperature expansions within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential, exact formulae for the first five leading corrections to the ideal Saha equation ...

  2. Cross section determination for the higher ionization of rare gas ions by electron collisions

    International Nuclear Information System (INIS)

    Becker, R.; Frodl, R.; Klein, H.; Schmidt, W.; Clausnitzer, G.; Klinger, H.; Mueller, A.; Salzborn, E.; Fuchs, G.; Viehboeck, F.

    1975-01-01

    The higher ionization of rare gas ions is reported on, which were excited by an electron beam using a crossed-beam technique. A detector for the identification of metastable excited rare gas ions was developed. (WL) [de

  3. Studies of Flow in Ionized Gas: Historical Perspective, Contemporary Experiments, and Applications

    International Nuclear Information System (INIS)

    Popovic, S.; Vuskovic, L.

    2007-01-01

    Since the first observations that a very small ionized fraction (order of 1 ppm) could strongly affect the gas flow, numerous experiments with partially or fully wall-free discharges have demonstrated the dispersion of shock waves, the enhancement of lateral forces in the flow, the prospects of levitation, and other aerodynamic effects with vast potential of application. A review of physical effects and observations are given along with current status of their interpretation. Special attention will be given to the physical problems of energy efficiency in generating wall-free discharges and the phenomenology of filamentary discharges. Comments and case examples are given on the current status of availability of necessary data for modelling and simulation of the aerodynamic phenomena in weakly ionized gas

  4. Ionizing gas breakdown waves in strong electric fields.

    Science.gov (United States)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  5. The Application of Resonance-Enhanced Multiphoton Ionization Technique in Gas Chromatography Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Adan Li

    2014-01-01

    Full Text Available Gas chromatography resonance-enhanced multiphoton ionization time-of-flight mass spectrometry (GC/REMPI-TOFMS using a nanosecond laser has been applied to analyze the 16 polycyclic aromatic hydrocarbons (PAHs. The excited-state lifetime, absorption characters, and energy of electronic states of the 16 PAHs were investigated to optimize the ionization yield. A river water sample pretreated by means of solid phase extraction was analyzed to evaluate the performance of the analytical instrument. The results suggested that REMPI is superior to electron impact ionization method for soft ionization and suppresses the background signal due to aliphatic hydrocarbons. Thus, GC/REMPI-TOFMS is a more reliable method for the determination of PAHs present in the environment.

  6. Warm intermediate inflationary Universe model in the presence of a generalized Chaplygin gas

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Ramon [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Videla, Nelson [Universidad de Chile, Departamento de Fisica, FCFM, Santiago (Chile); Olivares, Marco [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile)

    2016-01-15

    A warm intermediate inflationary model in the context of generalized Chaplygin gas is investigated. We study this model in the weak and strong dissipative regimes, considering a generalized form of the dissipative coefficient Γ = Γ(T,φ), and we describe the inflationary dynamics in the slow-roll approximation. We find constraints on the parameters in our model considering the Planck 2015 data, together with the condition for warm inflation T > H, and the conditions for the weak and strong dissipative regimes. (orig.)

  7. LARGE-SCALE SHOCK-IONIZED AND PHOTOIONIZED GAS IN M83: THE IMPACT OF STAR FORMATION

    International Nuclear Information System (INIS)

    Hong, Sungryong; Calzetti, Daniela; Dopita, Michael A.; Blair, William P.; Whitmore, Bradley C.; Bond, Howard E.; Balick, Bruce; Carollo, Marcella; Disney, Michael J.; Frogel, Jay A.; Hall, Donald; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; O'Connell, Robert W.; Paresce, Francesco; Saha, Abhijit; Silk, Joseph I.; Trauger, John T.; Walker, Alistair R.

    2011-01-01

    We investigate the ionization structure of the nebular gas in M83 using the line diagnostic diagram, [O III](5007 A)/Hβ versus [S II](6716 A+6731 A)/Hα, with the newly available narrowband images from the Wide Field Camera 3 (WFC3) of the Hubble Space Telescope (HST). We produce the diagnostic diagram on a pixel-by-pixel (0.''2 x 0.''2) basis and compare it with several photo- and shock-ionization models. We select four regions from the center to the outer spiral arm and compare them in the diagnostic diagram. For the photoionized gas, we observe a gradual increase of the log ([O III]/Hβ) ratios from the center to the spiral arm, consistent with the metallicity gradient, as the H II regions go from super-solar abundance to roughly solar abundance from the center out. Using the diagnostic diagram, we separate the photoionized from the shock-ionized component of the gas. We find that the shock-ionized Hα emission ranges from ∼2% to about 15%-33% of the total, depending on the separation criteria used. An interesting feature in the diagnostic diagram is a horizontal distribution around log ([O III]/Hβ) ∼ 0. This feature is well fit by a shock-ionization model with 2.0 Z sun metallicity and shock velocities in the range of 250-350 km s -1 . A low-velocity shock component, -1 , is also detected and is spatially located at the boundary between the outer ring and the spiral arm. The low-velocity shock component can be due to (1) supernova remnants located nearby, (2) dynamical interaction between the outer ring and the spiral arm, and (3) abnormal line ratios from extreme local dust extinction. The current data do not enable us to distinguish among those three possible interpretations. Our main conclusion is that, even at the HST resolution, the shocked gas represents a small fraction of the total ionized gas emission at less than 33% of the total. However, it accounts for virtually all of the mechanical energy produced by the central starburst in M83.

  8. Absorption signatures of warm-hot gas at low redshift : Ne VIII

    NARCIS (Netherlands)

    Tepper-García, T

    2013-01-01

    At z {lt} 1 a large fraction of the baryons is thought to reside in diffuse gas that has been shock-heated to high temperatures (10$^{5}$-10$^{6}$ K). Absorption by the 770.41, 780.32 å doublet of Ne VIII in quasar spectra represents a unique tool to study this elusive warm-hot phase. We have

  9. The VLT/MUSE view of the central galaxy in Abell 2052. Ionized gas swept by the expanding radio source

    Science.gov (United States)

    Balmaverde, Barbara; Capetti, Alessandro; Marconi, Alessandro; Venturi, Giacomo

    2018-04-01

    We report observations of the radio galaxy 3C 317 (at z = 0.0345) located at the center of the Abell cluster A2052, obtained with the VLT/MUSE integral field spectrograph. The Chandra images of this cluster show cavities in the X-ray emitting gas, which were produced by the expansion of the radio lobes inflated by the active galactic nucleus (AGN). Our exquisite MUSE data show with unprecedented detail the complex network of line emitting filaments enshrouding the northern X-ray cavity. We do not detect any emission lines from the southern cavity, with a luminosity asymmetry between the two regions higher than 75. The emission lines produced by the warm phase of the interstellar medium (WIM) enable us to obtain unique information on the properties of the emitting gas. We find dense gas (up to 270 cm-3) that makes up part of a global quasi spherical outflow that is driven by the radio source, and obtain a direct estimate of the expansion velocity of the cavities (265 km s-1). The emission lines diagnostic rules out ionization from the AGN or from star-forming regions, suggesting instead ionization from slow shocks or from cosmic rays. The striking asymmetric line emission observed between the two cavities contrasts with the less pronounced differences between the north and south sides in the hot gas; this represents a significant new ingredient for our understanding of the process of the exchange of energy between the relativistic plasma and the external medium. We conclude that the expanding radio lobes displace the hot tenuous phase of the interstellar medium (ISM), but also impact the colder and denser ISM phases. These results show the effects of the AGN on its host and the importance of radio mode feedback. The reduced datacube is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A19

  10. Radiative transfer calculations of the diffuse ionized gas in disc galaxies with cosmic ray feedback

    Science.gov (United States)

    Vandenbroucke, Bert; Wood, Kenneth; Girichidis, Philipp; Hill, Alex S.; Peters, Thomas

    2018-05-01

    The large vertical scale heights of the diffuse ionized gas (DIG) in disc galaxies are challenging to model, as hydrodynamical models including only thermal feedback seem to be unable to support gas at these heights. In this paper, we use a three-dimensional Monte Carlo radiation transfer code to post-process disc simulations of the Simulating the Life-Cycle of Molecular Clouds project that include feedback by cosmic rays. We show that the more extended discs in simulations including cosmic ray feedback naturally lead to larger scale heights for the DIG which are more in line with observed scale heights. We also show that including a fiducial cosmic ray heating term in our model can help to increase the temperature as a function of disc scale height, but fails to reproduce observed DIG nitrogen and sulphur forbidden line intensities. We show that, to reproduce these line emissions, we require a heating mechanism that affects gas over a larger density range than is achieved by cosmic ray heating, which can be achieved by fine tuning the total luminosity of ionizing sources to get an appropriate ionizing spectrum as a function of scale height. This result sheds a new light on the relation between forbidden line emissions and temperature profiles for realistic DIG gas distributions.

  11. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    International Nuclear Information System (INIS)

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P.

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ R . An evaluation of the galaxies in the λ R ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects

  12. Determination of electron impact ionization and excitation coefficients in He-Xe gas mixtures. He-Xe kongo gas ni okeru denshi shototsu denri keisu oyobi reiki keisu no sokutei to kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K.; Tachibana, K. (Kyoto Inst. of Technology, Kyoto (Japan))

    1991-03-20

    The rare gas discharge gives a stable discharge and light emission characteristics at low temperature in comparison with the discharge of the vapor of such a metal as Hg. The present barrier for the commercialization of the color PDP lies in the lower level of its emission intensity and efficiency in comparison with that of CRT. In this report, an electron impact ionization coefficient in a gas mixture and an electron impact excitation coefficient for a XeIs {sub 4} level were analyzed using a Boltzmann equation by means of a steady state Townsend method using a drift tube. By comparing both, the elementary process in the gas mixture is investiagted to discuss the respective contributions for the effective ionization coefficient and the excitation coefficient. As a result, it was found that the ionization process in the He-Xe gas mixture could be described by the processes of direct ionization of Xe and He, and an indirect ionization (Penning effect) by an active helium. 37 refs., 12 figs.

  13. Development of residual gas ionization profile monitor for high intensity proton beams

    CERN Document Server

    Sato, Y; Hirose, E; Ieiri, M; Igarashi, Y; Inaba, S; Katoh, Y; Minakawa, M; Noumi, H; Saitó, M; Suzuki, Y; Takahashi, H; Takasaki, M; Tanaka, K; Toyoda, A; Yamada, Y; Yamanoi, Y; Watanabe, H

    2006-01-01

    Nondestructive beam profile monitor utilizing ionizations of residual gas has been developed for continuous monitoring of 3?0(J-PARC). Knock-on electrons produced in the ionizations of residual gas vacuumed to 1 Pa are collected with a uniform electric field applied between electrodes. Applying a uniform electric field parallel to the electric field is essential to reduce diffusion of electrons crossing over magnetic flux. A prototype monitor has been constructed and installed in EP2-C beam line at KEK 12 GeV proton synchrotron (12 Ge V-PS). The profiles measured with the present monitor agree with the ones measured with the existing destructive profile monitor. The present monitor shows sufficient performances as a candidate of the profile monitor at J-PARC. In the present article, the working principle of the present monitor, the results of test experiments, and further developments are described in detail.

  14. Collisions of fast multicharged ions in gas targets: charge transfer and ionization

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1981-05-01

    Measurements of cross sections for charge transfer and ionization of H 2 and rare-gas targets have been made with fast, highly stripped projectiles in charge states as high as 59+. We have found an empirical scaling rule for electron-capture cross section in H 2 valid at energies above 275 keV/amu. Similar scaling might exist for other target gases. Cross sections are generally in good agreement with theory. We have found a scaling rule for electron loss from H in collisions with a fast highly stripped projectile, based on Olson's classical-trajectory Monte-Carlo calculations, and confirmed by measurements in an H 2 target. We have found a similar scaling rule for net ionization of rare-gas targets, based on Olson's CTMC calculations and the independent-electron model. Measurements are essentially consistent with the scaled cross sections. Calculations and measurements of recoil-ion charge-state spectra show large cross sections for the production of highly charged slow recoil ions

  15. A new in-gas-laser ionization and spectroscopy laboratory for off-line studies at KU Leuven

    International Nuclear Information System (INIS)

    Kudryavtsev, Yu.; Creemers, P.; Ferrer, R.; Granados, C.; Gaffney, L.P.; Huyse, M.; Mogilevskiy, E.; Raeder, S.; Sels, S.; Van den Bergh, P.; Van Duppen, P.; Zadvornaya, A.

    2016-01-01

    The in-gas laser ionization and spectroscopy (IGLIS) technique is used to produce and to investigate short-lived radioactive isotopes at on-line ion beam facilities. In this technique, the nuclear reaction products recoiling out of a thin target are thermalized and neutralized in a high-pressure noble gas, resonantly ionized by the laser beams in a two-step process, and then extracted from the ion source to be finally accelerated and mass separated. Resonant ionization of radioactive species in the supersonic gas jet ensures very high spectral resolution because of essential reduction of broadening mechanisms. To obtain the maximum efficiency and the best spectral resolution, properties of the supersonic jet and the laser beams must be optimized. To perform these studies a new off-line IGLIS laboratory, including a new high-repetition-rate laser system and a dedicated off-line mass separator, has been commissioned. In this article, the specifications of the different components necessary to achieve optimum conditions in laser-spectroscopy studies of radioactive beams using IGLIS are discussed and the results of simulations are presented.

  16. Mobilities of positive ions in gas ionization chambers

    International Nuclear Information System (INIS)

    Kusumegi, Asao

    1990-01-01

    Observed ion mobilities of organic molecules in Ar are compared with a complete polarization model to examine the performance of the model, and its applicability is discussed. In spite of its simplicity, the polarization model (small sphere limit) is found to agree satisfactorily with observed mobilities in the case of alkali ions in Ar. However, the model fails to account for the mobility of Ar + in Ar due to a resonant charge transfer interaction between the ion and the parent gas. On the other hand, the values of k, a parameter which depends on the kinetic and the potential energy of the relevant ion, derived from observed ion mobilities of organic molecules in Ar and in the parent gas are found to be close to each other. Except for few cases, it appears that the complete polarization model gives a reasonable approximation for the positive ion mobilities of organic molecules in Ar, though the importance of the ion mass identification is significant in considering the applicability of the model to the positive ion mobility of those organic molecules in Ar used in a gas ionization chamber. (N.K.)

  17. Positive feedback of greenhouse gas balances to warming is determined by non-growing season emissions in an alpine meadow

    Science.gov (United States)

    Niu, S.; Wang, J.; Quan, Q.; Chen, W.; Wen, X.; Yu, G.

    2017-12-01

    Large uncertainties exist in the sources and sinks of greenhouse gases (CO2, CH4, N2O) in response to climate warming and human activity. So far, numerous previous studies have evaluated the CO2 budget, but little attention has paid to CH4 and N2O budgets and the concurrent balance of these three gases in combination, especially in the non-growing season. Here, we synthesized eddy covariance measurement with the automatic chamber measurements of CO2, CH4, and N2O exposed to three levels of temperature treatments (ambient, +1.5 °C, +2.5 °C) and two disturbance treatments (ummowing, mowing) in an alpine meadow on the Tibetan Plateau. We have found that warming caused increase in CH4 uptake and decrease in N2O emission offset little of the enhancement in CO2 emission, triggering a positive feedback to climate warming. Warming switches the ecosystem from a net sink (-17 ± 14 g CO2-eq m-2 yr-1) in the control to a net source of greenhouse gases of 94 ± 36 gCO2-eq m-2 yr-1 in the plots with +1.5 °C warming treatment, and 177 ± 6 gCO2-eq m-2 yr-1 in the plots with +2.5 °C warming treatment. The changes in the non-growing season balance, rather than those in the growing season, dominate the warming responses of annual greehouse gas balance. And this is not changed by mowing. The dominant role of responses of winter greenhouse gas balance in the positive feedback of ecosystem to climate warming highlights that greenhouse gas balance in cold season has to be considered when assessing climate-carbon cycle feedback.

  18. Aerodynamic Effects in Weakly Ionized Gas: Phenomenology and Applications

    International Nuclear Information System (INIS)

    Popovic, S.; Vuskovic, L.

    2006-01-01

    Aerodynamic effects in ionized gases, often neglected phenomena, have been subject of a renewed interest in recent years. After a brief historical account, we discuss a selected number of effects and unresolved problems that appear to be relevant in both aeronautic and propulsion applications in subsonic, supersonic, and hypersonic flow. Interaction between acoustic shock waves and weakly ionized gas is manifested either as plasma-induced shock wave dispersion and acceleration or as shock-wave induced double electric layer in the plasma, followed by the localized increase of the average electron energy and density, as well as enhancement of optical emission. We describe the phenomenology of these effects and discuss several experiments that still do not have an adequate interpretation. Critical for application of aerodynamic effects is the energy deposition into the flow. We classify and discuss some proposed wall-free generation schemes with respect to the efficiency of energy deposition and overall generation of the aerodynamic body force

  19. Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spetrometry for screening and identification of organic pollutants in waters

    NARCIS (Netherlands)

    Portoles, T.; Mol, J.G.J.; Sancho, J.V.; Hernandez, F.

    2014-01-01

    A new approach has been developed for multiclass screening of organic contaminants in water based on the use of gas chromatography coupled to hybrid quadrupole high-resolution time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC–(APCI)QTOF MS). The soft ionization

  20. WARM BREEZE FROM THE STARBOARD BOW: A NEW POPULATION OF NEUTRAL HELIUM IN THE HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, M. A.; Bzowski, M.; Sokół, J. M.; Swaczyna, P.; Grzedzielski, S. [Space Research Centre of the Polish Academy of Sciences, Warsaw (Poland); Alexashov, D. B.; Izmodenov, V. V. [Space Research Institute (IKI) of the Russian Academy of Sciences, Moscow (Russian Federation); Möbius, E.; Leonard, T. [Space Research Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Fuselier, S. A.; McComas, D. J. [Southwest Research Institute, San Antonio, TX (United States); Wurz, P. [Physics Institute, University of Bern, Bern (Switzerland)

    2014-08-01

    We investigate the signals from neutral helium atoms observed in situ from Earth orbit in 2010 by the Interstellar Boundary Explorer (IBEX). The full helium signal observed during the 2010 observation season can be explained as a superposition of pristine neutral interstellar He gas and an additional population of neutral helium that we call the Warm Breeze. The Warm Breeze is approximately 2 times slower and 2.5 times warmer than the primary interstellar He population, and its density in front of the heliosphere is ∼7% that of the neutral interstellar helium. The inflow direction of the Warm Breeze differs by ∼19° from the inflow direction of interstellar gas. The Warm Breeze seems to be a long-term, perhaps permanent feature of the heliospheric environment. It has not been detected earlier because it is strongly ionized inside the heliosphere. This effect brings it below the threshold of detection via pickup ion and heliospheric backscatter glow observations, as well as by the direct sampling of GAS/Ulysses. We discuss possible sources for the Warm Breeze, including (1) the secondary population of interstellar helium, created via charge exchange and perhaps elastic scattering of neutral interstellar He atoms on interstellar He{sup +} ions in the outer heliosheath, or (2) a gust of interstellar He originating from a hypothetic wave train in the Local Interstellar Cloud. A secondary population is expected from models, but the characteristics of the Warm Breeze do not fully conform to modeling results. If, nevertheless, this is the explanation, IBEX-Lo observations of the Warm Breeze provide key insights into the physical state of plasma in the outer heliosheath. If the second hypothesis is true, the source is likely to be located within a few thousand AU from the Sun, which is the propagation range of possible gusts of interstellar neutral helium with the Warm Breeze characteristics against dissipation via elastic scattering in the Local Cloud. Whatever the

  1. A HIGH RESOLUTION VIEW OF THE WARM ABSORBER IN THE QUASAR MR 2251-178

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, J. N.; Gofford, J.; Nardini, E. [Astrophysics Group, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire, ST5 5BG (United Kingdom); Porquet, D. [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Braito, V. [INAF - Osservatorio Astronomico di Brera, Via Bianchi 46 I-23807 Merate (Italy); Turner, T. J. [Center for Space Science and Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Crenshaw, D. M. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, One Park Place South SE, Suite 700, Atlanta, GA 30303 (United States); Kraemer, S. B., E-mail: j.n.reeves@keele.ac.uk [Institute for Astrophysics and Computational Sciences, Department of Physics, The Catholic University of America, Washington, DC 20064 (United States)

    2013-10-20

    High resolution X-ray spectroscopy of the warm absorber in a nearby quasar, MR 2251-178 (z = 0.06398), is presented. The observations were carried out in 2011 using the Chandra High Energy Transmission Grating (HETG) and the XMM-Newton Reflection Grating Spectrometer, with net exposure times of approximately 400 ks each. A multitude of absorption lines from C to Fe are detected, revealing at least three warm absorbing components ranging in ionization parameter from log (ξ/erg cm s{sup –1}) = 1-3 with outflow velocities ∼< 500 km s{sup –1}. The lowest ionization absorber appears to vary between the Chandra and XMM-Newton observations, which implies a radial distance of between 9 and 17 pc from the black hole. Several broad soft X-ray emission lines are strongly detected, most notably from He-like oxygen, with FWHM velocity widths of up to 10,000 km s{sup –1}, consistent with an origin from broad-line region (BLR) clouds. In addition to the warm absorber, gas partially covering the line of sight to the quasar appears to be present, with a typical column density of N{sub H} = 10{sup 23} cm{sup –2}. We suggest that the partial covering absorber may arise from the same BLR clouds responsible for the broad soft X-ray emission lines. Finally, the presence of a highly ionized outflow in the iron K band from both the 2002 and 2011 Chandra HETG observations appears to be confirmed, which has an outflow velocity of –15600 ± 2400 km s{sup –1}. However, a partial covering origin for the iron K absorption cannot be excluded, resulting from low ionization material with little or no outflow velocity.

  2. SDSS-IV MaNGA: the impact of diffuse ionized gas on emission-line ratios, interpretation of diagnostic diagrams and gas metallicity measurements

    Science.gov (United States)

    Zhang, Kai; Yan, Renbin; Bundy, Kevin; Bershady, Matthew; Haffner, L. Matthew; Walterbos, René; Maiolino, Roberto; Tremonti, Christy; Thomas, Daniel; Drory, Niv; Jones, Amy; Belfiore, Francesco; Sánchez, Sebastian F.; Diamond-Stanic, Aleksandar M.; Bizyaev, Dmitry; Nitschelm, Christian; Andrews, Brett; Brinkmann, Jon; Brownstein, Joel R.; Cheung, Edmond; Li, Cheng; Law, David R.; Roman Lopes, Alexandre; Oravetz, Daniel; Pan, Kaike; Storchi Bergmann, Thaisa; Simmons, Audrey

    2017-04-01

    Diffuse ionized gas (DIG) is prevalent in star-forming galaxies. Using a sample of 365 nearly face-on star-forming galaxies observed by Mapping Nearby Galaxies at APO, we demonstrate how DIG in star-forming galaxies impacts the measurements of emission-line ratios, hence the interpretation of diagnostic diagrams and gas-phase metallicity measurements. At fixed metallicity, DIG-dominated low ΣHα regions display enhanced [S II]/Hα, [N II]/Hα, [O II]/Hβ and [O I]/Hα. The gradients in these line ratios are determined by metallicity gradients and ΣHα. In line ratio diagnostic diagrams, contamination by DIG moves H II regions towards composite or low-ionization nuclear emission-line region (LI(N)ER)-like regions. A harder ionizing spectrum is needed to explain DIG line ratios. Leaky H II region models can only shift line ratios slightly relative to H II region models, and thus fail to explain the composite/LI(N)ER line ratios displayed by DIG. Our result favours ionization by evolved stars as a major ionization source for DIG with LI(N)ER-like emission. DIG can significantly bias the measurement of gas metallicity and metallicity gradients derived using strong-line methods. Metallicities derived using N2O2 are optimal because they exhibit the smallest bias and error. Using O3N2, R23, N2 = [N II]/Hα and N2S2Hα to derive metallicities introduces bias in the derived metallicity gradients as large as the gradient itself. The strong-line method of Blanc et al. (IZI hereafter) cannot be applied to DIG to get an accurate metallicity because it currently contains only H II region models that fail to describe the DIG.

  3. Laser wakefield generated X-ray probe for femtosecond time-resolved measurements of ionization states of warm dense aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Mo, M. Z.; Chen, Z.; Tsui, Y. Y.; Fedosejevs, R. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Fourmaux, S.; Saraf, A.; Otani, K.; Kieffer, J. C. [INRS-EMT, Université du Québec, 1650 Lionel Boulet, Varennes, Québec J3X 1S2 (Canada); Ng, A. [Department of Physics and Astronomy, University of British Columbia, British Columbia V6T 1Z1 (Canada)

    2013-12-15

    We have developed a laser wakefield generated X-ray probe to directly measure the temporal evolution of the ionization states in warm dense aluminum by means of absorption spectroscopy. As a promising alternative to the free electron excited X-ray sources, Betatron X-ray radiation, with femtosecond pulse duration, provides a new technique to diagnose femtosecond to picosecond transitions in the atomic structure. The X-ray probe system consists of an adjustable Kirkpatrick-Baez (KB) microscope for focusing the Betatron emission to a small probe spot on the sample being measured, and a flat Potassium Acid Phthalate Bragg crystal spectrometer to measure the transmitted X-ray spectrum in the region of the aluminum K-edge absorption lines. An X-ray focal spot size of around 50 μm was achieved after reflection from the platinum-coated 10-cm-long KB microscope mirrors. Shot to shot positioning stability of the Betatron radiation was measured resulting in an rms shot to shot variation in spatial pointing on the sample of 16 μm. The entire probe setup had a spectral resolution of ∼1.5 eV, a detection bandwidth of ∼24 eV, and an overall photon throughput efficiency of the order of 10{sup −5}. Approximately 10 photons were detected by the X-ray CCD per laser shot within the spectrally resolved detection band. Thus, it is expected that hundreds of shots will be required per absorption spectrum to clearly observe the K-shell absorption features expected from the ionization states of the warm dense aluminum.

  4. Study of the strongly ionized medium in active galactic n ('Warm Absorber'): multi-wavelength modelling and plasma diagnostics in the X-ray spectral range

    International Nuclear Information System (INIS)

    Porquet, Delphine

    1999-01-01

    The so-called 'Warm Absorber' medium is observed in the central region of Active Galactic Nuclei and particularly in Seyfert l galaxies. lt is mainly characterized by O(VII) and O(VIII) absorption edges detected in the soft X-rays. Its study (modelization and observation) is an important key tool to understand Active Galactic Nuclei. The work presented here consists in modelling the Warm Absorber, and in developing X-ray spectroscopy diagnostics to constrain the physical parameters of any hot medium such as the Warm Absorber. The physical parameters of the Warm Absorber (density, temperature, ionization processes..) are difficult to determine only on the basis of present X-ray data. In particular, the value of the density cannot be derived only from the modelling of the resonance lines and of the soft X-ray absorption edges since there are almost insensitive to the density in the range of values expected for the Warm Absorber. lt is why we have developed diagnostic methods based on a multi-wavelength approach. The modelling is made with two complementary computational codes: PEGAS, and IRIS which takes into account the most accurate atomic data. With these two codes, we have modelled several types of plasma ionisation processes (photoionized plasmas and/or collisional). Results for the Warm Absorber were compared to multi-wavelength observations (mainly the optical iron coronal lines [Fe X] 6375 Angstroms, [Fe XI] 7892 Angstroms, and [Fe XIV] 5303 Angstroms). The proposed method has allowed to show that the Warm Absorber could be responsible of the emission of these lines totally or partially. All models of the Warm Absorber producing coronal line equivalent widths larger than observed were ruled out. This strongly constrains the physical parameters of the Warm Absorber, and particularly its density (n H ≥10 10 cm -3 ). The new generation of X-ray satellites (Chandra/AXAF, XMM...) will produce spectra at high spectral resolution and high sensitivity

  5. The identification and rejection of energy-degraded events in gas ionization counters

    International Nuclear Information System (INIS)

    Ophel, T.R.; Fifield, L.K.; Catford, W.N.; Orr, N.A.; Woods, C.L.; Harding, A.; Clarkson, G.P.

    1988-05-01

    A common feature of the measurement of charged particles with gas detectors is the presence of a small fraction of events (∼0.1-0.2%) for which significantly less than total ionization is recorded. These events cause an energy tailing that can seriously impair the identification functions of gas detectors used either to instrument the focal plane of magnetic spectrometers or for accelerator mass spectrometry. The anomalous, energy-degraded events are shown to arise both from reactions between the incident ions and the detector gas and, more importantly from the scattering of ions by the gas. It is demonstrated that an appropriate detector configuration provides the means to reject most of the anomalous events, allowing the measurement of very low cross-section reactions without significant background interference from such events

  6. Origin of warm and hot gas emission from low-mass protostars: Herschel-HIFI observations of CO J = 16-15

    DEFF Research Database (Denmark)

    Kristensen, Lars Egstrøm; Van Dishoeck, E. F.; Mottram, J. C.

    2017-01-01

    Context. Through spectrally unresolved observations of high-J CO transitions, Herschel Photodetector Array Camera and Spectrometer (PACS) has revealed large reservoirs of warm (300 K) and hot (700 K) molecular gas around low-mass protostars. The excitation and physical origin of this gas is still...... in cooling molecular H2-poor gas just prior to the onset of H2 formation. High spectral resolution observations of highly excited CO transitions uniquely shed light on the origin of warm and hot gas in low-mass protostellar objects....... not understood. Aims. We aim to shed light on the excitation and origin of the CO ladder observed toward protostars, and on the water abundance in different physical components within protostellar systems using spectrally resolved Herschel-HIFI data. Methods. Observations are presented of the highly excited CO...

  7. Development of gas ionization chambers with coplanar electrodes for alpha-ray spectrometry

    International Nuclear Information System (INIS)

    Iwasaki, Kenta; Tanaka, Naomichi; Murakami, Kohei; Hasebe, Nobuyuki; Kusano, Hiroki; Shibamura, Eido; Miyajima, Mitsuhiro

    2016-01-01

    A large-area alpha-ray spectrometer is required to measure the low level alpha emitters in environmental samples, which may be distributed in the vicinity of nuclear power plants. A gas ionization chamber with a coplanar electrode has attractive features such as with mechanical ruggedness, easy handling, easy fabrication of large electrode, and relatively well-known performance. We have investigated the performance of a gas ionization chamber with a coplanar electrode for alpha-ray spectrometry, particularly in the energy resolution. The present experiment shows that the energy resolution in the full width at half maximum (FWHM) is 129 keV (= 2.7%) for alpha-rays from Np with an energy of 4.78 MeV, 120 keV (= 2.2%) for those with 5.49 MeV from Am, and 109 keV (= 1.9%) for those with 5.81 MeV from Cm. It is found that the energy resolution obtained at the present experiment is dominated in the electronic noise caused by the large capacitance existed between the collecting anode (CA) and non-collecting anode (NCA) in the coplanar electrode. (author)

  8. Effective ionization coefficient of C5 perfluorinated ketone and its mixtures with air

    Science.gov (United States)

    Aints, Märt; Jõgi, Indrek; Laan, Matti; Paris, Peeter; Raud, Jüri

    2018-04-01

    C5 perfluorinated ketone (C5 PFK with UIPAC chemical name 1,1,1,3,4,4,4-heptafluoro-3-(trifluoromethyl)-2-butanone and sold by 3M as Novec™ 5110) has a high dielectric strength and a low global warming potential, which makes it interesting as an insulating gas in medium and high-voltage applications. The study was carried out to determine the effective Townsend ionization coefficient α eff as a function of electric field strength and gas density for C5 PFK and for its mixtures with air. The non-self-sustained Townsend discharge between parallel plate electrodes was initiated by illuminating the cathode by UV radiation. The discharge current, I, was measured as a function of inter-electrode distance, d, at different gas densities, N, and electric field strengths, E. The effective ionization coefficient α eff was determined from the semi-logarithmic plots of I/I 0 against d. For each tested gas mixture, the density normalized effective ionization coefficient α eff/N was found to be a unique function of reduced electric field strength E/N. The measurements were carried out in the absolute pressure range of 0.05-1.3 bar and E/N range of 150-1200 Td. The increasing fraction of C5 PFK in air resulted in the decrease of effective ionization coefficient. The limiting electric field strength (E/N)lim where the effective ionization coefficient α eff became zero was 770 Td (190 kV cm-1 at 1 bar) for pure C5 PFK and decreased to 225 Td (78 kV cm-1 at 1.4 bar) for 7.6% C5 PFK/air mixture. The latter value of (E/N)lim is still more than two times higher than the (E/N)lim value of synthetic air and about two-thirds of the value corresponding to pure SF6. The investigated gas mixtures have the potential to become an alternative to SF6 in numerous high- and medium-voltage applications.

  9. Collisions of highly stripped ions at MeV energies in gas targets: charge transfer and ionization

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1980-01-01

    Cross sections have been measured for charge transfer and ionization in H 2 and rare-gas targets by fast, highly ionized carbon, iron, niobium, and lead ions in charge states +3 to +59, with energies in the range 0.1 to 4.8 MeV/amu. Experimental results are compared with classical-trajectory calculations; agreement is generally good. For a given target, the cross sections for net ionization reduce to a common curve when plotted as cross section divided by charge state versus energy per nucleon divided by charge state

  10. Influence of gas mixture and primary ionization on the performance of limit streamer mode tubes

    International Nuclear Information System (INIS)

    An Jigang; Anderson, K.J.; Merritt, F.S.; Oreglia, M.; Pilcher, J.E.; Possoz, A.; Schappert, W.; Chicago Univ., IL

    1988-01-01

    We report a study of the dependence of limited streamer mode operation on gas composition. Results are given for the plateau onset voltage, plateau length, charge versus voltage, charge spectra and pulse width for various fractions of (Ar, CO 2 , pentane) and (Ar, isobutane). In addition, a series of argon-free strong quenching gas mixtures has been studied which have very attractive characteristics. Chamber lifetime tests for these are also reported. As part of a study of the nature of the limited streamer mode mechanism, the response to X-rays and minimum ionizing particles are compared and differences noted. The character of the primary ionization is found to have a clear effect on the chamber response even in the streamer region. (orig.)

  11. Theory on a partially ionized gas centrifuge

    International Nuclear Information System (INIS)

    Berg, M.S. van den.

    1982-01-01

    This thesis contains a study of some flow processes occurring in the Gaswhirl experiments. In this apparatus a partially ionized gas is forced into rotation by an azimuthal electromagnetic force. After a short introduction in which a motivation is given of our research project, a comprehensive treatment is presented of the principle of rotating plasmas. Further, a historical review is given of rotating plasma systems. A derivation of the fundamental equations is given which describe the flow system mathematically and these are applied to rotating plasmas. The occurrence of secondary flows with radial and axial components is considered. This qualitative picture of secondary whirls is confirmed by measurements reported in the next chapter. The last chapter offers a possible explanation of the occurrence of the transition process in the Gaswhirl apparatus. (Auth.)

  12. Application of gas chromatography-surface ionization organic mass spectrometry to forensic toxicology.

    Science.gov (United States)

    Ishii, Akira; Watanabe-Suzuki, Kanako; Seno, Hiroshi; Suzuki, Osamu; Katsumata, Yoshinao

    2002-08-25

    Surface ionization (SI), which consists in the formation of positive and negative ions along the course of thermal desorption of particles from a solid surface, was first applied as a detector for gas chromatography (GC), GC-surface ionization detection (SID); we developed many new sensitive methods for the determination of abused and other drugs by GC-SID. Recently, Fujii has devised a combination of SI and a quadrupole mass spectrometer and named this system a surface ionization organic mass spectrometer (SIOMS), which is highly selective and sensitive for organic compounds containing tertiary amino groups. We have tried to apply this mass spectrometer to forensic toxicological study; so far we have succeeded in determining important drugs-of-abuse and toxic compounds, such as phencyclidine (PCP), pethidine, pentazocine, MPTP and its derivatives from human body fluids with high sensitivity and selectivity. In this review, we describe our recent studies on the application of GC-SIOMS to forensic toxicology. Copyright 2002 Elsevier Science B.V.

  13. Ionization instabilities of an electromagnetic wave propagating in a tenuous gas

    International Nuclear Information System (INIS)

    Bian Zhigang; Antonsen, Thomas M. Jr.

    2001-01-01

    A theory is developed to study the scattering instability that occurs when a laser pulse propagates through and ionizes a gas. The instability is due to the intensity dependence of the ionization rate, which leads to a transversely structured free electron density. The instability is convective in the frame of the laser pulse, but can have a relatively short growth length scaling as L g ∼k 0 /k p 2 , where k 0 is the laser wave number, k p 2 =ω p 2 /c 2 and ω p is the plasma frequency. The most unstable perturbations correspond to a scattering angle for which the transverse wave number is around the plasma wave number, k p . The scattered light is frequency upshifted. The comparison between simple analytic theory and numerical simulation shows good agreement

  14. The Electron Temperature of a Partially Ionized Gas in an Electric Field

    Energy Technology Data Exchange (ETDEWEB)

    Robben, F

    1968-03-15

    The electron temperature of a partially ionized gas in an electric field can be determined by the collision rate for momentum transfer and the collision rate for energy transfer. Mean values of these rates are defined such that a simple expression for the electron temperature is obtained, and which depends, among other things, on the ratio of these mean rates. This ratio is calculated in the Lorentz approximation for power law cross sections, and also as a function of the degree of ionization for a helium plasma. It is pointed out that the complete results of refined transport theory can be used in calculating electron mobility and electron temperature in a multicomponent plasma without undue difficulty.

  15. The Electron Temperature of a Partially Ionized Gas in an Electric Field

    International Nuclear Information System (INIS)

    Robben, F.

    1968-03-01

    The electron temperature of a partially ionized gas in an electric field can be determined by the collision rate for momentum transfer and the collision rate for energy transfer. Mean values of these rates are defined such that a simple expression for the electron temperature is obtained, and which depends, among other things, on the ratio of these mean rates. This ratio is calculated in the Lorentz approximation for power law cross sections, and also as a function of the degree of ionization for a helium plasma. It is pointed out that the complete results of refined transport theory can be used in calculating electron mobility and electron temperature in a multicomponent plasma without undue difficulty

  16. Simulation study of the ionizing front in the critical ionization velocity phenomenon

    International Nuclear Information System (INIS)

    Machida, S.; Goertz, C.K.; Lu, G.

    1988-01-01

    Simulations of the Critical Ionization Velocity (CIV) for a neutral gas cloud moving across the static magnetic field are made. We treat a low-β plasma and use a 2-1/2 D electrostatic code linked with our Plasma and Neutral Interaction Code (PANIC). Our study is focused on the understanding of the interface between the neutral gas cloud and the surrounding plasma where the strong interaction takes place. We assume the existence of some hot electrons in the ambient plasma to provide a seed ionization for CIV. When the ionization starts a sheath-like structure is formed at the surface of the neutral gas (Ionizing Front). In that region the crossfield component of the electric field causes the electron to E x B drift with a velocity of the order of the neutral gas velocity times the square root of the ion to electron mass ratio. Thus the kinetic energy of the drifting electrons can be large enough for electron impact ionization. In addition a diamagnetic drift of the electron occurs due to the number density and temperature inhomogeneity in the ionization front. These drift currents excite the lower-hybrid waves with the wave k-vectors almost perpendicular to the neutral flow and magnetic field again resulting in electron heating and additional ionization. The overall structure is studied by developing a simple analytic model as well as making simulation runs. (author)

  17. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application.

    Science.gov (United States)

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2018-01-01

    Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long-term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long-term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high-temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (R s ), and metabolic quotient (qCO 2 ) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO 2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N 2 O emissions, possibly due to accelerated N-cycling at elevated soil temperature and to biochar-induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar-C into soil was estimated to offset warming-induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N 2 O emissions under warming limit the GHG mitigation potential of biochar. © 2017 John Wiley & Sons Ltd.

  18. The Gaia-ESO Survey: dynamics of ionized and neutral gas in the Lagoon nebula (M 8)

    Science.gov (United States)

    Damiani, F.; Bonito, R.; Prisinzano, L.; Zwitter, T.; Bayo, A.; Kalari, V.; Jiménez-Esteban, F. M.; Costado, M. T.; Jofré, P.; Randich, S.; Flaccomio, E.; Lanzafame, A. C.; Lardo, C.; Morbidelli, L.; Zaggia, S.

    2017-08-01

    Aims: We present a spectroscopic study of the dynamics of the ionized and neutral gas throughout the Lagoon nebula (M 8), using VLT-FLAMES data from the Gaia-ESO Survey. The new data permit exploration of the physical connections between the nebular gas and the stellar population of the associated star cluster NGC 6530. Methods: We characterized through spectral fitting emission lines of Hα, [N II] and [S II] doublets, [O III], and absorption lines of sodium D doublet, using data from the FLAMES-Giraffe and UVES spectrographs, on more than 1000 sightlines toward the entire face of the Lagoon nebula. Gas temperatures are derived from line-width comparisons, densities from the [S II] doublet ratio, and ionization parameter from Hα/[N II] ratio. Although doubly-peaked emission profiles are rarely found, line asymmetries often imply multiple velocity components along the same line of sight. This is especially true for the sodium absorption, and for the [O III] lines. Results: Spatial maps for density and ionization are derived, and compared to other known properties of the nebula and of its massive stars 9 Sgr, Herschel 36 and HD 165052 which are confirmed to provide most of the ionizing flux. The detailed velocity fields across the nebula show several expanding shells, related to the cluster NGC 6530, the O stars 9 Sgr and Herschel 36, and the massive protostar M 8East-IR. The origins of kinematical expansion and ionization of the NGC 6530 shell appear to be different. We are able to put constrains on the line-of-sight (relative or absolute) distances between some of these objects and the molecular cloud. The data show that the large obscuring band running through the middle of the nebula is being compressed by both sides, which might explain its enhanced density. We also find an unexplained large-scale velocity gradient across the entire nebula. At larger distances, the transition from ionized to neutral gas is studied using the sodium lines. Based on observations

  19. The SAURON project : XVI. On the sources of ionization for the gas in elliptical and lenticular galaxies

    NARCIS (Netherlands)

    Sarzi, Marc; Shields, Joseph C.; Schawinski, Kevin; Jeong, Hyunjin; Shapiro, Kristen; Bacon, Roland; Bureau, Martin; Cappellari, Michele; Davies, Roger L.; de Zeeuw, P. Tim; Emsellem, Eric; Falcon-Barroso, Jesus; Krajnovic, Davor; Kuntschner, Harald; McDermid, Richard M.; Peletier, Reynier F.; van den Bosch, Remco C. E.; van de Ven, Glen; Yi, Sukyoung K.

    Following our study on the incidence, morphology and kinematics of the ionized gas in early-type galaxies, we now address the question of what is powering the observed nebular emission. To constrain the likely sources of gas excitation, we resort to a variety of ancillary data we draw from

  20. The SAURON project - XVI. On the sources of ionization for the gas in elliptical and lenticular galaxies

    NARCIS (Netherlands)

    Sarzi, Marc; Shields, Joseph C.; Schawinski, Kevin; Jeong, Hyunjin; Shapiro, Kristen; Bacon, Roland; Bureau, Martin; Cappellari, Michele; Davies, Roger L.; de Zeeuw, P. Tim; Emsellem, Eric; Falcón-Barroso, Jesús; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Peletier, Reynier F.; van den Bosch, Remco C. E.; van de Ven, Glen; Yi, Sukyoung K.

    Following our study on the incidence, morphology and kinematics of the ionized gas in early-type galaxies, we now address the question of what is powering the observed nebular emission. To constrain the likely sources of gas excitation, we resort to a variety of ancillary data we draw from

  1. Ionization front accelerator

    International Nuclear Information System (INIS)

    Olson, C.L.

    1975-01-01

    In a recently proposed linear collective accelerator, ions are accelerated in a steep, moving potential well created at the head of an intense relativistic electron beam. The steepness of the potential well and its motion are controlled by the external ionization of a suitable background gas. Calculations concerning optimum choices for the background gas and the ionization method are presented; a two-step photoionization process employing Cs vapor is proposed. In this process, a super-radiant light source is used to excite the gas, and a UV laser is used to photoionize the excited state. The appropriate line widths and coupled ionization growth rate equations are discussed. Parameter estimates are given for a feasibility experiment, for a 1 GeV proton accelerator, and for a heavy ion accelerator (50 MeV/nucleon uranium). (auth)

  2. Image simulation of high-speed imaging by high-pressure gas ionization detector

    International Nuclear Information System (INIS)

    Miao Jichen; Liu Ximing; Wu Zhifang

    2005-01-01

    The signal of the neighbor pixels is cumulated in Freight Train Inspection System because data fetch time is shorter than ion excursion time. This paper analyzes the pertinency of neighbor pixels and designs computer simulation method to generate some emulate images such as indicator image. The result indicates the high-pressure gas ionization detector can be used in high-speed digital radiography field. (authors)

  3. Simulation of the Interaction of X-rays with a Gas in an Ionization Chamber by the Monte Carlo Method

    International Nuclear Information System (INIS)

    Grau Carles, A.; Garcia Gomez-Tejedor, G.

    2001-01-01

    The final objective of any ionization chamber is the measurement of the energy amount or radiation dose absorbed by the gas into the chamber. The final value depends on the composition of the gas, its density and temperature, the ionization chamber geometry, and type and intensity of the radiation. We describe a Monte Carlo simulation method, which allows one to compute the dose absorbed by the gas for a X-ray beam. Verification of model has been carried out by simulating the attenuation of standard X-ray radiation through the half value layers established in the ISO 4037 report, while assuming a Weibull type energy distribution for the incident photons. (Author) 6 refs

  4. First successful ionization of Lr (Z = 103) by a surface-ionization technique

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tetsuya K., E-mail: sato.tetsuya@jaea.go.jp; Sato, Nozomi; Asai, Masato; Tsukada, Kazuaki; Toyoshima, Atsushi; Ooe, Kazuhiro; Miyashita, Sunao; Schädel, Matthias [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kaneya, Yusuke; Nagame, Yuichiro [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Graduate School of Science and Engineering, Ibaraki University, 2-1-1, Bunkyo, Mito, Ibaraki 310-8512 (Japan); Osa, Akihiko [Department of Research Reactor and Tandem Accelerator, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Ichikawa, Shin-ichi [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Stora, Thierry [ISOLDE, CERN, CH-1211 Geneva 23 (Switzerland); Kratz, Jens Volker [Institut für Kernchemie, Universität Mainz, D-55099 Mainz (Germany)

    2013-02-15

    We have developed a surface ionization ion-source as part of the JAEA-ISOL (Isotope Separator On-Line) setup, which is coupled to a He/CdI{sub 2} gas-jet transport system to determine the first ionization potential of the heaviest actinide lawrencium (Lr, Z = 103). The new ion-source is an improved version of the previous source that provided good ionization efficiencies for lanthanides. An additional filament was newly installed to give better control over its operation. We report, here, on the development of the new gas-jet coupled surface ion-source and on the first successful ionization and mass separation of 27-s {sup 256}Lr produced in the {sup 249}Cf + {sup 11}B reaction.

  5. Performance of a high repetition pulse rate laser system for in-gas-jet laser ionization studies with the Leuven laser ion source LISOL

    International Nuclear Information System (INIS)

    Ferrer, R.; Sonnenschein, V.T.; Bastin, B.; Franchoo, S.; Huyse, M.; Kudryavtsev, Yu.; Kron, T.; Lecesne, N.; Moore, I.D.; Osmond, B.; Pauwels, D.; Radulov, D.; Raeder, S.; Rens, L.

    2012-01-01

    The laser ionization efficiency of the Leuven gas cell-based laser ion source was investigated under on- and off-line conditions using two distinctly different laser setups: a low-repetition rate dye laser system and a high-repetition rate Ti:sapphire laser system. A systematic study of the ion signal dependence on repetition rate and laser pulse energy was performed in off-line tests using stable cobalt and copper isotopes. These studies also included in-gas-jet laser spectroscopy measurements on the hyperfine structure of 63 Cu. A final run under on-line conditions in which the radioactive isotope 59 Cu (T 1/2 = 81.5 s) was produced, showed a comparable yield of the two laser systems for in-gas-cell ionization. However, a significantly improved time overlap by using the high-repetition rate laser system for in-gas-jet ionization was demonstrated by an increase of the overall duty cycle, and at the same time, pointed to the need for a better shaped atomic jet to reach higher ionization efficiencies.

  6. Comparison of net global warming potential and greenhouse gas intensity affected by management practices in two dryland cropping sites

    Science.gov (United States)

    Little is known about the effect of management practices on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of greenhouse gas (GHG) emissions in dryland cropping systems. The objective of this study was to compare the effect of a combinat...

  7. X-ray ionization of the intergalactic medium by quasars

    Science.gov (United States)

    Graziani, Luca; Ciardi, B.; Glatzle, M.

    2018-06-01

    We investigate the impact of quasars on the ionization of the surrounding intergalactic medium (IGM) with the radiative transfer code CRASH4, now accounting for X-rays and secondary electrons. After comparing with analytic solutions, we post-process a cosmic volume (≈1.5 × 104 Mpc3h-3) containing a ULAS J1120+0641-like quasar (QSO) hosted by a 5 × 1011M⊙h-1 dark matter (DM) halo. We find that: (i) the average HII region (R ˜ 3.2 pMpc in a lifetime tf = 107 yrs) is mainly set by UV flux, in agreement with semi-analytic scaling relations; (ii) a largely neutral (xHII < 0.001), warm (T ˜ 103 K) tail extends up to few Mpc beyond the ionization front, as a result of the X-ray flux; (iii) LyC-opaque inhomogeneities induce a line of sight (LOS) scatter in R as high as few physical Mpc, consistent with the DLA scenario proposed to explain the anomalous size of the ULAS J1120+0641 ionized region. On the other hand, with an ionization rate \\dot{N}_{γ ,0} ˜ 10^{57} s-1, the assumed DLA clustering and gas opacity, only one LOS shows an HII region compatible with the observed one. We deduce that either the ionization rate of the QSO is at least one order of magnitude lower or the ULAS J1120+0641 bright phase is shorter than 107 yrs.

  8. The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2014-11-01

    A novel, gas-tight API interface for gas chromatography-mass spectrometry was used to study the ionization mechanism in direct and dopant-assisted atmospheric pressure photoionization (APPI) and atmospheric pressure laser ionization (APLI). Eight analytes (ethylbenzene, bromobenzene, naphthalene, anthracene, benzaldehyde, pyridine, quinolone, and acridine) with varying ionization energies (IEs) and proton affinities (PAs), and four common APPI dopants (toluene, acetone, anisole, and chlorobenzene) were chosen. All the studied compounds were ionized by direct APPI, forming mainly molecular ions. Addition of dopants suppressed the signal of the analytes with IEs above the IE of the dopant. For compounds with suitable IEs or Pas, the dopants increased the ionization efficiency as the analytes could be ionized through dopant-mediated gas-phase reactions, such as charge exchange, proton transfer, and other rather unexpected reactions, such as formation of [M + 77](+) in the presence of chlorobenzene. Experiments with deuterated toluene as the dopant verified that in case of proton transfer, the proton originated from the dopant instead of proton-bound solvent clusters, as in conventional open or non-tight APPI sources. In direct APLI using a 266 nm laser, a narrower range of compounds was ionized than in direct APPI, because of exceedingly high IEs or unfavorable two-photon absorption cross-sections. Introduction of dopants in the APLI system changed the ionization mechanism to similar dopant-mediated gas-phase reactions with the dopant as in APPI, which produced mainly ions of the same form as in APPI, and ionized a wider range of analytes than direct APLI.

  9. The sensitivity and dynamic response of field ionization gas sensor based on ZnO nanorods

    International Nuclear Information System (INIS)

    Min Jiahua; Liang Xiaoyan; Wang Bin; Wang Linjun; Zhao Yue; Shi Weimin; Xia Yiben

    2011-01-01

    Field ionization gas sensors based on ZnO nanorods (50–300 nm in diameter, and 3–8 μm in length) with and without a buffer layer were fabricated, and the influence of the orientation of nano-ZnO on the ionization response of devices was discussed, including the sensitivity and dynamic response of the ZnO nanorods with preferential orientation. The results indicated that ZnO nanorods as sensor anode could dramatically decrease the breakdown voltage. The XRD and SEM images illustrated that nano-ZnO with a ZnO buffer layer displayed high c-axis orientation, which helps to significantly reduce the breakdown voltage. Device A based on ZnO nanorods with a ZnO buffer layer could distinguish toluene and acetone. The dynamic responses of device A to the NO x compounds presented the sensitivity of 0.045 ± 0.007 ppm/pA and the response speed within 17–40 s, and indicated a linear relationship between NO x concentration and current response at low NO x concentrations. In addition, the dynamic responses to benzene, isopropyl alcohol, ethanol, and methanol reveals that the device has higher sensitivity to gas with larger static polarizability and lower ionization energy.

  10. DENSITY OF WARM IONIZED GAS NEAR THE GALACTIC CENTER: LOW RADIO FREQUENCY OBSERVATIONS

    International Nuclear Information System (INIS)

    Roy, Subhashis

    2013-01-01

    We have observed the Galactic center (GC) region at 0.154 and 0.255 GHz with the Giant Metrewave Radio Telescope. A total of 62 compact likely extragalactic (EG) sources are detected. Their scattering sizes decrease linearly with increasing angular distance from the GC up to about 1°. The apparent scattering sizes of the sources are more than an order of magnitude less than predicted earlier by the NE2001 model of Galactic electron distribution within 359.°5 e is ∼10 cm –3 , which matches the NE2001 model. This model predicts the EG sources to be resolved out from 1.4 GHz interferometric surveys. However, out of 10 EG sources expected in the region, 8 likely EG are present in the 1.4 GHz catalog. Ionized interfaces of dense molecular clouds to the ambient medium are most likely responsible for strong scattering and low radio frequency absorption. However, dense GC clouds traced by CS J = 1-0 emission are found to have a narrow distribution of ∼0.°2 across the Galactic plane. Angular distribution of most EG sources seen through the so-called Hyperstrong Scattering Region are random in b, and typically ∼7 out of 10 sources will not be seen through the dense molecular clouds, which explains why most of them are not scatter broadened at 1.4 GHz

  11. COLD DUST BUT WARM GAS IN THE UNUSUAL ELLIPTICAL GALAXY NGC 4125

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C. D.; Cridland, A.; Foyle, K.; Parkin, T. J.; Cooper, E. Mentuch [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada); Roussel, H. [Institut d' Astrophysique de Paris, Université Pierre et Marie Curie, CNRS UMR 7095, F-75014 Paris (France); Sauvage, M.; Lebouteiller, V.; Madden, S. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot DAPNIA/Service d' Astrophysique, Bât. 709, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Smith, M. W. L.; Gear, W. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom); Baes, M.; De Looze, I. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Bendo, G. [UK ALMA Regional Centre Node, Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Boquien, M.; Boselli, A.; Ciesla, L. [Aix-Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Galametz, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); and others

    2013-10-20

    Data from the Herschel Space Observatory have revealed an unusual elliptical galaxy, NGC 4125, which has strong and extended submillimeter emission from cold dust but only very strict upper limits to its CO and H I emission. Depending on the dust emissivity, the total dust mass is 2-5 × 10{sup 6} M {sub ☉}. While the neutral gas-to-dust mass ratio is extremely low (<12-30), including the ionized gas traced by [C II] emission raises this limit to <39-100. The dust emission follows a similar r {sup 1/4} profile to the stellar light and the dust to stellar mass ratio is toward the high end of what is found in nearby elliptical galaxies. We suggest that NGC 4125 is currently in an unusual phase where evolved stars produced in a merger-triggered burst of star formation are pumping large amounts of gas and dust into the interstellar medium. In this scenario, the low neutral gas-to-dust mass ratio is explained by the gas being heated to temperatures ≥10{sup 4} K faster than the dust is evaporated. If galaxies like NGC 4125, where the far-infrared emission does not trace neutral gas in the usual manner, are common at higher redshift, this could have significant implications for our understanding of high redshift galaxies and galaxy evolution.

  12. Preparation of the spacer for narrow electrode gap configuration in ionization-based gas sensor

    International Nuclear Information System (INIS)

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif

    2012-01-01

    Carbon nanotubes (CNTs) have started to be developed as the sensing element for ionization-based gas sensors due to the demand for improved sensitivity, selectivity, stability and other sensing properties beyond what can be offered by the conventional ones. Although these limitations have been overcome, the problems still remain with the conventional ionization-based gas sensors in that they are bulky and operating with large breakdown voltage and high temperature. Recent studies have shown that the breakdown voltage can be reduced by using nanostructured electrodes and narrow electrode gap. Nanostructured electrode in the form of aligned CNTs array with evenly distributed nanotips can enhance the linear electric field significantly. The later is attributed to the shorter conductivity path through narrow electrode gap. The paper presents the study on the design consideration in order to realize ionization based gas sensor using aligned carbon nanotubes array in an optimum sensor configuration with narrow electrode gap. Several deposition techniques were studied to deposit the spacer, the key component that can control the electrode gap. Plasma spray deposition, electron beam deposition and dry oxidation method were employed to obtain minimum film thickness around 32 μm. For plasma spray method, sand blasting process is required in order to produce rough surface for strong bonding of the deposited film onto the surface. Film thickness, typically about 39 μm can be obtained. For the electron beam deposition and dry oxidation, the film thickness is in the range of nanometers and thus unsuitable to produce the spacer. The deposited multilayer film consisting of copper, alumina and ferum on which CNTs array will be grown was found to be removed during the etching process. This is attributed to the high etching rate on the thin film which can be prevented by reducing the rate and having a thicker conductive copper film.

  13. Preparation of the spacer for narrow electrode gap configuration in ionization-based gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif [Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak. (Malaysia); Fundamental and Applied Science, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak. (Malaysia); Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak. (Malaysia)

    2012-09-26

    Carbon nanotubes (CNTs) have started to be developed as the sensing element for ionization-based gas sensors due to the demand for improved sensitivity, selectivity, stability and other sensing properties beyond what can be offered by the conventional ones. Although these limitations have been overcome, the problems still remain with the conventional ionization-based gas sensors in that they are bulky and operating with large breakdown voltage and high temperature. Recent studies have shown that the breakdown voltage can be reduced by using nanostructured electrodes and narrow electrode gap. Nanostructured electrode in the form of aligned CNTs array with evenly distributed nanotips can enhance the linear electric field significantly. The later is attributed to the shorter conductivity path through narrow electrode gap. The paper presents the study on the design consideration in order to realize ionization based gas sensor using aligned carbon nanotubes array in an optimum sensor configuration with narrow electrode gap. Several deposition techniques were studied to deposit the spacer, the key component that can control the electrode gap. Plasma spray deposition, electron beam deposition and dry oxidation method were employed to obtain minimum film thickness around 32 {mu}m. For plasma spray method, sand blasting process is required in order to produce rough surface for strong bonding of the deposited film onto the surface. Film thickness, typically about 39 {mu}m can be obtained. For the electron beam deposition and dry oxidation, the film thickness is in the range of nanometers and thus unsuitable to produce the spacer. The deposited multilayer film consisting of copper, alumina and ferum on which CNTs array will be grown was found to be removed during the etching process. This is attributed to the high etching rate on the thin film which can be prevented by reducing the rate and having a thicker conductive copper film.

  14. Molecular and Ionized Hydrogen in 30 Doradus. I. Imaging Observations

    Science.gov (United States)

    Yeh, Sherry C. C.; Seaquist, Ernest R.; Matzner, Christopher D.; Pellegrini, Eric W.

    2015-07-01

    We present the first fully calibrated H2 1-0 S(1) image of the entire 30 Doradus nebula. The observations were conducted using the NOAO Extremely Wide-field Infrared Imager (NEWFIRM) on the CTIO 4 m Blanco Telescope. Together with a NEWFIRM Brγ image of 30 Doradus, our data reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. The brightest H2-emitting area, which extends from the northeast to the southwest of R136, is a photodissociation region (PDR) viewed face-on, while many clumps and pillar features located at the outer shells of 30 Doradus are PDRs viewed edge-on. Based on the morphologies of H2, Brγ, CO, and 8 μm emission, the H2 to Brγ line ratio, and Cloudy models, we find that the H2 emission is formed inside the PDRs of 30 Doradus, 2-3 pc to the ionization front of the H ii region, in a relatively low-density environment <104 cm-3. Comparisons with Brγ, 8 μm, and CO emission indicate that H2 emission is due to fluorescence, and provide no evidence for shock excited emission of this line.

  15. MOLECULAR AND IONIZED HYDROGEN IN 30 DORADUS. I. IMAGING OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Sherry C. C. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Seaquist, Ernest R.; Matzner, Christopher D. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Pellegrini, Eric W., E-mail: yeh@naoj.org [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States)

    2015-07-10

    We present the first fully calibrated H{sub 2} 1–0 S(1) image of the entire 30 Doradus nebula. The observations were conducted using the NOAO Extremely Wide-field Infrared Imager (NEWFIRM) on the CTIO 4 m Blanco Telescope. Together with a NEWFIRM Brγ image of 30 Doradus, our data reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. The brightest H{sub 2}-emitting area, which extends from the northeast to the southwest of R136, is a photodissociation region (PDR) viewed face-on, while many clumps and pillar features located at the outer shells of 30 Doradus are PDRs viewed edge-on. Based on the morphologies of H{sub 2}, Brγ, CO, and 8 μm emission, the H{sub 2} to Brγ line ratio, and Cloudy models, we find that the H{sub 2} emission is formed inside the PDRs of 30 Doradus, 2–3 pc to the ionization front of the H ii region, in a relatively low-density environment <10{sup 4} cm{sup −3}. Comparisons with Brγ, 8 μm, and CO emission indicate that H{sub 2} emission is due to fluorescence, and provide no evidence for shock excited emission of this line.

  16. Quantitative study of the ionization-induced refraction of picosecond laser pulses in gas-jet targets

    International Nuclear Information System (INIS)

    Mackinnon, A.J.; Borghesi, M.; Iwase, A.; Jones, M.W.; Pert, G.J.; Rae, S.; Burnett, K.; Willi, O.

    1996-01-01

    A quantitative study of refractive whole beam defocusing and small scale breakup induced by optical ionization of subpicosecond and picosecond, 0.25 and 1 μm, laser pulses in gas-jet targets at densities above 1x10 19 cm -3 has been carried out. A significant reduction of the incident laser intensity was observed due to refraction from ionization-induced density gradients. The level of refraction measured with optical probing correlated well with the fraction of energy transmitted through the plasma. The numerical and analytical models were found to agree well with experimental observations. copyright 1996 The American Physical Society

  17. Electron kinetics modeling in a weakly ionized gas

    International Nuclear Information System (INIS)

    Boeuf, Jean-Pierre

    1985-01-01

    This work presents some features of electron kinetics in a weakly ionized gas. After a summary of the basis and recent developments of the kinetic theory, and a review of the most efficient numerical techniques for solving the Boltzmann equation, several aspects of electron motion in gases are analysed. Relaxation phenomena toward equilibrium under a uniform electric field, and the question of the existence of the hydrodynamic regime are first studied. The coupling between electron kinetics and chemical kinetics due to second kind collisions in Nitrogen is then analysed; a quantitative description of the evolution of the energy balance, accounting for electron-molecule as well as molecule-molecule energy transfer is also given. Finally, electron kinetics in space charge distorted, highly non uniform electric fields (glow discharges, streamers propagation) is investigated with microscopic numerical methods based on Boltzmann and Poisson equations. (author) [fr

  18. Net global warming potential and greenhouse gas intensity influenced by irrigation, tillage, crop rotation, and nitrogen fertilization

    Science.gov (United States)

    Little information exists about sources and sinks of greenhouse gases (GHGs) affected by management practices to account for net emissions from agroecosystems. We evaluated the effects of irrigation, tillage, crop rotation, and N fertilization on net global warming potential (GWP) and greenhouse gas...

  19. Gas chromatography with simultaneous detection: Ultraviolet spectroscopy, flame ionization, and mass spectrometry.

    Science.gov (United States)

    Gras, Ronda; Luong, Jim; Haddad, Paul R; Shellie, Robert A

    2018-05-08

    An effective analytical strategy was developed and implemented to exploit the synergy derived from three different detector classes for gas chromatography, namely ultraviolet spectroscopy, flame ionization, and mass spectrometry for volatile compound analysis. This strategy was achieved by successfully hyphenating a user-selectable multi-wavelength diode array detector featuring a positive temperature coefficient thermistor as an isothermal heater to a gas chromatograph. By exploiting the non-destructive nature of the diode array detector, the effluent from the detector was split to two parallel detectors; namely a quadrupole mass spectrometer and a flame ionization detector. This multi-hyphenated configuration with the use of three detectors is a powerful approach not only for selective detection enhancement but also for improvement in structural elucidation of volatile compounds where fewer fragments can be obtained or for isomeric compound analysis. With the diode array detector capable of generating high resolution gas phase spectra, the information collected provides useful confirmatory information without a total dependence on the chromatographic separation process which is based on retention time. This information-rich approach to chromatography is achieved without incurring extra analytical time, resulting in improvements in compound identification accuracy, analytical productivity, and cost. Chromatographic performance obtained from model compounds was found to be acceptable with a relative standard deviation of the retention times of less than 0.01% RSD, and a repeatability at two levels of concentration of 100 and 1000 ppm (v/v) of less than 5% (n = 10). With this configuration, correlation of data between the three detectors was simplified by having near identical retention times for the analytes studied. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. THE RISE OF AN IONIZED WIND IN THE NARROW-LINE SEYFERT 1 GALAXY Mrk 335 OBSERVED BY XMM-NEWTON AND HST

    International Nuclear Information System (INIS)

    Longinotti, A. L.; Krongold, Y.; Kriss, G. A.; Ely, J.; Gallo, L.; Grupe, D.; Komossa, S.; Mathur, S.; Pradhan, A.

    2013-01-01

    We present the discovery of an outflowing ionized wind in the Seyfert 1 galaxy Mrk 335. Despite having been extensively observed by most of the largest X-ray observatories in the last decade, this bright source was not known to host warm absorber gas until recent XMM-Newton observations in combination with a long-term Swift monitoring program have shown extreme flux and spectral variability. High-resolution spectra obtained by the XMM-Newton Reflection Grating Spectrometer (RGS) detector reveal that the wind consists of three distinct ionization components, all outflowing at a velocity of ∼5000 km s –1 . This wind is clearly revealed when the source is observed at an intermediate flux state (2-5 × 10 –12 erg cm –2 s –1 ). The analysis of multi-epoch RGS spectra allowed us to compare the absorber properties at three very different flux states of the source. No correlation between the warm absorber variability and the X-ray flux has been determined. The two higher ionization components of the gas (log ξ ∼ 2.3 and 3.3) may be consistent with photoionization equilibrium, but we can exclude this for the only ionization component that is consistently present in all flux states (log ξ ∼ 1.8). We have included archival, non-simultaneous UV data from Hubble Space Telescope (FOS, STIS, COS) with the aim of searching for any signature of absorption in this source that so far was known for being absorption-free in the UV band. In the Cosmic Origins Spectrograph (COS) spectra obtained a few months after the X-ray observations, we found broad absorption in C IV lines intrinsic to the active galactic nucleus and blueshifted by a velocity roughly comparable to the X-ray outflow. The global behavior of the gas in both bands can be explained by variation of the covering factor and/or column density, possibly due to transverse motion of absorbing clouds moving out of the line of sight at broad line region scale.

  1. Miniature ionization chamber

    International Nuclear Information System (INIS)

    Alexeev, V.I.; Emelyanov, I.Y.; Ivanov, V.M.; Konstantinov, L.V.; Lysikov, B.V.; Postnikov, V.V.; Rybakov, J.V.

    1976-01-01

    A miniature ionization chamber having a gas-filled housing which accommodates a guard electrode made in the form of a hollow perforated cylinder is described. The cylinder is electrically associated with the intermediate coaxial conductor of a triaxial cable used as the lead-in of the ionization chamber. The gas-filled housing of the ionization chamber also accommodates a collecting electrode shaped as a rod electrically connected to the center conductor of the cable and to tubular members. The rod is disposed internally of the guard electrode and is electrically connected, by means of jumpers passing through the holes in the guard electrode, to the tubular members. The tubular members embrace the guard electrode and are spaced a certain distance apart along its entire length. Arranged intermediate of these tubular members are spacers secured to the guard electrode and fixing the collecting electrode throughout its length with respect to the housing of the ionization chamber

  2. Warm gas towards young stellar objects in Corona Australis. Herschel/PACS observations from the DIGIT key programme

    Science.gov (United States)

    Lindberg, Johan E.; Jørgensen, Jes K.; Green, Joel D.; Herczeg, Gregory J.; Dionatos, Odysseas; Evans, Neal J.; Karska, Agata; Wampfler, Susanne F.

    2014-05-01

    Context. The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated by an intermediate-mass young star. Aims: We study the effects of the irradiation coming from the young luminous Herbig Be star R CrA on the warm gas and dust in a group of low-mass young stellar objects. Methods: Herschel/PACS far-infrared datacubes of two low-mass star-forming regions in the R CrA dark cloud are presented. The distributions of CO, OH, H2O, [C ii], [O i], and continuum emission are investigated. We have developed a deconvolution algorithm which we use to deconvolve the maps, separating the point-source emission from the extended emission. We also construct rotational diagrams of the molecular species. Results: By deconvolution of the Herschel data, we find large-scale (several thousand AU) dust continuum and spectral line emission not associated with the point sources. Similar rotational temperatures are found for the warm CO (282 ± 4 K), hot CO (890 ± 84 K), OH (79 ± 4 K), and H2O (197 ± 7 K) emission in the point sources and the extended emission. The rotational temperatures are also similar to those found in other more isolated cores. The extended dust continuum emission is found in two ridges similar in extent and temperature to molecular millimetre emission, indicative of external heating from the Herbig Be star R CrA. Conclusions: Our results show that nearby luminous stars do not increase the molecular excitation temperatures of the warm gas around young stellar objects (YSOs). However, the emission from photodissociation products of H2O, such as OH and O, is enhanced in the warm gas associated with these protostars and their surroundings compared to similar objects not subjected to external irradiation. Table 9 and appendices are available in

  3. Transport processes in ionized gases

    International Nuclear Information System (INIS)

    Kremer, G.M.

    1997-01-01

    Based on kinetic theory of gases and on the combined of Chapman-Enskog and Grad, the laws of Ohm, Fourier and Navier-Stokes are derived for a non-relativistic fully ionized gas. Moreover, the combined method is applied to the BGK model of the relativistic Boltzmann equation and the Ohm's law is derived for a relativistic fully ionized gas. (author)

  4. Ionization cell for sensing and measuring gaseous impurities

    International Nuclear Information System (INIS)

    Castelman, B.W.

    1978-01-01

    An improved gas ionization cell is described with compensation for variations in flow rate of the gas and variations in radioactive source intensity. A gas sample is directed past a source of ionizing radiation and through a recombination region to an ion collection screen, where output current is monitored to give an indication of trace gases or vapors present in the gas under surveillance. Compensation for changes in gas flow rate and source intensity is provided by taking a portion of the gas subjected to the ionizing radiation and directing that portion of the gas through a channel by-passing the recombination region of the cell and past a pair of conductive probes. The first probe of the pair is biased at a predetermined voltage, while electric current is monitored at the second probe spaced downstream from the first probe. The current generated at the second probe, which is for all practical purposes a function of only the rate of gas flow and the source intensity, provides the compensation signal for the ionization cell. 4 claims, 8 figures

  5. Electron impact ionization of the gas-phase sorbitol

    Science.gov (United States)

    Chernyshova, Irina; Markush, Pavlo; Zavilopulo, Anatoly; Shpenik, Otto

    2015-03-01

    Ionization and dissociative ionization of the sorbitol molecule by electron impact have been studied using two different experimental methods. In the mass range of m/ z = 10-190, the mass spectra of sorbitol were recorded at the ionizing electron energies of 70 and 30 eV. The ion yield curves for the fragment ions have been analyzed and the appearance energies of these ions have been determined. The relative total ionization cross section of the sorbitol molecule was measured using monoenergetic electron beam. Possible fragmentation pathways for the sorbitol molecule were proposed.

  6. Ionized and Neutral Outflows in the QUEST QSOs

    Science.gov (United States)

    Veilleux, Sylvain

    2011-10-01

    The role of galactic winds in gas-rich mergers is of crucial importance to understand galaxy and SMBH evolution. In recent months, our group has had three major scientific breakthroughs in this area: {1} The discovery with Herschel of massive molecular {OH-absorbing} outflows in several ULIRGs, including the nearest quasar, Mrk 231. {2} The independent discovery from mm-wave interferometric observations in the same object of a spatially resolved molecular {CO-emitting} wind with estimated mass outflow rate 3x larger than the star formation rate and spatially coincident with blueshifted neutral {Na ID-absorbing} gas in optical long-slit spectra. {3} The unambiguous determination from recent Gemini/IFU observations that the Na ID outflow in this object is wide-angle, thus driven by a QSO wind rather than a jet. This powerful outflow may be the long-sought "smoking gun" of quasar mechanical feedback purported to transform gas-rich mergers. However, our Herschel survey excludes all FIR-faint {UV-bright} "classic" QSOs by necessity. So here we propose a complementary FUV absorption-line survey of all FIR-bright -and- FIR-faint QSOs from the same parent sample. New {19 targets} and archival {11} spectra will be used to study, for the first time, the gaseous environments of QSOs as a function of host properties and age across the merger sequence ULIRG -> QSO. These data will allow us to distinguish between ionized & neutral quasar-driven outflows, starburst-driven winds, and tidal debris around the mergers. They will also be uniquely suited for a shallow but broad study of the warm & warm-hot intergalactic media, complementary to on-going surveys that are deeper but narrower.

  7. Classical electron ionization mass spectra in gas chromatography/mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Gordin, Alexander; Fialkov, Alexander B; Amirav, Aviv

    2008-09-01

    A major benefit of gas chromatography/mass spectrometry (GC/MS) with a supersonic molecular beam (SMB) interface and its fly-through ion source is the ability to obtain electron ionization of vibrationally cold molecules (cold EI), which show enhanced molecular ions. However, GC/MS with an SMB also has the flexibility to perform 'classical EI' mode of operation which provides mass spectra to mimic those in commercial 70 eV electron ionization MS libraries. Classical EI in SMB is obtained through simple reduction of the helium make-up gas flow rate, which reduces the SMB cooling efficiency; hence the vibrational temperatures of the molecules are similar to those in traditional EI ion sources. In classical EI-SMB mode, the relative abundance of the molecular ion can be tuned and, as a result, excellent identification probabilities and very good matching factors to the NIST MS library are obtained. Classical EI-SMB with the fly-through dual cage ion source has analyte sensitivity similar to that of the standard EI ion source of a basic GC/MS system. The fly-through EI ion source in combination with the SMB interface can serve for cold EI, classical EI-SMB, and cluster chemical ionization (CCI) modes of operation, all easily exchangeable through a simple and quick change (not involving hardware). Furthermore, the fly-through ion source eliminates sample scattering from the walls of the ion source, and thus it offers full sample inertness, tailing-free operation, and no ion-molecule reaction interferences. It is also robust and enables increased column flow rate capability without affecting the sensitivity.

  8. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    CERN Document Server

    Rondo, L.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosolnucleation. Based on quantum chemical calculations it has been suggested that the quantitative detectionof gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased inthe presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was setup at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection ofH2SO4in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time inthe CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF(Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutralsulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presenceof dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS...

  9. [Determination of acetanilide herbicide residues in tea by gas chromatography-mass spectrometry with two different ionization techniques].

    Science.gov (United States)

    Shen, Weijian; Xu, Jinzhong; Yang, Wenquan; Shen, Chongyu; Zhao, Zengyun; Ding, Tao; Wu, Bin

    2007-09-01

    An analytical method of solid phase extraction-gas chromatography-mass spectrometry with two different ionization techniques was established for simultaneous determination of 12 acetanilide herbicide residues in tea-leaves. Herbicides were extracted from tea-leaf samples with ethyl acetate. The extract was cleaned-up on an active carbon SPE column connected to a Florisil SPE column. Analytical screening was determined by the technique of gas chromatography (GC)-mass spectrometry (MS) in the selected ion monitoring (SIM) mode with either electron impact ionization (EI) or negative chemical ionization (NCI). It is reliable and stable that the recoveries of all herbicides were in the range from 50% to 110% at three spiked levels, 10 microg/kg, 20 microg/kg and 40 microg/kg, and the relative standard deviations (RSDs) were no more than 10.9%. The two different ionization techniques are complementary as more ion fragmentation information can be obtained from the EI mode while more molecular ion information from the NCI mode. By comparison of the two techniques, the selectivity of NCI-SIM was much better than that of EI-SIM method. The sensitivities of the both techniques were high, the limit of quantitative (LOQ) for each herbicide was no more than 2.0 microg/kg, and the limit of detection (LOD) with NCI-SIM technique was much lower than that of EI-SIM when analyzing herbicides with several halogen atoms in the molecule.

  10. Movement of global warming issues

    International Nuclear Information System (INIS)

    Sugiyama, Taishi

    2015-01-01

    This paper summarizes the report of IPCC (Intergovernmental Panel on Climate Change), and the movement of the global warming issues as seen from the United Nations Framework Convention on Climate Change (Conference of the Parties: COP) and the policy discussions in Japan. From the Fifth Assessment Report published by IPCC, it shows the following items: (1) increasing trends of greenhouse effect gas emissions during 1970 and 2010, (2) trends in world's greenhouse effect gas emissions according to income segment, and (3) factor analysis of changes in greenhouse effect gas emissions. Next, it takes up the greenhouse gas emission scenario of IPCC, shows the scenario due to temperature rise pattern, and introduces the assumption of emission reduction due to BECCS. Regarding the 2 deg. scenario that has become a hot topic in international negotiations, it describes the reason for difficulties in its implementation. In addition, as the international trends of global warming, it describes the agreement of numerical targets for emissions at COP3 (Kyoto Conference) and the subsequent movements. Finally, it introduces Japan's measures against global warming, as well as the future movement. (A.O.)

  11. Average energy expended per ion pair, exciton enhanced ionization (Jesse effect), electron drift velocity, average electron energy and scintillation in rare gas liquids

    International Nuclear Information System (INIS)

    Doke, T.; Hitachi, A.; Hoshi, Y.; Masuda, K.; Hamada, T.

    1977-01-01

    Precise measurements of W-values, the average energy expended per electron-hole pair in liquid Ar and Xe, were made by the electron-pulse method, and that in liquid Kr by the steady conduction current method. The results showed that the W-values were clearly smaller than those in gaseous Ar, Xe and Kr as predicted by Doke. The results can be explained by the conduction bands which exist in these rare gas liquids as well as in the solid state. The enhanced ionization yield was observed for Xe-doped liquid Ar, and it was attributed to the ionizing excitation transfer process from Ar excitons to doped Xe. This is very similar to the Jesse effect in the gas phase. The saturated value of the enhanced ionization was in good agreement with the theoretical value, and it provides strong evidence for the existence of the exciton states in liquid Ar. Fano factors in liquid Ar, Kr, Xe and Xe-doped liquid Ar have been estimated from the Fano Formula, and they were smaller than those in the gas phase. The drift velocity of electrons in liquid Ar, liquid Ar-gas mixtures and liquid Xe have been measured with gridded ionization chambers. The average electron energy in liquid Ar has been measured. The electron-induced scintillations of liquid Xe and Ar have been studied. (Kato, T.)

  12. Quantitative analysis of abused drugs in physiological fluids by gas chromatography/chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Foltz, R.L.

    1978-01-01

    Methods have been developed for quantitative analysis of commonly abused drugs in physiological fluids using gas chromatography/chemical ionization mass spectrometry. The methods are being evaluated in volunteer analytical and toxicological laboratories, and analytical manuals describing the methods are being prepared. The specific drug and metabolites included in this program are: Δ 9 -tetrahydrocannabinol, methadone, phencyclidine, methaqualone, morphine, amphetamine, methamphetamine, mescaline, 2,5-dimethoxy-4-methyl amphetamine, cocaine, benzoylecgonine, diazepam, and N-desmethyldiazepam. The current analytical methods utilize relatively conventional instrumentation and procedures, and are capable of measuring drug concentrations as low as 1 ng/ml. Various newer techniques such as sample clean-up by high performance liquid chromatography, separation by glass capillary chromatography, and ionization by negative ion chemical ionization are being investigated with respect to their potential for achieving higher sensitivity and specificity, as well as their ability to facilitate simultaneous analysis of more than one drug and metabolite. (Auth.)

  13. A global meta-analysis on the impact of management practices on net global warming potential and greenhouse gas intensity from cropland soils

    Science.gov (United States)

    Agricultural practices contribute significant amount of greenhouse gas (GHG) emissions, but little is known about their effects on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of carbon dioxide emissions per unit area or crop yield. Se...

  14. Development of a He/CdI$_2$ gas-jet system coupled to a surface-ionization type ion-source in JAEA-ISOL: towards determination of the first ionization potential of Lr (Z = 103)

    CERN Document Server

    Sato, T K; Sato, N; Tsukada, K; Toyoshima, A; Ooe, K; Miyashita, S; Kaneya, Y; Osa, A; Schädel, M; Nagame, Y; Ichikawa, S; Stora, T; Kratz, J V

    2015-01-01

    We report on development of a gas-jet transport system coupled to a surface ionization ion-source in the JAEA-ISOL (Isotope Separator On-Line) system. As a new aerosol material for the gas-jet system, CdI2, which has a low boiling point of 713 °C, is exploited to prevent deposition of the aerosol material on the surface of the ion-source. An additional filament is newly installed in the previous ion-source to provide uniform heating of an ionizer. The present system is applied to the measurement of absolute efficiencies of various short-lived lanthanide isotopes produced in nuclear reactions.

  15. In gas laser ionization and spectroscopy experiments at the Superconducting Separator Spectrometer (S3): Conceptual studies and preliminary design

    International Nuclear Information System (INIS)

    Ferrer, R.; Bastin, B.; Boilley, D.; Creemers, P.; Delahaye, P.; Liénard, E.; Fléchard, X.; Franchoo, S.; Ghys, L.; Huyse, M.; Kudryavtsev, Yu.; Lecesne, N.; Lu, H.; Lutton, F.; Mogilevskiy, E.; Pauwels, D.; Piot, J.; Radulov, D.; Rens, L.; Savajols, H.

    2013-01-01

    Highlights: • A setup to perform In-Gas Laser Ionization and Spectroscopy experiments at the Super Separator Spectrometer is presented. • The reported studies address important aspects necessary to applied the IGLIS technique to short-lived isotopes. • An R and D phase required to reach an enhanced spectral resolution will be carried out at KU Leuven. • High-sensitivity and enhanced-resolution laser spectroscopy studies will be possible with the IGLIS setup at S 3 . -- Abstract: The results of preparatory experiments and the preliminary designs of a new in-gas laser ionization and spectroscopy setup, to be coupled to the Super Separator Spectrometer S 3 of SPIRAL2-GANIL, are reported. Special attention is given to the development and tests to carry out a full implementation of the in-gas jet laser spectroscopy technique. Application of this novel technique to radioactive species will allow high-sensitivity and enhanced-resolution laser spectroscopy studies of ground- and excited-state properties of exotic nuclei

  16. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  17. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. V. ALFVÉN IONIZATION

    International Nuclear Information System (INIS)

    Stark, C. R.; Helling, Ch.; Rimmer, P. B.; Diver, D. A.

    2013-01-01

    Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbor localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfvén ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization (≥10 –7 ) that they constitute plasmas. We outline the criteria required for Alfvén ionization and demonstrate its applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs, and M dwarfs with both solar and sub-solar metallicities. We find that Alfvén ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neutral flows are the smallest. For the model atmospheres considered, our results show that degrees of ionization of 10 –6 -1 can be obtained as a result of Alfvén ionization. Observable consequences include continuum bremsstrahlung emission, superimposed with spectral lines from the plasma ion species (e.g., He, Mg, H 2 , or CO lines). Forbidden lines are also expected from the metastable population. The presence of an atmospheric plasma opens the door to a multitude of plasma and chemical processes not yet considered in current atmospheric models. The occurrence of Alfvén ionization may also be applicable to other astrophysical environments such as protoplanetary disks

  18. Extremely-high vacuum pressure measurement by laser ionization

    International Nuclear Information System (INIS)

    Kokubun, Kiyohide

    1991-01-01

    Laser ionization method has the very high sensitivity for detecting atoms and molecules. Hurst et al. successfully detected a single Cs atom by means of resonance ionization spectroscopy developed by them. Noting this high sensitivity, the authors have attempted to apply the laser ionization method to measure gas pressure, particularly in the range down to extremely high vacuum. At present, hot cathode ionization gauges are used for measuring gas pressure down to ultrahigh vacuum, however, those have a number of disadvantages. The pressure measurement using lasers does not have such disadvantages. The pressure measurement utilizing the laser ionization method is based on the principle that when laser beam is focused through a lens, the amount of atom or molecule ions generated in the focused space region is proportional to gas pressure. In this paper, the experimental results are presented on the nonresonant multiphoton ionization characteristics of various kinds of gases, the ion detection system with high sensitivity and an extremely high vacuum system prepared for the laser ionization experiment. (K.I.)

  19. Carbon-14 labelling of biomolecules induced by 14CO ionized gas

    International Nuclear Information System (INIS)

    Lier, J.E. van; Sanche, L.

    1979-01-01

    Ionized 14 CO gas provides a rapid method for producing 14 C-labelled biomolecules. The apparatus consists of a high vacuum system in which a small amount of 14 CO is ionized by electron impact. The resulting species drift towards a target where they interact with the molecule of interest to produce 14 C-labelled compounds. Since the reaction time is only 2 minutes, the method is particularly promising for producing tracer biomolecules with short-lived 11 C at high specific activities. The applicability of the method to various classes of compounds of biological importance, including steroids, alkaloids, prostaglandins, nucleosides, amino acids and proteins has been studied. All compounds treated gave rise to 14 C addition and degradation products. Furthermore, for some compounds, chromatographic analysis in multiple systems followed by derivatization and crystallization to constant specific activity, indicated that carbon exchange may occur to produce the labelled, but otherwise unaltered substrate in yields of the order of 10-100 mCi/mol. More conclusive proof of radiochemical identity must await production of larger quantities of material and rigorous purification including at least two different chromatographic techniques. (author)

  20. Identification of Guest-Host Inclusion Complexes in the Gas Phase by Electrospray Ionization-Mass Spectrometry

    Science.gov (United States)

    Mendes, De´bora C.; Ramamurthy, Vaidhyanathan; Da Silva, Jose´ P.

    2015-01-01

    In this laboratory experiment, students follow a step-by-step procedure to prepare and study guest-host complexes in the gas phase using electrospray ionization-mass spectrometry (ESI-MS). Model systems are the complexes of hosts cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) with the guest 4-styrylpyridine (SP). Aqueous solutions of CB7 or CB8…

  1. Coupling of gas chromatography and electrospray ionization high resolution mass spectrometry for the analysis of anabolic steroids as trimethylsilyl derivatives in human urine.

    Science.gov (United States)

    Cha, Eunju; Jeong, Eun Sook; Cha, Sangwon; Lee, Jaeick

    2017-04-29

    In this study, gas chromatography (GC) was interfaced with high resolution mass spectrometry (HRMS) with electrospray ionization source (ESI) and the relevant parameters were investigated to enhance the ionization efficiency. In GC-ESI, the distances (x-, y- and z) and angle between the ESI needle, GC capillary column and MS orifice were set to 7 (x-distance), 4 (y-distance), and 1 mm (z-distance). The ESI spray solvent, acid modifier and nebulizer gas flow were methanol, 0.1% formic acid and 5 arbitrary units, respectively. Based on these results, analytical conditions for GC-ESI/HRMS were established. In particular, the results of spray solvent flow indicated a concentration-dependent mechanism (peak dilution effect), and other parameters also greatly influenced the ionization performance. The developed GC-ESI/HRMS was then applied to the analysis of anabolic steroids as trimethylsilyl (TMS) derivatives in human urine to demonstrate its application. The ionization profiles of TMS-derivatized steroids were investigated and compared with those of underivatized steroids obtained from gas chromatography-electrospray ionization/mass spectrometry (GC-ESI/MS) and liquid chromatography-electrospray ionization/mass spectrometry (LC-ESI/MS). The steroids exhibited ionization profiles based on their structural characteristics, regardless of the analyte phase or derivatization. Groups I and II with conjugated or unconjugated keto functional groups at C3 generated the [M+H] + and [M+H-TMS] + ions, respectively. On the other hand, Groups III and IV gave rise to the characteristic fragment ions [M+H-TMS-H 2 O] + and [M+H-2TMS-H 2 O] + , corresponding to loss of a neutral TMS·H 2 O moiety from the protonated molecular ion by in-source dissociation. To the best of our knowledge, this is the first study to successfully ionize and analyze steroids as TMS derivatives using ESI coupled with GC. The present system has enabled the ionization of TMS derivatives under ESI conditions

  2. Comparison of Gas Chromatography-Mass Spectrometry and Gas Chromatography-Tandem Mass Spectrometry with Electron Ionization and Negative-Ion Chemical Ionization for Analyses of Pesticides at Trace Levels in Atmospheric Samples

    Directory of Open Access Journals (Sweden)

    Renata Raina

    2008-01-01

    Full Text Available A comparison of detection limits of gas chromatography-mass spectrometry (GC-MS in selected ion monitoring (SIM with gas chromatography-tandem mass spectrometry (GC-MS/MS in selected reaction monitoring (SRM mode with both electron ionization (EI and negative-ion chemical ionization (NCI are presented for over 50 pesticides ranging from organochlorines (OCs, organophosphorus pesticides (OPs and pre-emergent herbicides used in the Canadian prairies (triallate, trifluralin, ethalfluralin. The developed GC-EI/SIM, GC-NCI/SIM, and GC-NCI/SRM are suitable for the determination of pesticides in air sample extracts at concentrations <100 pg µL -1 (< 100 pg m -3 in air. No one method could be used to analyze the range of pre-emergent herbicides, OPs, and OCs investigated. In general GC-NCI/SIM provided the lowest method detection limits (MDLs commonly 2.5-10 pg µL -1 along with best confirmation (<25% RSD of ion ratio, while GC-NCI/SRM is recommended for use where added selectivity or confirmation is required (such as parathion-ethyl, tokuthion, carbofenothion. GC-EI/SRM at concentration < 100 pg µL -1 was not suitable for most pesticides. GC-EI/SIM was more prone to interference issues than NCI methods, but gave good sensitivity (MDLs 1-10 pg µL -1 for pesticides with poor NCI response (OPs: sulfotep, phorate, aspon, ethion, and OCs: alachlor, aldrin, perthane, and DDE, DDD, DDT.

  3. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode

    Science.gov (United States)

    Cai, Shengbing; Zhang, Yong; Duan, Zhemin

    2012-12-01

    We report the nanofabrication of a sulfur dioxide (SO2) sensor with a tripolar on-chip microelectrode utilizing a film of single-walled carbon nanotubes (SWCNTs) as the field ionization cathode, where the ion flow current and the partial discharge current generated by the field ionization process of gaseous molecules can be gauged to gas species and concentration. The variation of the sensitivity is less than 4% for all of the tested devices, and the sensor has selectivity against gases such as He, NO2, CO, H2, SO2 and O2. Further, the sensor response presents well-defined and reproducible linear behavior with regard to concentration in the range investigated and a detection limitation of tripolar on-chip microelectrode with SWCNTs as a cathode exhibits an impressive performance with respect to stability and anti-oxidation behavior, which are significantly better than had been possible before in the traditional bipolar sensor under explicit circumstances at room temperature.

  4. Ionized and Molecular Gas Kinematics in a z = 1.4 Star-forming Galaxy

    Science.gov (United States)

    Übler, H.; Genzel, R.; Tacconi, L. J.; Förster Schreiber, N. M.; Neri, R.; Contursi, A.; Belli, S.; Nelson, E. J.; Lang, P.; Shimizu, T. T.; Davies, R.; Herrera-Camus, R.; Lutz, D.; Plewa, P. M.; Price, S. H.; Schuster, K.; Sternberg, A.; Tadaki, K.; Wisnioski, E.; Wuyts, S.

    2018-02-01

    We present deep observations of a z = 1.4 massive, star-forming galaxy (SFG) in molecular and ionized gas at comparable spatial resolution (CO 3–2, NOrthern Extended Millimeter Array (NOEMA); Hα, Large Binocular Telescope (LBT)). The kinematic tracers agree well, indicating that both gas phases are subject to the same gravitational potential and physical processes affecting the gas dynamics. We combine the one-dimensional velocity and velocity dispersion profiles in CO and Hα to forward-model the galaxy in a Bayesian framework, combining a thick exponential disk, a bulge, and a dark matter halo. We determine the dynamical support due to baryons and dark matter, and find a dark matter fraction within one effective radius of {f}DM}(≤slant {R}e)={0.18}-0.04+0.06. Our result strengthens the evidence for strong baryon-dominance on galactic scales of massive z ∼ 1–3 SFGs recently found based on ionized gas kinematics alone. Based on observations carried out with the IRAM Interferometer NOEMA. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). Based on observations carried out with the LBT. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, The Leibniz Institute for Astrophysics Potsdam, and Heidelberg University; The University of Arizona on behalf of the Arizona Board of Regents; Istituto Nazionale di Astrofisica, Italy; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota and University of Virginia.

  5. Warm and cold molecular gas conditions modeled in 87 galaxies observed by the Herschel SPIRE FTS

    Science.gov (United States)

    Kamenetzky, Julia; Rangwala, Naseem; Glenn, Jason

    2018-01-01

    Molecular gas is the raw material for star formation, and like the interstellar medium (ISM) in general, it can exist in regions of higher and lower excitation. Rotational transitions of the CO molecule are bright and sensitive to cold molecular gas. While the majority of the molecular gas exists in the very cold component traced by CO J=1-0, the higher-J lines trace the highly excited gas that may be more indicative of star formation processes. The atmosphere is opaque to these lines, but the launch of the Herschel Space Observatory made them accessible for study of Galactic and extragalactic sources. We have conducted two-component, non-local thermodynamic equilibrium (non-LTE) modeling of the CO lines from J=1‑0 through J=13‑12 in 87 galaxies observed by the Herschel SPIRE Fourier Transform Spectrometer (FTS). We used the nested sampling algorithm Multinest to compare the measured CO spectral line energy distributions (SLEDs) to the ones produced by a custom version of the non-LTE code RADEX. This allowed us to fully examine the degeneracies in parameter space for kinetic temperature, molecular gas density, CO column density, and area filling factor.Here we discuss the major findings of our study, as well as the important implications of two-component molecular gas modeling. The average pressure of the warm gas is slightly correlated with galaxy LFIR, but that of the cold gas is not. A high-J (such as J=11-10) to J=1-0 line ratio is diagnostic of warm component pressure. We find a very large spread in our derived values of "alpha-CO," with no discernable trend with LFIR, and average molecular gas depletion times that decrease with LFIR. If only a few molecular lines are available in a galaxy's SLED, the limited ability to model only one component will change the results. A one-component fit often underestimates the flux of carbon monoxide (CO) J=1‑0 and the mass. If low-J lines are not included, mass is underestimated by an order of magnitude. Even when

  6. H ii REGION G46.5-0.2: THE INTERPLAY BETWEEN IONIZING RADIATION, MOLECULAR GAS, AND STAR FORMATION

    International Nuclear Information System (INIS)

    Paron, S.; Ortega, M. E.; Dubner, G.; Petriella, A.; Giacani, E.; Yuan, Jing-Hua; Li, Jin Zeng; Liu, Hongli; Huang, Ya Fang; Zhang, Si-Ju; Wu, Yuefang

    2015-01-01

    H ii regions are particularly interesting because they can generate dense layers of gas and dust, elongated columns or pillars of gas pointing toward the ionizing sources, and cometary globules of dense gas where triggered star formation can occur. Understanding the interplay between the ionizing radiation and the dense surrounding gas is very important to explain the origin of these peculiar structures, and hence to characterize triggered star formation. G46.5-0.2 (G46), a poorly studied galactic H ii region located at about 4 kpc, is an excellent target for performing this kind of study. Using public molecular data extracted from the Galactic Ring Survey ( 13 CO J = 1–0) and from the James Clerk Maxwell Telescope data archive ( 12 CO, 13 CO, C 18 O J = 3–2, HCO + , and HCN J = 4–3), and infrared data from the GLIMPSE and MIPSGAL surveys, we perform a complete study of G46, its molecular environment, and the young stellar objects (YSOs) placed around it. We found that G46, probably excited by an O7V star, is located close to the edge of the GRSMC G046.34-00.21 molecular cloud. It presents a horse-shoe morphology opening in the direction of the cloud. We observed a filamentary structure in the molecular gas likely related to G46 and not considerable molecular emission toward its open border. We found that about 10′ to the southwest of G46 there are some pillar-like features, shining at 8 μm and pointing toward the H ii region open border. We propose that the pillar-like features were carved and sculpted by the ionizing flux from G46. We found several YSOs likely embedded in the molecular cloud grouped in two main concentrations: one, closer to the G46 open border consisting of Class II type sources, and another mostly composed of Class I type YSOs located just ahead of the pillar-like features, strongly suggesting an age gradient in the YSO distribution

  7. H II Region G46.5-0.2: The Interplay between Ionizing Radiation, Molecular Gas, and Star Formation

    Science.gov (United States)

    Paron, S.; Ortega, M. E.; Dubner, G.; Yuan, Jing-Hua; Petriella, A.; Giacani, E.; Zeng Li, Jin; Wu, Yuefang; Liu, Hongli; Huang, Ya Fang; Zhang, Si-Ju

    2015-06-01

    H ii regions are particularly interesting because they can generate dense layers of gas and dust, elongated columns or pillars of gas pointing toward the ionizing sources, and cometary globules of dense gas where triggered star formation can occur. Understanding the interplay between the ionizing radiation and the dense surrounding gas is very important to explain the origin of these peculiar structures, and hence to characterize triggered star formation. G46.5-0.2 (G46), a poorly studied galactic H ii region located at about 4 kpc, is an excellent target for performing this kind of study. Using public molecular data extracted from the Galactic Ring Survey (13CO J = 1-0) and from the James Clerk Maxwell Telescope data archive (12CO, 13CO, C18O J = 3-2, HCO+, and HCN J = 4-3), and infrared data from the GLIMPSE and MIPSGAL surveys, we perform a complete study of G46, its molecular environment, and the young stellar objects (YSOs) placed around it. We found that G46, probably excited by an O7V star, is located close to the edge of the GRSMC G046.34-00.21 molecular cloud. It presents a horse-shoe morphology opening in the direction of the cloud. We observed a filamentary structure in the molecular gas likely related to G46 and not considerable molecular emission toward its open border. We found that about 10‧ to the southwest of G46 there are some pillar-like features, shining at 8 μm and pointing toward the H ii region open border. We propose that the pillar-like features were carved and sculpted by the ionizing flux from G46. We found several YSOs likely embedded in the molecular cloud grouped in two main concentrations: one, closer to the G46 open border consisting of Class II type sources, and another mostly composed of Class I type YSOs located just ahead of the pillar-like features, strongly suggesting an age gradient in the YSO distribution.

  8. Preliminary study of silica aerogel as a gas-equivalent material in ionization chambers

    Science.gov (United States)

    Caresana, M.; Zorloni, G.

    2017-12-01

    Since about two decades, a renewed interest on aerogels has risen. These peculiar materials show fairly unique properties. Thus, they are under investigation for both scientific and commercial purposes and new optimized production processes are studied. In this work, the possibility of using aerogel in the field of radiation detection is explored. The idea is to substitute the gas filling in a ionization chamber with the aerogel. The material possesses a density about 100 times greater than ambient pressure air. Where as the open-pore structure should allow the charge carriers to move freely. Small hydrophobic silica aerogel samples were studied. A custom ionization chamber, capable of working both with aerogel or in the classic gas set up, was built. The response of the chamber in current mode was investigated using an X-ray tube. The results obtained showed, under proper conditions, an enhancement of about 60 times of the current signal in the aerogel configuration with respect to the classic gas one. Moreover, some unusual behaviours were observed, i.e. time inertia of the signal and super-/sub-linear current response with respect to the dose rate. While testing high electric fields, aerogel configuration seemed to enhance the Townsend's effects. In order to represent the observed trends, a trapping-detrapping model is proposed, which is capable to predict semi-empirically the steady state currents measured. The time evolution of the signal is semi-quantitatively represented by the same model. The coefficients estimated by the fits are in agreement with similar trapping problems in the literature. In particular, a direct comparison between the benchmark of the FET silica gates and aerogel case endorses the idea that the same type of phenomenon occurs in the studied case.

  9. Advantages of Atmospheric Pressure Chemical Ionization in Gas Chromatography Tandem Mass Spectrometry: Pyrethroid Insecticides as a Case Study

    NARCIS (Netherlands)

    Portolés, T.; Mol, J.G.J.; Sancho, J.V.; Hernández, F.

    2012-01-01

    Gas chromatography coupled to mass spectrometry (GC/MS) has been extensively applied for determination of volatile, nonpolar, compounds in many applied fields like food safety, environment, or toxicology. The wide majority of methods reported use electron ionization (EI), which may result in

  10. 'Saddle-point' ionization

    International Nuclear Information System (INIS)

    Gay, T.J.; Hale, E.B.; Irby, V.D.; Olson, R.E.; Missouri Univ., Rolla; Berry, H.G.

    1988-01-01

    We have studied the ionization of rare gases by protons at intermediate energies, i.e., energies at which the velocities of the proton and the target-gas valence electrons are comparable. A significant channel for electron production in the forward direction is shown to be 'saddle-point' ionization, in which electrons are stranded on or near the saddle-point of electric potential between the receding projectile and the ionized target. Such electrons yield characteristic energy spectra, and contribute significantly to forward-electron-production cross sections. Classical trajectory Monte Carlo calculations are found to provide qualitative agreement with our measurements and the earlier measurements of Rudd and coworkers, and reproduce, in detail, the features of the general ionization spectra. (orig.)

  11. Acceleration of Vaporization, Atomization, and Ionization Efficiencies in Inductively Coupled Plasma by Merging Laser-Ablated Particles with Hydrochloric Acid Gas.

    Science.gov (United States)

    Nakazawa, Takashi; Izumo, Saori; Furuta, Naoki

    2016-01-01

    To accelerate the vaporization, atomization, and ionization efficiencies in laser ablation inductively coupled plasma mass spectrometry, we merged HCl gas with laser-ablated particles before introduction into the plasma, to convert their surface constituents from oxides to lower-melting chlorides. When particles were merged with HCl gas generated from a HCl solution at 200°C, the measured concentrations of elements in the particles were 135% higher on average than the concentrations in particles merged with ultrapure water vapor. Particle corrosion and surface roughness were observed by scanning electron microscopy, and oxide conversion to chlorides was confirmed by X-ray photoelectron spectroscopy. Under the optimum conditions, the recoveries of measured elements improved by 23% on average, and the recoveries of elements with high-melting oxides (Sr, Zr, and Th) improved by as much as 36%. These results indicate that vaporization, atomization, and ionization in the ICP improved when HCl gas was merged with the ablated particles.

  12. Endogenous gas formation--an in vitro study with relevance to gas microemboli during cardiopulmonary bypass.

    Science.gov (United States)

    Lindholm, Lena; Engström, Karl Gunnar

    2012-09-01

    Gas embolism is an identified problem during cardiopulmonary bypass (CPB). Our aim was to analyze the potential influence from gas solubility based on simple physical laws, here called endogenous gas embolism. Gas solubility decreases at higher temperature and gas bubbles are presumably formed at CPB warming. An experimental model to measure gas release was designed. Medium (water or blood retrieved from mediastinal drains, 14.6 mL) was incubated and equilibrated with gas (air, 100% oxygen, or 5% carbon dioxide in air) at low temperature (10 degrees C or 23 degrees C). At warming to 37 degrees C, gas release was digitally measured. Also, the effect of fluid motion was evaluated. At warming, the medium became oversaturated with dissolved gas. When fluid motion was applied, gas was released to form bubbles. This was exemplified by a gas release of .45% (.31/.54, medians and quartile range, volume percent, p = .007) and 1.26% (1.14/ 1.33, p = .003) when blood was warmed from 23 degrees C or 10 degrees C to 37 degrees C, respectively (carbon dioxide 5% in air). Consistent findings were seen for water and with the other types of gas exposure. The theory of endogenous gas embolization was confirmed with gas being released at warming. The endogenous gas formation demonstrated a dynamic pattern with oversaturation and with rapid gas released at fluid motion. The gas release at warming was substantial, in particular when the results were extrapolated to full-scale CPB conditions. The interference from endogenous gas formation should be considered in parallel to external sources of gas microemboli. cardiopulmonary bypass, gas embolization, microemboli, gas solubility, temperature.

  13. Physics of partially ionized plasmas

    CERN Document Server

    Krishan, Vinod

    2016-01-01

    Plasma is one of the four fundamental states of matter; the other three being solid, liquid and gas. Several components, such as molecular clouds, diffuse interstellar gas, the solar atmosphere, the Earth's ionosphere and laboratory plasmas, including fusion plasmas, constitute the partially ionized plasmas. This book discusses different aspects of partially ionized plasmas including multi-fluid description, equilibrium and types of waves. The discussion goes on to cover the reionization phase of the universe, along with a brief description of high discharge plasmas, tokomak plasmas and laser plasmas. Various elastic and inelastic collisions amongst the three particle species are also presented. In addition, the author demonstrates the novelty of partially ionized plasmas using many examples; for instance, in partially ionized plasma the magnetic induction is subjected to the ambipolar diffusion and the Hall effect, as well as the usual resistive dissipation. Also included is an observation of kinematic dynam...

  14. Probing Conditions at Ionized/Molecular Gas Interfaces With High Resolution Near-Infrared Spectroscopy

    Science.gov (United States)

    Kaplan, Kyle Franklin

    2017-08-01

    Regions of star formation and star death in our Galaxy trace the cycle of gas and dust in the interstellar medium (ISM). Gas in dense molecular clouds collapses to form stars, and stars at the end of their lives return the gas that made up their outer layers back out into the Galaxy. Hot stars generate copious amounts of ultraviolet photons which interact with the surrounding medium and dominate the energetics, ionization state, and chemistry of the gas. The interface where molecular gas is being dissociated into neutral atomic gas by far-UV photons from a nearby hot source is called a photodissociation or photon-dominated region (PDR). PDRs are found primarily in star forming regions where O and B stars serve as the source of UV photons, and in planetary nebulae where the hot core of the dying star acts as the UV source. The main target of this dissertation is molecular hydrogen (H2), the most abundant molecule in the Universe, made from hydrogen formed during the Big Bang. H2 makes up the overwhelming majority of molecules found in the ISM and in PDRs. Far-UV radiation absorbed by H2 will excite an electron in the molecule. The molecule then either dissociates ( 10% of the time; Field et al. 1966) or decays into excited rotational and vibrational ("rovibrational") levels of the electronic ground state. These excited rovibrational levels then decay via a radiative cascade to the ground rovibrational state (v = 0, J = 0), giving rise to a large number of transitions observable in emission from the mid-IR to the optical (Black & van Dishoeck, 1987). These transitions provide an excellent probe of the excitation and conditions within the gas. These transitions are also observed in warm H2, such as in shocks, where collisions excite H2 to higher rovibrational levels. High resolution near-infrared spectroscopy, with its ability to see through dust, and avoid telluric absorption and emission, serves as an effective tool to detect emission from ions, atoms, and molecules

  15. Documentation for the Waste Reduction Model (WARM)

    Science.gov (United States)

    This page describes the WARM documentation files and provides links to all documentation files associated with EPA’s Waste Reduction Model (WARM). The page includes a brief summary of the chapters documenting the greenhouse gas emission and energy factors.

  16. Warm liquid calorimetry for LHC

    CERN Document Server

    Geulig,E; Wallraff,W; Bézaguet, Alain-Arthur; Cavanna, F; Cinnini, P; Cittolin, Sergio; Dreesen, P; Demoulin, M; Dunps, L; Fucci, A; Gallay, G; Givernaud, Alain; Gonidec, A; Jank, Werner; Maurin, Guy; Placci, Alfredo; Porte, J P; Radermacher, E; Samyn, D; Schinzel, D; Schmidt, W F; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    Results from the beam tests of the U/TMP "warm liquid" calorimeter show that such a technique is very promising for the LHC. Our aim is to extend this programme and design a calorimeter that can satisfy the requirements of high rates, high radiation levels, compensation, uniformity and granularity, as well as fully contain hadronic showers. We propose to construct liquid ionization chambers operated at very high fields, capable of collecting the total charge produced by ionizing particles within times comparable to the bunch crossing time of the future Collider. For this reason we plan to extend the current programme on tetramethylpentane (TMP) to tetramethylsilane (TMSi). An electromagnetic calorimeter consisting of very high field ionization chambers filled with TMSi as sensitive medium with Uranium and/or other high density material as absorber will first be built (to be followed by a full-scale calorimeter module), on which newly designed fast amplifiers and readout electronics will be tested. In addition...

  17. Ionization particle detector

    International Nuclear Information System (INIS)

    Ried, L.

    1982-01-01

    A new device is claimed for detecting particles in a gas. The invention comprises a low cost, easy to assemble, and highly accurate particle detector using a single ionization chamber to contain a reference region and a sensing region. The chamber is designed with the radioactive source near one electrode and the second electrode located at a distance less than the distance of maximum ionization from the radioactive source

  18. Ionized Gas Kinematics around an Ultra-luminous X-Ray Source in NGC 5252: Additional Evidence for an Off-nuclear AGN

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Im, Myungshin [Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

    2017-08-01

    The Seyfert 2 galaxy NGC 5252 contains a recently identified ultra-luminous X-ray (ULX) source that has been suggested to be a possible candidate off-nuclear low-mass active galactic nucleus. We present follow-up optical integral-field unit observations obtained using Gemini Multi-Object Spectrographs on the Gemini-North telescope. In addition to confirming that the ionized gas in the vicinity of the ULX is kinematically associated with NGC 5252, the new observations reveal ordered motions consistent with rotation around the ULX. The close coincidence of the excitation source of the line-emitting gas with the position of the ULX further suggests that ULX itself is directly responsible for the ionization of the gas. The spatially resolved measurements of [N ii] λ 6584/H α surrounding the ULX indicate a low gas-phase metallicity, consistent with those of other known low-mass active galaxies but not that of its more massive host galaxy. These findings strengthen the proposition that the ULX is not a background source but rather that it is the nucleus of a small, low-mass galaxy accreted by NGC 5252.

  19. Improvements in ionization chambers

    International Nuclear Information System (INIS)

    Whetten, N.R.; Zubal, C.

    1980-01-01

    A method of reducing mechanical vibrations transmitted to the parallel plate electrodes of ionization chamber x-ray detectors, commonly used in computerized x-ray axial tomography systems, is described. The metal plate cathodes and anodes are mounted in the ionizable gas on dielectric sheet insulators consisting of a composite of silicone resin and glass fibres. (UK)

  20. Radiation damage to tetramethylsilane and tetramethylgermanium ionization chambers

    International Nuclear Information System (INIS)

    Hoshi, Y.; Higuchi, M.; Oyama, K.

    1994-01-01

    Two detector media suitable for a warm liquid, ionization chamber filled with tetramethylsilane (TMS) and tetramethylgermanium (TMG) were exposed to γ radiation form a 60 Co source up to dose 579 Gray and 902 Gray, respectively. The electron lifetimes and the free ion yields were measured as a function of accumulated radiation dose. A similar behavior of the electron lifetimes and the free ion yields with increasing radiation does was observed between the TMS and TMG ionization chambers

  1. The theory of ionizing shock waves in a magnetic field

    International Nuclear Information System (INIS)

    Liberman, M.A.; Velikovich, A.L.

    1981-01-01

    The general theory of ionizing shock waves in a magnetic field is constructed. The theory takes into account precursor ionization of a neutral gas ahead of the shock wave front, caused by photo-ionization, as well as by the impact ionization with electrons accelerated by a transverse electric field induced by the shock front in the incident flow of a neutral gas. The concept of shock wave ionization stability, being basic in the theory of ionizing shock waves in a magnetic field, is introduced. The ionizing shock wave structures are shown to transform from the GD regime at a low shock velocity to the MHD regime at an enhanced intensity of the shock wave. The abruptness of such a transition is determined by precursor photo-ionization. (author)

  2. Thermal boundary conditions for electrons in a weakly ionized gas near a catalytic wall

    International Nuclear Information System (INIS)

    Chekmarev, I.

    1981-01-01

    A technique of matched asymptotic expansions is used to examine the derivation of hydrodynamic transport equations for the external region of a weakly ionized multitemperature gas near an absorbing and conducting wall. An approximate moment solution is constructed for the Knudsen boundary layer. The conditions for the matching of the external and internal expansions lead to a new form of the hydrodynamic boundary conditions, from which the singular behavior of the energy equation for electrons near the wall has been eliminated

  3. SUBTASK 3.12 – GASIFICATION, WARM-GAS CLEANUP, AND LIQUID FUELS PRODUCTION WITH ILLINOIS COAL

    Energy Technology Data Exchange (ETDEWEB)

    Stanislowski, Joshua; Curran, Tyler; Henderson, Ann

    2014-06-30

    The goal of this project was to evaluate the performance of Illinois No. 6 coal blended with biomass in a small-scale entrained-flow gasifier and demonstrate the production of liquid fuels under three scenarios. The first scenario used traditional techniques for cleaning the syngas prior to Fischer–Tropsch (FT) synthesis, including gas sweetening with a physical solvent. In the second scenario, the CO2 was not removed from the gas stream prior to FT synthesis. In the third scenario, only warm-gas cleanup techniques were used, such that the feed gas to the FT unit contained both moisture and CO2. The results of the testing showed that the liquid fuels production from the FT catalyst was significantly hindered by the presence of moisture and CO2 in the syngas. Further testing would be needed to determine if this thermally efficient process is feasible with other FT catalysts. This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Illinois Clean Coal Institute.

  4. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode

    International Nuclear Information System (INIS)

    Cai, Shengbing; Zhang, Yong; Duan, Zhemin

    2012-01-01

    We report the nanofabrication of a sulfur dioxide (SO 2 ) sensor with a tripolar on-chip microelectrode utilizing a film of single-walled carbon nanotubes (SWCNTs) as the field ionization cathode, where the ion flow current and the partial discharge current generated by the field ionization process of gaseous molecules can be gauged to gas species and concentration. The variation of the sensitivity is less than 4% for all of the tested devices, and the sensor has selectivity against gases such as He, NO 2 , CO, H 2 , SO 2 and O 2 . Further, the sensor response presents well-defined and reproducible linear behavior with regard to concentration in the range investigated and a detection limitation of <∼0.5 ppm for SO 2 . More importantly, a tripolar on-chip microelectrode with SWCNTs as a cathode exhibits an impressive performance with respect to stability and anti-oxidation behavior, which are significantly better than had been possible before in the traditional bipolar sensor under explicit circumstances at room temperature. (paper)

  5. Simulation of the Interaction of X-rays with a Gas in an Ionization Chamber by the Monte Carlo Method; Simulacion Monte Carlo de la Interaccion de Rays X con el Gas de una Camara de Ionizacion

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Garcia Gomez-Tejedor, G.

    2001-07-01

    The final objective of any ionization chamber is the measurement of the energy amount or radiation dose absorbed by the gas into the chamber. The final value depends on the composition of the gas, its density and temperature, the ionization chamber geometry, and type and intensity of the radiation. We describe a Monte Carlo simulation method, which allows one to compute the dose absorbed by the gas for a X-ray beam. Verification of model has been carried out by simulating the attenuation of standard X-ray radiation through the half value layers established in the ISO 4037 report, while assuming a Weibull type energy distribution for the incident photons. (Author) 6 refs.

  6. Measurement of the first Townsend ionization coefficient in a methane-based tissue-equivalent gas

    Energy Technology Data Exchange (ETDEWEB)

    Petri, A.R. [Instituto de Pesquisas Energéticas e Nucleares, Cidade Universitária, 05508-000 São Paulo (Brazil); Gonçalves, J.A.C. [Instituto de Pesquisas Energéticas e Nucleares, Cidade Universitária, 05508-000 São Paulo (Brazil); Departamento de Física, Pontifícia Universidade Católica de São Paulo, 01303-050 São Paulo (Brazil); Mangiarotti, A. [Instituto de Física - Universidade de São Paulo, Cidade Universitária, 05508-080 São Paulo (Brazil); Botelho, S. [Instituto de Pesquisas Energéticas e Nucleares, Cidade Universitária, 05508-000 São Paulo (Brazil); Bueno, C.C., E-mail: ccbueno@ipen.br [Instituto de Pesquisas Energéticas e Nucleares, Cidade Universitária, 05508-000 São Paulo (Brazil)

    2017-03-21

    Tissue-equivalent gases (TEGs), often made of a hydrocarbon, nitrogen, and carbon dioxide, have been employed in microdosimetry for decades. However, data on the first Townsend ionization coefficient (α) in such mixtures are scarce, regardless of the chosen hydrocarbon. In this context, measurements of α in a methane-based tissue-equivalent gas (CH{sub 4} – 64.4%, CO{sub 2} – 32.4%, and N{sub 2} – 3.2%) were performed in a uniform field configuration for density-normalized electric fields (E/N) up to 290 Td. The setup adopted in our previous works was improved for operating at low pressures. The modifications introduced in the apparatus and the experimental technique were validated by comparing our results of the first Townsend ionization coefficient in nitrogen, carbon dioxide, and methane with those from the literature and Magboltz simulations. The behavior of α in the methane-based TEG was consistent with that observed for pure methane. All the experimental results are included in tabular form in the .

  7. Imaging spectrophotometry of ionized gas in NGC 1068. I - Kinematics of the narrow-line region

    Science.gov (United States)

    Cecil, Gerald; Bland, Jonathan; Tully, R. Brent

    1990-01-01

    The kinematics of collisionally excited forbidden N II 6548, 6583 across the inner 1 arcmin diameter of the nearby Seyfert galaxy NGC 1068 is mapped using an imaging Fabry-Perot interferometer and low-noise CCD. The stack of monochromatic images, which spatially resolved the high-velocity gas, was analyzed for kinematic and photometric content. Profiles agree well with previous long-slit work, and their complete spatial coverage makes it possible to constrain the gas volume distribution. It is found that the narrow-line region is distributed in a thick center-darkened, line-emitting cylinder that envelopes the collimated radio jet. Three distinct kinematic subsystems, of which the cylinder is composed, are discussed in detail. Detailed behavior of the emission-line profiles, at the few points in the NE quadrant with simple kinematics, argues that the ionized gas develops a significant component of motion perpendicular to the jet axis.

  8. Effective ionization coefficients, electron drift velocities, and limiting breakdown fields for gas mixtures of possible interest to particle detectors

    International Nuclear Information System (INIS)

    Datskos, P.G.

    1991-01-01

    We have measured the gas-density, N, normalized effective ionization coefficient, bar a/N, and the electron drift velocity, w, as a function of the density-reduced electric field, E/N, and obtained the limiting, (E/N) lim , value of E/N for the unitary gases Ar, CO 2 , and CF 4 , the binary gas mixtures CO 2 :Ar (20: 80), CO 2 :CH 4 (20:80), and CF 4 :Ar (20:80), and the ternary gas mixtures CO 2 :CF 4 :Ar (10:10:80) and H 2 O: CF 4 :Ar (2:18:80). Addition of the strongly electron thermalizing gas CO 2 or H 2 O to the binary mixture CF 4 :Ar (1)''cools'' the mixture (i.e., lowers the electron energies), (2) has only a small effect on the magnitude of w(E/N) in the E/N range employed in the particle detectors, and (3) increases bar a/N for E/N ≥ 50 x 10 -17 V cm 2 . The increase in bar a/N, even though the electron energies are lower in the ternary mixture, is due to the Penning ionization of CO 2 (or H 2 O) in collisions with excited Ar* atoms. The ternary mixtures -- being fast, cool, and efficient -- have potential for advanced gas-filled particle detectors such as those for the SCC muon chambers. 17 refs., 8 figs., 1 tab

  9. H ii REGION G46.5-0.2: THE INTERPLAY BETWEEN IONIZING RADIATION, MOLECULAR GAS, AND STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Paron, S.; Ortega, M. E.; Dubner, G.; Petriella, A.; Giacani, E. [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), CC 67, Suc. 28, 1428 Buenos Aires (Argentina); Yuan, Jing-Hua; Li, Jin Zeng; Liu, Hongli; Huang, Ya Fang; Zhang, Si-Ju [National Astronomical Observatories, Chinese Academy of Sciences, 20 A Datun Road, Chaoyang District, Beijing 100012 (China); Wu, Yuefang, E-mail: sparon@iafe.uba.ar [Department of Astronomy, Peking University, 100871 Beijing (China)

    2015-06-15

    H ii regions are particularly interesting because they can generate dense layers of gas and dust, elongated columns or pillars of gas pointing toward the ionizing sources, and cometary globules of dense gas where triggered star formation can occur. Understanding the interplay between the ionizing radiation and the dense surrounding gas is very important to explain the origin of these peculiar structures, and hence to characterize triggered star formation. G46.5-0.2 (G46), a poorly studied galactic H ii region located at about 4 kpc, is an excellent target for performing this kind of study. Using public molecular data extracted from the Galactic Ring Survey ({sup 13}CO J = 1–0) and from the James Clerk Maxwell Telescope data archive ({sup 12}CO, {sup 13}CO, C{sup 18}O J = 3–2, HCO{sup +}, and HCN J = 4–3), and infrared data from the GLIMPSE and MIPSGAL surveys, we perform a complete study of G46, its molecular environment, and the young stellar objects (YSOs) placed around it. We found that G46, probably excited by an O7V star, is located close to the edge of the GRSMC G046.34-00.21 molecular cloud. It presents a horse-shoe morphology opening in the direction of the cloud. We observed a filamentary structure in the molecular gas likely related to G46 and not considerable molecular emission toward its open border. We found that about 10′ to the southwest of G46 there are some pillar-like features, shining at 8 μm and pointing toward the H ii region open border. We propose that the pillar-like features were carved and sculpted by the ionizing flux from G46. We found several YSOs likely embedded in the molecular cloud grouped in two main concentrations: one, closer to the G46 open border consisting of Class II type sources, and another mostly composed of Class I type YSOs located just ahead of the pillar-like features, strongly suggesting an age gradient in the YSO distribution.

  10. Rapid growth of black holes accompanied with hot or warm outflows exposed to anisotropic super-Eddington radiation

    Science.gov (United States)

    Takeo, Eishun; Inayoshi, Kohei; Ohsuga, Ken; Takahashi, Hiroyuki R.; Mineshige, Shin

    2018-05-01

    We perform two-dimensional radiation hydrodynamical simulations of accretion flows on to a black hole (BH) with a mass of 103 ≤ MBH/ M⊙ ≲ 106 in order to study rapid growth of BHs in the early Universe. For spherically symmetric flows, hyper-Eddington accretion from outside the Bondi radius can occur unimpeded by radiation feedback when MBH ≳ 104 M⊙(n∞/105 cm - 3) - 1(T∞/104 K)3/2, where the density and temperature of ambient gas are initially set to n∞ = 105 cm-3 and T∞ = 104 K. Here, we study accretion flows exposed to anisotropic radiation from a nuclear accretion disc with a luminosity higher than the Eddington value (LEdd) due to collimation towards the bipolar directions. We find that, unlike the spherically symmetric case, even less massive BHs with MBH ionized regions expand towards the poles producing hot outflows with T ˜ 105 K. For more massive BHs with MBH ≳ 5 × 105 M⊙, intense inflows of neutral gas through the equator totally cover the central radiating region due to the non-radial gas motions. Because of efficient recombination by hydrogen, the entire flow settles in neutral and warm gas with T ≃ 8000 K. The BH is fed at a rate of ˜5 × 104LEdd/c2 (a half of the inflow rate from the Bondi radius). Moreover, radiation momentum absorbed by neutral hydrogen produces warm outflows towards the bipolar directions at ˜ 10 per cent of the BH feeding rate and with a velocity several times higher than the escaping value.

  11. COMPLETE IONIZATION OF THE NEUTRAL GAS: WHY THERE ARE SO FEW DETECTIONS OF 21 cm HYDROGEN IN HIGH-REDSHIFT RADIO GALAXIES AND QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Curran, S. J. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Whiting, M. T., E-mail: sjc@physics.usyd.edu.au [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia)

    2012-11-10

    From the first published z {approx}> 3 survey of 21 cm absorption within the hosts of radio galaxies and quasars, Curran et al. found an apparent dearth of cool neutral gas at high redshift. From a detailed analysis of the photometry, each object is found to have a {lambda} = 1216 A continuum luminosity in excess of L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}, a critical value above which 21 cm has never been detected at any redshift. At these wavelengths, and below, hydrogen is excited above the ground state so that it cannot absorb in 21 cm. In order to apply the equation of photoionization equilibrium, we demonstrate that this critical value also applies to the ionizing ({lambda} {<=} 912 A) radiation. We use this to show, for a variety of gas density distributions, that upon placing a quasar within a galaxy of gas, there is always an ultraviolet luminosity above which all of the large-scale atomic gas is ionized. While in this state, the hydrogen cannot be detected or engage in star formation. Applying the mean ionizing photon rate of all of the sources searched, we find, using canonical values for the gas density and recombination rate coefficient, that the observed critical luminosity gives a scale length (3 kpc) similar that of the neutral hydrogen (H I) in the Milky Way, a large spiral galaxy. Thus, this simple yet physically motivated model can explain the critical luminosity (L {sub 912} {approx} L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}), above which neutral gas is not detected. This indicates that the non-detection of 21 cm absorption is not due to the sensitivity limits of current radio telescopes, but rather that the lines of sight to the quasars, and probably the bulk of the host galaxies, are devoid of neutral gas.

  12. Radiation effects on polymer materials. Ionizing radiation induces degradation or improvement? (2) Gas evolution by irradiation

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo

    2005-01-01

    The present article reviews gas evolution from organic polymers induced by ionizing radiations, focusing on gamma-ray irradiation of PE (polyethylene) and PP (polypropylene)-model compounds at temperatures from -77 to 55degC. In the polyolefins, the main gas evolved by irradiation is hydrogen with G-value of 3-4 at room temperatures and G(H 2 ) is 1.8 at 77K. For PE, G(H 2 ) is higher for the low-density PE than for higher-density PE. For the halogenated polymers as PVC, etc., evolved gas is hydrogen halogenated: G(HCl)=6.8 for PVC. For the case where the irradiation is accompanied with the oxidation of polymers, the de-oxygenation and formation of carboxylic radicals are remarkably high and known to emit a bad smell which depends on the thickness of oxidized layers. In conclusion, the gas evolution can be estimated by considering the molecular structure of polymer materials. (S.Ohno)

  13. Characteristics of A-150 plastic equivalent gas in A-150 plastic ionization chambers for p(66)Be(49) neutrons

    International Nuclear Information System (INIS)

    Awschalom, M.; Rosenberg, I.; Ten Haken, R.K.; Pearson, D.W.; DeLuca, P.M. Jr.; Attix, F.H.

    1982-01-01

    The average energy necessary to produce an electron-ion pair (anti W) of a gas mixture having an atomic composition very close to that of A-150 plastic has been studied through use in different size ionization chambers made of that plastic in a p(66)Be(49) neutron therapy beam. A tentative value for anti W(A-150-gas) of 27.3 +/ -0.5 J C -1 was derived. The anti W value of the A-150 equivalent gas mixture is compared to those of methane-based tissue-equivalent gas and of air for the p(66)Be(49) neutron beam as well as to corresponding values found in similar experiments using 14.8 MeV monoenergetic neutrons

  14. The analog of Blanc's law for drift velocities of electrons in gas mixtures in weakly ionized plasma

    International Nuclear Information System (INIS)

    Chiflikian, R.V.

    1995-01-01

    The analog of Blanc's law for drift velocities of electrons in multicomponent gas mixtures in weakly ionized spatially homogeneous low-temperature plasma is derived. The obtained approximate-analytical expressions are valid for average electron energy in the 1--5 eV range typical for plasma conditions of low-pressure direct current (DC) discharges. The accuracy of these formulas is ±5%. The analytical criterion of the negative differential conductivity (NDC) of electrons in binary mixtures of gases is obtained. NDC of electrons is predicted in He:Kr and He:Xe rare gas mixtures. copyright 1995 American Institute of Physics

  15. Displacement of an electric arc by a stationary transverse magnetic field to different pressures of the ionized gas

    International Nuclear Information System (INIS)

    Ramos, J.

    1987-01-01

    The displacement of a wall-stabilized electric arc by a stationary transverse magnetic field is measured to different pressures of the ionized gas. The increase of the pressure makes the heat transfer function and the mass flow velocity in the arc column to raise, and it makes the arc displacement to decrease. (author)

  16. Non-polar lipids characterization of Quinoa (Chenopodium quinoa) seed by comprehensive two-dimensional gas chromatography with flame ionization/mass spectrometry detection and non-aqueous reversed-phase liquid chromatography with atmospheric pressure chemical ionization mass spectrometry detection.

    Science.gov (United States)

    Fanali, Chiara; Beccaria, Marco; Salivo, Simona; Tranchida, Peter; Tripodo, Giusy; Farnetti, Sara; Dugo, Laura; Dugo, Paola; Mondello, Luigi

    2015-07-08

    A chemical characterization of major lipid components, namely, triacylglycerols, fatty acids and the unsaponifiable fraction, in a Quinoa seed lipids sample is reported. To tackle such a task, non-aqueous reversed-phase high-performance liquid chromatography with mass spectrometry detection was employed. The latter was interfaced with atmospheric pressure chemical ionization for the analysis of triacylglycerols. The main triacylglycerols (>10%) were represented by OLP, OOL and OLL (P = palmitoyl, O = oleoyl, L = linoleoyl); the latter was present in the oil sample at the highest percentage (18.1%). Furthermore, fatty acid methyl esters were evaluated by gas chromatography with flame ionization detection. 89% of the total fatty acids was represented by unsaturated fatty acid methyl esters with the greatest percentage represented by linoleic and oleic acids accounting for approximately 48 and 28%, respectively. An extensive characterization of the unsaponifiable fraction of Quinoa seed lipids was performed for the first time, by using comprehensive two-dimensional gas chromatography with dual mass spectrometry/flame ionization detection. Overall, 66 compounds of the unsaponifiable fraction were tentatively identified, many constituents of which (particularly sterols) were confirmed by using gas chromatography with high-resolution time-of-flight mass spectrometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Does the schock wave in a highly ionized non-isothermal plasma really exist ?

    OpenAIRE

    Rukhadze, A. A.; Sadykova, S.; Samkharadze, T.

    2015-01-01

    Here, we study the structure of a highly ionizing shock wave in a gas of high atmospheric pressure. We take into account the gas ionization when the gas temperature reaches few orders above ionization potential. It is shown that after gasdynamic temperature-raising shock and formation of a highly-ionized nonisothermal collisionless plasma Te≫Ti , only the solitary ion-sound wave (soliton) can propagate in this plasma. In such a wave, the charge separation occurs: electrons and ions form the d...

  18. Application of pyrolysis–mass spectrometry and pyrolysis–gas chromatography–mass spectrometry with electron-ionization or resonance-enhanced-multi-photon ionization for characterization of crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Stefan [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Streibel, Thorsten, E-mail: thorsten.streibel@uni-rostock.de [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group Comprehensive Molecular Analytics, Institute of Ecological Chemistry, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764 Neuherberg (Germany); Erdmann, Sabrina [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Sklorz, Martin [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group Comprehensive Molecular Analytics, Institute of Ecological Chemistry, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764 Neuherberg (Germany); Schulz-Bull, Detlef [Marine Chemistry, Leibniz Institute for Baltic Sea Research, Warnemünde, Seestrasse 15, 18119 Rostock (Germany); Zimmermann, Ralf [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group Comprehensive Molecular Analytics, Institute of Ecological Chemistry, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764 Neuherberg (Germany)

    2015-01-15

    Highlights: • Gas chromatography setup with two MS detectors applying different ionization methods. • In parallel structural information and sensitive detection of aromatic species. • Characterization of setup and application for crude oil samples. • Detection of polycyclic aromatic hydrocarbons next to sulfur containing aromatics. - Abstract: A novel analytical system for gas-chromatographic investigation of complex samples has been developed, that combines the advantages of several analytical principles to enhance the analytical information. Decomposition of high molecular weight structures is achieved by pyrolysis and a high separation capacity due to the chromatographic step provides both an universal as well as a selective and sensitive substance detection. The latter is achieved by simultaneously applying electron ionization quadrupole mass spectrometry (EI-QMS) for structural elucidation and [1 + 1]-resonance-enhanced-multi-photon ionization (REMPI) combined with time-of-flight mass spectrometry (ToFMS). The system has been evaluated and tested with polycyclic aromatic hydrocarbon (PAH) standards. It was applied to crude oil samples for the first time. In such highly complex samples several thousands of compounds are present and the identification especially of low concentrated chemical species such as PAH or their polycyclic aromatic sulfur containing heterocyclic (PASH) derivatives is often difficult. Detection of unalkylated and alkylated PAH together with PASH is considerably enhanced by REMPI–ToFMS, at times revealing aromatic structures which are not observable by EI-QMS due to their low abundance. On the other hand, the databased structure proposals of the EI-QMS analysis are needed to confirm structural information and isomers distinction. The technique allows a complex structure analysis as well as selective assessment of aromatic substances in one measurement. Information about the content of sulfur containing compounds plays a

  19. Application of pyrolysis–mass spectrometry and pyrolysis–gas chromatography–mass spectrometry with electron-ionization or resonance-enhanced-multi-photon ionization for characterization of crude oils

    International Nuclear Information System (INIS)

    Otto, Stefan; Streibel, Thorsten; Erdmann, Sabrina; Sklorz, Martin; Schulz-Bull, Detlef; Zimmermann, Ralf

    2015-01-01

    Highlights: • Gas chromatography setup with two MS detectors applying different ionization methods. • In parallel structural information and sensitive detection of aromatic species. • Characterization of setup and application for crude oil samples. • Detection of polycyclic aromatic hydrocarbons next to sulfur containing aromatics. - Abstract: A novel analytical system for gas-chromatographic investigation of complex samples has been developed, that combines the advantages of several analytical principles to enhance the analytical information. Decomposition of high molecular weight structures is achieved by pyrolysis and a high separation capacity due to the chromatographic step provides both an universal as well as a selective and sensitive substance detection. The latter is achieved by simultaneously applying electron ionization quadrupole mass spectrometry (EI-QMS) for structural elucidation and [1 + 1]-resonance-enhanced-multi-photon ionization (REMPI) combined with time-of-flight mass spectrometry (ToFMS). The system has been evaluated and tested with polycyclic aromatic hydrocarbon (PAH) standards. It was applied to crude oil samples for the first time. In such highly complex samples several thousands of compounds are present and the identification especially of low concentrated chemical species such as PAH or their polycyclic aromatic sulfur containing heterocyclic (PASH) derivatives is often difficult. Detection of unalkylated and alkylated PAH together with PASH is considerably enhanced by REMPI–ToFMS, at times revealing aromatic structures which are not observable by EI-QMS due to their low abundance. On the other hand, the databased structure proposals of the EI-QMS analysis are needed to confirm structural information and isomers distinction. The technique allows a complex structure analysis as well as selective assessment of aromatic substances in one measurement. Information about the content of sulfur containing compounds plays a

  20. Low-frequency observations of Galactic supernova remnants and the distribution of low-density ionized gas in the interstellar medium

    International Nuclear Information System (INIS)

    Kassim, N.E.

    1989-01-01

    New long-wavelength observations of Galactic SNRs at 30.9 and 57.5 MHz are used to derive detailed low-frequency radio spectra for 32 SNRs. Of these, about two-thirds show turnovers at low frequencies, implying the presence of a widespread, but inhomogeneous, ionized absorbing medium along the lines of sight. These observations are combined with other low-frequency data to derive free-free optical depths toward 457 SNRs and to constrain the physical properties of the ionized gas responsible for the absorption. These optical depths are consistent with the expected absorbing properties of extended H II region envelopes. 43 refs

  1. Plasma production via field ionization

    Directory of Open Access Journals (Sweden)

    C. L. O’Connell

    2006-10-01

    Full Text Available Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch, or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam’s bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.

  2. GEMINI NEAR INFRARED FIELD SPECTROGRAPH OBSERVATIONS OF THE SEYFERT 2 GALAXY MRK 573: IN SITU ACCELERATION OF IONIZED AND MOLECULAR GAS OFF FUELING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Travis C.; Straughn, A. N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Machuca, C.; Crenshaw, D. M.; Baron, F.; Revalski, M.; Pope, C. L. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, 25 Park Place, Suite 605, Atlanta, GA 30303 (United States); Diniz, M. R.; Riffel, R. A. [Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Kraemer, S. B. [Institute for Astrophysics and Computational Sciences, Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); Schmitt, H. R. [Naval Research Laboratory, Washington, DC 20375 (United States); Storchi-Bergmann, T., E-mail: travis.c.fischer@nasa.gov [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in a ∼700 × 2100 pc{sup 2} circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  3. Gemini Near Infrared Field Spectrograph Observations of the Seyfert 2 Galaxy MRK 573: In Situ Acceleration of Ionized and Molecular Gas Off Fueling Flows

    Science.gov (United States)

    Fischer, Travis C.; Machuca, C.; Diniz, M. R.; Crenshaw, D. M.; Kraemer, S. B.; Riffel, R. A.; Schmitt, H. R.; Baron, F.; Storchi-Bergmann, T.; Straughn, A. N.; hide

    2016-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in approximately 700 x 2100 pc(exp 2) circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  4. Reliability of semiconductor and gas-filled diodes for over-voltage protection exposed to ionizing radiation

    Directory of Open Access Journals (Sweden)

    Stanković Koviljka

    2009-01-01

    Full Text Available The wide-spread use of semiconductor and gas-filled diodes for non-linear over-voltage protection results in a variety of possible working conditions. It is therefore essential to have a thorough insight into their reliability in exploitation environments which imply exposure to ionizing radiation. The aim of this paper is to investigate the influence of irradiation on over-voltage diode characteristics by exposing the diodes to californium-252 combined neutron/gamma radiation field. The irradiation of semiconductor over-voltage diodes causes severe degradation of their protection characteristics. On the other hand, gas-filled over-voltage diodes exhibit a temporal improvement of performance. The results are presented with the accompanying theoretical interpretations of the observed changes in over-voltage diode behaviour, based on the interaction of radiation with materials constituting the diodes.

  5. Mitigation of global warming and the role of identification of greenhouse gas sources

    International Nuclear Information System (INIS)

    Kaya, Y.

    2002-01-01

    Japan Science and Technology Corporation (JST) is an organization supporting R and D of frontier science and technologies under the full sponsorship of the government of Japan. Under the umbrella of JST the author is in charge of a program called 'Environment friendly social systems' which includes more than 20 research projects for better environment (with as an average of 1 million US dollars per project per year). One of the projects in this program is on development of isotopomer technology and its use in identifying greenhouse gas (GHG) sources headed by Prof. N.Yoshida. JST earnestly hopes that it can contribute as much as possible to mitigation of global warming through the support of important research projects such as Yoshida's. (author)

  6. Neutron accelerator tube having improved ionization section

    International Nuclear Information System (INIS)

    Givens, W.W.

    1982-01-01

    A neutron accelerator tube is described having a target section, an ionization section, and a replenisher section for supplying accelerator gas to the ionization section. The ionization section is located between the target and the replenisher section and includes an ionization chamber adapted to receive accelerator gas from the replenisher section. The ionization section further includes spaced cathodes having opposed active surfaces exposed to the interior of the ionization chamber. An anode is located intermediate the cathodes whereby in response to an applied positive voltage, electrons created by field emission are transmitted between the opposed active surfaces of the cathodes and produce the emission of secondary electrons. The active surface of at least one of the cathodes is formulated of a material having a secondary electron emission factor of at least one cathode member located in the tube adjacent to th replenisher section may have a protuberant portion extending axially into the ionization chamber. The other cathode spaced from the first cathode member in the direction of the target has an aperture therein along the axis of the protuberant portion. An annular magnet extends around the exterior of the ionization chamber and envelops the anode member. Means are provided to establish a high permeability magnetic flux path extending outwardly from the opposed poles from the magnet to the active surfaces of the cathode members

  7. Warm dense matter and Thomson scattering at FLASH

    International Nuclear Information System (INIS)

    Faeustlin, Roland Rainer

    2010-05-01

    X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)

  8. Warm dense matter and Thomson scattering at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Faeustlin, Roland Rainer

    2010-05-15

    X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)

  9. Determination of polycyclic aromatic hydrocarbons in palm oil mill effluent by soxhlet extraction and gas chromatography-flame ionization detector

    International Nuclear Information System (INIS)

    Nor Fairolzukry Ahmad Rasdy; Mohd Marsin Sanagi; Wan Aini Wan Ibrahim; Ahmedy Abu Naim

    2008-01-01

    A method has been developed for the determination of polycyclic aromatic hydrocarbons (PAHs) from palm oil mill effluent based on gas chromatography-flame ionization detection. Extraction of spiked PAHs (napthalene, fluorene phenanthrene, fluoranthene and pyrene) in palm oil waste was carried out by Soxhlet extraction using hexane-dichloromethane (60:40 v/v) as the solvent. Excellent separations were achieved using temperature programmed GC on Ultra-1 fused-silica capillary column (30 m x 250 μm ID), carrier gas helium at a flow rate of 1 mL/ min. (author)

  10. Pressure of a partially ionized hydrogen gas: numerical results from exact low temperature expansions

    Energy Technology Data Exchange (ETDEWEB)

    Alastuey, A. [Laboratoire de Physique, ENS Lyon, CNRS, Lyon (France); Ballenegger, V. [Institut UTINAM, Universite de Franche-Comte, CNRS, Besancon (France)

    2010-01-15

    We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing systematic low-temperature expansions within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential, exact formulae for the first.ve leading corrections to the ideal Saha equation of state have been derived[A. Alastuey, V. Ballenegger et al., J. Stat. Phys. 130, 1119 (2008)]. Those corrections account for all effects of interactions and thermal excitations up to order exp(E{sub H} /kT) included, where E{sub H} {approx_equal} -13.6 eV is the ground state energy of the hydrogen atom. Among the.ve leading corrections, three are easy to evaluate, while the remaining ones involve suitably truncated internal partition functions of H{sub 2} molecules and H{sup -} and H{sub 2}{sup +} ions, for which no analytical formulae are available in closed form. We estimate those partitions functions at.nite temperature via a simple phenomenology based on known values of rotational and vibrational energies. This allows us to compute numerically the leading deviations to the Saha pressure along several isotherms and isochores. Our values are compared with those of the OPAL tables (for pure hydrogen) calculated within the ACTEX method (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Approximate thermodynamic state relations in partially ionized gas mixtures

    International Nuclear Information System (INIS)

    Ramshaw, John D.

    2004-01-01

    Thermodynamic state relations for mixtures of partially ionized nonideal gases are often approximated by artificially partitioning the mixture into compartments or subvolumes occupied by the pure partially ionized constituent gases, and requiring these subvolumes to be in temperature and pressure equilibrium. This intuitively reasonable procedure is easily shown to reproduce the correct thermal and caloric state equations for a mixture of neutral (nonionized) ideal gases. The purpose of this paper is to point out that (a) this procedure leads to incorrect state equations for a mixture of partially ionized ideal gases, whereas (b) the alternative procedure of requiring that the subvolumes all have the same temperature and free electron density reproduces the correct thermal and caloric state equations for such a mixture. These results readily generalize to the case of partially degenerate and/or relativistic electrons, to a common approximation used to represent pressure ionization effects, and to two-temperature plasmas. This suggests that equating the subvolume electron number densities or chemical potentials instead of pressures is likely to provide a more accurate approximation in nonideal plasma mixtures

  12. Turbulent Dynamics of Partially-Ionized Fluids in 2D

    Science.gov (United States)

    Benavides, S.; Flierl, G.

    2017-12-01

    Ionization occurs in the upper atmospheres of Hot Jupiters, as well asthe interiors of Gas Giants, leading to Magnetohydrodynamic (MHD) effectswhich can significantly alter the flow. The interactions of these MHDregions with the non-ionized atmosphere will occur in transitionregions where only a fraction of the fluid is ionized. We areexploring the dynamics of Partially-Ionized MHD (PIMHD) using a twofluid model - one neutral and one ionized and subject to MHD -coupled by a collision, or Joule heating, term proportional to thedifference in velocities. By varying both the ionization fraction aswell as the collision frequency (coupling), we examine the parameterspace of 2D PIMHD turbulence in hopes of better understanding itscharacteristics in certain, possibly realistic, regimes. We payparticular attention to the Joule heating term and its role indissipation and energy exchange between the two species. Thisknowledge will serve as the basis to further studies in which we lookat, in a more realistic setting, the PIMHD dynamics in Gas Giant orHot Jupiter atmospheres.

  13. Application of gas chromatography/flame ionization detector-based metabolite fingerprinting for authentication of Asian palm civet coffee (Kopi Luwak).

    Science.gov (United States)

    Jumhawan, Udi; Putri, Sastia Prama; Yusianto; Bamba, Takeshi; Fukusaki, Eiichiro

    2015-11-01

    Development of authenticity screening for Asian palm civet coffee, the world-renowned priciest coffee, was previously reported using metabolite profiling through gas chromatography/mass spectrometry (GC/MS). However, a major drawback of this approach is the high cost of the instrument and maintenance. Therefore, an alternative method is needed for quality and authenticity evaluation of civet coffee. A rapid, reliable and cost-effective analysis employing a universal detector, GC coupled with flame ionization detector (FID), and metabolite fingerprinting has been established for discrimination analysis of 37 commercial and non-commercial coffee beans extracts. gas chromatography/flame ionization detector (GC/FID) provided higher sensitivity over a similar range of detected compounds than GC/MS. In combination with multivariate analysis, GC/FID could successfully reproduce quality prediction from GC/MS for differentiation of commercial civet coffee, regular coffee and coffee blend with 50 wt % civet coffee content without prior metabolite details. Our study demonstrated that GC/FID-based metabolite fingerprinting can be effectively actualized as an alternative method for coffee authenticity screening in industries. Copyright © 2015. Published by Elsevier B.V.

  14. Herschel-spire Fourier transform spectrometer observations of excited CO and [C I] in the antennae (NGC 4038/39): Warm and cold molecular gas

    Energy Technology Data Exchange (ETDEWEB)

    Schirm, Maximilien R. P.; Wilson, Christine D.; Parkin, Tara J. [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada); Kamenetzky, Julia; Glenn, Jason; Rangwala, Naseem [Center for Astrophysics and Space Astronomy, 389-UCB, University of Colorado, Boulder, CO 80303 (United States); Spinoglio, Luigi; Pereira-Santaella, Miguel [Istituto di Astrofisica e Planetologia Spaziali, INAF-IAPS, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Baes, Maarten; De Looze, Ilse [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Barlow, Michael J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Clements, Dave L. [Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Karczewski, Oskar Ł. [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Madden, Suzanne C.; Rémy-Ruyer, Aurélie; Wu, Ronin, E-mail: schirmmr@mcmaster.ca, E-mail: wilson@physics.mcmaster.ca [CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France)

    2014-02-01

    We present Herschel Spectral and Photometric Imaging Receiver (SPIRE) Fourier Transform Spectrometer (FTS) observations of the Antennae (NGC 4038/39), a well-studied, nearby (22 Mpc), ongoing merger between two gas-rich spiral galaxies. The SPIRE-FTS is a low spatial ( FWHM ∼ 19''-43'') and spectral (∼1.2 GHz) resolution mapping spectrometer covering a large spectral range (194-671 μm, 450-1545 GHz). We detect five CO transitions (J = 4-3 to J = 8-7), both [C I] transitions, and the [N II] 205 μm transition across the entire system, which we supplement with ground-based observations of the CO J = 1-0, J = 2-1, and J = 3-2 transitions and Herschel Photodetecting Array Camera and Spectrometer (PACS) observations of [C II] and [O I] 63 μm. Using the CO and [C I] transitions, we perform both a local thermodynamic equilibrium (LTE) analysis of [C I] and a non-LTE radiative transfer analysis of CO and [C I] using the radiative transfer code RADEX along with a Bayesian likelihood analysis. We find that there are two components to the molecular gas: a cold (T {sub kin} ∼ 10-30 K) and a warm (T {sub kin} ≳ 100 K) component. By comparing the warm gas mass to previously observed values, we determine a CO abundance in the warm gas of x {sub CO} ∼ 5 × 10{sup –5}. If the CO abundance is the same in the warm and cold gas phases, this abundance corresponds to a CO J = 1-0 luminosity-to-mass conversion factor of α{sub CO} ∼ 7 M {sub ☉} pc{sup –2} (K km s{sup –1}){sup –1} in the cold component, similar to the value for normal spiral galaxies. We estimate the cooling from H{sub 2}, [C II], CO, and [O I] 63 μm to be ∼0.01 L {sub ☉}/M {sub ☉}. We compare photon-dominated region models to the ratio of the flux of various CO transitions, along with the ratio of the CO flux to the far-infrared flux in NGC 4038, NGC 4039, and the overlap region. We find that the densities recovered from our non-LTE analysis are consistent with a

  15. Towards radiation detected resonance ionization spectroscopy on transfermium elements in a buffer gas cell

    Energy Technology Data Exchange (ETDEWEB)

    Lautenschlaeger, Felix; Walther, Thomas [Institut fuer Angewandte Physik, TU Darmstadt, 64289 Darmstadt (Germany); Laatiaoui, Mustapha; Block, Michael [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Mainz, 55128 Mainz (Germany); Lauth, Werner; Backe, Hartmut [Institut fuer Kernphysik, JGU Mainz, 55128 Mainz (Germany); Hessberger, Fritz-Peter [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany)

    2013-07-01

    The study of the atomic structure of transfermium elements like nobelium (No) and lawrencium (Lr) via Radiation Detected Resonance Ionization Spectroscopy (RADRIS) is one of the most fascinating disciplines of modern atomic physics. It allows the determination of relativistic effects at the heaviest elements and provides a critical test of theoretical predictions. For these transfermium elements no experimental data on atomic level schemes are available at present. First experiments on {sup 254}No were performed in 2007, in which a buffer gas cell with an overall efficiency of 1%. In this experiment the evaporation temperature of nobelium was determined for the first time. To increase the efficiency of the buffer gas cell, off-line measurements have been performed with nat. ytterbium, the chemical homologue of nobelium. Also on-line experiments during a parasitic beam-time in 2012 provided an insight into the critical parameters of our setup. The results of the off-line and on-line measurements are briefly summarized in this talk.

  16. Three-Dimensional View of Ionized Gas Conditions in Galaxies

    Science.gov (United States)

    Juneau, Stephanie; NOAO Data Lab

    2018-06-01

    We present a 3D version of common emission line diagnostic diagrams used to identify the source of ionization in galaxies, and highlight interesting features in this new 3D space, which are associated with global galaxy properties. Namely, we combine the BPT and Mass-Excitation (MEx) diagrams, and apply it to a set of >300,000 galaxies from the SDSS survey. Among other features, we show that the usual “branch” of star-forming galaxies becomes a curved surface in the new 3D space. Understanding the underlying reasons can shed light on the nearby galaxy population but also aid our interpretation of high-redshift surveys, which indicate a strong evolution of emission line ratios. Despite efforts to explain the origin of this strong evolution, a consensus has not yet been reached. Yet, the implications are crucial to our understanding of galaxy growth across cosmic time, and in particular to assess how star forming regions differed at earlier times (gas properties? stellar properties? a combination?). We perform this analysis within the framework of the NOAO Data Lab (datalab.noao.edu) jointly with public visualization tools. The final workflow will be released publicly.

  17. A multi purpose 4 π counter spherical ionization chamber type

    International Nuclear Information System (INIS)

    Calin, Marian Romeo; Calin, Adrian Cantemir

    2004-01-01

    A pressurized ionization chamber detector able to measure radioactive sources in internal 2π or 4π geometry was built in order to characterize alpha and beta radioactive sources, i.e. to calibrate these sources by relative method and to test the behavior of gas mixtures in pressurized-gas radiation detectors. The detector we made is of spherical shape and works by collecting in a uniform electric field the ionization charges resulting from the interaction of ionizing radiation with gas in the sensitive volume of the chamber. An ionizing current proportional to the activity of the radioactive source to be measured is obtained. In this paper a gas counter with a spherical symmetry is described. This detector can work in a very satisfactory manner, either as a flow counter or as a ionization chamber reaching in the latter case a good α pulse height resolution, even with large emitting sources. Calculations are made in order to find the dependence of the pulse shape on the direction of emission of an α-particle by a point source in the chamber (finite track). A good agreement is found between these calculations and the experimental tests performed, which show that this dependence can be employed in high efficiency measurements of angular α-γ correlations. (authors)

  18. Development of a Portable Single Photon Ionization-Photoelectron Ionization Time-of-Flight Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    Yunguang Huang

    2015-01-01

    Full Text Available A vacuum ultraviolet lamp based single photon ionization- (SPI- photoelectron ionization (PEI portable reflecting time-of-flight mass spectrometer (TOFMS was designed for online monitoring gas samples. It has a dual mode ionization source: SPI for analyte with ionization energy (IE below 10.6 eV and PEI for IE higher than 10.6 eV. Two kinds of sampling inlets, a capillary inlet and a membrane inlet, are utilized for high concentration and trace volatile organic compounds, respectively. A mass resolution of 1100 at m/z 64 has been obtained with a total size of 40 × 31 × 29 cm, the weight is 27 kg, and the power consumption is only 70 W. A mixture of benzene, toluene, and xylene (BTX, SO2, and discharging products of SF6 were used to test its performance, and the result showed that the limit of quantitation for BTX is as low as 5 ppbv (S/N = 10 : 1 with linear dynamic ranges greater than four orders of magnitude. The portable TOFMS was also evaluated by analyzing volatile organic compounds from wine and decomposition products of SF6 inside of a gas-insulated switchgear.

  19. Neutron accelerator tube having improved ionization section

    International Nuclear Information System (INIS)

    Givens, W.W.

    1981-01-01

    A neutron accelerator tube having a target section, an ionization section, and a replenisher section for supplying accelerator gas to the ionization section. The ionization section is located between the target and the replenisher section and includes an ionization chamber adapted to receive accelerator gas from the replenisher section. The ionization section further includes spaced cathodes having opposed active surfaces exposed to the interior of the ionization chamber. An anode is located intermediate the cathodes whereby in response to an applied positive voltage, electrons created by field emmission are transmitted between the opposed active surfaces of the cathodes and produce the emission of secondary electrons. The active surface of at least one of the cathodes is formulated of a material having a secondary electron emission factor of at least 2. One cathode member located in the tube adjacent to the replenisher section may have a protuberant portion extending axially into the ioization chamber. The other cathode spaced from the first cathode member in the direction of the target has an aperture therein along the axis of the protuberant portion. An annular magnet extends around the exterior of the ionization chamber and envelops the anode member. Means are provided to establish a high permeability magnetic flux path extending outwardly from the opposed poles from the magnet to the active surfaces of the cathode members

  20. Laws governing the energy conversion of ionization curves

    International Nuclear Information System (INIS)

    Gorgoskii, V.I.

    1986-01-01

    The author attempts to determine if ionization curves are structured or smooth, the cause of the smoothing of the curves, the possibility of the curves having maxima and why, how many maxima are on the ionization curve, and which of these maxima is the fundamental maxima. The study shows that ionization curves without and additional maximum, i.e., with one fundamental maximum, can be obtained for potassium, rubidium, and cesium. This requires reduction of the density of the electrons in the stream and the density of the atoms of the target gas. It is also shown that in order to obtain ionization curves with additional maxima in the cases of neon, argon, and krypton, the measurements must be carried out at high densities of the electrons in the stream and of the atoms of the target gas

  1. Mixing rules for optical and transport properties of warm, dense matter

    International Nuclear Information System (INIS)

    Kress, Joel D.; Horner, Daniel A.; Collins, Lee A.

    2009-01-01

    The warm, dense matter (WDM) regime requires a sophisticated treatment since neither ideal gas laws or fully ionized plasma models apply. Mixtures represent the predominant form of matter throughout the universe and the ability to predict the properties of a mixture, though direct simulation or from convolution of the properties of the constituents is both a challenging prospect and an important goal. Through quantum molecular dynamics (QMD), we accurately simulate WDM and compute equations of state, transport, and optical properties of such materials, including mixtures, in a self-consistent manner from a single simulation. With the ability to directly compute the mixture properties, we are able to validate mixing rules for combining the optical and dynamical properties of Li and H separately to predict the properties of lithium hydride (LiH). We have examined two such mixing rules and extend them to morphologies beyond a simple liquid alloy. We have also studied a mixture of polyethylene and aluminum at T = 1 eV.

  2. Resonantly enhanced collisional ionization measurements of radionuclides

    International Nuclear Information System (INIS)

    Whitaker, T.J.; Bushaw, B.A.; Gerke, G.K.

    1986-01-01

    The authors developed a new laser technique to analyze for radionuclides at extremely low levels. The technique, called resonantly enhanced collisional ionization (RECI), uses two nitrogen-laser pumped dye lasers to excite the target isotope to a high-energy Rydberg state. Atoms in these Rydberg states (within a few hundred wavenumbers in energy from the ionization threshold) efficiently ionize upon colliding with an inert gas and the ions can be detected by conventional means. The principal advantage of resonantly-enhanced collisional ionization is the extreme sensitivity coupled with its relative simplicity and low cost. Actinides typically have an ionization potential of about 6eV (uranium I.P. = 6.2 eV, plutonium I.P. = 5.7 eV). Two-step laser excitation to a state just below threshold requires wavelengths in the blue region of the visible spectrum. They showed that when both steps in the excitation process are resonant steps, relatively low-power lasers can populate the Rydberg state with almost unit efficiency. This is because the resonant excitations have much larger cross-sections than do photoionization processes. They also demonstrated that a few torr of a buffer gas will cause most of the excited-state atoms to be ionized

  3. Modulation of ionization in the plasma column of an optical discharge

    International Nuclear Information System (INIS)

    Nastoyashchii, A.F.

    1981-01-01

    Stability of the ionization in the plasma column of an optical discharge is discussed. It is shown that a plasma filament formed by a long laser spike under optical discharge conditions may break up into a chain of bright luminous layers oriented in the direction of propagation of a laser beam and characterized by a higher gas ionization (''optical striations''). A nonlinear formulation of the problem is used to find the depth of modulation of the gas ionization

  4. WARM MOLECULAR GAS IN LUMINOUS INFRARED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Lu, N.; Zhao, Y.; Xu, C. K.; Mazzarella, J. M.; Howell, J.; Appleton, P.; Lord, S.; Schulz, B. [Infrared Processing and Analysis Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125 (United States); Gao, Y. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Armus, L.; Díaz-Santos, T.; Surace, J. [Spitzer Science Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 (United States); Isaak, K. G. [ESA Astrophysics Missions Division, ESTEC, P.O. Box 299, 2200-AG Noordwijk (Netherlands); Petric, A. O. [Gemini Observatory, 670 N. A' ohoku Place, Hilo, HI 96720 (United States); Charmandaris, V. [Department of Physics, University of Crete, GR-71003 Heraklion (Greece); Evans, A. S. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Inami, H. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Iwasawa, K. [ICREA and Institut de Ciències del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, E-08028 Barcelona (Spain); Leech, J. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Sanders, D. B., E-mail: lu@ipac.caltech.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); and others

    2014-06-01

    We present our initial results on the CO rotational spectral line energy distribution (SLED) of the J to J–1 transitions from J = 4 up to 13 from Herschel SPIRE spectroscopic observations of 65 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey. The observed SLEDs change on average from one peaking at J ≤ 4 to a broad distribution peaking around J ∼ 6 to 7 as the IRAS 60-to-100 μm color, C(60/100), increases. However, the ratios of a CO line luminosity to the total infrared luminosity, L {sub IR}, show the smallest variation for J around 6 or 7. This suggests that, for most LIRGs, ongoing star formation (SF) is also responsible for a warm gas component that emits CO lines primarily in the mid-J regime (5 ≲ J ≲ 10). As a result, the logarithmic ratios of the CO line luminosity summed over CO (5–4), (6–5), (7–6), (8–7) and (10–9) transitions to L {sub IR}, log R {sub midCO}, remain largely independent of C(60/100), and show a mean value of –4.13 (≡log R{sub midCO}{sup SF}) and a sample standard deviation of only 0.10 for the SF-dominated galaxies. Including additional galaxies from the literature, we show, albeit with a small number of cases, the possibility that galaxies, which bear powerful interstellar shocks unrelated to the current SF, and galaxies, in which an energetic active galactic nucleus contributes significantly to the bolometric luminosity, have their R {sub midCO} higher and lower than R{sub midCO}{sup SF}, respectively.

  5. Analysis of acylcarnitines as their N-demethylated ester derivatives by gas chromatography-chemical ionization mass spectrometry.

    Science.gov (United States)

    Huang, Z H; Gage, D A; Bieber, L L; Sweeley, C C

    1991-11-15

    A novel approach to the analysis of acylcarnitines has been developed. It involves a direct esterification using propyl chloroformate in aqueous propanol followed by ion-pair extraction with potassium iodide into chloroform and subsequent on-column N-demethylation of the resulting acylcarnitine propyl ester iodides. The products, acyl N-demethylcarnitine propyl esters, are volatile and are easily analyzed by gas chromatography-chemical ionization mass spectrometry. For medium-chain-length (C4-C12) acylcarnitine standards, detection limits are demonstrated to be well below 1 ng starting material using selected ion monitoring. Well-separated gas chromatographic peaks and structure-specific mass spectra are obtained with samples of synthetic and biological origin. Seven acylcarnitines have been characterized in the urine of a patient suffering from medium-chain acyl-CoA dehydrogenase deficiency.

  6. Five year follow-up of a randomized controlled trial on warming and humidification of insufflation gas in laparoscopic colonic surgery--impact on small bowel obstruction and oncologic outcomes.

    Science.gov (United States)

    Sammour, Tarik; Hill, Andrew G

    2015-04-01

    Warming and humidification of insufflation gas has been shown to reduce adhesion formation and tumor implantation in the laboratory setting, but clinical evidence is lacking. We aimed to test the hypothesis that warming and humidification of insufflation CO2 would lead to reduced adhesion formation, and improve oncologic outcomes in laparoscopic colonic surgery. This was a 5-year follow-up of a multicenter, double-blinded, randomized, controlled trial investigating warming and humidification of insufflation gas. The study group received warmed (37°C), humidified (98%) insufflation carbon dioxide, and the control group received standard gas (19°C, 0%). All other aspects of patient care were standardized. Admissions for small bowel obstruction were recorded, as well as whether management was operative or nonoperative. Local and systemic cancer recurrence, 5-year overall survival, and cancer specific survival rates were also recorded. Eighty two patients were randomized, with 41 in each arm. Groups were well matched at baseline. There was no difference between the study and control groups in the rate of clinical small bowel obstruction (5.7% versus 0%, P 0.226); local recurrence (6.5% versus 6.1%, P 1.000); overall survival (85.7% versus 82.1%, P 0.759); or cancer-specific survival (90.3% versus 87.9%, P 1.000). Warming and humidification of insufflation CO2 in laparoscopic colonic surgery does not appear to confer a clinically significant long term benefit in terms of adhesion reduction or oncological outcomes, although a much larger randomized controlled trial (RCT) would be required to confirm this. ClinicalTrials.gov Trial identifier: NCT00642005; US National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA.

  7. Five Year Follow-Up of a Randomized Controlled Trial on Warming and Humidification of Insufflation Gas in Laparoscopic Colonic Surgery—Impact on Small Bowel Obstruction and Oncologic Outcomes

    Science.gov (United States)

    Sammour, Tarik; Hill, Andrew G.

    2015-01-01

    Warming and humidification of insufflation gas has been shown to reduce adhesion formation and tumor implantation in the laboratory setting, but clinical evidence is lacking. We aimed to test the hypothesis that warming and humidification of insufflation CO2 would lead to reduced adhesion formation, and improve oncologic outcomes in laparoscopic colonic surgery. This was a 5-year follow-up of a multicenter, double-blinded, randomized, controlled trial investigating warming and humidification of insufflation gas. The study group received warmed (37°C), humidified (98%) insufflation carbon dioxide, and the control group received standard gas (19°C, 0%). All other aspects of patient care were standardized. Admissions for small bowel obstruction were recorded, as well as whether management was operative or nonoperative. Local and systemic cancer recurrence, 5-year overall survival, and cancer specific survival rates were also recorded. Eighty two patients were randomized, with 41 in each arm. Groups were well matched at baseline. There was no difference between the study and control groups in the rate of clinical small bowel obstruction (5.7% versus 0%, P 0.226); local recurrence (6.5% versus 6.1%, P 1.000); overall survival (85.7% versus 82.1%, P 0.759); or cancer-specific survival (90.3% versus 87.9%, P 1.000). Warming and humidification of insufflation CO2 in laparoscopic colonic surgery does not appear to confer a clinically significant long term benefit in terms of adhesion reduction or oncological outcomes, although a much larger randomized controlled trial (RCT) would be required to confirm this. ClinicalTrials.gov Trial identifier: NCT00642005; US National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA. PMID:25875541

  8. Ionization chamber

    International Nuclear Information System (INIS)

    1977-01-01

    An improved ionization chamber type X-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is placed next to the anode and is maintained at a voltage intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting towards the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  9. Signal generation in gas detectors

    International Nuclear Information System (INIS)

    Stillman, A.

    1993-01-01

    This tutorial describes the generation of electrical signals in gas detectors. Ionization of the gas by the passage of charged particles generates these signals. Starting with the Bethe-Bloch equation, the treatment is a general introduction to the production of ion-pairs in gas devices. I continue with the characterization of the ionization as an electrical signal, and calculate the signal current in a simple example. Another example demonstrates the effect of space charge on the design of a detector. The AGS Booster ionization profile monitor is a model for this calculation

  10. HIGH-TEMPERATURE IONIZATION IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Desch, Steven J. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States); Turner, Neal J. [Jet Propulsion Laboratory, Mail Stop 169-506, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2015-10-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters.

  11. HIGH-TEMPERATURE IONIZATION IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Desch, Steven J.; Turner, Neal J.

    2015-01-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters

  12. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  13. Ionizing radiation effects in Acai oil analysed by gas chromatography coupled to mass spectrometry technique

    International Nuclear Information System (INIS)

    Valli, Felipe; Fernandes, Carlos Eduardo; Moura, Sergio; Machado, Ana Carolina; Furasawa, Helio Akira; Pires, Maria Aparecida Faustino; Bustillos, Oscar Vega

    2007-01-01

    The Acai fruit is a well know Brazilian seed plant used in large scale as a source of feed stock, specially in the Brazilian North-east region. The Acai oil is use in many purposes from fuel sources to medicine. The scope of this paper is to analyzed the chemical structures modification of the acai oil after the ionizing radiation. The radiation were set in the range of 10 to 25 kGy in the extracted Acai oil. The analyses were made by gas chromatography coupled to mass spectrometry techniques. A GC/MS Shimatzu QP-5000 equipped with 30 meters DB-5 capillary column with internal diameter of 0.25 mm and 0.25 μm film thickness was used. Helium was used as carried gas and gave a column head pressure of 12 p.s.i. (1 p.s.i. = 6894.76 Pa) and an average flux of 1 ml/min. The temperature program for the GC column consisted of a 4-minutes hold at 75 deg C, a 15 deg C /min ramp to 200 deg C, 8 minutes isothermal. 20 deg C/min ramp to 250 deg C, 2 minutes isothermal. The extraction of the fatty acids was based on liquid-liquid method using chloroform as solvent. The chromatograms resulted shows the presences of the oleic acid and others fatty acids identify by the mass spectra library (NIST-92). The ionization radiation deplete the fatty acids presents in the Acai oil. Details on the chemical qualitative analytical is present as well in this work. (author)

  14. Shock velocity in weakly ionized nitrogen, air, and argon

    International Nuclear Information System (INIS)

    Siefert, Nicholas S.

    2007-01-01

    The goal of this research was to determine the principal mechanism(s) for the shock velocity increase in weakly ionized gases. This paper reports experimental data on the propagation of spark-generated shock waves (1< Mach<3) into weakly ionized nitrogen, air, and argon glow discharges (1 < p<20 Torr). In order to distinguish between effects due solely to the presence of electrons and effects due to heating of the background gas via elastic collisions with electrons, the weakly ionized discharge was pulsed on/off. Laser deflection methods determined the shock velocity, and the electron number density was collected using a microwave hairpin resonator. In the afterglow of nitrogen, air, and argon discharges, the shock velocity first decreased, not at the characteristic time for electrons to diffuse to the walls, but rather at the characteristic time for the centerline gas temperature to equilibrate with the wall temperature. These data support the conclusion that the principal mechanism for the increase in shock velocity in weakly ionized gases is thermal heating of the neutral gas species via elastic collisions with electrons

  15. Effect of surface potential and intrinsic magnetic field on resistance of a body in a supersonic flow of rarefied partially ionized gas

    International Nuclear Information System (INIS)

    Shuvalov, V.A.

    1986-01-01

    The character of flow over a body, structure of the perturbed zone, and flow resistance in a supersonic flow of rarefied partially ionized gas are determined by the intrinsic magnetic field and surface potential of the body. There have been practically no experimental studies of the effect of intrinsic magnetic field on flow of a rarefied plasma. Studies of the effect of surface potential have been limited to the case R/λd 10 2 (where R is the characteristic dimension of the body and λd is the Debye radius). At the same time R/λd > 10 2 , the regime of flow over a large body, is of the greatest practical interest. The present study will consider the effect of potential and intrinsic magnetic field on resistance of a large (R/λd > 10 2 ) axisymmetric body (disk, sphere) in a supersonic flow of rarefield partially ionized gas

  16. Single and multiple ionization of noble gas atoms by H0 impact

    International Nuclear Information System (INIS)

    Sarkadi, L.; Gulyas, L.; Herczku, P.; Kovacs, S.T.S.; Koever, A.

    2012-01-01

    Complete text of publication follows. The understanding of the mechanisms of collisions between energetic charged particles and neutral atoms is of fundamental significance, and it has large importance in many research fields (plasma physics, astrophysics, materials science, etc.), as well as in number of practical applications. In the present work we measured total direct ionization and electron loss cross sections for the collisions of H 0 atoms with noble gas atoms (He, Ne, Ar, Kr) in the energy range 75-300 keV. The experiment was carried out at the 1.5 MV Van de Graaff accelerator of Atomki by coincident detection of the recoil target ions and the charge-state analyzed scattered projectiles. With this study we wished to obtain information about the role played by the electron of the H 0 projectile in the process of the single and multiple vacancy production induced by the collision. For this purpose we repeated the measurements also with proton projectile under the same experimental conditions. For calibration of the measuring system and normalization of our data we used the cross section values of Ref. [1]. The experimental results were analysed with using the classical trajectory Monte Carlo (CTMC) method. CTMC describes well the experimental data for both projectiles for the single vacancy creation, however we observed increasing deviation between the theory and experiment with increasing number of the created vacancies, as well as with decreasing atomic number of the target atoms. Fig. 1 shows our results obtained for the single, double and triple ionization (q = 1, 2, 3) of Kr at H 0 impact for the two cases when the outgoing projectile is H 0 (a) and H + (b), i.e., for pure ionization of the target, and ionization of the target with simultaneous electron loss of the projectile. The curves in the figure were obtained by two versions of the three-body CTMC theory: a conventional model (dashed curves); and a model taking partially account of the many

  17. Kinetic theory of weakly ionized dilute gas of hydrogen-like atoms of the first principles of quantum statistics and dispersion laws of eigenwaves

    Science.gov (United States)

    Slyusarenko, Yurii V.; Sliusarenko, Oleksii Yu.

    2017-11-01

    We develop a microscopic approach to the construction of the kinetic theory of dilute weakly ionized gas of hydrogen-like atoms. The approach is based on the statements of the second quantization method in the presence of bound states of particles. The basis of the derivation of kinetic equations is the method of reduced description of relaxation processes. Within the framework of the proposed approach, a system of common kinetic equations for the Wigner distribution functions of free oppositely charged fermions of two kinds (electrons and cores) and their bound states—hydrogen-like atoms— is obtained. Kinetic equations are used to study the spectra of elementary excitations in the system when all its components are non-degenerate. It is shown that in such a system, in addition to the typical plasma waves, there are longitudinal waves of matter polarization and the transverse ones with a behavior characteristic of plasmon polaritons. The expressions for the dependence of the frequencies and Landau damping coefficients on the wave vector for all branches of the oscillations discovered are obtained. Numerical evaluation of the elementary perturbation parameters in the system on an example of a weakly ionized dilute gas of the 23Na atoms using the D2-line characteristics of the natrium atom is given. We note the possibility of using the results of the developed theory to describe the properties of a Bose condensate of photons in the diluted weakly ionized gas of hydrogen-like atoms.

  18. Cosmic rays and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Erlykin, A.D. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Sloan, T. [Lancaster University (United Kingdom); Wolfendale, A.W. [Durham University (United Kingdom)

    2010-07-01

    The possible effects of cosmic rays on clouds could contribute to global warming. The argument is that the observed increased solar activity during the last century caused a decrease in the ionization due to cosmic rays since the lower energy cosmic particles are deflected by the magnetic field created by the increasing solar wind. This would lead to a decrease in cloud cover allowing more heating of the earth by the sun. Meteorological data combined to solar activity observations and simulations show that any effect of solar activity on clouds and the climate is likely to be through irradiance rather than cosmic rays. Since solar irradiance transfers 8 orders of magnitude more energy to the atmosphere than cosmic rays it is more plausible that this can produce a real effect. The total contribution of variable solar activity to global warming is shown to be less than 14% of the total temperature rise. (A.C.)

  19. A combined segmented anode gas ionization chamber and time-of-flight detector for heavy ion elastic recoil detection analysis

    Science.gov (United States)

    Ström, Petter; Petersson, Per; Rubel, Marek; Possnert, Göran

    2016-10-01

    A dedicated detector system for heavy ion elastic recoil detection analysis at the Tandem Laboratory of Uppsala University is presented. Benefits of combining a time-of-flight measurement with a segmented anode gas ionization chamber are demonstrated. The capability of ion species identification is improved with the present system, compared to that obtained when using a single solid state silicon detector for the full ion energy signal. The system enables separation of light elements, up to Neon, based on atomic number while signals from heavy elements such as molybdenum and tungsten are separated based on mass, to a sample depth on the order of 1 μm. The performance of the system is discussed and a selection of material analysis applications is given. Plasma-facing materials from fusion experiments, in particular metal mirrors, are used as a main example for the discussion. Marker experiments using nitrogen-15 or oxygen-18 are specific cases for which the described improved species separation and sensitivity are required. Resilience to radiation damage and significantly improved energy resolution for heavy elements at low energies are additional benefits of the gas ionization chamber over a solid state detector based system.

  20. Do mitigation strategies reduce global warming potential in the northern U.S. corn belt?

    Science.gov (United States)

    Johnson, Jane M-F; Archer, David W; Weyers, Sharon L; Barbour, Nancy W

    2011-01-01

    Agricultural management practices that enhance C sequestration, reduce greenhouse gas emission (nitrous oxide [N₂O], methane [CH₄], and carbon dioxide [CO₂]), and promote productivity are needed to mitigate global warming without sacrificing food production. The objectives of the study were to compare productivity, greenhouse gas emission, and change in soil C over time and to assess whether global warming potential and global warming potential per unit biomass produced were reduced through combined mitigation strategies when implemented in the northern U.S. Corn Belt. The systems compared were (i) business as usual (BAU); (ii) maximum C sequestration (MAXC); and (iii) optimum greenhouse gas benefit (OGGB). Biomass production, greenhouse gas flux change in total and organic soil C, and global warming potential were compared among the three systems. Soil organic C accumulated only in the surface 0 to 5 cm. Three-year average emission of N₂O and CH was similar among all management systems. When integrated from planting to planting, N₂O emission was similar for MAXC and OGGB systems, although only MAXC was fertilized. Overall, the three systems had similar global warming potential based on 4-yr changes in soil organic C, but average rotation biomass was less in the OGGB systems. Global warming potential per dry crop yield was the least for the MAXC system and the most for OGGB system. This suggests management practices designed to reduce global warming potential can be achieved without a loss of productivity. For example, MAXC systems over time may provide sufficient soil C sequestration to offset associated greenhouse gas emission. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Supercritical carbon dioxide extraction of electrolyte from spent lithium ion batteries and its characterization by gas chromatography with chemical ionization

    Science.gov (United States)

    Mönnighoff, Xaver; Friesen, Alex; Konersmann, Benedikt; Horsthemke, Fabian; Grützke, Martin; Winter, Martin; Nowak, Sascha

    2017-06-01

    The aging products of the electrolyte from a commercially available state-of-the-art 18650-type cell were investigated. During long term cycling a huge difference in their performance and lifetime at different temperatures was observed. By interpretation of a strong capacity fading of cells cycled at 20 °C compared to cells cycled at 45 °C a temperature depending aging mechanism was determined. To investigate the influence of the electrolyte on this fading, the electrolyte was extracted by supercritical fluid extraction (SFE) and then analyzed by gas chromatography (GC) with electron impact (EI) ionization and mass selective detection. To obtain more information with regard to the identification of unknown decomposition products further analysis with positive chemical ionization (PCI) and negative chemical ionization (NCI) was performed. 17 different volatile organic aging products were detected and identified. So far, seven of them were not yet known in literature and several formation pathways were postulated taking previously published literature into account.

  2. The critical ionization velocity

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1980-06-01

    The critical ionization velocity effect was first proposed in the context of space plasmas. This effect occurs for a neutral gas moving through a magnetized plasma and leads to rapid ionization and braking of the relative motion when a marginal velocity, 'the critical velocity', is exceeded. Laboratory experiments have clearly established the significance of the critical velocity and have provided evidence for an underlying mechanism which relies on the combined action of electron impact ionization and a collective plasma interaction heating electrons. There is experimental support for such a mechanism based on the heating of electrons by the modified two-stream instability as part of a feedback process. Several applications to space plasmas have been proposed and the possibility of space experiments has been discussed. (author)

  3. Global warming and obesity: a systematic review.

    Science.gov (United States)

    An, R; Ji, M; Zhang, S

    2018-02-01

    Global warming and the obesity epidemic are two unprecedented challenges mankind faces today. A literature search was conducted in the PubMed, Web of Science, EBSCO and Scopus for articles published until July 2017 that reported findings on the relationship between global warming and the obesity epidemic. Fifty studies were identified. Topic-wise, articles were classified into four relationships - global warming and the obesity epidemic are correlated because of common drivers (n = 21); global warming influences the obesity epidemic (n = 13); the obesity epidemic influences global warming (n = 13); and global warming and the obesity epidemic influence each other (n = 3). We constructed a conceptual model linking global warming and the obesity epidemic - the fossil fuel economy, population growth and industrialization impact land use and urbanization, motorized transportation and agricultural productivity and consequently influences global warming by excess greenhouse gas emission and the obesity epidemic by nutrition transition and physical inactivity; global warming also directly impacts obesity by food supply/price shock and adaptive thermogenesis, and the obesity epidemic impacts global warming by the elevated energy consumption. Policies that endorse deployment of clean and sustainable energy sources, and urban designs that promote active lifestyles, are likely to alleviate the societal burden of global warming and obesity. © 2017 World Obesity Federation.

  4. Insulation Strength and Decomposition Characteristics of a C6F12O and N2 Gas Mixture

    Directory of Open Access Journals (Sweden)

    Xiaoxing Zhang

    2017-08-01

    Full Text Available This paper explores the decomposition characteristics of a new type of environmentally friendly insulating gas C6F12O and N2 mixed gas under AC voltage. The breakdown behavior of 3% C6F12O and N2 mixed gas in quasi-uniform field was investigated through a breakdown experiment. The self-recovery of the mixed gas was analyzed by 100 breakdown experiments. The decomposition products of C6F12O and N2 under breakdown voltage were determined by gas chromatography–mass spectrometer (GC-MS. Finally, the decomposition process of the products was calculated by density functional theory, and the ionization energy, affinity, and molecular orbital gap of the decomposition products were also calculated. The properties of the decomposition products were analyzed from the aspects of insulation and environmental protection. The experimental results show that the 3% C6F12O and N2 mixed gas did not show a downward trend over 100 breakdown tests under a 0.10 MPa breakdown voltage. The decomposition products after breakdown were CF4, C2F6, C3F6, C3F8, C4F10, and C5F12. The ionization energies of several decomposition products are more than 10 eV. The Global Warming Potential (GWP values of the main products are lower than SF6. C2F6, C3F8, and C4F10 have better insulation properties.

  5. Ionization detection system for aerosols

    International Nuclear Information System (INIS)

    Jacobs, M.E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber. 8 claims, 7 figures

  6. Sonoluminescence test for equation of state in warm dense matter

    International Nuclear Information System (INIS)

    Ng, Siu-Fai; Barnard, J.J.; Leung, P.T.; Yu, S.S.

    2008-01-01

    In experiments of Single-bubble Sonoluminescence (SBSL), the bubble is heated to temperatures of a few eV in the collapse phase of the oscillation. Our hydrodynamic simulations show that the density inside the bubble can go up to the order of 1 g/cm3, and the electron density due to ionization is 1021; cm3. So the plasma coupling constant is found to be around 1 and the gas inside the bubble is in the Warm Dense Matter (WDM) regime. We simulate the light emission of SL with an optical model for thermal radiation which takes the finite opacity of the bubble into consideration. The numerical results obtained are compared to the experimental data and found to be very sensitive to the equation of state used. As theories for the equation of state, as well as the opacity data, in the WDM regime are still very uncertain, we propose that SL may be a good low-cost experimental check for the EOS and the opacity data for matter in the WDM regime

  7. THE ESCAPE FRACTION OF IONIZING RADIATION FROM GALAXIES

    International Nuclear Information System (INIS)

    Benson, Andrew; Venkatesan, Aparna; Shull, J. Michael

    2013-01-01

    The escape of ionizing radiation from galaxies plays a critical role in the evolution of gas in galaxies, and the heating and ionization history of the intergalactic medium. We present semi-analytic calculations of the escape fraction of ionizing radiation for both hydrogen and helium from galaxies ranging from primordial systems to disk-type galaxies that are not heavily dust-obscured. We consider variations in the galaxy density profile, source type, location, and spectrum, and gas overdensity/distribution factors. For sufficiently hard first-light sources, the helium ionization fronts closely track or advance beyond that of hydrogen. Key new results in this work include calculations of the escape fractions for He I and He II ionizing radiation, and the impact of partial ionization from X-rays from early active galactic nuclei or stellar clusters on the escape fractions from galaxy halos. When factoring in frequency-dependent effects, we find that X-rays play an important role in boosting the escape fractions for both hydrogen and helium, but especially for He II. We briefly discuss the implications of these results for recent observations of the He II reionization epoch at low redshifts, as well as the UV data and emission-line signatures from early galaxies anticipated from future satellite missions.

  8. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark; Badu-Tawiah, Abraham K.; Li, Anyin; Soparawalla, Santosh; Roqan, Iman S.; Cooks, Robert Graham

    2013-01-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  9. THE ESCAPE FRACTION OF IONIZING RADIATION FROM GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Andrew [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Venkatesan, Aparna [Department of Physics and Astronomy, University of San Francisco, San Francisco, CA 94117 (United States); Shull, J. Michael, E-mail: abenson@obs.carnegiescience.edu, E-mail: avenkatesan@usfca.edu, E-mail: michael.shull@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2013-06-10

    The escape of ionizing radiation from galaxies plays a critical role in the evolution of gas in galaxies, and the heating and ionization history of the intergalactic medium. We present semi-analytic calculations of the escape fraction of ionizing radiation for both hydrogen and helium from galaxies ranging from primordial systems to disk-type galaxies that are not heavily dust-obscured. We consider variations in the galaxy density profile, source type, location, and spectrum, and gas overdensity/distribution factors. For sufficiently hard first-light sources, the helium ionization fronts closely track or advance beyond that of hydrogen. Key new results in this work include calculations of the escape fractions for He I and He II ionizing radiation, and the impact of partial ionization from X-rays from early active galactic nuclei or stellar clusters on the escape fractions from galaxy halos. When factoring in frequency-dependent effects, we find that X-rays play an important role in boosting the escape fractions for both hydrogen and helium, but especially for He II. We briefly discuss the implications of these results for recent observations of the He II reionization epoch at low redshifts, as well as the UV data and emission-line signatures from early galaxies anticipated from future satellite missions.

  10. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark

    2013-07-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  11. The Swift Burst Alert Telescope Detected Seyfert 1 Galaxies: X-Ray Broadband Properties and Warm Absorbers

    Science.gov (United States)

    Winter, Lisa M.; Veilleux, Sylvain; McKernan, Barry; Kallman, T.

    2012-01-01

    We present results from an analysis of the broadband, 0.3-195 keV, X-ray spectra of 48 Seyfert 1-1.5 sources detected in the very hard X-rays with the Swift Burst Alert Telescope (BAT). This sample is selected in an all-sky survey conducted in the 14-195 keV band. Therefore, our sources are largely unbiased toward both obscuration and host galaxy properties. Our detailed and uniform model fits to Suzaku/BAT and XMM-Newton/BAT spectra include the neutral absorption, direct power-law, reflected emission, soft excess, warm absorption, and narrow Fe I K[alpha] emission properties for the entire sample. We significantly detect O VII and O VIII edges in 52% of our sample. The strength of these detections is strongly correlated with the neutral column density measured in the spectrum. Among the strongest detections, X-ray grating and UV observations, where available, indicate outflowing material. The ionized column densities of sources with O VII and O VIII detections are clustered in a narrow range with Nwarm [approx] 1021 cm-2, while sources without strong detections have column densities of ionized gas an order of magnitude lower. Therefore, we note that sources without strong detections likely have warm ionized outflows present but at low column densities that are not easily probed with current X-ray observations. Sources with strong complex absorption have a strong soft excess, which may or may not be due to difficulties in modeling the complex spectra of these sources. Still, the detection of a flat [Gamma] [approx] 1 and a strong soft excess may allow us to infer the presence of strong absorption in low signal-to-noise active galactic nucleus spectra. Additionally, we include a useful correction from the Swift BAT luminosity to bolometric luminosity, based on a comparison of our spectral fitting results with published spectral energy distribution fits from 33 of our sources.

  12. On possible structures of transverse ionizing shock waves

    International Nuclear Information System (INIS)

    Liberman, M.A.; Velikovich, A.L.

    1978-01-01

    The possible structures of ionizing shock waves propagating in gases across the magnetic field are investigated taking account of both ionization kinetics and the non-isothermality of the plasma which is formed within the shock front. It is shown that a definite factor in shaping the structure of the transverse ionizing shock wave is photo-ionization of the neutral gas across the front. The paper includes a study of the evolution of the transverse ionizing shock front with regard to photo-ionization, disclosing that a stable stationary shock structure emerges only in boundary conditions which are close to magnetohydrodynamic ones, i.e. upsilon 1 H 1 = upsilon 2 H 2 . In the case of strong transverse ionizing shock waves, when the flux of ionizing radiation across the front is great, the shock structure is obviously magnetohydrodynamic. (author)

  13. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry

    Science.gov (United States)

    Ellis, Wade C.; Lewis, Charlotte R.; Openshaw, Anna P.; Farnsworth, Paul B.

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration.

  14. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    International Nuclear Information System (INIS)

    Hong, Sung-Ha; Jenkins, A Toby A; Szili, Endre J; Short, Robert D

    2014-01-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine. (fast track communication)

  15. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    Science.gov (United States)

    Hong, Sung-Ha; Szili, Endre J.; Jenkins, A. Toby A.; Short, Robert D.

    2014-09-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine.

  16. Partially ionized gas flow and heat transfer in the separation, reattachment, and redevelopment regions downstream of an abrupt circular channel expansion.

    Science.gov (United States)

    Back, L. H.; Massier, P. F.; Roschke, E. J.

    1972-01-01

    Heat transfer and pressure measurements obtained in the separation, reattachment, and redevelopment regions along a tube and nozzle located downstream of an abrupt channel expansion are presented for a very high enthalpy flow of argon. The ionization energy fraction extended up to 0.6 at the tube inlet just downstream of the arc heater. Reattachment resulted from the growth of an instability in the vortex sheet-like shear layer between the central jet that discharged into the tube and the reverse flow along the wall at the lower Reynolds numbers, as indicated by water flow visualization studies which were found to dynamically model the high-temperature gas flow. A reasonably good prediction of the heat transfer in the reattachment region where the highest heat transfer occurred and in the redevelopment region downstream can be made by using existing laminar boundary layer theory for a partially ionized gas. In the experiments as much as 90 per cent of the inlet energy was lost by heat transfer to the tube and the nozzle wall.

  17. A rapid novel derivatization of amphetamine and methamphetamine using 2,2,2-trichloroethyl chloroformate for gas chromatography electron ionization and chemical ionization mass spectrometric analysis.

    Science.gov (United States)

    Dasgupta, A; Spies, J

    1998-05-01

    Amphetamine and methamphetamine are commonly abused central nervous system stimulants. We describe a rapid new derivatization of amphetamine and methamphetamine using 2,2,2-trichloroethyl chloroformate for gas chromatography-mass spectrometric analysis. Amphetamine and methamphetamine, along with N-propyl amphetamine (internal standard), were extracted from urine using 1-chlorobutane. The derivatization with 2,2,2-trichloroethyl chloroformate can be achieved at room temperature in 10 minutes. The electron ionization mass spectrum of amphetamine 2,2,2-trichloroethyl carbamate showed two weak molecular ions at m/z 309 and 311, but showed diagnostic strong peaks at m/z 218, 220, and 222. In contrast, chemical ionization of the mass spectrum of amphetamine 2,2,2-trichloroethyl carbamate showed strong (M + 1) ions at m/z 310 and 312 and other strong diagnostic peaks at m/z 274 and 276. The major advantages of this derivative are the presence of a diagnostic cluster of peaks due to the isotopic effect of three chlorine atoms (isotopes 35 and 37) in the derivatized molecule and the relative ease of its preparation. We also observed strong molecular ions for derivatized methamphetamine in the chemical ionization mass spectrum, but the molecular ions were very weak in the electron ionization mass spectrum. We used the scan mode of mass spectrometry in all analyses. When using a urine standard containing 1,000 ng/mL of amphetamine (a 7.4-micromol/L concentration) and methamphetamine (a 6.7-micromol/L concentration), the within-run precisions were 4.8% for amphetamine and 3.6% for methamphetamine. The corresponding between-run precisions were 5.3% for amphetamine and 6.7% for methamphetamine. The assay was linear for amphetamine and methamphetamine concentrations of 250 to 5,000 ng/mL (amphetamine, 1.9-37.0 micromol/L; methamphetamine, 1.7-33.6 micromol/L). The detection limit was 100 ng/mL (amphetamine, 0.74 micromol/L; methamphetamine, 0.67 micromol/L) using the scan mode

  18. Heavy ion source support gas mixing experiments

    International Nuclear Information System (INIS)

    Hudson, E.D.; Mallory, M.L.

    1977-01-01

    Experiments on mixing an easily ionized support gas with the primary ion source gas have produced large beam enhancements for high charge state light ions (masses less than or equal to 20). In the Oak Ridge Isochronous Cyclotron (ORIC), the beam increase has been a factor of 5 or greater, depending on ion species and charge state. Approximately 0.1 cc/min of the easily ionized support gas (argon, krypton, or xenon) is supplied to the ion source through a separate gas line and the primary gas flow is reduced by approximately 30 percent. The proposed mechanism for increased intensity is as follows: The heavier support gas ionizes readily to a higher charge state, providing increased cathode heating. The increased heating permits a reduction in primary gas flow (lower pressure) and the subsequent beam increase

  19. Oxidation of Carbon Nanotubes in an Ionizing Environment.

    Science.gov (United States)

    Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert

    2016-02-10

    In this work, we present systematic studies on how an illuminating electron beam which ionizes molecular gas species can influence the mechanism of carbon nanotube oxidation in an environmental transmission electron microscope (ETEM). We found that preferential attack of the nanotube tips is much more prevalent than for oxidation in a molecular gas environment. We establish the cumulative electron doses required to damage carbon nanotubes from 80 keV electron beam irradiation in gas versus in high vacuum. Our results provide guidelines for the electron doses required to study carbon nanotubes within or without a gas environment, to determine or ameliorate the influence of the imaging electron beam. This work has important implications for in situ studies as well as for the oxidation of carbon nanotubes in an ionizing environment such as that occurring during field emission.

  20. A sensitive gas chromatography detector based on atmospheric pressure chemical ionization by a dielectric barrier discharge.

    Science.gov (United States)

    Kirk, Ansgar T; Last, Torben; Zimmermann, Stefan

    2017-02-03

    In this work, we present a novel concept for a gas chromatography detector utilizing an atmospheric pressure chemical ionization which is initialized by a dielectric barrier discharge. In general, such a detector can be simple and low-cost, while achieving extremely good limits of detection. However, it is non-selective apart from the use of chemical dopants. Here, a demonstrator manufactured entirely from fused silica capillaries and printed circuit boards is shown. It has a size of 75×60×25mm 3 and utilizes only 2W of power in total. Unlike other known discharge detectors, which require high-purity helium, this detector can theoretically be operated using any gas able to form stable ion species. Here, purified air is used. With this setup, limits of detection in the low parts-per-billion range have been obtained for acetone. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ionization waves caused by the effects of a magnetic field

    International Nuclear Information System (INIS)

    Miura, Kosuke; Imazu, Shingo

    1980-01-01

    The self-excited ionization waves was observed in the Ne positive column. The experiments were made for Ne gas from 0.07 to 1.0 Torr, with the magnetic field from 0 to 3.33 kG. The discharge current were 10 to 300 mA. The longitudinal magnetic field was made by an air-core solenoid coil. The axial electric field was measured by two wall probes. The frequency, wave length and amplitude of waves were measured with a photo multiplier. It was found that the longitudinal magnetic field caused new self-excited ionization waves. The frequency of these waves decreased monotonously with increasing field. The behaviors of the wave length and amplitude were complicate, and the cause of these phenomena is related to the ionization waves due to the spatial resonance of electron gas, namely s-waves, p-waves and fluid γ-waves. The threshold of the magnetic field to cause the ionization waves increased with increasing gas pressure, and with decreasing discharge current in the range 0.07 to 0.44 Torr. The frequency of the self-excited ionization waves occurred at zero field was almost constant in the field-frequency relation. A simple dispersion equation was derived, and the Novak constant can be introduced. (J.P.N.)

  2. CF3+ fragmentation by electron impact ionization of perfluoro-propyl-vinyl-ethers, C5F10O, in gas phase

    Science.gov (United States)

    Kondo, Yusuke; Ishikawa, Kenji; Hayashi, Toshio; Miyawaki, Yudai; Takeda, Keigo; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2015-04-01

    The gas phase fragmentations of perfluoro-propyl-vinyl ether (PPVE, C5F10O) are studied experimentally. Dominant fragmentations of PPVE are found to be the result of a dissociative ionization reaction, i.e., CF3+ via direct bond cleavage, and C2F3O- and C3F7O- via electron attachment. Regardless of the appearance energy of around 14.5 eV for the dissociative ionization of CF3+, the observed ion efficiency for the CF3+ ion was extremely large the order of 10-20 cm-2, compared with only 10-21 cm-2 for the other channels. PPVE characteristically generated CF3+ as the largest abundant ion are advantageous for use of feedstock gases in plasma etching processes.

  3. Gas-phase pesticide measurement using iodide ionization time-of-flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    T. Murschell

    2017-06-01

    Full Text Available Volatilization and subsequent processing in the atmosphere are an important environmental pathway for the transport and chemical fate of pesticides. However, these processes remain a particularly poorly understood component of pesticide lifecycles due to analytical challenges in measuring pesticides in the atmosphere. Most pesticide measurements require long (hours to days sampling times coupled with offline analysis, inhibiting observation of meteorologically driven events or investigation of rapid oxidation chemistry. Here, we present chemical ionization time-of-flight mass spectrometry with iodide reagent ions as a fast and sensitive measurement of four current-use pesticides. These semi-volatile pesticides were calibrated with injections of solutions onto a filter and subsequently volatilized to generate gas-phase analytes. Trifluralin and atrazine are detected as iodide–molecule adducts, while permethrin and metolachlor are detected as adducts between iodide and fragments of the parent analyte molecule. Limits of detection (1 s are 0.37, 0.67, 0.56, and 1.1 µg m−3 for gas-phase trifluralin, metolachlor, atrazine, and permethrin, respectively. The sensitivities of trifluralin and metolachlor depend on relative humidity, changing as much as 70 and 59, respectively, as relative humidity of the sample air varies from 0 to 80 %. This measurement approach is thus appropriate for laboratory experiments and potentially near-source field measurements.

  4. Why natural gas for CO2 and climate control?

    International Nuclear Information System (INIS)

    Roose, T.R.

    1996-01-01

    The Intergovernmental Panel on Climate Change (IPCC) and the US Environmental Protection Agency (EPA) have suggested that increased use of natural gas is a possible strategy for reducing the potential for global warming. Carbon dioxide (CO 2 ) contributes as much to global warming as all other greenhouse gases combined. During combustion, natural gas generates less CO 2 per unit of energy produced than either coal or oil. On the basis of the amount of CO 2 emitted, the potential for global warming could be reduced by substituting natural gas to coal or oil. However, since natural gas is primarily methane, a potent greenhouse gas, these emissions could reduce natural gas's inherent advantage of lower CO 2 emissions. To address this issue and compare the fuels on an equivalent basis, it is necessary to account for emissions of all greenhouse gases throughout the fuel cycle of each fuel and to determine the impact of these gases on global warming. Gas Research Institute and EPA jointly funded a study to quantify methane emissions from the natural gas industry so that this information could be used as input to address the issue of the fuel switching strategy. The study found that the natural gas industry emitted 1.4% of natural gas production (314 Bscf of methane) to the atmosphere in 1992. Today, due to voluntary reductions from the gas industry, the percent leaked is even less. This 1992 amount has been analyzed over a broad range of global warming potentials, and the conclusion that fuel switching to natural gas reduces the potential for global warming is supported. The results of this study are presented in this paper

  5. Radionuclide measurements using resonantly enhanced collisional ionization

    International Nuclear Information System (INIS)

    Whitaker, T.J.; Bushaw, B.A.; Gerke, G.K.

    1987-01-01

    This report describes development of a laser-enhanced collisional ionization method for direct radionuclide measurements that are independent of radioactive decay. The technique uses two nitrogen-laser-pumped dye lasers to selectively excite the target isotope to an electronic state near the ionization threshold. The excited actinide atoms then undergo collisions with a buffer gas and are efficiently ionized. The resulting ions can be detected by conventional methods. The attributes of this approach include highly sensitive isotope analysis with relatively inexpensive lasers and a simple vacuum system. 9 refs., 3 figs

  6. Gridded ionization chamber

    International Nuclear Information System (INIS)

    Houston, J.M.

    1977-01-01

    An improved ionization chamber type x-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is disposed adjacent the anode and is maintained at a voltsge intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting toward the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  7. Distribution and Kinematics of Ionized Gas in the central 500pc of Seyfert Galaxies

    Science.gov (United States)

    Hyland, Ella; Hicks, Erin K. S.; Kade, Kiana

    2018-06-01

    We have characterized the spatial distribution and kinematics of the ionized hydrogen gas in a sample of 40 Seyfert galaxies as part of the KONA (Keck OSIRIS Nearby AGN) survey. An analysis of the narrow Brackett Gamma emission (2.16 microns) in the central 500 pc of these local AGN will be presented. Measurements include the azimuthal averages of the flux distribution, velocity dispersion, and emission line equivalent width. In addition, the excitation of the Brackett Gamma emission is considered using the ratio of its flux with that of molecular hydrogen (2.12 microns) as a diagnostic. A comparison of the circumnuclear narrow Brackett Gamma emission characteristics in the Seyfert type 1 and type 2 subsamples will also be presented.

  8. Possible ionization ''ignition'' in laser-driven clusters

    International Nuclear Information System (INIS)

    Rose-Petruck, C.; Schafer, K.J.; Barty, C.P.J.

    1995-01-01

    The authors use Classical Trajectory Monte Carlo (CTMC) simulations to study the ionization of small rare gas clusters in short pulse, high intensity laser fields. They calculate, for a cluster of 25 neon atoms, the ionization stage reached and the average kinetic energy of the ionized electrons as functions of time and peak laser intensity. The CTMC calculations mimic the results of the much simpler barrier suppression model in the limit of isolated atoms. At solid density the results give much more ionization in the cluster than that predicted by the barrier suppression model. They find that when the laser intensity reaches a threshold value such that on average one electron is ionized from each atom, the cluster atoms rapidly move to higher ionization stages, approaching Ne +8 in a few femtoseconds. This ignition process creates an ultrafast pulse of energetic electrons in the cluster at quite modest laser intensities

  9. On possible structures of normal ionizing shock waves in electromagnetic shock tubes

    International Nuclear Information System (INIS)

    Liberman, M.A.; Synakh, V.S.; Zakajdakhov, V.V.; Velikovich, A.L.

    1982-01-01

    The problem of possible structures of normal ionizing shock waves is studied. On the basis of the general theory of ionizing shock waves in magnetic fields, a similarity solution of the piston problem for an impenetrable piston and a magnetic piston is described and a numerical solution of the non-stationary piston problem is obtained. It is shown that precursor photo-ionization of the neutral gas by the radiation of the shock-heated gas is the dominant factor in shaping normal ionizing shock structures. In particular, it is shown that the strong overheating of atoms and ions in shock fronts is due to the tensor form of Ohm's law in the precursor region. (author)

  10. Dust trap formation in a non-self-sustained discharge with external gas ionization

    International Nuclear Information System (INIS)

    Filippov, A. V.; Babichev, V. N.; Pal’, A. F.; Starostin, A. N.; Cherkovets, V. E.; Rerikh, V. K.; Taran, M. D.

    2015-01-01

    Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. The interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place

  11. Dust trap formation in a non-self-sustained discharge with external gas ionization

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, A. V., E-mail: fav@triniti.ru; Babichev, V. N.; Pal’, A. F.; Starostin, A. N.; Cherkovets, V. E.; Rerikh, V. K.; Taran, M. D. [Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2015-11-15

    Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. The interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.

  12. Sensitivity of hot-cathode ionization vacuum gages in several gases

    Science.gov (United States)

    Holanda, R.

    1972-01-01

    Four hot-cathode ionization vacuum gages were calibrated in 12 gases. The relative sensitivities of these gages were compared to several gas properties. Ionization cross section was the physical property which correlated best with gage sensitivity. The effects of gage accelerating voltage and ionization-cross-section energy level were analyzed. Recommendations for predicting gage sensitivity according to gage type were made.

  13. Ionization Waves in a Fast, Hollow-Cathode-Assisted Capillary Discharge

    International Nuclear Information System (INIS)

    Rutkevich, I.; Mond, M.; Kaufman, Y.; Choi, P.; Favre, M.

    1999-01-01

    The initial, low-current stage of the evolution of a soft x-ray emitting, hollow-cathode-assisted capillary discharge initiated by a steep high-voltage pulse is investigated. The capillary is surrounded by a shield having the cathode potential. The mean electric field E of the order of 10 kV/cm and the low gas pressure (P<1Torr) provide conditions for extensive electron runaway. This is taken into account in the formulation of the theoretical approach by retaining the inertial terms in the momentum equation for the electrons. In addition, the ionization rate is calculated by considering the cross section for ionization by high-energy electrons. The two-dimensional system of the basic equations is reduced to a system of one-dimensional equations for the axial distributions of the physical quantities by introducing appropriate radial profiles of the electric potential, and the electron gas parameters and satisfying the electrodynamic boundary conditions at the capillary wall and at the shield. The resulting system of equations admits solutions in the form of stationary ionization waves transferring the anode potential to the cathode end. Numerical calculations of such solutions for argon show that the wave velocity V increases with the gas pressure P and with the density of initial electron beam ejected from the cathode hole ahead of the ionization front, while the dependence of V on the applied voltage is weak. At the instant when the virtual anode reaches the cathode hole, the plasma in the capillary is not yet fully ionized. The traverse time of the ionization wave along the capillary calculated for various gas pressures is in reasonable agreement with experimentally registered time delay for a high-current stage resulting in voltage collapse and soft x-ray emission

  14. Introduction of nuclear power plant for mitigating the impact of global warming

    International Nuclear Information System (INIS)

    Ida Nuryatin Finahari

    2008-01-01

    Energy utilization for power plants in Indonesia is still highly depending on the burning of fossil fuel like coal, oil, and gas. From the combustion of fossil fuel, greenhouse gases such as CO 2 and N 2 O are produced. An increase of CO 2 gas emission to the atmosphere can block the heat loss from the earth surface and will increase the greenhouse effect that results in the temperature increase of the earth surface (global warming). Global warming can cause a very extreme climate change on earth. One of the solutions to reduce CO 2 gas emission produced by fossil fuel power plants is to utilize the plants with flue gas treatment facility. At such facility, CO 2 gas is reacted with certain mineral based substances thus can be used as base material in food-, pharmaceutical-, construction-, and cosmetic industry. Another alternative to reduce CO 2 gas emission is by replacing fossil fuel power plants with nuclear power plants. Considering the environmental and economic aspects, the nuclear power plant does not emit CO 2 gas, so that the use of nuclear power plant can mitigate the impact of global warming. Based on the operational experience of nuclear power plants in advanced countries, the cost of generating electricity from nuclear power plants is more competitive than that of fossil fuel power plant. (author)

  15. Simulations of Hall reconnection in partially ionized plasmas

    Science.gov (United States)

    Innocenti, Maria Elena; Jiang, Wei; Lapenta, Giovanni

    2017-04-01

    Magnetic reconnection occurs in the Hall, partially ionized regime in environments as diverse as molecular clouds, protostellar disks and regions of the solar chromosphere. While much is known about Hall reconnection in fully ionized plasmas, Hall reconnection in partially ionized plasmas is, in comparison, still relatively unexplored. This notwithstanding the fact that partial ionization is expected to affect fundamental processes in reconnection such as the transition from the slow, fluid to the fast, kinetic regime, the value of the reconnection rate and the dimensions of the diffusion regions [Malyshkin and Zweibel 2011 , Zweibel et al. 2011]. We present here the first, to our knowledge, fully kinetic simulations of Hall reconnection in partially ionized plasmas. The interaction of electrons and ions with the neutral background is realistically modelled via a Monte Carlo plug-in coded into the semi-implicit, fully kinetic code iPic3D [Markidis 2010]. We simulate a plasma with parameters compatible with the MRX experiments illustrated in Zweibel et al. 2011 and Lawrence et al. 2013, to be able to compare our simulation results with actual experiments. The gas and ion temperature is T=3 eV, the ion to electron temperature ratio is Tr=0.44, ion and electron thermal velocities are calculated accordingly resorting to a reduced mass ratio and a reduced value of the speed of light to reduce the computational costs of the simulations. The initial density of the plasma is set at n= 1.1 1014 cm-3 and is then left free to change during the simulation as a result of gas-plasma interaction. A set of simulations with initial ionisation percentage IP= 0.01, 0.1, 0.2, 0.6 is presented and compared with a reference simulation where no background gas is present (full ionization). In this first set of simulations, we assume to be able to externally control the initial relative densities of gas and plasma. Within this parameter range, the ion but not the electron population is

  16. Global warming

    International Nuclear Information System (INIS)

    Houghton, John

    2005-01-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources

  17. ANALYSIS AND IDENTIFICATION SPIKING CHEMICAL COMPOUNDS RELATED TO CHEMICAL WEAPON CONVENTION IN UNKNOWN WATER SAMPLES USING GAS CHROMATOGRAPHY AND GAS CHROMATOGRAPHY ELECTRON IONIZATION MASS SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Harry Budiman

    2010-06-01

    Full Text Available The identification and analysis of chemical warfare agents and their degradation products is one of important component for the implementation of the convention. Nowadays, the analytical method for determination chemical warfare agent and their degradation products has been developing and improving. In order to get the sufficient analytical data as recommended by OPCW especially in Proficiency Testing, the spiking chemical compounds related to Chemical Weapon Convention in unknown water sample were determined using two different techniques such as gas chromatography and gas chromatography electron-impact ionization mass spectrometry. Neutral organic extraction, pH 11 organic extraction, cation exchanged-methylation, triethylamine/methanol-silylation were performed to extract the chemical warfare agents from the sample, before analyzing with gas chromatography. The identification of chemical warfare agents was carried out by comparing the mass spectrum of chemicals with mass spectrum reference from the OPCW Central Analytical Database (OCAD library while the retention indices calculation obtained from gas chromatography analysis was used to get the confirmation and supported data of  the chemical warfare agents. Diisopropyl methylphosphonate, 2,2-diphenyl-2-hydroacetic acid and 3-quinuclidinol were found in unknown water sample. Those chemicals were classified in schedule 2 as precursor or reactant of chemical weapons compound in schedule list of Chemical Weapon Convention.   Keywords: gas chromatography, mass spectrometry, retention indices, OCAD library, chemical warfare agents

  18. OBSERVATIONS OF WARM CARBON CHAIN CHEMISTRY IN NGC 3576

    Energy Technology Data Exchange (ETDEWEB)

    Saul, M. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Tothill, N. F. H. [Faculty of Computing, Engineering and Mathematics, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797 (Australia); Purcell, C. R., E-mail: msaul@phys.unsw.edu.au, E-mail: n.tothill@uws.edu.au, E-mail: Cormac.Purcell@sydney.edu.au [Institute for Astronomy, University of Sydney, Sydney, NSW 2006 (Australia)

    2015-01-01

    We report observations of warm carbon chain chemistry (WCCC) in NGC 3576, including high angular resolution imaging of an ionization source candidate and the first detection of C{sub 5}H in a massive star-forming region. In order to investigate the environment associated with birthline emergence, we ask how observed chemical conditions relate to Class 0/1 core differentiation: a systemic shift in peak position between species correlates with giant molecular cloud core gradients in turbulence and age. Emission in several molecular lines including HC{sub 3}N (11-10), NH{sub 3} (1, 1), and C{sub 5}H supports the G291.3-0.7 ionization front—transitional pre-main-sequence core interaction regulating the WCCC environment.

  19. Fundamentals of Biomolecule Analysis by Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Weinecke, Andrea; Ryzhov, Victor

    2005-01-01

    Electrospray ionization (ESI) is a soft ionization technique that allows transfer of fragile biomolecules directly from solution into the gas phase. An instrumental analysis laboratory experiment is designed that would introduce the students to the ESI technique, major parameters of the ion trap mass spectrometers and some caveats in…

  20. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): review.

    Science.gov (United States)

    Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J

    2015-09-03

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a "soft" ion source for preserving highly diagnostic molecular ion is desirable, as compared to the "hard" ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS. Copyright © 2015. Published by Elsevier B.V.

  1. Global warming from an energy perspective

    International Nuclear Information System (INIS)

    Edwards, A.G.

    1991-01-01

    Global climate change and energy are integrally related. The majority of greenhouse gas emissions are the result of energy production and use; at the same time, warming will affect energy patterns in California through physical increases in energy demand, physical changes in energy supply, and changes in both energy end-use patterns and supplies resulting from climate-change policies. There seems to be a growing political consensus that the world (as well as the state) needs to act soon to minimize further commitment to future warming. While California is not likely to experience the physical changes resulting from a warmer climate for years or perhaps decades, policy responses to the warming issue may cause more immediate impacts. This chapter will discuss how policy response to potential warming may be the most significant early impact of the issue on California's energy system. Makers of energy policy face the dilemma of deciding how to respond to the climate warming issue in the face of scientific uncertainties about its timing and seriousness. The chapter will conclude by presenting a conceptual framework for dealing with this dilemma, along with general recommendations for action

  2. Ionization of EPA contaminants in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  3. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    International Nuclear Information System (INIS)

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit

    2016-01-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed

  4. Ionizing device comprising a microchannel electron multiplier with secondary electron emission

    International Nuclear Information System (INIS)

    Chalmeton, Vincent.

    1974-01-01

    The present invention relates to a ionizing device comprising a microchannel electron multiplier involving secondary electron emission as a means of ionization. A system of electrodes is used to accelerate said electrons, ionize the gas and extract the ions from thus created plasma. Said ionizer is suitable for bombarding the target in neutron sources (target of the type of nickel molybdenum coated with tritiated titanium or with a tritium deuterium mixture) [fr

  5. Global warming without global mean precipitation increase?

    Science.gov (United States)

    Salzmann, Marc

    2016-06-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K(-1) decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge.

  6. CIFOG: Cosmological Ionization Fields frOm Galaxies

    Science.gov (United States)

    Hutter, Anne

    2018-03-01

    CIFOG is a versatile MPI-parallelised semi-numerical tool to perform simulations of the Epoch of Reionization. From a set of evolving cosmological gas density and ionizing emissivity fields, it computes the time and spatially dependent ionization of neutral hydrogen (HI), neutral (HeI) and singly ionized helium (HeII) in the intergalactic medium (IGM). The code accounts for HII, HeII, HeIII recombinations, and provides different descriptions for the photoionization rate that are used to calculate the residual HI fraction in ionized regions. This tool has been designed to be coupled to semi-analytic galaxy formation models or hydrodynamical simulations. The modular fashion of the code allows the user to easily introduce new descriptions for recombinations and the photoionization rate.

  7. Analysis of benzene, toluene, ethylbenzene and xylenes in soils by headspace and gas chromatography/flame ionization detector

    Directory of Open Access Journals (Sweden)

    Jurandir Pereira Pinto

    2006-02-01

    Full Text Available The constituents of gasoline: benzene, toluene, ethylbenzene and xylenes (BTEX are frequently found in soils due to leaks in fuel storage tanks and they present chronic toxicity. In this work it was developed and validated a methodology of BTEX analysis in soil by gas chromatography/ flame ionization detector and static headspace. The recovery of BTEX in soil samples was evaluated using soils with different textures (sandy and loamy. The analysis method showed good resolution, in a low time of analysis (less than 30 minutes. Limits of quantification of 0.05 mg Kg¯¹ soil for benzene, toluene, ethylbenzene and xylenes are below the guiding values that range from 0.15 to 95 mg Kg¯¹ soil, established to determine soil quality. It was verified that the methodology enables the use of this method for BTEX analysis of soil samples for passive environmental identification of gas stations.

  8. Ionizing and non-ionizing radiations

    International Nuclear Information System (INIS)

    1994-01-01

    The monograph is a small manual to get a knowledge of ionizing and non-ionizing radiations. The main chapters are: - Electromagnetic radiations - Ionizing and non-ionizing radiations - Non-ionizing electromagnetic radiations - Ionizing electromagnetic radiation - Other ionizing radiations - Ionizing radiation effects - The Nuclear Safety Conseil

  9. Ionization impact on molecular clouds and star formation: Numerical simulations and observations

    International Nuclear Information System (INIS)

    Tremblin, Pascal

    2012-01-01

    At all the scales of Astrophysics, the impact of the ionization from massive stars is a crucial issue. At the galactic scale, the ionization can regulate star formation by supporting molecular clouds against gravitational collapse and at the stellar scale, indications point toward a possible birth place of the Solar System close to massive stars. At the molecular cloud scale, it is clear that the hot ionized gas compresses the surrounding cold gas, leading to the formation of pillars, globules, and shells of dense gas in which some young stellar objects are observed. What are the formation mechanisms of these structures? Are the formation of these young stellar objects triggered or would have they formed anyway? Do massive stars have an impact on the distribution of the surrounding gas? Do they have an impact on the mass distribution of stars (the initial mass function, IMF)? This thesis aims at shedding some light on these questions, by focusing especially on the formation of the structures between the cold and the ionized gas. We present the state of the art of the theoretical and observational works on ionized regions (H II regions) and we introduce the numerical tools that have been developed to model the ionization in the hydrodynamic simulations with turbulence performed with the HERACLES code. Thanks to the simulations, we present a new model for the formation of pillars based on the curvature and collapse of the dense shell on itself and a new model for the formations of cometary globules based on the turbulence of the cold gas. Several diagnostics have been developed to test these new models in the observations. If pillars are formed by the collapse of the dense shell on itself, the velocity spectrum of a nascent pillar presents a large spectra with a red-shifted and a blue-shifted components that are caused by the foreground and background parts of the shell that collapse along the line of sight. If cometary globules emerge because of the turbulence of

  10. Gas Flows in Dual Active Galactic Nuclei

    Science.gov (United States)

    Mueller Sanchez, Francisco; Comerford, Julia M.; Davies, Richard; Treister, Ezequiel; Privon, George C.; Nevin, Becky

    2018-06-01

    Dual Active Galactic Nuclei (AGN) are the Rosetta stone to understand the role of galaxy mergers in triggering nuclear activity and regulating black hole (BH) and galaxy growth. But very little is known about the physical processes required to effectively trigger AGN activity and regulate the growth of the two BHs. The work I will present here characterizes for the first time the properties of the stars, gas (molecular, ionized, and highly-ionized) and dust in all the confirmed dual AGN at z prototypical merger system NGC 6240: vigorous star formation, two AGNs, outflowing winds of ionized gas, rippling dust and gas lanes, and tidal tails. In this galaxy, we observe for the first time a dual outflow of different species of gas: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. This shows that stellar feedback and supermassive black hole feedback can work in tandem to regulate the stellar growth of a galaxy after a merger event. These results open a new door to studies of dual AGN and AGN pairs in general, and enable dual AGN to be used, for the first time, for studies of galaxy evolution.

  11. Ionization chamber for monitoring radioactive gas

    International Nuclear Information System (INIS)

    Kotrappa, P.; Dempsey, J.

    1992-01-01

    This present invention provides simple, effective and accurate cumulative measurement of radioactive gas over a time period. Measurements of radioactive gas are important for many purposes. Tritium concentrations in potentially exposed workers are measured, for example, with periodic urine specimens. Carbon-14 serves as a useful research tool for monitoring the progress of many chemical and biological reactions and interactions. For example, many microorganisms break down carbon-14 containing compounds in sugar to produce carbon-14 dioxide gas which can be collected and measured to determine various characteristics of the microorganisms. Both tritium and carbon-14 dioxide produce low energy radiation which cannot be easily measured by conventional radioactivity detectors. (author). 4 figs

  12. Ionization chamber for monitoring radioactive gas

    Energy Technology Data Exchange (ETDEWEB)

    Kotrappa, P; Dempsey, J

    1992-09-22

    This present invention provides simple, effective and accurate cumulative measurement of radioactive gas over a time period. Measurements of radioactive gas are important for many purposes. Tritium concentrations in potentially exposed workers are measured, for example, with periodic urine specimens. Carbon-14 serves as a useful research tool for monitoring the progress of many chemical and biological reactions and interactions. For example, many microorganisms break down carbon-14 containing compounds in sugar to produce carbon-14 dioxide gas which can be collected and measured to determine various characteristics of the microorganisms. Both tritium and carbon-14 dioxide produce low energy radiation which cannot be easily measured by conventional radioactivity detectors. (author). 4 figs.

  13. Dynamical Analysis of the Global Warming

    Directory of Open Access Journals (Sweden)

    J. A. Tenreiro Machado

    2012-01-01

    Full Text Available Global warming is a major concern nowadays. Weather conditions are changing, and it seems that human activity is one of the main causes. In fact, since the beginning of the industrial revolution, the burning of fossil fuels has increased the nonnatural emissions of carbon dioxide to the atmosphere. Carbon dioxide is a greenhouse gas that absorbs the infrared radiation produced by the reflection of the sunlight on the Earth’s surface, trapping the heat in the atmosphere. Global warming and the associated climate changes are being the subject of intensive research due to their major impact on social, economic, and health aspects of human life. This paper studies the global warming trend in the perspective of dynamical systems and fractional calculus, which is a new standpoint in this context. Worldwide distributed meteorological stations and temperature records for the last 100 years are analysed. It is shown that the application of Fourier transforms and power law trend lines leads to an assertive representation of the global warming dynamics and a simpler analysis of its characteristics.

  14. Energy analysis of alternative CO2 refrigeration system configurations for retail food applications in moderate and warm climates

    International Nuclear Information System (INIS)

    Tsamos, K.M.; Ge, Y.T.; Santosa, IDewa; Tassou, S.A.; Bianchi, G.; Mylona, Z.

    2017-01-01

    Highlights: • Alternative CO 2 refrigeration technologies are compared for temperate and warm climates. • The CO 2 booster system with parallel compression was found to be the most energy efficient system. • Parallel compression can offer efficiency advantages of 3.6% in moderate and 5.0% in warm climates. • Parallel compression in booster CO 2 systems is economically attractive in warm climates. - Abstract: Refrigeration systems are crucial in retail food stores to ensure appropriate merchandising of food products. This paper compares four different CO 2 refrigeration system configurations in terms of cooling performance, environmental impact, power consumption and annual running costs. The systems studied were the conventional booster refrigeration system with gas bypass (reference system), the all CO 2 cascade system with gas bypass, a booster system with a gas bypass compressor, and integrated cascade all CO 2 system with gas bypass compressor. The weather conditions of London, UK, and Athens, Greece, were used for the modelling of energy consumption and environmental impacts to represent moderate and warm climatic conditions respectively. The control strategies for the refrigeration systems were derived from experimental tests in the laboratory on a conventional booster refrigeration system. The results from the analysis showed that the CO 2 booster system with gas bypass compressor can provide best performance with 5.0% energy savings for the warm climate and 3.65% for the moderate climate, followed by the integrated cascade all CO 2 system with gas bypass compressor, with 3.6% and 2.1% savings over the reference system for the warm and moderate climates respectively.

  15. Ionization chamber circuit arrangement for counterbalancing long-term aging processes

    International Nuclear Information System (INIS)

    Fischer, H.; Goeldner, R.; Grosse, H.J.; Reinhardt, K.

    1985-01-01

    The described circuit arrangement changes the amplification of the output signal during the lifetime of the ionization chamber in such a way that the sensitivity of the detector becomes independent of the decreasing activity of the radiation source. It is suitable for ionization flue gas detectors

  16. A global warming forum: Scientific, economic, and legal overview

    International Nuclear Information System (INIS)

    Geyer, R.A.

    1993-01-01

    A Global Warming Forum covers in detail five general subject areas aimed at providing first, the scientific background and technical information available on global warming and second, a study and evaluation of the role of economic, legal, and political considerations in global warming. The five general topic areas discussed are the following: (1) The role of geophysical and geoengineering methods to solve problems related to global climatic change; (2) the role of oceanographic and geochemical methods to provide evidence for global climatic change; (3) the global assessment of greenhouse gas production including the need for additional information; (4) natural resource management needed to provide long-term global energy and agricultural uses; (5) legal, policy, and educational considerations required to properly evaluate global warming proposals

  17. Determination of low specific activity iodine-129 off-gas concentrations by GC separation and negative ionization mass spectrometry

    International Nuclear Information System (INIS)

    Fernandez, S.J.; Rankin, R.A.; McManus, G.J.; Nielsen, R.A.; Delmore, J.E.; Hohorst, F.A.; Murphy, L.P.

    1983-09-01

    This document is the final report of the laboratory development of a method for determining the specific activity of the 129 I emitted from a nuclear fuel reprocessing plant. The technique includes cryogenic sample collection, chemical form separation, quantitation by gas chromatography, and specific activity measurement of each chemical species by negative ionization mass spectrometry. The major conclusions were that both organic and elemental iodine can be quantitatively collected without fractionation and that specific activity measurements as low as one atom of 129 I per 10 5 atoms of 127 I are possible

  18. Tomographic scanning apparatus with ionization detector means

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification describes a tomographic scanning apparatus using a fan beam and digital output signal. Particular reference is made to the gas-pressurized ionization detector chamber, consisting of an array of side-by-side elongate ionization detection cells, the principal axis of each of the said cells being oriented along a radius extending towards the radiation source, and connection means for applying potentials across the cells for taking their output signals. (U.K.)

  19. Determination of clebopride in plasma by capillary gas chromatography-negative-ion chemical ionization mass spectrometry.

    Science.gov (United States)

    Robinson, P R; Jones, M D; Maddock, J

    1988-11-18

    A procedure for the analysis of clebopride in plasma using capillary gas chromatography-negative-ion chemical ionization mass spectrometry has been developed. Employing an ethoxy analogue as internal standard, the two compounds were extracted from basified plasma using dichloromethane. Subsequent reaction with heptafluorobutyryl imidazole produced volatile monoheptafluorobutyryl derivatives whose ammonia negative-ion mass spectra proved ideal for selected-ion monitoring. The recovery of clebopride from plasma at 0.536 nmol/l was found to be 85.5 +/- 0.9% (n = 3) whilst measurement down to 0.268 nmol/l was possible with a coefficient of variation of 7.9%. Plasma levels of the compound are reported in two volunteers following ingestion of 1 mg of clebopride as the malate salt.

  20. Powerful H{sub 2} Line Cooling in Stephan’s Quintet. II. Group-wide Gas and Shock Modeling of the Warm H{sub 2} and a Comparison with [C ii] 157.7 μ m Emission and Kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Appleton, P. N.; Xu, C. K. [NASA HerschelScience Center, IPAC, Caltech, 770S Wilson Av., Pasadena, CA 91125 (United States); Guillard, P. [Sorbonne Universités, UPMC Univ. Paris 6 et CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis Bd Arago, F-75014 Paris (France); Togi, A. [Department of Physics and Astronomy, The University of Toledo, 2825 West Bancroft Street, Toledo, OH 43606 (United States); Alatalo, K. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Boulanger, F.; Pineau des Forêts, G. [Institut d’Astrophysique Spatiale, F-91405 Orsay, Université Paris Sud et CNRS (France); Cluver, M. [Department of Physics and Astronomy, University of Western Cape, Robert Sobukwe Road, Bellville, 7535 (South Africa); Lisenfeld, U. [Departamento de Física Teorica y del Cosmos, Universidad de Granada, Spain and Instituto Carlos I de Física Teorica y Computacional, Facultad de Ciencias, E-18071 Granada (Spain); Ogle, P., E-mail: apple@ipac.caltech.edu [NASA Extragalactic Database, IPAC, Caltech, 1200 E. California Boulevard, Caltech, Pasadena, CA 91125 (United States)

    2017-02-10

    We map for the first time the two-dimensional H{sub 2} excitation of warm intergalactic gas in Stephan's Quintet on group-wide (50 × 35 kpc{sup 2}) scales to quantify the temperature, mass, and warm H{sub 2} mass fraction as a function of position using Spitzer . Molecular gas temperatures are seen to rise (to T > 700 K) and the slope of the power-law density–temperature relation flattens along the main ridge of the filament, defining the region of maximum heating. We also performed MHD modeling of the excitation properties of the warm gas, to map the velocity structure and energy deposition rate of slow and fast molecular shocks. Slow magnetic shocks were required to explain the power radiated from the lowest-lying rotational states of H{sub 2}, and strongly support the idea that energy cascades down to small scales and low velocities from the fast collision of NGC 7318b with group-wide gas. The highest levels of heating of the warm H{sub 2} are strongly correlated with the large-scale stirring of the medium as measured by [C ii] spectroscopy with Herschel . H{sub 2} is also seen associated with a separate bridge that extends toward the Seyfert nucleus in NGC 7319, from both Spitzer and CARMA CO observations. This opens up the possibility that both galaxy collisions and outflows from active galactic nuclei can turbulently heat gas on large scales in compact groups. The observations provide a laboratory for studying the effects of turbulent energy dissipation on group-wide scales, which may provide clues about the heating and cooling of gas at high z in early galaxy and protogalaxy formation.

  1. DWARF GALAXIES WITH IONIZING RADIATION FEEDBACK. I. ESCAPE OF IONIZING PHOTONS

    International Nuclear Information System (INIS)

    Kim, Ji-hoon; Krumholz, Mark R.; Goldbaum, Nathan J.; Wise, John H.; Turk, Matthew J.; Abel, Tom

    2013-01-01

    We describe a new method for simulating ionizing radiation and supernova feedback in the analogs of low-redshift galactic disks. In this method, which we call star-forming molecular cloud (SFMC) particles, we use a ray-tracing technique to solve the radiative transfer equation for ultraviolet photons emitted by thousands of distinct particles on the fly. Joined with high numerical resolution of 3.8 pc, the realistic description of stellar feedback helps to self-regulate star formation. This new feedback scheme also enables us to study the escape of ionizing photons from star-forming clumps and from a galaxy, and to examine the evolving environment of star-forming gas clumps. By simulating a galactic disk in a halo of 2.3 × 10 11 M ☉ , we find that the average escape fraction from all radiating sources on the spiral arms (excluding the central 2.5 kpc) fluctuates between 0.08% and 5.9% during a ∼20 Myr period with a mean value of 1.1%. The flux of escaped photons from these sources is not strongly beamed, but manifests a large opening angle of more than 60° from the galactic pole. Further, we investigate the escape fraction per SFMC particle, f esc (i), and how it evolves as the particle ages. We discover that the average escape fraction f esc is dominated by a small number of SFMC particles with high f esc (i). On average, the escape fraction from an SFMC particle rises from 0.27% at its birth to 2.1% at the end of a particle lifetime, 6 Myr. This is because SFMC particles drift away from the dense gas clumps in which they were born, and because the gas around the star-forming clumps is dispersed by ionizing radiation and supernova feedback. The framework established in this study brings deeper insight into the physics of photon escape fraction from an individual star-forming clump and from a galactic disk

  2. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): Review

    International Nuclear Information System (INIS)

    Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J.

    2015-01-01

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a “soft” ion source for preserving highly diagnostic molecular ion is desirable, as compared to the “hard” ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS. - Highlights: • Atmospheric pressure ion sources (APCI, ESI, APPI, APLC etc) enable the coupling of LC-based high-end MS to GC. • APIs show advantages in selectivity and sensitivity compared with EI in GC-MS. • Accurate mass database in GC-APCI/MS is emerging as an alternative to GC-EI/MS database.

  3. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): Review

    Energy Technology Data Exchange (ETDEWEB)

    Li, Du-Xin; Gan, Lin; Bronja, Amela [University of Duisburg-Essen, Applied Analytical Chemistry, Universitaetsstr. 5-7, 45141 Essen (Germany); Schmitz, Oliver J., E-mail: oliver.schmitz@uni-due.de [University of Duisburg-Essen, Applied Analytical Chemistry, Universitaetsstr. 5-7, 45141 Essen (Germany)

    2015-09-03

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a “soft” ion source for preserving highly diagnostic molecular ion is desirable, as compared to the “hard” ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS. - Highlights: • Atmospheric pressure ion sources (APCI, ESI, APPI, APLC etc) enable the coupling of LC-based high-end MS to GC. • APIs show advantages in selectivity and sensitivity compared with EI in GC-MS. • Accurate mass database in GC-APCI/MS is emerging as an alternative to GC-EI/MS database.

  4. Cluster chemical ionization for improved confidence level in sample identification by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Fialkov, Alexander B; Amirav, Aviv

    2003-01-01

    Upon the supersonic expansion of helium mixed with vapor from an organic solvent (e.g. methanol), various clusters of the solvent with the sample molecules can be formed. As a result of 70 eV electron ionization of these clusters, cluster chemical ionization (cluster CI) mass spectra are obtained. These spectra are characterized by the combination of EI mass spectra of vibrationally cold molecules in the supersonic molecular beam (cold EI) with CI-like appearance of abundant protonated molecules, together with satellite peaks corresponding to protonated or non-protonated clusters of sample compounds with 1-3 solvent molecules. Like CI, cluster CI preferably occurs for polar compounds with high proton affinity. However, in contrast to conventional CI, for non-polar compounds or those with reduced proton affinity the cluster CI mass spectrum converges to that of cold EI. The appearance of a protonated molecule and its solvent cluster peaks, plus the lack of protonation and cluster satellites for prominent EI fragments, enable the unambiguous identification of the molecular ion. In turn, the insertion of the proper molecular ion into the NIST library search of the cold EI mass spectra eliminates those candidates with incorrect molecular mass and thus significantly increases the confidence level in sample identification. Furthermore, molecular mass identification is of prime importance for the analysis of unknown compounds that are absent in the library. Examples are given with emphasis on the cluster CI analysis of carbamate pesticides, high explosives and unknown samples, to demonstrate the usefulness of Supersonic GC/MS (GC/MS with supersonic molecular beam) in the analysis of these thermally labile compounds. Cluster CI is shown to be a practical ionization method, due to its ease-of-use and fast instrumental conversion between EI and cluster CI, which involves the opening of only one valve located at the make-up gas path. The ease-of-use of cluster CI is analogous

  5. Penning ionization processes studied by electron spectroscopy

    International Nuclear Information System (INIS)

    Yencha, A.J.

    1978-01-01

    The technique of measuring the kinetic energy of electrons ejected from atomic or molecular species as a result of collisional energy transfer between a metastable excited rare gas atom and an atom or molecule is known as Penning ionization spectroscopy. Like the analogous photoionization process of photoelectron spectroscopy, a considerable amount of information has been gained about the ionization potentials of numerous molecular systems. It is, in fact, through the combined analyses of photoelectron and Penning electron spectra that affords a probe of the particle-particle interactions that occur in the Penning process. In this paper a short survey of the phenomenon of Penning ionization, as studied by electron spectroscopy, will be presented as it pertains to the ionization processes of simple molecules by metastable excited atoms. (author)

  6. Experimental Studies of the Transport Parameters of Warm Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Chouffani, Khalid [Idaho State Univ., Pocatello, ID (United States)

    2014-12-01

    There is a need to establish fundamental properties of matter and energy under extreme physical conditions. Although high energy density physics (HEDP) research spans a wide range of plasma conditions, there is one unifying regime that is of particular importance and complexity: that of warm dense matter, the transitional state between solid state condensed matter and energetic plasmas. Most laboratory experimental conditions, including inertial confinement implosion, fall into this regime. Because all aspects of laboratory-created high-energy-density plasmas transition through the warm dense matter regime, understanding the fundamental properties to determine how matter and energy interact in this regime is an important aspect of major research efforts in HEDP. Improved understanding of warm dense matter would have significant and wide-ranging impact on HEDP science, from helping to explain wire initiation studies on the Sandia Z machine to increasing the predictive power of inertial confinement fusion modeling. The central goal or objective of our proposed research is to experimentally determine the electrical resistivity, temperature, density, and average ionization state of a variety of materials in the warm dense matter regime, without the use of theoretical calculations. Since the lack of an accurate energy of state (EOS) model is primarily due to the lack of experimental data, we propose an experimental study of the transport coefficients of warm dense matter.

  7. Evaluation of a digital optical ionizing radiation particle track detector

    International Nuclear Information System (INIS)

    Hunter, S.R.

    1987-06-01

    An ionizing radiation particle track detector is outlined which can, in principle, determine the three-dimensional spatial distribution of all the secondary electrons produced by the passage of ionizing radiation through a low-pressure (0.1 to 10 kPa) gas. The electrons in the particle track are excited by the presence of a high-frequency AC electric field, and two digital cameras image the optical radiation produced in electronic excitation collisions of the surroundings gas by the electrons. The specific requirements of the detector for neutron dosimetry and microdosimetry are outlined (i.e., operating conditions of the digital cameras, high voltage fields, gas mixtures, etc.) along with an estimate of the resolution and sensitivity achievable with this technique. The proposed detector is shown to compare favorable with other methods for obtaining the details of the track structure, particularly in the quality of the information obtainable about the particle track and the comparative simplicity and adaptability of the detector for measuring the secondary electron track structure for many forms of ionizing radiation over a wide range of energies

  8. A VUV photoionization measurement and ab-initio calculation of the ionization energy of gas phase SiO2

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Ahmed, Musahid; Metz, Ricardo B.

    2008-12-05

    In this work we report on the detection and vacuum-ultraviolet (VUV) photoionization of gas phase SiO2 generated in situ via laser ablation of silicon in a CO2 molecular beam. The resulting species are investigated by single photon ionization with tunable VUV synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for SiO and SiO2 and ionization energy estimates are revealed from such measurements. A state-to-state ionizationenergy of 12.60 (+-0.05) eV is recorded by fitting two prominent peaks in the PIE curve for the following process: 1SUM O-Si-O --> 2PRODg [O-Si-O]+. Electronic structure calculations aid in the interpretation of the photoionization process and allow for identification of the symmetric stretch of 2PRODg [O-Si-O]+ which is observed in the PIE spectrum to be 0.11 eV (890 cm-1) above the ground state of the cation and agrees with the 892 cm-1 symmetric stretch frequency calculated at the CCSD(T)/aug-cc-pVTZ level.

  9. Numerical Study on Blast Wave Propagation Driven by Unsteady Ionization Plasma

    International Nuclear Information System (INIS)

    Ogino, Yousuke; Sawada, Keisuke; Ohnishi, Naofumi

    2008-01-01

    Understanding the dynamics of laser-produced plasma is essential for increasing the available thrust and energy conversion efficiency from a pulsed laser to a blast wave in a gas-driven laser-propulsion system. The performance of a gas-driven laser-propulsion system depends heavily on the laser-driven blast wave dynamics as well as on the ionizing and/or recombining plasma state that sustains the blast wave. In this study, we therefore develop a numerical simulation code for a laser-driven blast wave coupled with time-dependent rate equations to explore the formation of unsteady ionizing plasma produced by laser irradiation. We will also examine the various properties of blast waves and unsteady ionizing plasma for different laser input energies

  10. Delivering Transmembrane Peptide Complexes to the Gas Phase Using Nanodiscs and Electrospray Ionization

    Science.gov (United States)

    Li, Jun; Richards, Michele R.; Kitova, Elena N.; Klassen, John S.

    2017-10-01

    The gas-phase conformations of dimers of the channel-forming membrane peptide gramicidin A (GA), produced from isobutanol or aqueous solutions of GA-containing nanodiscs (NDs), are investigated using electrospray ionization-ion mobility separation-mass spectrometry (ESI-IMS-MS) and molecular dynamics (MD) simulations. The IMS arrival times measured for (2GA + 2Na)2+ ions from isobutanol reveal three different conformations, with collision cross-sections (Ω) of 683 Å2 (conformation 1, C1), 708 Å2 (C2), and 737 Å2 (C3). The addition of NH4CH3CO2 produced (2GA + 2Na)2+ and (2GA + H + Na)2+ ions, with Ω similar to those of C1, C2, and C3, as well as (2GA + 2H)2+, (2GA + 2NH4)2+, and (2GA + H + NH4)2+ ions, which adopt a single conformation with a Ω similar to that of C2. These results suggest that the nature of the charging agents, imparted by the ESI process, can influence dimer conformation in the gas phase. Notably, the POPC NDs produced exclusively (2GA + 2NH4)2+ dimer ions; the DMPC NDs produced both (2GA + 2H)2+ and (2GA + 2NH4)2+ dimer ions. While the Ω of (2GA + 2H)2+ is similar to that of C2, the (2GA + 2NH4)2+ ions from NDs adopt a more compact structure, with a Ω of 656 Å2. It is proposed that this compact structure corresponds to the ion conducting single stranded head-to-head helical GA dimer. These findings highlight the potential of NDs, combined with ESI, for transferring transmembrane peptide complexes directly from lipid bilayers to the gas phase. [Figure not available: see fulltext.

  11. A method for measuring the electron drift velocity in working gas using a Frisch-grid ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Huaiyong; Wang, Zhimin; Zhang, Luyu; Chen, Jinxiang; Zhang, Guohui, E-mail: guohuizhang@pku.edu.cn

    2016-12-21

    A method for measuring the electron drift velocity in working gas is proposed. Based on the cathode and the anode signal waveforms of the Frisch-grid ionization chamber, the electron drift velocity is extracted. With this method, the electron drift velocities in Ar + 10% CH{sub 4}, Ar + 3.5% CO{sub 2} and Kr + 2.7% CO{sub 2} gases have been measured and the results are compared with the existing measurements and the simulating results. Using this method, the electron drift velocity can be monitored throughout the experiment of charged particle without bothering the measurement of other parameters, such as the energy and orientation.

  12. F--Ray: A new algorithm for efficient transport of ionizing radiation

    Science.gov (United States)

    Mao, Yi; Zhang, J.; Wandelt, B. D.; Shapiro, P. R.; Iliev, I. T.

    2014-04-01

    We present a new algorithm for the 3D transport of ionizing radiation, called F2-Ray (Fast Fourier Ray-tracing method). The transfer of ionizing radiation with long mean free path in diffuse intergalactic gas poses a special challenge to standard numerical methods which transport the radiation in position space. Standard methods usually trace each individual ray until it is fully absorbed by the intervening gas. If the mean free path is long, the computational cost and memory load are likely to be prohibitive. We have developed an algorithm that overcomes these limitations and is, therefore, significantly more efficient. The method calculates the transfer of radiation collectively, using the Fast Fourier Transform to convert radiation between position and Fourier spaces, so the computational cost will not increase with the number of ionizing sources. The method also automatically combines parallel rays with the same frequency at the same grid cell, thereby minimizing the memory requirement. The method is explicitly photon-conserving, i.e. the depletion of ionizing photons is guaranteed to equal the photoionizations they caused, and explicitly obeys the periodic boundary condition, i.e. the escape of ionizing photons from one side of a simulation volume is guaranteed to be compensated by emitting the same amount of photons into the volume through the opposite side. Together, these features make it possible to numerically simulate the transfer of ionizing photons more efficiently than previous methods. Since ionizing radiation such as the X-ray is responsible for heating the intergalactic gas when first stars and quasars form at high redshifts, our method can be applied to simulate thermal distribution, in addition to cosmic reionization, in three-dimensional inhomogeneous cosmological density field.

  13. Determination of Pesticides by Gas Chromatography Combined with Mass Spectrometry Using Femtosecond Lasers Emitting at 267, 400, and 800 nm as the Ionization Source.

    Science.gov (United States)

    Yang, Xixiang; Imasaka, Tomoko; Imasaka, Totaro

    2018-04-03

    A standard sample mixture containing 51 pesticides was separated by gas chromatography (GC), and the constituents were identified by mass spectrometry (MS) using femtosecond lasers emitting at 267, 400, and 800 nm as the ionization source. A two-dimensional display of the GC/MS was successfully used for the determination of these compounds. A molecular ion was observed for 38 of the compounds at 267 nm and for 30 of the compounds at 800 nm, in contrast to 27 among 50 compounds when electron ionization was used. These results suggest that the ultraviolet laser is superior to the near-infrared laser for molecular weight determinations and for a more reliable analysis of these compounds. In order to study the conditions for optimal ionization, the experimental data were examined using the spectral properties (i.e., the excitation and ionization energies and absorption spectra for the neutral and ionized species) obtained by quantum chemical calculations. A few molecules remained unexplained by the currently reported rules, requiring additional rules for developing a full understanding of the femtosecond ionization process. The pesticides in the homogenized matrix obtained from kabosu ( citrus sphaerocarpa) were measured using lasers emitting at 267 and 800 nm. The pesticides were clearly separated and measured on the two-dimensional display, especially for the data measured at 267 nm, suggesting that this technique would have potential for use in the practical trace analysis of the pesticides in the environment.

  14. Canada and global warming: Meeting the challenge

    International Nuclear Information System (INIS)

    1991-01-01

    Canada accounts for ca 2% of total world emissions of greenhouse gases. Carbon dioxide emissions are by far the largest greenhouse gas source in Canada, primarily from energy consumption. On a per capita basis, Canada ranks second among industrialized countries in terms of energy related carbon dioxide emissions. Canada's northern geography and climate, its export-oriented economy with energy-intensive resource industries, and its relatively small population dispersed over a wide land mass contribute to this high per-capita value. The effects of global warming induced by greenhouse gases are outlined, including a reduction in water supplies, droughts affecting agriculture and forestry, and large-scale thawing of permafrost. A national strategy to respond to global warming has been developed which includes limiting and reducing greenhouse gas emissions, preparing for potential climatic changes, and improving scientific understanding and predictive capabilities with respect to climate change. Details of this strategy are outlined, including provincial and territorial strategies in partnership with the national strategy. 11 figs., 2 tabs

  15. Determination of low specific activity iodine-129 off-gas concentrations by GC separation and negative ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S.J.; Rankin, R.A.; McManus, G.J.; Nielsen, R.A.; Delmore, J.E.; Hohorst, F.A.; Murphy, L.P.

    1983-09-01

    This document is the final report of the laboratory development of a method for determining the specific activity of the /sup 129/I emitted from a nuclear fuel reprocessing plant. The technique includes cryogenic sample collection, chemical form separation, quantitation by gas chromatography, and specific activity measurement of each chemical species by negative ionization mass spectrometry. The major conclusions were that both organic and elemental iodine can be quantitatively collected without fractionation and that specific activity measurements as low as one atom of /sup 129/I per 10/sup 5/ atoms of /sup 127/I are possible.

  16. PAHs molecules and heating of the interstellar gas

    Science.gov (United States)

    Verstraete, Laurent; Leger, Alain; Dhendecourt, Louis B.; Dutuit, O.; Defourneau, D.

    1989-01-01

    Until now it has remained difficult to account for the rather high temperatures seen in many diffuse interstellar clouds. Various heating mechanisms have been considered: photoionization of minor species, ionization of H by cosmic rays, and photoelectric effect on small grains. Yet all these processes are either too weak or efficient under too restricting conditions to balance the observed cooling rates. A major heat source is thus still missing in the thermal balance of the diffuse gas. Using photoionization cross sections measured in the lab, it was shown that in order to balance the observed cooling rates in cold diffuse clouds (T approx. 80 K) the PAHs would have to contain 15 percent of the cosmic abundance of carbon. This value does not contradict the former estimation of 6 percent deduced from the IR emission bands since this latter is to be taken as a lower limit. Further, it was estimated that the contribution to the heating rate due to PAH's in a warm HI cloud, assuming the same PAH abundance as for a cold HI cloud, would represent a significant fraction of the value required to keep the medium in thermal balance. Thus, photoionization of PAHs might well be a major heat source for the cold and warm HI media.

  17. Evaluation of a novel helium ionization detector within the context of (low-)flow modulation comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Franchina, Flavio A; Maimone, Mariarosa; Sciarrone, Danilo; Purcaro, Giorgia; Tranchida, Peter Q; Mondello, Luigi

    2015-07-10

    The present research is focused on the use and evaluation of a novel helium ionization detector, defined as barrier discharge ionization detector (BID), within the context of (low-)flow modulation comprehensive two-dimensional gas chromatography (FM GC×GC). The performance of the BID device was compared to that of a flame ionization detector (FID), under similar FM GC×GC conditions. Following development and optimization of the FM GC×GC method, the BID was subjected to fine tuning in relation to acquisition frequency and discharge flow. Moreover, the BID performance was measured and compared to that of the FID, in terms of extra-column band broadening, sensitivity and dynamic range. The comparative study was carried out by using standard compounds belonging to different chemical classes, along with a sample of diesel fuel. Advantages and disadvantages of the BID system, also within the context of FM GC×GC, are critically discussed. In general, the BID system was characterized by a more limited dynamic range and increased sensitivity, compared to the FID. Additionally, BID and FID contribution to band broadening was found to be similar under the operational conditions applied. Particular attention was devoted to the behaviour of the FM GC×GC-BID system toward saturated and aromatic hydrocarbons, for a possible future use in the field of mineral-oil food contamination research. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Making MUSIC: A multiple sampling ionization chamber

    International Nuclear Information System (INIS)

    Shumard, B.; Henderson, D.J.; Rehm, K.E.; Tang, X.D.

    2007-01-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction

  19. Making MUSIC: A multiple sampling ionization chamber

    Science.gov (United States)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  20. Making MUSIC: A multiple sampling ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Shumard, B. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)]. E-mail: shumard@phy.anl.gov; Henderson, D.J. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Rehm, K.E. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States); Tang, X.D. [Argonne National Laboratory, Building 203 H-113, Argonne, IL 60439 (United States)

    2007-08-15

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the ({alpha}, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for ({alpha}, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only ({alpha}, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. x 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the ({alpha}, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the ({alpha}, p) reaction to reach the anode segment below the reaction.

  1. Ionizing potential waves and high-voltage breakdown streamers.

    Science.gov (United States)

    Albright, N. W.; Tidman, D. A.

    1972-01-01

    The structure of ionizing potential waves driven by a strong electric field in a dense gas is discussed. Negative breakdown waves are found to propagate with a velocity proportional to the electric field normal to the wavefront. This causes a curved ionizing potential wavefront to focus down into a filamentary structure, and may provide the reason why breakdown in dense gases propagates in the form of a narrow leader streamer instead of a broad wavefront.

  2. Study of the molecular and ionized gas in a possible precursor of an ultra-compact H II region

    Science.gov (United States)

    Ortega, M. E.; Paron, S.; Giacani, E.; Celis Peña, M.; Rubio, M.; Petriella, A.

    2017-10-01

    Aims: We aim to study the molecular and the ionized gas in a possible precursor of an ultra-compact H II region to contribute to the understanding of how high-mass stars build-up their masses once they have reached the zero-age main sequence. Methods: We carried out molecular observations toward the position of the Red MSX source G052.9221-00.4892, using the Atacama Submillimeter Telescope Experiment (ASTE; Chile) in the 12CO J = 3-2, 13CO J = 3-2, C18O J = 3-2, and HCO+J = 4-3 lines with an angular resolution of about 22''. We also present radio continuum observations at 6 GHz carried out with the Jansky Very Large Array (JVLA; USA) interferometer with a synthesized beam of 4.8 arcsec × 4.1 arcsec. The molecular data were used to study the distribution and kinematics of the molecular gas, while the radio continuum data were used to characterize the ionized gas in the region. Combining these observations with public infrared data allowed us to inquire about the nature of the source. Results: The analysis of the molecular observations reveals the presence of a kinetic temperature and H2 column density gradients across the molecular clump in which the Red MSX source G052.9221-00.4892 is embedded, with the hotter and less dense gas in the inner region. The 12CO J = 3-2 emission shows evidence of misaligned massive molecular outflows, with the blue lobe in positional coincidence with a jet-like feature seen at 8 μm. The radio continuum emission shows a slightly elongated compact radio source, with a flux density of about 0.9 mJy, in positional coincidence with the Red MSX source. The polar-like morphology of this compact radio source perfectly matches the hourglass-like morphology exhibited by the source in the Ks band. Moreover, the axes of symmetry of the radio source and the near-infrared nebula are perfectly aligned. Thus, based on the presence of molecular outflows, the slightly elongated morphology of the compact radio source matching the hourglass

  3. US steps on the gas to slow global warming

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, G.

    1999-07-05

    This article discusses the use of carbon sequestration as a radical new solution to global warming. Details of the forthcoming public workshop on carbon sequestration to be held by the US Department of Energy are given, and carbon sequestration technologies, carbon dioxide recovery and storage, and the need to develop technologies that can convert carbon dioxide into inert or useful products are considered.

  4. Analytical Estimates of the Dispersion Curve in Planar Ionization Fronts

    International Nuclear Information System (INIS)

    Arrayas, Manuel; Trueba, Jose L.; Betelu, Santiago; Fontelos, Marco A.

    2009-01-01

    Fingers from ionization fronts for a hydrodynamic plasma model result from a balance between impact ionization and electron diffusion in a non-attaching gas. An analytical estimation of the size of the fingers and its dependence on both the electric field and electron diffusion coefficient can be done when the diffusion is low and the electric field is strong.

  5. ALMA Maps of Dust and Warm Dense Gas Emission in the Starburst Galaxy IC 5179

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yinghe [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Lu, Nanyao; Xu, C. Kevin [National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing 100012 (China); Díaz-Santos, Tanio [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Gao Yu [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Charmandaris, Vassilis [Department of Physics, University of Crete, GR-71003 Heraklion (Greece); Werf, Paul van der [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Zhang Zhi-Yu [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Cao, Chen, E-mail: zhaoyinghe@ynao.ac.cn [School of Space Science and Physics, Shandong University at Weihai, Weihai, Shandong 264209 (China)

    2017-08-10

    We present our high-resolution (0.″15 × 0.″13, ∼34 pc) observations of the CO (6−5) line emission, which probes the warm and dense molecular gas, and the 434 μ m dust continuum emission in the nuclear region of the starburst galaxy IC 5179, conducted with the Atacama Large Millimeter Array (ALMA). The CO (6−5) emission is spatially distributed in filamentary structures with many dense cores and shows a velocity field that is characteristic of a circumnuclear rotating gas disk, with 90% of the rotation speed arising within a radius of ≲150 pc. At the scale of our spatial resolution, the CO (6−5) and dust emission peaks do not always coincide, with their surface brightness ratio varying by a factor of ∼10. This result suggests that their excitation mechanisms are likely different, as further evidenced by the southwest to northeast spatial gradient of both CO-to-dust continuum ratio and Pa- α equivalent width. Within the nuclear region (radius ∼ 300 pc) and with a resolution of ∼34 pc, the CO line flux (dust flux density) detected in our ALMA observations is 180 ± 18 Jy km s{sup −1} (71 ± 7 mJy), which accounts for 22% (2.4%) of the total value measured by Herschel .

  6. Localization of ionization-induced trapping in a laser wakefield accelerator using a density down-ramp

    CERN Document Server

    Hansson, M.; Ekerfelt, H.; Aurand, B.; Gallardo Ganzalez, I.; Desforges, F. G.; Davoine, X.; Maitrallain, A.; Reymond, S.; Monot, P.; Persson, A.; Dobosz Dufrénoy S.; Wahlström C-G.; Cros, B.; Lundh, O.

    2016-01-01

    We report on a study on controlled trapping of electrons, by field ionization of nitrogen ions, in laser wakefield accelerators in variable length gas cells. In addition to ionization-induced trapping in the density plateau inside the cells, which results in wide, but stable, electron energy spectra, a regime of ionization-induced trapping localized in the density down-ramp at the exit of the gas cells, is found. The resulting electron energy spectra are peaked, with 10% shot-to-shot fluctuations in peak energy. Ionization-induced trapping of electrons in the density down-ramp is a way to trap and accelerate a large number of electrons, thus improving the efficiency of the laser-driven wakefield acceleration.

  7. On the stabilization of gas discharge by an hf-electric field

    International Nuclear Information System (INIS)

    Rakhimova, T.V.; Rakhimov, A.T.

    1975-01-01

    It is shown that when the bulk gas discharge is placed in an hf-electric field of sufficiently high frequency in the process of gas discharge burning there appears a long phase during which the gas ionization is inessential and the discharge burns in a recombining plasma. Such a stage may affect the stability of a gas discharge. It is shown also that at comparable values of intensities of the d.c. and hf electric fields there is a small parameter for the weakly-ionized plasma in which the relative portion of energy introduced into the discharge during the stage of gas ionization may be sufficiently small. (Auth.)

  8. IONIZED GAS KINEMATICS AT HIGH RESOLUTION. V. [Ne ii], MULTIPLE CLUSTERS, HIGH EFFICIENCY STAR FORMATION, AND BLUE FLOWS IN HE 2–10

    International Nuclear Information System (INIS)

    Beck, Sara; Turner, Jean; Lacy, John; Greathouse, Thomas

    2015-01-01

    We measured the 12.8 μm [Ne ii] line in the dwarf starburst galaxy He 2–10 with the high-resolution spectrometer TEXES on the NASA IRTF. The data cube has a diffraction-limited spatial resolution of ∼1″ and a total velocity resolution, including thermal broadening, of ∼5 km s −1 . This makes it possible to compare the kinematics of individual star-forming clumps and molecular clouds in the three dimensions of space and velocity, and allows us to determine star formation efficiencies. The kinematics of the ionized gas confirm that the starburst contains multiple dense clusters. From the M/R of the clusters and the ≃30%–40% star formation efficiencies, the clusters are likely to be bound and long lived, like globulars. Non-gravitational features in the line profiles show how the ionized gas flows through the ambient molecular material, as well as a narrow velocity feature, which we identify with the interface of the H ii region and a cold dense clump. These data offer an unprecedented view of the interaction of embedded H ii regions with their environment

  9. Analysis of ionization wave dynamics in low-temperature plasma jets from fluid modeling supported by experimental investigations

    Science.gov (United States)

    Yousfi, M.; Eichwald, O.; Merbahi, N.; Jomaa, N.

    2012-08-01

    This work is devoted to fluid modeling based on experimental investigations of a classical setup of a low-temperature plasma jet. The latter is generated at atmospheric pressure using a quartz tube of small diameter crossed by helium gas flow and surrounded by an electrode system powered by a mono-polar high-voltage pulse. The streamer-like behavior of the fast plasma bullets or ionization waves launched in ambient air for every high-voltage pulse, already emphasized in the literature from experimental or analytical considerations or recent preliminary fluid models, is confirmed by a numerical one-moment fluid model for the simulation of the ionization wave dynamics. The dominant interactions between electron and the main ions present in He-air mixtures with their associated basic data are taken into account. The gradual dilution of helium in air outside the tube along the axis is also considered using a gas hydrodynamics model based on the Navier-Stokes equation assuming a laminar flow. Due to the low magnitude of the reduced electric field E/N (not exceeding 15 Td), it is first shown that consideration of the stepwise ionization of helium metastables is required to reach the critical size of the electron avalanches in order to initiate the formation of ionization waves. It is also shown that a gas pre-ionization ahead of the wave front of about 109 cm-3 (coming from Penning ionization without considering the gas photo-ionization) is required for the propagation. Furthermore, the second ionization wave experimentally observed during the falling time of the voltage pulse, between the powered electrode and the tube exit, is correlated with the electric field increase inside the ionized channel in the whole region between the electrode and the tube exit. The propagation velocity and the distance traveled by the front of the ionization wave outside the tube in the downstream side are consistent with the present experimental measurements. In comparison with the

  10. Impact parameter dependence of inner-shell ionization probabilities

    International Nuclear Information System (INIS)

    Cocke, C.L.

    1974-01-01

    The probability for ionization of an inner shell of a target atom by a heavy charged projectile is a sensitive function of the impact parameter characterizing the collision. This probability can be measured experimentally by detecting the x-ray resulting from radiative filling of the inner shell in coincidence with the projectile scattered at a determined angle, and by using the scattering angle to deduce the impact parameter. It is conjectured that the functional dependence of the ionization probability may be a more sensitive probe of the ionization mechanism than is a total cross section measurement. Experimental results for the K-shell ionization of both solid and gas targets by oxygen, carbon and fluorine projectiles in the MeV/amu energy range will be presented, and their use in illuminating the inelastic collision process discussed

  11. The photoionization of the diffuse galactic gas

    Science.gov (United States)

    Mathis, J. S.

    1986-01-01

    In a study of the diffuse ionized gas (DIG) component of the interstellar medium, it is attempted to see if the general properties of dilute gas ionized by O stars are similar to observations and to what extent the observations of the DIG can be used to determine the nature of the ionizing radiation field at great distances above the plane of the Galaxy. It has been suggested by Reynolds (1985) that either shocks or photoionization might be responsible for the DIG. The photoionization model seems required by the observations.

  12. X-ray heating and ionization of broad-emission-line regions in QSO's and active galaxies

    International Nuclear Information System (INIS)

    Weisheit, J.C.; Shields, G.A.; Tarter, C.B.

    1980-07-01

    Absorption of x-rays deep within the broad-line emitting clouds in QSO's and the nuclei of active galaxies creates extensive zones of warm (T approx. 10 4 K), partially ionized N/sub e//N approx. 0.1) gas. Because Lyman alpha photons are trapped in these regions, the x-ray energy is efficiently channeled into Balmer lines collisionally excited from the n = 2 level. The HI regions plus the HII regions created by ultraviolet photons illuminating the surfaces of the clouds give rise to integrated Lα/Hα line emission ratios between 1 and 2. Enhanced MgII line emission from the HI regions gives rise to integrated MgII/Hα ratios near 0.5. The OI line lambda 8446 is efficiently pumped by trapped Hα photons and in the x-ray heated zone an intensity ratio I (lambda 8446)/I(Hα) approx. < 0.1 is calculated. All of these computed ratios now are in agreement with observations

  13. Ionization of Local Interstellar Gas Based on STIS and FUSE spectra of Nearby Stars

    Science.gov (United States)

    Redfield, Seth; Linsky, J. L.

    2009-01-01

    The ultraviolet contains many resonance line transitions that are sensitive to a range of ionization stages of ions present in the local interstellar medium (LISM). We couple observations of high resolution ultraviolet spectrographs, STIS and GHRS on the Hubble Space Telescope (HST) and the Far-Ultraviolet Spectroscopic Explorer (FUSE) in order to make a comprehensive survey of the ionization structure of the local interstellar medium. In particular, we focus on the sight line toward G191-B2B, a nearby (69 pc) white dwarf. We present interstellar detections of highly ionized elements (e.g., SiIII, CIII, CIV, etc) and compare them directly to neutral or singly ionized LISM detections (e.g., SiII, CII, etc). The extensive observations of G191-B2B provides an opportunity for a broad study of ionization stages of several elements, while a survey of several sight lines provides a comprehensive look at the ionization structure of the LISM. We acknowledge support for this project through NASA FUSE Grant NNX06AD33G.

  14. THE IONIZED GAS IN NEARBY GALAXIES AS TRACED BY THE [NII] 122 AND 205 μm TRANSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Camus, R.; Bolatto, A.; Wolfire, M. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Smith, J. D. [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Draine, B. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Pellegrini, E. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Croxall, K. [Department of Astronomy, The Ohio State University, 4051 McPherson Laboratory, 140 West 18th Avenue, Columbus, OH 43210 (United States); Looze, I. de; Kennicutt, R. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Crocker, A. [Department of Physics, Reed College, Portland, OR 97202 (United States); Armus, L. [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Van der Werf, P.; Brandl, B. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Sandstrom, K. [Center for Astrophysics and Space Sciences, Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Galametz, M. [European Southern Observatory, Karl Schwarzschild Strasse 2, D-85748 Garching (Germany); Groves, B. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Rigopoulou, D. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Walter, F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); and others

    2016-08-01

    The [N ii] 122 and 205 μ m transitions are powerful tracers of the ionized gas in the interstellar medium. By combining data from 21 galaxies selected from the Herschel KINGFISH and Beyond the Peak surveys, we have compiled 141 spatially resolved regions with a typical size of ∼1 kpc, with observations of both [N ii] far-infrared lines. We measure [N ii] 122/205 line ratios in the ∼0.6–6 range, which corresponds to electron gas densities of n {sub e} ∼ 1–300 cm{sup −3}, with a median value of n {sub e} = 30 cm{sup −3}. Variations in the electron density within individual galaxies can be as high as a factor of ∼50, frequently with strong radial gradients. We find that n {sub e} increases as a function of infrared color, dust-weighted mean starlight intensity, and star-formation rate (SFR) surface density (Σ{sub SFR}). As the intensity of the [N ii] transitions is related to the ionizing photon flux, we investigate their reliability as tracers of the SFR. We derive relations between the [N ii] emission and SFR in the low-density limit and in the case of a log-normal distribution of densities. The scatter in the correlation between [N ii] surface brightness and Σ{sub SFR} can be understood as a property of the n {sub e} distribution. For regions with n {sub e} close to or higher than the [N ii] line critical densities, the low-density limit [N ii]-based SFR calibration systematically underestimates the SFR because the [N ii] emission is collisionally quenched. Finally, we investigate the relation between [N ii] emission, SFR, and n {sub e} by comparing our observations to predictions from the MAPPINGS-III code.

  15. THE IONIZED GAS IN NEARBY GALAXIES AS TRACED BY THE [NII] 122 AND 205 μm TRANSITIONS

    International Nuclear Information System (INIS)

    Herrera-Camus, R.; Bolatto, A.; Wolfire, M.; Smith, J. D.; Draine, B.; Pellegrini, E.; Croxall, K.; Looze, I. de; Kennicutt, R.; Calzetti, D.; Crocker, A.; Armus, L.; Van der Werf, P.; Brandl, B.; Sandstrom, K.; Galametz, M.; Groves, B.; Rigopoulou, D.; Walter, F.

    2016-01-01

    The [N ii] 122 and 205 μ m transitions are powerful tracers of the ionized gas in the interstellar medium. By combining data from 21 galaxies selected from the Herschel KINGFISH and Beyond the Peak surveys, we have compiled 141 spatially resolved regions with a typical size of ∼1 kpc, with observations of both [N ii] far-infrared lines. We measure [N ii] 122/205 line ratios in the ∼0.6–6 range, which corresponds to electron gas densities of n e ∼ 1–300 cm −3 , with a median value of n e = 30 cm −3 . Variations in the electron density within individual galaxies can be as high as a factor of ∼50, frequently with strong radial gradients. We find that n e increases as a function of infrared color, dust-weighted mean starlight intensity, and star-formation rate (SFR) surface density (Σ SFR ). As the intensity of the [N ii] transitions is related to the ionizing photon flux, we investigate their reliability as tracers of the SFR. We derive relations between the [N ii] emission and SFR in the low-density limit and in the case of a log-normal distribution of densities. The scatter in the correlation between [N ii] surface brightness and Σ SFR can be understood as a property of the n e distribution. For regions with n e close to or higher than the [N ii] line critical densities, the low-density limit [N ii]-based SFR calibration systematically underestimates the SFR because the [N ii] emission is collisionally quenched. Finally, we investigate the relation between [N ii] emission, SFR, and n e by comparing our observations to predictions from the MAPPINGS-III code.

  16. High molecular weight non-polar hydrocarbons as pure model substances and in motor oil samples can be ionized without fragmentation by atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Hourani, Nadim; Kuhnert, Nikolai

    2012-10-15

    High molecular weight non-polar hydrocarbons are still difficult to detect by mass spectrometry. Although several studies have targeted this problem, lack of good self-ionization has limited the ability of mass spectrometry to examine these hydrocarbons. Failure to control ion generation in the atmospheric pressure chemical ionization (APCI) source hampers the detection of intact stable gas-phase ions of non-polar hydrocarbon in mass spectrometry. Seventeen non-volatile non-polar hydrocarbons, reported to be difficult to ionize, were examined by an optimized APCI methodology using nitrogen as the reagent gas. All these analytes were successfully ionized as abundant and intact stable [M-H](+) ions without the use of any derivatization or adduct chemistry and without significant fragmentation. Application of the method to real-life hydrocarbon mixtures like light shredder waste and car motor oil was demonstrated. Despite numerous reports to the contrary, it is possible to ionize high molecular weight non-polar hydrocarbons by APCI, omitting the use of additives. This finding represents a significant step towards extending the applicability of mass spectrometry to non-polar hydrocarbon analyses in crude oil, petrochemical products, waste or food. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Gas flaring: Carbon dioxide contribution to global warming ...

    African Journals Online (AJOL)

    Journal Home > Vol 20, No 2 (2016) > ... The quantitative method of analysis showed that carbon dioxide from gas ... gas flaring cause environmental degradation, health risks and constitute financial loss to the local oil producing communities.

  18. Measurement Of Ultrafast Ionisation From Intense Laser Interactions With Gas-Jets

    International Nuclear Information System (INIS)

    Gizzi, Leonida A.; Galimberti, Marco; Giulietti, Antonio; Giulietti, Danilo; Koester, Petra; Labate, Luca; Tomassini, Paolo; Martin, Philippe; Ceccotti, Tiberio; De Oliveira, Pascal; Monot, Pascal

    2006-01-01

    Interaction of an intense, ultrashort laser pulse with a gas-jet target is investigated through femtosecond optical interferometry to study the dynamics of ionization of the gas. Experimental results are presented in which the propagation of the pulse in the gas and the consequent plasma formation is followed step by step with high temporal and spatial resolution. We demonstrate that, combining the phase shift with the measurable depletion of fringe visibility associated with the transient change of refractive index in the ionizing region and taking into account probe travel time can provide direct information on gas ionization dynamics

  19. Ionizing radiations, detection, dosimetry, spectrometry

    International Nuclear Information System (INIS)

    Blanc, D.

    1997-10-01

    A few works in French language are devoted to the detection of radiations. The purpose of this book is to fill a gap.The five first chapters are devoted to the properties of ionizing radiations (x rays, gamma rays, leptons, hadrons, nuclei) and to their interactions with matter. The way of classification of detectors is delicate and is studied in the chapter six. In the chapter seven are studied the statistics laws for counting and the spectrometry of particles is treated. The chapters eight to thirteen study the problems of ionization: charges transport in a gas, ionization chambers (theory of Boag), counters and proportional chambers, counters with 'streamers', chambers with derive, spark detectors, ionization chambers in liquid medium, Geiger-Mueller counters. The use of a luminous signal is the object of the chapters 14 to 16: conversion of a luminous signal in an electric signal, scintillators, use of the Cerenkov radiation. Then, we find the neutron detection with the chapter seventeen and the dosimetry of particles in the chapter eighteen. This book does not pretend to answer to specialists questions but can be useful to physicians, engineers or physics teachers. (N.C.)

  20. Gas Flaring: Carbon dioxide Contribution to Global Warming ...

    African Journals Online (AJOL)

    PROF HORSFALL

    emissions resulting from high consumption of fossil fuels. Flaring been a ... method of analysis showed that carbon dioxide from gas flaring constitute 1% of the total ... Although of these, methane is potentially the most .... in some gas plants.

  1. Ionized Gas Outflows from the MAGNUM Survey: NGC 1365 and NGC 4945

    Energy Technology Data Exchange (ETDEWEB)

    Venturi, Giacomo; Marconi, Alessandro [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino (Italy); Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Mingozzi, Matilde [Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); Carniani, Stefano [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge (United Kingdom); Kavli Institute for Cosmology, University of Cambridge, Cambridge (United Kingdom); Cresci, Giovanni [Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Risaliti, Guido [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino (Italy); Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Mannucci, Filippo, E-mail: gventuri@arcetri.astro.it [Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy)

    2017-11-24

    AGN feedback, acting through strong outflows accelerated in the nuclear region of AGN hosts, is invoked as a key ingredient for galaxy evolution by many models to explain the observed BH-galaxy scaling relations. Recently, some direct observational evidence of radiative mode feedback in action has been finally found in quasars at z >1.5. However, it is not possible to study outflows in quasars at those redshifts on small scales (≲100 pc), as spatial information is limited by angular resolution. This is instead feasible in nearby active galaxies, which are ideal laboratories to explore outflow structure and properties, as well as the effects of AGN on their host galaxies. In this proceeding we present preliminary results from the MAGNUM survey, which comprises nearby Seyfert galaxies observed with the integral field spectrograph VLT/MUSE. We focus on two sources, NGC 1365 and NGC 4945, that exhibit double conical outflows extending on distances >1 kpc. We disentangle the dominant contributions to ionization of the various gas components observed in the central ~5.3 kpc of NGC 1365. An attempt to infer outflow 3D structure in NGC 4945 is made via simple kinematic modeling, suggesting a hollow cone geometry.

  2. Ionization and scintillation of nuclear recoils in gaseous xenon

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J., E-mail: jrenner@lbl.gov [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States); Gehman, V.M.; Goldschmidt, A.; Matis, H.S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C.A.B.; Shuman, D. [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Álvarez, V. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Borges, F.I.G. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Cárcel, S. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Castel, J.; Cebrián, S. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza (Spain); Cervera, A. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Conde, C.A.N. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); and others

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  3. Theory of the ionization yield in gases under electron irradiation

    International Nuclear Information System (INIS)

    Inokuti, M.

    1974-01-01

    The total number N/sub i/(T) of ionizations that an incident electron of kinetic energy T causes in a pure gas obeys an integral equation known as the Fowler equation. Its solution is shown to closely approximate N/sub i/(T) = (T -- U)/W/sub a/ for T exceeding several multiples of the first ionization energy I, where U and W/sub a/ are constants having the energy dimension. Simple formulas express U and W/sub a/ in terms of various cross sections for electron inelastic collisions with a gas molecule. In particular, U - I represents the average kinetic energy of a subionization electron. (35 refs) (U.S.)

  4. COLLISIONLESS SHOCKS IN A PARTIALLY IONIZED MEDIUM. II. BALMER EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Morlino, G.; Bandiera, R.; Blasi, P.; Amato, E. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)

    2012-12-01

    Strong shocks propagating into a partially ionized medium are often associated with optical Balmer lines. This emission is due to impact excitation of neutral hydrogen by hot protons and electrons in the shocked gas. The structure of such Balmer-dominated shocks has been computed in a previous paper, where the distribution function of neutral particles was derived from the appropriate Boltzmann equation including coupling with ions and electrons through charge exchange and ionization. This calculation showed how the presence of neutrals can significantly modify the shock structure through the formation of a neutral-induced precursor ahead of the shock. Here we follow up on our previous work and investigate the properties of the resulting Balmer emission, with the aim of using the observed radiation as a diagnostic tool for shock parameters. Our main focus is on supernova remnant shocks, and we find that, for typical parameters, the H{alpha} emission typically has a three-component spectral profile, where (1) a narrow component originates from upstream cold hydrogen atoms, (2) a broad component comes from hydrogen atoms that have undergone charge exchange with shocked protons downstream of the shock, and (3) an intermediate component is due to hydrogen atoms that have undergone charge exchange with warm protons in the neutral-induced precursor. The relative importance of these three components depends on the shock velocity, on the original degree of ionization, and on the electron-ion temperature equilibration level. The intermediate component, which is the main signature of the presence of a neutral-induced precursor, becomes negligible for shock velocities {approx}< 1500 km s{sup -1}. The width of the intermediate line reflects the temperature in the precursor, while the width of the narrow one is left unaltered by the precursor. In addition, we show that the profiles of both the intermediate and broad components generally depart from a thermal distribution, as a

  5. Comparison of cold and warm vacuum systems for intersecting storage rings

    International Nuclear Information System (INIS)

    Halama, H.J.; Herrera, J.C.

    1975-01-01

    In storage rings employing superconducting magnets, the use of a cold bore as a cryopump appears, at first glance, as simple and economical. Since the selection of a cold or warm vacuum system has far-reaching implications on the basic design, each system is considered in some detail. The theoretical and practical limitations imposed on the maximum beam current by the gas desorption from the chamber walls are discussed. A realistic design of a cold vacuum chamber is developed and then compared with the proposed warm ISABELLE vacuum system. The comparison shows that the warm approach is preferable. (U.S.)

  6. A statistical mechanical model for equilibrium ionization

    International Nuclear Information System (INIS)

    Macris, N.; Martin, P.A.; Pule, J.

    1990-01-01

    A quantum electron interacts with a classical gas of hard spheres and is in thermal equilibrium with it. The interaction is attractive and the electron can form a bound state with the classical particles. It is rigorously shown that in a well defined low density and low temperature limit, the ionization probability for the electron tends to the value predicted by the Saha formula for thermal ionization. In this regime, the electron is found to be in a statistical mixture of a bound and a free state. (orig.)

  7. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Global Warming Potentials A Table A-1 to Subpart A of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING General Provision Pt. 98, Subpt. A, Table A-1 Table A-1 to Subpart A of Part 98—Global Warming...

  8. Reactions of metal ions and their clusters in the gas phase using laser ionization: ion cyclotron resonance spectroscopy

    International Nuclear Information System (INIS)

    Freiser, B.S.

    1981-04-01

    Two subjects are discussed in this report: advances in proposed studies on metal ion chemistry and expansion of laboratory facilities. The development of a combined pulsed laser source-ion cyclotron resonance spectrometer has proven to be a convenient and powerful method for generating metal ions and for studying their subsequent chemistry in the gas phase. The main emphasis of this research has been on the application of metal ions as a selective chemical ionization reagents and progress in this area are discussed. The goal is to identify trends in reactivity i.e. mechanisms useful in interpreting the chemical ionization spectra of unknown compounds and to test for the functional group selectivity of the various metal ions. The feasibility of these goals have been demonstrated in extensive studies on Cu + with esters and ketones, on Fe + with ethers, ketones, and hydrocarbons, and on Ti + with hydrocarbons. In addition, preliminary results on sulfur containing compounds and on a variety of other metallic ions have been obtained. Laboratory facilities were expanded from one ion cyclotron resonance (ICR) spectrometer to two, plus a third instrument the Fourier Transform Ion Cyclotron Resonance (FTICR) spectrometer

  9. Mediterranean climate change and Indian Ocean warming

    International Nuclear Information System (INIS)

    Hoerling, M.; Eischeid, J.; Hurrel, J.

    2006-01-01

    General circulation model (GCM) responses to 20. century changes in sea surface temperatures (SSTs) and greenhouse gases are diagnosed, with emphasis on their relationship to observed regional climate change over the Mediterranean region. A major question is whether the Mediterranean region's drying trend since 1950 can be understood as a consequence of the warming trend in tropical SSTs. We focus on the impact of Indian Ocean warming, which is itself the likely result of increasing greenhouse gases. It is discovered that a strong projection onto the positive polarity of the North Atlantic Oscillation (NAO) index characterizes the atmospheric response structure to the 1950-1999 warming of Indian Ocean SSTs. This influence appears to be robust in so far as it is reproduced in ensembles of experiments using three different GCMs. Both the equilibrium and transient responses to Indian Ocean warming are examined. Under each scenario, the latitude of prevailing mid latitude westerlies shifts poleward during the November-April period. The consequence is a drying of the Mediterranean region, whereas northern Europe and Scandinavia receive increased precipitation in concert with the poleward shift of storminess. The IPCC (TAR) 20. century coupled ocean-atmosphere simulations forced by observed greenhouse gas changes also yield a post-1950 drying trend over the Mediterranean. We argue that this feature of human-induced regional climate change is the outcome of a dynamical feedback, one involving Indian Ocean warming and a requisite adjustment of atmospheric circulation systems to such ocean warming

  10. National contributions to observed global warming

    International Nuclear Information System (INIS)

    Matthews, H Damon; Graham, Tanya L; Keverian, Serge; Lamontagne, Cassandra; Seto, Donny; Smith, Trevor J

    2014-01-01

    There is considerable interest in identifying national contributions to global warming as a way of allocating historical responsibility for observed climate change. This task is made difficult by uncertainty associated with national estimates of historical emissions, as well as by difficulty in estimating the climate response to emissions of gases with widely varying atmospheric lifetimes. Here, we present a new estimate of national contributions to observed climate warming, including CO 2 emissions from fossil fuels and land-use change, as well as methane, nitrous oxide and sulfate aerosol emissions While some countries’ warming contributions are reasonably well defined by fossil fuel CO 2 emissions, many countries have dominant contributions from land-use CO 2 and non-CO 2 greenhouse gas emissions, emphasizing the importance of both deforestation and agriculture as components of a country’s contribution to climate warming. Furthermore, because of their short atmospheric lifetime, recent sulfate aerosol emissions have a large impact on a country’s current climate contribution We show also that there are vast disparities in both total and per-capita climate contributions among countries, and that across most developed countries, per-capita contributions are not currently consistent with attempts to restrict global temperature change to less than 2 °C above pre-industrial temperatures. (paper)

  11. Committed warming inferred from observations and an energy balance model

    Science.gov (United States)

    Pincus, R.; Mauritsen, T.

    2017-12-01

    Due to the lifetime of CO2 and thermal inertia of the ocean, the Earth's climate is not equilibrated with anthropogenic forcing. As a result, even if fossil fuel emissions were to suddenly cease, some level of committed warming is expected due to past emissions. Here, we provide an observational-based quantification of this committed warming using the instrument record of global-mean warming, recently-improved estimates of Earth's energy imbalance, and estimates of radiative forcing from the fifth IPCC assessment report. Compared to pre-industrial levels, we find a committed warming of 1.5K [0.9-3.6, 5-95 percentile] at equilibrium, and of 1.3K [0.9-2.3] within this century. However, when assuming that ocean carbon uptake cancels remnant greenhouse gas-induced warming on centennial timescales, committed warming is reduced to 1.1K [0.7-1.8]. Conservatively, there is a 32% risk that committed warming already exceeds the 1.5K target set in Paris, and that this will likely be crossed prior to 2053. Regular updates of these observationally-constrained committed warming estimates, though simplistic, can provide transparent guidance as uncertainty regarding transient climate sensitivity inevitably narrows and understanding the limitations of the framework is advanced.

  12. Matrix Assisted and/or Laser Desorption Ionization Quadrupole Ion Trap Time-of-Flight Mass Spectrometry of WO3 Clusters Formation in Gas Phase. Nanodiamonds, Fullerene, and Graphene Oxide Matrices

    Science.gov (United States)

    Ausekar, Mayuri Vilas; Mawale, Ravi Madhukar; Pazdera, Pavel; Havel, Josef

    2018-03-01

    The formation of W x O y +●/-● clusters in the gas phase was studied by laser desorption ionization (LDI) and matrix assisted laser desorption ionization (MALDI) of solid WO3. LDI produced (WO3) n + ●/- ● ( n = 1-7) clusters. In MALDI, when using nano-diamonds (NDs), graphene oxide (GO), or fullerene (C60) matrices, higher mass clusters were generated. In addition to (WO3) n -● clusters, oxygen-rich or -deficient species were found in both LDI and MALDI (with the total number of clusters exceeding one hundred ≈ 137). This is the first time that such matrices have been used for the generation of(WO3) n + ●/-● clusters in the gas phase, while new high mass clusters (WO3) n -● ( n = 12-19) were also detected. [Figure not available: see fulltext.

  13. Two-phase xenon detector with gas amplification and electroluminescent signal detection

    International Nuclear Information System (INIS)

    Akimov, D.Yu.; Burenkov, A.A.; Grishkin, Yu.L.; Kovalenko, A.G.; Lebedenko, V.N.; Stekhanov, V.N.

    2008-01-01

    An optical technique for detecting ionization electrons produced during ionization of the liquid phase has been experimentally tested in two-phase (liquid-gas) xenon. The effects of gas and electroluminescent amplifications at the wire anode are simultaneously used for detection. This method allows construction of a supersensitive detector of small ionization signals-down to those corresponding to the detection of single electrons [ru

  14. THE GAS CONSUMPTION HISTORY TO REDSHIFT 4

    International Nuclear Information System (INIS)

    Bauermeister, Amber; Blitz, Leo; Ma, Chung-Pei

    2010-01-01

    Using the observations of the star formation rate (SFR) and H I densities to z ∼ 4, with measurements of the molecular gas depletion rate (MGDR) and local density of H 2 at z = 0, we derive the history of the gas consumption by star formation to z ∼ 4. We find that closed-box models in which H 2 is not replenished by H I require improbably large increases in ρ(H 2 ) and a decrease in the MGDR with lookback time that is inconsistent with observations. Allowing the H 2 used in star formation to be replenished by H I does not alleviate the problem because observations show that there is very little evolution of ρ H I (z) from z = 0 to z = 4. We show that to be consistent with observational constraints, star formation on cosmic timescales must be fueled by intergalactic ionized gas, which may come from either accretion of gas through cold (but ionized) flows, or from ionized gas associated with accretion of dark matter halos. We constrain the rate at which the extragalactic ionized gas must be converted into H I and ultimately into H 2 . The ionized gas inflow rate roughly traces the SFR density: about 1-2 x 10 8 M sun Gyr -1 Mpc -3 from z ≅ 1-4, decreasing by about an order of magnitude from z = 1 to z = 0 with details depending largely on MGDR(t). All models considered require the volume-averaged density of ρ H 2 to increase by a factor of 1.5-10 to z ∼ 1.5 over the currently measured value. Because the molecular gas must reside in galaxies, it implies that galaxies at high-z must, on average, be more molecule rich than they are at the present epoch, which is consistent with observations. These quantitative results, derived solely from observations, agree well with cosmological simulations.

  15. Comparison of Atmospheric Pressure Chemical Ionization and Field Ionization Mass Spectrometry for the Analysis of Large Saturated Hydrocarbons.

    Science.gov (United States)

    Jin, Chunfen; Viidanoja, Jyrki; Li, Mingzhe; Zhang, Yuyang; Ikonen, Elias; Root, Andrew; Romanczyk, Mark; Manheim, Jeremy; Dziekonski, Eric; Kenttämaa, Hilkka I

    2016-11-01

    Direct infusion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was compared to field ionization mass spectrometry (FI-MS) for the determination of hydrocarbon class distributions in lubricant base oils. When positive ion mode APCI with oxygen as the ion source gas was employed to ionize saturated hydrocarbon model compounds (M) in hexane, only stable [M - H] + ions were produced. Ion-molecule reaction studies performed in a linear quadrupole ion trap suggested that fragment ions of ionized hexane can ionize saturated hydrocarbons via hydride abstraction with minimal fragmentation. Hence, APCI-MS shows potential as an alternative of FI-MS in lubricant base oil analysis. Indeed, the APCI-MS method gave similar average molecular weights and hydrocarbon class distributions as FI-MS for three lubricant base oils. However, the reproducibility of APCI-MS method was found to be substantially better than for FI-MS. The paraffinic content determined using the APCI-MS and FI-MS methods for the base oils was similar. The average number of carbons in paraffinic chains followed the same increasing trend from low viscosity to high viscosity base oils for the two methods.

  16. Climate warming: what we can actually expect

    International Nuclear Information System (INIS)

    Delbecq, Denis; Lemarchand, Fabienne; Boucher, Olivier; Dessus, Benjamin; Laponche, Bernard; Le Treut, Herve

    2013-01-01

    As the next IPCC (Intergovernmental Panel on Climate Change) report is soon to be published, a paleo-climatologist answers few questions about issues related to climate change (recent climate events, slower temperature increase during the past ten years, lessons learned from the previous IPCC report, evolutions of models, remaining opportunities to limit temperature increase to 2 degrees). A second article comments climate modelling improvements (finer description of oceans, atmosphere and ice field, introduction of new mechanisms in IPCC models such as carbon cycle, vegetation evolution, aerosols and atmospheric chemistry, models relying on greenhouse gas emission principles and not on socioeconomic scenarios any longer). A third article outlines that Earth has never been so warm since 1850 and proposes some explanations about the fact that warming has slowed down during the last ten years. A fourth article discusses how greenhouse gas emissions can be reduced, notices that their accounting underestimates the short-term and medium-term impact of methane emission reduction, and stresses the importance of an increased attention to methane emissions

  17. Collective acceleration investigations with the ionization front accelerator

    International Nuclear Information System (INIS)

    Olson, C.L.; Poukey, J.W.; VanDevender, J.P.; Owyoung, A.; Pearlman, J.S.

    1977-01-01

    Part I of a three part program to demonstrate feasibility of the Ionization Front Accelerator (IFA) has been completed and is successful. Experiments describing intense relativistic electron beam (IREB) propagation in Cs are reported. The threshold pressure for electron beam ionization of Cs is found to agree with earlier theoretical predictions. These results experimentally establish Cs as a feasible working gas for the IFA. Numerical simulation results are also reported which demonstrate controlled potential well motion and collective ion acceleration with the IFA

  18. A Laboratory Experiment To Measure Henry's Law Constants of Volatile Organic Compounds with a Bubble Column and a Gas Chromatography Flame Ionization Detector (GC-FID)

    Science.gov (United States)

    Lee, Shan-Hu; Mukherjee, Souptik; Brewer, Brittany; Ryan, Raphael; Yu, Huan; Gangoda, Mahinda

    2013-01-01

    An undergraduate laboratory experiment is described to measure Henry's law constants of organic compounds using a bubble column and gas chromatography flame ionization detector (GC-FID). This experiment is designed for upper-division undergraduate laboratory courses and can be implemented in conjunction with physical chemistry, analytical…

  19. Potential of atmospheric pressure chemical ionization source in gas chromatography tandem mass spectrometry for the screening of urinary exogenous androgenic anabolic steroids.

    Science.gov (United States)

    Raro, M; Portolés, T; Pitarch, E; Sancho, J V; Hernández, F; Garrostas, L; Marcos, J; Ventura, R; Segura, J; Pozo, O J

    2016-02-04

    The atmospheric pressure chemical ionization (APCI) source for gas chromatography-mass spectrometry analysis has been evaluated for the screening of 16 exogenous androgenic anabolic steroids (AAS) in urine. The sample treatment is based on the strategy currently applied in doping control laboratories i.e. enzymatic hydrolysis, liquid-liquid extraction (LLE) and derivatization to form the trimethylsilyl ether-trimethylsilyl enol ether (TMS) derivatives. These TMS derivatives are then analyzed by gas chromatography tandem mass spectrometry using a triple quadrupole instrument (GC-QqQ MS/MS) under selected reaction monitoring (SRM) mode. The APCI promotes soft ionization with very little fragmentation resulting, in most cases, in abundant [M + H](+) or [M + H-2TMSOH](+) ions, which can be chosen as precursor ions for the SRM transitions, improving in this way the selectivity and sensitivity of the method. Specificity of the transitions is also of great relevance, as the presence of endogenous compounds can affect the measurements when using the most abundant ions. The method has been qualitatively validated by spiking six different urine samples at two concentration levels each. Precision was generally satisfactory with RSD values below 25 and 15% at the low and high concentration level, respectively. Most the limits of detection (LOD) were below 0.5 ng mL(-1). Validation results were compared with the commonly used method based on the electron ionization (EI) source. EI analysis was found to be slightly more repeatable whereas lower LODs were found for APCI. In addition, the applicability of the developed method has been tested in samples collected after the administration of 4-chloromethandienone. The highest sensitivity of the APCI method for this compound, allowed to increase the period in which its administration can be detected. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Is global warming mostly at night?

    International Nuclear Information System (INIS)

    Kukla, G.; Quayle, R.G.; Karl, T.

    1994-01-01

    The release of greenhouse gases is expected to lead to substantial future warming. The global mean temperature has indeed risen in recent decades. The causes of the observed warming, and its relation to the greenhouse gas buildup are, however, still debated. One important aspect of the observed temperature change relates to its asymmetry during the day and night. The day-night temperature difference over land in North America, most of Eurasia, Oceania, and portions of Africa and Australia shows a decrease since about 1950. The changes of the daily mean temperature in these areas are principally due to the rising night or early morning temperature, and are accompanied by increasing cloudiness. Their results support the notion that the increase of cloud cover, possibly due to industrial sulfur emissions, mitigates the greenhouse warming. The causes of the changing diurnal temperature range and of the increasing cloudiness will have to be clarified and the future SO 2 emissions reliably projected before any trustworthy prediction of future climates can be made. 37 refs., 7 figs., 2 tabs

  1. Negative chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Smit, A.L.C.

    1979-01-01

    This thesis describes some aspects of Negative Chemical Ionization (NCI) mass spectrometry. The reasons for the growing interest in NCI are: (i) to extend the basic knowledge of negative ions and their reactions in the gas phase; (ii) to investigate whether or not this knowledge of negative ions can be used successfully to elucidate the structure of molecules by mass spectrometry. (Auth.)

  2. ALMA Maps of Dust and Warm Dense Gas Emission in the Starburst Galaxy IC 5179

    Science.gov (United States)

    Zhao, Yinghe; Lu, Nanyao; Díaz-Santos, Tanio; Xu, C. Kevin; Gao, Yu; Charmandaris, Vassilis; van der Werf, Paul; Zhang, Zhi-Yu; Cao, Chen

    2017-08-01

    We present our high-resolution (0.″15 × 0.″13, ˜34 pc) observations of the CO (6-5) line emission, which probes the warm and dense molecular gas, and the 434 μm dust continuum emission in the nuclear region of the starburst galaxy IC 5179, conducted with the Atacama Large Millimeter Array (ALMA). The CO (6-5) emission is spatially distributed in filamentary structures with many dense cores and shows a velocity field that is characteristic of a circumnuclear rotating gas disk, with 90% of the rotation speed arising within a radius of ≲150 pc. At the scale of our spatial resolution, the CO (6-5) and dust emission peaks do not always coincide, with their surface brightness ratio varying by a factor of ˜10. This result suggests that their excitation mechanisms are likely different, as further evidenced by the southwest to northeast spatial gradient of both CO-to-dust continuum ratio and Pa-α equivalent width. Within the nuclear region (radius ˜ 300 pc) and with a resolution of ˜34 pc, the CO line flux (dust flux density) detected in our ALMA observations is 180 ± 18 Jy km s-1 (71 ± 7 mJy), which accounts for 22% (2.4%) of the total value measured by Herschel. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  3. Diffusion and drift regimes of plasma ionization wave propagation in a microwave field

    International Nuclear Information System (INIS)

    Khodataev, K.V.; Gorelik, B.R.

    1997-01-01

    Investigation into diffusion and drift modes of a plasma ionization wave propagation in the microwave field are conducted within the framework of a one-dimensional model with regard to gas ionization by electron shock in an electrical field, adhesion, mobility and diffusion of electrons

  4. Dependence of charge collection distributions and dose on the gas type filling the ionization chamber for a p(66)Be(49) clinical neutron beam

    International Nuclear Information System (INIS)

    Awschalom, M.; Haken, R.K.T.

    1985-01-01

    Measurements of central axis depth charge distributions (CADCD) in a p(66)Be(49) clinical neutron beam using A-150 TE plastic ionization chambers (IC) have shown that these distributions are dependent on the gas type filling the ICs. IC volumes from 0.1 to 8 cm 3 and nine different gases were investigated. Off axis ratios and build-up measurements do not seem to be as sensitive to gas type. The gas dosimetry constants given in the AAPM Protocol for Neutron Beam Dosimetry for air and methane based TE gases were tested for consistency in water and in TE solution filled phantoms at depths of 10 cm, when used in conjunction with an IC having 5 mm thick walls of A-150. 29 refs., 7 figs., 1 tab

  5. Noble-gas ionization in the ion source with Penning effect

    International Nuclear Information System (INIS)

    Monchka, D.; Lyatushinskij, A.; Vasyak, A.

    1982-01-01

    By additional use of that the ion source efficiency can be increased the Penning ionization. The results of estimates of certain coefficients for the processes taking place in the plasma ion sources are presented

  6. Validation of an analytical method for simultaneous high-precision measurements of greenhouse gas emissions from wastewater treatment plants using a gas chromatography-barrier discharge detector system.

    Science.gov (United States)

    Pascale, Raffaella; Caivano, Marianna; Buchicchio, Alessandro; Mancini, Ignazio M; Bianco, Giuliana; Caniani, Donatella

    2017-01-13

    Wastewater treatment plants (WWTPs) emit CO 2 and N 2 O, which may lead to climate change and global warming. Over the last few years, awareness of greenhouse gas (GHG) emissions from WWTPs has increased. Moreover, the development of valid, reliable, and high-throughput analytical methods for simultaneous gas analysis is an essential requirement for environmental applications. In the present study, an analytical method based on a gas chromatograph (GC) equipped with a barrier ionization discharge (BID) detector was developed for the first time. This new method simultaneously analyses CO 2 and N 2 O and has a precision, measured in terms of relative standard of variation RSD%, equal to or less than 6.6% and 5.1%, respectively. The method's detection limits are 5.3ppm v for CO 2 and 62.0ppb v for N 2 O. The method's selectivity, linearity, accuracy, repeatability, intermediate precision, limit of detection and limit of quantification were good at trace concentration levels. After validation, the method was applied to a real case of N 2 O and CO 2 emissions from a WWTP, confirming its suitability as a standard procedure for simultaneous GHG analysis in environmental samples containing CO 2 levels less than 12,000mg/L. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The ionization length in plasmas with finite temperature ion sources

    Science.gov (United States)

    Jelić, N.; Kos, L.; Tskhakaya, D. D.; Duhovnik, J.

    2009-12-01

    The ionization length is an important quantity which up to now has been precisely determined only in plasmas which assume that the ions are born at rest, i.e., in discharges known as "cold ion-source" plasmas. Presented here are the results of our calculations of the ionization lengths in plasmas with an arbitrary ion source temperature. Harrison and Thompson (H&T) [Proc. Phys. Soc. 74, 145 (1959)] found the values of this quantity for the cases of several ion strength potential profiles in the well-known Tonks-Langmuir [Phys. Rev. 34, 876 (1929)] discharge, which is characterized by "cold" ion temperature. This scenario is also known as the "singular" ion-source discharge. The H&T analytic result covers cases of ion sources proportional to exp(βΦ) with Φ the normalized plasma potential and β =0,1,2 values, which correspond to particular physical scenarios. Many years following H&T's work, Bissell and Johnson (B&J) [Phys. Fluids 30, 779 (1987)] developed a model with the so-called "warm" ion-source temperature, i.e., "regular" ion source, under B&J's particular assumption that the ionization strength is proportional to the local electron density. However, it appears that B&J were not interested in determining the ionization length at all. The importance of this quantity to theoretical modeling was recognized by Riemann, who recently answered all the questions of the most advanced up-to-date plasma-sheath boundary theory with cold ions [K.-U. Riemann, Phys. Plasmas 13, 063508 (2006)] but still without the stiff warm ion-source case solution, which is highly resistant to solution via any available analytic method. The present article is an extension of H&T's results obtained for a single point only with ion source temperature Tn=0 to arbitrary finite ion source temperatures. The approach applied in this work is based on the method recently developed by Kos et al. [Phys. Plasmas 16, 093503 (2009)].

  8. Warm Absorber Diagnostics of AGN Dynamics

    Science.gov (United States)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  9. Study on time response properties of ionization chamber in profile gauge

    International Nuclear Information System (INIS)

    Wang Zhentao; Shen Yixiong; Wang Liqiang; Hao Pengfei

    2011-01-01

    The drift time of ions in the ionization chamber was measured by means of using a shortly pulsed X-ray device and through analyzing the voltage signals on the load resistor of the chamber recorded by a digital oscilloscope. By using this method, the time response properties of the ionization chamber in the profile gauge were studied, results of ion drift time for ionization chambers with different internal structures, different voltages and different gas pressures were introduced and the sources of error were discussed. The experiment results show that the time response of ionization chamber in profile gauge meets the requirement of on-line hot strip measuring. (authors)

  10. Study of turbulent and shock heated IGM gas with emission line spectroscopy in the Taffy galaxies

    Science.gov (United States)

    Joshi, Bhavin; Appleton, Phil; Blanc, Guillermo; Guillard, Pierre; Freeland, Emily; Peterson, Bradley; Alatalo, Katherine

    2018-01-01

    We present our results from optical IFU observations of the Taffy system (UGC 12914/15); named so because of the radio emission that stretches between the two galaxies. The Taffy galaxies are a major merger pair of galaxies where two gas-rich spiral galaxies have collided face on and passed through each other. The pair presents an unusually low IR luminosity (L_FIR ~ 4.5 x 10^{10} L_solar) and SFR (~ 0.23 M_solar / yr) for a typical post merger system. It was also found from Spitzer and Chandra observations that the Taffy "bridge" between the galaxies contains large amounts of warm molecular Hydrogen, >4.5 x 10^8 M_solar at 150-175K, and also shows soft X-ray emission. These results hinted at shock heating as a likely mechanism for heating the large amounts of gas in the Taffy bridge and keeping it at these temperatures, after other sources of heating are ruled out. The data we present in this paper are from the VIRUS-P instrument (now called GCMS) on the Harlan J. Smith 2.7m telescope at McDonald Observatory. We detect ionized gas all throughout the Taffy galaxies and in the bridge between them. Interestingly, the ionized gas shows emission line profiles with two velocity components almost all throughout the system. We also show evidence, through line diagnostic (BPT) diagrams, that the velocity component with lower velocity is likely excited by star formation whereas the velocity component with higher velocity is likely excited by shocks. We also find evidence for post-starburst populations in parts of the Taffy system.

  11. Identification of volatiles by headspace gas chromatography with simultaneous flame ionization and mass spectrometric detection.

    Science.gov (United States)

    Tiscione, Nicholas B; Yeatman, Dustin Tate; Shan, Xiaoqin; Kahl, Joseph H

    2013-10-01

    Volatiles are frequently abused as inhalants. The methods used for identification are generally nonspecific if analyzed concurrently with ethanol or require an additional analytical procedure that employs mass spectrometry. A previously published technique utilizing a capillary flow technology splitter to simultaneously quantitate and confirm ethyl alcohol by flame ionization and mass spectrometric detection after headspace sampling and gas chromatographic separation was evaluated for the detection of inhalants. Methanol, isopropanol, acetone, acetaldehyde, toluene, methyl ethyl ketone, isoamyl alcohol, isobutyl alcohol, n-butyl alcohol, 1,1-difluoroethane, 1,1,1-trifluoroethane, 1,1,1,2-tetrafluoroethane (Norflurane, HFC-134a), chloroethane, trichlorofluoromethane (Freon®-11), dichlorodifluoromethane (Freon®-12), dichlorofluoromethane (Freon®-21), chlorodifluoromethane (Freon®-22) and 1,2-dichlorotetrafluoroethane (Freon®-114) were validated for qualitative identification by this method. The validation for qualitative identification included evaluation of matrix effects, sensitivity, carryover, specificity, repeatability and ruggedness/robustness.

  12. Use of a hand-portable gas chromatograph-toroidal ion trap mass spectrometer for self-chemical ionization identification of degradation products related to O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Philip A., E-mail: Smith.Philip.A@dol.gov [Uniformed Services University of the Health Sciences, Department of Preventive Medicine and Biometrics, 4301 Jones Bridge Road, Bethesda, MD, 20814 (United States); Lepage, Carmela R. Jackson [Defence R and D Canada - Suffield, Box 400, Station Main, Medicine Hat, Alberta, T1A 8K6 (Canada); Savage, Paul B. [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT, 84602 (United States); Bowerbank, Christopher R.; Lee, Edgar D. [Torion Technologies Inc., 796 East Utah Valley Drive, Suite 200, American Fork, UT, 84003 (United States); Lukacs, Michael J. [Defence R and D Canada - Suffield, Box 400, Station Main, Medicine Hat, Alberta, T1A 8K6 (Canada)

    2011-04-01

    The chemical warfare agent O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX) and many related degradation products produce poorly diagnostic electron ionization (EI) mass spectra by transmission quadrupole mass spectrometry. Thus, chemical ionization (CI) is often used for these analytes. In this work, pseudomolecular ([M+H]{sup +}) ion formation from self-chemical ionization (self-CI) was examined for four VX degradation products containing the diisopropylamine functional group. A person-portable toroidal ion trap mass spectrometer with a gas chromatographic inlet was used with EI, and both fixed-duration and feedback-controlled ionization time. With feedback-controlled ionization, ion cooling (reaction) times and ion formation target values were varied. Evidence for protonation of analytes was observed under all conditions, except for the largest analyte, bis(diisopropylaminoethyl)disulfide which yielded [M+H]{sup +} ions only with increased fixed ionization or ion cooling times. Analysis of triethylamine-d{sub 15} provided evidence that [M+H]{sup +} production was likely due to self-CI. Analysis of a degraded VX sample where lengthened ion storage and feedback-controlled ionization time were used resulted in detection of [M+H]{sup +} ions for VX and several relevant degradation products. Dimer ions were also observed for two phosphonate compounds detected in this sample.

  13. Use of a hand-portable gas chromatograph-toroidal ion trap mass spectrometer for self-chemical ionization identification of degradation products related to O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX)

    International Nuclear Information System (INIS)

    Smith, Philip A.; Lepage, Carmela R. Jackson; Savage, Paul B.; Bowerbank, Christopher R.; Lee, Edgar D.; Lukacs, Michael J.

    2011-01-01

    The chemical warfare agent O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX) and many related degradation products produce poorly diagnostic electron ionization (EI) mass spectra by transmission quadrupole mass spectrometry. Thus, chemical ionization (CI) is often used for these analytes. In this work, pseudomolecular ([M+H] + ) ion formation from self-chemical ionization (self-CI) was examined for four VX degradation products containing the diisopropylamine functional group. A person-portable toroidal ion trap mass spectrometer with a gas chromatographic inlet was used with EI, and both fixed-duration and feedback-controlled ionization time. With feedback-controlled ionization, ion cooling (reaction) times and ion formation target values were varied. Evidence for protonation of analytes was observed under all conditions, except for the largest analyte, bis(diisopropylaminoethyl)disulfide which yielded [M+H] + ions only with increased fixed ionization or ion cooling times. Analysis of triethylamine-d 15 provided evidence that [M+H] + production was likely due to self-CI. Analysis of a degraded VX sample where lengthened ion storage and feedback-controlled ionization time were used resulted in detection of [M+H] + ions for VX and several relevant degradation products. Dimer ions were also observed for two phosphonate compounds detected in this sample.

  14. Online Simultaneous Hydrogen/Deuterium Exchange of Multitarget Gas-Phase Molecules by Electrospray Ionization Mass Spectrometry Coupled with Gas Chromatography.

    Science.gov (United States)

    Jeong, Eun Sook; Cha, Eunju; Cha, Sangwon; Kim, Sunghwan; Oh, Han Bin; Kwon, Oh-Seung; Lee, Jaeick

    2017-11-21

    In this study, a hydrogen/deuterium (H/D) exchange method using gas chromatography-electrospray ionization/mass spectrometry (GC-ESI/MS) was first investigated as a novel tool for online H/D exchange of multitarget analytes. The GC and ESI source were combined with a homemade heated column transfer line. GC-ESI/MS-based H/D exchange occurs in an atmospheric pressure ion source as a result of reacting the gas-phase analyte eluted from GC with charged droplets of deuterium oxide infused as the ESI spray solvent. The consumption of the deuterated solvent at a flow rate of 2 μL min -1 was more economical than that in online H/D exchange methods reported to date. In-ESI-source H/D exchange by GC-ESI/MS was applied to 11 stimulants with secondary amino or hydroxyl groups. After H/D exchange, the spectra of the stimulants showed unexchanged, partially exchanged, and fully exchanged ions showing various degrees of exchange. The relative abundances corrected for naturally occurring isotopes of the fully exchanged ions of stimulants, except for etamivan, were in the range 24.3-85.5%. Methylephedrine and cyclazodone showed low H/D exchange efficiency under acidic, neutral, and basic spray solvent conditions and nonexchange for etamivan with an acidic phenolic OH group. The in-ESI-source H/D exchange efficiency by GC-ESI/MS was sufficient to determine the number of hydrogen by elucidation of fragmentation from the spectrum. Therefore, this online H/D exchange technique using GC-ESI/MS has potential as an alternative method for simultaneous H/D exchange of multitarget analytes.

  15. Multiphoton ionization of H2+ in xuv laser pulses

    International Nuclear Information System (INIS)

    Guan Xiaoxu; Secor, Ethan B.; Bartschat, Klaus; Schneider, Barry I.

    2011-01-01

    We consider the ionization of the hydrogen molecular ion after one-, two-, and three-photon absorption over a large range of photon energies between 9 and 40 eV in the fixed-nuclei approximation. The temporal development of the system is obtained in a fully ab initio time-dependent grid-based approach in prolate spheroidal coordinates. The alignment dependence of the one-photon ionization amplitude is highlighted in the framework of time-dependent perturbation theory. For one-photon ionization as a function of the nuclear separation, the calculations reveal a significant minimum in the ionization probability. The suppressed ionization is attributed to a Cooper-type minimum, which is similar, but not identical, to the cancellation effect observed in photoionization cross sections of some noble-gas atoms. The effect of the nonspherical two-center Coulomb potential is analyzed. For two- and three-photon ionization, the angle-integrated cross sections clearly map out intermediate-state resonances, and the predictions of the current computations agree very well with those from time-independent calculations. The dominant emission modes for two-photon ionization are found to be very similar in both resonance and off-resonance regions.

  16. Dwarf galaxies with ionizing radiation feedback. II. Spatially resolved star formation relation

    International Nuclear Information System (INIS)

    Kim, Ji-hoon; Krumholz, Mark R.; Goldbaum, Nathan J.; Wise, John H.; Turk, Matthew J.; Abel, Tom

    2013-01-01

    We investigate the spatially resolved star formation relation using a galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation. Our new implementation of stellar feedback includes ionizing radiation as well as supernova explosions, and we handle ionizing radiation by solving the radiative transfer equation rather than by a subgrid model. Photoheating by stellar radiation stabilizes gas against Jeans fragmentation, reducing the star formation rate (SFR). Because we have self-consistently calculated the location of ionized gas, we are able to make simulated, spatially resolved observations of star formation tracers, such as Hα emission. We can also observe how stellar feedback manifests itself in the correlation between ionized and molecular gas. Applying our techniques to the disk in a galactic halo of 2.3 × 10 11 M ☉ , we find that the correlation between SFR density (estimated from mock Hα emission) and H 2 density shows large scatter, especially at high resolutions of ≲75 pc that are comparable to the size of giant molecular clouds (GMCs). This is because an aperture of GMC size captures only particular stages of GMC evolution and because Hα traces hot gas around star-forming regions and is displaced from the H 2 peaks themselves. By examining the evolving environment around star clusters, we speculate that the breakdown of the traditional star formation laws of the Kennicutt-Schmidt type at small scales is further aided by a combination of stars drifting from their birthplaces and molecular clouds being dispersed via stellar feedback.

  17. Dwarf galaxies with ionizing radiation feedback. II. Spatially resolved star formation relation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-hoon; Krumholz, Mark R.; Wise, John H.; Turk, Matthew J.; Goldbaum, Nathan J.; Abel, Tom

    2013-11-15

    AWe investigate the spatially resolved star formation relation using a galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation. Our new implementation of stellar feedback includes ionizing radiation as well as supernova explosions, and we handle ionizing radiation by solving the radiative transfer equation rather than by a subgrid model. Photoheating by stellar radiation stabilizes gas against Jeans fragmentation, reducing the star formation rate (SFR). Because we have self-consistently calculated the location of ionized gas, we are able to make simulated, spatially resolved observations of star formation tracers, such as Hα emission. We can also observe how stellar feedback manifests itself in the correlation between ionized and molecular gas. Applying our techniques to the disk in a galactic halo of 2.3 × 1011 M , we find that the correlation between SFR density (estimated from mock Hα emission) and H2 density shows large scatter, especially at high resolutions of ≲ 75 pc that are comparable to the size of giant molecular clouds (GMCs). This is because an aperture of GMC size captures only particular stages of GMC evolution and because Hα traces hot gas around star-forming regions and is displaced from the H2 peaks themselves. By examining the evolving environment around star clusters, we speculate that the breakdown of the traditional star formation laws of the Kennicutt-Schmidt type at small scales is further aided by a combination of stars drifting from their birthplaces and molecular clouds being dispersed via stellar feedback.

  18. VizieR Online Data Catalog: Effects of preionization in radiative shocks (Sutherland+, 2017)

    Science.gov (United States)

    Sutherland, R. S.; Dopita, M. A.

    2017-06-01

    In this paper we treat the preionization problem in shocks over the velocity range 10ionization parameter of the UV photons escaping upstream. This parameter determines both the temperature and the degree of ionization of the gas entering the shock. In increasing velocity, the shock solution regimes are cold neutral precursors (vs<~40km/s), warm neutral precursors (40<~vs<~75km/s), warm partly ionized precursors (75<~vs<~120km/s), and fast shocks in which the preshock gas is in photoionization equilibrium and is fully ionized. The main effect of a magnetic field is to push these velocity ranges to higher values and to limit the postshock compression. In order to facilitate comparison with observations of shocks, we provide a number of convenient scaling relationships for parameters, such as postshock temperature, compression factors, cooling lengths, and Hβ and X-ray luminosity. (4 data files).

  19. Mass spectra and ionization temperatures in an argon-nitrogen inductively coupled plasma

    International Nuclear Information System (INIS)

    Houk, R.S.; Montaser, A.; Fassel, V.A.

    1983-01-01

    Positive ions were extracted from the axial channel of an inductively coupled plasma (ICP) in which the outer gas flow was Ar, N 2 , or a mixture of Ar and N 2 . Addition of N 2 to the outer gas decreases the electron number density (n/sub e/) in the axial channel. Ar +2 , O 2 + , and ArH + react with N-containing species in the plasma and/or during the ion extraction process. Ar + remains abundant even if there is no Ar in the outer gas, which indicates the probable occurrence of charge transfer reactions between N 2 + and Ar. The present work corroborates two general concepts upon which several theories of theorigin of suprathermal ionization in ICPs are based: (a) species are physically transported from the induction region to the axial channel; and (b) these species may react with a ionize neutral species in the axial channel. Ionization temperatures (T/sub ion/) measured from the ratio Cd + /I + were 5750 to 6700 K for a N 2 outer flow ICP a forward power of 1.2 kW. This T/sub ion/ range is significantly below that obtained for an Ar outer gas ICP under otherwise similar operating parameters

  20. A prototype ionization profile monitor for RHIC

    International Nuclear Information System (INIS)

    Connolly, R.; Cameron, P.; Ryan, W.

    1997-01-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM's). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests

  1. A prototype ionization profile monitor for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Cameron, P.; Ryan, W. [and others

    1997-07-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM`s). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests.

  2. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    International Nuclear Information System (INIS)

    Carnelli, P.F.F.; Almaraz-Calderon, S.; Rehm, K.E.; Albers, M.; Alcorta, M.; Bertone, P.F.; Digiovine, B.; Esbensen, H.; Fernández Niello, J.; Henderson, D.; Jiang, C.L.; Lai, J.; Marley, S.T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R.C.; Paul, M.; Ugalde, C.

    2015-01-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the 10,13,15 C+ 12 C fusion reactions at energies around the Coulomb barrier

  3. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    Energy Technology Data Exchange (ETDEWEB)

    Carnelli, P.F.F. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Almaraz-Calderon, S. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Rehm, K.E., E-mail: rehm@anl.gov [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Albers, M.; Alcorta, M.; Bertone, P.F.; Digiovine, B.; Esbensen, H. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Fernández Niello, J. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Universidad Nacional de San Martín, Campus Miguelete, B1650BWA San Martín, Buenos Aires (Argentina); Henderson, D.; Jiang, C.L. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Lai, J. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Marley, S.T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R.C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem (Israel); Ugalde, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-11-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the {sup 10,13,15}C+{sup 12}C fusion reactions at energies around the Coulomb barrier.

  4. Improving quantitative gas chromatography-electron ionization mass spectrometry results using a modified ion source: demonstration for a pharmaceutical application.

    Science.gov (United States)

    D'Autry, Ward; Wolfs, Kris; Hoogmartens, Jos; Adams, Erwin; Van Schepdael, Ann

    2011-07-01

    Gas chromatography-mass spectrometry is a well established analytical technique. However, mass spectrometers with electron ionization sources may suffer from signal drifts, hereby negatively influencing quantitative performance. To demonstrate this phenomenon for a real application, a static headspace-gas chromatography method in combination with electron ionization-quadrupole mass spectrometry was optimized for the determination of residual dichloromethane in coronary stent coatings. Validating the method, the quantitative performance of an original stainless steel ion source was compared to that of a modified ion source. Ion source modification included the application of a gold coating on the repeller and exit plate. Several validation aspects such as limit of detection, limit of quantification, linearity and precision were evaluated using both ion sources. It was found that, as expected, the stainless steel ion source suffered from signal drift. As a consequence, non-linearity and high RSD values for repeated analyses were obtained. An additional experiment was performed to check whether an internal standard compound would lead to better results. It was found that the signal drift patterns of the analyte and internal standard were different, consequently leading to high RSD values for the response factor. With the modified ion source however, a more stable signal was observed resulting in acceptable linearity and precision. Moreover, it was also found that sensitivity improved compared to the stainless steel ion source. Finally, the optimized method with the modified ion source was applied to determine residual dichloromethane in the coating of coronary stents. The solvent was detected but found to be below the limit of quantification. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Degradation of chlorpyrifos by ionizing radiation

    International Nuclear Information System (INIS)

    Mori, M.N.; Oikawa, H.; Sampa, M.H.O.; Duarte, C.L.

    2006-01-01

    Chlorpyrifos is an organophosphate pesticide commercialized since 1965 and it is now one of the top five commercial insecticides. It is registered for use in over 900 different pesticide formulations in the world. Chlorpyrifos poisoning usually affects many organs of the body, such as the central and peripheral nervous system, eyes, respiratory system, and the digestive tract. Depending on the pesticide formulation and type of application, chlorpyrifos residues may be detectable in water, soil, and on the surfaces from months to years. This paper presents preliminary studies of the removal of chlorpyrifos by exposition to ionizing radiation, to be applied in pesticide container decontamination. Samples containing various concentrations of chlorpyrifos in acetonitrile were irradiated with absorbed doses varying from 5 to 50 kGy, using a 60 Co gamma-source with 5,000 Ci activity (Gamma cell type). The chemical analysis of the chlorpyrifos and the by-products resulted from the radiolytic degradation were made using a gas chromatography associated to mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GCFID). (author)

  6. Initial ionization stage of FRC formation

    International Nuclear Information System (INIS)

    Commisso, R.J.; Armstrong, W.T.; Cochrane, J.C.; Ekdahl, C.A.; Lipson, J.; Linford, R.K.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

    1980-01-01

    A Field-Reversed Configuration (FRC) is a prolate compact torus that is confined by poloidal fields only. Theta-pinch formation of an FRC employs an initial bias field, B 1 , whose direction is opposite to that of the main theta-pinch field. Some fraction of the flux associated with this bias field eventually constitutes the closed-field-line flux of the FRC. Experimental and theoretical evidence suggest that the longest-lived FRC's are obtained when the closed flux is maximized. Because the initial ionization is done in the presence of the bias field, the actual bias flux available at the time of application of the main theta-pinch field depends strongly on the initial ionization, or preionization, technique used. In this paper we report on experiments characterizing the previously used theta-pinch preionization technique that employed a net field (bias plus preionization) null, or zero-crossing, of the axial component of the magnetic field to break down the gas. We also discuss results of experiments designed to develop preionization techniques in which the gas breakdown is not accomplished by a zero-crossing

  7. High-global warming potential F-gas emissions in California: comparison of ambient-based versus inventory-based emission estimates, and implications of refined estimates.

    Science.gov (United States)

    Gallagher, Glenn; Zhan, Tao; Hsu, Ying-Kuang; Gupta, Pamela; Pederson, James; Croes, Bart; Blake, Donald R; Barletta, Barbara; Meinardi, Simone; Ashford, Paul; Vetter, Arnie; Saba, Sabine; Slim, Rayan; Palandre, Lionel; Clodic, Denis; Mathis, Pamela; Wagner, Mark; Forgie, Julia; Dwyer, Harry; Wolf, Katy

    2014-01-21

    To provide information for greenhouse gas reduction policies, the California Air Resources Board (CARB) inventories annual emissions of high-global-warming potential (GWP) fluorinated gases, the fastest growing sector of greenhouse gas (GHG) emissions globally. Baseline 2008 F-gas emissions estimates for selected chlorofluorocarbons (CFC-12), hydrochlorofluorocarbons (HCFC-22), and hydrofluorocarbons (HFC-134a) made with an inventory-based methodology were compared to emissions estimates made by ambient-based measurements. Significant discrepancies were found, with the inventory-based emissions methodology resulting in a systematic 42% under-estimation of CFC-12 emissions from older refrigeration equipment and older vehicles, and a systematic 114% overestimation of emissions for HFC-134a, a refrigerant substitute for phased-out CFCs. Initial, inventory-based estimates for all F-gas emissions had assumed that equipment is no longer in service once it reaches its average lifetime of use. Revised emission estimates using improved models for equipment age at end-of-life, inventories, and leak rates specific to California resulted in F-gas emissions estimates in closer agreement to ambient-based measurements. The discrepancies between inventory-based estimates and ambient-based measurements were reduced from -42% to -6% for CFC-12, and from +114% to +9% for HFC-134a.

  8. Anesthetic gases and global warming: Potentials, prevention and future of anesthesia.

    Science.gov (United States)

    Gadani, Hina; Vyas, Arun

    2011-01-01

    Global warming refers to an average increase in the earth's temperature, which in turn causes changes in climate. A warmer earth may lead to changes in rainfall patterns, a rise in sea level, and a wide range of impacts on plants, wildlife, and humans. Greenhouse gases make the earth warmer by trapping energy inside the atmosphere. Greenhouse gases are any gas that absorbs infrared radiation in the atmosphere and include: water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), halogenated fluorocarbons (HCFCs), ozone (O3), perfluorinated carbons (PFCs), and hydrofluorocarbons (HFCs). Hazardous chemicals enter the air we breathe as a result of dozens of activities carried out during a typical day at a healthcare facility like processing lab samples, burning fossil fuels etc. We sometimes forget that anesthetic agents are also greenhouse gases (GHGs). Anesthetic agents used today are volatile halogenated ethers and the common carrier gas nitrous oxide known to be aggressive GHGs. With less than 5% of the total delivered halogenated anesthetic being metabolized by the patient, the vast majority of the anesthetic is routinely vented to the atmosphere through the operating room scavenging system. The global warming potential (GWP) of a halogenated anesthetic is up to 2,000 times greater than CO2. Global warming potentials are used to compare the strength of different GHGs to trap heat in the atmosphere relative to that of CO2. Here we discuss about the GWP of anesthetic gases, preventive measures to decrease the global warming effects of anesthetic gases and Xenon, a newer anesthetic gas for the future of anesthesia.

  9. Comments on GUT monopole energy loss and ionization

    International Nuclear Information System (INIS)

    Hagstrom, R.

    1982-01-01

    A few comments about the likely behavior of the electromagnetic energy loss and ionization rates of super-slowly moving magnetic monopoles are presented. The questions of energy loss rates and ionization rates for super-low monopoles passing through matter are considered, concentrating on aspects of these issues which affect practical detection techniques. It is worthwhile here to emphasize that there is a potentially great distinction between energy loss rates and ionization rates and that the magnitude of this distinction is really the great issue which must be settled in order to understand the significance of experimental results from present and proposed investigations of the slow monopole question. Energy loss here means the total dE/dX of the projectile due to interactions with the electrons of the slowing medium. To the extent that nuclear collisions can be neglected, this so-called electronic energy loss is the relevant quantity in questions about whether monopoles stop within the earth's crust, whether they are slowed by interstellar plasmas, or the signal in a truly calorimetric measurement (measuring temperature rises along the trajectory), etc. Most of our successful detection techniques depend upon the promotion of ground state electrons into states which lie above some energy gap in the material of the detector: electrons must be knocked completely free from the gas atoms in a proportional chamber gas, electrons must be promoted to a higher band in solid scintillator plastics. These processes are generically identified as ionization

  10. Ionized Gas Outflows from the MAGNUM Survey: NGC 1365 and NGC 4945

    Directory of Open Access Journals (Sweden)

    Giacomo Venturi

    2017-11-01

    Full Text Available AGN feedback, acting through strong outflows accelerated in the nuclear region of AGN hosts, is invoked as a key ingredient for galaxy evolution by many models to explain the observed BH-galaxy scaling relations. Recently, some direct observational evidence of radiative mode feedback in action has been finally found in quasars at z >1.5. However, it is not possible to study outflows in quasars at those redshifts on small scales (≲100 pc, as spatial information is limited by angular resolution. This is instead feasible in nearby active galaxies, which are ideal laboratories to explore outflow structure and properties, as well as the effects of AGN on their host galaxies. In this proceeding we present preliminary results from the MAGNUM survey, which comprises nearby Seyfert galaxies observed with the integral field spectrograph VLT/MUSE. We focus on two sources, NGC 1365 and NGC 4945, that exhibit double conical outflows extending on distances >1 kpc. We disentangle the dominant contributions to ionization of the various gas components observed in the central ~5.3 kpc of NGC 1365. An attempt to infer outflow 3D structure in NGC 4945 is made via simple kinematic modeling, suggesting a hollow cone geometry.

  11. Paris Agreement climate proposals need a boost to keep warming well below 2 °C.

    Science.gov (United States)

    Rogelj, Joeri; den Elzen, Michel; Höhne, Niklas; Fransen, Taryn; Fekete, Hanna; Winkler, Harald; Schaeffer, Roberto; Sha, Fu; Riahi, Keywan; Meinshausen, Malte

    2016-06-30

    The Paris climate agreement aims at holding global warming to well below 2 degrees Celsius and to "pursue efforts" to limit it to 1.5 degrees Celsius. To accomplish this, countries have submitted Intended Nationally Determined Contributions (INDCs) outlining their post-2020 climate action. Here we assess the effect of current INDCs on reducing aggregate greenhouse gas emissions, its implications for achieving the temperature objective of the Paris climate agreement, and potential options for overachievement. The INDCs collectively lower greenhouse gas emissions compared to where current policies stand, but still imply a median warming of 2.6-3.1 degrees Celsius by 2100. More can be achieved, because the agreement stipulates that targets for reducing greenhouse gas emissions are strengthened over time, both in ambition and scope. Substantial enhancement or over-delivery on current INDCs by additional national, sub-national and non-state actions is required to maintain a reasonable chance of meeting the target of keeping warming well below 2 degrees Celsius.

  12. Characterizing the drivers of seedling leaf gas exchange responses to warming and altered precipitation: indirect and direct effects.

    Science.gov (United States)

    Smith, Nicholas G; Pold, Grace; Goranson, Carol; Dukes, Jeffrey S

    2016-01-01

    Anthropogenic forces are projected to lead to warmer temperatures and altered precipitation patterns globally. The impact of these climatic changes on the uptake of carbon by the land surface will, in part, determine the rate and magnitude of these changes. However, there is a great deal of uncertainty in how terrestrial ecosystems will respond to climate in the future. Here, we used a fully factorial warming (four levels) by precipitation (three levels) manipulation experiment in an old-field ecosystem in the northeastern USA to examine the impact of climatic changes on leaf carbon exchange in five species of deciduous tree seedlings. We found that photosynthesis generally increased in response to increasing precipitation and decreased in response to warming. Respiration was less sensitive to the treatments. The net result was greater leaf carbon uptake in wetter and cooler conditions across all species. Structural equation modelling revealed the primary pathway through which climate impacted leaf carbon exchange. Net photosynthesis increased with increasing stomatal conductance and photosynthetic enzyme capacity (V cmax ), and decreased with increasing respiration of leaves. Soil moisture and leaf temperature at the time of measurement most heavily influenced these primary drivers of net photosynthesis. Leaf respiration increased with increasing soil moisture, leaf temperature, and photosynthetic supply of substrates. Counter to the soil moisture response, respiration decreased with increasing precipitation amount, indicating that the response to short- (i.e. soil moisture) versus long-term (i.e. precipitation amount) water stress differed, possibly as a result of changes in the relative amounts of growth and maintenance demand for respiration over time. These data (>500 paired measurements of light and dark leaf gas exchange), now publicly available, detail the pathways by which climate can impact leaf gas exchange and could be useful for testing assumptions in

  13. Kinematic Study of Ionized and Molecular Gases in Ultracompact HII Region in Monoceros R2

    Science.gov (United States)

    Kim, Hwihyun; Lacy, John H.; Jaffe, Daniel Thomas

    2017-06-01

    Monoceros R2 (Mon R2) is an UltraCompact HII region (UCHII) surrounded by several PhotoDissociation Regions (PDRs). It is an excellent example to investigate the chemistry and physics of early stage of massive star formation due to its proximity (830pc) and brightness. Previous studies suggest that the wind from the star holds the ionized gas up against the dense molecular core and the higher pressure at the head drives the ionized gas along the shell. In order for the model to work, there should be evidence for dense molecular gas along the shell walls, irradiated by the UCHII region and perhaps entrained into the flow along the walls.We obtained the Immersion Grating INfrared Spectrograph (IGRINS) spectra of Mon R2 to study the kinematic patterns in the areas where ionized and molecular gases interact. The position-velocity maps from the high resolution (R~45,000) H- and K-band (1.4-2.5μm) IGRINS spectra demonstrate that the ionized gases (Brackett and Pfund series, He and Fe emission lines; Δv ≈ 40km/s) flow along the walls of the surrounding clouds. This is consistent with the model by Zhu et al. (2008). In the PV maps of the H2 emission lines there is no obvious motion (Δv ≈ 10km/s) of the molecular hydrogen right at the ionization boundary. This implies that the molecular gas is not taking part in the flow as the ionized gas is moving along the cavity walls.This work used the Immersion Grating Infrared Spectrograph (IGRINS) that was developed under a collaboration between the University of Texas at Austin and the Korea Astronomy and Space Science Institute (KASI) with the financial support of the US National Science Foundation (NSF; grant AST-1229522), of the University of Texas at Austin, and of the Korean GMTProject of KASI.

  14. Current Issues in Finite-T Density-Functional Theory and Warm-Correlated Matter †

    Directory of Open Access Journals (Sweden)

    M. W. C. Dharma-wardana

    2016-03-01

    Full Text Available Finite-temperature density functional theory (DFT has become of topical interest, partly due to the increasing ability to create novel states of warm-correlated matter (WCM.Warm-dense matter (WDM, ultra-fast matter (UFM, and high-energy density matter (HEDM may all be regarded as subclasses of WCM. Strong electron-electron, ion-ion and electron-ion correlation effects and partial degeneracies are found in these systems where the electron temperature Te is comparable to the electron Fermi energy EF. Thus, many electrons are in continuum states which are partially occupied. The ion subsystem may be solid, liquid or plasma, with many states of ionization with ionic charge Zj. Quasi-equilibria with the ion temperature Ti ≠ Te are common. The ion subsystem in WCM can no longer be treated as a passive “external potential”, as is customary in T = 0 DFT dominated by solid-state theory or quantum chemistry. Many basic questions arise in trying to implement DFT for WCM. Hohenberg-Kohn-Mermin theory can be adapted for treating these systems if suitable finite-T exchange-correlation (XC functionals can be constructed. They are functionals of both the one-body electron density ne and the one-body ion densities ρj. Here, j counts many species of nuclei or charge states. A method of approximately but accurately mapping the quantum electrons to a classical Coulomb gas enables one to treat electron-ion systems entirely classically at any temperature and arbitrary spin polarization, using exchange-correlation effects calculated in situ, directly from the pair-distribution functions. This eliminates the need for any XC-functionals. This classical map has been used to calculate the equation of state of WDM systems, and construct a finite-T XC functional that is found to be in close agreement with recent quantum path-integral simulation data. In this review, current developments and concerns in finite-T DFT, especially in the context of non-relativistic warm

  15. Method and apparatus for analyzing ionizable materials

    International Nuclear Information System (INIS)

    Ehrlich, B.J.; Hall, R.C.; Thiede, P.W.

    1979-01-01

    An apparatus and method are described for analyzing a solution of ionizable compounds in a liquid. The solution is irradiated with electromagnetic radiation to ionize the compounds and the electrical conductivity of the solution is measured. The radiation may be X-rays, ultra-violet, infra-red or microwaves. The solution may be split into two streams, only one of which is irradiated, the other being used as a reference by comparing conductivities of the two streams. The liquid must be nonionizable and is preferably a polar solvent. The invention provides an analysis technique useful in liquid chromatography and in gas chromatography after dissolving the eluted gases in a suitable solvent. Electrical conductivity measurements performed on the irradiated eluent provide a quantitative indication of the ionizable materials existing within the eluent stream and a qualitative indication of the purity of the eluent stream. (author)

  16. Development of a gas-phase field ionization ion source

    International Nuclear Information System (INIS)

    Allan, G.L.; Legge, G.J.F.

    1983-01-01

    A field ionization ion source has been developed to investigate the suitability of using such a source with the Melbourne Proton Microprobe. Operating parameters have been measured, and the source has been found to be brighter than the radiofrequency ion source presently used in the Melbourne 5U Pelletron Accelerator. Improvements to the source geometry to increase the current output are planned

  17. Unlocking CO Depletion in Protoplanetary Disks. I. The Warm Molecular Layer

    Science.gov (United States)

    Schwarz, Kamber R.; Bergin, Edwin A.; Cleeves, L. Ilsedore; Zhang, Ke; Öberg, Karin I.; Blake, Geoffrey A.; Anderson, Dana

    2018-03-01

    CO is commonly used as a tracer of the total gas mass in both the interstellar medium and in protoplanetary disks. Recently, there has been much debate about the utility of CO as a mass tracer in disks. Observations of CO in protoplanetary disks reveal a range of CO abundances, with measurements of low CO to dust mass ratios in numerous systems. One possibility is that carbon is removed from CO via chemistry. However, the full range of physical conditions conducive to this chemical reprocessing is not well understood. We perform a systematic survey of the time dependent chemistry in protoplanetary disks for 198 models with a range of physical conditions. We vary dust grain size distribution, temperature, comic-ray and X-ray ionization rates, disk mass, and initial water abundance, detailing what physical conditions are necessary to activate the various CO depletion mechanisms in the warm molecular layer. We focus our analysis on the warm molecular layer in two regions: the outer disk (100 au) well outside the CO snowline and the inner disk (19 au) just inside the midplane CO snowline. After 1 Myr, we find that the majority of models have a CO abundance relative to H2 less than 10‑4 in the outer disk, while an abundance less than 10‑5 requires the presence of cosmic-rays. Inside the CO snowline, significant depletion of CO only occurs in models with a high cosmic-ray rate. If cosmic-rays are not present in young disks, it is difficult to chemically remove carbon from CO. Additionally, removing water prior to CO depletion impedes the chemical processing of CO. Chemical processing alone cannot explain current observations of low CO abundances. Other mechanisms must also be involved.

  18. Assembly and application of an instrument for attosecond-time-resolved ionization chronoscopy

    International Nuclear Information System (INIS)

    Uphues, T.

    2006-11-01

    In the framework of this thesis a new setup for attosecond time-resolved measurements has been built and observations of ionization dynamics in rare gas atoms have been made. This new technique is entitled Ionization Chronoscopy and gives further evidence that time-resolved experiments in the attosecond regime will become a powerful tool for investigations in atomic physics. (orig.)

  19. FIRST INVESTIGATION OF THE COMBINED IMPACT OF IONIZING RADIATION AND MOMENTUM WINDS FROM A MASSIVE STAR ON A SELF-GRAVITATING CORE

    International Nuclear Information System (INIS)

    Ngoumou, Judith; Hubber, David; Dale, James E.; Burkert, Andreas

    2015-01-01

    Massive stars shape the surrounding interstellar matter (ISM) by emitting ionizing photons and ejecting material through stellar winds. To study the impact of the momentum from the wind of a massive star on the surrounding neutral or ionized material, we implemented a new HEALPix-based momentum-conserving wind scheme in the smoothed particle hydrodynamics (SPH) code SEREN. A qualitative study of the impact of the feedback from an O7.5-like star on a self-gravitating sphere shows that on its own, the transfer of momentum from a wind onto cold surrounding gas has both a compressing and dispersing effect. It mostly affects gas at low and intermediate densities. When combined with a stellar source's ionizing ultraviolet (UV) radiation, we find the momentum-driven wind to have little direct effect on the gas. We conclude that during a massive star's main sequence, the UV ionizing radiation is the main feedback mechanism shaping and compressing the cold gas. Overall, the wind's effects on the dense gas dynamics and on the triggering of star formation are very modest. The structures formed in the ionization-only simulation and in the combined feedback simulation are remarkably similar. However, in the combined feedback case, different SPH particles end up being compressed. This indicates that the microphysics of gas mixing differ between the two feedback simulations and that the winds can contribute to the localized redistribution and reshuffling of gas

  20. Recent global-warming hiatus tied to equatorial Pacific surface cooling.

    Science.gov (United States)

    Kosaka, Yu; Xie, Shang-Ping

    2013-09-19

    Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-mean global temperature has not risen in the twenty-first century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus in global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method of uncovering mechanisms for global temperature change by prescribing, in addition to radiative forcing, the observed history of sea surface temperature over the central to eastern tropical Pacific in a climate model. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with correlation coefficient r = 0.97 for 1970-2012 (which includes the current hiatus and a period of accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern North America and the prolonged drought in the southern USA. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La-Niña-like decadal cooling. Although similar decadal hiatus events may occur in the future, the multi-decadal warming trend is very likely to continue with greenhouse gas increase.

  1. The role of stellar feedback in the dynamics of H II regions

    International Nuclear Information System (INIS)

    Lopez, Laura A.; Castro, Daniel; Krumholz, Mark R.; Prochaska, J. Xavier; Ramirez-Ruiz, Enrico; Bolatto, Alberto D.

    2014-01-01

    Stellar feedback is often cited as the biggest uncertainty in galaxy formation models today. This uncertainty stems from a dearth of observational constraints as well as the great dynamic range between the small scales (≲1 pc) where the feedback originates and the large scales of galaxies (≳1 kpc) that are shaped by this feedback. To bridge this divide, in this paper we aim to assess observationally the role of stellar feedback at the intermediate scales of H II regions (∼10-100 pc). In particular, we employ multiwavelength data to examine several stellar feedback mechanisms in a sample of 32 H II regions (with ages ∼3-10 Myr) in the Large and Small Magellanic Clouds, respectively. Using optical, infrared, radio, and X-ray images, we measure the pressures exerted on the shells from the direct stellar radiation, the dust-processed radiation, the warm ionized gas, and the hot X-ray-emitting gas. We find that the warm ionized gas dominates over the other terms in all of the sources, although two have comparable dust-processed radiation pressures to their warm gas pressures. The hot gas pressures are comparatively weak, while the direct radiation pressures are one to two orders of magnitude below the other terms. We discuss the implications of these results, particularly highlighting evidence for hot gas leakage from the H II shells and regarding the momentum deposition from the dust-processed radiation to the warm gas. Furthermore, we emphasize that similar observational work should be done on very young H II regions to test whether direct radiation pressure and hot gas can drive the dynamics at early times.

  2. Kinetic theory of transport processes in weakly ionized gases

    International Nuclear Information System (INIS)

    Odenhoven, F.J.F. van

    1984-01-01

    A consistent method for the treatment of a plasma of arbitrary degree of ionization is presented. This method consists of a perturbation expansion in the framework of the multiple time scales formalism. Here the results are presented for a weakly ionized gas where elastic electron-atom collisions dominate. It appears that an isotropic correction to the zeroth order Maxwellian electron distribution function is necessary. Calculated electron transport coefficients are compared with the Frost mixture rule and with other calculations. (orig.)

  3. Spherical ionization chamber of 14 liter for precise measurement of environmental radiation dose rate

    International Nuclear Information System (INIS)

    Nagaoka, Toshi; Saito, Kimiaki; Moriuchi, Shigeru

    1991-05-01

    A spherical ionization chamber of 14 liter filled with 1 atm. nitrogen gas was arranged aiming at precise measurement of dose rate due to environmental gamma rays and cosmic rays. Ionization current-dose rate conversion factor for this ionization chamber was derived from careful consideration taking into account the attenuation by chamber wall, ionization current due to alpha particles and so on. Experiments at calibrated gamma ray fields and intercomparison with NaI(Tl) scintillation detector were also performed, which confirmed this ionization chamber using the conversion factor can measure the dose rate with an error of only a few percent. This ionization chamber will be used for measurement of environmental gamma ray and cosmic ray dose rate. (author)

  4. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, Nathan P [Canadian Centre for Climate Modelling and Analysis, Environment Canada, University of Victoria, PO Box 1700, STN CSC, Victoria, BC, V8W 3V6 (Canada); Matthews, H Damon, E-mail: nathan.gillett@ec.gc.ca [Department of Geography, Planning and Environment, Concordia University, 1455 de Maisonneuve West, H 1255-26, Montreal, QC, H3G 1M8 (Canada)

    2010-07-15

    Greenhouse gases other than CO{sub 2} make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO{sub 2} emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO{sub 2} and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO{sub 2} following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by {approx} 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO{sub 2} from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  5. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    International Nuclear Information System (INIS)

    Gillett, Nathan P; Matthews, H Damon

    2010-01-01

    Greenhouse gases other than CO 2 make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO 2 emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO 2 and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO 2 following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by ∼ 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO 2 from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  6. Climate change and global warming potentials

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    Climate change and the global budgets of the two main energy consumption related greenhouse gases, CO 2 and CH 4 , are discussed. The global warming potential (GWP) of the non-CO 2 greenhouse gases is defined and the large range of GWPs of CH 4 in the literature is discussed. GWPs are expected to play an important role in energy policies and negotiations concerning lowering greenhouse gas emissions. (author). 20 refs, 4 figs, 4 tabs

  7. Combined Determination of Poly-β-Hydroxyalkanoic and Cellular Fatty Acids in Starved Marine Bacteria and Sewage Sludge by Gas Chromatography with Flame Ionization or Mass Spectrometry Detection

    Science.gov (United States)

    Odham, Göran; Tunlid, Anders; Westerdahl, Gunilla; Mårdén, Per

    1986-01-01

    Extraction of lipids from bacterial cells or sewage sludge samples followed by simple and rapid extraction procedures and room temperature esterification with pentafluorobenzylbromide allowed combined determinations of poly-β-hydroxyalkanoate constituents and fatty acids. Capillary gas chromatography and flame ionization or mass spectrometric detection was used. Flame ionization permitted determination with a coefficient of variation ranging from 10 to 27% at the picomolar level, whereas quantitative chemical ionization mass spectrometry afforded sensitivities for poly-β-hydroxyalkanoate constituuents in the attomolar range. The latter technique suggests the possibility of measuring such components in bacterial assemblies with as few as 102 cells. With the described technique using flame ionization detection, it was possible to study the rapid formation of poly-β-hydroxyalkanoate during feeding of a starved marine bacterium isolate with a complex medium or glucose and correlate the findings to changes in cell volumes. Mass spectrometric detection of short β-hydroxy acids in activated sewage sludge revealed the presence of 3-hydroxybutyric, 3-hydroxyhexanoic, and 3-hydroxyoctanoic acids in the relative proportions of 56, 5 and 39%, respectively. No odd-chain β-hydroxy acids were found. PMID:16347181

  8. On the SIMS Ionization Probability of Organic Molecules.

    Science.gov (United States)

    Popczun, Nicholas J; Breuer, Lars; Wucher, Andreas; Winograd, Nicholas

    2017-06-01

    The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α + ) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10 -5 . Our lab has developed a method for the direct determination of α + in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound. Here, we apply this method to coronene (C 24 H 12 ), a polyaromatic hydrocarbon that exhibits strong molecular signal during gas-phase photoionization. A two-dimensional spatial distribution of sputtered neutral molecules is measured and presented. It is shown that the ionization probability of molecular coronene desorbed from a clean film under bombardment with 40 keV C 60 cluster projectiles is of the order of 10 -3 , with some remaining uncertainty arising from laser-induced fragmentation and possible differences in the emission velocity distributions of neutral and ionized molecules. In general, this work establishes a method to estimate the ionization efficiency of molecular species sputtered during a single bombardment event. Graphical Abstract GRAPHICAL ABSTRACT TEXT HERE] -->.

  9. Electron ionization and dissociation of aliphatic amino acids

    Science.gov (United States)

    Papp, P.; Shchukin, P.; Kočíšek, J.; Matejčík, Š.

    2012-09-01

    We present experimental and theoretical study of electron ionization and dissociative ionization to the gas phase amino acids valine, leucine, and isoleucine. A crossed electron/molecular beams technique equipped with quadrupole mass analyzer has been applied to measure mass spectra and ion efficiency curves for formation of particular ions. From experimental data the ionization energies of the molecules and the appearance energies of the fragment ions were determined. Ab initio calculations (Density Functional Theory and G3MP2 methods) were performed in order to calculate the fragmentation paths and interpret the experimental data. The experimental ionization energies of parent molecules [P]+ 8.91 ± 0.05, 8.85 ± 0.05, and 8.79 ± 0.05 eV and G3MP2 ionization energies (adiabatic) of 8.89, 8.88, and 8.81 eV were determined for valine, leucine, and isoleucine, respectively, as well as the experimental and theoretical threshold energies for dissociative ionization channels. The comparison of experimental data with calculations resulted in identification of the ions as well as the neutral fragments formed in the dissociative reactions. Around 15 mass/charge ratio fragments were identified from the mass spectra by comparison of experimental appearance energies with calculated reaction enthalpies for particular dissociative reactions.

  10. X-ray Thomson scattering in warm dense matter at low frequencies

    International Nuclear Information System (INIS)

    Murillo, Michael S.

    2010-01-01

    The low-frequency portion of the x-ray Thomson scattering spectrum is determined by electrons that follow the slow ion motion. This ion motion is characterized by the ion-ion dynamic structure factor, which contains a wealth of information about the ions, including structure and collective modes. The frequency-integrated (diffraction) contribution is considered first. An effective dressed-particle description of warm dense matter is derived from the quantum Ornstein-Zernike equations, and this is used to identify a Yukawa model for warm dense matter. The efficacy of this approach is validated by comparing a predicted structure with data from the extreme case of a liquid metal; good agreement is found. A Thomas-Fermi model is then introduced to allow the separation of bound and free states at finite temperatures, and issues with the definition of the ionization state in warm dense matter are discussed. For applications, analytic structure factors are given on either side of the Kirkwood line. Finally, several models are constructed for describing the slow dynamics of warm dense matter. Two classes of models are introduced that both satisfy the basic sum rules. One class of models is the 'plasmon-pole'-like class, which yields the dispersion of ion-acoustic waves. Damping is then included via generalized hydrodynamics models that incorporate viscous contributions.

  11. Priority setting of strategies and mechanisms for limiting global warming

    International Nuclear Information System (INIS)

    Lewis, S.J.L.

    1994-01-01

    Scientific communities have reached a consensus that increases of greenhouse gas emission will result in climatic warming and sea level rises despite existing uncertainties. Major uncertainties include the sensitivities of climate changes in terms of timing, magnitude, and scales of regional changes. Socioeconomic uncertainties encompass population and economic growth, changes in technology, future reliance on fossil fuel, and policies compiled to stabilize the global warming. Moreover, increase in world population coupled with limited resources will increase the vulnerability of ecosystems and social systems. Global warming has become an international concern since the destinies of all nations are closely interwoven by this issue and how nations deal with it. Appropriate strategies and mechanisms are need to slow down the buildup of CO 2 and other greenhouse gases. Questionnaires were sent to 150 experts in 30 countries to evaluate such strategies and mechanisms for dealing with global warming, from both the domestic and international perspectives. This paper will focus primarily on strategy selection

  12. SDSS IV MaNGA—Rotation Velocity Lags in the Extraplanar Ionized Gas from MaNGA Observations of Edge-on Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Bizyaev, D.; Pan, K.; Brinkmann, J. [Apache Point Observatory and New Mexico State University, Sunspot, NM 88349 (United States); Walterbos, R. A. M. [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Yoachim, P. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Riffel, R. A. [Departamento de Física, CCNE, Universidade Federal de Santa Maria, Av. Roraima, 1000-97105-900, Santa Maria, RS (Brazil); Fernández-Trincado, J. G. [Institut Utinam, CNRS UMR 6213, Université de Franche-Comté, OSU THETA Franche-Comté-Bourgogne, Observatoire de Besançon, BP 1615, F-25010 Besançon Cedex (France); Diamond-Stanic, A. M. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Jones, A. [Max-Planck Institute for Astrophysics, Karl-Schwarzschild-Str 1, Garching, D-85748 (Germany); Thomas, D. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX (United Kingdom); Cleary, J. [Department of Physics and Astronomy, Johns Hopkins University, Bloomberg Center, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2017-04-20

    We present a study of the kinematics of the extraplanar ionized gas around several dozen galaxies observed by the Mapping of Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. We considered a sample of 67 edge-on galaxies out of more than 1400 extragalactic targets observed by MaNGA, in which we found 25 galaxies (or 37%) with regular lagging of the rotation curve at large distances from the galactic midplane. We model the observed H α emission velocity fields in the galaxies, taking projection effects and a simple model for the dust extinction into account. We show that the vertical lag of the rotation curve is necessary in the modeling, and estimate the lag amplitude in the galaxies. We find no correlation between the lag and the star formation rate in the galaxies. At the same time, we report a correlation between the lag and the galactic stellar mass, central stellar velocity dispersion, and axial ratio of the light distribution. These correlations suggest a possible higher ratio of infalling-to-local gas in early-type disk galaxies or a connection between lags and the possible presence of hot gaseous halos, which may be more prevalent in more massive galaxies. These results again demonstrate that observations of extraplanar gas can serve as a potential probe for accretion of gas.

  13. SDSS IV MaNGA—Rotation Velocity Lags in the Extraplanar Ionized Gas from MaNGA Observations of Edge-on Galaxies

    International Nuclear Information System (INIS)

    Bizyaev, D.; Pan, K.; Brinkmann, J.; Walterbos, R. A. M.; Yoachim, P.; Riffel, R. A.; Fernández-Trincado, J. G.; Diamond-Stanic, A. M.; Jones, A.; Thomas, D.; Cleary, J.

    2017-01-01

    We present a study of the kinematics of the extraplanar ionized gas around several dozen galaxies observed by the Mapping of Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. We considered a sample of 67 edge-on galaxies out of more than 1400 extragalactic targets observed by MaNGA, in which we found 25 galaxies (or 37%) with regular lagging of the rotation curve at large distances from the galactic midplane. We model the observed H α emission velocity fields in the galaxies, taking projection effects and a simple model for the dust extinction into account. We show that the vertical lag of the rotation curve is necessary in the modeling, and estimate the lag amplitude in the galaxies. We find no correlation between the lag and the star formation rate in the galaxies. At the same time, we report a correlation between the lag and the galactic stellar mass, central stellar velocity dispersion, and axial ratio of the light distribution. These correlations suggest a possible higher ratio of infalling-to-local gas in early-type disk galaxies or a connection between lags and the possible presence of hot gaseous halos, which may be more prevalent in more massive galaxies. These results again demonstrate that observations of extraplanar gas can serve as a potential probe for accretion of gas.

  14. SDSS IV MaNGA—Rotation Velocity Lags in the Extraplanar Ionized Gas from MaNGA Observations of Edge-on Galaxies

    Science.gov (United States)

    Bizyaev, D.; Walterbos, R. A. M.; Yoachim, P.; Riffel, R. A.; Fernández-Trincado, J. G.; Pan, K.; Diamond-Stanic, A. M.; Jones, A.; Thomas, D.; Cleary, J.; Brinkmann, J.

    2017-04-01

    We present a study of the kinematics of the extraplanar ionized gas around several dozen galaxies observed by the Mapping of Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. We considered a sample of 67 edge-on galaxies out of more than 1400 extragalactic targets observed by MaNGA, in which we found 25 galaxies (or 37%) with regular lagging of the rotation curve at large distances from the galactic midplane. We model the observed Hα emission velocity fields in the galaxies, taking projection effects and a simple model for the dust extinction into account. We show that the vertical lag of the rotation curve is necessary in the modeling, and estimate the lag amplitude in the galaxies. We find no correlation between the lag and the star formation rate in the galaxies. At the same time, we report a correlation between the lag and the galactic stellar mass, central stellar velocity dispersion, and axial ratio of the light distribution. These correlations suggest a possible higher ratio of infalling-to-local gas in early-type disk galaxies or a connection between lags and the possible presence of hot gaseous halos, which may be more prevalent in more massive galaxies. These results again demonstrate that observations of extraplanar gas can serve as a potential probe for accretion of gas.

  15. Novel Laser Ignition Technique Using Dual-Pulse Pre-Ionization

    Science.gov (United States)

    Dumitrache, Ciprian

    Recent advances in the development of compact high power laser sources and fiber optic delivery of giant pulses have generated a renewed interest in laser ignition. The non-intrusive nature of laser ignition gives it a set of unique characteristics over the well-established capacitive discharge devices (or spark plugs) that are currently used as ignition sources in engines. Overall, the use of laser ignition has been shown to have a positive impact on engine operation leading to a reduction in NOx emission, fuel saving and an increased operational envelope of current engines. Conventionally, laser ignition is achieved by tightly focusing a high-power q-switched laser pulse until the optical intensity at the focus is high enough to breakdown the gas molecules. This leads to the formation of a spark that serves as the ignition source in engines. However, there are certain disadvantages associated with this ignition method. This ionization approach is energetically inefficient as the medium is transparent to the laser radiation until the laser intensity is high enough to cause gas breakdown. As a consequence, very high energies are required for ignition (about an order of magnitude higher energy than capacitive plugs at stoichiometric conditions). Additionally, the fluid flow induced during the plasma recombination generates high vorticity leading to high rates of flame stretching. In this work, we are addressing some of the aforementioned disadvantages of laser ignition by developing a novel approach based on a dual-pulse pre-ionization scheme. The new technique works by decoupling the effect of the two ionization mechanisms governing plasma formation: multiphoton ionization (MPI) and electron avalanche ionization (EAI). An UV nanosecond pulse (lambda = 266 nm) is used to generate initial ionization through MPI. This is followed by an overlapped NIR nanosecond pulse (lambda = 1064 nm) that adds energy into the pre-ionized mixture into a controlled manner until the

  16. The requirements for low-temperature plasma ionization support miniaturization of the ion source.

    Science.gov (United States)

    Kiontke, Andreas; Holzer, Frank; Belder, Detlev; Birkemeyer, Claudia

    2018-06-01

    Ambient ionization mass spectrometry (AI-MS), the ionization of samples under ambient conditions, enables fast and simple analysis of samples without or with little sample preparation. Due to their simple construction and low resource consumption, plasma-based ionization methods in particular are considered ideal for use in mobile analytical devices. However, systematic investigations that have attempted to identify the optimal configuration of a plasma source to achieve the sensitive detection of target molecules are still rare. We therefore used a low-temperature plasma ionization (LTPI) source based on dielectric barrier discharge with helium employed as the process gas to identify the factors that most strongly influence the signal intensity in the mass spectrometry of species formed by plasma ionization. In this study, we investigated several construction-related parameters of the plasma source and found that a low wall thickness of the dielectric, a small outlet spacing, and a short distance between the plasma source and the MS inlet are needed to achieve optimal signal intensity with a process-gas flow rate of as little as 10 mL/min. In conclusion, this type of ion source is especially well suited for downscaling, which is usually required in mobile devices. Our results provide valuable insights into the LTPI mechanism; they reveal the potential to further improve its implementation and standardization for mobile mass spectrometry as well as our understanding of the requirements and selectivity of this technique. Graphical abstract Optimized parameters of a dielectric barrier discharge plasma for ionization in mass spectrometry. The electrode size, shape, and arrangement, the thickness of the dielectric, and distances between the plasma source, sample, and MS inlet are marked in red. The process gas (helium) flow is shown in black.

  17. Greater future global warming inferred from Earth's recent energy budget.

    Science.gov (United States)

    Brown, Patrick T; Caldeira, Ken

    2017-12-06

    Climate models provide the principal means of projecting global warming over the remainder of the twenty-first century but modelled estimates of warming vary by a factor of approximately two even under the same radiative forcing scenarios. Across-model relationships between currently observable attributes of the climate system and the simulated magnitude of future warming have the potential to inform projections. Here we show that robust across-model relationships exist between the global spatial patterns of several fundamental attributes of Earth's top-of-atmosphere energy budget and the magnitude of projected global warming. When we constrain the model projections with observations, we obtain greater means and narrower ranges of future global warming across the major radiative forcing scenarios, in general. In particular, we find that the observationally informed warming projection for the end of the twenty-first century for the steepest radiative forcing scenario is about 15 per cent warmer (+0.5 degrees Celsius) with a reduction of about a third in the two-standard-deviation spread (-1.2 degrees Celsius) relative to the raw model projections reported by the Intergovernmental Panel on Climate Change. Our results suggest that achieving any given global temperature stabilization target will require steeper greenhouse gas emissions reductions than previously calculated.

  18. Gas in Galaxies

    OpenAIRE

    Bland-Hawthorn, J.; Reynolds, R. J.

    2000-01-01

    The interstellar medium (ISM) can be thought of as the galactic atmosphere which fills the space between stars. When clouds within the ISM collapse, stars are born. When the stars die, they return their matter to the surrounding gas. Therefore the ISM plays a vital role in galactic evolution. The medium includes starlight, gas, dust, planets, comets, asteroids, fast moving charged particles (cosmic rays) and magnetic fields. The gas can be further divided into hot, warm and cold components, e...

  19. A Deep Chandra ACIS Study of NGC 4151. III. The Line Emission and Spectral Analysis of the Ionization Cone

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Risaliti, Guido; Karovska, Margarita; Zezas, Andreas; Mundell, Carole G.; Dumas, Gaelle; Schinnerer, Eva

    2011-11-01

    This paper is the third in a series in which we present deep Chandra ACIS-S imaging spectroscopy of the Seyfert 1 galaxy NGC 4151, devoted to study its complex circumnuclear X-ray emission. Emission features in the soft X-ray spectrum of the bright extended emission (L 0.3-2 keV ~ 1040 erg s-1) at r > 130 pc (2'') are consistent with blended brighter O VII, O VIII, and Ne IX lines seen in the Chandra HETGS and XMM-Newton RGS spectra below 2 keV. We construct emission line images of these features and find good morphological correlations with the narrow-line region clouds mapped in [O III] λ5007. Self-consistent photoionization models provide good descriptions of the spectra of the large-scale emission, as well as resolved structures, supporting the dominant role of nuclear photoionization, although displacement of optical and X-ray features implies a more complex medium. Collisionally ionized emission is estimated to be lsim12% of the extended emission. Presence of both low- and high-ionization spectral components and extended emission in the X-ray image perpendicular to the bicone indicates leakage of nuclear ionization, likely filtered through warm absorbers, instead of being blocked by a continuous obscuring torus. The ratios of [O III]/soft X-ray flux are approximately constant (~15) for the 1.5 kpc radius spanned by these measurements, indicating similar relative contributions from the low- and high-ionization gas phases at different radial distances from the nucleus. If the [O III] and X-ray emission arise from a single photoionized medium, this further implies an outflow with a wind-like density profile. Using spatially resolved X-ray features, we estimate that the mass outflow rate in NGC 4151 is ~2 M ⊙ yr-1 at 130 pc and the kinematic power of the ionized outflow is 1.7 × 1041 erg s-1, approximately 0.3% of the bolometric luminosity of the active nucleus in NGC 4151.

  20. A MULTIWAVELENGTH STUDY ON THE FATE OF IONIZING RADIATION IN LOCAL STARBURSTS

    International Nuclear Information System (INIS)

    Hanish, D. J.; Oey, M. S.; Rigby, J. R.; Lee, J. C.; De Mello, D. F.

    2010-01-01

    The fate of ionizing radiation is vital for understanding cosmic ionization, energy budgets in the interstellar and intergalactic medium, and star formation rate indicators. The low observed escape fractions of ionizing radiation have not been adequately explained, and there is evidence that some starbursts have high escape fractions. We examine the spectral energy distributions (SEDs) of a sample of local star-forming galaxies, containing 13 local starburst galaxies and 10 of their ordinary star-forming counterparts, to determine if there exist significant differences in the fate of ionizing radiation in these galaxies. We find that the galaxy-to-galaxy variations in the SEDs are much larger than any systematic differences between starbursts and non-starbursts. For example, we find no significant differences in the total absorption of ionizing radiation by dust, traced by the 24 μm, 70 μm, and 160 μm MIPS bands of the Spitzer Space Telescope, although the dust in starburst galaxies appears to be hotter than that of non-starburst galaxies. We also observe no excess ultraviolet flux in the Galaxy Evolution Explorer bands that could indicate a high escape fraction of ionizing photons in starburst galaxies. The small Hα fractions of the diffuse, warm ionized medium (WIM) in starburst galaxies are apparently due to temporarily boosted Hα luminosity within the star-forming regions themselves, with an independent, constant WIM luminosity. This independence of the WIM and starburst luminosities contrasts with WIM behavior in non-starburst galaxies and underscores our poor understanding of radiation transfer in both ordinary and starburst galaxies.

  1. The role of reduced aerosol precursor emissions in driving near-term warming

    International Nuclear Information System (INIS)

    Gillett, Nathan P; Von Salzen, Knut

    2013-01-01

    The representative concentration pathway (RCP) scenarios all assume stringent emissions controls on aerosols and their precursors, and hence include progressive decreases in aerosol and aerosol precursor emissions through the 21st century. Recent studies have suggested that the resultant decrease in aerosols could drive rapid near-term warming, which could dominate the effects of greenhouse gas (GHG) increases in the coming decades. In CanESM2 simulations, we find that under the RCP 2.6 scenario, which includes the fastest decrease in aerosol and aerosol precursor emissions, the contribution of aerosol reductions to warming between 2000 and 2040 is around 30%. Moreover, the rate of warming in the RCP 2.6 simulations declines gradually from its present-day value as GHG emissions decrease. Thus, while aerosol emission reductions contribute to gradual warming through the 21st century, we find no evidence that aerosol emission reductions drive particularly rapid near-term warming in this scenario. In the near-term, as in the long-term, GHG increases are the dominant driver of warming. (letter)

  2. Environmental policy: Meeting the challenge of global warming

    International Nuclear Information System (INIS)

    Gotzaman, P.

    1990-01-01

    The Canadian government's overall approach to resolving the environmental problems due to global warming is discussed, with reference to how this approach is related to actions taken by other countries. Canada's environmental strategy is based the need to correct the failure to take into account the environmental consequences of daily actions. One element seen necessary for such correction, better environmental decisionmaking, is underlain by such key factors as the need to provide a strong scientific base on which to make decisions, resolving uncertainties regarding the greenhouse effect, and an environmentally educated population. Direct governmental measures can be taken to factor environmental considerations into decisions, such as regulatory instruments regarding the environment and economic incentives to encourage taking the environment into account. With respect to global warming, Canada has signed the Hague Declaration on international cooperation to reduce greenhouse gas emissions. About half the annual world emissions of greenhouse gases come from fossil fuel combustion. Canada is the fourth largest producer per capita of the single most important greenhouse gas, carbon dioxide. The transport and industrial sectors each account for ca 25% of Canada's CO 2 emissions, and energy conservation is seen as a first step in reducing these emissions. The greatest scope for reducing greenhouse gas emissions in the transport sector appears to lie in the development of convenient and economic alternate fuels

  3. Influence of Ionization Source Conditions on the Gas-Phase Protomer Distribution of Anilinium and Related Cations.

    Science.gov (United States)

    Attygalle, Athula B; Xia, Hanxue; Pavlov, Julius

    2017-08-01

    The gas-phase-ion generation technique and specific ion-source settings of a mass spectrometer influence heavily the protonation processes of molecules and the abundance ratio of the generated protomers. Hitherto that has been attributed primarily to the nature of the solvent and the pH. By utilizing electrospray ionization and ion-mobility mass spectrometry (IM-MS), we demonstrate, even in the seemingly trivial case of protonated aniline, that the protomer ratio strongly depends on the source conditions. Under low in-source ion activation, nearly 100% of the N-protomer of aniline is produced, and it can be subsequently converted to the C-protomer by collisional activation effected by increasing the electrical potential difference between the entrance and exit orifices of the first vacuum region. This activation and transformation process takes place even before the ion is mass-selected and subjected to IM separation. Despite the apparent simplicity of the problem, the preferred protonation site of aniline in the gas phase-the amino group or the aromatic ring-has been a topic of controversy. Our results not only provide unambiguous evidence that ring- and nitrogen-protonated aniline can coexist and be interconverted in the gas phase, but also that the ratio of the protomers depends on the internal energy of the original ion. There are many dynamic ion-transformation and fragmentation processes that take place in the different physical compartments of a Synapt G2 HDMS instrument. Such processes can dramatically change the very identity even of small ions, and therefore should be taken into account when interpreting product-ion mass spectra. Graphical Abstract ᅟ.

  4. The effect of the global warming on marine ecosystems in the Arctic

    International Nuclear Information System (INIS)

    Wassmann, Paul

    2007-01-01

    The article discusses various results from studies of development in the ecosystems in the Arctic region and the effect the global warming may have. The warming in these areas is larger than in the central Europe and influence the economic and social development of the region. The focus is on the fisheries, exploitation of oil and gas, transport, diversity in species, acidification of the oceans, meteorological phenomena etc.. Some environmental and energy related aspects are mentioned. (tk)

  5. Global warming factors modelled for 40 generic municipal waste management scenarios

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Simion, F.; Tonini, Davide

    2009-01-01

    Global warming factors (kg CO2-eq.-tonne—1 of waste) have been modelled for 40 different municipal waste management scenarios involving a variety of recycling systems (paper, glass, plastic and organics) and residual waste management by landfilling, incineration or mechanical—biological waste...... treatment. For average European waste composition most waste management scenarios provided negative global warming factors and hence overall savings in greenhouse gas emissions: Scenarios with landfilling saved 0—400, scenarios with incineration saved 200—700, and scenarios with mechanical...

  6. Reference ionization chamber

    International Nuclear Information System (INIS)

    Golnik, N.; Zielczynski, M.

    1999-01-01

    The paper presents the design of ionization chamber devoted for the determination of the absolute value of the absorbed dose in tissue-equivalent material. The special attention was paid to ensure that the volume of the active gas cavity was constant and well known. A specific property of the chamber design is that the voltage insulators are 'invisible' from any point of the active volume. Such configuration ensures a very good time stability of the electrical field and defines the active volume. The active volume of the chamber was determined with accuracy of 0.3%. This resulted in accuracy of 0.8% in determination of the absorbed dose in the layer of material adherent to the gas cavity. The chamber was applied for calibration purposes at radiotherapy facility in Joint Institute for Nuclear Research in Dubna (Russia) and in the calibration laboratory of the Institute of Atomic Energy in Swierk. (author)

  7. Controlling branching in streamer discharge by laser background ionization

    International Nuclear Information System (INIS)

    Takahashi, E; Kato, S; Furutani, H; Sasaki, A; Kishimoto, Y

    2011-01-01

    Irradiation with a KrF laser controlled the positive streamer branching in atmospheric argon gas. This laser irradiation changed the amount of background ionization before the streamer discharge. Measuring the ionization current allowed us to evaluate the initial electron density formed by the KrF laser. We observed characteristic feather-like branching structure and found that it was only suppressed in the irradiated region. The threshold of ionization density which can influence the branching was evaluated to be 5 x 10 5 cm -3 . The relationship between the size of avalanche head and mean distance between initial electrons explained this suppression behaviour. These experimental results support that the feather-like structure originates from the branching model of Loeb-Meek, a probabilistic merging of individual avalanches.

  8. Profile Monitors Based on Residual Gas Interaction

    CERN Document Server

    Forck, P; Giacomini, T; Peters, A

    2005-01-01

    The precise determination of transverse beam profiles at high current hadron accelerators has to be performed non-interceptingly. Two methods will be discussed based on the excitation of the residual gas molecules by the beam particles: Firstly, by beam induced fluorescence (BIF) light is emitted from the residual gas molecules and is observed with an image intensified CCD camera. At most laboratories N2 gas is inserted, which has a large cross section for emission in the blue wave length region. Secondly, a larger signal strength is achieved by detecting the ionization products in an Ionization Profile Monitor (IPM). By applying an electric field all ionization products are accelerated toward a spatial resolving Micro-Channel Plate. The signal read-out can either be performed by observing the light from a phosphor screen behind the MCP or electronically by a wire array. Methods to achieve a high spatial resolution and a fast turn-by-turn readout capability are discussed. Even though various approaches at dif...

  9. Gas chromatography/multiphoton ionization/time-of-flight mass spectrometry of polychlorinated biphenyls

    International Nuclear Information System (INIS)

    Matsui, Taiki; Uchimura, Tomohiro; Imasaka, Totaro

    2011-01-01

    A sample mixture of polychlorinated biphenyls (PCBs) was measured by gas chromatography/multiphoton ionization/time-of-flight mass spectrometry (GC/MPI/TOF-MS) using four types of laser sources. When a fourth harmonic emission (266 nm) of a picosecond Nd:YAG laser (1064 nm) was utilized, highly chlorinated PCBs larger than hepta-CBs were not observed. A fifth harmonic emission (213 nm) of the picosecond Nd:YAG laser allowed the measurement of PCBs from di-CBs to octa-CBs, and the limit of detection (LOD) was several pg for each component of PCBs. The LOD for the total amount of PCBs, which was calculated using the protocol provided by the Ministry of the Environment, Japan, was 1000 pg. The signal intensity of the congeners with chlorine atoms at the ortho positions (non-coplanar PCBs) was enhanced by using the fifth harmonic emission. When the fourth harmonic emission remaining after fifth harmonic generation was simultaneously used, the LOD for total PCBs was improved to 667 pg. The PCB sample was also measured using a third harmonic emission (267 nm) of a femtosecond Ti:sapphire laser (800 nm), providing an LOD of 677 pg. Thus, the two-color beam (266/213 nm) of a picosecond Nd:YAG laser had a comparable, or even slightly superior, performance to the more expensive femtosecond Ti:sapphire laser.

  10. Were sauropod dinosaurs responsible for the warm Mesozoic climate?

    Directory of Open Access Journals (Sweden)

    A.J. (Tom van Loon

    2012-10-01

    Full Text Available It was recently postulated that methane production by the giant Mesozoic sauropod dinosaurs was larger than the present-day release of this greenhouse gas by nature and man-induced activities jointly, thus contributing to the warm Mesozoic climate. This conclusion was reached by correct calculations, but these calculations were based on unrealistic assumptions: the researchers who postulated this dinosaur-induced warm climate did take into account neither the biomass production required for the sauropods' food, nor the constraints for the habitats in which the dinosaurs lived, thus neglecting the palaeogeographic conditions. This underlines the importance of palaeogeography for a good understanding of the Earth's geological history.

  11. Initial ionization stage of FRC formation

    Energy Technology Data Exchange (ETDEWEB)

    Commisso, R.J.; Armstrong, W.T.; Cochrane, J.C.; Ekdahl, C.A.; Lipson, J.; Linford, R.K.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

    1980-01-01

    A Field-Reversed Configuration (FRC) is a prolate compact torus that is confined by poloidal fields only. Theta-pinch formation of an FRC employs an initial bias field, B/sub 1/, whose direction is opposite to that of the main theta-pinch field. Some fraction of the flux associated with this bias field eventually constitutes the closed-field-line flux of the FRC. Experimental and theoretical evidence suggest that the longest-lived FRC's are obtained when the closed flux is maximized. Because the initial ionization is done in the presence of the bias field, the actual bias flux available at the time of application of the main theta-pinch field depends strongly on the initial ionization, or preionization, technique used. In this paper we report on experiments characterizing the previously used theta-pinch preionization technique that employed a net field (bias plus preionization) null, or zero-crossing, of the axial component of the magnetic field to break down the gas. We also discuss results of experiments designed to develop preionization techniques in which the gas breakdown is not accomplished by a zero-crossing.

  12. Simple method for identifying doubly ionized uranium (U III) produced in a hollow-cathode discharge

    International Nuclear Information System (INIS)

    Piyakis, K.N.; Gagne, J.M.

    1988-01-01

    We have studied by emission spectroscopy the spectral properties of doubly ionized uranium, produced in a vapor generator of hollow-cathode design, as a function of the nature of a pure fill gas (helium, neon, argon, krypton, xenon) and its pressure. The spectral intensity is found to increase with increasing ionization potential of the discharge buffer gas, except in the case of helium. Based on our preliminary results, a simple and practical method for the positive identification of the complex U III spectrum is suggested

  13. GAS PHASE ION CHEMISTRY OF COUMARINS: AB INITIO ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    The gas phase ion chemistry of coumarins using electron ionization (EI), positive chemical ionization (PCI) and ... Figure 1. Generic chemical structures of the coumarins in this study. ..... Part of this work was conducted using the resources of ...

  14. Highly sensitive high resolution Raman spectroscopy using resonant ionization methods

    International Nuclear Information System (INIS)

    Owyoung, A.; Esherick, P.

    1984-05-01

    In recent years, the introduction of stimulated Raman methods has offered orders of magnitude improvement in spectral resolving power for gas phase Raman studies. Nevertheless, the inherent weakness of the Raman process suggests the need for significantly more sensitive techniques in Raman spectroscopy. In this we describe a new approach to this problem. Our new technique, which we call ionization-detected stimulated Raman spectroscopy (IDSRS), combines high-resolution SRS with highly-sensitive resonant laser ionization to achieve an increase in sensitivity of over three orders of magnitude. The excitation/detection process involves three sequential steps: (1) population of a vibrationally excited state via stimulated Raman pumping; (2) selective ionization of the vibrationally excited molecule with a tunable uv source; and (3) collection of the ionized species at biased electrodes where they are detected as current in an external circuit

  15. On the stability of boundary layers in gas mantle systems

    International Nuclear Information System (INIS)

    Ohlsson, D.

    1978-10-01

    In this thesis a systematic investigation of the stability properties of the partially ionized boundary regions of gas mantle systems for a large class of dissipative magneto-hydrodynamic modes is presented. In the partially ionized boundary regions of gas mantle systems several strong stabilizing mechanisms arise due to coupling between various dissipative effects in certain parameter regions. The presence of neutral gas strongly enhances the stabilizing effects in a dual fashion. First in an indirect way by cooling the edge region and second in a direct way by enhancing viscous and heat conduction effects. It has, however, to be pointed out that exceptions from this general picture may be found. The stabilizing influence of neutral gas on a large class of electrostatic as well as electromagnetic modes in the boundary regions of gas blanket systems is contrary to what has been found in low density weakly ionized plasmas. In these latter cases presence of neutral gas has even been found to be responsible for the onset of entirely new classes of instabilities. Thus there is no universal stabilizing or destabilizing effect associated with plasma-neutral gas interaction effects. (author)

  16. Global warming: Towards a strategy for Ontario

    International Nuclear Information System (INIS)

    1990-01-01

    A discussion paper is provided as background to a proposed public review of a strategy for Ontario's response to global warming. Global warming arises from the generation of greenhouse gases, which come from the use of fossil fuels, the use of chlorofluorocarbons, and deforestation. Energy policy is the backbone of achieving climate stability since the burning of fossil fuels releases most of the greenhouse gases, mainly carbon dioxide. Canada is, by international standards, a very energy-intensive country and is among the world's largest emitters of carbon dioxide on a per capita basis. Ontario is the largest energy-using province in Canada, and fossil fuels represent over 80% of provincial energy use. A proposed goal for Ontario is to provide leadership in stabilizing atmospheric concentrations of the greenhouse gases, while minimizing the social, economic, and environmental costs in Ontario of adapting to global warming. A proposed first step to address global warming is to achieve reductions in expected emissions of the greenhouse gases, especially carbon dioxide, so that levels by the year 2000 are lower than in 1989. Current policies and regulations helping to reduce the greenhouse effect include some of the current controls on automotive emissions and the adoption by the provincial electric utility of targets to reduce electricity demand. New initiatives include establishment of minimum energy efficiency standards and reduction of peak-day electricity use. Action steps for future consideration are detailed in the categories of greenhouse gas emissions reductions, carbon dioxide absorption, and research and analysis into global warming

  17. Gasdynamics of H II regions. V. The interaction of weak R ionization fronts with dense clouds

    Energy Technology Data Exchange (ETDEWEB)

    Tenorio-Tagle, G; Bedijn, P J

    1981-06-01

    The interaction of weak R-type ionization fronts with a density enhancement is calculated numerically as a function of time within the framework of the champagne model of the evolution of H II regions. Calculations are performed under the assumption of plane-parallel geometry for various relative densities of the cloud in which the exciting star is formed and a second cloud with which an ionization front from the first cloud interacts. The supersonic ionization front representing the outer boundary of an H II region experiencing the champagne phase is found to either evolve into a D-type front or remain of type R, depending on the absolute number of photons leaving the H II region that undergoes the champagne phase. Recombinations in the ionized gas eventually slow the ionization front, however photon fluxes allow it to speed up again, resulting in oscillatory propagation of the front. Front-cloud interactions are also shown to lead to the development of a backward-facing shock, a forward-facing shock, and a density maximum in the ionized gas. The results can be used to explain the origin of bright rims in H II regions.

  18. Use of a radio-frequency resonance circuit in studies of alkali ionization in flames

    International Nuclear Information System (INIS)

    Borgers, A.J.

    1978-01-01

    The construction of a radio-frequency resonance system and its use in the study of alkali metal ionization in flames is described. The author re-determines the values of the alkali ionization rate constants for a CO flame with N 2 as diluent gas of known temperature using the RF resonance method. (Auth.)

  19. Human-caused Indo-Pacific warm pool expansion.

    Science.gov (United States)

    Weller, Evan; Min, Seung-Ki; Cai, Wenju; Zwiers, Francis W; Kim, Yeon-Hee; Lee, Donghyun

    2016-07-01

    The Indo-Pacific warm pool (IPWP) has warmed and grown substantially during the past century. The IPWP is Earth's largest region of warm sea surface temperatures (SSTs), has the highest rainfall, and is fundamental to global atmospheric circulation and hydrological cycle. The region has also experienced the world's highest rates of sea-level rise in recent decades, indicating large increases in ocean heat content and leading to substantial impacts on small island states in the region. Previous studies have considered mechanisms for the basin-scale ocean warming, but not the causes of the observed IPWP expansion, where expansion in the Indian Ocean has far exceeded that in the Pacific Ocean. We identify human and natural contributions to the observed IPWP changes since the 1950s by comparing observations with climate model simulations using an optimal fingerprinting technique. Greenhouse gas forcing is found to be the dominant cause of the observed increases in IPWP intensity and size, whereas natural fluctuations associated with the Pacific Decadal Oscillation have played a smaller yet significant role. Further, we show that the shape and impact of human-induced IPWP growth could be asymmetric between the Indian and Pacific basins, the causes of which remain uncertain. Human-induced changes in the IPWP have important implications for understanding and projecting related changes in monsoonal rainfall, and frequency or intensity of tropical storms, which have profound socioeconomic consequences.

  20. Photoionization Modeling

    Science.gov (United States)

    Kallman, T.

    2010-01-01

    Warm absorber spectra are characterized by the many lines from partially ionized intermediate-Z elements, and iron, detected with the grating instruments on Chandra and XMM-Newton. If these ions are formed in a gas which is in photoionization equilibrium, they correspond to a broad range of ionization parameters, although there is evidence for certain preferred values. A test for any dynamical model for these outflows is to reproduce these properties, at some level of detail. In this paper we present a statistical analysis of the ionization distribution which can be applied both the observed spectra and to theoretical models. As an example, we apply it to our dynamical models for warm absorber outflows, based on evaporation from the molecular torus.

  1. Economic impact analysis for global warming: Sensitivity analysis for cost and benefit estimates

    International Nuclear Information System (INIS)

    Ierland, E.C. van; Derksen, L.

    1994-01-01

    Proper policies for the prevention or mitigation of the effects of global warming require profound analysis of the costs and benefits of alternative policy strategies. Given the uncertainty about the scientific aspects of the process of global warming, in this paper a sensitivity analysis for the impact of various estimates of costs and benefits of greenhouse gas reduction strategies is carried out to analyze the potential social and economic impacts of climate change

  2. Fundamentals of gas counters

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1994-01-01

    The operation of gas counters used for detecting radiation is explained in terms of the four fundamental physical processes which govern their operation. These are 1) conversion of neutral radiation into charged particles, 2) ionization of the host gas by a fast charge particle 3) transport of the gas ions to the electrodes and 4) amplification of the electrons in a region of enhanced electric field. Practical implications of these are illustrated. (UK)

  3. Development of a gas-cylinder-free plasma desorption/ionization system for on-site detection of chemical warfare agents.

    Science.gov (United States)

    Iwai, Takahiro; Kakegawa, Ken; Aida, Mari; Nagashima, Hisayuki; Nagoya, Tomoki; Kanamori-Kataoka, Mieko; Miyahara, Hidekazu; Seto, Yasuo; Okino, Akitoshi

    2015-06-02

    A gas-cylinder-free plasma desorption/ionization system was developed to realize a mobile on-site analytical device for detection of chemical warfare agents (CWAs). In this system, the plasma source was directly connected to the inlet of a mass spectrometer. The plasma can be generated with ambient air, which is drawn into the discharge region by negative pressure in the mass spectrometer. High-power density pulsed plasma of 100 kW could be generated by using a microhollow cathode and a laboratory-built high-intensity pulsed power supply (pulse width: 10-20 μs; repetition frequency: 50 Hz). CWAs were desorbed and protonated in the enclosed space adjacent to the plasma source. Protonated sample molecules were introduced to the mass spectrometer by airflow through the discharge region. To evaluate the analytical performance of this device, helium and air plasma were directly irradiated to CWAs in the gas-cylinder-free plasma desorption/ionization system and the protonated molecules were analyzed by using an ion-trap mass spectrometer. A blister agent (nitrogen mustard 3) and nerve gases [cyclohexylsarin (GF), tabun (GA), and O-ethyl S-2-N,N-diisopropylaminoethyl methylphosphonothiolate (VX)] in solution in n-hexane were applied to the Teflon rod and used as test samples, after solvent evaporation. As a result, protonated molecules of CWAs were successfully observed as the characteristic ion peaks at m/z 204, 181, 163, and 268, respectively. In air plasma, the limits of detection were estimated to be 22, 20, 4.8, and 1.0 pmol, respectively, which were lower than those obtained with helium plasma. To achieve quantitative analysis, calibration curves were made by using CWA stimulant dipinacolyl methylphosphonate as an internal standard; straight correlation lines (R(2) = 0.9998) of the peak intensity ratios (target per internal standard) were obtained. Remarkably, GA and GF gave protonated dimer ions, and the ratios of the protonated dimer ions to the protonated

  4. Fuel poverty, affordability, and energy justice in England: Policy insights from the Warm Front Program

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2015-01-01

    Millions of homes around the world suffer from “fuel poverty,” commonly defined as the necessity to spend more than 10 percent of their income paying energy bills. This article first discusses how home energy efficiency schemes, such as those that pay to weatherize doors and windows, install insulation, and give free energy audits, can significantly reduce the prevalence of fuel poverty. It then examines the “Warm Front” program in England, which over the course of 2000–2013 saw 2.3 million “fuel poor” British homes receive energy efficiency upgrades to save them money and improve their overall health. Warm Front not only lessened the prevalence of fuel poverty; it cut greenhouse gas emissions, produced an average extra annual income of £1894.79 per participating household, and reported exceptional customer satisfaction with more than 90 percent of its customers praising the scheme. This study details the history, benefits, and challenges of the program, and it teases out six noteworthy lessons for energy analysts, planners, and policymakers. - Highlights: • Millions of homes around the world suffer from “fuel poverty”. • The “Warm Front” program in England saw 2.3 million “fuel poor” British homes receive energy efficiency upgrades. • Warm Front ran from over the course of 2000–2013. • Warm Front lessened the prevalence of fuel poverty, cut greenhouse gas emissions, and saved households money. • Warm Front offers important lessons for energy analysts, planners, and policymakers.

  5. Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL

    International Nuclear Information System (INIS)

    Raeder, S.; Bastin, B.; Block, M.; Creemers, P.; Delahaye, P.; Ferrer, R.; Fléchard, X.; Franchoo, S.; Ghys, L.; Gaffney, L.P.; Granados, C.; Heinke, R.; Hijazi, L.

    2016-01-01

    To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility that are needed for the first on-line studies of in-gas-jet laser spectroscopy. Different geometries for the gas outlet and extraction ion guides have been tested for their performance regarding the acceptance of laser ionized species as well as for their differential pumping capacities. The specifications and performance of the temporarily installed high repetition rate laser system, including a narrow bandwidth injection-locked Ti:sapphire laser, are discussed and first preliminary results on neutron-deficient actinium isotopes are presented indicating the high capability of this novel technique.

  6. Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, S., E-mail: s.raeder@gsi.de [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Bastin, B. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Block, M. [Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Institut für Kernchemie, Johannes Gutenberg Universität, 55128 Mainz (Germany); Creemers, P. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Delahaye, P. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Ferrer, R. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Fléchard, X. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Franchoo, S. [Institute de Physique Nucléaire (IPN) d’Orsay, 91406 Orsay, Cedex (France); Ghys, L. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); SCK-CEN, Belgian Nuclear Research Center, Boeretang 200, 2400 Mol (Belgium); Gaffney, L.P.; Granados, C. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Heinke, R. [Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz (Germany); Hijazi, L. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); and others

    2016-06-01

    To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility that are needed for the first on-line studies of in-gas-jet laser spectroscopy. Different geometries for the gas outlet and extraction ion guides have been tested for their performance regarding the acceptance of laser ionized species as well as for their differential pumping capacities. The specifications and performance of the temporarily installed high repetition rate laser system, including a narrow bandwidth injection-locked Ti:sapphire laser, are discussed and first preliminary results on neutron-deficient actinium isotopes are presented indicating the high capability of this novel technique.

  7. Investigation of the Hall MHD channel operating with the ionized instable plasma of inert gases

    International Nuclear Information System (INIS)

    Vasi'leva, R.V.; D'yakova, E.A.; Erofeev, A.V.; Zuev, A.D.; Lapushkina, T.A.; Markhotok, A.A.

    1997-01-01

    Possibility of applying ionization-instable plasma of pure inert gases as perspective working substance for closed-cycle MHD generators is studied. The experiment was produced in the model of the disk Hall MHD channel. The ionized gas flux was produced in a shock tube. Xenon was used as a working substance. Gas pressure, flux velocity, electron concentration and temperature, azimuthal current density, potential distribution in the channel and near-electrode voltage drop values were measured in the experiment. Volt-ampere characteristics were taken by various indices of magnetic field and load resistance

  8. [Determination of naphthenic acids in distillates of crude oil by gas chromatography/chemical ionization-mass spectrometry].

    Science.gov (United States)

    Lü, Zhenbo; Tian, Songbai; Zhai, Yuchun; Sun, Yanwei; Zhuang, Lihong

    2004-05-01

    The petroleum carboxylic acids in 200-420 degrees C distillate of crude oil were separated by the extraction with column chromatography on an anion exchange resin. The effect of the composition and structure of naphthenic acids on separation were studied by the infra-red (IR) spectroscopic techniques. Naphthenic acids and iso-butane reagent gas were introduced into the ion source for chemical ionization, in which the ions represented by [M + C4H9]+ were used to calculate the relative molecular mass for each acid. Based on the mass spectra of pure fatty and naphthenic acids, in combination with the z-series formula CnH(2n + z)O2, the naphthenic acids can be classified into fatty, mono-, bi- ... hexa-cyclic types. The results indicated that the relative molecular mass range of naphthenic acids in this distillates was 170-510, and the carbon number range was C10-C35. The contents of bi-cyclic and tri-cyclic naphthenic acids were higher than others.

  9. National action strategy on global warming

    International Nuclear Information System (INIS)

    1990-11-01

    A document prepared by a committee of Canadian environmental ministries proposes a strategic framework for a national action plan concerning global warming. The strategy would be carried out jointly by governments and all other sectors of the economy, taking into account the present state of scientific knowledge on global warming. Within this framework, the governments in cooperation with interested parties would take certain measures in their respective areas of competence. The main recommendations of the document include the following. The action strategy should comprise 3 elements: limiting emissions of greenhouse gases; forecasting climatic changes which Canada could undergo due to global warming and preparing for such changes; and improving scientific knowledge and the capacity to predict climatic changes. Limitations on this strategy should take into account such matters as the interaction of greenhouse gases with other pollutants, the importance of the international context, the need to adapt to new discoveries, and the importance of regional differences. Implementation of the strategy should incorporate widespread consultation of all affected sectors, sustained work on establishing international conventions and protocols on reducing greenhouse gas emissions, objectives and schedules for such reductions, and stepwise actions to control emissions in order to enable an adequate evaluation of the consequences and effectiveness of such measures. 10 figs., 2 tabs

  10. Ionization and pulse lethargy effects in inverse Cherenkov accelerators

    International Nuclear Information System (INIS)

    Sprangle, P.; Hubbard, R.F.; Hafizi, B.

    1997-01-01

    Ionization processes limit the accelerating gradient and place an upper limit on the pulse duration of the electromagnetic driver in the inverse Cherenkov accelerator (ICA). Group velocity slippage, i.e., pulse lethargy, on the other hand, imposes a lower limit on the pulse duration. These limits are obtained for two ICA configurations in which the electromagnetic driver (e.g., laser or millimeter wave source) is propagated in a waveguide that is (i) lined with a dielectric material or (ii) filled with a neutral gas. In either configuration the electromagnetic driving field is guided and has an axial electric field with phase velocity equal to the speed of light in vacuum, c. The intensity of the driver in the ICA, and therefore the acceleration gradient, is limited by tunneling and collisional ionization effects. Partial ionization of the dielectric liner or gas can lead to significant modification of the dispersive properties of the waveguide, altering the phase velocity of the accelerating field and causing particle slippage, thus disrupting the acceleration process. An additional limitation on the pulse duration is imposed since the group velocity of the driving pulse is less than c and the pulse slips behind the accelerated electrons. Hence for sufficiently short pulses the electrons outrun the pulse, terminating the acceleration. Limitations on the driver pulse duration and accelerating gradient, due to ionization and pulse lethargy, are estimated for the two ICA configurations. Maximum accelerating gradients and pulse durations are presented for a 10 μm, 1 mm, and 1 cm wavelength electromagnetic driver. The combination of ionization and pulse lethargy effects impose severe limitations on the maximum energy gain in inverse Cherenkov accelerators. copyright 1997 The American Physical Society

  11. Thermionic detector with multiple layered ionization source

    International Nuclear Information System (INIS)

    Patterson, P. L.

    1985-01-01

    Method and apparatus for analyzing specific chemical substances in a gaseous environment comprises a thermionic source formed of multiple layers of ceramic material composition, an electrical current instrumentality for heating the thermionic source to operating temperatures in the range of 100 0 C. to 1000 0 C., an instrumentality for exposing the surface of the thermionic source to contact with the specific chemical substances for the purpose of forming gas phase ionization of the substances by a process of electrical charge emission from the surface, a collector electrode disposed adjacent to the thermiomic source, an instrumentality for biasing the thermionic source at an electrical potential which causes the gas phase ions to move toward the collector, and an instrumentality for measuring the ion current arriving at the collector. The thermionic source is constructed of a metallic heater element molded inside a sub-layer of hardened ceramic cement material impregnated with a metallic compound additive which is non-corrosive to the heater element during operation. The sub-layer is further covered by a surface-layer formed of hardened ceramic cement material impregnated with an alkali metal compound in a manner that eliminates corrosive contact of the alkali compounds with the heater element. The sub-layer further protects the heater element from contact with gas environments which may be corrosive. The specific ionization of different chemical substances is varied over a wide range by changing the composition and temperature of the thermionic source, and by changing the composition of the gas environment

  12. Ethanol analysis by headspace gas chromatography with simultaneous flame-ionization and mass spectrometry detection.

    Science.gov (United States)

    Tiscione, Nicholas B; Alford, Ilene; Yeatman, Dustin Tate; Shan, Xiaoqin

    2011-09-01

    Ethanol is the most frequently identified compound in forensic toxicology. Although confirmation involving mass spectrometry is desirable, relatively few methods have been published to date. A novel technique utilizing a Dean's Switch to simultaneously quantitate and confirm ethyl alcohol by flame-ionization (FID) and mass spectrometric (MS) detection after headspace sampling and gas chromatographic separation is presented. Using 100 μL of sample, the limits of detection and quantitation were 0.005 and 0.010 g/dL, respectively. The zero-order linear range (r(2) > 0.990) was determined to span the concentrations of 0.010 to 1.000 g/dL. The coefficient of variation of replicate analyses was less than 3.1%. Quantitative accuracy was within ±8%, ±6%, ±3%, and ±1.5% at concentrations of 0.010, 0.025, 0.080, and 0.300 g/dL, respectively. In addition, 1,1-difluoroethane was validated for qualitative identification by this method. The validated FID-MS method provides a procedure for the quantitation of ethyl alcohol in blood by FID with simultaneous confirmation by MS and can also be utilized as an identification method for inhalants such as 1,1-difluoroethane.

  13. Gas-phase reaction rate constants for atmospheric pressure ionization in ion-mobility spectrometry

    International Nuclear Information System (INIS)

    Vandiver, V.J.

    1987-01-01

    Ion-mobility spectrometry (IMS) is an instrumental technique in which gaseous ions are formed from neutral molecules by proton and charge transfer from reactant ions through collisional ionization. An abbreviated rate theory has been proposed for atmospheric pressure ionization (API) in IMS, but supporting experimental measurements have not been reported. The objectives of this thesis were (1) assessment of existing API rate theory using positive and negative product ions in IMS, (2) measurement of API equilibria and kinetics for binary mixtures, and (3) investigating of cross-ionizations with multiple-product ions in API reactions. Although IMS measurements and predictions from rate theory were comparable, shapes and slopes of response curves for both proton transfer and electron capture were not described exactly by existing theory. In particular, terms that are needed for calculation of absolute rate constants were unsuitable in the existing theory. These included recombination coefficients,initial number of reactant ions, and opposing ion densities

  14. Consequences of warm-up of a sector above 80K

    CERN Document Server

    Strubin, P

    2009-01-01

    There may be circumstances when a sector has to be partially or totally warmed-up to temperatures above 80 K, that is when thermal dilatation starts to play a role. Some equipment have been identify as presenting a risk, like the non-conform "plug-in" modules in the arcs. Because of motion induced by thermal dilatation, the electrical (ElQA) quality control may also have to be done again after cool-down. The main reason identified so far for partial warm-up is the required maintenance of the cooling towers and the cryogenics plants. There is also the request from the vacuum group to periodically warm-up the beam screen to temperatures in the 100 K region to release and pump-out the gas crysorbed on the surface of the beam screen. Observed and expected temperature conditions and statistics on failures of PIMs in sectors which have been warmed-up will be presented in this contribution. Methods to detect buckled PIMs will be described, as well as a recommended strategy for consolidation. Finally, the required el...

  15. Theoretical investigation of the secondary ionization in krypton and xenon

    International Nuclear Information System (INIS)

    Saffo, M.E.

    1986-01-01

    A theoretical investigation of the secondary ionization processes that responsible for the pre-breakdown ionization current growth in a uniform electric field was studied in krypton and xenon gases, especially at low values of E/P 0 which is corresponding to high values of pressure, since there are a number of possible secondary ionization processes. It is interesting to carry out a quantitative analysis for the generalized secondary ionization coefficient obtained previously by many workers in terms of the production of excited states and their diffusion to the cathode and their destruction rate in the gas body. From energy balance equation for the electrons in the discharge, the fractional percentage energy losses of ionization, excitation, and elastic collisions to the total energy gained by the electron from the field has been calculated for krypton and xenon, as a result of such calculations; the conclusion drawn is that at low values of E/P 0 the main energy loss of electrons are in excited collision. Therefore, we are adopting a theoretical calculation for W/α under the assumption that the photo-electron emission at the cathode is the predominated secondary ionization process. 14 tabs.; 12 figs.; 64 refs

  16. Amplified Arctic warming by phytoplankton under greenhouse warming.

    Science.gov (United States)

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  17. Multiphoton ionization of H{sub 2}{sup +} in xuv laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Guan Xiaoxu; Secor, Ethan B.; Bartschat, Klaus [Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311 (United States); Schneider, Barry I. [Office of Cyberinfrastructure, National Science Foundation, Arlington, Virgina 22230 (United States)

    2011-09-15

    We consider the ionization of the hydrogen molecular ion after one-, two-, and three-photon absorption over a large range of photon energies between 9 and 40 eV in the fixed-nuclei approximation. The temporal development of the system is obtained in a fully ab initio time-dependent grid-based approach in prolate spheroidal coordinates. The alignment dependence of the one-photon ionization amplitude is highlighted in the framework of time-dependent perturbation theory. For one-photon ionization as a function of the nuclear separation, the calculations reveal a significant minimum in the ionization probability. The suppressed ionization is attributed to a Cooper-type minimum, which is similar, but not identical, to the cancellation effect observed in photoionization cross sections of some noble-gas atoms. The effect of the nonspherical two-center Coulomb potential is analyzed. For two- and three-photon ionization, the angle-integrated cross sections clearly map out intermediate-state resonances, and the predictions of the current computations agree very well with those from time-independent calculations. The dominant emission modes for two-photon ionization are found to be very similar in both resonance and off-resonance regions.

  18. Greater future global warming inferred from Earth’s recent energy budget

    Science.gov (United States)

    Brown, Patrick T.; Caldeira, Ken

    2017-12-01

    Climate models provide the principal means of projecting global warming over the remainder of the twenty-first century but modelled estimates of warming vary by a factor of approximately two even under the same radiative forcing scenarios. Across-model relationships between currently observable attributes of the climate system and the simulated magnitude of future warming have the potential to inform projections. Here we show that robust across-model relationships exist between the global spatial patterns of several fundamental attributes of Earth’s top-of-atmosphere energy budget and the magnitude of projected global warming. When we constrain the model projections with observations, we obtain greater means and narrower ranges of future global warming across the major radiative forcing scenarios, in general. In particular, we find that the observationally informed warming projection for the end of the twenty-first century for the steepest radiative forcing scenario is about 15 per cent warmer (+0.5 degrees Celsius) with a reduction of about a third in the two-standard-deviation spread (-1.2 degrees Celsius) relative to the raw model projections reported by the Intergovernmental Panel on Climate Change. Our results suggest that achieving any given global temperature stabilization target will require steeper greenhouse gas emissions reductions than previously calculated.

  19. Uv laser triggering of high-voltage gas switches

    International Nuclear Information System (INIS)

    Woodworth, J.R.; Frost, C.A.; Green, T.A.

    1982-01-01

    Two different techniques are discussed for uv laser triggering of high-voltage gas switches using a KrF laser (248 nm) to create an ionized channel through the dielectric gas in a spark gap. One technique uses an uv laser to induce breakdown in SF 6 . For this technique, we present data that demonstrate a 1-sigma jitter of +- 150 ps for a 0.5-MV switch at 80% of its self-breakdown voltage using a low-divergence KrF laser. The other scheme uses additives to the normal dielectric gas, such as tripropylamine, which are selected to undergo resonant two-step ionization in the uv laser field

  20. Ionization detectors, ch. 3

    International Nuclear Information System (INIS)

    Sevcik, J.

    1976-01-01

    Most measuring devices used in gas chromatography consist of detectors that measure the ionization current. The process is based on the collision of a moving high-energy particle with a target particle that is ionised while an electron is freed. The discussion of the conditions of the collision reaction, the properties of the colliding particles, and the intensity of the applied field point to a unified classification of ionisation detectors. Radioactive sources suitable for use in these detectors are surveyed. The slow-down mechanism, recombination and background current effect are discussed

  1. Development of an optical digital ionization chamber

    International Nuclear Information System (INIS)

    Turner, J.E.; Hunter, S.R.; Hamm, R.N.; Wright, H.A.; Hurst, G.S.; Gibson, W.A.

    1988-01-01

    We are developing a new device for optically detecting and imaging the track of a charged particle in a gas. The electrons in the particle track are made to oscillate rapidly by the application of an external, short-duration, high-voltage, RF electric field. The excited electrons produce additional ionization and electronic excitation of the gas molecules in their immediate vicinity, leading to copious light emission (fluorescence) from the selected gas, allowing the location of the electrons along the track to be determined. Two digital cameras simultaneously scan the emitted light across two perpendicular planes outside the chamber containing gas. The information thus obtained for a given track can be used to infer relevant quantities for microdosimetry and dosimetry, e.g., energy deposited, LET, and track structure in the gas. The design of such a device now being constructed and methods of obtaining the dosimetric data from the digital output will be described. 4 refs., 4 figs

  2. The effects of rape residue mulching on net global warming potential and greenhouse gas intensity from no-tillage paddy fields.

    Science.gov (United States)

    Zhang, Zhi-Sheng; Cao, Cou-Gui; Guo, Li-Jin; Li, Cheng-Fang

    2014-01-01

    A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha(-1)) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulching treatments showed significantly more organic carbon (C) density for the 0-20 cm soil layer at harvesting than no residue treatment. During a rice-growing season, residue mulching treatments sequestered significantly more organic C from 687 kg C ha(-1) season(-1) to 1654 kg C ha(-1) season(-1) than no residue treatment. Residue mulching significantly increased emissions of CO2 and N2O but decreased CH4 emissions. Residue mulching treatments significantly increased GWP by 9-30% but significantly decreased net GWP by 33-71% and GHGI by 35-72% relative to no residue treatment. These results suggest that agricultural economic viability and GHG mitigation can be achieved simultaneously by residue mulching on NT paddy fields in central China.

  3. About particular use of ionizing radiations

    International Nuclear Information System (INIS)

    2001-01-01

    Different uses of ionizing radiations are reviewed: tracers techniques, nuclear gauges, dating by carbon 14, silica doping, use of gamma irradiation for the density measurement in civil engineering, use of a electron capture detector to study by gas chromatography chlorinated contaminants in environment, neutron activation as environmental gauge, analysis of lead in paint and pollutants in ground and dusts, help for work of art valuation by x spectrometry. (N.C.)

  4. Rapid ionization of the environment of SN 1987A

    International Nuclear Information System (INIS)

    Raga, A.C.

    1987-01-01

    It has been suggested by some authors that IUE observations of the supernova SN 1987A show the presence of a strong component of the interstellar C IV 1550 and Si IV 1393 absorption lines at a velocity that approximately corresponds to the velocity of the LMC. It is possible that this component might come from originally neutral (or at least not very highly ionized) gas which has been photoionized by the initially very strong ionizing radiation field of the supernova. Theoretical considerations of this scenario lead to the study of fast (with velocities of about c) ionization fronts. It is shown that for reasonable model parameters it is possible to obtain considerably large C IV column densities, in agreement with the IUE observations. On the other hand, the models do not so easily predict the large Si IV column densities that are also obtained from the IUE observations. It is found that only models in which the interstellar medium surrounding SN 1987A is initially composed of already ionized hydrogen and helium predict substantial Si IV column densities. This result provides an interesting prediction of the ionization state of the environment of the presupernova star. 9 references

  5. Rapid ionization of the environment of SN 1987A

    Science.gov (United States)

    Raga, A. C.

    1987-01-01

    It has been suggested by some authors that IUE observations of the supernova SN 1987A show the presence of a strong component of the interstellar C IV 1550 and Si IV 1393 absorption lines at a velocity that approximately corresponds to the velocity of the LMC. It is possible that this component might come from originally neutral (or at least not very highly ionized) gas which has been photoionized by the initially very strong ionizing radiation field of the supernova. Theoretical considerations of this scenario lead to the study of fast (with velocities of about c) ionization fronts. It is shown that for reasonable model parameters it is possible to obtain considerably large C IV column densities, in agreement with the IUE observations. On the other hand, the models do not so easily predict the large Si IV column densities that are also obtained from the IUE observations. It is found that only models in which the interstellar medium surrounding SN 1987A is initially composed of already ionized hydrogen and helium predict substantial Si IV column densities. This result provides an interesting prediction of the ionization state of the environment of the presupernova star.

  6. Soft X-ray spectrometer design for warm dense plasma measurements on DARHT Axis-I

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, Nicholas Bryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, John Oliver [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Coleman, Joshua Eugene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-11

    A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated on Axis-I of the Dual-Axis Radiographic Hydrodynamic Testing (DARHT) facility at Los Alamos National Laboratory. The 100-ns-long intense, relativistic electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into a thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to the beam energy of 19.8 MeV. The principal goal of this project is to characterize these angular distributions to determine the optimal location to deploy the soft X-ray spectrometer. In addition, a proof-of-principle design will be presented. The ultimate goal of the spectrometer is to obtain measurements of the plasma temperature and density to benchmark equation-of-state models of the warm dense matter regime.

  7. Nature of the ionizing source of the nuclear gas in NGC 1052

    International Nuclear Information System (INIS)

    Keel, W.C.; Miller, J.S.

    1983-01-01

    We examine the ionization and physical state of the emission-line region in the nucleus of elliptical galaxy NGC 1052. The [O III] lambda4363/lambda5007 ratio, frequently used as a diagnostic for ionization mechanisms, is very poorly determined because of difficulties in matching the underlying stellar continuum spectrum, which is unusual in having very strong lines for the galaxy luminosity. Within these limitations, we find the [O III] temperature to be only marginally compatible with shock models, and the overall emission spectrum to be better fitted by photoionization models with a very dilute flat-spectrum central source. In any event, the case for NGC 1052 as a shock-heated nucleus is not strong

  8. Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web.

    Science.gov (United States)

    Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline

    2015-12-03

    Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe's total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 10(5)-10(7) kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm-hot baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm-hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 10(7) kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5-10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.

  9. The integrated radio continuum spectrum of M33 - Evidence for free-free absorption by cool ionized gas

    Science.gov (United States)

    Israel, F. P.; Mahoney, M. J.; Howarth, N.

    1992-01-01

    We present measurements of the integrated radio continuum flux density of M33 at frequencies between 22 and 610 MHz and discuss the radio continuum spectrum of M33 between 22 MHz and 10 GHz. This spectrum has a turnover between 500 and 900 MHz, depending on the steepness of the high frequency radio spectrum of M33. Below 500 MHz the spectrum is relatively flat. We discuss possible mechanisms to explain this spectral shape and consider efficient free-free absorption of nonthermal emission by a cool (not greater than 1000 K) ionized gas to be a very likely possibility. The surface filling factor of both the nonthermal and the thermal material appears to be small (of order 0.001), which could be explained by magnetic field/density fluctuations in the M 33 interstellar medium. We briefly speculate on the possible presence of a nuclear radio source with a steep spectrum.

  10. Fighting global warming by greenhouse gas removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies.

    Science.gov (United States)

    Ming, Tingzhen; de Richter, Renaud; Shen, Sheng; Caillol, Sylvain

    2016-04-01

    Even if humans stop discharging CO2 into the atmosphere, the average global temperature will still increase during this century. A lot of research has been devoted to prevent and reduce the amount of carbon dioxide (CO2) emissions in the atmosphere, in order to mitigate the effects of climate change. Carbon capture and sequestration (CCS) is one of the technologies that might help to limit emissions. In complement, direct CO2 removal from the atmosphere has been proposed after the emissions have occurred. But, the removal of all the excess anthropogenic atmospheric CO2 will not be enough, due to the fact that CO2 outgases from the ocean as its solubility is dependent of its atmospheric partial pressure. Bringing back the Earth average surface temperature to pre-industrial levels would require the removal of all previously emitted CO2. Thus, the atmospheric removal of other greenhouse gases is necessary. This article proposes a combination of disrupting techniques to transform nitrous oxide (N2O), the third most important greenhouse gas (GHG) in terms of current radiative forcing, which is harmful for the ozone layer and possesses quite high global warming potential. Although several scientific publications cite "greenhouse gas removal," to our knowledge, it is the first time innovative solutions are proposed to effectively remove N2O or other GHGs from the atmosphere other than CO2.

  11. Theoretical study of ionization and one-electron oxidation potentials of N-heterocyclic compounds.

    Science.gov (United States)

    Sviatenko, Liudmyla K; Gorb, Leonid; Hill, Frances C; Leszczynski, Jerzy

    2013-05-15

    A number of density functionals was utilized to predict gas-phase adiabatic ionization potentials (IPs) for nitrogen-rich heterocyclic compounds. Various solvation models were applied to the calculation of difference in free energies of solvation of oxidized and reduced forms of heterocyclic compounds in acetonitrile (AN) for correct reproduction of their standard oxidation potentials. We developed generally applicable protocols that could successfully predict the gas-phase adiabatic ionization potentials of nitrogen-rich heterocyclic compounds and their standard oxidation potentials in AN. This approach is supported by a MPW1K/6-31+G(d) level of theory which uses SMD(UA0) approximation for estimation of solvation energy of neutral molecules and PCM(UA0) model for ionized ones. The mean absolute derivation (MAD) and root mean square error (RMSE) of the current theoretical models for IP are equal to 0.22 V and 0.26, respectively, and for oxidation potentials MAD = 0.13 V and RMSE = 0.17. Copyright © 2013 Wiley Periodicals, Inc.

  12. Meas.of the Ratio Between Double and Single Ionization of Helium for Antiprotons

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to measure the ratio between double and single ionization of helium by antiprotons in the energy range $>$~3~MeV. Comparison with already existing proton data will yield information on the mechanisms for double ionization, which could not be extracted from previous comparisons between ratios measured for equivelocity electrons and protons. The most basic information to be obtained from an antiproton experiment will be the amount of correlation existing between the two electrons in the ground-state helium atom.\\\\ \\\\ The equipment consists of a gas cell, which employs slow-ion collection via the so-called condenser-plate method for the absolute sum of partial-ionization cross sections and determination of the relative contribution of multiple charged ions by TOF. The gas cell has movable entrance and exit slits and a grid system to account for secondary emission from the collection of slow ions. Together with a field of 800~V/cm in the collision region, the potentials of the TOF sp...

  13. A Photo-Ionization Method for Black Hole Mass Estimation in Quasars

    Directory of Open Access Journals (Sweden)

    Marziani Paola

    2011-09-01

    Full Text Available Determining the masses of the central compact object believed to power all active galactic nuclei is relevant to our understanding of their evolution and of their inner workings. Keys to present-day mass estimates are: (1 the assumption of line broadening due to virial motion of the emitting gas, (2 an estimate of the distance of broad-line emitting gas from the central compact object, and (3 a measure of the AGN luminosity. We discuss the merits and the limitations of an alternative method based on estimates of physical conditions in the broad line emitting region derived from an appropriate multi-component analysis of emission line profiles. This ‘photo-ionization method’, applied to UV intermediate-ionization lines appears to be promising for at least a sizable population of high-z quasars.

  14. SUZAKU MONITORING OF THE SEYFERT 1 GALAXY NGC 5548: WARM ABSORBER LOCATION AND ITS IMPLICATION FOR COSMIC FEEDBACK

    International Nuclear Information System (INIS)

    Krongold, Y.; Andrade-Velazquez, M.; Binette, L.; Jimenez-Bailon, E.; Elvis, M.; Nicastro, F.; Brickhouse, N. S.; Liu, Y.; Wilkes, B.; Mathur, S.; Reeves, J. N.; Grupe, D.; McHardy, I. M.; Minezaki, T.; Yoshii, Y.

    2010-01-01

    We present a 2 month Suzaku X-ray monitoring of the Seyfert 1 galaxy NGC 5548. The campaign consists of seven observations (with exposure time of ∼30 ks each), separated by ∼1 week. This paper focus on the X-ray Imaging Spectrometer data of NGC 5548. We analyze the response in the opacity of the gas that forms the well-known ionized absorber in this source for ionizing flux variations. Despite variations by a factor of ∼4 in the impinging continuum, the soft X-ray spectra of the source show little spectral variations, suggesting no response from the ionized absorber. A detailed time modeling of the spectra confirms the lack of opacity variations for an absorbing component with high ionization (U X ∼ -0.85), and high outflow velocity (v out ∼ 1040 km s -1 ), as the ionization parameter was found to be consistent with a constant value during the whole campaign. Instead, the models suggest that the ionization parameter of a low ionization (U X ∼ -2.8), low velocity (v out ∼ 590 km s -1 ) absorbing component might be changing linearly with the ionizing flux, as expected for gas in photoionization equilibrium. However, given the lack of spectral variations among observations, we consider the variations in this component as tentative. Using the lack of variations, we set an upper limit of n e 7 cm -3 for the electron density of the gas forming the high ionization, high velocity component. This implies a large distance from the continuum source (R>0.033 pc; R>5000R S ). If the variations in the low ionization, low velocity component are real, they imply n e >9.8 x 10 4 cm -3 and R 1.2 x 10 56 erg) can be enough to disrupt the interstellar medium, possibly quenching or regulating large-scale star formation. However, the total mass and energy ejected by the wind may still be lower than the one required for cosmic feedback, even when extrapolated to quasar luminosities. Such feedback would require that we are observing the wind before it is fully accelerated.

  15. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    OpenAIRE

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatmen...

  16. Impact of local electrostatic field rearrangement on field ionization

    Science.gov (United States)

    Katnagallu, Shyam; Dagan, Michal; Parviainen, Stefan; Nematollahi, Ali; Grabowski, Blazej; Bagot, Paul A. J.; Rolland, Nicolas; Neugebauer, Jörg; Raabe, Dierk; Vurpillot, François; Moody, Michael P.; Gault, Baptiste

    2018-03-01

    Field ion microscopy allows for direct imaging of surfaces with true atomic resolution. The high charge density distribution on the surface generates an intense electric field that can induce ionization of gas atoms. We investigate the dynamic nature of the charge and the consequent electrostatic field redistribution following the departure of atoms initially constituting the surface in the form of an ion, a process known as field evaporation. We report on a new algorithm for image processing and tracking of individual atoms on the specimen surface enabling quantitative assessment of shifts in the imaged atomic positions. By combining experimental investigations with molecular dynamics simulations, which include the full electric charge, we confirm that change is directly associated with the rearrangement of the electrostatic field that modifies the imaging gas ionization zone. We derive important considerations for future developments of data reconstruction in 3D field ion microscopy, in particular for precise quantification of lattice strains and characterization of crystalline defects at the atomic scale.

  17. KINEMATICS AND EXCITATION OF THE RAM PRESSURE STRIPPED IONIZED GAS FILAMENTS IN THE COMA CLUSTER OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Michitoshi [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Yagi, Masafumi; Komiyama, Yutaka; Kashikawa, Nobunari [Optical and Infrared Astronomy Division, National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Furusawa, Hisanori [Astronomical Data Center, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Hattori, Takashi [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' Ohoku Place, Hilo, HI 96720 (United States); Okamura, Sadanori, E-mail: yoshidam@hiroshima-u.ac.jp [Department of Astronomy, University of Tokyo, Tokyo 113-0033 (Japan)

    2012-04-10

    We present the results of deep imaging and spectroscopic observations of very extended ionized gas (EIG) around four member galaxies of the Coma Cluster of galaxies: RB 199, IC 4040, GMP 2923, and GMP 3071. The EIGs were serendipitously found in an H{alpha} narrowband imaging survey of the central region of the Coma Cluster. The relative radial velocities of the EIGs with respect to the systemic velocities of the parent galaxies from which they emanate increase almost monotonically with the distance from the nucleus of the respective galaxies, reaching {approx} - 400 to - 800 km s{sup -1} at around 40-80 kpc from the galaxies. The one-sided morphologies and the velocity fields of the EIGs are consistent with the predictions of numerical simulations of ram pressure stripping. We found a very low velocity filament (v{sub rel} {approx} -1300 km s{sup -1}) at the southeastern edge of the disk of IC 4040. Some bright compact knots in the EIGs of RB 199 and IC 4040 exhibit blue continuum and strong H{alpha} emission. The equivalent widths of the H{alpha} emission exceed 200 A and are greater than 1000 Angstrom-Sign for some knots. The emission-line intensity ratios of the knots are basically consistent with those of sub-solar abundance H II regions. These facts indicate that intensive star formation occurs in the knots. Some filaments, including the low-velocity filament of the IC 4040 EIG, exhibit shock-like emission-line spectra, suggesting that shock heating plays an important role in ionization and excitation of the EIGs.

  18. Evaluating the Dominant Components of Warming in Pliocene Climate Simulations

    Science.gov (United States)

    Hill, D. J.; Haywood, A. M.; Lunt, D. J.; Hunter, S. J.; Bragg, F. J.; Contoux, C.; Stepanek, C.; Sohl, L.; Rosenbloom, N. A.; Chan, W.-L.; hide

    2014-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is the first coordinated climate model comparison for a warmer palaeoclimate with atmospheric CO2 significantly higher than pre-industrial concentrations. The simulations of the mid-Pliocene warm period show global warming of between 1.8 and 3.6 C above pre-industrial surface air temperatures, with significant polar amplification. Here we perform energy balance calculations on all eight of the coupled ocean-atmosphere simulations within PlioMIP Experiment 2 to evaluate the causes of the increased temperatures and differences between the models. In the tropics simulated warming is dominated by greenhouse gas increases, with the cloud component of planetary albedo enhancing the warming in most of the models, but by widely varying amounts. The responses to mid-Pliocene climate forcing in the Northern Hemisphere midlatitudes are substantially different between the climate models, with the only consistent response being a warming due to increased greenhouse gases. In the high latitudes all the energy balance components become important, but the dominant warming influence comes from the clear sky albedo, only partially offset by the increases in the cooling impact of cloud albedo. This demonstrates the importance of specified ice sheet and high latitude vegetation boundary conditions and simulated sea ice and snow albedo feedbacks. The largest components in the overall uncertainty are associated with clouds in the tropics and polar clear sky albedo, particularly in sea ice regions. These simulations show that albedo feedbacks, particularly those of sea ice and ice sheets, provide the most significant enhancements to high latitude warming in the Pliocene.

  19. Gas-ion laser with gas pressure maintenance means

    International Nuclear Information System (INIS)

    Thatcher, J.B.

    1975-01-01

    A gas-ion laser is described including means to maintain the ionizable gas in the laser cavity at a rather constant pressure over an extended period of time to significantly increase the useful life of the gas-ion laser. The gas laser includes a gas makeup system having a high pressure source or storage container and a regulating valve. The valve has a permeable solid state orifice member through which the gas flows from the high pressure source to the laser cavity to replenish the gas in the laser cavity and maintain the gas pressure in the cavity rather constant. The permeable orifice member is selected from a solid state material having a permeability that is variable in relation to the magnitude of the energy applied to the orifice member. The gas-ion laser has a valve operating means such as a heater for varying the applied energy such as thermal energy to the member to regulate the gas flow. Additionally, the gas-ion laser has a valve control means that is responsive to the gas pressure in the laser cavity for controlling the valve control means to maintain the pressure at a desired level. (U.S.)

  20. Generation of monoenergetic ion beams via ionization dynamics (Conference Presentation)

    Science.gov (United States)

    Lin, Chen; Kim, I. Jong; Yu, Jinqing; Choi, Il Woo; Ma, Wenjun; Yan, Xueqing; Nam, Chang Hee

    2017-05-01

    The research on ion acceleration driven by high intensity laser pulse has attracted significant interests in recent decades due to the developments of laser technology. The intensive study of energetic ion bunches is particularly stimulated by wide applications in nuclear fusion, medical treatment, warm dense matter production and high energy density physics. However, to implement such compact accelerators, challenges are still existing in terms of beam quality and stability, especially in applications that require higher energy and narrow bandwidth spectra ion beams. We report on the acceleration of quasi-mono-energetic ion beams via ionization dynamics in the interaction of an intense laser pulse with a solid target. Using ionization dynamics model in 2D particle-in-cell (PIC) simulations, we found that high charge state contamination ions can only be ionized in the central spot area where the intensity of sheath field surpasses their ionization threshold. These ions automatically form a microstructure target with a width of few micron scale, which is conducive to generate mono-energetic beams. In the experiment of ultraintense (< 10^21 W/cm^2) laser pulses irradiating ultrathin targets each attracted with a contamination layer of nm-thickness, high quality < 100 MeV mono-energetic ion bunches are generated. The peak energy of the self-generated micro-structured target ions with respect to different contamination layer thickness is also examined This is relatively newfound respect, which is confirmed by the consistence between experiment data and the simulation results.

  1. Alarm radiation dosimeter with improved integrating pulse ionization chamber and high voltage supply

    International Nuclear Information System (INIS)

    Borkowski, C.J.; Rochelle, J.M.

    1975-01-01

    An alarm dosimeter is described which features an improved integrating pulse ionization chamber of the type containing an hermetically sealed gas diode. Improved operation and miniaturization of the chamber are made possible by a ringing choke converter high voltage supply having a ripple-type output that insures discharge of the gas diode. (author)

  2. Mass Spectrometric Study of Some Fluoroquinolone Drugs Using Electron Ionization and Chemical Ionization Techniques in Combination With Semi-Empirical Calculations

    International Nuclear Information System (INIS)

    Abd EL Kareem, M.S.M.

    2013-01-01

    A mass spectrometer of the type QMS (SSQ710) is used to record the electron ionization mass spectra of some 6-fluoroquinolones molecules, namely: Norfloxacin, Pefloxacin, Ciprofloxacin and Levofloxacin.While the chemical ionization mass spectra of these compounds are recorded using Thermo Finnigan TRACE DSQ GC/MS system.In EI mass spectra, the relative intensities for the molecular ions [M] +. of the studied compounds and the prominent fragment ions are reported and discussed. Furthermore, fragmentation patterns for the four compounds have been suggested and discussed and the most important fragmentation processes such as [M-CO 2 ] +. , [M-C 2 H 4 N] + and [M-CO 2 -C 2 H 4 N] + are investigated.On the other hand, the chemical ionization (CI) mass spectra of the compounds have been recorded using methane as the reagent gas. These spectra are discussed in terms of the structure of the compounds, with particular reference to their conventional electron ionization mass spectra. The protonated molecules [M + H] + are more relatively intense than [M] +. ions in the recorded EI mass spectra indicating higher stability in the case of [M + H] + .Also, fragmentation patterns for the four compounds have been suggested and discussed (using chemical ionization technique) and the most important fragmentation processes such as [MH-CO 2 ] +. , [MH-C 2 H 4 N] + and [MH-H 2 O] + are investigated.

  3. Nuclear energy, a solution in the struggle against global warming in quest of recognition

    International Nuclear Information System (INIS)

    Faudon, Valerie

    2014-01-01

    In this article, the author first comments assessments of the continuous increase of greenhouse gas emissions as they appear in the IPCC report of September 2013 and in the results published by the Global Carbon Project. She also evokes the commitments in emission reductions in compliance with the Kyoto Protocol and some dramatic consequences global warming may have according to the IPCC scenarios. Then, she addresses the share of nuclear energy in energy production and outlines its stakes and benefits in terms of greenhouse gas emissions. She notices that international bodies (European Commission, World Bank) do not mention nuclear energy in their plan for energy production development, but mainly rely on the development of renewable energies. The author then outlines the reasons why the development of renewable energies does not necessarily goes with the reduction of greenhouse gas emissions. She also notices that a new generation of ecologists considers nuclear energy as a tool to struggle against climate warming

  4. Shock wave propagation in neutral and ionized gases

    International Nuclear Information System (INIS)

    Podder, N. K.; Wilson IV, R. B.; Bletzinger, P.

    2008-01-01

    Preliminary measurements on a recently built shock tube are presented. Planar shock waves are excited by the spark discharge of a capacitor, and launched into the neutral argon or nitrogen gas as well as its ionized glow discharge in the pressure region 1-17 Torr. For the shock wave propagation in the neutral argon at fixed capacitor charging voltage, the shock wave velocity is found to increase nonlinearly at the lower pressures, reach a maximum at an intermediate pressure, and then decrease almost linearly at the higher pressures, whereas the shock wave strength continues to increase at a nonlinear rate over the entire range of pressure. However, at fixed gas pressure the shock wave velocity increases almost monotonically as the capacitor charging voltage is increased. For the shock wave propagation in the ionized argon glow, the shock wave is found to be most influenced by the glow discharge plasma current. As the plasma current is increased, both the shock wave propagation velocity and the dispersion width are observed to increase nonlinearly

  5. Sustained climate warming drives declining marine biological productivity

    Science.gov (United States)

    Moore, J. Keith; Fu, Weiwei; Primeau, Francois; Britten, Gregory L.; Lindsay, Keith; Long, Matthew; Doney, Scott C.; Mahowald, Natalie; Hoffman, Forrest; Randerson, James T.

    2018-03-01

    Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease by more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.

  6. Giant plasmon excitation in single and double ionization of C60 by fast highly charged Si and O ions

    International Nuclear Information System (INIS)

    Kelkar, A H; Kadhane, U; Misra, D; Tribedi, L C

    2007-01-01

    Se have investigated single and double ionization of C 60 molecule in collisions with 2.33 MeV/u Si q+ (q=6-14) and 3.125 MeV/u O q+ (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C 60 are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening

  7. Simultaneous determination of methanol, acetaldehyde, acetone, and ethanol in human blood by gas chromatography with flame ionization detection.

    Science.gov (United States)

    Schlatter, J; Chiadmi, F; Gandon, V; Chariot, P

    2014-01-01

    Methanol, acetaldehyde, acetone, and ethanol, which are commonly used as biomarkers of several diseases, in acute intoxications, and forensic settings, can be detected and quantified in biological fluids. Gas chromatography (GC)-mass spectrometry techniques are complex, require highly trained personnel and expensive materials. Gas chromatographic determinations of ethanol, methanol, and acetone have been reported in one study with suboptimal accuracy. Our objective was to improve the assessment of these compounds in human blood using GC with flame ionization detection. An amount of 50 µl of blood was diluted with 300 µl of sterile water, 40 µl of 10% sodium tungstate, and 20 µl of 1% sulphuric acid. After centrifugation, 1 µl of the supernatant was injected into the gas chromatograph. We used a dimethylpolysiloxane capillary column of 30 m × 0.25 mm × 0.25 µm. We observed linear correlations from 7.5 to 240 mg/l for methanol, acetaldehyde, and acetone and from 75 to 2400 mg/l for ethanol. Precision at concentrations 15, 60, and 120 mg/l for methanol, acetaldehyde, and acetone and 150, 600, and 1200 mg/ml for ethanol were 0.8-6.9%. Ranges of accuracy were 94.7-98.9% for methanol, 91.2-97.4% for acetaldehyde, 96.1-98.7% for acetone, and 105.5-111.6% for ethanol. Limits of detection were 0.80 mg/l for methanol, 0.61 mg/l for acetaldehyde, 0.58 mg/l for acetone, and 0.53 mg/l for ethanol. This method is suitable for routine clinical and forensic practices.

  8. On the kinetic theory of a fully ionized gas

    International Nuclear Information System (INIS)

    Bezerra Junior, A.G.; Rodbard, M.G.; Kremer, G.M.

    1993-01-01

    An alternative method for kinetic theory recently proposed, that combines the features of the Chapman-Enskog and Grad methods, neither using a solution of the integral equation nor the field equations of the moments, is applied to ionized gases. Like in the Grad method, the deviation from equilibrium of the moments are used. Like in the method of Grad, the deviation from equilibrium of the distribution function is written in terms of the moments of the distribution function, but the constitutive equations follow direct from the Boltzmann equation through the Chapman-Enskog method. (author)

  9. Serendipitous discovery of warm absorbers in the Seyfert 2 galaxy IRAS 18325-5926

    International Nuclear Information System (INIS)

    Zhang Shuinai; Gu Qiusheng; Peng Zhixin; Ji Li

    2011-01-01

    Warm absorption is a common phenomenon in Seyfert 1s and quasars, but is rare in Seyfert 2s. We report the detection of warm absorbers with high energy resolution in the Seyfert 2 galaxy IRAS 18325-5926 for the first time with Chandra HETGS spectra. An intrinsic absorbing line system with an outflow velocity ∼ 400 km s -1 was found, which is contributed by two warm absorbers with FWHM of 570 km s -1 and 1360 km s -1 , respectively. The two absorbers were adjacent, and moving transversely across our line of sight. We constrained the distance between the center and the absorbers to be a small value, suggesting that the absorbers may originate from the highly ionized accretion disk wind ejected five years ago. The perspective of this type 2 Seyfert provides the best situation in which to investigate the vertical part of the funnel-like outflows. Another weak absorbing line system with zero redshift was also detected, which could be due to Galactic absorption with very high temperature or an intrinsic outflow with a very high velocity ∼ 6000 km s -1 . (research papers)

  10. Potential of atmospheric pressure chemical ionization source in gas chromatography tandem mass spectrometry for the screening of urinary exogenous androgenic anabolic steroids

    International Nuclear Information System (INIS)

    Raro, M.; Portolés, T.; Pitarch, E.; Sancho, J.V.; Hernández, F.; Garrostas, L.; Marcos, J.; Ventura, R.; Segura, J.; Pozo, O.J.

    2016-01-01

    The atmospheric pressure chemical ionization (APCI) source for gas chromatography-mass spectrometry analysis has been evaluated for the screening of 16 exogenous androgenic anabolic steroids (AAS) in urine. The sample treatment is based on the strategy currently applied in doping control laboratories i.e. enzymatic hydrolysis, liquid–liquid extraction (LLE) and derivatization to form the trimethylsilyl ether-trimethylsilyl enol ether (TMS) derivatives. These TMS derivatives are then analyzed by gas chromatography tandem mass spectrometry using a triple quadrupole instrument (GC-QqQ MS/MS) under selected reaction monitoring (SRM) mode. The APCI promotes soft ionization with very little fragmentation resulting, in most cases, in abundant [M + H] + or [M + H-2TMSOH] + ions, which can be chosen as precursor ions for the SRM transitions, improving in this way the selectivity and sensitivity of the method. Specificity of the transitions is also of great relevance, as the presence of endogenous compounds can affect the measurements when using the most abundant ions. The method has been qualitatively validated by spiking six different urine samples at two concentration levels each. Precision was generally satisfactory with RSD values below 25 and 15% at the low and high concentration level, respectively. Most the limits of detection (LOD) were below 0.5 ng mL −1 . Validation results were compared with the commonly used method based on the electron ionization (EI) source. EI analysis was found to be slightly more repeatable whereas lower LODs were found for APCI. In addition, the applicability of the developed method has been tested in samples collected after the administration of 4-chloromethandienone. The highest sensitivity of the APCI method for this compound, allowed to increase the period in which its administration can be detected. - Highlights: • APCI source has been evaluated for the screening of 16 exogenous AAS in urine. • Suitable precision was

  11. Potential of atmospheric pressure chemical ionization source in gas chromatography tandem mass spectrometry for the screening of urinary exogenous androgenic anabolic steroids

    Energy Technology Data Exchange (ETDEWEB)

    Raro, M.; Portolés, T.; Pitarch, E.; Sancho, J.V.; Hernández, F. [Research Institute for Pesticides and Water, University Jaume I, E-12071 Castellón (Spain); Garrostas, L. [Bioanalysis Research Group, IMIM, Hospital del Mar Medical Research Institute, Doctor Aiguader 88, 08003 Barcelona (Spain); Marcos, J.; Ventura, R.; Segura, J. [Bioanalysis Research Group, IMIM, Hospital del Mar Medical Research Institute, Doctor Aiguader 88, 08003 Barcelona (Spain); Department of Experimental and Health Sciencies, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona (Spain); Pozo, O.J., E-mail: opozo@imim.es [Bioanalysis Research Group, IMIM, Hospital del Mar Medical Research Institute, Doctor Aiguader 88, 08003 Barcelona (Spain)

    2016-02-04

    The atmospheric pressure chemical ionization (APCI) source for gas chromatography-mass spectrometry analysis has been evaluated for the screening of 16 exogenous androgenic anabolic steroids (AAS) in urine. The sample treatment is based on the strategy currently applied in doping control laboratories i.e. enzymatic hydrolysis, liquid–liquid extraction (LLE) and derivatization to form the trimethylsilyl ether-trimethylsilyl enol ether (TMS) derivatives. These TMS derivatives are then analyzed by gas chromatography tandem mass spectrometry using a triple quadrupole instrument (GC-QqQ MS/MS) under selected reaction monitoring (SRM) mode. The APCI promotes soft ionization with very little fragmentation resulting, in most cases, in abundant [M + H]{sup +} or [M + H-2TMSOH]{sup +} ions, which can be chosen as precursor ions for the SRM transitions, improving in this way the selectivity and sensitivity of the method. Specificity of the transitions is also of great relevance, as the presence of endogenous compounds can affect the measurements when using the most abundant ions. The method has been qualitatively validated by spiking six different urine samples at two concentration levels each. Precision was generally satisfactory with RSD values below 25 and 15% at the low and high concentration level, respectively. Most the limits of detection (LOD) were below 0.5 ng mL{sup −1}. Validation results were compared with the commonly used method based on the electron ionization (EI) source. EI analysis was found to be slightly more repeatable whereas lower LODs were found for APCI. In addition, the applicability of the developed method has been tested in samples collected after the administration of 4-chloromethandienone. The highest sensitivity of the APCI method for this compound, allowed to increase the period in which its administration can be detected. - Highlights: • APCI source has been evaluated for the screening of 16 exogenous AAS in urine. • Suitable

  12. Is the extent of glaciation limited by marine gas-hydrates?

    Science.gov (United States)

    Paull, Charles K.; Ussler, William; Dillon, William P.

    1991-01-01

    Methane may have been released to the atmosphere during the Quaternary from Arctic shelf gas-hydrates as a result of thermal decomposition caused by climatic warming and rising sea-level; this release of methane (a greenhouse gas) may represent a positive feedback on global warming [Revelle, 1983; Kvenvolden, 1988a; Nisbet, 1990]. We consider the response to sea-level changes by the immense amount of gas-hydrate that exists in continental rise sediments, and suggest that the reverse situation may apply—that release of methane trapped in the deep-sea sediments as gas-hydrates may provide a negative feedback to advancing glaciation. Methane is likely to be released from deep-sea gas-hydrates as sea-level falls because methane gas-hydrates decompose with pressure decrease. Methane would be released to sediment pore space at shallow sub-bottom depths (100's of meters beneath the seafloor, commonly at water depths of 500 to 4,000 m) producing zones of markedly decreased sediment strength, leading to slumping [Carpenter, 1981; Kayen, 1988] and abrupt release of the gas. Methane is likely to be released to the atmosphere in spikes that become larger and more frequent as glaciation progresses. Because addition of methane to the atmosphere warms the planet, this process provides a negative feedback to glaciation, and could trigger deglaciation.

  13. Decarbonization of fossil fuels as a strategy to control global warming

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, T.; Abbasi, S.A. [Pondicherry Central University, Pondicherry (India)

    2011-05-15

    With the world reaching near-total consensus on the seriousness of the global warming impacts, and on the urgency to halt further warming, R & D efforts have intensified many-fold to find ways and means of global warming control. One of the avenues being explored is 'decarbonization' of fossil fuel use by either decarbonizing the fuels before they are burnt or by capturing the CO{sub 2} they emit on combustion. In this paper the various available options are reviewed in the context of their economic and environmental viability. It emerges that even as the goal is very enchanting, the possibility of it's realization appears remote. It also follows that the only sure method of reducing greenhouse gas emissions presently available to humankind is by reducing consumption of energy and other resources.

  14. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    Science.gov (United States)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  15. Design of an ionization diffusion chamber detector

    International Nuclear Information System (INIS)

    Sugiarto, S.

    1976-01-01

    Prototype of an Ionization Diffusion Chamber detector has been made. It is a silindrical glass, 20 cm in diameter, 13,5 cm in height, air gas filled, operated at room pressure and room temperature at the top of this instrument while for the box temperature dry ice (CO 2 solid) temperature is used. This detector is ready for seeing alpha and beta particle tracks. (author)

  16. Polymerization, shock cooling and ionization of liquid nitrogen

    International Nuclear Information System (INIS)

    Ross, M; Rogers, F

    2005-01-01

    The trajectory of thermodynamic states passed through by the nitrogen Hugoniot starting from the liquid and up to 10 6 GPa has been studied. An earlier report of cooling in the doubly shocked liquid, near 50 to 100 GPa and 7500 K, is revisited in light of the recent discovery of solid polymeric nitrogen. It is found that cooling occurs when the doubly shocked liquid is driven into a volume near the molecular to polymer transition and raising the possibility of a liquid-liquid phase transition (LLPT). By increasing the shock pressure and temperature by an order of magnitude, theoretical calculations predict thermal ionization of the L shell drives the compression maxima to 5-6 fold compression at 10 Mbar (T ∼ 3.5 10 5 K) and at 400 Mbar (T ∼ 2.3 10 6 K) from K shell ionization. Near a pressure of 10 6 GPa the K shell ionizes completely and the Hugoniot approaches the classical ideal gas compression fourfold limit

  17. The Possible Role of Penning Ionization Processes in Planetary Atmospheres

    Directory of Open Access Journals (Sweden)

    Stefano Falcinelli

    2015-03-01

    Full Text Available In this paper we suggest Penning ionization as an important route of formation for ionic species in upper planetary atmospheres. Our goal is to provide relevant tools to researchers working on kinetic models of atmospheric interest, in order to include Penning ionizations in their calculations as fast processes promoting reactions that cannot be neglected. Ions are extremely important for the transmission of radio and satellite signals, and they govern the chemistry of planetary ionospheres. Molecular ions have also been detected in comet tails. In this paper recent experimental results concerning production of simple ionic species of atmospheric interest are presented and discussed. Such results concern the formation of free ions in collisional ionization of H2O, H2S, and NH3 induced by highly excited species (Penning ionization as metastable noble gas atoms. The effect of Penning ionization still has not been considered in the modeling of terrestrial and extraterrestrial objects so far, even, though metastable helium is formed by radiative recombination of He+ ions with electrons. Because helium is the second most abundant element of the universe, Penning ionization of atomic or molecular species by He*(23S1 is plausibly an active route of ionization in relatively dense environments exposed to cosmic rays.

  18. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming.

    Science.gov (United States)

    Faubert, Patrick; Tiiva, Päivi; Rinnan, Asmund; Michelsen, Anders; Holopainen, Jarmo K; Rinnan, Riikka

    2010-07-01

    *Biogenic volatile organic compound (BVOC) emissions from arctic ecosystems are important in view of their role in global atmospheric chemistry and unknown feedbacks to global warming. These cold ecosystems are hotspots of climate warming, which will be more severe here than averaged over the globe. We assess the effects of climatic warming on non-methane BVOC emissions from a subarctic heath. *We performed ecosystem-based chamber measurements and gas chromatography-mass spectrometry (GC-MS) analyses of the BVOCs collected on adsorbent over two growing seasons at a wet subarctic tundra heath hosting a long-term warming and mountain birch (Betula pubescens ssp. czerepanovii) litter addition experiment. *The relatively low emissions of monoterpenes and sesquiterpenes were doubled in response to an air temperature increment of only 1.9-2.5 degrees C, while litter addition had a minor influence. BVOC emissions were seasonal, and warming combined with litter addition triggered emissions of specific compounds. *The unexpectedly high rate of release of BVOCs measured in this conservative warming scenario is far above the estimates produced by the current models, which underlines the importance of a focus on BVOC emissions during climate change. The observed changes have implications for ecological interactions and feedback effects on climate change via impacts on aerosol formation and indirect greenhouse effects.

  19. Analysis of Excitation and Ionization of Atoms and Molecules by Electron Impact

    CERN Document Server

    Chaudhry, Afzal

    2011-01-01

    Analysis of Excitation and Ionization of Atoms and Molecules by Electron Impact, by Afzal Chaudhry and Hans Kleinpoppen, describes in detail the measurements of the partial and total doubly differential cross sections for the multiple-ionization of rare gas atoms by electron impact. These measurements show, among other trends, the role of Auger transitions in the production of multiply ionized atoms in the region where the incident electron energy is sufficient to produce inner shell ionization. Other processes like Coster-Kronig transitions and shake off also contribute towards increasing the charge of the ions. As discussed in the book, an incident electron having energy of 6 keV, for example, in a collision with xenon atom can remove up to nine electrons! The measurements of doubly differential cross sections for the dissociative and non-dissociative ionization of hydrogen, sulfur dioxide and sulfur hexa fluoride molecular gases are also explored. The results of the measurements for the sulfur dioxide mole...

  20. The economics of global warming

    International Nuclear Information System (INIS)

    Pillet, G.; Hediger, W.; Kypreos, S.; Corbaz, C.

    1993-05-01

    The global warming threat is challenging the world community to both international cooperation and national policy action. This report focuses on the necessity to alternate between ''global and national climate policies''. The Swiss perspective is at issue. The economic rationales for comparing national climate policy options are analyzed. This report explicitly focusses on the fundamental role of the normative framework and the related environmental-economic requisites for establishing an efficient national climate policy and computing a ''carbon tax''. Finally, the latest results of the energy and greenhouse gas scenarios for Switzerland, elaborated on within the network of the IEA/ETSAP Project, Annex IV, ''Greenhouse Gases and National Energy Options: Technologies and Costs for Reducing Emissions of Greenhouse Gases'', illustrate Switzerland's difficulties in reducing greenhouse gas emissions at ''reasonable cost'' compared with other countries. This should make Switzerland very sensitive to the implementation of efficient environmental-policy instruments and international cooperation. (author) figs., tabs., refs