WorldWideScience

Sample records for warm humid conditions

  1. Whole-body pre-cooling and heat storage during self-paced cycling performance in warm humid conditions.

    Science.gov (United States)

    Kay, D; Taaffe, D R; Marino, F E

    1999-12-01

    The aim of this study was to establish the effect that pre-cooling the skin without a concomitant reduction in core temperature has on subsequent self-paced cycling performance under warm humid (31 degrees C and 60% relative humidity) conditions. Seven moderately trained males performed a 30 min self-paced cycling trial on two separate occasions. The conditions were counterbalanced as control or whole-body pre-cooling by water immersion so that resting skin temperature was reduced by approximately 5-6 degrees C. After pre-cooling, mean skin temperature was lower throughout exercise and rectal temperature was lower (P body sweat fell from 1.7+/-0.1 l x h(-1) to 1.2+/-0.1 l h(-1) (P < 0.05). The distance cycled increased from 14.9+/-0.8 to 15.8+/-0.7 km (P < 0.05) after pre-cooling. The results indicate that skin pre-cooling in the absence of a reduced rectal temperature is effective in reducing thermal strain and increasing the distance cycled in 30 min under warm humid conditions.

  2. Humid Heat Waves at different warming levels

    Science.gov (United States)

    Russo, S.; Sillmann, J.; Sterl, A.

    2017-12-01

    The co-occurrence of consecutive hot and humid days during a heat wave can strongly affect human health. Here, we quantify humid heat wave hazard in the recent past and at different levels of global warming.We find that the magnitude and apparent temperature peak of heat waves, such as the ones observed in Chicago in 1995 and China in 2003, have been strongly amplified by humidity. Climate model projections suggest that the percentage of area where heat wave magnitude and peak are amplified by humidity increases with increasing warming levels. Considering the effect of humidity at 1.5o and 2o global warming, highly populated regions, such as the Eastern US and China, could experience heat waves with magnitude greater than the one in Russia in 2010 (the most severe of the present era).The apparent temperature peak during such humid-heat waves can be greater than 55o. According to the US Weather Service, at this temperature humans are very likely to suffer from heat strokes. Humid-heat waves with these conditions were never exceeded in the present climate, but are expected to occur every other year at 4o global warming. This calls for respective adaptation measures in some key regions of the world along with international climate change mitigation efforts.

  3. Analyses of phase change materials’ efficiency in warm-summer humid continental climate conditions

    Science.gov (United States)

    Ratnieks, J.; Gendelis, S.; Jakovics, A.; Bajare, D.

    2017-10-01

    The usage of phase change materials (PCMs) is a way to store excess energy produced during the hot time of the day and release it during the night thereby reducing the overheating problem. While, in Latvian climate conditions overheating is not a big issue in traditional buildings since it happens only a couple of weeks per year air conditioners must still be installed to maintain thermal comfort. The need for cooling in recently built office buildings with large window area can increase significantly. It is therefore of great interest if the thermal comfort conditions can be maintained by PCMs alone or with reduced maximum power of installed cooling systems. Our initial studies show that if the test building is well-insulated (necessary to reduce heat loss in winter), phase change material is not able to solidify fast enough during the relatively short night time. To further investigate the problem various experimental setups with two different phase change materials were installed in test buildings. Experimental results are compared with numerical modelling made in software COMSOL Multiphysics. The effectiveness of PCM using different situations is widely analysed.

  4. Thermomechanical and hygroelastic properties of an epoxy system under humid and cold-warm cycling conditions

    KAUST Repository

    El Yagoubi, Jalal; Lubineau, Gilles; Saghir, Shahid; Verdu, Jacques; Askari, Abe H.

    2014-01-01

    In this paper, we study the hygrothermal aging of an anhydride-cured epoxy under temperature and hygrometry conditions simulating those experienced by an aircraft in wet tropical or subtropical regions. Gravimetric and dimensional measurements were performed and they indicate that there are three stages in this aging process: the first one, corresponding to the early cycles can be called the "induction stage". The second stage of about 1000 cycles duration, could be named the "swelling stage", during which the volume increase is almost equal to the volume of the (liquid) water absorbed. Both the first and second stages are accompanied by modifications of the mechanical properties and the glass transition temperature. During the third ("equilibrium") stage, up to 3000 cycles, there is no significant change in the physical properties despite the continuous increase of water uptake. This can be explained by the fact that only physically sorbed water can influence physical properties. © 2013 Elsevier Ltd. All rights reserved.

  5. Performance limit of daytime radiative cooling in warm humid environment

    Directory of Open Access Journals (Sweden)

    Takahiro Suichi

    2018-05-01

    Full Text Available Daytime radiative cooling potentially offers efficient passive cooling, but the performance is naturally limited by the environment, such as the ambient temperature and humidity. Here, we investigate the performance limit of daytime radiative cooling under warm and humid conditions in Okayama, Japan. A cooling device, consisting of alternating layers of SiO2 and poly(methyl methacrylate on an Al mirror, is fabricated and characterized to demonstrate a high reflectance for sunlight and a selective thermal radiation in the mid-infrared region. In the temperature measurement under the sunlight irradiation, the device shows 3.4 °C cooler than a bare Al mirror, but 2.8 °C warmer than the ambient of 35 °C. The corresponding numerical analyses reveal that the atmospheric window in λ = 16 ∼ 25 μm is closed due to a high humidity, thereby limiting the net emission power of the device. Our study on the humidity influence on the cooling performance provides a general guide line of how one can achieve practical passive cooling in a warm humid environment.

  6. Performance analysis of spring wheat genotypes under rain-fed conditions in warm humid environment of Nepal

    Directory of Open Access Journals (Sweden)

    Ramesh Raj Puri

    2015-06-01

    Full Text Available Around 25% of total wheat area in Terai of Nepal falls under rain-fed and partially irrigated condition. A Coordinated varietal trial (CVT was conducted during two consecutive crop cycles (2011-12 and 2012-13 under timely sown rain-fed conditions of Terai. The trial was conducted in Alpha Lattice design with two replications at Nepal Agricultural Research Council, National Wheat Research Program, Bhairahawa and Nepal Agricultural Research Council, Regional Agriculture Research Station, Nepalgunj. Observations were recorded for yield and yield traits and analyzed using statistical software Cropstat 7.2.The combined analysis of coordinated varietal trial showed that BL 3978 possessed the highest yield (2469.2 Kg ha-1 followed by NL 1097 (2373.2 Kg ha-1 and NL 1094 (2334.06 Kg ha-1. Genotype x Environment interaction for grain yield was significant (p<0.05 over locations and years. BL 3978 with early maturity (111 days escaped the heat stress environment. Among the top three genotypes, BL 3978 was consistently higher in both favorable and unfavorable conditions. Earliness was one of the major traits for heat tolerant genotypes. The three identified genotypes will be further evaluated in participatory varietal selection or coordinated farmers field trial followed by small plot seed multiplication (seed increase and release in the future for timely sown rain-fed conditions. These lines also appear suitable for inclusion in crossing program targeted for water stress tolerance variety development. DOI: http://dx.doi.org/10.3126/ije.v4i2.12649 International Journal of Environment Vol.4(2 2015: 289-295

  7. Thermal Effectiveness of Wall Indoor Fountain in Warm Humid Climate

    Science.gov (United States)

    Seputra, J. A. P.

    2018-03-01

    Nowadays, many buildings wield indoor water features such as waterfalls, fountains, and water curtains to improve their aesthetical value. Despite the provision of air cooling due to water evaporation, this feature also has adverse effect if applied in warm humid climate since evaporation might increase air humidity beyond the comfort level. Yet, there are no specific researches intended to measure water feature’s effect upon its thermal condition. In response, this research examines the influence of evaporative cooling on indoor wall fountain toward occupant’s thermal comfort in warm humid climate. To achieve this goal, case study is established in Waroeng Steak Restaurant’s dining room in Surakarta-Indonesia. In addition, SNI 03-6572-2001 with comfort range of 20.5–27.1°C and 40-60% of relative humidity is utilized as thermal criterion. Furthermore, Computational Fluid Dynamics (CFD) is employed to process the data and derive conclusions. Research variables are; feature’s height, obstructions, and fan types. As results, Two Bumps Model (ToB) is appropriate when employs natural ventilation. However, if the room is mechanically ventilated, Three Bumps Model (TeB) becomes the best choice. Moreover, application of adaptive ventilation is required to maintain thermal balance.

  8. Research on trend of warm-humid climate in Central Asia

    Science.gov (United States)

    Gong, Zhi; Peng, Dailiang; Wen, Jingyi; Cai, Zhanqing; Wang, Tiantian; Hu, Yuekai; Ma, Yaxin; Xu, Junfeng

    2017-07-01

    Central Asia is a typical arid area, which is sensitive and vulnerable part of climate changes, at the same time, Central Asia is the Silk Road Economic Belt of the core district, the warm-humid climate change will affect the production and economic development of neighboring countries. The average annual precipitation, average anneal temperature and evapotranspiration are the important indexes to weigh the climate change. In this paper, the annual precipitation, annual average temperature and evapotranspiration data of every pixel point in Central Asia are analyzed by using long-time series remote sensing data to analyze the trend of warm and humid conditions. Finally, using the model to analyzed the distribution of warm-dry trend, the warm-wet trend, the cold-dry trend and the cold-wet trend in Central Asia and Xinjiang area. The results showed that most of the regions of Central Asia were warm-humid and warm-dry trends, but only a small number of regions showed warm-dry and cold-dry trends. It is of great significance to study the climatic change discipline and guarantee the ecological safety and improve the ability to cope with climate change in the region. It also provide scientific basis for the formulation of regional climate change program. The first section in your paper

  9. The Holocene warm-humid phases in the North China Plain as recorded by multi-proxy records

    Science.gov (United States)

    Cui, Jianxin; Zhou, Shangzhe; Chang, Hong

    2009-02-01

    The grain size and palinology of sediment and the frequency of 14C dada provide an integrated reconstruction of the Holocene warm-humid phases of the North China Plain. Two clear intense and long-lasting warm-humid phases were identified by comprehensive research in this region. The first phase was dated back to the early Holocene (9 000-7 000 a BP), and the second was centered at 5 000-3 000 a BP. The warm-humid episode between 9 000 and 7 000 a BP was also recognized at other sites showing global climatic trends rather than local events. Compared with the concern to the warm-humid phase of the early Holocene, the second one was not paid enough attention in the last few decades. The compilation of the Holocene paleoclimate data suggests that perhaps the second warm-humid phase was pervasive in monsoon region of China. In perspective of environmental archaeology, much attention should be devoted to it, because the flourish and adaptation of the Neolithic cultures and the building up of the first state seem to corresponding to the general warm-humid climatic conditions of this period. In addition, a warm-humid interval at 7 200-6 500 a BP was recognized by the grain size data from three sites. However, this warm-humid event was not shown in pollen assemblage and temporal distribution of 14C data. Perhaps, the resolution for climatic reconstruction from pollen and temporal distribution of 14C data cited here is relatively low and small-amplitude and short-period climatic events cannot be well reflected by the data. Due to the difference in locality and elevation of sampling site, as well as in resolution of proxy records, it is difficult to make precise correlation. Further work is needed in the future.

  10. Incorporating residual temperature and specific humidity in predicting weather-dependent warm-season electricity consumption

    Science.gov (United States)

    Guan, Huade; Beecham, Simon; Xu, Hanqiu; Ingleton, Greg

    2017-02-01

    Climate warming and increasing variability challenges the electricity supply in warm seasons. A good quantitative representation of the relationship between warm-season electricity consumption and weather condition provides necessary information for long-term electricity planning and short-term electricity management. In this study, an extended version of cooling degree days (ECDD) is proposed for better characterisation of this relationship. The ECDD includes temperature, residual temperature and specific humidity effects. The residual temperature is introduced for the first time to reflect the building thermal inertia effect on electricity consumption. The study is based on the electricity consumption data of four multiple-street city blocks and three office buildings. It is found that the residual temperature effect is about 20% of the current-day temperature effect at the block scale, and increases with a large variation at the building scale. Investigation of this residual temperature effect provides insight to the influence of building designs and structures on electricity consumption. The specific humidity effect appears to be more important at the building scale than at the block scale. A building with high energy performance does not necessarily have low specific humidity dependence. The new ECDD better reflects the weather dependence of electricity consumption than the conventional CDD method.

  11. Trends in continental temperature and humidity directly linked to ocean warming.

    Science.gov (United States)

    Byrne, Michael P; O'Gorman, Paul A

    2018-05-08

    In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land-ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.

  12. Outdoor thermal comfort in public space in warm-humid Guayaquil, Ecuador

    Science.gov (United States)

    Johansson, Erik; Yahia, Moohammed Wasim; Arroyo, Ivette; Bengs, Christer

    2018-03-01

    The thermal environment outdoors affects human comfort and health. Mental and physical performance is reduced at high levels of air temperature being a problem especially in tropical climates. This paper deals with human comfort in the warm-humid city of Guayaquil, Ecuador. The main aim was to examine the influence of urban micrometeorological conditions on people's subjective thermal perception and to compare it with two thermal comfort indices: the physiologically equivalent temperature (PET) and the standard effective temperature (SET*). The outdoor thermal comfort was assessed through micrometeorological measurements of air temperature, humidity, mean radiant temperature and wind speed together with a questionnaire survey consisting of 544 interviews conducted in five public places of the city during both the dry and rainy seasons. The neutral and preferred values as well as the upper comfort limits of PET and SET* were determined. For both indices, the neutral values and upper thermal comfort limits were lower during the rainy season, whereas the preferred values were higher during the rainy season. Regardless of season, the neutral values of PET and SET* are above the theoretical neutral value of each index. The results show that local people accept thermal conditions which are above acceptable comfort limits in temperate climates and that the subjective thermal perception varies within a wide range. It is clear, however, that the majority of the people in Guayaquil experience the outdoor thermal environment during daytime as too warm, and therefore, it is important to promote an urban design which creates shade and ventilation.

  13. Building Material Preferences in Warm-Humid and Hot-Dry Climates ...

    African Journals Online (AJOL)

    dry climates in Ghana. Using a combination of closed and open-ended questionnaires, a total of 1281 participants (473 adults and 808 youth) were recruited in Ghana in a two-month survey in Kumasi and Tamale representing the warm-humid ...

  14. Photoelectron spectroscopy of surfaces under humid conditions

    International Nuclear Information System (INIS)

    Bluhm, Hendrik

    2010-01-01

    The interaction of water with surfaces plays a major role in many processes in the environment, atmosphere and technology. Weathering of rocks, adhesion between surfaces, and ionic conductance along surfaces are among many phenomena that are governed by the adsorption of molecularly thin water layers under ambient humidities. The properties of these thin water films, in particular their thickness, structure and hydrogen-bonding to the substrate as well as within the water film are up to now not very well understood. Ambient pressure photoelectron spectroscopy (APXPS) is a promising technique for the investigation of the properties of thin water films. In this article we will discuss the basics of APXPS as well as the particular challenges that are posed by investigations in water vapor at Torr pressures. We will also show examples of the application of APXPS to the study of water films on metals and oxides.

  15. Clay mineralogy indicates a mildly warm and humid living environment for the Miocene hominoid from the Zhaotong Basin, Yunnan, China

    Science.gov (United States)

    Zhang, Chunxia; Guo, Zhengtang; Deng, Chenglong; Ji, Xueping; Wu, Haibin; Paterson, Greig A.; Chang, Lin; Li, Qin; Wu, Bailing; Zhu, Rixiang

    2016-01-01

    Global and regional environmental changes have influenced the evolutionary processes of hominoid primates, particularly during the Miocene. Recently, a new Lufengpithecus cf. lufengensis hominoid fossil with a late Miocene age of ~6.2 Ma was discovered in the Shuitangba (STB) section of the Zhaotong Basin in Yunnan on the southeast margin of the Tibetan Plateau. To understand the relationship between paleoclimate and hominoid evolution, we have studied sedimentary, clay mineralogy and geochemical proxies for the late Miocene STB section (~16 m thick; ca. 6.7–6.0 Ma). Our results show that Lufengpithecus cf. lufengensis lived in a mildly warm and humid climate in a lacustrine or swamp environment. Comparing mid to late Miocene records from hominoid sites in Yunnan, Siwalik in Pakistan, and tropical Africa we find that ecological shifts from forest to grassland in Siwalik are much later than in tropical Africa, consistent with the disappearance of hominoid fossils. However, no significant vegetation changes are found in Yunnan during the late Miocene, which we suggest is the result of uplift of the Tibetan plateau combined with the Asian monsoon geographically and climatically isolating these regions. The resultant warm and humid conditions in southeastern China offered an important refuge for Miocene hominoids. PMID:26829756

  16. Coexistence of Dunes and Humid Conditions at Titan's Tropics

    Science.gov (United States)

    Radebaugh, Jani; Lorenz, R. D.; Lunine, J. I.; Kirk, R. L.; Ori, G. G.; Farr, T. G.; Malaska, M.; Le Gall, A.; Liu, Z. Y. C.; Encrenaz, P. J.; Paillou, P.; Hayes, A.; Lopes, R. M. C.; Turtle, E. P.; Wall, S. D.; Stofan, E. R.; Wood, C. A.; Cassini RADAR Team

    2012-10-01

    At Titan's equatorial latitudes there are tens of thousands of dunes, a landform typical of desert environments where sand does not become anchored by vegetation or fluids. Model climate simulations predict generally dry conditions at the equator and humid conditions near the poles of Titan, where lakes of methane/ethane are found. However, moderate relative methane humidity was observed at the Huygens landing site, recent rainfall was seen by Cassini ISS near the Belet Sand Sea, and a putative transient lake in Shangri-La was observed by Cassini VIMS, all of which indicate abundant fluids may be present, at least periodically, at Titan's equatorial latitudes. Terrestrial observations and studies demonstrate dunes can exist and migrate in conditions of high humidity. Active dunes are found in humid climates, indicating the movement of sand is not always prohibited by the presence of fluids. Sand mobility is related to precipitation, evaporation and wind speed and direction. If dune surfaces become wetted by rainfall or rising subsurface fluids, they can become immobilized. However, winds can act to dry the uppermost layers, freeing sands for saltation and enabling dune migration in wet conditions. Active dunes are found in tropical NE Brazil and NE Australia, where there are alternating dry and wet periods, a condition possible for Titan's tropics. Rising and falling water levels lead to the alteration of dune forms, mainly from being anchored by vegetation, but also from cementation by carbonates or clays. Studies of Titan's dunes, which could undergo anchoring of organic sediments by hydrocarbon fluids, could inform the relative strength of vegetation vs. cementation at humid dune regions on Earth. Furthermore, a comprehensive survey of dune morphologies near regions deemed low by SARTopo and stereo, where liquids may collect in wet conditions, could reveal if bodies of liquid have recently existed at Titan's tropics.

  17. Humidity Buildup in Electronic Enclosures Exposed to Constant Conditions

    DEFF Research Database (Denmark)

    Conseil, Helene; Staliulionis, Zygimantas; Jellesen, Morten Stendahl

    2017-01-01

    Electronic components and devices are exposed to a wide variety of climatic conditions, therefore the protection of electronic devices from humidity is becoming a critical factor in the system design. The ingress of moisture into typical electronic enclosures has been studied with defined paramet....... The moisture buildup inside the enclosure has been simulated using an equivalent RC circuit consisting of variables like controlled resistors and capacitors to describe the diffusivity, permeability, and storage in polymers....

  18. Post-exercise cooling techniques in hot, humid conditions.

    Science.gov (United States)

    Barwood, Martin James; Davey, Sarah; House, James R; Tipton, Michael J

    2009-11-01

    Major sporting events are often held in hot and humid environmental conditions. Cooling techniques have been used to reduce the risk of heat illness following exercise. This study compared the efficacy of five cooling techniques, hand immersion (HI), whole body fanning (WBF), an air cooled garment (ACG), a liquid cooled garment (LCG) and a phase change garment (PCG), against a natural cooling control condition (CON) over two periods between and following exercise bouts in 31 degrees C, 70%RH air. Nine males [age 22 (3) years; height 1.80 (0.04) m; mass 69.80 (7.10) kg] exercised on a treadmill at a maximal sustainable work intensity until rectal temperature (T (re)) reached 38.5 degrees C following which they underwent a resting recovery (0-15 min; COOL 1). They then recommenced exercise until T (re) again reached 38.5 degrees C and then undertook 30 min of cooling with (0-15 min; COOL 2A), and without face fanning (15-30 min; COOL 2B). Based on mean body temperature changes (COOL 1), WBF was most effective in extracting heat: CON 99 W; WBF: 235 W; PCG: 141 W; HI: 162 W; ACG: 101 W; LCG: 49 W) as a consequence of evaporating more sweat. Therefore, WBF represents a cheap and practical means of post-exercise cooling in hot, humid conditions in a sporting setting.

  19. Night ventilation at courtyard housing estate in warm humid tropic for sustainable environment

    Science.gov (United States)

    Defiana, Ima; Teddy Badai Samodra, FX; Setyawan, Wahyu

    2018-03-01

    The problem in the night-time for warm humid tropic housing estate is thermal discomfort. Heat gains accumulation from building envelope, internal heat gains and activities of occupants influence indoor thermal comfort. Ventilation is needed for transfer or removes heat gains accumulation to outdoor. This study describes the role of an inner courtyard to promote pressure difference. Pressure difference as a wind driven force to promote wind velocity thereby could transfer indoor heat gains accumulation to outdoor of building. A simulation used as the research method for prediction wind velocity. Purposive sampling used as the method to choose building sample with similar inner courtyards. The field survey was conducted to obtain data of inner courtyard typologies and two housing were used as model simulation. Furthermore, the simulation is running in steady state mode, at 05.00 pm when the occupants usually close window. But the window should be opened in the night-time to transfer indoor heat gain to outdoor. The result shows that the factor influencing physiological cooling as consequences of inner courtyard are height to width ratio, the distance between inner courtyard to windward, window configuration and the inner courtyard design-the proportion between the length, the width, and the height.

  20. The Use of Ambient Humidity Conditions to Improve Influenza Forecast

    Science.gov (United States)

    Shaman, J. L.; Kandula, S.; Yang, W.; Karspeck, A. R.

    2017-12-01

    Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing. These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast and provide further evidence that humidity modulates rates of influenza transmission.

  1. Wind power variations under humid and arid meteorological conditions

    International Nuclear Information System (INIS)

    Şen, Zekâi

    2013-01-01

    Highlights: • It indicates the role of weather parameters’ roles in the wind energy calculation. • Meteorological variables are more significant in arid regions for wind power. • It provides opportunity to take into consideration air density variability. • Wind power is presented in terms of the wind speed, temperature and pressure. - Abstract: The classical wind power per rotor area per time is given as the half product of the air density by third power of the wind velocity. This approach adopts the standard air density as constant (1.23 g/cm 3 ), which ignores the density dependence on air temperature and pressure. Weather conditions are not taken into consideration except the variations in wind velocity. In general, increase in pressure and decrease in temperature cause increase in the wind power generation. The rate of increase in the pressure has less effect on the wind power as compared with the temperature rate. This paper provides the wind power formulation based on three meteorological variables as the wind velocity, air temperature and air pressure. Furthermore, from the meteorology point of view any change in the wind power is expressed as a function of partial changes in these meteorological variables. Additionally, weather conditions in humid and arid regions differ from each other, and it is interesting to see possible differences between the two regions. The application of the methodology is presented for two meteorology stations in Istanbul, Turkey, as representative of the humid regions and Al-Madinah Al-Monawwarah, Kingdom of Saudi Arabia, for arid region, both on daily record bases for 2010. It is found that consideration of air temperature and pressure in the average wind power calculation gives about 1.3% decrease in Istanbul, whereas it is about 13.7% in Al-Madinah Al-Monawwarah. Hence, consideration of meteorological variables in wind power calculations becomes more significant in arid regions

  2. The use of ambient humidity conditions to improve influenza forecast.

    Directory of Open Access Journals (Sweden)

    Jeffrey Shaman

    2017-11-01

    Full Text Available Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance (at 1-4 lead weeks, 3.8% more peak week and 4.4% more peak intensity forecasts are accurate than with no forcing and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing (4.4% and 2.6% respectively. These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast.

  3. The use of ambient humidity conditions to improve influenza forecast.

    Science.gov (United States)

    Shaman, Jeffrey; Kandula, Sasikiran; Yang, Wan; Karspeck, Alicia

    2017-11-01

    Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance (at 1-4 lead weeks, 3.8% more peak week and 4.4% more peak intensity forecasts are accurate than with no forcing) and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing (4.4% and 2.6% respectively). These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast.

  4. Density of loose-fill insulation material exposed to cyclic humidity conditions

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    the granulated loose-fill material is exposed to a climate that is characterised as cyclic humidity conditions (a constant temperature and a relative humidity alternating between two predetermined constant relative humidity levels). A better understanding of the behaviour of granulated loose-fill material...

  5. Effect of urban design on microclimate and thermal comfort outdoors in warm-humid Dar es Salaam, Tanzania

    Science.gov (United States)

    Yahia, Moohammed Wasim; Johansson, Erik; Thorsson, Sofia; Lindberg, Fredrik; Rasmussen, Maria Isabel

    2018-03-01

    Due to the complexity of built environment, urban design patterns considerably affect the microclimate and outdoor thermal comfort in a given urban morphology. Variables such as building heights and orientations, spaces between buildings, plot coverage alter solar access, wind speed and direction at street level. To improve microclimate and comfort conditions urban design elements including vegetation and shading devices can be used. In warm-humid Dar es Salaam, the climate consideration in urban design has received little attention although the urban planning authorities try to develop the quality of planning and design. The main aim of this study is to investigate the relationship between urban design, urban microclimate, and outdoor comfort in four built-up areas with different morphologies including low-, medium-, and high-rise buildings. The study mainly concentrates on the warm season but a comparison with the thermal comfort conditions in the cool season is made for one of the areas. Air temperature, wind speed, mean radiant temperature (MRT), and the physiologically equivalent temperature (PET) are simulated using ENVI-met to highlight the strengths and weaknesses of the existing urban design. An analysis of the distribution of MRT in the areas showed that the area with low-rise buildings had the highest frequency of high MRTs and the lowest frequency of low MRTs. The study illustrates that areas with low-rise buildings lead to more stressful urban spaces than areas with high-rise buildings. It is also shown that the use of dense trees helps to enhance the thermal comfort conditions, i.e., reduce heat stress. However, vegetation might negatively affect the wind ventilation. Nevertheless, a sensitivity analysis shows that the provision of shade is a more efficient way to reduce PET than increases in wind speed, given the prevailing sun and wind conditions in Dar es Salaam. To mitigate heat stress in Dar es Salaam, a set of recommendations and guidelines on

  6. Warm and Humid Air Blowing over Cold Water - Grand Banks Fog

    Science.gov (United States)

    Taylor, P.; Weng, W.

    2016-12-01

    The condensation of water vapour into droplets and the formation of fog in the Earth's atmospheric boundary layer involves a complex balance between horizontal advection and vertical turbulent mixing of heat and water vapour, cloud microphysical processes and radiative transfers of heat, plus the impact of water droplets, and sometimes ice crystals, on visibility. It is a phenomenon which has been studied for many years in a variety of contexts. On land, surface cooling of the ground via long wave radiation at night is often the trigger and a number of 1-D (height and time dependent) radiative fog models have been developed. Over the waters offshore from Newfoundland a key factor is the advection of moist air from over warm gulf stream waters to colder Labrador current water - an internal boundary-layer problem. Some basic properties can be learned from a steady state 2-D (x-z) model.The WTS (Weng, Taylor and Salmon, 2010, J. Wind Eng. Ind. Aerodyn. 98, 121-132 ) model of flow above changes in surface conditions has been used to investigate planetary boundary-layer flow over water with spatial changes in temperature, and to investigate situations leading to saturation and fog formation. Our turbulence closure includes the turbulent kinetic energy equation but we prefer to specify a height, surface roughness, Rossby number and local stability dependent, "master" length scale instead of a somewhat empirical dissipation or similar equation. Results show that fog can develop and extent to heights of order 100m in some conditions, depending on upstream profiles of wind, temperature and mixing ratio, and on solar radiation and the horizontal variations in water surface temperature.Next steps will involve validation against data being collected (by AMEC-Foster Wheeler in the Hibernia Management and Development Company Metocean project) over the Grand Banks and an interface with WRF and high resolution sea surface temperature data for forecasting fog conditions over the

  7. Georgian climate change under global warming conditions

    Directory of Open Access Journals (Sweden)

    Mariam Elizbarashvili

    2017-03-01

    Full Text Available Georgian Climate change has been considered comprehensively, taking into account World Meteorological Organization recommendations and recent observation data. On the basis of mean temperature and precipitation decadal trend geo-information maps for 1936–2012 years period, Georgian territory zoning has been carried out and for each areas climate indices main trends have been studied, that best characterize climate change - cold and hot days, tropical nights, vegetation period duration, diurnal maximum precipitation, maximum five-day total precipitation, precipitation intensity simple index, precipitation days number of at least 10 mm, 20 mm and 50 mm, rainy and rainless periods duration. Trends of temperature indices are statistically significant. On the Black Sea coastline and Colchis lowland at high confidence level cold and hot days and tropical nights number changes are statistically significant. On eastern Georgia plains at high level of statistical significance, the change of all considered temperature indices has been fixed except for the number of hot days. In mountainous areas only hot day number increasing is significant. Trends of most moisture indices are statistically insignificant. While keeping Georgian climate change current trends, precipitation amount on the Black Sea coastline and Colchis lowland, as well as in some parts of Western Caucasus to the end of the century will increase by 50% and amounts to 3000 and 6000 mm, respectively this will strengthen humidity of those areas. Besides increasing of rainy period duration may constitute the risk for flooding and high waters. On eastern Georgia plains, in particular Kvemo Kartli, annual precipitation amount will decrease by 50% or more, and will be only 150–200 mm and the precipitation daily maximum will decrease by about 20 mm and be only 10–15 mm, which of course will increase the intensity of desertification of steppe and semi-desert landscapes.

  8. Modelling and Control of Ionic Electroactive Polymer Actuators under Varying Humidity Conditions

    Directory of Open Access Journals (Sweden)

    S. Sunjai Nakshatharan

    2018-02-01

    Full Text Available In this work, we address the problem of position control of ionic electroactive polymer soft actuators under varying relative humidity conditions. The impact of humidity on the actuation performance of ionic actuators is studied through frequency response and impedance spectroscopy analysis. Considering the uncertain performance of the actuator under varying humidity conditions, an adaptable model using the neural network method is developed. The model uses relative humidity magnitude as one of the model parameters, making it robust to different environmental conditions. Utilizing the model, a closed-loop controller based on the model predictive controller is developed for position control of the actuator. The developed model and controller are experimentally verified and found to be capable of predicting and controlling the actuators with excellent tracking accuracy under relative humidity conditions varying in the range of 10–90%.

  9. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    Science.gov (United States)

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  10. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-01-01

    Full Text Available This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  11. Stability of Ruddlesden-Popper-structured oxides in humid conditions

    Science.gov (United States)

    Lehtimäki, M.; Yamauchi, H.; Karppinen, M.

    2013-08-01

    Some of layered transition-metal oxides are known to react with atmospheric humidity to form through topotactic intercalation reactions new water-containing layered structures. Here we investigate the influence of oxygen content (7-δ) of the Ruddlesden-Popper-structured Sr3FeMO7-δ (M=Ni, Mn, Ti) oxides on the water-intercalation reaction. It is found that their oxygen contents influence greatly the reactivity of the phases with water. Other factors possibly affecting the reactivity are discussed on the basis of the present data in combination with a comprehensive review of previous works on Ruddlesden-Popper and related layered oxide phases.

  12. Investigation of Transmission Warming Technologies at Various Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jehlik, Forrest; Iliev, Simeon; Wood, Eric; Gonder, Jeff

    2017-03-28

    This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a 2011 Ford Fusion. The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the Fusion was tested cold and with the transmission pre-heated prior to completing the test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions. For the Taurus, the fuel consumption variability within one standard deviation was shown to be under 0.5% for eight repeat Urban Dynamometer Driving Cycles (UDDS). These results were valid with the transmission warming system active or passive. Using the transmission warming system under 22 degrees C ambient temperature, fuel consumption reduction was shown to be 1.4%. For the Fusion, pre-warming the transmission reduced fuel consumption 2.5% for an urban drive cycle at -7 degrees C ambient temperature, with 1.5% of the 2.5% gain associated with the transmission, while consumption for the US06 test was shown to be reduced by 7% with 5.5% of the 7% gain associated with the transmission. It was found that engine warming due to conduction between the pre-heated transmission and the engine resulted in the remainder of the benefit. For +22 degrees C ambient tests, the pre-heated transmission was shown to reduce fuel consumption approximately 1% on an urban cycle, while no benefit was seen for the US06 cycle. The simplified modeling results showed gains in efficiency ranging from 0-1.5% depending on the ambient

  13. Global Changes in Drought Conditions Under Different Levels of Warming

    Science.gov (United States)

    Naumann, G.; Alfieri, L.; Wyser, K.; Mentaschi, L.; Betts, R. A.; Carrao, H.; Spinoni, J.; Vogt, J.; Feyen, L.

    2018-04-01

    Higher evaporative demands and more frequent and persistent dry spells associated with rising temperatures suggest that drought conditions could worsen in many regions of the world. In this study, we assess how drought conditions may develop across the globe for 1.5, 2, and 3°C warming compared to preindustrial temperatures. Results show that two thirds of global population will experience a progressive increase in drought conditions with warming. For drying areas, drought durations are projected to rise at rapidly increasing rates with warming, averaged globally from 2.0 month/°C below 1.5°C to 4.2 month/°C when approaching 3°C. Drought magnitudes could double for 30% of global landmass under stringent mitigation. If contemporary warming rates continue, water supply-demand deficits could become fivefold in size for most of Africa, Australia, southern Europe, southern and central states of the United States, Central America, the Caribbean, north-west China, and parts of Southern America. In approximately 20% of the global land surface, drought magnitude will halve with warming of 1.5°C and higher levels, mainly most land areas north of latitude 55°N, but also parts of South America and Eastern and South-eastern Asia. A progressive and significant increase in frequency of droughts is projected with warming in the Mediterranean basin, most of Africa, West and Southern Asia, Central America, and Oceania, where droughts are projected to happen 5 to 10 times more frequent even under ambitious mitigation targets and current 100-year events could occur every two to five years under 3°C of warming.

  14. Prediction of Typhoon Wind Speeds under Global Warming Conditions

    International Nuclear Information System (INIS)

    Choun, Young Sun; Kim, Min Kyu; Kang, Ju Whan; Kim, Yang Seon

    2016-01-01

    The continuous increase of SST by global warming conditions in the western North Pacific Ocean results in an increased occurrence of supertyphoons in East Asia and the Korean Peninsula. Recent numerical experiments have found that the central pressures of two historical typhoons, Maemi (2003) and Rusa (2002), which recorded the highest storm surges along the coasts of the Korean Peninsula, dropped about 19 and 17 hPa, respectively, when considering the future SST (a warming of 3.9 .deg. C for 100 years) over the East China Sea. The maximum wind speeds increase under global warming conditions. The probability of occurrence of super-typhoons increases in the future. The estimated return period for supertyphoons affecting the Younggwang site is about 1,000,000 years.

  15. Prediction of Typhoon Wind Speeds under Global Warming Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of); Kang, Ju Whan; Kim, Yang Seon [Mokpo National University, Muan (Korea, Republic of)

    2016-05-15

    The continuous increase of SST by global warming conditions in the western North Pacific Ocean results in an increased occurrence of supertyphoons in East Asia and the Korean Peninsula. Recent numerical experiments have found that the central pressures of two historical typhoons, Maemi (2003) and Rusa (2002), which recorded the highest storm surges along the coasts of the Korean Peninsula, dropped about 19 and 17 hPa, respectively, when considering the future SST (a warming of 3.9 .deg. C for 100 years) over the East China Sea. The maximum wind speeds increase under global warming conditions. The probability of occurrence of super-typhoons increases in the future. The estimated return period for supertyphoons affecting the Younggwang site is about 1,000,000 years.

  16. Graphene oxide for gas detection under standard humidity conditions

    International Nuclear Information System (INIS)

    Donarelli, Maurizio; Prezioso, Stefano; Perrozzi, Francesco; Ottaviano, Luca; Giancaterini, Luca; Cantalini, Carlo; Treossi, Emanuele; Palermo, Vincenzo; Santucci, Sandro

    2015-01-01

    Graphene oxide (GO) synthesis is the easiest way to functionalize graphene, preserving the high graphene surface to volume ratio. Therefore, GO is a promising candidate for gas sensing applications. In this paper, an easy-to-fabricate and high sensitivity GO-based gas sensor is proposed. The device is fabricated by drop-casting a solution of GO flakes dispersed in water on a prepatterned Si 3 N 4 substrate with 30 μm spaced Pt electrodes. The sensing material has been studied using scanning electron microscopy and x-ray photoelectron spectroscopy. The large lateral dimensions of the flakes (tens of microns) allow single GO flake to bridge adjacent electrodes. The high quality of the synthesized flakes results in the gas sensor high sensitivity to and low detection limit (20 ppb) of NO 2 . The gas sensor response to NO 2 has been studied in various relative humidity environments and it is demonstrated not to be affected by the presence of water vapor. Finally, the gas sensor responses to acetone, toluene, ethanol, and ammonia are reported. (paper)

  17. Developmental acclimation to low or high humidity conditions affect starvation and heat resistance of Drosophila melanogaster.

    Science.gov (United States)

    Parkash, Ravi; Ranga, Poonam; Aggarwal, Dau Dayal

    2014-09-01

    Several Drosophila species originating from tropical humid localities are more resistant to starvation and heat stress than populations from high latitudes but mechanistic bases of such physiological changes are largely unknown. In order to test whether humidity levels affect starvation and heat resistance, we investigated developmental acclimation effects of low to high humidity conditions on the storage and utilization of energy resources, body mass, starvation survival, heat knockdown and heat survival of D. melanogaster. Isofemale lines reared under higher humidity (85% RH) stored significantly higher level of lipids and showed greater starvation survival hours but smaller in body size. In contrast, lines reared at low humidity evidenced reduced levels of body lipids and starvation resistance. Starvation resistance and lipid storage level were higher in females than males. However, the rate of utilization of lipids under starvation stress was lower for lines reared under higher humidity. Adult flies of lines reared at 65% RH and acclimated under high or low humidity condition for 200 hours also showed changes in resistance to starvation and heat but such effects were significantly lower as compared with developmental acclimation. Isofemale lines reared under higher humidity showed greater heat knockdown time and heat-shock survival. These laboratory observations on developmental and adult acclimation effects of low versus high humidity conditions have helped in explaining seasonal changes in resistance to starvation and heat of the wild-caught flies of D. melanogaster. Thus, we may suggest that wet versus drier conditions significantly affect starvation and heat resistance of D. melanogaster. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Reliability Testing of Cable on Environmental Humidity Condition

    International Nuclear Information System (INIS)

    Situmorang, Johnny; Puradwi, I.W; Sony T, D.T; Handoyo, Demon; Mulyanto, Dwijo; Kusmono, Slamet

    2000-01-01

    Reliability testing of cable on humidified condition has been carried out. As a result, the failure occurred due to reduction of current by increasing the resistance on rising temperature testing. For humidified condition the result which are observed did not significant at the stated condition of testing. The needed time up to the failure criteria increased as a temperature testing increased

  19. Stability of Ruddlesden–Popper-structured oxides in humid conditions

    International Nuclear Information System (INIS)

    Lehtimäki, M.; Yamauchi, H.; Karppinen, M.

    2013-01-01

    Some of layered transition-metal oxides are known to react with atmospheric humidity to form through topotactic intercalation reactions new water-containing layered structures. Here we investigate the influence of oxygen content (7−δ) of the Ruddlesden–Popper-structured Sr 3 FeMO 7−δ (M=Ni, Mn, Ti) oxides on the water-intercalation reaction. It is found that their oxygen contents influence greatly the reactivity of the phases with water. Other factors possibly affecting the reactivity are discussed on the basis of the present data in combination with a comprehensive review of previous works on Ruddlesden–Popper and related layered oxide phases. - Graphical abstract: Many of the Ruddlesden–Popper-structured A 3 B 2 O 7−δ oxides readily react with water via intercalation reactions. Three possible factors affecting the water intercalation are identified: oxygen content of the phase, ionic radius of cation A and valence state of cation B. The resultant layered water-derivative phases can be categorised into two groups, depending on the crystal symmetry of the phase. Highlights: • Ruddlesden–Popper oxides A 3 B 2 O 7−δ often accommodate water via intercalation reaction. • The lower the oxygen content 7−δ is the more readily the intercalation reaction occurs. • The second factor promoting the reaction is the large size of cation A. • The third possible factor is the high valence state of cation B. • Resultant water-derivatives can be categorised into two groups depending on symmetry

  20. Stability of Ruddlesden–Popper-structured oxides in humid conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lehtimäki, M.; Yamauchi, H.; Karppinen, M., E-mail: maarit.karppinen@aalto.fi

    2013-08-15

    Some of layered transition-metal oxides are known to react with atmospheric humidity to form through topotactic intercalation reactions new water-containing layered structures. Here we investigate the influence of oxygen content (7−δ) of the Ruddlesden–Popper-structured Sr{sub 3}FeMO{sub 7−δ} (M=Ni, Mn, Ti) oxides on the water-intercalation reaction. It is found that their oxygen contents influence greatly the reactivity of the phases with water. Other factors possibly affecting the reactivity are discussed on the basis of the present data in combination with a comprehensive review of previous works on Ruddlesden–Popper and related layered oxide phases. - Graphical abstract: Many of the Ruddlesden–Popper-structured A{sub 3}B{sub 2}O{sub 7−δ} oxides readily react with water via intercalation reactions. Three possible factors affecting the water intercalation are identified: oxygen content of the phase, ionic radius of cation A and valence state of cation B. The resultant layered water-derivative phases can be categorised into two groups, depending on the crystal symmetry of the phase. Highlights: • Ruddlesden–Popper oxides A{sub 3}B{sub 2}O{sub 7−δ} often accommodate water via intercalation reaction. • The lower the oxygen content 7−δ is the more readily the intercalation reaction occurs. • The second factor promoting the reaction is the large size of cation A. • The third possible factor is the high valence state of cation B. • Resultant water-derivatives can be categorised into two groups depending on symmetry.

  1. Improved running performance in hot humid conditions following whole body precooling.

    Science.gov (United States)

    Booth, J; Marino, F; Ward, J J

    1997-07-01

    On two separate occasions, eight subjects controlled speed to run the greatest distance possible in 30 min in a hot, humid environment (ambient temperature 32 degrees C, relative humidity 60%). For the experimental test (precooling), exercise was preceeded by cold-water immersion. Precooling increased the distance run by 304 +/- 166 m (P body temperature decreased from 36.5 +/- 0.1 degrees C to 33.8 +/- 0.2 degrees C following precooling (P body sweating are not different between tests. In conclusion, water immersion precooling increased exercise endurance in hot, humid conditions with an enhanced rate of heat storage and decreased thermoregulatory strain.

  2. The effect of changing ambient humidity on moisture condition in timber elements

    DEFF Research Database (Denmark)

    Hozjan, Tomaẑ; Turk, Goran; Srpĉiĉ, Stanislav

    2012-01-01

    a fully coupled transport model including a model for the influential sorption hysteresis of wood is used. The coupled model accounts for both vapor transport in pores and bound water transport in wood tissue. Moisture state history influences relationship between moisture state of wood and air humidity......This paper deals with the effect of the changing ambient humidity on moisture conditions in timber elements. The naturally varying humidity is possible to model as a relative combination of different harmonic cycles, with different periods and amplitudes. For the determination of the moisture field......, it must therefore be taken into account. In order to include history dependency, a hysteresis model is used here. Results from numerical calculations for timber specimen exposed to combined daily and annually cyclic variation of outside humidity are presented. Copyright © (2012) by WCTE 2012 Committee....

  3. Anoxic conditions drive phosphorus limitation in humid tropical forest soil microorganisms

    Science.gov (United States)

    Gross, A.; Pett-Ridge, J.; Weber, P. K.; Blazewicz, S.; Silver, W. L.

    2017-12-01

    The elemental stoichiometry of carbon (C), nitrogen (N) and phosphorus (P) of soil microorganisms (C:N:P ratios) regulates transfers of energy and nutrients to higher trophic levels. In humid tropical forests that grow on P-depleted soils, the ability of microbes to concentrate P from their surroundings likely plays a critical role in P-retention and ultimately in forest productivity. Models predict that climate change will cause dramatic changes in rainfall patterns in the humid tropics and field studies have shown these changes can affect the redox state of tropical forest soils, influencing soil respiration and biogeochemical cycling. However, the responses of soil microorganisms to changing environmental conditions are not well known. Here, we incubated humid tropical soils under oxic or anoxic conditions with substrates differing in both C:P stoichiometry and lability, to assess how soil microorganisms respond to different redox regimes. We found that under oxic conditions, microbial C:P ratios were similar to the global optimal ratio (55:1), indicating most microbial cells can adapt to persistent aerated conditions in these soils. However, under anoxic conditions, the ability of soil microbes to acquire soil P declined and their C:P ratios shifted away from the optimal ratio. NanoSIMS elemental imaging of single cells extracted from soil revealed that under anoxic conditions, C:P ratios were above the microbial optimal value in 83% of the cells, in comparison to 41% under oxic conditions. These data suggest microbial growth efficiency switched from being energy limited under oxic conditions to P-limited under anoxic conditions, indicating that, microbial growth in low P humid tropical forests soils may be most constrained by P-limitation when conditions are oxygen-limited. We suggest that differential microbial responses to soil redox states could have important implications for productivity of humid tropical forests under future climate scenarios.

  4. Effect of asymmetrical street canyons on pedestrian thermal comfort in warm-humid climate of Cuba

    Science.gov (United States)

    Rodríguez-Algeciras, José; Tablada, Abel; Matzarakis, Andreas

    2017-07-01

    Walkability and livability in cities can be enhanced by creating comfortable environments in the streets. The profile of an urban street canyon has a substantial impact on outdoor thermal conditions at pedestrian level. This paper deals with the effect of asymmetrical street canyon profiles, common in the historical centre of Camagüey, Cuba, on outdoor thermal comfort. Temporal-spatial analyses are conducted using the Heliodon2 and the RayMan model, which enable the generation of accurate predictions about solar radiation and thermal conditions of urban spaces, respectively. On these models, urban settings are represented by asymmetrical street canyons with five different height-to-width ratios and four street axis orientations (N-S, NE-SW, E-W, SE-NW). Results are evaluated for daytime hours across the street canyon, by means of the physiologically equivalent temperature (PET index) which allows the evaluation of the bioclimatic conditions of outdoor environments. Our findings revealed that high profiles (façades) located on the east-facing side of N-S streets, on the southeast-facing side of NE-SW streets, on the south-facing side of E-W street, and on the southwest-facing side of SE-NW streets, are recommended to reduce the total number of hours under thermal stress. E-W street canyons are the most thermally stressed ones, with extreme PET values around 36 °C. Deviating from this orientation ameliorates the heat stress with reductions of up to 4 h in summer. For all analysed E-W orientations, only about one fifth of the street can be comfortable, especially for high aspect ratios (H/W > 3). Optimal subzones in the street are next to the north side of the E-W street, northwest side of the NE-SW street, and southwest side of the SE-NW street. Besides, when the highest profile is located on the east side of N-S streets, then the subzone next to the east-facing façade is recommendable for pedestrians. The proposed urban guidelines enable urban planners to create

  5. Energy Saving Potential by Utilizing Natural Ventilation under Warm Conditions

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg

    2014-01-01

    The objective of this article is to show the potential of natural ventilation as a passive cooling method within the residential sector of countries which are located in warm conditions using Mexico as a case study. The method is proposed as performing, with a simplified ventilation model, thermal......–airflow simulations of 27 common cases of dwellings (considered as one thermal zone) based on the combination of specific features of the building design, occupancy and climate conditions. The energy saving potential is assessed then by the use of a new assessment method suitable for large-scale scenarios using...... the actual number of air-conditioned dwellings distributed among the 27 cases. Thereby, the energy saving is presented as the difference in the cooling demand of the dwelling during one year without and with natural ventilation, respectively. Results indicate that for hot-dry conditions, buildings with high...

  6. To Investigate the Influence of Building Envelope and Natural Ventilation on Thermal Heat Balance in Office Buildings in Warm and Humid Climate

    Science.gov (United States)

    Kini, Pradeep G.; Garg, Naresh Kumar; Kamath, Kiran

    2017-07-01

    India’s commercial building sector is witnessing robust growth. India continues to be a key growth market among global corporates and this is reflective in the steady growth in demand for prime office space. A recent trend that has been noted is the increase in demand for office spaces not just in major cities but also in smaller tier II and Tier III cities. Growth in the commercial building sector projects a rising trend of energy intensive mechanical systems in office buildings in India. The air conditioning market in India is growing at 25% annually. This is due to the ever increasing demand to maintain thermal comfort in tropical regions. Air conditioning is one of the most energy intensive technologies which are used in buildings. As a result India is witnessing significant spike in energy demand and further widening the demand supply gap. Challenge in India is to identify passive measures in building envelope design in office buildings to reduce the cooling loads and conserve energy. This paper investigates the overall heat gain through building envelope components and natural ventilation in warm and humid climate region through experimental and simulation methods towards improved thermal environmental performance.

  7. Simulation of global warming effect on outdoor thermal comfort conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, G.R.; Ranjbar, F. [Univ. of Tehran (IR). Dept. of Physical Geography; Orosa, J.A. [Univ. of A Coruna (Spain). Dept. of Energy

    2010-07-01

    In the coming decades, global warming and increase in temperature, in different regions of the world, may change indoor and outdoor thermal comfort conditions and human health. The aim of this research was to study the effects of global warming on thermal comfort conditions in indoor ambiences in Iran. To study the increase in temperature, model for assessment of greenhouse-gas induced climate change scenario generator compound model has been used together with four scenarios and to estimate thermal comfort conditions, adaptive model of the American Society of Heating, Refrigerating and Air-Conditioning Engineers has been used. In this study, Iran was divided into 30 zones, outdoor conditions were obtained using meteorological data of 80 climatological stations and changes in neutral comfort conditions in 2025, 2050, 2075 and 2100 were predicted. In accordance with each scenario, findings from this study showed that temperature in the 30 zones will increase by 2100 to between 3.4 C and 5.6 C. In the coming decades and in the 30 studied zones, neutral comfort temperature will increase and be higher and more intense in the central and desert zones of Iran. The low increase in this temperature will be connected to the coastal areas of the Caspian and Oman Sea in southeast Iran. This increase in temperature will be followed by a change in thermal comfort and indoor energy consumption from 8.6 % to 13.1 % in air conditioning systems. As a result, passive methods as thermal inertia are proposed as a possible solution.

  8. Sporulation of Bremia lactucae affected by temperature, relative humidity, and wind in controlled conditions

    NARCIS (Netherlands)

    Su, H.; Bruggen, van A.H.C.; Subbarao, K.V.; Scherm, H.

    2004-01-01

    The effects of temperature (5 to 25degreesC), relative humidity (81 to 100%), wind speed (0 to 1.0 in s(-1)), and their interactions on sporulation of Bremia lactucae on lettuce cotyledons were investigated in controlled conditions. Sporulation was affected significantly (P <0.0001) by

  9. Long-term corrosion/oxidation studies under controlled humidity conditions

    International Nuclear Information System (INIS)

    Gdowski, G.

    1997-01-01

    Independent of thermal loading scenarios, the waste packages at the potential repository at Yucca Mountain, Nevada will be exposed to environmental conditions where there is the possibility of significant water film formation occurring on the waste packages. Water films can cause aggressive aqueous film electrochemical corrosion on susceptible metals or alloys. Water film formation will be facilitated when relative humidities are high, when hygroscopic salts are present on the surfaces, when corrosion products are hygroscopic, and when particles form crevices with the surfaces (capillary effect). Also certain gaseous contaminants, such as, NO x and SO 2 , can facilitate water film formation. It should be noted that water film formation can occur at isolated spots (e.g. surface defects and salt particles) and need not cover the entire surface for electrochemical corrosion to occur. This activity will characterize the long term corrosion of metal specimens at two nominal relative humidities (50 and 85%) and at 80 C. Under the low relative humidity (50%) condition, water film formation is expected to be limited and therefore aqueous film electrochemical corrosion is expected also to be limited. Under the high relative humidity (85%) condition, significant water film formation is expected to occur under some test conditions, and subsequently aqueous film electrochemical corrosion will occur on susceptible materials

  10. Degradation testing and failure analysis of DC film capacitors under high humidity conditions

    DEFF Research Database (Denmark)

    Wang, Huai; Nielsen, Dennis Achton; Blaabjerg, Frede

    2015-01-01

    Metallized polypropylene film capacitors are widely used for high-voltage DC-link applications in power electronic converters. They generally have better reliability performance compared to aluminum electrolytic capacitors under electro-thermal stresses within specifications. However......, the degradation of the film capacitors is a concern in applications exposed to high humidity environments. This paper investigates the degradation of a type of plastic-boxed metallized DC film capacitors under different humidity conditions based on a total of 8700 h of accelerated testing and also post failure...... of interest is also presented. The study enables a better understanding of the humidity-related failure mechanisms and reliability performance of DC film capacitors for power electronics applications....

  11. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    Energy Technology Data Exchange (ETDEWEB)

    Kerrigan, P. [Building Science Corporation, Somerville, MA (United States)

    2014-03-01

    Building Science Corporation (BSC) worked directly with the David Weekley Homes - Houston division to develop a cost-effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses in preparation for the upcoming code changes in 2015. This research project addressed the following questions: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost?

  12. Changes of fatty acid aerosol hygroscopicity induced by ozonolysis under humid conditions

    Directory of Open Access Journals (Sweden)

    O. Vesna

    2008-08-01

    Full Text Available Unsaturated fatty acids are important constituents of the organic fraction of atmospheric aerosols originating from biogenic or combustion sources. Oxidative processing of these may change their interaction with water and thus affect their effect on climate. The ozonolysis of oleic and arachidonic acid aerosol particles was studied under humid conditions in a flow reactor at ozone exposures close to atmospheric levels, at concentrations between 0.5 and 2 ppm. While oleic acid is a widely used proxy for such studies, arachidonic acid represents polyunsaturated fatty acids, which may decompose into hygroscopic products. The hygroscopic (diameter growth factor at 93% relative humidity (RH of the oxidized arachidonic particles increased up to 1.09 with increasing RH during the ozonolysis. In contrast, the growth factor of oleic acid was very low (1.03 at 93% RH and was almost invariant to the ozonolysis conditions, so that oleic acid is not a good model to observe oxidation induced changes of hygroscopicity under atmospheric conditions. We show for arachidonic acid particles that the hygroscopic changes induced by humidity during ozonolysis are accompanied by about a doubling of the ratio of carboxylic acid protons to aliphatic protons. We suggest that, under humid conditions, the reaction of water with the Criegee intermediates might open a pathway for the formation of smaller acids that lead to more significant changes in hygroscopicity. Thus the effect of water to provide a competing pathway during ozonolysis observed in this study should be motivation to include water, which is ubiquitously present in and around atmospheric particles, in future studies related to aerosol particle aging.

  13. Experimental research on the indoor temperature and humidity fields in radiant ceiling air-conditioning system under natural ventilation

    Science.gov (United States)

    Huang, Tao; Xiang, Yutong; Wang, Yonghong

    2017-05-01

    In this paper, the indoor temperature and humidity fields of the air in a metal ceiling radiant panel air conditioning system with fresh air under natural ventilation were researched. The temperature and humidity distributions at different height and different position were compared. Through the computation analysis of partial pressure of water vapor, the self-recovery characteristics of humidity after the natural ventilation was discussed.

  14. Precooling leg muscle improves intermittent sprint exercise performance in hot, humid conditions.

    Science.gov (United States)

    Castle, Paul C; Macdonald, Adam L; Philp, Andrew; Webborn, Anthony; Watt, Peter W; Maxwell, Neil S

    2006-04-01

    We used three techniques of precooling to test the hypothesis that heat strain would be alleviated, muscle temperature (Tmu) would be reduced, and as a result there would be delayed decrements in peak power output (PPO) during exercise in hot, humid conditions. Twelve male team-sport players completed four cycling intermittent sprint protocols (CISP). Each CISP consisted of twenty 2-min periods, each including 10 s of passive rest, 5 s of maximal sprint against a resistance of 7.5% body mass, and 105 s of active recovery. The CISP, preceded by 20 min of no cooling (Control), precooling via an ice vest (Vest), cold water immersion (Water), and ice packs covering the upper legs (Packs), was performed in hot, humid conditions (mean +/- SE; 33.7 +/- 0.3 degrees C, 51.6 +/- 2.2% relative humidity) in a randomized order. The rate of heat strain increase during the CISP was faster in Control than Water and Packs (P body or whole body cooling.

  15. Static flexural properties of hedgehog spines conditioned in coupled temperature and relative humidity environments.

    Science.gov (United States)

    Kennedy, Emily B; Hsiung, Bor-Kai; Swift, Nathan B; Tan, Kwek-Tze

    2017-11-01

    Hedgehogs are agile climbers, scaling trees and plants to heights exceeding 10m while foraging insects. Hedgehog spines (a.k.a. quills) provide fall protection by absorbing shock and could offer insights for the design of lightweight, material-efficient, impact-resistant structures. There has been some study of flexural properties of hedgehog spines, but an understanding of how this keratinous biological material is affected by various temperature and relative humidity treatments, or how spine color (multicolored vs. white) affects mechanics, is lacking. To bridge this gap in the literature, we use three-point bending to analyze the effect of temperature, humidity, spine color, and their interactions on flexural strength and modulus of hedgehog spines. We also compare specific strength and stiffness of hedgehog spines to conventional engineered materials. We find hedgehog spine flexural properties can be finely tuned by modifying environmental conditioning parameters. White spines tend to be stronger and stiffer than multicolored spines. Finally, for most temperature and humidity conditioning parameters, hedgehog spines are ounce for ounce stronger than 201 stainless steel rods of the same diameter but as pliable as styrene rods with a slightly larger diameter. This unique combination of strength and elasticity makes hedgehog spines exemplary shock absorbers, and a suitable reference model for biomimicry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Pressure and Humidity Measurements at the MSL Landing Site Supported by Modeling of the Atmospheric Conditions

    Science.gov (United States)

    Harri, A.; Savijarvi, H. I.; Schmidt, W.; Genzer, M.; Paton, M.; Kauhanen, J.; Atlaskin, E.; Polkko, J.; Kahanpaa, H.; Kemppinen, O.; Haukka, H.

    2012-12-01

    The Mars Science Laboratory (MSL) called Curiosity Rover landed safely on the Martian surface at the Gale crater on 6th August 2012. Among the MSL scientific objectives are investigations of the Martian environment that will be addressed by the Rover Environmental Monitoring Station (REMS) instrument. It will investigate habitability conditions at the Martian surface by performing a versatile set of environmental measurements including accurate observations of pressure and humidity of the Martian atmosphere. This paper describes the instrumental implementation of the MSL pressure and humidity measurement devices and briefly analyzes the atmospheric conditions at the Gale crater by modeling efforts using an atmospheric modeling tools. MSL humidity and pressure devices are based on proprietary technology of Vaisala, Inc. Humidity observations make use of Vaisala Humicap® relative humidity sensor heads and Vaisala Barocap® sensor heads are used for pressure observations. Vaisala Thermocap® temperature sensors heads are mounted in a close proximity of Humicap® and Barocap® sensor heads to enable accurate temperature measurements needed for interpretation of Humicap® and Barocap® readings. The sensor heads are capacitive. The pressure and humidity devices are lightweight and are based on a low-power transducer controlled by a dedicated ASIC. The transducer is designed to measure small capacitances in order of a few pF with resolution in order of 0.1fF (femtoFarad). The transducer design has a good spaceflight heritage, as it has been used in several previous missions, for example Mars mission Phoenix as well as the Cassini Huygens mission. The humidity device has overall dimensions of 40 x 25 x 55 mm. It weighs18 g, and consumes 15 mW of power. It includes 3 Humicap® sensor heads and 1 Thermocap®. The transducer electronics and the sensor heads are placed on a single multi-layer PCB protected by a metallic Faraday cage. The Humidity device has measurement range

  17. The effect of clothing fit and material of women’s Islamic sportswear on physiological and subjective responses during exercise in warm and humid environment

    OpenAIRE

    Wibowo Astrid Wahyu Adventri; Wijayanto Titis; Widyastuti Watri; Herliansyah Muhammad Kusumawan

    2018-01-01

    The purpose of this study was to investigate the effects of clothing fit and material of Islamic sportswear for female on physiological responses and body heat balance during exercise in warm and humid environment. Twelve healthy female students (20.3±0.4 years) exercised wearing four types of women’s Islamic sportswear comprised of two level of clothing fit: loose-fit and tight-fit, and two types of material for sportswear: cotton and polyester on four separate occasions, and in random order...

  18. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    Energy Technology Data Exchange (ETDEWEB)

    Kerrigan, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-01

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

  19. Assessment of monitored energy use and thermal comfort conditions in mosques in hot-humid climates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Homoud, Mohammad S.; Abdou, Adel A.; Budaiwi, Ismail M. [Architectural Engineering Department, KFUPM, Dhahran 31261 (Saudi Arabia)

    2009-06-15

    In harsh climatic regions, buildings require air-conditioning in order to provide an acceptable level of thermal comfort. In many situations buildings are over cooled or the HVAC system is kept running for a much longer time than needed. In some other situations thermal comfort is not achieved due to improper operation practices coupled with poor maintenance and even lack it, and consequently inefficient air-conditioning systems. Mosques represent one type of building that is characterized by their unique intermittent operating schedule determined by prayer times, which vary continuously according to the local solar time. This paper presents the results of a study designed to monitor energy use and thermal comfort conditions of a number of mosques in a hot-humid climate so that both energy efficiency and the quality of thermal comfort conditions especially during occupancy periods in such intermittently operated buildings can be assessed accurately. (author)

  20. High Temperature Oxidation Behavior of T91 Steel in Dry and Humid Condition

    Directory of Open Access Journals (Sweden)

    Yonghao Leong

    2016-09-01

    Full Text Available High temperature oxidation behavior of T91 ferritic/martensitic steel was examined over the temperature range of 500 to 700°C in dry and humid environments.  The weight gain result revealed that oxidation occurs at all range of temperatures and its rate is accelerated by increasing the temperature. The weight gain of the oxidized steel at 700°C in steam condition was six times bigger than the dry oxidation.. SEM/EDX of the cross-sectional image showed that under dry condition, a protective and steady growth of the chromium oxide (Cr2O3 layer was formed on the steel with the thickness of 2.39±0.34 µm. Meanwhile for the humid environment, it is found that the iron oxide layer, which consists of the hematite (Fe2O3 and magnetite (Fe3O4 was formed as the outer scale, and spinnel as inner scale. This result indicated that the oxidation behavior of T91 steel was affected by its oxidation environment. The existence of water vapor in steam condition may prevent the formation of chromium oxide as protective layer.

  1. Forests growing under dry conditions have higher hydrological resilience to drought than do more humid forests.

    Science.gov (United States)

    Helman, David; Lensky, Itamar M; Yakir, Dan; Osem, Yagil

    2017-07-01

    More frequent and intense droughts are projected during the next century, potentially changing the hydrological balances in many forested catchments. Although the impacts of droughts on forest functionality have been vastly studied, little attention has been given to studying the effect of droughts on forest hydrology. Here, we use the Budyko framework and two recently introduced Budyko metrics (deviation and elasticity) to study the changes in the water yields (rainfall minus evapotranspiration) of forested catchments following a climatic drought (2006-2010) in pine forests distributed along a rainfall gradient (P = 280-820 mm yr -1 ) in the Eastern Mediterranean (aridity factor = 0.17-0.56). We use a satellite-based model and meteorological information to calculate the Budyko metrics. The relative water yield ranged from 48% to 8% (from the rainfall) in humid to dry forests and was mainly associated with rainfall amount (increasing with increased rainfall amount) and bedrock type (higher on hard bedrocks). Forest elasticity was larger in forests growing under drier conditions, implying that drier forests have more predictable responses to drought, according to the Budyko framework, compared to forests growing under more humid conditions. In this context, younger forests were shown more elastic than older forests. Dynamic deviation, which is defined as the water yield departure from the Budyko curve, was positive in all forests (i.e., less-than-expected water yields according to Budyko's curve), increasing with drought severity, suggesting lower hydrological resistance to drought in forests suffering from larger rainfall reductions. However, the dynamic deviation significantly decreased in forests that experienced relatively cooler conditions during the drought period. Our results suggest that forests growing under permanent dry conditions might develop a range of hydrological and eco-physiological adjustments to drought leading to higher hydrological

  2. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring.

    Science.gov (United States)

    Wei, Peng; Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K K

    2018-01-23

    The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO₂), and oxidants (O x ) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO₂ and ozone on a newly introduced oxidant sensor.

  3. Gases Emission From Surface Layers of Sand Moulds and Cores Stored Under the Humid Air Conditions

    Directory of Open Access Journals (Sweden)

    Kaźnica N.

    2017-12-01

    Full Text Available A large number of defects of castings made in sand moulds is caused by gases. There are several sources of gases: gases emitted from moulds, cores or protective coatings during pouring and casting solidification; water in moulding sands; moisture adsorbed from surroundings due to atmospheric conditions changes. In investigations of gas volumetric emissions of moulding sands amounts of gases emitted from moulding sand were determined - up to now - in dependence of the applied binders, sand grains, protective coatings or alloys used for moulds pouring. The results of investigating gas volumetric emissions of thin-walled sand cores poured with liquid metal are presented in the hereby paper. They correspond to the surface layer in the mould work part, which is decisive for the surface quality of the obtained castings. In addition, cores were stored under conditions of a high air humidity, where due to large differences in humidity, the moisture - from surroundings - was adsorbed into the surface layer of the sand mould. Due to that, it was possible to asses the influence of the adsorbed moisture on the gas volumetric emission from moulds and cores surface layers by means of the new method of investigating the gas emission kinetics from thin moulding sand layers heated by liquid metal. The results of investigations of kinetics of the gas emission from moulding sands with furan and alkyd resins as well as with hydrated sodium silicate (water glass are presented. Kinetics of gases emissions from these kinds of moulding sands poured with Al-Si alloy were compared.

  4. Comparisons of urban and rural heat stress conditions in a hot–humid tropical city

    Directory of Open Access Journals (Sweden)

    Ahmed A. Balogun

    2010-11-01

    Full Text Available Background: In recent years the developing world, much of which is located in the tropical countries, has seen dramatic growth of its urban population associated with serious degradation of environmental quality. Climate change is producing major impacts including increasing temperatures in these countries that are considered to be most vulnerable to the impact of climate change due to inadequate public health infrastructure and low income status. However, relevant information and data for informed decision making on human health and comfort are lacking in these countries. Objective: The aim of this paper is to study and compare heat stress conditions in an urban (city centre and rural (airport environments in Akure, a medium-sized tropical city in south-western Nigeria during the dry harmattan season (January–March of 2009. Materials and methods: We analysed heat stress conditions in terms of the mean hourly values of the thermohygrometric index (THI, defined by simultaneous in situ air temperature and relative humidity measurements at both sites. Results: The urban heat island (UHI exists in Akure as the city centre is warmer than the rural airport throughout the day. However, the maximum UHI intensity occurs at night between 1900 and 2200 hours local time. Hot conditions were predominant at both sites, comfortable conditions were only experienced in the morning and evenings of January at both sites, but the rural area has more pleasant morning and evenings and less of very hot and torrid conditions. January has the lowest frequency of hot and torrid conditions at both sites, while March and February has the highest at the city centre and the airport, respectively. The higher frequencies of high temperatures in the city centre suggest a significant heat stress and health risk in this hot humid environment of Akure. Conclusions: More research is needed to achieve better understanding of the seasonal variation of indoor and outdoor heat stress

  5. Mean versus extreme climate in the Mediterranean region and its sensitivity to future global warming conditions

    Energy Technology Data Exchange (ETDEWEB)

    Paeth, H.; Hense, A. [Meteorological Inst., Univ. Bonn (Germany)

    2005-06-01

    The Mediterranean region (MTR) has been supposed to be very sensitive to changes in land surface and atmospheric greenhouse-gas (GHG) concentrations. Particularly, an intensification of climate extremes may be associated with severe socio-economic implications. Here, we present an analysis of climate mean and extreme conditions in this subtropical area based on regional climate model experiments, simulating the present-day and possible future climate. The analysis of extreme values (EVs) is based on the assumption that the extremes of daily precipitation and near-surface temperature are well fitted by the Generalized Pareto distribution (GPD). Return values of extreme daily events are determined using the method of L-moments. Particular emphasis is laid on the evaluation of the return values with respect to the uncertainty range of the estimate as derived from a Monte Carlo sampling approach. During the most recent 25 years the MTR has become dryer in spring but more humid especially in the western part in autumn and winter. At the same time, the whole region has been subject to a substantial warming. The strongest rainfall extremes are simulated in autumn over the Mediterranean Sea around Italy. Temperature extremes are most pronounced over the land masses, especially over northern Africa. Given the large uncertainty of the EV estimate, only 1-year return values are further analysed. During recent decades, statistically significant changes in extremes are only found for temperature. Future climate conditions may come along with a decrease in mean and extreme precipitation during the cold season, whereas an intensification of the hydrological cycle is predicted in summer and autumn. Temperature is predominantly affected over the Iberian Peninsula and the eastern part of the MTR. In many grid boxes, the signals are blurred out due to the large amount of uncertainty in the EV estimate. Thus, a careful analysis is required when making inferences about the future

  6. The effect of clothing fit and material of women’s Islamic sportswear on physiological and subjective responses during exercise in warm and humid environment

    Directory of Open Access Journals (Sweden)

    Wibowo Astrid Wahyu Adventri

    2018-01-01

    Full Text Available The purpose of this study was to investigate the effects of clothing fit and material of Islamic sportswear for female on physiological responses and body heat balance during exercise in warm and humid environment. Twelve healthy female students (20.3±0.4 years exercised wearing four types of women’s Islamic sportswear comprised of two level of clothing fit: loose-fit and tight-fit, and two types of material for sportswear: cotton and polyester on four separate occasions, and in random order. They performed a 30-min treadmill exercise at an intensity of 70% HRmax and then rested on a chair for 20 min for recovery in a chamber set at an ambient temperature of 34°C and relative humidity of 80%. The results showed that clothing fit did not significantly affect physiological and subjective responses, but clothing material did; sportswear made of cotton resulted in a higher increase of tympanic temperature during exercise and recovery compared to that made of polyester (P<0.05. In addition, sportswear made of cotton have lower conductive and evaporative heat loss than sportswear made of polyester (P<0.05. Clothing fit only had significant effect on conductive heat loss; that is tight-fit sportswear showed greater conductive heat loss than loose-fit one (P <0.05. Regarding subjective responses, participants reported lower thermal comfort, greater thermal sensation, and greater skin wetness sensation when performing exercise wearing tight-fit sportswear made of polyester.

  7. A novel capacity controller for a three-evaporator air conditioning (TEAC) system for improved indoor humidity control

    International Nuclear Information System (INIS)

    Yan, Huaxia; Deng, Shiming; Chan, Ming-yin

    2016-01-01

    Highlights: • A novel capacity controller for TEAC systems for improved indoor humidity control is developed. • The novel controller was developed by integrating two previous control algorithms. • Experimental controllability tests were carried out. • Improved control over indoor humidity levels and higher energy efficiency can be achieved. - Abstract: Using a multi-evaporator air conditioning (MEAC) system to correctly control indoor air temperatures only in a multi-room application is already a challenging and difficult task, let alone the control of both indoor air temperature and humidity. This is because in an MEAC system, a number of indoor units are connected to a common condensing unit. Hence, the interferences among operation parameters of different indoor units would make the desired control of an MEAC system hard to realize. Limited capacity control algorithms for MEAC systems have been developed, with most of them focusing only on the control of indoor air temperature, and no previous studies involving control of indoor air humidity using MEAC systems can be identified. In this paper, the development of a novel capacity controller for a three-evaporator air conditioning (TEAC) system for improved indoor air humidity control is reported. The novel controller was developed by integrating two previous control algorithms for a dual-evaporator air conditioning system for temperature control and for a single-evaporator air conditioning system for improved indoor humidity control. Experimental controllability tests were carried out and the controllability test results showed that, with the novel controller, improved control over indoor humidity levels and better energy efficiency for a TEAC system could be obtained as compared to the traditional On–Off controllers extensively used by MEAC systems.

  8. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Peng Wei

    2018-01-01

    Full Text Available The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series for carbon monoxide (CO, nitric oxide (NO, nitrogen dioxide (NO2, and oxidants (Ox were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO2 and ozone on a newly introduced oxidant sensor.

  9. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring

    Science.gov (United States)

    Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K. K.

    2018-01-01

    The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), and oxidants (Ox) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO2 and ozone on a newly introduced oxidant sensor. PMID:29360749

  10. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the most promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.

  11. Short-term heart rate variability in asthmatic obese children: effect of exhaustive exercise and different humidity conditions.

    Science.gov (United States)

    Rezvan, K; Dabidi Roshan, V; Mahmudi, S A

    2015-11-01

    Asthmatic obese children experience changes in functional capacity and autonomic control. Previous heart rate variability (HRV) studies were based on 24-hour recordings, little research has been conducted on the short-term HRV in asthmatic obese children, primarily during physical effort indifferent environmental humidity conditions. The aim of this study was to evaluate the effect of aerobic activity on short-term HRV in asthmatic obese children under two different environmental humidity conditions. Ten obese boys with mild asthma as experimental group and 15 obese healthy boys with the same conditions were involved as a control group. Protocol included progressive and exhaustive aerobic activities on a calibrated ergometer pedal bicycle in two various environmental humidity 35±5% and 65±5%. HRV was measured by PADSY MEDSET Holter monitoring device during three phases; pre-test, mid-test and post-test. Then, short-term HRV was assessed from calculation of the mean R-R interval measured on HRV at each phases. HRV significantly decreased at mid-test and post-test among asthmatic and health children. However, the aforesaid changes were significantly higher in the asthmatic than health children following. Moreover, decrease of short-term HRV was significantly greater in the 35±5% than 65±5% environmental humidity. Our findings suggest from the autonomic standpoint, asthmatic and non-asthmatic children respond differently to exhaustive exercise induced stress. Aerobic exercise at an environment with high humidity compared with the low humidity appears to have additional benefits on short-term HRV in that it enhances the parasympathetic and autonomic modulation of the heart in asthmatic obese children.

  12. Biological effects of plant residues with constrasting chemical compositions on plant and soil under humid tropical conditions

    NARCIS (Netherlands)

    Tian, G.

    1992-01-01

    A study on plant residues with contrasting chemical compositions was conducted under laboratory, growth chamber and humid tropical field conditions to understand the function of the soil fauna in the breakdown of plant residues, the cycling of nutrients, in particular nitrogen, and the

  13. Urban heat island and bioclimatological conditions in a hot-humid tropical city: the example of Akure, Nigeria

    Directory of Open Access Journals (Sweden)

    Balogun, Ifeoluwa A.

    2014-09-01

    Full Text Available The impact of weather on human health has become an issue of increased significance in recent times, considering the increasing rate of urbanisation and the much associated heat island phenomenon. This study examines the urbanisation influence on human bioclimatic conditions in Akure, a medium sized hot-humid tropical city in Nigeria, utilising data from measurements at urban and rural sites in the city. Differences in the diurnal, monthly and seasonal variation of human bioclimatic characteristics between both environments were evaluated and tested for statistical significance. Higher frequencies of high temperatures observed in the city centre suggest a significant heat stress and health risk in this hot-humid city.

  14. Evaluation of warm mix asphalt for Alaska conditions : [summary].

    Science.gov (United States)

    2010-09-01

    This project developed and tested protocols to determine concrete curing strength during the construction process, so that : building under very cold conditions can be performed safely and quickly. Researchers determined the laboratory strengthmaturi...

  15. Temperature and Humidity Control in Air-Conditioned Buildings with lower Energy Demand and increased Indoor Air Quality

    DEFF Research Database (Denmark)

    Paul, Joachim; Martos, E. T.

    2003-01-01

    Air-conditioning is not only a matter of temperature control. Thermal comfort and good indoor air quality are mainly a matter of humidity. Human health and well being may suffer seriously from inadequate humidity and/or too low temperatures in a room. A case study involving supermarket air......%. For indoor air temperature and humidity control, the use of an ice slurry (´Binary Ice´)was compared to conventional chilled water. The use of Binary Ice instead of chilled water makes the air handling and air distribution installation much simpler, recirculation of air becomes obsolete, and a higher portion...... of ambient air can be supplied, thus improving the indoor air quality still further. Reheating of air is not necessary when using Binary Ice. The introduction of chilled air into a room requires a different type of air outlet, however. When using Binary Ice, energy savings are high for climates with low...

  16. Air conditioning cool contribution to global warming?; Airconditioning koele bijdrage aan global warming?

    Energy Technology Data Exchange (ETDEWEB)

    Oudshoff, B.

    2010-06-15

    Similar to the Netherlands, the percentage of buildings with air-conditioning is growing steadily in the United Stated (US). This makes it an interesting area for energy saving. New technological developments offer opportunities to drastically reduce energy use for cooling. The best option is obviously to no longer deploy mechanical cooling but this is not a realistic option for warmer areas. This article addresses new technologies and several newly established companies in California and Colorado that target this market. [Dutch] In de Verenigde Staten (VS) groeit het percentage van gebouwen met airconditioning, net als in Nederland, de laatste jaren gestaag door. Hiermee is het een interessant gebied voor mogelijke energiebesparing. Nieuwe technologische ontwikkelingen bieden kansen om het energiegebruik voor koeling drastisch te verminderen. De beste oplossing is uiteraard geen mechanische koeling meer toe te passen maar voor warmere gebieden is die optie niet reeel. In dit artikel wordt ingegaan op nieuwe technologie en enkele startende bedrijven in Californie en Colorado die zich op deze markt richten.

  17. Effects of Thermal Mass, Window Size, and Night-Time Ventilation on Peak Indoor Air Temperature in the Warm-Humid Climate of Ghana

    Directory of Open Access Journals (Sweden)

    S. Amos-Abanyie

    2013-01-01

    Full Text Available Most office buildings in the warm-humid sub-Saharan countries experience high cooling load because of the predominant use of sandcrete blocks which are of low thermal mass in construction and extensive use of glazing. Relatively, low night-time temperatures are not harnessed in cooling buildings because office openings remain closed after work hours. An optimization was performed through a sensitivity analysis-based simulation, using the Energy Plus (E+ simulation software to assess the effects of thermal mass, window size, and night ventilation on peak indoor air temperature (PIAT. An experimental system was designed based on the features of the most promising simulation model, constructed and monitored, and the experimental data used to validate the simulation model. The results show that an optimization of thermal mass and window size coupled with activation of night-time ventilation provides a synergistic effect to obtain reduced peak indoor air temperature. An expression that predicts, indoor maximum temperature has been derived for models of various thermal masses.

  18. Tribological Evaluation of Candidate Gear Materials Operating Under Light Loads in Highly Humid Conditions

    Science.gov (United States)

    Dellacorte, Christopher; Thomas, Fransua; Leak, Olivia Ann

    2015-01-01

    A series of pin-on-disk sliding wear tests were undertaken to identify candidate materials for a pair of lightly loaded timing gears operating under highly humid conditions. The target application involves water purification and thus precludes the use of oil, grease and potentially toxic solid lubricants. The baseline sliding pair is austenitic stainless steel operating against a carbon filled polyimide. The test load and sliding speed (4.9 N, 2.7 m/s) were chosen to represent average contact conditions of the meshing gear teeth. In addition to the baseline materials, the hard superelastic NiTiNOL 60 (60NiTi) was slid against itself, against the baseline polyimide, and against 60NiTi onto which a commercially deposited dry film lubricant (DFL) was applied. The alternate materials were evaluated as potential replacements to achieve a longer wear life and improved dimensional stability for the timing gear application. An attempt was also made to provide solid lubrication to self-mated 60NiTi by rubbing the polyimide against the disk wear track outside the primary 60NiTi-60NiTi contact, a method named stick or transfer-film lubrication. The selected test conditions gave repeatable friction and wear data and smooth sliding surfaces for the baseline materials similar to those in the target application. Friction and wear for self-mated stainless steel were high and erratic. Self-mated 60NiTi gave acceptably low friction (approx. 0.2) and modest wear but the sliding surfaces were rough and potentially unsuitable for the gear application. Tests in which 60NiTi pins were slid against DFL coated 60NiTi and DFL coated stainless steel gave low friction and long wear life. The use of stick lubrication via the secondary polyimide pin provided effective transfer film lubrication to self-mated 60NiTi tribological specimens. Using this approach, friction levels were equal or lower than the baseline polyimide-stainless combination and wear was higher but within data scatter observed

  19. Prediction of thermal sensation in non-air-conditioned buildings in warm climates

    DEFF Research Database (Denmark)

    Fanger, Povl Ole; Toftum, Jørn

    2002-01-01

    The PMV model agrees well with high-quality field studies in buildings with HVAC systems, situated in cold, temperate and warm climates, studied during both summer and winter. In non-air-conditioned buildings in warm climates, occupants may sense the warmth as being less severe than the PMV...... predicts. The main reason is low expectations, but a metabolic rate that is estimated too high can also contribute to explaining the difference. An extension of the PMV model that includes an expectancy factor is introduced for use in non-air-conditioned buildings in warm climates. The extended PMV model...... agrees well with quality field studies in non-air-conditioned buildings of three continents....

  20. Extension of the PMV model to non-air-conditioned building in warm climates

    DEFF Research Database (Denmark)

    Fanger, Povl Ole; Toftum, Jørn

    2002-01-01

    The PMV model agrees well with high-quality field studies in buildings with HVAC systems, situated in cold, temperate and warm climates, studied during both summer and winter. In non-air-conditioned buildings in warm climates, occupants may sense the warmth as being less severe than the PMV...... predicts. The main reason is low expectations, but a metabolic rate that is estimated too high can also contribute to explaining the difference. An extension of the PMV model that includes an expectancy factor is introduced for use in non-air-conditioned buildings in warm climates. The extended PMV model...... agrees well with quality field studies in non-air-conditioned buildings of three continents....

  1. Temperature/Humidity Conditions in Stacked Flexible Intermediate Bulk Containers for Shelled Peanuts

    Science.gov (United States)

    Shelled peanuts are loaded into flexible intermediate bulk containers, or totes. After loading, the 1000-kg totes are placed directly into cold storage at 3ºC and 65% relative humidity until shipment to the customer domestically in the United States or internationally requiring transport overseas. ...

  2. Evaluation of the Survivability of Microorganisms Deposited on Filtering Respiratory Protective Devices under Varying Conditions of Humidity

    Directory of Open Access Journals (Sweden)

    Katarzyna Majchrzycka

    2016-01-01

    Full Text Available Bioaerosols are common biological factors in work environments, which require routine use of filtering respiratory protective devices (FRPDs. Currently, no studies link humidity changes in the filter materials of such devices, during use, with microorganism survivability. Our aim was to determine the microclimate inside FRPDs, by simulating breathing, and to evaluate microorganism survivability under varying humidity conditions. Breathing was simulated using commercial filtering facepiece respirators in a model system. Polypropylene melt-blown nonwoven fabrics with moisture contents of 40%, 80%, and 200%, were used for assessment of microorganisms survivability. A modified AATCC 100-2004 method was used to measure the survivability of ATCC and NCAIM microorganisms: Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albicans and Aspergillus niger. During simulation relative humidity under the facepiece increased after 7 min of usage to 84%–92% and temperature increased to 29–30 °C. S. aureus survived the best on filter materials with 40%–200% moisture content. A decrease in survivability was observed for E. coli and C. albicans when mass humidity decreased. We found that B. subtilis and A. niger proliferated for 48–72 h of incubation and then died regardless of the moisture content. In conclusion, our tests showed that the survivability of microorganisms on filter materials depends on the amount of accumulated moisture and microorganism type.

  3. Evaluation of the Survivability of Microorganisms Deposited on Filtering Respiratory Protective Devices under Varying Conditions of Humidity.

    Science.gov (United States)

    Majchrzycka, Katarzyna; Okrasa, Małgorzata; Skóra, Justyna; Gutarowska, Beata

    2016-01-04

    Bioaerosols are common biological factors in work environments, which require routine use of filtering respiratory protective devices (FRPDs). Currently, no studies link humidity changes in the filter materials of such devices, during use, with microorganism survivability. Our aim was to determine the microclimate inside FRPDs, by simulating breathing, and to evaluate microorganism survivability under varying humidity conditions. Breathing was simulated using commercial filtering facepiece respirators in a model system. Polypropylene melt-blown nonwoven fabrics with moisture contents of 40%, 80%, and 200%, were used for assessment of microorganisms survivability. A modified AATCC 100-2004 method was used to measure the survivability of ATCC and NCAIM microorganisms: Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albicans and Aspergillus niger. During simulation relative humidity under the facepiece increased after 7 min of usage to 84%-92% and temperature increased to 29-30 °C. S. aureus survived the best on filter materials with 40%-200% moisture content. A decrease in survivability was observed for E. coli and C. albicans when mass humidity decreased. We found that B. subtilis and A. niger proliferated for 48-72 h of incubation and then died regardless of the moisture content. In conclusion, our tests showed that the survivability of microorganisms on filter materials depends on the amount of accumulated moisture and microorganism type.

  4. Adaptive observer-based control for an IPMC actuator under varying humidity conditions

    Science.gov (United States)

    Bernat, Jakub; Kolota, Jakub

    2018-05-01

    As ionic polymer metal composites (IPMC) are increasingly applied to mechatronic systems, many new IPMC modeling efforts have been reported in the literature. The demands of rapidly growing technology has generated interest in advancing the intrinsic actuation and sensing capabilities of IPMC. Classical IPMC applications need constant hydration to operate. On the other hand, for IPMCs operating in air, the water content of the polymer varies with the humidity level of the ambient environment, which leads to its strong humidity-dependent behavior. Furthermore, decreasing water content over time plays a crucial role in the effectiveness of IPMC. Therefore, the primary challenge of this work is to accurately model this phenomenon. The principal contribution of the paper is a new IPMC model, which considers the change of moisture content. A novel nonlinear adaptive observer is designed to determine the unknown electric potential and humidity level in the polymer membrane. This approach effectively determines the moisture content of the IPMC during long-term continuous operation in air. This subsequently allows us to develop an effective back-stepping control algorithm that considers varying moisture content. Data from experiments are presented to support the effectiveness of the observation process, which is shown in illustrative examples.

  5. Kinetics of cellular viability in warm versus cold ischemia conditions of kidney preservation. A biometric study.

    Science.gov (United States)

    Savioz, D; Bolle, J F; Graf, J D; Jeanjacquot, A; Savioz, M; Dietler, G; Favre, H; Leski, M; Morel, D; Morel, P

    1996-08-15

    We have determined the kinetics of the cellular viability ratio (CVR), defined as the number of living cells over the total cell count, in pig kidneys using propidium iodide and fluorescein diacetate staining, as a function of time and preservation conditions. The kidneys were preserved in warm or cold ischemia in order to mimic the conditions of transplantation from non-heart-beating donors or multiple removal with optimal preservation of the graft, respectively. To determine the CVR, the cells were obtained by a fine-needle aspiration biopsy, which minimizes the damage to the graft. A biometric analysis by regression enabled the determination of the time dependence for warm ischemia (CVR(t) = 80.0 x e(-0.733-t)(+2.7/-0.36)) and for cold ischemia (CVR(t) = 80.0 x e(-0.022-t)(+1.57/-0.64)) with a confidence interval of 95%. These master curves allow us to predict, under the described conditions, the CVR after a given ischemia time. The half-life of the cells can be deduced from the time-dependent CVR(t), and is 0.64 hr (38 min) for warm ischemia and 21.4 hr for cold ischemia. Further, the CVR for a given kidney can be used to assess its condition at removal: if the CVR is below 48% at 2 hr after removal, one can conclude that the organ has suffered a period of warm ischemia.

  6. Physiological responses to ocean acidification and warming synergistically reduce condition of the common cockle Cerastoderma edule.

    Science.gov (United States)

    Ong, E Z; Briffa, M; Moens, T; Van Colen, C

    2017-09-01

    The combined effect of ocean acidification and warming on the common cockle Cerastoderma edule was investigated in a fully crossed laboratory experiment. Survival of the examined adult organisms remained high and was not affected by elevated temperature (+3 °C) or lowered pH (-0.3 units). However, the morphometric condition index of the cockles incubated under high pCO 2 conditions (i.e. combined warming and acidification) was significantly reduced after six weeks of incubation. Respiration rates increased significantly under low pH, with highest rates measured under combined warm and low pH conditions. Calcification decreased significantly under low pH while clearance rates increased significantly under warm conditions and were generally lower in low pH treatments. The observed physiological responses suggest that the reduced food intake under hypercapnia is insufficient to support the higher energy requirements to compensate for the higher costs for basal maintenance and growth in future high pCO 2 waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A comparative simple method for human bioclimatic conditions applied to seasonally hot/warm cities of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda Martinez, A. [Universidad Veracruzana, Xalapa, Veracruz (Mexico); Garcia Cueto, O.R. [Universidad Autonoma de Baja California, Mexicali, B.C. (Mexico)

    2002-01-01

    The climate of a region is an environmental resource with important implications for things such as thermal comfort, health and productivity of the population. In this work, the bioclimatic comfort was evaluated for seven seasonally warm/hot cities of Mexico by means of the following current indexes: Discomfort Index, Enthalpy Index and Heat Strain Index. Also, the periods during which it is necessary to use air conditioning in the studied cities were calculated from estimated global radiation and hourly data of temperature and relative humidity which made it possible to establish them with high precision. Finally, the useful of the Heat Strain Index is shown. It is a simple index needing available meteorological data to compare bioclimatic conditions of similar sites. [Spanish] El clima regional tiene implicaciones en el confort, la salud y la productividad de la poblacion. En este articulo se presentan las evaluaciones bioclimaticas comparativas de siete ciudades calidas de Mexico. Se aplicaron los indices bioclimaticos de disconfort, entalpia y esfuerzo frente al calor. Se calcularon los periodos para los cuales es necesario el uso de aire acondicionado, a partir de estimaciones de radiacion solar global y de temperatura y humedad horarias medias mensuales. Finalmente se muestra la utilidad y calidad del Indice de esfuerzo frente al calor, el cual requiere solo de datos climatologicos comunes para poder comparar condiciones bioclimaticas de sitios similares.

  8. Diagnosing Warm Frontal Cloud Formation in a GCM: A Novel Approach Using Conditional Subsetting

    Science.gov (United States)

    Booth, James F.; Naud, Catherine M.; DelGenio, Anthony D.

    2013-01-01

    This study analyzes characteristics of clouds and vertical motion across extratropical cyclone warm fronts in the NASA Goddard Institute for Space Studies general circulation model. The validity of the modeled clouds is assessed using a combination of satellite observations from CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The analysis focuses on developing cyclones, to test the model's ability to generate their initial structure. To begin, the extratropical cyclones and their warm fronts are objectively identified and cyclone-local fields are mapped into a vertical transect centered on the surface warm front. To further isolate specific physics, the cyclones are separated using conditional subsetting based on additional cyclone-local variables, and the differences between the subset means are analyzed. Conditional subsets are created based on 1) the transect clouds and 2) vertical motion; 3) the strength of the temperature gradient along the warm front, as well as the storm-local 4) wind speed and 5) precipitable water (PW). The analysis shows that the model does not generate enough frontal cloud, especially at low altitude. The subsetting results reveal that, compared to the observations, the model exhibits a decoupling between cloud formation at high and low altitudes across warm fronts and a weak sensitivity to moisture. These issues are caused in part by the parameterized convection and assumptions in the stratiform cloud scheme that are valid in the subtropics. On the other hand, the model generates proper covariability of low-altitude vertical motion and cloud at the warm front and a joint dependence of cloudiness on wind and PW.

  9. Attribution of observed surface humidity changes to human influence.

    Science.gov (United States)

    Willett, Katharine M; Gillett, Nathan P; Jones, Philip D; Thorne, Peter W

    2007-10-11

    Water vapour is the most important contributor to the natural greenhouse effect, and the amount of water vapour in the atmosphere is expected to increase under conditions of greenhouse-gas-induced warming, leading to a significant feedback on anthropogenic climate change. Theoretical and modelling studies predict that relative humidity will remain approximately constant at the global scale as the climate warms, leading to an increase in specific humidity. Although significant increases in surface specific humidity have been identified in several regions, and on the global scale in non-homogenized data, it has not been shown whether these changes are due to natural or human influences on climate. Here we use a new quality-controlled and homogenized gridded observational data set of surface humidity, with output from a coupled climate model, to identify and explore the causes of changes in surface specific humidity over the late twentieth century. We identify a significant global-scale increase in surface specific humidity that is attributable mainly to human influence. Specific humidity is found to have increased in response to rising temperatures, with relative humidity remaining approximately constant. These changes may have important implications, because atmospheric humidity is a key variable in determining the geographical distribution and maximum intensity of precipitation, the potential maximum intensity of tropical cyclones, and human heat stress, and has important effects on the biosphere and surface hydrology.

  10. Wavelength properties of DCG holograms under the conditions of different temperature and humidity

    Science.gov (United States)

    Liu, Yujie; Li, Wenqiang; Ding, Quanxin; Yan, Zhanjun

    2014-12-01

    Holograms recorded in dichromated gelatin (DCG) are usually sealed with a glass plate cemented with an epoxy glue to protect the holograms from moisture in the environment. An investigation of the wavelength properties of sealed DCG holograms had been carried out paying attention to holograms which were exposed to different temperature and humidity environment in this work. The investigation had revealed that (a) exposing the sealed DCG holograms to high relative humidity (RH=98%) environment or immersing them in room-temperature water for 20 hours can not affect the holograms; (b) the sealed DCG holograms can be used at temperature below 50°C without showing undue detrimental effects regarding their optical properties; (c) the peak wavelength of sealed DCG holograms can cause blue shift of several nanometers at 70°C~85°C and the velocity of blue shift is proportional to the environmental temperature; (d) the holograms can be destroyed at 100° or above. The experimental results above will be analyzed and discussed in this paper. A method to improve the stability of sealed DCG holograms is proposed: baking the sealed DCG holograms at proper temperature (e.g., 85°C in this study).

  11. Geomorphological evidence of warm-humid and cold-dry glaciations in the dry western Cordillera of the tropical Peruvian Andes

    Science.gov (United States)

    Mächtle, B.; Hein, A. S.; Dunai, T.; Eitel, B.

    2012-04-01

    The western Cordillera of the Andes (14°30'S, 74°W) is characterized by high altitudes, strong radiation and semi-arid conditions. Therefore, glacial processes and resulting landforms differ markedly from these of the outer-tropics. However, under sub-arctic conditions similar glacial landforms occur. This congruence can be explained by comparable environmental conditions, which determine the dynamics of ice flow, glacial erosion, debris production as well as moraine deposition. Outside the higher latitudes, typical sub-arctic glacial landforms as controlled moraines and trimline moraines (Evans 2009, Ó Cofaigh et al. 2005) remained undescribed until now. These landforms result from polythermal or cold-basal ice flow, respectively, which is typical for polar conditions. Beside this, we also found steep lateral moraines, which give evidence of increased ice thickness, debris production and deposition and warm-basal ice flow, which is conceivable only for alpine-type valley glaciers. Striations of the bedrock give evidence of accompanied basal erosion. Coexisting trimline moraines and steep lateral moraines rule out the influence of topography on ice thickness and the resulting thermal regime. Therefore, we match the different moraine types to changes in ice thickness, which was controlled by considerable precipitation changes during the last glaciation. An erroneous classification of the observed boulder associations as trimline moraine due to selective erosion after deposition can be excluded due to general arid conditions, slow weathering and the chronological proximity of only a few millennia between both landforms, determined from cosmogenic nuclides. Therefore, the occurrence of different thermal regimes gives evidence of considerable changes in precipitation during the last glaciation - but furthermore requires an associated change in the thermal conditions to explain the very close spatial position of both ice margins. Changes in ice volume must have

  12. Warm-up with weighted bat and adjustment of upper limb muscle activity in bat swinging under movement correction conditions.

    Science.gov (United States)

    Ohta, Yoichi; Ishii, Yasumitsu; Ikudome, Sachi; Nakamoto, Hiroki

    2014-02-01

    The effects of weighted bat warm-up on adjustment of upper limb muscle activity were investigated during baseball bat swinging under dynamic conditions that require a spatial and temporal adjustment of the swinging to hit a moving target. Seven male college baseball players participated in this study. Using a batting simulator, the task was to swing the standard bat coincident with the arrival timing and position of a moving target after three warm-up swings using a standard or weighted bat. There was no significant effect of weighted bat warm-up on muscle activity before impact associated with temporal or spatial movement corrections. However, lower inhibition of the extensor carpi ulnaris muscle activity was observed in a velocity-changed condition in the weighted bat warm-up, as compared to a standard bat warm-up. It is suggested that weighted bat warm-up decreases the adjustment ability associated with inhibition of muscle activation under movement correction conditions.

  13. Germination of tropical forage seeds stored for six years in ambient and controlled temperature and humidity conditions in Thailand

    Directory of Open Access Journals (Sweden)

    Michael D. Hare

    2018-01-01

    Full Text Available The germination performances of fresh seed lots were determined for 5 tropical forage species: Mulato II hybrid brachiaria [Urochloa ruziziensis (syn. Brachiaria ruziziensis x U. decumbens (syn. B. decumbens x U. brizantha (syn. B. brizantha], Mombasa guinea [Megathyrsus maximus (syn. Panicum maximum], Tanzania guinea [M. maximus (syn. P. maximum], Ubon paspalum (Paspalum atratum and Ubon stylo (Stylosanthes guianensis, stored under ambient conditions in Thailand (mean monthly temperatures 23‒34 ºC; mean monthly relative humidity 40‒92% or in a cool room (18‒20 ºC and 50% relative humidity for up to 6 years. The first paper of this study showed all seeds, except unscarified Ubon stylo seed, were dead after a single year of storage in ambient conditions. This second paper shows that cool-room storage extended seed viability, but performance varied considerably between species. Germination percentage under laboratory conditions declined to below 50%, after 3 years storage for Mombasa guinea seed and Tanzania guinea seed, 4 years for Ubon paspalum seed and 4‒5 years for Mulato II seed. Ubon stylo seed maintained high germination for 5 years, in both cool-room storage (96% and ambient-room storage (84%. Apparent embryo dormancy in acid-scarified Mulato II seed steadily increased with time in cool-storage and this seed had to be acid-scarified again each year at the time of germination testing to overcome dormancy. Physical dormancy of Mulato II seeds, imposed by the tightly bound lemma and palea in unscarified seed, was not overcome by length of time in cool-storage and these seeds had to be acid-scarified to induce germination. Hardseeded percentage in Ubon stylo seed remained high throughout the study and could be overcome only by acid-scarification. The difficulties of maintaining acceptable seed germination percentages when storing forage seeds in the humid tropics are discussed.

  14. Does pre-exposure to warming conditions increase Mytilus galloprovincialis tolerance to Hg contamination?

    Science.gov (United States)

    Freitas, Rosa; Coppola, Francesca; Henriques, Bruno; Wrona, Fredrick; Figueira, Etelvina; Pereira, Eduarda; Soares, Amadeu M V M

    2017-12-01

    The degree to which marine invertebrate populations can tolerate extreme weather events, such as short-term exposure to high temperatures, and the underlying biochemical response mechanisms are not yet fully understood. Furthermore, scarce information is available on how marine organisms respond to the presence of pollutants after exposure to heat stress conditions. Therefore, the present study aimed to understand how the mussel Mytilus galloprovincialis responds to Hg pollution after pre-exposure to warming conditions. Mussels were exposed to control (17°C) and warming (21°C) conditions during 14days, followed by Hg contamination during 28days under different temperature regimes (17 and 21°C). The results obtained demonstrated significantly higher Hg concentrations in mussels under 17°C during the entire experiment than in organisms exposed to 21°C during the same period, which resulted in higher oxidative stress in mussels under control temperature. Significantly higher Hg concentrations were also observed in mussels pre-exposed to 21°C followed by a 17°C exposure comparing with organisms maintained the entire experiment at 21°C. These results may be explained by higher metabolic capacity in organisms exposed to 17°C after pre-exposure to 21°C that although induced antioxidant defences were not enough to prevent oxidative stress. No significant differences in terms of Hg concentration were found between mussels exposed to 17°C during the entire experiment and organisms pre-exposed to 21°C followed by a 17°C exposure, leading to similar oxidative stress levels in mussels exposed to both conditions. Therefore, our findings demonstrated that pre-exposure to warming conditions did not change mussels' accumulation and tolerance to Hg in comparison to Hg contaminated mussels maintained at control temperature. Furthermore, the present study indicate that organisms maintained under warming conditions for long periods may prevent the accumulation of

  15. Nucleation of CaCO3 polymorphs from a colloidal alcoholic solution of Ca(OH)2 nanocrystals exposed to low humidity conditions

    OpenAIRE

    Gómez Villalba, Luz Stella; López-Arce, Paula; Fort González, Rafael

    2011-01-01

    A study of the stability of calcium carbonate polymorphs formed as a result of the carbonation process from an alcoholic colloidal solution of nanocrystals of Ca(OH)2 in low relative humidity (RH) conditions (33% and 54% RH) is presented in this research. The crystalline behavior, the time dependence of nucleation and the phases’ transformations as a result of exposure to low humidity conditions are evaluated. The carbonation process is slow, starting with the nucleation of amorphous calcium ...

  16. Thermal comfort in air-conditioned buildings in hot and humid climates--why are we not getting it right?

    Science.gov (United States)

    Sekhar, S C

    2016-02-01

    While there are plenty of anecdotal experiences of overcooled buildings in summer, evidence from field studies suggests that there is indeed an issue of overcooling in tropical buildings. The findings suggest that overcooled buildings are not a consequence of occupant preference but more like an outcome of the HVAC system design and operation. Occupants' adaptation in overcooled indoor environments through additional clothing cannot be regarded as an effective mitigating strategy for cold thermal discomfort. In the last two decades or so, several field studies and field environmental chamber studies in the tropics provided evidence for occupants' preference for a warmer temperature with adaptation methods such as elevated air speeds. It is important to bear in mind that indoor humidity levels are not compromised as they could have an impact on the inhaled air condition that could eventually affect perceived air quality. This review article has attempted to track significant developments in our understanding of the thermal comfort issues in air-conditioned office and educational buildings in hot and humid climates in the last 25 years, primarily on occupant preference for thermal comfort in such climates. The issue of overcooled buildings, by design intent or otherwise, is discussed in some detail. Finally, the article has explored some viable adaptive thermal comfort options that show considerable promise for not only improving thermal comfort in tropical buildings but are also energy efficient and could be seen as sustainable solutions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Assessment of Humidity Conditions and Trends Based on Standardized Precipitation Evapotranspiration Index (SEPI Over Different Climatic Regions of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Ghabaei S

    2017-01-01

    Full Text Available Introduction: Drought is a recurrent feature of climate that caused by deficiency of precipitation over time. Due to the rise in water demand and alarming climate change, recent year’s observer much focus on drought and drought conditions. A multiple types of deficits and relevant temporal scales can be achieved through the construction of a joint indicator that draws on information from multiple sources and will therefore enable better assessment of drought characteristics including return period, persistent and severity. The Standardized Precipitation Evapotranspiration Index (SPEI combines information from precipitation and temperature in the form of water surplus or deficit according to Standardized Precipitation Index (SPI. Rainfall over some regions of Iran during some resent year was below average while mean and maximum temperatures were very high during this period, as was evaporation. This would suggest that drought conditions were worse than in previous recent periods with similarly low rainfall. The main objective of this study is to assess the influences of humidity on the SPEI index and investigate its relation with SPI and Reconnaissance Drought Index (RDI over six different climatic regions in Iran. Materials and Methods: Iran has different climatic conditions which vary from desert in central part to costal wet near the Caspian Sea. In this study the selection of stations was done based on Alijani et al (2008 climatic classification. We chose 11 synoptic stations from six different climatic classes including costal wet (Rasht and Babolsar, semi mountains (Mashhad and Tabriz, mountains (Shiraz and Khoram Abad, semi-arid (Tehran and Semnan, arid (Kerman and Yazd and costal desert (Bandar Abas. The Meteorological datasets for the aforementioned stations were obtained from the Iran Meteorological Organization (IRIMO for the period 1960-2010. The compiled data included average monthly values of precipitation, minimum and maximum air

  18. Seasonal changes in water content and turnover in cattle, sheep and goats grazing under humid tropical conditions in Ghana

    International Nuclear Information System (INIS)

    Aggrey, E.K.

    1982-01-01

    The effect of seasonal changes on water content and water turnover of cattle, sheep and goats at pasture under humid tropical conditions was studied. Measurement of total body water and water turnover was based on the tritium dilution technique. Total body water was significantly higher in all three species of animal during the dry season, while water turnover was significantly lower in the dry season than in the wet season. In all seasons water turnover was highest in cattle, followed by sheep and then goat. Changes in body weight, body water, body solids and water turnover were associated with seasonal variations in nutrition. The indication was that the goat would be a more suitable animal for production under dry conditions than cattle and sheep. (author)

  19. Decoupling dehumidification and cooling for energy saving and desirable space air conditions in hot and humid Hong Kong

    International Nuclear Information System (INIS)

    Lee, W.L.; Chen Hua; Leung, Y.C.; Zhang, Y.

    2012-01-01

    Highlights: ► The combined use of dedicated ventilation and dry cooling (DCDV) system was investigated. ► Investigations were based actual equipment performance data and realistic building and system characteristics. ► DCDV system could save 54% of the annual energy use for air-conditioning. ► DCDV system could better achieve the desired space air conditions. ► DCDV system could decouple dehumidification and cooling. - Abstract: The combined use of dedicated outdoor air ventilation (DV) and dry cooling (DC) air-conditioning system to decouple sensible and latent cooling for desirable space air conditions, better indoor air quality, and energy efficiency is proposed for hot and humid climates like Hong Kong. In this study, the performance and energy saving potential of DCDV system in comparison to conventional systems (constant air volume (CAV) system with and without reheat) for air conditioning of a typical office building in Hong Kong are evaluated. Through hour-by-hour simulations, using actual equipment performance data and realistic building and system characteristics, the cooling load profile, resultant indoor air conditions, condensation at the DC coil, and energy consumptions are calculated and analyzed. The results indicate that with the use of DCDV system, the desirable indoor conditions could be achieved and the annual energy use could be reduced by 54% over CAV system with reheat. The condensate-free characteristic at the DC coil to reduce risk of catching disease could also be realized.

  20. Transformation of goethite/ferrihydrite to hematite and maghemite under temperate humid conditions in Denmark

    Science.gov (United States)

    Nørnberg, P.; Finster, K.; Gunnlaugsson, H. P.; Jensen, S. K.; Merrison, J. P.; Vendelboe, A. L.

    2012-04-01

    At a number of sandy soil sites in Mid Jutland, Denmark, with iron content of 1-2%, very red spots (Munsell colour: dusky red 10R 3/4) of a few square meters are found. These spots are most likely due to burning events. After the fire ashes raised pH. This dispersed silt and clay size soil particles which were then transported with seepage water down into lower soil horizons. These particles contain hematite and maghemite due to influence of the fire. However, a long-standing unresolved question is how hematite and maghemite can also be present along with goethite and ferrihydrite, in the same geographical region, and in extended areas with high iron content (8-40 %) in the topsoil. Hematite and particularly maghemite would normally not be expected to form under the temperate humid Danish climate, but be interpreted as the result of high temperature as found in tropical regions or as seen in soils exposed to fire. The high iron content most likely has its origin in pyrite dissolution in top of the groundwater zone in deeper Miocene deposits. From there Fe2+ is brought to the surface by the groundwater, and in wells oxidized by meeting the atmosphere and precipitated as two line ferrihydrite. This is later transformed into goethite. However, along with these two minerals hematite and maghemite are present in the topsoil around the well area. Forest fires would be a likely explanation to the hematite and maghemite. But a body of evidence argues against these sites having been exposed to fire. 1) The pH in the topsoil is 3.6 - 4.8 and thus not raised by ashes. 2) No charcoal is present. 3) There is no indication of fire outside the high iron content areas. 4) Goethite is present along with hematite and maghemite in microparticles, and the mineralogical zonation produced in a forest fire is not seen. The natural sites contain a uniform mixture of goethite/ferrihydrite, hematite and maghemite down to 20 cm depth. An experimental forest fire left charcoal and ashes at

  1. Effect of warming and flow rate conditions of blood warmers on red blood cell integrity.

    Science.gov (United States)

    Poder, T G; Pruneau, D; Dorval, J; Thibault, L; Fisette, J-F; Bédard, S K; Jacques, A; Beauregard, P

    2016-11-01

    Fluid warmers are routinely used to reduce the risk of hypothermia and cardiac complications associated with the infusion of cold blood products. However, warming blood products could generate haemolysis. This study was undertaken to compare the impact of temperature of blood warmers on the per cent haemolysis of packed red blood cells (RBCs) heated at different flow rates as well as non-flow conditions. Infusion warmers used were calibrated at 41·5°C ± 0·5°C and 37·5°C ± 0·5°C. Cold RBC units stored at 4°C in AS-3 (n = 30), aged 30-39 days old, were divided into half units before being allocated under two different scenarios (i.e. infusion pump or syringe). Blood warmers were effective to warm cold RBCs to 37·5°C or 41·5°C when used in conjunction with an infusion pump at flow rate up to 600 ml/h. However, when the warmed blood was held in a syringe for various periods of time, such as may occur in neonatal transfusions, the final temperature was below the expected requirements with measurement as low as 33·1°C. Increasing the flow with an infusion pump increased haemolysis in RBCs from 0·2% to up to 2·1% at a flow rate of 600 ml/h regardless of the warming device used (P < 0·05). No relevant increase of haemolysis was observed using a syringe. The use of a blood warmer adjusted to 41·5°C is probably the best choice for reducing the risk of hypothermia for the patient without generating haemolysis. However, we should be cautious with the use of an infusion pump for RBC transfusion, particularly at high flow rates. © 2016 International Society of Blood Transfusion.

  2. Combined equations for estimating global solar radiation: Projection of radiation field over Japan under global warming conditions by statistical downscaling

    International Nuclear Information System (INIS)

    Iizumi, T.; Nishimori, M.; Yokozawa, M.

    2008-01-01

    For this study, we developed a new statistical model to estimate the daily accumulated global solar radiation on the earth's surface and used the model to generate a high-resolution climate change scenario of the radiation field in Japan. The statistical model mainly relies on precipitable water vapor calculated from air temperature and relative humidity on the surface to estimate seasonal changes in global solar radiation. On the other hand, to estimate daily radiation fluctuations, the model uses either a diurnal temperature range or relative humidity. The diurnal temperature range, calculated from the daily maximum and minimum temperatures, and relative humidity is a general output of most climate models, and pertinent observation data are comparatively easy to access. The statistical model performed well when estimating the monthly mean value, daily fluctuation statistics, and regional differences in the radiation field in Japan. To project the change in the radiation field for the years 2081 to 2100, we applied the statistical model to the climate change scenario of a high-resolution Regional Climate Model with a 20-km mesh size (RCM20) developed at the Meteorological Research Institute based on the Special Report for Emission Scenario (SRES)-A2. The projected change shows the following tendency: global solar radiation will increase in the warm season and decrease in the cool season in many areas of Japan, indicating that global warming may cause changes in the radiation field in Japan. The generated climate change scenario for the radiation field is linked to long-term and short-term changes in air temperature and relative humidity obtained from the RCM20 and, consequently, is expected to complement the RCM20 datasets for an impact assessment study in the agricultural sector

  3. Research on Using the Naturally Cold Air and the Snow for Data Center Air-conditioning, and Humidity Control

    Science.gov (United States)

    Tsuda, Kunikazu; Tano, Shunichi; Ichino, Junko

    To lower power consumption has becomes a worldwide concern. It is also becoming a bigger area in Computer Systems, such as reflected by the growing use of software-as-a-service and cloud computing whose market has increased since 2000, at the same time, the number of data centers that accumulates and manages the computer has increased rapidly. Power consumption at data centers is accounts for a big share of the entire IT power usage, and is still rapidly increasing. This research focuses on the air-conditioning that occupies accounts for the biggest portion of electric power consumption by data centers, and proposes to develop a technique to lower the power consumption by applying the natural cool air and the snow for control temperature and humidity. We verify those effectiveness of this approach by the experiment. Furthermore, we also examine the extent to which energy reduction is possible when a data center is located in Hokkaido.

  4. Humid storage conditions increase the dissolution rate of diazepam from solid dispersions prepared by melt agglomeration

    DEFF Research Database (Denmark)

    Jørgensen, Anna Cecilia; Torstenson, Anette Seo

    2008-01-01

    The purpose of this study is to investigate the effect of cooling mode and storage conditions on the dissolution rate of a solid dispersion prepared by melt agglomeration. The aim has been to relate this effect to the solid state properties of the agglomerates. The cooling mode had an effect on t...

  5. Potential Alternative Lower Global Warming Refrigerants for Air Conditioning in Hot Climates

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL; Shen, Bo [ORNL

    2017-01-01

    The earth continues to see record increase in temperatures and extreme weather conditions that is largely driven by anthropogenic emissions of warming gases such as carbon dioxide and other more potent greenhouse gases such as refrigerants. The cooperation of 188 countries in the Conference of the Parties in Paris 2015 (COP21) resulted in an agreement aimed to achieve a legally binding and universal agreement on climate, with the aim of keeping global warming below 2 C. A global phasedown of hydrofluorocarbons (HFCs) can prevent 0.5 C of warming by 2100. However, most of the countries in hot climates are considered as developing countries and as such are still using R-22 (a Hydrochlorofluorocarbon (HCFC)) as the baseline refrigerant and are currently undergoing a phase-out of R-22 which is controlled by current Montreal Protocol to R-410A and other HFC based refrigerants. These HFCs have significantly high Global Warming Potential (GWP) and might not perform as well as R-22 at high ambient temperature conditions. In this paper we present recent results on evaluating the performance of alternative lower GWP refrigerants for R-22 and R-410A for small residential mini-split air conditioners and large commercial packaged units. Results showed that several of the alternatives would provide adequate replacement for R-22 with minor system modification. For the R-410A system, results showed that some of the alternatives were almost drop-in ready with benefit in efficiency and/or capacity. One of the most promising alternatives for R-22 mini-split unit is propane (R-290) as it offers higher efficiency; however it requires compressor and some other minor system modification to maintain capacity and minimize flammability risk. Between the R-410A alternatives, R-32 appears to have a competitive advantage; however at the cost of higher compressor discharge temperature. With respect to the hydrofluoroolefin (HFO) blends, there existed a tradeoff in performance and system design

  6. Physical Responses of Convective Heavy Rainfall to Future Warming Condition: Case Study of the Hiroshima Event

    Directory of Open Access Journals (Sweden)

    Kenshi Hibino

    2018-04-01

    Full Text Available An extreme precipitation event happened at Hiroshima in 2014. Over 200 mm of total rainfall was observed on the night of August 19th, which caused floods and many landslides. The rainfall event was estimated to be a rare event happening once in approximately 30 years. The physical response of this event to the change of the future atmospheric condition, which includes a temperature increase on average and convective stability change, is investigated in the present study using a 27-member ensemble experiment and pseudo global warming downscaling method. The experiment is integrated using the Japan Meteorological Research Institute non-hydrostatic regional climate model. A very high-resolution horizontal grid, 500 m, is used to reproduce dense cumulonimbus cloud formation causing heavy rainfall in the model. The future climate condition determined by a higher greenhouse gas concentration is prescribed to the model, in which the surface air temperature globally averaged is 4 K warmer than that in the preindustrial era. The total amounts of precipitation around the Hiroshima area in the future experiments are closer to or slightly lower than in the current experiments in spite of the increase in water vapor due to the atmospheric warming. The effect of the water vapor increase on extreme precipitation is found to be canceled out by the suppression of convection due to the thermal stability enhancement. The fact that future extreme precipitation like the Hiroshima event is not intensified is in contrast to the well-known result that extreme rainfall tends to be intensified in the future. The results in the present study imply that the response of extreme precipitation to global warming differs for each rainfall phenomenon.

  7. Clinical, cardiopulmonary and haemocytological effects of xylazine in goats after acute exposure to different environmental temperature and humidity conditions

    Directory of Open Access Journals (Sweden)

    E.G.M. Mogoa

    2000-07-01

    Full Text Available This study was carried out to assess the influence of xylazine administration on clinical, cardiopulmonary and haemocytological variables after acute exposure to different environmental conditions. Xylazine hydrochloride was administered intravenously at 0.1 mg/kg body mass to 6 clinically healthy, castrated male goats. All animals were exposed for 60 min to 3 sets of climatic conditions: 14 °C, 33% relative humidity; 24 °C, 55% RH, and 34 °C, 65% RH. The variables that were measured for a period of 60 min after xylazine administration were sedation, analgesia, salivation, urination, ventilation rate, heart-rate, mean arterial blood pressure, oesophageal temperature, haematocrit, mean corpuscular volume and mean corpuscular haemoglobin concentration. Xylazine induced sedation, analgesia, salivation and urination independently of the 3 environmental conditions. Environment had no influence on the onset, duration and recovery from sedation. In the 14 °C environment, xylazine resulted in a significant decrease in ventilation and heart-rate from baseline values. Significant changes in mean arterial blood pressure, haemoglobin concentration, mean corpuscular volume, haematocrit and red cell count were observed in the 3 environments. Total plasma protein was significantly altered at 24 °C and 34 °C. Acute exposure of goats to different environmental conditions had no significant influence on the clinical, cardiopulmonary and haemocytological variables. Physiological changes induced by xylazine were therefore independent of the environment.

  8. Human thermal comfort conditions and urban planning in hot-humid climates-The case of Cuba.

    Science.gov (United States)

    Rodríguez Algeciras, José Abel; Coch, Helena; De la Paz Pérez, Guillermo; Chaos Yeras, Mabel; Matzarakis, Andreas

    2016-08-01

    Climate regional characteristics, urban environmental conditions, and outdoors thermal comfort requirements of residents are important for urban planning. Basic studies of urban microclimate can provide information and useful resources to predict and improve thermal conditions in hot-humid climatic regions. The paper analyzes the thermal bioclimate and its influence as urban design factor in Cuba, using Physiologically Equivalent Temperature (PET). Simulations of wind speed variations and shade conditions were performed to quantify changes in thermal bioclimate due to possible modifications in urban morphology. Climate data from Havana, Camagüey, and Santiago of Cuba for the period 2001 to 2012 were used to calculate PET with the RayMan model. The results show that changes in meteorological parameters influence the urban microclimate, and consequently modify the thermal conditions in outdoors spaces. Shade is the predominant strategy to improve urban microclimate with more significant benefits in terms of PET higher than 30 °C. For climatic regions such as the analyzed ones, human thermal comfort can be improved by a wind speed modification for thresholds of PET above 30 °C, and by a wind speed decreases in conditions below 26 °C. The improvement of human thermal conditions is crucial for urban sustainability. On this regards, our study is a contribution for urban designers, due to the possibility of taking advantage of results for improving microclimatic conditions based on urban forms. The results may enable urban planners to create spaces that people prefer to visit, and also are usable in the reconfiguration of cities.

  9. Membrane electrode assembly with doped polyaniline interlayer for proton exchange membrane fuel cells under low relative humidity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States); Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 (India); Kannan, A.M. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States)

    2009-09-05

    A membrane electrode assembly (MEA) was designed by incorporating an interlayer between the catalyst layer and the gas diffusion layer (GDL) to improve the low relative humidity (RH) performance of proton exchange membrane fuel cells (PEMFCs). On the top of the micro-porous layer of the GDL, a thin layer of doped polyaniline (PANI) was deposited to retain moisture content in order to maintain the electrolyte moist, especially when the fuel cell is working at lower RH conditions, which is typical for automotive applications. The surface morphology and wetting angle characteristics of the GDLs coated with doped PANI samples were examined using FESEM and Goniometer, respectively. The surface modified GDLs fabricated into MEAs were evaluated in single cell PEMFC between 50 and 100% RH conditions using H{sub 2} and O{sub 2} as reactants at ambient pressure. It was observed that the MEA with camphor sulfonic acid doped PANI interlayer showed an excellent fuel cell performance at all RH conditions including that at 50% at 80 C using H{sub 2} and O{sub 2}. (author)

  10. Contribution of air conditioning adoption to future energy use under global warming

    Science.gov (United States)

    Davis, Lucas W.; Gertler, Paul J.

    2015-01-01

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  11. Contribution of air conditioning adoption to future energy use under global warming.

    Science.gov (United States)

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change.

  12. Dietary fat affects heat production and other variables of equine performance, under hot and humid conditions.

    Science.gov (United States)

    Kronfeld, D S

    1996-07-01

    Does dietary fat supplementation during conditioning improve athletic performance, especially in the heat? Fat adaptation has been used to increase energy density, decrease bowel bulk and faecal output and reduce health risks associated with hydrolysable carbohydrate overload. It may also reduce spontaneous activity and reactivity (excitability), increase fatty acid oxidation, reduce CO2 production and associated acidosis, enhance metabolic regulation of glycolysis, improve both aerobic and anaerobic performance and substantially reduce heat production. A thermochemical analysis of ATP generation showed the least heat release during the direct oxidation of long chain fatty acids, which have a 3% advantage over glucose and 20 to 30% over short chain fatty acids and amino acids. Indirect oxidation via storage as triglyceride increased heat loss during ATP generation by 3% for stearic acid, 65% for glucose and 174% for acetic acid. Meal feeding and nutrient storage, therefore, accentuates the advantage of dietary fat. A calorimetric model was based on initial estimates of net energy for competitive work (10.76 MJ for the Endurance Test of an Olympic level 3-day-event), other work (14.4 MJ/day) and maintenance (36 MJ), then applied estimates of efficiencies to derive associated heat productions for the utilisation of 3 diets, Diet A: hay (100), Diet B: hay and oats (50:50) and Diet C: hay, oats and vegetable oil (45:45:10), the difference between the last 2 diets representing fat adaptation. During a 90.5 min speed and stamina test, heat production was estimated as 37, 35.4 and 34.6 MJ for the 3 diets, respectively, an advantage 0.8 MJ less heat load for the fat adapted horse, which would reduce water needed for evaporation by 0.33 kg and reduce body temperature increase by about 0.07 degree C. Total estimated daily heat production was 105, 93 and 88 MJ for the 3 diets, respectively, suggesting a 5 MJ advantage for the fat adapted horse (Diet C vs. Diet B). Estimated

  13. Irrigation water consumption modelling of a soilless cucumber crop under specific greenhouse conditions in a humid tropical climate

    Directory of Open Access Journals (Sweden)

    Galo Alberto Salcedo

    Full Text Available ABSTRACT: The irrigation water consumption of a soilless cucumber crop under greenhouse conditions in a humid tropical climate has been evaluated in this paper in order to improve the irrigation water and fertilizers management in these specific conditions. For this purpose, a field experiment was conducted. Two trials were carried out during the years 2011 and 2014 in an experimental farm located in Vinces (Ecuador. In each trial, the complete growing cycle of a cucumber crop grown under a greenhouse was evaluated. Crop development was monitored and a good fit to a sigmoidal Gompertz type growth function was reported. The daily water uptake of the crop was measured and related to the most relevant indoor climate variables. Two different combination methods, namely the Penman-Monteith equation and the Baille equation, were applied. However, the results obtained with these combination methods were not satisfactory due to the poor correlation between the climatic variables, especially the incoming radiation, and the crop's water uptake (WU. On contrary, a good correlation was reported between the crop's water uptake and the leaf area index (LAI, especially in the initial crop stages. However, when the crop is fully developed, the WU stabilizes and becomes independent from the LAI. A preliminary model to simulate the water uptake of the crop was adjusted using the data obtained in the first experiment and then validated with the data of the second experiment.

  14. Transfer Efficiency of Bacteria and Viruses from Porous and Nonporous Fomites to Fingers under Different Relative Humidity Conditions

    Science.gov (United States)

    Gerba, Charles P.; Tamimi, Akrum H.; Kitajima, Masaaki; Maxwell, Sheri L.; Rose, Joan B.

    2013-01-01

    Fomites can serve as routes of transmission for both enteric and respiratory pathogens. The present study examined the effect of low and high relative humidity on fomite-to-finger transfer efficiency of five model organisms from several common inanimate surfaces (fomites). Nine fomites representing porous and nonporous surfaces of different compositions were studied. Escherichia coli, Staphylococcus aureus, Bacillus thuringiensis, MS2 coliphage, and poliovirus 1 were placed on fomites in 10-μl drops and allowed to dry for 30 min under low (15% to 32%) or high (40% to 65%) relative humidity. Fomite-to-finger transfers were performed using 1.0 kg/cm2 of pressure for 10 s. Transfer efficiencies were greater under high relative humidity for both porous and nonporous surfaces. Most organisms on average had greater transfer efficiencies under high relative humidity than under low relative humidity. Nonporous surfaces had a greater transfer efficiency (up to 57%) than porous surfaces (humidity, as well as under high relative humidity (nonporous, up to 79.5%; porous, <13.4%). Transfer efficiency also varied with fomite material and organism type. The data generated can be used in quantitative microbial risk assessment models to assess the risk of infection from fomite-transmitted human pathogens and the relative levels of exposure to different types of fomites and microorganisms. PMID:23851098

  15. A mathematical model for malaria transmission relating global warming and local socioeconomic conditions

    Directory of Open Access Journals (Sweden)

    Hyun M Yang

    2001-06-01

    Full Text Available OBJECTIVE: Sensitivity analysis was applied to a mathematical model describing malaria transmission relating global warming and local socioeconomic conditions. METHODS: A previous compartment model was proposed to describe the overall transmission of malaria. This model was built up on several parameters and the prevalence of malaria in a community was characterized by the values assigned to them. To assess the control efforts, the model parameters can vary on broad intervals. RESULTS: By performing the sensitivity analysis on equilibrium points, which represent the level of malaria infection in a community, the different possible scenarios are obtained when the parameters are changed. CONCLUSIONS: Depending on malaria risk, the efforts to control its transmission can be guided by a subset of parameters used in the mathematical model.

  16. Monsoon variability in the Himalayas under the condition of global warming

    International Nuclear Information System (INIS)

    Duan Keqin; Yao Tandong

    2003-01-01

    An ice core-drilling program was carried out at the accumulation area of Dasuopu glacier (28deg23'N, 85deg43'E, 7100 m a.s.l.) in the central Himalayas in 1997. The ice core was analyzed continuously for stable isotopes (δ 18 O), and major ions throughout the core. Cycles indicated by δ 18 O, cations were identified and counted as seasonal fluctuations as annual increment from maximum to maximum values. Reconstructed 300-year annual net accumulation (water equivalent) from the core, with a good correlation to Indian monsoon, reflects a major precipitation trend in the central Himalayas. The accumulation trend, separated from the time series, shows a strong negative correlation to Northern Hemisphere temperature. Generally, as northern hemisphere temperature increases 0.1degC, the accumulation decreases about 80 mm, reflecting monsoon rainfall in the central Himalayas has decreased over the past decades in the condition of global warming. (author)

  17. Historical change in fish species distribution: shifting reference conditions and global warming effects.

    Science.gov (United States)

    Pont, Didier; Logez, M; Carrel, G; Rogers, C; Haidvogl, G

    Species distributions models (SDM) that rely on estimated relationships between present environmental conditions and species presence-absence are widely used to forecast changes of species distributions caused by global warming but far less to reconstruct historical assemblages. By compiling historical fish data from the turn to the middle of the twentieth century in a similar way for several European catchments (Rhône, Danube), and using already published SDMs based on current observations, we: (1) tested the predictive accuracy of such models for past climatic conditions, (2) compared observed and expected cumulated historical species occurrences at sub-catchment level, and (3) compared the annual variability in the predictions within one sub-catchment (Salzach) under a future climate scenario to the long-term variability of occurrences reconstructed during an extended historical period (1800-2000). We finally discuss the potential of these SDMs to define a "reference condition", the possibility of a shift in baseline condition in relation with anthropogenic pressures, and past and future climate variability. The results of this study clearly highlight the potential of SDM to reconstruct the past composition of European fish assemblages and to analyze the historical ecological status of European rivers. Assessing the uncertainty associated with species distribution projections is of primary importance before evaluating and comparing the past and future distribution of species within a given catchment.

  18. The effects of urban warming on herbivore abundance and street tree condition.

    Directory of Open Access Journals (Sweden)

    Adam G Dale

    Full Text Available Trees are essential to urban habitats because they provide services that benefit the environment and improve human health. Unfortunately, urban trees often have more herbivorous insect pests than rural trees but the mechanisms and consequences of these infestations are not well documented. Here, we examine how temperature affects the abundance of a scale insect, Melanaspis tenebricosa (Comstock (Hemiptera: Diaspididae, on one of the most commonly planted street trees in the eastern U.S. Next, we examine how both pest abundance and temperature are associated with water stress, growth, and condition of 26 urban street trees. Although trees in the warmest urban sites grew the most, they were more water stressed and in worse condition than trees in cooler sites. Our analyses indicate that visible declines in tree condition were best explained by scale-insect infestation rather than temperature. To test the broader relevance of these results, we extend our analysis to a database of more than 2700 Raleigh, US street trees. Plotting these trees on a Landsat thermal image of Raleigh, we found that warmer sites had over 70% more trees in poor condition than those in cooler sites. Our results support previous studies linking warmer urban habitats to greater pest abundance and extend this association to show its effect on street tree condition. Our results suggest that street tree condition and ecosystem services may decline as urban expansion and global warming exacerbate the urban heat island effect. Although our non-probability sampling method limits our scope of inference, our results present a gloomy outlook for urban forests and emphasize the need for management tools. Existing urban tree inventories and thermal maps could be used to identify species that would be most suitable for urban conditions.

  19. Characterization of seeds of selected wild species of rice (Oryza) stored under high temperature and humidity conditions.

    Science.gov (United States)

    Das, Smruti; Nayak, Monalisa; Patra, B C; Ramakrishnan, B; Krishnan, P

    2010-06-01

    Wild progenitors of rice (Oryza) are an invaluable resource for restoring genetic diversity and incorporating useful traits back into cultivars. Studies were conducted to characterize the biochemical changes, including SDS-PAGE banding pattern of storage proteins in seeds of six wild species (Oryza alta, O. grandiglumis, O. meridionalis, O. nivara, O. officinalis and O. rhizomatis) of rice stored under high temperature (45 degrees C) and humidity (approixmately 100%) for 15 days, which facilitated accelerated deterioration. Under the treated conditions, seeds of different wild rice species showed decrease in per cent germination and concentrations of protein and starch, but increase in conductivity of leachate and content of sugar. The SDS-PAGE analysis of seed proteins showed that not only the total number of bands, but also their intensity in terms of thickness differed for each species under storage. The total number of bands ranged from 11 to 22, but none of the species showed all the bands. Similarity index for protein bands between the control and treated seeds was observed to be least in O. rhizomatis and O. alta, while the indices were 0.7 and 0.625 for O. officinalis and O. nivara, respectively. This study clearly showed that seed deterioration led to distinctive biochemical changes, including the presence or absence as well as altered levels of intensity of proteins. Hence, SDS-PAGE protein banding pattern can be used effectively to characterize deterioration of seeds of different wild species of rice.

  20. Evaluation of a consolidation treatment in dolostones by mean of calcium hydroxide nanoparticles in high relative humidity conditions

    International Nuclear Information System (INIS)

    Gomez-Villalba, L. s.; Lopez-Arce, P.; Zornoza, A.; Alvares de Buergo, M.; Fort, R.

    2011-01-01

    In this article, the results of a treatment applied to dolomitic stones using an isopropyl colloidal solution based on calcium hydroxide nanoparticles with a concentration of 2.0g/l are presented. The consolidation process in the stone has been checked before and after 28 days of exposure to 75% relative humidity. Morphologic and structural studies of the consolidating product confirmed the carbonation process. X ray diffraction, electron microscopy (TEM and ESEM), and electron diffraction carried out on the consolidating product have confirmed the transformation of portlandite phase to calcium carbonate polymorph, calcite, aragonite and vaterite. Petrophysical tests performed on the stone before and after the application of the product have shown the improvement in the physical and hydrical properties due to the increase in the ultrasound velocity and density of the material, and a decrease in the capillarity coefficient and open porosity without significant changes in colour and brightness. The application of the consolidating product in the proposed experimental conditions is a natural method, compatible with the petrological characteristics of the substrate, without secondary damages on the stone, being an effective method to improve the durability of carbonate stones. (Author) 26 refs.

  1. Enhanced MEA Performance for PEMFCs under Low Relative Humidity and Low Oxygen Content Conditions via Catalyst Functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Le; Yang, Fan; Xie, Jian; Yang, Zhiwei; Kariuki, Nancy N.; Myers, Deborah J.; Peng, Jui-Kun; Wang, Xiaohua; Ahluwalia, Rajesh K.; Yu, Kang; Ferreira, Paulo J.; Bonastre, Alex Martinez; Fongalland, Dash; Sharman, Jonathan

    2017-01-01

    This work demonstrates that functionalizing annealed-Pt/Ketjen black EC300j (a-Pt/KB) and dealloyed-PtNi/Ketjen black EC300j (d-PtNi/KB) catalysts using p-phenyl sulfonic acid can effectively enhance performance in the membrane electrode assemblies (MEAs) of proton exchange membrane fuel cells (PEMFCs). The functionalization increased the size of both Pt and PtNi catalyst particles and resulted in the further leaching of Ni from the PtNi catalyst while promoting the formation of nanoporous PtNi nanoparticles. The size of the SO3H-Pt/KB and SO3H-PtNi/KB carbon-based aggregates decreased dramatically, leading to the formation of catalyst layers with narrower pore size distributions.MEA tests highlighted the benefits of the surface functionalization, in which the cells with SO3H-Pt/KB and SO3H-PtNi/KB cathode catalysts showed superior high current density performance under reduced RH conditions, in comparison with cells containing annealed Pt/KB (a-Pt/KB) and de-alloyed PtNi/KB (d-PtNi/KB) catalysts. The performance improvement was particularly evident when using reactant gases with low relative humidity, indicating that the hydrophilic functional groups on the carbon improved the water retention in the cathode catalyst layer. These results show a new avenue for enhancing catalyst performance for the next generation of catalytic materials for PEMFCs.

  2. Quality of cowpea seeds treated with chemicals and stored in controlled and uncontrolled temperature and humidity conditions

    Directory of Open Access Journals (Sweden)

    Lucicléia Mendes de Oliveira

    2015-06-01

    Full Text Available The cowpea is a Fabaceae originated in Africa cultivated in the northern and northeastern of Brazil, where stands out as the main source of protein for the population. For the establishment of culture, seeds are treated to control and prevent pest attacks and diseases, can also attach nutrients to the seeds which will be available for plant development. The objective of the research was to evaluate the performance of cowpea seeds treated with chemical products and stored in controlled and uncontrolled temperature and humidity conditions. The following seeds treatments were applied: control (no treatment; micronutrient Comol 118, insecticide thiamethoxam, fipronil and pyraclostrobin+thiophanate-methyl and imidacloprid+thiodicarb were then stored in a cold environment and natural. The assessment of physiological seed quality was made initially and every 45 days through the germination and vigor. Among all products used, the imidacloprid + thiodicarb and fipronil + pyraclostrobin + thiophanate methyl provides stimulating effect on seed performance; seeds treated with thiamethoxam were less affected by storage than the untreated seeds; seeds treated with micronutrients exhibits similar behavior to untreated seeds and storage in a controlled environment better preserves the seed physiological quality.

  3. Humidity Build-Up in a Typical Electronic Enclosure Exposed to Cycling Conditions and Effect on Corrosion Reliability

    DEFF Research Database (Denmark)

    Conseil, Helene; Gudla, Visweswara Chakravarthy; Jellesen, Morten Stendahl

    2016-01-01

    The design of electronic device enclosures plays a major role in determining the humidity build-up inside the device as a response to the varying external humidity. Therefore, the corrosion reliability of electronic devices has direct connection to the enclosure design. This paper describes......, thermal mass, and port/opening size. The effect of the internal humidity build-up on corrosion reliability has been evaluated by measuring the leakage current (LC) on interdigitated test comb patterns, which are precontaminated with sodium chloride and placed inside the enclosure. The results showed...... that the exposure to cycling temperature causes significant change of internal water vapor concentration. The maximum value of humidity reached was a function of the opening size and the presence of thermal mass inside the enclosure. A pumping effect was observed due to cycling temperature, and the increase...

  4. Sporulation of Metarhizium anisopliae var. Acridum and Beauveria bassiana on Rhammatocerus schistocercoides under humid and dry conditions

    Directory of Open Access Journals (Sweden)

    Magalhães Bonifácio Peixoto

    2000-01-01

    Full Text Available The sporulation of the fungi Metarhizium anisopliae var. acridum and Beauveria bassiana in cadavers of the grasshopper Rhammatocerus schistocercoides was studied in dry and humid environments. Both fungi were equally virulent against R. schistocercoides. However, internally, M. anisopliae produced more conidia than B. bassiana at 53% and 75% relative humidity. Externally, there was no sporulation at 53% and 75% RH, and M. anisopliae produced more conidia than B. bassiana at 100% RH.

  5. A 3D numerical study of humidity evolution and condensation risk on a printed circuit board (PCB) exposed to harsh ambient conditions

    DEFF Research Database (Denmark)

    Shojaee Nasirabadi, Parizad; Hattel, Jesper Henri

    2018-01-01

    an electronic enclosure exposed to harsh ambient conditions (relative humidity of 100% and cyclic temperature changes from 10 to 50 (°C)) are studied by developing a full 3D finite element based CFD model. The RH evolution is studied in three stages: first, in an empty enclosure, then in an enclosure with a PCB...

  6. 'TEWI' concept for estimation of the global warming from the refrigerating and air conditioning systems

    International Nuclear Information System (INIS)

    Ciconkov, Risto

    2002-01-01

    The most applied CFC refrigerants and their HFC alternatives. values of ODP (Ozone Depletion Potential) and GWP (Global Warming Potential) of the most used refrigerants. natural working fluids and their properties. Montreal Protocol and Kyoto Protocol, illogical relations between them concerning to the HFC fluids. Confusion and polemics on the international level about the appliance of HFCs which, by the Kyoto Protocol, are liable to reduction. Introduction of the TEWI concept as a method for estimating the overall influence of refrigerating and air conditioning systems on the greenhouse effect: the direct emission (refrigerant leakage in the atmosphere) and indirect emission as a result of the electrical energy consumption. A demonstration of the TEWI concept on the concrete example in several variants. A discussion about the appliance of the TEWI concept. Meaning of the energy efficiency of the refrigerating systems (indirect CO 2 emission). One of the main measures: prevention of refrigerant leakage (direct CO 2 emission). A need of permanent education and training courses of the people who work on refrigerating and air conditioning systems. A necessity for constitution of an expert body in the country, preparation of a strategy to lay obligations on the new changes of the Kyoto Protocol and news on the world market. Introduction of country regulations, certification of the companies and people involved in refrigeration and air conditioning. (Author)

  7. Forgeability test of extruded Mg–Sn–Al–Zn alloys under warm forming conditions

    International Nuclear Information System (INIS)

    Yoon, Jonghun; Park, Sunghyuk

    2014-01-01

    Highlights: • We compared forgeability of new developed TAZ alloys with conventional AZ alloys. • Forgeability was evaluated with a T-shape forging under hot forming condition. • TAZ alloys show the best performance in forgeability under hot forging condition. • Microstructures of the forged part were investigated with EBSD experiments. • YS and UTS of forged part with TAZ alloy are enhanced compared with AZ alloy. - Abstract: Magnesium (Mg) alloys have been thoroughly researched to replace steel or aluminum parts in automotives for reducing weight without sacrificing their strength. The widespread use of Mg alloys has been limited by its insufficient formability, which results from a lack of active slip systems at room temperature. It leads to a hot forming process for Mg alloys to enhance the formability and plastic workability. In addition, forged or formed parts of Mg alloys should have the reliable initial yield and ultimate tensile strength after hot working processes since its material properties should be compatible with other parts thereby guaranteeing structural safety against external load and crash. In this research, an optimal warm forming condition for applying extruded Mg–Sn–Al–Zn (TAZ) Mg alloys into automotive parts is proposed based on T-shape forging tests and the feasibility of forged parts is evaluated by measuring the initial yield strength and investigating the grain size in orientation imaging microscopy (OIM) maps

  8. Analysis of the system efficiency of an intermediate temperature proton exchange membrane fuel cell at elevated temperature and relative humidity conditions

    International Nuclear Information System (INIS)

    Jeon, Seung Won; Cha, Dowon; Kim, Hyung Soon; Kim, Yongchan

    2016-01-01

    Highlights: • System efficiency of PEMFC is evaluated at elevated temperature and humidity. • Operating parameters are optimized using response surface methodology. • The optimal operating parameters are T = 90.6 °C, RH = 100.0%, and ζ = 2.07. • The power output and system efficiency are 1.28 W and 15.8% at the optimum. • The system efficiency can be effectively improved by increasing relative humidity. - Abstract: Humidification of the membrane is very important in a proton exchange membrane fuel cell (PEMFC), to maintain high ionic conductivity. At an elevated temperature, a large amount of thermal energy is required for humidification because of the exponentially increased saturation vapor pressure. In this study, the system efficiency of a PEMFC was evaluated by considering the heat required for preheating/humidification and compression work. Three-dimensional steady-state simulations were conducted using Fluent 14 to simulate the electrochemical reactions. The operating conditions were optimized using response surface methodology by considering both the fuel cell output and system efficiency. In addition, the effects of operating parameters such as the temperature, relative humidity, and stoichiometric ratio were investigated. The system efficiency can be improved more effectively by increasing relative humidity rather than increasing operating temperature because the ionic conductivity of the membrane was strongly influenced by the relative humidity.

  9. Enhanced adsorption of benzene vapor on granular activated carbon under humid conditions due to shifts in hydrophobicity and total micropore volume.

    Science.gov (United States)

    Liu, Han-Bing; Yang, Bing; Xue, Nan-Dong

    2016-11-15

    A series of hydrophobic-modified (polydimethylsiloxane (PDMS) coating) activated carbons (ACs) were developed to answer a fundamental question: what are the determinants that dominate the adsorption on ACs under humid conditions? Using column experiments, an inter-comparison among bare-AC and PDMS-coated ACs was conducted regarding the association of surface characteristics and adsorption capacity. Primary outcomes occurred in two dominating markers, hydrophobicity and total micropore volume, which played a key role in water adsorption on ACs. However, their contributions to water adsorption on ACs substantially differed under different Pwater/Pair conditions. Hydrophobicity was the only contributor in Pwater/Pair=0.1-0.6, while the two markers contributed equally in Pwater/Pair=0.7-1.0. Furthermore, PDMS-coated AC had a significant increase in benzene adsorption capacities compared to bare-AC at 0-90% relative humidity, while these differences were not significant among PDMS-coated ACs. It is thus presumed that the balance between the two markers can be shifted to favor almost unchanged benzene adsorption capacities among PDMS-coated ACs over a large range of relative humidity. These findings suggest potential benefits of PDMS coating onto ACs in enhancing selective adsorption of hydrophobic volatile organic compounds under high humid conditions. To develop new porous materials with both high total micropore volume and hydrophobicity should thus be considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Letschert, Virginie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.

  11. Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2

    NARCIS (Netherlands)

    Sluijs, A.; Schouten, S.; Donders, T.H.; Schoon, P.L.; Röhl, U.; Reichart, G.-J.; Sangiorgi, F.; Kim, J.-H.; Sinninghe Damsté, J.S.; Brinkhuis, H.

    2009-01-01

    Several episodes of abrupt and transient warming, each lasting between 50,000 and 200,000 years, punctuated the long-term warming during the Late Palaeocene and Early Eocene (58 to 51 Myr ago) epochs1,2. These hyperthermal events, such as the Eocene Thermal Maximum 2 (EMT2) that took place about

  12. Life cycle and reproductive patterns of Triatoma rubrovaria (Blanchard, 1843 (Hemiptera: Reduviidae under constant and fluctuating conditions of temperature and humidity

    Directory of Open Access Journals (Sweden)

    Damborsky Miryam P.

    2005-01-01

    Full Text Available The aim of this study was to evaluate the temperature and relative humidity influence in the life cycle, mortality and fecundity patterns of Triatoma rubrovaria. Four cohorts with 60 recently laid eggs each were conformed. The cohorts were divided into two groups. In the controlled conditions group insects were maintained in a dark climatic chamber under constant temperature and humidity, whereas triatomines of the ambiental temperature group were maintained at room temperature. Average incubation time was 15.6 days in the controlled conditions group and 19.1 days in the ambiental temperature. In group controlled conditions the time from egg to adult development lasted 10 months while group ambiental temperature took four months longer. Egg eclosion rate was 99.1% and 98.3% in controlled conditions and ambiental temperature, respectively. Total nymphal mortality in controlled conditions was 52.6% whereas in ambiental temperature was 51.8%. Mean number of eggs/female was 817.6 controlled conditions and 837.1 ambiental temperature. Fluctuating temperature and humidity promoted changes in the life cycle duration and in the reproductive performance of this species, although not in the species mortality.

  13. Quantifying Projected Heat Mortality Impacts under 21st-Century Warming Conditions for Selected European Countries.

    Science.gov (United States)

    Kendrovski, Vladimir; Baccini, Michela; Martinez, Gerardo Sanchez; Wolf, Tanja; Paunovic, Elizabet; Menne, Bettina

    2017-07-05

    Under future warming conditions, high ambient temperatures will have a significant impact on population health in Europe. The aim of this paper is to quantify the possible future impact of heat on population mortality in European countries, under different climate change scenarios. We combined the heat-mortality function estimated from historical data with meteorological projections for the future time laps 2035-2064 and 2071-2099, developed under the Representative Concentration Pathways (RCP) 4.5 and 8.5. We calculated attributable deaths (AD) at the country level. Overall, the expected impacts will be much larger than the impacts we would observe if apparent temperatures would remain in the future at the observed historical levels. During the period 2071-2099, an overall excess of 46,690 and 117,333 AD per year is expected under the RCP 4.5 and RCP 8.5 scenarios respectively, in addition to the 16,303 AD estimated under the historical scenario. Mediterranean and Eastern European countries will be the most affected by heat, but a non-negligible impact will be still registered in North-continental countries. Policies and plans for heat mitigation and adaptation are needed and urgent in European countries in order to prevent the expected increase of heat-related deaths in the coming decades.

  14. Humidity Sensing in Drosophila.

    Science.gov (United States)

    Enjin, Anders; Zaharieva, Emanuela E; Frank, Dominic D; Mansourian, Suzan; Suh, Greg S B; Gallio, Marco; Stensmyr, Marcus C

    2016-05-23

    Environmental humidity influences the fitness and geographic distribution of all animals [1]. Insects in particular use humidity cues to navigate the environment, and previous work suggests the existence of specific sensory mechanisms to detect favorable humidity ranges [2-5]. Yet, the molecular and cellular basis of humidity sensing (hygrosensation) remains poorly understood. Here we describe genes and neurons necessary for hygrosensation in the vinegar fly Drosophila melanogaster. We find that members of the Drosophila genus display species-specific humidity preferences related to conditions in their native habitats. Using a simple behavioral assay, we find that the ionotropic receptors IR40a, IR93a, and IR25a are all required for humidity preference in D. melanogaster. Yet, whereas IR40a is selectively required for hygrosensory responses, IR93a and IR25a mediate both humidity and temperature preference. Consistent with this, the expression of IR93a and IR25a includes thermosensory neurons of the arista. In contrast, IR40a is excluded from the arista but is expressed (and required) in specialized neurons innervating pore-less sensilla of the sacculus, a unique invagination of the third antennal segment. Indeed, calcium imaging showed that IR40a neurons directly respond to changes in humidity, and IR40a knockdown or IR93a mutation reduced their responses to stimuli. Taken together, our results suggest that the preference for a specific humidity range depends on specialized sacculus neurons, and that the processing of environmental humidity can happen largely in parallel to that of temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Atmosphere self-cleaning under humidity conditions and influence of the snowflakes and artificial light interaction for water dissociation simulated by the means of COMSOL

    Science.gov (United States)

    Cocean, A.; Cocean, I.; Cazacu, M. M.; Bulai, G.; Iacomi, F.; Gurlui, S.

    2018-06-01

    The self-cleaning of the atmosphere under humidity conditions is observed due to the change in emission intensity when chemical traces are investigated with DARLIOES - the advanced LIDAR based on space- and time-resolved RAMAN and breakdown spectroscopy in conditions of consistent humidity of atmosphere. The determination was performed during the night, in the wintertime under conditions of high humidity and snowfall, in urban area of Iasi. The change in chemical composition of the atmosphere detected was assumed to different chemical reactions involving presence of the water. Water dissociation that was registered during spectral measurements is explained by a simulation of the interaction between artificial light and snowflakes - virtually designed in a spherical geometry - in a wet air environment, using COMSOL Multiphysics software. The aim of the study is to explain the decrease or elimination of some of the toxic trace chemical compounds in the process of self-cleaning in other conditions than the sun light interaction for further finding application for air cleaning under artificial conditions.

  16. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Letschert, Virginie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere, mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel. We find that implementing HFC refrigerant transition and energy efficiency improvement policies in parallel for room air conditioning, roughly doubles the benefit of either policy implemented separately. We estimate that shifting the 2030 world stock of room air conditioners from the low efficiency technology using high-GWP refrigerants to higher efficiency technology and low-GWP refrigerants in parallel would save between 340-790 gigawatts (GW) of peak load globally, which is roughly equivalent to avoiding 680-1550 peak power plants of 500MW each. This would save 0.85 GT/year annually in China equivalent to over 8 Three Gorges dams and over 0.32 GT/year annually in India equivalent to roughly twice India’s 100GW solar mission target. While there is some uncertainty associated with

  17. Rheological behaviors of edible casein-based packaging films under extreme environmental conditions, using humidity-controlled dynamic mechanical analysis

    Science.gov (United States)

    Thin casein films for food packaging applications possess good strength and low oxygen permeability but low water-resistance and elasticity. Customizing the mechanical properties of the films to target specific behaviors depending on temperature and humidity changes would enable a variety of commerc...

  18. IMPACT OF TROPICAL CONDITIONS ON THIN-LAYER CHROMATOGRAPHY IN ANALYTICAL TOXICOLOGY - HIGH-TEMPERATURES AND MODERATE HUMIDITIES

    NARCIS (Netherlands)

    DEZEEUW, RA; FRANKE, JP; DIK, E; TENDOLLE, W; KAM, BL

    The impact of high temperatures (24 to 39-degrees-C) and low to moderately high humidities (20 to 70%) on the applicability of TLC systems for drug identification was studied during a 6 month climatologic cycle in Burkina Faso (West Africa). In general, the Rf values as observed on the plates were

  19. Comparative transcriptome profiling of a thermal resistant vs. sensitive silkworm strain in response to high temperature under stressful humidity condition.

    Directory of Open Access Journals (Sweden)

    Wenfu Xiao

    Full Text Available Thermotolerance is important particularly for poikilotherms such as insects. Understanding the mechanisms by which insects respond to high temperatures can provide insights into their adaptation to the environment. Therefore, in this study, we performed a transcriptome analysis of two silkworm strains with significantly different resistance to heat as well as humidity; the thermo-resistant strain 7532 and the thermos-sensitive strain Knobbed. We identified in total 4,944 differentially expressed genes (DEGs using RNA-Seq. Among these, 4,390 were annotated and 554 were novel. Gene Ontology (GO analysis of 747 DEGs identified between RT_48h (Resistant strain with high-temperature Treatment for 48 hours and ST_48h (Sensitive strain with high-temperature Treatment for 48 hours showed significant enrichment of 12 GO terms including metabolic process, extracellular region and serine-type peptidase activity. Moreover, we discovered 12 DEGs that may contribute to the heat-humidity stress response in the silkworm. Our data clearly showed that 48h post-exposure may be a critical time point for silkworm to respond to high temperature and humidity. These results provide insights into the genes and biological processes involved in high temperature and humidity tolerance in the silkworm, and advance our understanding of thermal tolerance in insects.

  20. The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming

    Science.gov (United States)

    Zhang, Xiaoye; Zhong, Junting; Wang, Jizhi; Wang, Yaqiang; Liu, Yanju

    2018-04-01

    The weather conditions affecting aerosol pollution in Beijing and its vicinity (BIV) in wintertime have worsened in recent years, particularly after 2010. The relation between interdecadal changes in weather conditions and climate warming is uncertain. Here, we analyze long-term variations of an integrated pollution-linked meteorological index (which is approximately and linearly related to aerosol pollution), the extent of changes in vertical temperature differences in the boundary layer (BL) in BIV, and northerly surface winds from Lake Baikal during wintertime to evaluate the potential contribution of climate warming to changes in meteorological conditions directly related to aerosol pollution in this area; this is accomplished using NCEP reanalysis data, surface observations, and long-term vertical balloon sounding observations since 1960. The weather conditions affecting BIV aerosol pollution are found to have worsened since the 1960s as a whole. This worsening is more significant after 2010, with PM2.5 reaching unprecedented high levels in many cities in China, particularly in BIV. The decadal worsening of meteorological conditions in BIV can partly be attributed to climate warming, which is defined by more warming in the higher layers of the boundary layer (BL) than the lower layers. This worsening can also be influenced by the accumulation of aerosol pollution, to a certain extent (particularly after 2010), because the increase in aerosol pollution from the ground leads to surface cooling by aerosol-radiation interactions, which facilitates temperature inversions, increases moisture accumulations, and results in the extra deterioration of meteorological conditions. If analyzed as a linear trend, weather conditions have worsened by ˜ 4 % each year from 2010 to 2017. Given such a deterioration rate, the worsening of weather conditions may lead to a corresponding amplitude increase in PM2.5 in BIV during wintertime in the next 5 years (i.e., 2018 to 2022

  1. Drylands face potential threat under 2 °C global warming target

    Science.gov (United States)

    Huang, Jianping; Yu, Haipeng; Dai, Aiguo; Wei, Yun; Kang, Litai

    2017-06-01

    The Paris Agreement aims to limit global mean surface warming to less than 2 °C relative to pre-industrial levels. However, we show this target is acceptable only for humid lands, whereas drylands will bear greater warming risks. Over the past century, surface warming over global drylands (1.2-1.3 °C) has been 20-40% higher than that over humid lands (0.8-1.0 °C), while anthropogenic CO2 emissions generated from drylands (~230 Gt) have been only ~30% of those generated from humid lands (~750 Gt). For the twenty-first century, warming of 3.2-4.0 °C (2.4-2.6 °C) over drylands (humid lands) could occur when global warming reaches 2.0 °C, indicating ~44% more warming over drylands than humid lands. Decreased maize yields and runoff, increased long-lasting drought and more favourable conditions for malaria transmission are greatest over drylands if global warming were to rise from 1.5 °C to 2.0 °C. Our analyses indicate that ~38% of the world's population living in drylands would suffer the effects of climate change due to emissions primarily from humid lands. If the 1.5 °C warming limit were attained, the mean warming over drylands could be within 3.0 °C therefore it is necessary to keep global warming within 1.5 °C to prevent disastrous effects over drylands.

  2. EDITORIAL: Humidity sensors Humidity sensors

    Science.gov (United States)

    Regtien, Paul P. L.

    2012-01-01

    All matter is more or less hygroscopic. The moisture content varies with vapour concentration of the surrounding air and, as a consequence, most material properties change with humidity. Mechanical and thermal properties of many materials, such as the tensile strength of adhesives, stiffness of plastics, stoutness of building and packaging materials or the thermal resistivity of isolation materials, all decrease with increasing environmental humidity or cyclic humidity changes. The presence of water vapour may have a detrimental influence on many electrical constructions and systems exposed to humid air, from high-power systems to microcircuits. Water vapour penetrates through coatings, cable insulations and integrated-circuit packages, exerting a fatal influence on the performance of the enclosed systems. For these and many other applications, knowledge of the relationship between moisture content or humidity and material properties or system behaviour is indispensable. This requires hygrometers for process control or test and calibration chambers with high accuracy in the appropriate temperature and humidity range. Humidity measurement methods can roughly be categorized into four groups: water vapour removal (the mass before and after removal is measured); saturation (the air is brought to saturation and the `effort' to reach that state is measured); humidity-dependent parameters (measurement of properties of humid air with a known relation between a specific property and the vapour content, for instance the refractive index, electromagnetic spectrum and acoustic velocity); and absorption (based on the known relation between characteristic properties of non-hydrophobic materials and the amount of absorbed water from the gas to which these materials are exposed). The many basic principles to measure air humidity are described in, for instance, the extensive compilations by Wexler [1] and Sonntag [2]. Absorption-type hygrometers have small dimensions and can be

  3. Impact of global warming on permafrost conditions in a coupled GCM

    DEFF Research Database (Denmark)

    Stendel, M.; Christensen, J. H.

    2002-01-01

    emissions (SRES A2 issued by IPCC), we estimate the amounts that the permafrost zones moves poleward and how the thickness of the active layer deepens in response to the global warming by the end of the 21st century. The simulation indicates a 30-40% increase in active-layer thickness for most...

  4. Correlation of classroom typologies to lighting energy performance of academic building in warm-humid climate (case study: ITS Campus Sukolilo Surabaya)

    Science.gov (United States)

    Ekasiwi, S. N. N.; Antaryama, I. G. N.; Krisdianto, J.; Ulum, M. S.

    2018-03-01

    Classrooms in educational buildings require certain lighting requirements to serve teaching and learning activities during daytime. The most typical design is double sided opening in order to get good daylight distribution in the classroom. Using artificial light is essential to contribute the worse daylight condition. A short observation indicates that during the lecture time the light turned on, even in the daytime. That might result in wasting electrical energy. The aim of the study is to examine the type of classroom, which perform comfortable lighting environment as well as saving energy. This paper reports preliminary results of the study obtained from field observation and measurements. The use of energy and usage pattern of artificial lighting during the lecture is recorded and then the data evaluated to see the suitability of existing energy use to building energy standards. The daylighting design aspects have to be the first consideration. However, the similarity in WWR of the classroom, the Daylight Factor (DF) may differ. It depends on the room depth. The similarity of the increase of WWR and Ratio of openings to floor area do not directly correspond to the increase of DF. The outdoor condition of larger daylight access and the room depth are the influencing factors. Despite the similarity of physical type, usage pattern of the classroom imply the use of electrical energy for lighting. The results indicate the factors influencing lighting energy performance in correlation to their typologies

  5. Twin-cuvette measurement technique for investigation of dry deposition of O3 and PAN to plant leaves under controlled humidity conditions

    Science.gov (United States)

    Sun, Shang; Moravek, Alexander; von der Heyden, Lisa; Held, Andreas; Sörgel, Matthias; Kesselmeier, Jürgen

    2016-02-01

    We present a dynamic twin-cuvette system for quantifying the trace-gas exchange fluxes between plants and the atmosphere under controlled temperature, light, and humidity conditions. Compared with a single-cuvette system, the twin-cuvette system is insensitive to disturbing background effects such as wall deposition. In combination with a climate chamber, we can perform flux measurements under constant and controllable environmental conditions. With an Automatic Temperature Regulated Air Humidification System (ATRAHS), we are able to regulate the relative humidity inside both cuvettes between 40 and 90 % with a high precision of 0.3 %. Thus, we could demonstrate that for a cuvette system operated with a high flow rate (> 20 L min-1), a temperature-regulated humidification system such as ATRAHS is an accurate method for air humidification of the flushing air. Furthermore, the fully automatic progressive fill-up of ATRAHS based on a floating valve improved the performance of the entire measurement system and prevented data gaps. Two reactive gas species, ozone (O3) and peroxyacetyl nitrate (PAN), were used to demonstrate the quality and performance of the twin-cuvette system. O3 and PAN exchange with Quercus ilex was investigated over a 14 day measurement period under controlled climate chamber conditions. By using O3 mixing ratios between 32 and 105 ppb and PAN mixing ratios between 100 and 350 ppt, a linear dependency of the O3 flux as well as the PAN flux in relation to its ambient mixing ratio could be observed. At relative humidity (RH) of 40 %, the deposition velocity ratio of O3 and PAN was determined to be 0.45. At that humidity, the deposition of O3 to the plant leaves was found to be only controlled by the leaf stomata. For PAN, an additional resistance inhibited the uptake of PAN by the leaves. Furthermore, the formation of water films on the leaf surface of plants inside the chamber could be continuously tracked with our custom built leaf wetness sensors

  6. Glutamine and glutamic acid supplementation enhances performance of broiler chickens under the hot and humid tropical condition

    Directory of Open Access Journals (Sweden)

    Joshua O. Olubodun

    2015-02-01

    Full Text Available Day-old (day 1 commercial broiler chickens were fed i basal diet (control, ii basal diet +0.5% AminoGut (AG, or iii basal diet +1% AG from 1 to 42 d of age under the hot and humid tropical environment. AminoGut is a commercial dietary supplement containing a mixture of L-glutamine (Gln and L-glutamic (Glu acid. Weight gain and feed conversion ratio during the starter (1 to 21 d and overall (1 to 42 d periods improved linearly and quadratically with AG supplementation when compared to control. Supplementing birds with AG significantly reduced overall mortality rate. At 21 and 42 d of age, intestinal (duodenum and ileum villi height and crypt depth showed both linear and quadratic positive responses to AG supplementation. Intestinal amylase activity increased linearly and quadratically on d 21, and linearly only on d 42. In conclusion, Gln and Glu supplementation was beneficial in improving the growth performance and survivability of broiler chickens under the hot and humid tropical environment.

  7. Twin-cuvette measurement technique for investigation of dry deposition of O3 and PAN to plant leaves under controlled humidity conditions

    Directory of Open Access Journals (Sweden)

    S. Sun

    2016-02-01

    with Quercus ilex was investigated over a 14 day measurement period under controlled climate chamber conditions. By using O3 mixing ratios between 32 and 105 ppb and PAN mixing ratios between 100 and 350 ppt, a linear dependency of the O3 flux as well as the PAN flux in relation to its ambient mixing ratio could be observed. At relative humidity (RH of 40 %, the deposition velocity ratio of O3 and PAN was determined to be 0.45. At that humidity, the deposition of O3 to the plant leaves was found to be only controlled by the leaf stomata. For PAN, an additional resistance inhibited the uptake of PAN by the leaves. Furthermore, the formation of water films on the leaf surface of plants inside the chamber could be continuously tracked with our custom built leaf wetness sensors. Using this modified leaf wetness sensor measuring the electrical surface conductance on the leaves, an exponential relationship between the ambient humidity and the electrical surface conductance could be determined.

  8. Medical Services at an International Summer Camp Event Under Hot and Humid Conditions: Experiences From the 23rd World Scout Jamboree, Japan.

    Science.gov (United States)

    Watanabe, Takemasa; Mizutani, Keiji; Iwai, Toshiyasu; Nakashima, Hiroshi

    2018-06-01

    The 23rd World Scout Jamboree (WSJ) was a 10-day summer camp held in Japan in 2015 under hot and humid conditions. The attendees comprised 33,628 people from 155 countries and territories. The aim of this study was to examine the provision of medical services under such conditions and to identify preventive factors for major diseases among long-term campers. Data were obtained from WSJ medical center records and examined to clarify the effects of age, sex, and period on visit frequencies and rates. Medical records from 3215 patients were examined. Daytime temperatures were 31.5±3.2°C and relative humidity was 61±13% (mean±SD). The initial visit rates among scouts and adults were 72.2 and 77.2 per 1000 persons, respectively. No significant age difference was observed in the initial visit rate; however, it was significantly higher among female patients than male patients. Significant differences were also seen in the adjusted odds ratios by age, sex, and period for disease distributions of initial visit frequencies. In addition, a higher initial visit frequency for heat strain-related diseases was seen among the scouts. Initial visit frequencies for heatstroke and/or dehydration increased just after opening day and persisted until closing day. Our findings suggest the importance of taking effective countermeasures against heat strain, fatigue, and unsanitary conditions at the WSJ. Medical services staff should take attendees' age, sex, and period into consideration to prevent heat strain-related diseases during such camps under hot and humid conditions. Copyright © 2018 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  9. The Climate Effects of Deforestation the Amazon Rainforest under Global Warming Conditions

    Science.gov (United States)

    Werth, D.; Avissar, R.

    2006-12-01

    Replacement of tropical rainforests has been observed to have a strong drying effect in Amazon simulations, with effects reaching high into the atmospheric column and into the midlatitudes. The drying effects of deforestation, however, can be moderated by the effects of global warming, which should accelerate the hydrologic cycle of the Amazon. The effects of a prescribed, time-varying Amazon deforestation done in conjunction with a steady, moderate increase in CO2 concentrations are determined using a climate model. The model agrees with previous studies when each forcing is applied individually - compared to a control run, Amazon deforestation decreases the local precipitation and global warming increases it. When both are applied, however, the precipitation and other hydrologic variables decrease, but to a lesser extent than when deforestation alone was applied. In effect, the two effects act opposite to one another and bring the simulated climate closer to that of the control.

  10. The timing of bud break in warming conditions: variation among seven sympatric conifer species from Eastern Canada

    Science.gov (United States)

    Rossi, Sergio; Isabel, Nathalie

    2017-11-01

    Phenological changes are expected with the ongoing global warming, which could create mismatches in the growth patterns among sympatric species or create synchrony with insect herbivores. In this study, we performed a comparative assessment of the timings of bud break among seven conifer species of Eastern Canada by evaluating seedling development in growth chambers under different temperatures (16, 20 and 24 °C). Bud break occurred earliest in Larix laricina, while Pinus strobus and Pinus resinosa had the latest. Warmer conditions advanced bud break, with the greatest effects being observed at the lower temperatures. Mixed models estimated that one additional degree of temperature produced advancements of 5.3 and 2.1 days at 16 and 20 °C, respectively. The hypothesis of an asynchronous change between species under warming was demonstrated only for the last phenological phases (split buds and exposed shoots), and principally in pines. Abies balsamea showed changes in bud break comparable with the other species analysed, rejecting the hypothesis of mismatches under warmer conditions. The observed non-linear responses of the timings of bud break to warming suggest that the major changes in bud phenology should be expected at the lowest temperatures.

  11. Ocean acidification exerts negative effects during warming conditions in a developing Antarctic fish.

    Science.gov (United States)

    Flynn, Erin E; Bjelde, Brittany E; Miller, Nathan A; Todgham, Anne E

    2015-01-01

    Anthropogenic CO2 is rapidly causing oceans to become warmer and more acidic, challenging marine ectotherms to respond to simultaneous changes in their environment. While recent work has highlighted that marine fishes, particularly during early development, can be vulnerable to ocean acidification, we lack an understanding of how life-history strategies, ecosystems and concurrent ocean warming interplay with interspecific susceptibility. To address the effects of multiple ocean changes on cold-adapted, slowly developing fishes, we investigated the interactive effects of elevated partial pressure of carbon dioxide (pCO2) and temperature on the embryonic physiology of an Antarctic dragonfish (Gymnodraco acuticeps), with protracted embryogenesis (∼10 months). Using an integrative, experimental approach, our research examined the impacts of near-future warming [-1 (ambient) and 2°C (+3°C)] and ocean acidification [420 (ambient), 650 (moderate) and 1000 μatm pCO2 (high)] on survival, development and metabolic processes over the course of 3 weeks in early development. In the presence of increased pCO2 alone, embryonic mortality did not increase, with greatest overall survival at the highest pCO2. Furthermore, embryos were significantly more likely to be at a later developmental stage at high pCO2 by 3 weeks relative to ambient pCO2. However, in combined warming and ocean acidification scenarios, dragonfish embryos experienced a dose-dependent, synergistic decrease in survival and developed more slowly. We also found significant interactions between temperature, pCO2 and time in aerobic enzyme activity (citrate synthase). Increased temperature alone increased whole-organism metabolic rate (O2 consumption) and developmental rate and slightly decreased osmolality at the cost of increased mortality. Our findings suggest that developing dragonfish are more sensitive to ocean warming and may experience negative physiological effects of ocean acidification only in

  12. Investigation of charge compensation in indium-doped tin dioxide by hydrogen insertion via annealing under humid conditions

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Ken, E-mail: Watanabe.Ken@nims.go.jp [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); International Center for Young Scientists (ICYS-MANA), NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Ohsawa, Takeo; Ross, Emily M., E-mail: emross@hmc.edu; Adachi, Yutaka; Haneda, Hajime [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sakaguchi, Isao; Takahashi, Ryosuke [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Department of Applied Science for Electronics and Materials, Kyushu University, 6-1 Kasuga-kouen Kasuga, Fukuoka 816-8580 (Japan); Bierwagen, Oliver, E-mail: bierwagen@pdi-berlin.de [Paul-Drude-Institute, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Materials Department, University of California, Santa Barbara, California 93106 (United States); White, Mark E.; Tsai, Min-Ying; Speck, James S., E-mail: speck@ucsb.edu [Materials Department, University of California, Santa Barbara, California 93106 (United States); Ohashi, Naoki, E-mail: Ohashi.Naoki@nims.go.jp [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Department of Applied Science for Electronics and Materials, Kyushu University, 6-1 Kasuga-kouen Kasuga, Fukuoka 816-8580 (Japan); Materials Research Center for Element Strategy (MCES), Mailbox S2-13, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan)

    2014-03-31

    The behavior of hydrogen (H) as an impurity in indium (In)-doped tin dioxide (SnO{sub 2}) was investigated by mass spectrometry analyses, with the aim of understanding the charge compensation mechanism in SnO{sub 2}. The H-concentration of the In-doped SnO{sub 2} films increased to (1–2) × 10{sup 19} cm{sup −3} by annealing in a humid atmosphere (WET annealing). The electron concentration in the films also increased after WET annealing but was two orders of magnitude less than their H-concentrations. A self-compensation mechanism, based on the assumption that H sits at substitutional sites, is proposed to explain the mismatch between the electron- and H-concentrations.

  13. Investigation of charge compensation in indium-doped tin dioxide by hydrogen insertion via annealing under humid conditions

    International Nuclear Information System (INIS)

    Watanabe, Ken; Ohsawa, Takeo; Ross, Emily M.; Adachi, Yutaka; Haneda, Hajime; Sakaguchi, Isao; Takahashi, Ryosuke; Bierwagen, Oliver; White, Mark E.; Tsai, Min-Ying; Speck, James S.; Ohashi, Naoki

    2014-01-01

    The behavior of hydrogen (H) as an impurity in indium (In)-doped tin dioxide (SnO 2 ) was investigated by mass spectrometry analyses, with the aim of understanding the charge compensation mechanism in SnO 2 . The H-concentration of the In-doped SnO 2 films increased to (1–2) × 10 19  cm −3 by annealing in a humid atmosphere (WET annealing). The electron concentration in the films also increased after WET annealing but was two orders of magnitude less than their H-concentrations. A self-compensation mechanism, based on the assumption that H sits at substitutional sites, is proposed to explain the mismatch between the electron- and H-concentrations

  14. Warm weather conditions moderated the increase of power consumption in Finland in 2000

    International Nuclear Information System (INIS)

    Kangas, H.

    2001-01-01

    Year 2000 was exceptionally warm in Finland. The amount of rainfalls in Northern Finland was larger than in 1999. This is shown clearly in the production of hydroelectric power. The wind conditions were also better, so the wind power generation doubled in 2000. The increase in power consumption in 2000 was only 1.7%. The power consumption rate was slightly over 79 TWh. The power consumption of household and agricultural sectors decreased by nearly 2% and in the public sector by 0.2%. The industrial power consumption increased by nearly 3%. Year 2000 was excellent for the industrial sector. The industrial production increased by 11%. The increment of power demand in heavy metal industry, chemical industry and forest industry was 5-7%. Power demand of process industry in 2000 exceeded 43.4 TWh, of which the share of building industry was more than 200 GWh. Process industry use about 55% of the total power consumption in Finland in 2000. The power demand of forest industry was 26.3 TWh, which is about 2% higher than in 1999. The corresponding figures for metal industry were 7.1 TWh and growth rate 3%. Chemical industry used in 2000 about 5.9 TWh of electric power. The growth rate was more that 4% higher in 2000 than in 1999. Power consumption of other industrial sectors in 2000 increased about 3% being now about 3.9 TWh. Hydroelectric power generation in 2000 was nearly 14.4 TWh, which is nearly 14.4 % higher than in 1999. The share of hydroelectric power generation of the total power consumption in Finland in 2000 was 18%. The wind power generation in 2000 was nearly 80 GWh, which are about 60% higher than in 1999. The number of wind power plants is 63, and the capacity of them 38 MW. The production of nuclear power in 2000 decreased by about 2% because of the longer and more thorough maintenance stoppages in the Loviisa 1 reactor. The utilisation rates of Finnish nuclear power plants in 2000 were high, Loviisa 1 by nearly 85%, Loviisa 2 by 91%, Olkiluoto 1 by 96

  15. Evaluation of wet bulb globe temperature index for estimation of heat strain in hot/humid conditions in the Persian Gulf

    OpenAIRE

    Habibolah Dehghan; Seyed Bagher Mortazavi; Mohammad J Jafari; Mohammad R Maracy

    2012-01-01

    Background: Heat exposure among construction workers in the Persian Gulf region is a serious hazard for health. The aim of this study was to evaluate the performance of wet bulb globe temperature (WBGT) Index for estimation of heat strain in hot/humid conditions by the use of Physiological Strain Index (PSI) as the gold standard. Material and Methods : This cross-sectional study was carried out on 71 workers of two Petrochemical Companies in South of Iran in 2010 summer. The WBGT index, heart...

  16. Difference in the Dissolution Behaviors of Tablets Containing Polyvinylpolypyrrolidone (PVPP) Depending on Pharmaceutical Formulation After Storage Under High Temperature and Humid Conditions.

    Science.gov (United States)

    Takekuma, Yoh; Ishizaka, Haruka; Sumi, Masato; Sato, Yuki; Sugawara, Mitsuru

    Storage under high temperature and humid conditions has been reported to decrease the dissolution rate for some kinds of tablets containing polyvinylpolypyrrolidone (PVPP) as a disintegrant. The aim of this study was to elucidate the properties of pharmaceutical formulations with PVPP that cause a decrease in the dissolution rate after storage under high temperature and humid conditions by using model tablets with a simple composition. Model tablets, which consisted of rosuvastatin calcium or 5 simple structure compounds, salicylic acid, 2-aminodiphenylmethane, 2-aminobiphenyl, 2-(p-tolyl)benzoic acid or 4.4'-biphenol as principal agents, cellulose, lactose hydrate, PVPP and magnesium stearate as additives, were made by direct compression. The model tables were wrapped in paraffin papers and stored for 2 weeks at 40°C/75% relative humidity (RH). Dissolution tests were carried out by the paddle method in the Japanese Pharmacopoeia 16th edition. Model tablets with a simple composition were able to reproduce a decreased dissolution rate after storage at 40°C/75% RH. These tablets showed significantly decreased water absorption activities after storage. In the case of tablets without lactose hydrate by replacing with cellulose, a decreased dissolution rate was not observed. Carboxyl and amino groups in the structure of the principal agent were not directly involved in the decreased dissolution. 2-Benzylaniline tablets showed a remarkably decreased dissolution rate and 2-aminobiphenyl and 2-(p-tolyl)benzoic acid tablets showed slightly decreased dissolution rates, though 4,4'-biphenol tablets did not show a decrease dissolution rate. We demonstrated that additives and structure of the principal agent were involved in the decreased in dissolution rate for tablets with PVPP. The results suggested that one of the reasons for a decreased dissolution rate was the inclusion of lactose hydrate in tablets. The results also indicated that compounds as principal agents with low

  17. Sealed Attics Exposed to Two Years of Weathering in a Hot and Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William A [ORNL; Railkar, Sudhir [GAF; Shiao, Ming C [ORNL; Desjarlais, Andre Omer [ORNL

    2016-01-01

    Field studies in a hot, humid climate were conducted to investigate the thermal and hygrothermal performance of ventilated attics and non-ventilated semi-conditioned attics sealed with open-cell and with closed-cell spray polyurethane foam insulation. Moisture pin measurements made in the sheathing and absolute humidity sensor data from inside the foam and from the attic air show that moisture is being stored in the foam. The moisture in the foam diffuses to and from the sheathing dependent on the pressure gradient at the foam-sheathing interface which is driven by the irradiance and night-sky radiation. Ventilated attics in the same hot, humid climate showed less moisture movement in the sheathing than those sealed with either open- or closed-cell spray foam. In the ventilated attics the relative humidity drops as the attic air warms; however, the opposite was observed in the sealed attics. Peaks in measured relative humidity in excess of 80 90% and occasionally near saturation (i.e., 100%) were observed from solar noon till about 8 PM on hot, humid days. The conditioned space of the test facility is heated and cooled by an air-to-air heat pump. Therefore the partial pressure of the indoor air during peak irradiance is almost always less than that observed in the sealed attics. Field data will be presented to bring to light the critical humidity control issues in sealed attics exposed to hot, humid climates.

  18. Elevated Atmospheric CO2 and Warming Stimulates Growth and Nitrogen Fixation in a Common Forest Floor Cyanobacterium under Axenic Conditions

    Directory of Open Access Journals (Sweden)

    Zoë Lindo

    2017-03-01

    Full Text Available The predominant input of available nitrogen (N in boreal forest ecosystems originates from moss-associated cyanobacteria, which fix unavailable atmospheric N2, contribute to the soil N pool, and thereby support forest productivity. Alongside climate warming, increases in atmospheric CO2 concentrations are expected in Canada’s boreal region over the next century, yet little is known about the combined effects of these factors on N fixation by forest floor cyanobacteria. Here we assess changes in N fixation in a common forest floor, moss-associated cyanobacterium, Nostoc punctiforme Hariot, under elevated CO2 conditions over 30 days and warming combined with elevated CO2 over 90 days. We measured rates of growth and changes in the number of specialized N2 fixing heterocyst cells, as well as the overall N fixing activity of the cultures. Elevated CO2 stimulated growth and N fixation overall, but this result was influenced by the growth stage of the cyanobacteria, which in turn was influenced by our temperature treatments. Taken together, climate change factors of warming and elevated CO2 are expected to stimulate N2 fixation by moss-associated cyanobacteria in boreal forest systems.

  19. EFICIENCIA ENERGÉTICA POR LA UTILIZACIÓN DE COMPONENTES DE CONDUCCIÓN DE LUZ NATURAL EN CLIMA CÁLIDO-HÚMEDO | ENERGETIC EFFICIENCY DERIVED FROM THE USE OF CONDUCTION COMPONENTS OF DAYLIGHT IN WARM-HUMID CLIMATE

    Directory of Open Access Journals (Sweden)

    Rosalinda González Gómez

    2015-11-01

    Full Text Available The electric energy saving was estimated by the utilization of Conduction Components of Daylight (CCD in warm-humid climate. For this, the luminic performance of the component was determined, considering values of horizontal exterior lighting and interior lighting obtained by monitoring under real sky conditions in scale models, and the comparison with incandescent bulbs and Compact Fluorescent Lamps (CFL. The utilization of the natural light through CCLN allows to obtain a saving in the expense for energy, with respect to the use of Incandescent Bulb and/or Compact Fluorescent Lamp (artificial lighting. In this sense, their use would correspond to 219 KWh and to 54.75 KWh, respectively, if they are used for an average of 10 daily hours, during a period of one year. It was estimated that a possible reduction could be achieved in the electricity consumption, maintaining the comfort and quality of life of the users in buildings (high luminic performance without use of energy from commercial supplier, contributing this way to the "energy efficiency" in them.

  20. Next Generation Refrigeration Lubricants for Low Global Warming Potential/Low Ozone Depleting Refrigeration and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hessell, Edward

    2013-12-31

    The goal of this project is to develop and test new synthetic lubricants that possess high compatibility with new low ozone depleting (LOD) and low global warming potential (LGWP) refrigerants and offer improved lubricity and wear protection over current lubricant technologies. The improved compatibility of the lubricants with the refrigerants, along with improved lubricating properties, will resulted in lower energy consumption and longer service life of the refrigeration systems used in residential, commercial and industrial heating, ventilating and air-conditioning (HVAC) and refrigeration equipment.

  1. Global warming potential of material fractions occurring in source-separated organic household waste treated by anaerobic digestion or incineration under different framework conditions

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-01-01

    This study compared the environmental profiles of anaerobic digestion (AD) and incineration, in relation to global warming potential (GWP), for treating individual material fractions that may occur in source-separated organic household waste (SSOHW). Different framework conditions representative...

  2. Dynamics of Penicillium camemberti growth quantified by real-time PCR on Camembert-type cheeses under different conditions of temperature and relative humidity.

    Science.gov (United States)

    Leclercq-Perlat, Marie-Noëlle; Picque, Daniel; Martin Del Campo Barba, Sandra Teresita; Monnet, Christophe

    2013-06-01

    Penicillium camemberti plays a major role in the flavor and appearance of Camembert-type cheeses. However, little is known about its mycelium growth kinetics during ripening. We monitored the growth of P. camemberti mycelium in Camembert-type cheeses using real-time PCR in 4 ripening runs, performed at 2 temperatures (8 and 16°C) and 2 relative humidities (88 and 98%). These findings were compared with P. camemberti quantification by spore concentration. During the first phase, the mycelium grew but no spores were produced, regardless of the ripening conditions. During the second phase, which began when lactose was depleted, the concentration of spores increased, especially in the cheeses ripened at 16°C. Sporulation was associated with a large decrease in the mycelial concentration in the cheeses ripened at 16°C and 98% relative humidity. It was hypothesized that lactose is the main energy source for the growth of P. camemberti mycelium at the beginning of ripening and that its depletion would trigger stress, resulting in sporulation. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Warm and cold molecular gas conditions modeled in 87 galaxies observed by the Herschel SPIRE FTS

    Science.gov (United States)

    Kamenetzky, Julia; Rangwala, Naseem; Glenn, Jason

    2018-01-01

    Molecular gas is the raw material for star formation, and like the interstellar medium (ISM) in general, it can exist in regions of higher and lower excitation. Rotational transitions of the CO molecule are bright and sensitive to cold molecular gas. While the majority of the molecular gas exists in the very cold component traced by CO J=1-0, the higher-J lines trace the highly excited gas that may be more indicative of star formation processes. The atmosphere is opaque to these lines, but the launch of the Herschel Space Observatory made them accessible for study of Galactic and extragalactic sources. We have conducted two-component, non-local thermodynamic equilibrium (non-LTE) modeling of the CO lines from J=1‑0 through J=13‑12 in 87 galaxies observed by the Herschel SPIRE Fourier Transform Spectrometer (FTS). We used the nested sampling algorithm Multinest to compare the measured CO spectral line energy distributions (SLEDs) to the ones produced by a custom version of the non-LTE code RADEX. This allowed us to fully examine the degeneracies in parameter space for kinetic temperature, molecular gas density, CO column density, and area filling factor.Here we discuss the major findings of our study, as well as the important implications of two-component molecular gas modeling. The average pressure of the warm gas is slightly correlated with galaxy LFIR, but that of the cold gas is not. A high-J (such as J=11-10) to J=1-0 line ratio is diagnostic of warm component pressure. We find a very large spread in our derived values of "alpha-CO," with no discernable trend with LFIR, and average molecular gas depletion times that decrease with LFIR. If only a few molecular lines are available in a galaxy's SLED, the limited ability to model only one component will change the results. A one-component fit often underestimates the flux of carbon monoxide (CO) J=1‑0 and the mass. If low-J lines are not included, mass is underestimated by an order of magnitude. Even when

  4. Warm Dry Weather Conditions Cause of 2016 Fort McMurray Wild Forest Fire and Associated Air Quality

    Science.gov (United States)

    de Azevedo, S. C.; Singh, R. P.; da Silva, E. A., Sr.

    2016-12-01

    The climate change is evident from the increasing temperature around the world, day to day life and increasing frequency of natural hazards. The warm and dry conditions are the cause of frequent forest fires around the globe. Forest fires severely affect the air quality and human health. Multi sensor satellites and dense network of ground stations provide information about vegetation health, meteorological, air quality and atmospheric parameters. We have carried out detailed analysis of satellite and ground data of wild forest fire that occurred in May 2016 in Fort McMurray, Alberta, Canada. This wild forest fire destroyed 10 per cent of Fort McMurray's housing and forced more than 90,000 people to evacuate the surrounding areas. Our results show that the warm and dry conditions with low rainfall were the cause of Fort McMurray wild fire. The air quality parameters (particulate matter, CO, ozone, NO2, methane) and greenhouse gases measured from Atmospheric Infrared Sounder (AIRS) satellite show enhanced levels soon after the forest fire. The emissions from the forest fire affected health of population living in surrounding areas up to 300 km radius.

  5. Spectroscopics database for warm Xenon and Iron in Astrophysics and Laboratory Astrophysics conditions

    Science.gov (United States)

    Busquet, Michel; Klapisch, Marcel; Bar-Shalom, Avi; Oreg, Josse

    2010-11-01

    The main contribution to spectral properties of astrophysics mixtures come often from Iron. On the other hand, in the so-called domain of ``Laboratory Astrophysics,'' where astrophysics phenomena are scaled down to the laboratory, Xenon (and Argon) are commonly used gases. At so called ``warm'' temperatures (T=5-50eV), L-shell Iron and M-shell Xenon present a very large number of spectral lines, originating from billions of levels. More often than not, Local Thermodynamical Equilibrium is assumed, leading to noticeable simplification of the computation. Nevertheless, complex and powerful atomic structure codes are required. We take benefit of powerful statistics and numerics, included in our atomic structure codes, STA[1] and HULLAC[2], to generate the required spectra. Recent improvements in both fields (statistics, numerics and convergence control) allow obtaining large databases (ro x T grid of > 200x200 points, and > 10000 frequencies) for temperature down to a few eV. We plan to port these improvements in the NLTE code SCROLL[3]. [1] A.Bar-Shalom, et al, Phys. Rev. A 40, 3183 (1989) [2] M.Busquet,et al, J.Phys. IV France 133, 973-975 (2006); A.Bar-Shalom, M.Klapisch, J.Oreg, J.Oreg, JQSRT 71, 169, (2001) [3] A.Bar-Shalom, et al, Phys. Rev. E 56, R70 (1997)

  6. Effects of xylazine on acid-base balance and arterial blood-gas tensions in goats under different environmental temperature and humidity conditions

    Directory of Open Access Journals (Sweden)

    E.G.M. Mogoa

    2000-07-01

    Full Text Available The effects of acute exposure to 3 different temperature and humidity conditions on arterial blood-gas and acid-base balance in goats were investigated after intravenous bolus administration of xylazine at a dose of 0.1 mg/kg. Significant (P < 0.05 changes in the variables occurred under all 3 environmental conditions. Decreases in pH, partial pressure of oxygen and oxyhaemoglobin saturation were observed, and the minimum values for oxygen tension and oxyhaemoglobin saturation were observed within 5 min of xylazine administration. The pH decreased to its minimum values between 5 and 15 min. Thereafter, the variables started to return towards baseline, but did not reach baseline values at the end of the 60 min observation period. Increases in the partial pressure of carbon dioxide, total carbon dioxide content, bicarbonate ion concentration, and the actual base excess were observed. The maximum increase in the carbon dioxide tension occurred within 5 min of xylazine administration. The increase in the actual base excess only became significant after 30 min in all 3 environments, and maximal increases were observed at 60 min. There were no significant differences between the variables in the 3 different environments. It was concluded that intravenous xylazine administration in goats resulted in significant changes in arterial blood-gas and acid-base balance that were associated with hypoxaemia and respiratory acidosis, followed by metabolic alkalosis that continued for the duration of the observation period. Acute exposure to different environmental temperature and humidity conditions after xylazine administration did not influence the changes in arterial blood-gas and acid-base balance.

  7. Development of novel control strategy for multiple circuit, roof top bus air conditioning system in hot humid countries

    Energy Technology Data Exchange (ETDEWEB)

    Khamis Mansour, M.; Musa, Md Nor; Wan Hassan, Mat Nawi; Saqr, Khalid M. [Thermo-Fluid Department, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2008-06-15

    A novel control strategy to improve energy efficiency and to enhance passengers' thermal comfort of a new roof top bus multiple circuit air conditioning (AC) system operating on partial load conditions is presented. A novel strategy for automatic control of the AC system was developed based on numerous experimental test runs at various operating conditions, taking into account energy saving and thermal comfort without sacrificing the proper cycling rate of the system compressor. For this task, more than 50 test runs were conducted at different set point temperatures of 21, 22 and 23 C. Fanger's method was used to evaluate passenger thermal comfort, and the system energy consumption was also calculated. A performance comparison between that of the conventional AC system and that of the newly developed one has been conducted. The comparison revealed that the adopted control strategy introduces significant improvements in terms of thermal comfort and energy saving on various partial load conditions. Potential energy saving of up to 31.6% could be achieved. This results in a short payback period of 17 months. It was found from the economic analysis that the new system is able to save approximately 20.0% of the life cycle cost. (author)

  8. Development of novel control strategy for multiple circuit, roof top bus air conditioning system in hot humid countries

    International Nuclear Information System (INIS)

    Khamis Mansour, M.; Musa, Md Nor; Mat Nawi Wan Hassan; Saqr, Khalid M.

    2008-01-01

    A novel control strategy to improve energy efficiency and to enhance passengers' thermal comfort of a new roof top bus multiple circuit air conditioning (AC) system operating on partial load conditions is presented. A novel strategy for automatic control of the AC system was developed based on numerous experimental test runs at various operating conditions, taking into account energy saving and thermal comfort without sacrificing the proper cycling rate of the system compressor. For this task, more than 50 test runs were conducted at different set point temperatures of 21, 22 and 23 deg. C. Fanger's method was used to evaluate passenger thermal comfort, and the system energy consumption was also calculated. A performance comparison between that of the conventional AC system and that of the newly developed one has been conducted. The comparison revealed that the adopted control strategy introduces significant improvements in terms of thermal comfort and energy saving on various partial load conditions. Potential energy saving of up to 31.6% could be achieved. This results in a short payback period of 17 months. It was found from the economic analysis that the new system is able to save approximately 20.0% of the life cycle cost

  9. Strategies for humidity control

    Energy Technology Data Exchange (ETDEWEB)

    Baumgarth, S

    1987-01-01

    Humidity and temperature control in air-conditioning systems mostly involves coupled closed-loop control circuits. The author discusses their uncoupling and resulting consequences as well as energy-optimized control of recirculation air flaps or enthalpy recovering systems (h-x control) in detail. Special reference is made of the application of the DDC technology and its scope, limits and preconditions. In conclusions, the author presents pertinent measurement results. (orig.).

  10. Microbial C:P stoichiometry is shaped by redox conditions along an elevation gradient in humid tropical rainforests

    Science.gov (United States)

    Lin, Y.; Gross, A.; Silver, W. L.

    2017-12-01

    Elemental stoichiometry of microorganisms is intimately related to ecosystem carbon and nutrient fluxes and is ultimately controlled by the chemical (plant tissue, soil, redox) and physical (temperature, moisture, aeration) environment. Previous meta-analyses have shown that the C:P ratio of soil microbial biomass exhibits significant variations among and within biomes. Little is known about the underlying causes of this variability. We examined soil microbial C:P ratios along an elevation gradient in the Luquillo Experimental Forest in Puerto Rico. We analyzed soils from mixed forest paired with monodominant palm forest every 100 m from 300 m to 1000 m a.s.l.. Mean annual precipitation increased with increasing elevation, resulting in stronger reducing conditions and accumulation of soil Fe(II) at higher elevations. The mean value and variability of soil microbial C:P ratios generally increased with increasing elevation except at 1000 m. At high elevations (600-900 m), the average value of microbial C:P ratio (108±10:1) was significantly higher than the global average ( 55:1). We also found that soil organic P increased with increasing elevation, suggesting that an inhibition of organic P mineralization, not decreased soil P availability, may cause the high microbial C:P ratio. The soil microbial C:P ratio was positively correlated with soil HCl-extractable Fe(II), suggesting that reducing conditions may be responsible for the elevational changes observed. In a follow-up experiment, soils from mixed forests at four elevation levels (300, 500, 700, and 1000 m) were incubated under aerobic and anaerobic conditions for two weeks. We found that anaerobic incubation consistently increased the soil microbial C:P ratio relative to the aerobic incubation. Overall, our results indicate that redox conditions can shift the elemental composition of microbial biomass. The high microbial C:P ratios induced under anoxic conditions may reflect inhibition of microbial P

  11. A comparison of the lactate Pro, Accusport, Analox GM7 and Kodak Ektachem lactate analysers in normal, hot and humid conditions.

    Science.gov (United States)

    Mc Naughton, L R; Thompson, D; Philips, G; Backx, K; Crickmore, L

    2002-02-01

    This study aimed to compare the performance of a new portable lactate analyser against other standard laboratory methods in three conditions, normal (20 +/- 1.3 degrees C; 40 +/- 5 % RH), hot (40 +/- 2.5 degrees C; 40 +/- 5 % RH), and humid (20 +/- 1.1 degrees C; 82 +/- 6 % RH) conditions. Seven healthy males, ([Mean +/- SE]: age, 26.3 +/- 1.3 yr; height, 177.7 +/- 1.6 cm; weight, 77.4 +/- 0.9 kg, .VO(2)max, 56.1 +/- 1.9 ml x kg x min(-1)) undertook a maximal cycle ergometry test to exhaustion in the three conditions. Blood was taken every 3 min at the end of each stage and was analysed using the Lactate Pro LT-1710, the Accusport, the Analox GM7 and the Kodak Ektachem systems. The MANOVA (Analyser Type x Condition x Workload) indicated no interaction effect (F(42,660), = 0.45, p > 0.99, Power = 0.53). The data across all workloads indicated that the machines measured significantly differently to each other (F(4,743) = 14.652, p < 0.0001, Power = 1.00). The data were moderately to highly correlated. We conclude that the Lactate Pro is a simple and effective measurement device for taking blood lactate in a field or laboratory setting. However, we would caution against using this machine to compare data from other machines.

  12. Identification of warm day and cool night conditions induced flowering-related genes in a Phalaenopsis orchid hybrid by suppression subtractive hybridization.

    Science.gov (United States)

    Li, D M; Lü, F B; Zhu, G F; Sun, Y B; Xu, Y C; Jiang, M D; Liu, J W; Wang, Z

    2014-02-14

    The influence of warm day and cool night conditions on induction of spikes in Phalaenopsis orchids has been studied with respect to photosynthetic efficiency, metabolic cycles and physiology. However, molecular events involved in spike emergence induced by warm day and cool night conditions are not clearly understood. We examined gene expression induced by warm day and cool night conditions in the Phalaenopsis hybrid Fortune Saltzman through suppression subtractive hybridization, which allowed identification of flowering-related genes in warm day and cool night conditions in spikes and leaves at vegetative phase grown under warm daily temperatures. In total, 450 presumably regulated expressed sequence tags (ESTs) were identified and classified into functional categories, including metabolism, development, transcription factor, signal transduction, transportation, cell defense, and stress. Furthermore, database comparisons revealed a notable number of Phalaenopsis hybrid Fortune Saltzman ESTs that matched genes with unknown function. The expression profiles of 24 genes (from different functional categories) have been confirmed by quantitative real-time PCR in induced spikes and juvenile apical leaves. The results of the real-time PCR showed that, compared to the vegetative apical leaves, the transcripts of genes encoding flowering locus T, AP1, AP2, KNOX1, knotted1-like homeobox protein, R2R3-like MYB, adenosine kinase 2, S-adenosylmethionine synthetase, dihydroflavonol 4-reductase, and naringenin 3-dioxygenase accumulated significantly higher levels, and genes encoding FCA, retrotransposon protein Ty3 and C3HC4-type RING finger protein accumulated remarkably lower levels in spikes of early developmental stages. These results suggested that the genes of two expression changing trends may play positive and negative roles in the early floral transition of Phalaenopsis orchids. In conclusion, spikes induced by warm day and cool night conditions were complex in

  13. Evaluation of wet bulb globe temperature index for estimation of heat strain in hot/humid conditions in the Persian Gulf.

    Science.gov (United States)

    Dehghan, Habibolah; Mortazavi, Seyed Bagher; Jafari, Mohammad J; Maracy, Mohammad R

    2012-12-01

    Heat exposure among construction workers in the Persian Gulf region is a serious hazard for health. The aim of this study was to evaluate the performance of wet bulb globe temperature (WBGT) Index for estimation of heat strain in hot/humid conditions by the use of Physiological Strain Index (PSI) as the gold standard. This cross-sectional study was carried out on 71 workers of two Petrochemical Companies in South of Iran in 2010 summer. The WBGT index, heart rate, and aural temperature were measured by Heat Stress Monitor (Casella Microtherm WBGT), Heart Rate Monitor (Polar RS100), and Personal Heat Strain Monitor (Questemp II), respectively. The obtained data were analyzed with descriptive statistics and Pearson correlation analysis. The mean (SD) of WBGT values was 33.1 (2.7). The WBGT values exceed from American Conference of Governmental Industrial Hygienists (ACGIH) standard (30°C) in 96% work stations, whereas the PSI values were more than 5.0 (moderate strain) in 11% of workstations. The correlation between WBGT and PSI values was 0.61 (P = 0.001). When WBGT values were less and more than 34°C, the mean of PSI was 2.6 (low strain) and 5.2 (moderate strain), respectively. In the Persian Gulf weather, especially hot and humid in the summer months, due to the WBGT values exceeding 30°C (in 96% of cases) and weak correlation between WBGT and PSI, the work/rest cycles of WBGT Index is not suitable for heat stress management. Therefore, in Persian Gulf weather, heat stress evaluation based on physiologic variables may have higher validity than WBGT index.

  14. Evaluation of wet bulb globe temperature index for estimation of heat strain in hot/humid conditions in the Persian Gulf

    Directory of Open Access Journals (Sweden)

    Habibolah Dehghan

    2012-01-01

    Full Text Available Background: Heat exposure among construction workers in the Persian Gulf region is a serious hazard for health. The aim of this study was to evaluate the performance of wet bulb globe temperature (WBGT Index for estimation of heat strain in hot/humid conditions by the use of Physiological Strain Index (PSI as the gold standard. Material and Methods : This cross-sectional study was carried out on 71 workers of two Petrochemical Companies in South of Iran in 2010 summer. The WBGT index, heart rate, and aural temperature were measured by Heat Stress Monitor (Casella Microtherm WBGT, Heart Rate Monitor (Polar RS100, and Personal Heat Strain Monitor (Questemp II, respectively. The obtained data were analyzed with descriptive statistics and Pearson correlation analysis. Results: The mean (SD of WBGT values was 33.1 (2.7. The WBGT values exceed from American Conference of Governmental Industrial Hygienists (ACGIH standard (30°C in 96% work stations, whereas the PSI values were more than 5.0 (moderate strain in 11% of workstations. The correlation between WBGT and PSI values was 0.61 ( P = 0.001. When WBGT values were less and more than 34°C, the mean of PSI was 2.6 (low strain and 5.2 (moderate strain, respectively. Conclusion: In the Persian Gulf weather, especially hot and humid in the summer months, due to the WBGT values exceeding 30°C (in 96% of cases and weak correlation between WBGT and PSI, the work/rest cycles of WBGT Index is not suitable for heat stress management. Therefore, in Persian Gulf weather, heat stress evaluation based on physiologic variables may have higher validity than WBGT index.

  15. Experimental performance evaluation of solid concrete and dry insulation materials for passive buildings in hot and humid climatic conditions

    International Nuclear Information System (INIS)

    Rehman, Hassam Ur

    2017-01-01

    Highlights: • Experimental investigation of building insulation materials in UAE from 2012–2014. • Four same calorimeters with different south walls were built in open air laboratory. • Heat flux was reduced by 22–75% in steady state analysis during summer by insulation. • Hence, energy consumption for cooling was reduced by an average 7.6–25.3%. • Heat flow was steady in free floating analysis in winter through insulated walls. - Abstract: It is known that enhancement of building energy efficiency can help in reducing energy consumption. The use of the solar insulating materials are the most efficient and cost effective passive methods for reducing the cooling requirements of the buildings. Apart from theoretical studies, no detailed experimental studies were performed in the UAE on energy savings by using solar insulation materials on buildings. Four (3 m × 3 m × 3 m) solar calorimeters were built in RAK, UAE in order to perform an open air outdoor test for energy savings obtained with solar insulating materials. The design is aimed to determine the heat flux reduction and the energy savings achieved with and without different solar insulating materials, mounted at the south wall of solar calorimeters with similar indoor and ambient conditions. Experimental results are discussed to evaluate the thermal performance during high temperature conditions in summer’s period when cooling demand of the building is at its peak and also in winters when there is no cooling demand. The test is from 2012 to 2014. The controlled-temperature experimental study at a set point of 24 °C showed that if the standard building material, i.e. solid concrete, is retrofitted with polyisocyanurate (PIR) and reflective coatings or completely replaced with energy-efficient dry insulation material walls such as exterior insulation finishing system (EIFS), energy savings up to an average of 7.6–25.3% can be achieved. This is due to the reduction of heat flux by an

  16. Midday stomatal closure in Mediterranean type sclerophylls under simulated habitat conditions in an environmental chamber : II. Effect of the complex of leaf temperature and air humidity on gas exchange of Arbutus unedo and Quercus ilex.

    Science.gov (United States)

    Tenhunen, J D; Lange, O L; Braun, M

    1981-08-01

    Shrubs of the Mediterranean sclerophyllous species Arbutus unedo and Quercus ilex were studied under simulated habitat conditions in an environmental chamber. Temperature, humidity, and light intensity were altered stepwise to simulate diurnal changes in conditions similar to those measured in an evergreen macchia in Sobreda, Portugal. Leaves were enclosed in cuvettes which reproduced the growth chamber climate and which allowed measurement of gas exchange. Increasing atmospheric stress in the form of higher temperature and lower humidity on successive days gradually results in midday depression of transpiration rate and net photosynthesis rate of leaves due to midday stomatal closure.

  17. Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold-edge range limit under ambient and warmed conditions.

    Science.gov (United States)

    Moyes, Andrew B; Germino, Matthew J; Kueppers, Lara M

    2015-09-01

    Climate change is altering plant species distributions globally, and warming is expected to promote uphill shifts in mountain trees. However, at many cold-edge range limits, such as alpine treelines in the western United States, tree establishment may be colimited by low temperature and low moisture, making recruitment patterns with warming difficult to predict. We measured response functions linking carbon (C) assimilation and temperature- and moisture-related microclimatic factors for limber pine (Pinus flexilis) seedlings growing in a heating × watering experiment within and above the alpine treeline. We then extrapolated these response functions using observed microclimate conditions to estimate the net effects of warming and associated soil drying on C assimilation across an entire growing season. Moisture and temperature limitations were each estimated to reduce potential growing season C gain from a theoretical upper limit by 15-30% (c. 50% combined). Warming above current treeline conditions provided relatively little benefit to modeled net assimilation, whereas assimilation was sensitive to either wetter or drier conditions. Summer precipitation may be at least as important as temperature in constraining C gain by establishing subalpine trees at and above current alpine treelines as seasonally dry subalpine and alpine ecosystems continue to warm. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. Comparative proteomic analysis of the thermotolerant plant Portulaca oleracea acclimation to combined high temperature and humidity stress.

    Science.gov (United States)

    Yang, Yunqiang; Chen, Jinhui; Liu, Qi; Ben, Cécile; Todd, Christopher D; Shi, Jisen; Yang, Yongping; Hu, Xiangyang

    2012-07-06

    Elevated temperature and humidity are major environmental factors limiting crop yield and distribution. An understanding of the mechanisms underlying plant tolerance to high temperature and humidity may facilitate the development of cultivars adaptable to warm or humid regions. Under conditions of 90% humidity and 35 °C, the thermotolerant plant Portulaca oleracea exhibits excellent photosynthetic capability and relatively little oxidative damage. To determine the proteomic response that occurs in leaves of P. oleracea following exposure to high temperature and high humidity, a proteomic approach was performed to identify protein changes. A total of 51 differentially expressed proteins were detected and characterized functionally and structurally; these identified proteins were involved in various functional categories, mainly including material and energy metabolism, the antioxidant defense responses, protein destination and storage, and transcriptional regulation. The subset of antioxidant defense-related proteins demonstrated marked increases in activity with exposure to heat and humidity, which led to lower accumulations of H(2)O(2) and O(2)(-) in P. oleracea compared with the thermosensitive plant Arabidopsis thaliana. The quickly accumulations of proline content and heat-shock proteins, and depleting abscisic acid (ABA) via increasing ABA-8'-hydroxylase were also found in P. oleracea under stress conditions, that resulted into greater stomata conductance and respiration rates. On the basis of these findings, we propose that P. oleracea employs multiple strategies to enhance its adaptation to high-temperature and high-humidity conditions.

  19. X-ray diffraction analysis of the ammonium nitrate IV-III-II and IV-II phase changes under controlled humidity conditions

    International Nuclear Information System (INIS)

    Boeyens, J.C.A.; Ferg, E.; Levendis, D.C.; Schoening, F.R.L.

    1992-01-01

    The first phase transition above room temperature of ammonium nitrate has been investigated as a function of humidity and sample preparation by means of a Weissenberg camera, modified to record the powder diffraction pattern as a function of temperature. Heterogeneous nucleation at the grain surface, inferred from the observed texture that develops in the powder specimens, is related to the effect of humidity during sample preparation on the stability of prills or powders. 19 refs., 4 figs

  20. Dynamics of leaf litter humidity, depth and quantity: two restoration strategies failed to mimic ground microhabitat conditions of a low montane and premontane forest in Costa Rica

    OpenAIRE

    Zaidett Barrientos

    2012-01-01

    Little is known about how restoration strategies affect aspects like leaf litter’s quantity, depth and humidity. I analyzed leaf litter’s quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration) and a 40 year old Cupressus lusitanica plantation (natural understory). The three habitats are located in the Río Macho Forest Reserve, Costa Rica. Twenty litter samples were ...

  1. Effects of mode of inoculation on efficacy of wettable powder and oil dispersion formulations of Beauveria bassiana applied against Colorado potato beetle larvae under low-humidity greenhouse conditions

    Science.gov (United States)

    The effects of inoculation method on efficacy of two formulations of Beauveria bassiana strain GHA against Colorado potato beetle larvae were investigated. Under low-humidity greenhouse conditions, 57% mortality was observed among groups of second-instar larvae exposed directly to sprays of B. bass...

  2. How will precipitation change in extratropical cyclones as the planet warms? Insights from a large initial condition climate model ensemble

    Science.gov (United States)

    Yettella, Vineel; Kay, Jennifer E.

    2017-09-01

    The extratropical precipitation response to global warming is investigated within a 30-member initial condition climate model ensemble. As in observations, modeled cyclonic precipitation contributes a large fraction of extratropical precipitation, especially over the ocean and in the winter hemisphere. When compared to present day, the ensemble projects increased cyclone-associated precipitation under twenty-first century business-as-usual greenhouse gas forcing. While the cyclone-associated precipitation response is weaker in the near-future (2016-2035) than in the far-future (2081-2100), both future periods have similar patterns of response. Though cyclone frequency changes are important regionally, most of the increased cyclone-associated precipitation results from increased within-cyclone precipitation. Consistent with this result, cyclone-centric composites show statistically significant precipitation increases in all cyclone sectors. Decomposition into thermodynamic (mean cyclone water vapor path) and dynamic (mean cyclone wind speed) contributions shows that thermodynamics explains 92 and 95% of the near-future and far-future within-cyclone precipitation increases respectively. Surprisingly, the influence of dynamics on future cyclonic precipitation changes is negligible. In addition, the forced response exceeds internal variability in both future time periods. Overall, this work suggests that future cyclonic precipitation changes will result primarily from increased moisture availability in a warmer world, with secondary contributions from changes in cyclone frequency and cyclone dynamics.

  3. 40 CFR 89.326 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air... type of intake air supply, the humidity measurements must be made within the intake air supply system...

  4. 40 CFR 91.310 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply. Air...

  5. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    OpenAIRE

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatmen...

  6. Tropical Warm Semi-Arid Regions Expanding Over Temperate Latitudes In The Projected 21st Century

    Science.gov (United States)

    Rajaud, A.; de Noblet, N. I.

    2015-12-01

    Two billion people today live in drylands, where extreme climatic conditions prevail, and natural resources are limited. Drylands are expected to expand under several scenarios of climatic change. However, relevant adaptation strategies need to account for the aridity level: it conditions the equilibrium tree-cover density, ranging from deserts (hyper-arid) to dense savannas (sub-humid). Here we focus on the evolution of climatically defined warm semi-arid areas, where low-tree density covers can be maintained. We study the global repartition of these regions in the future and the bioclimatic shifts involved. We adopted a bioclimatological approach based on the Köppen climate classification. The warm semi-arid class is characterized by mean annual temperatures over 18°C and a rainfall-limitation criterion. A multi-model ensemble of CMIP5 projections for three representative concentration pathways was selected to analyze future conditions. The classification was first applied to the start, middle and end of the 20th and 21st centuries, in order to localize past and future warm semi-arid regions. Then, time-series for the classification were built to characterize trends and variability in the evolution of those regions. According to the CRU datasets, global expansion of the warm semi-arid area has already started (~+13%), following the global warming trend since the 1900s. This will continue according to all projections, most significantly so outside the tropical belt. Under the "business as usual" scenario, the global warm semi-arid area will increase by 30% and expand 12° poleward in the Northern Hemisphere, according to the multi-model mean. Drying drives the conversion from equatorial sub-humid conditions. Beyond 30° of latitude, cold semi-arid conditions become warm semi-arid through warming, and temperate conditions through combined warming and drying processes. Those various transitions may have drastic but also very distinct ecological and sociological

  7. To Evaluate the Effect of Solvents and Different Relative Humidity Conditions on Thermal and Rheological Properties of Microcrystalline Cellulose 101 Using METHOCEL™ E15LV as a Binder.

    Science.gov (United States)

    Jagia, Moksh; Trivedi, Maitri; Dave, Rutesh H

    2016-08-01

    The solvent used for preparing the binder solution in wet granulation can affect the granulation end point and also impact the thermal, rheological, and flow properties of the granules. The present study investigates the effect of solvents and percentage relative humidity (RH) on the granules of microcrystalline cellulose (MCC) with hydroxypropyl methyl cellulose (HPMC) as the binder. MCC was granulated using 2.5% w/w binder solution in water and ethanol/water mixture (80:20 v/v). Prepared granules were dried until constant percentage loss on drying, sieved, and further analyzed. Dried granules were exposed to different percentage RH for 48 h at room temperature. Powder rheometer was used for the rheological and flow characterization, while thermal effusivity and differential scanning calorimeter were used for thermal analysis. The thermal effusivity values for the wet granules showed a sharp increase beginning 50% w/w binder solution in both cases, which reflected the over-wetting of granules. Ethanol/water solvent batches showed greater resistance to flow as compared to the water solvent batches in the wet granule stage, while the reverse was true for the dried granule stage, as evident from the basic flowability energy values. Although the solvents used affected the equilibration kinetics of moisture content, the RH-exposed granules remained unaffected in their flow properties in both cases. This study indicates that the solvents play a vital role on the rheology and flow properties of MCC granules, while the different RH conditions have little or no effect on them for the above combination of solvent and binder.

  8. Use of personalized ventilation for improving health, comfort, and performance at high room temperature and humidity

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Skwarczynski, Mariusz; Kaczmarczyk, J.

    2013-01-01

    in five 4-h experiments in a climate chamber. Under the conditions with PV, the subjects were able to control the rate and direction of the supplied personalized flow of clean air. Subjective responses were collected through questionnaires. During all exposures, the subjects were occupied with tasks used......The effect of personalized ventilation (PV) on people's health, comfort, and performance in a warm and humid environment (26 and 28°C at 70% relative humidity) was studied and compared with their responses in a comfortable environment (23°C and 40% relative humidity). Thirty subjects participated...... to assess their performance. Objective measures of tear film stability, concentration of stress biomarkers in saliva, and eye blinking rate were taken. Using PV significantly improved the perceived air quality (PAQ) and thermal sensation and decreased the intensity of Sick Building Syndrome (SBS) symptoms...

  9. Upper limits for air humidity based on human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole; Jørgensen, Anette S.

    1998-01-01

    respiratory cooling. Human subjects perceived the condition of their skin to be less acceptable with increasing skin humidity. Inhaled air was rated warmer, more stuffy and less acceptable with increasing air humidity and temperature. Based on the subjects' comfort responses, new upper limits for air humidity......The purpose of this study was to verify the hypothesis that insufficient respiratory cooling and a high level of skin humidity are two reasons for thermal discomfort at high air humidities, and to prescribe upper limits for humidity based on discomfort due to elevated skin humidity and insufficient...

  10. The influence of humidity fluxes on offshore wind speed profiles

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Sempreviva, Anna Maria; Pryor, Sara

    2010-01-01

    extrapolation from lower measurements. With humid conditions and low mechanical turbulence offshore, deviations from the traditional logarithmic wind speed profile become significant and stability corrections are required. This research focuses on quantifying the effect of humidity fluxes on stability corrected...... wind speed profiles. The effect on wind speed profiles is found to be important in stable conditions where including humidity fluxes forces conditions towards neutral. Our results show that excluding humidity fluxes leads to average predicted wind speeds at 150 m from 10 m which are up to 4% higher...... than if humidity fluxes are included, and the results are not very sensitive to the method selected to estimate humidity fluxes....

  11. Dominance of climate warming effects on recent drying trends over wet monsoon regions

    Science.gov (United States)

    Park, Chang-Eui; Jeong, Su-Jong; Ho, Chang-Hoi; Park, Hoonyoung; Piao, Shilong; Kim, Jinwon; Feng, Song

    2017-09-01

    Understanding changes in background dryness over land is key information for adapting to climate change because of its critical socioeconomic consequences. However, causes of continental dryness changes remain uncertain because various climate parameters control dryness. Here, we verify dominant climate variables determining dryness trends over continental eastern Asia, which is characterized by diverse hydroclimate regimes ranging from arid to humid, by quantifying the relative effects of changes in precipitation, solar radiation, wind speed, surface air temperature, and relative humidity on trends in the aridity index based on observed data from 189 weather stations for the period of 1961-2010. Before the early 1980s (1961-1983), change in precipitation is a primary condition for determining aridity trends. In the later period (1984-2010), the dominant climate parameter for aridity trends varies according to the hydroclimate regime. Drying trends in arid regions are mostly explained by reduced precipitation. In contrast, the increase in potential evapotranspiration due to increased atmospheric water-holding capacity, a secondary impact of warming, works to increase aridity over the humid monsoon region despite an enhanced water supply and relatively less warming. Our results show significant drying effects of warming over the humid monsoon region in recent decades; this also supports the drying trends over warm and water-sufficient regions in future climate.

  12. Dominance of climate warming effects on recent drying trends over wet monsoon regions

    Directory of Open Access Journals (Sweden)

    C.-E. Park

    2017-09-01

    Full Text Available Understanding changes in background dryness over land is key information for adapting to climate change because of its critical socioeconomic consequences. However, causes of continental dryness changes remain uncertain because various climate parameters control dryness. Here, we verify dominant climate variables determining dryness trends over continental eastern Asia, which is characterized by diverse hydroclimate regimes ranging from arid to humid, by quantifying the relative effects of changes in precipitation, solar radiation, wind speed, surface air temperature, and relative humidity on trends in the aridity index based on observed data from 189 weather stations for the period of 1961–2010. Before the early 1980s (1961–1983, change in precipitation is a primary condition for determining aridity trends. In the later period (1984–2010, the dominant climate parameter for aridity trends varies according to the hydroclimate regime. Drying trends in arid regions are mostly explained by reduced precipitation. In contrast, the increase in potential evapotranspiration due to increased atmospheric water-holding capacity, a secondary impact of warming, works to increase aridity over the humid monsoon region despite an enhanced water supply and relatively less warming. Our results show significant drying effects of warming over the humid monsoon region in recent decades; this also supports the drying trends over warm and water-sufficient regions in future climate.

  13. Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone.

    Science.gov (United States)

    Thakur, Madhav Prakash; Reich, Peter B; Fisichelli, Nicholas A; Stefanski, Artur; Cesarz, Simone; Dobies, Tomasz; Rich, Roy L; Hobbie, Sarah E; Eisenhauer, Nico

    2014-06-01

    Global climate warming is one of the key forces driving plant community shifts, such as range shifts of temperate species into boreal forests. As plant community shifts are slow to observe, ecotones, boundaries between two ecosystems, are target areas for providing early evidence of ecological responses to warming. The role of soil fauna is poorly explored in ecotones, although their positive and negative effects on plant species can influence plant community structure. We studied nematode communities in response to experimental warming (ambient, +1.7, +3.4 °C) in soils of closed and open canopy forest in the temperate-boreal ecotone of Minnesota, USA and calculated various established nematode indices. We estimated species-specific coverage of understory herbaceous and shrub plant species from the same experimental plots and tested if changes in the nematode community are associated with plant cover and composition. Individual nematode trophic groups did not differ among warming treatments, but the ratio between microbial-feeding and plant-feeding nematodes increased significantly and consistently with warming in both closed and open canopy areas and at both experimental field sites. The increase in this ratio was positively correlated with total cover of understory plant species, perhaps due to increased predation pressure on soil microorganisms causing higher nutrient availability for plants. Multivariate analyses revealed that temperature treatment, canopy conditions and nematode density consistently shaped understory plant communities across experimental sites. Our findings suggest that warming-induced changes in nematode community structure are associated with shifts in plant community composition and productivity in the temperate-boreal forest ecotones.

  14. Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean?

    Science.gov (United States)

    Ramalho, José C.; Pais, Isabel P.; Leitão, António E.; Guerra, Mauro; Reboredo, Fernando H.; Máguas, Cristina M.; Carvalho, Maria L.; Scotti-Campos, Paula; Ribeiro-Barros, Ana I.; Lidon, Fernando J. C.; DaMatta, Fábio M.

    2018-01-01

    Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO2] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO2] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO2] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO2 L-1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30–35 or 36–40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p-coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality), and only marginally, if at all, by elevated [CO2]. However, the [CO2] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids), thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p-coumaric acids, trigonelline, chroma, Hue angle, and color index), and increasing desirable features (acidity). Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO2] (e.g., phosphorous) and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO2] contributed to preserve bean quality by modifying and mitigating the heat impact

  15. Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean?

    Directory of Open Access Journals (Sweden)

    José C. Ramalho

    2018-03-01

    Full Text Available Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO2] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO2] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO2] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO2 L-1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30–35 or 36–40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p-coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality, and only marginally, if at all, by elevated [CO2]. However, the [CO2] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids, thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p-coumaric acids, trigonelline, chroma, Hue angle, and color index, and increasing desirable features (acidity. Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO2] (e.g., phosphorous and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO2] contributed to preserve bean quality by modifying and mitigating

  16. Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean?

    Science.gov (United States)

    Ramalho, José C; Pais, Isabel P; Leitão, António E; Guerra, Mauro; Reboredo, Fernando H; Máguas, Cristina M; Carvalho, Maria L; Scotti-Campos, Paula; Ribeiro-Barros, Ana I; Lidon, Fernando J C; DaMatta, Fábio M

    2018-01-01

    Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO 2 ] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO 2 ] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO 2 ] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO 2 L -1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30-35 or 36-40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p -coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality), and only marginally, if at all, by elevated [CO 2 ]. However, the [CO 2 ] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids), thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p -coumaric acids, trigonelline, chroma, Hue angle, and color index), and increasing desirable features (acidity). Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO 2 ] (e.g., phosphorous) and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO 2 ] contributed to preserve bean quality by modifying and mitigating

  17. Dynamics of leaf litter humidity, depth and quantity: two restoration strategies failed to mimic ground microhabitat conditions of a low montane and premontane forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Zaidett Barrientos

    2012-09-01

    Full Text Available Little is known about how restoration strategies affect aspects like leaf litter’s quantity, depth and humidity. I analyzed leaf litter’s quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration and a 40 year old Cupressus lusitanica plantation (natural understory. The three habitats are located in the Río Macho Forest Reserve, Costa Rica. Twenty litter samples were taken every three months (April 2009-April 2010 in each habitat; humidity was measured in 439g samples (average, depth and quantity were measured in five points inside 50x50cm plots. None of the restoration strategies reproduced the primary forest leaf litter humidity, depth and quantity yearly patterns. Primary forest leaf litter humidity was higher and more stable (x=73.2, followed by secondary forest (x=63.3 and cypress plantation (x=52.9 (Kruskall-Wallis=77.93, n=232, p=0.00. In the primary (Kruskal-Wallis=31.63, n=78, p<0.001 and secondary (Kruskal-Wallis=11.79, n=75, p=0.008 forest litter accumulation was higher during April due to strong winds. In the primary forest (Kruskal-wallis=21.83, n=78, p<0.001 and the cypress plantation (Kruskal-wallis=39.99, n=80, p<0.001 leaf litter depth was shallow in October because heavy rains compacted it. Depth patterns were different from quantity patterns and described the leaf litter’s structure in different ecosystems though the year.

  18. Humidity level In psychrometric processes

    International Nuclear Information System (INIS)

    Mojsovski, Filip

    2008-01-01

    When a thermal engineer needs to control, rather than merely moderate humidity, he must focus on the moisture level as a separate variable - not simply an addition of temperature control. Controlling humidity generally demands a correct psychrometric approach dedicated to that purpose [1].Analysis of the humidity level in psychrometric thermal processes leads to relevant data for theory and practice [2]. This paper presents: (1) the summer climatic curve for the Skopje region, (2) selected results of investigation on farm dryers made outside laboratories. The first purpose of such activity was to examine relations between weather conditions and drying conditions. The estimation of weather condition for the warmest season of the year was realized by a summer climatic curve. In the science of drying, basic drying conditions are temperature, relative humidity and velocity of air, thickness of dried product and dryer construction. The second purpose was to realize correct prediction of drying rates for various psychrometrics drying processes and local products. Test runs with the dryer were carried out over a period of 24 h, using fruits and vegetables as experimental material. Air flow rate through the dryer of 150 m3/h, overall drying rate of 0.04 kg/h and air temperature of 65 oC were reached. Three types of solar dryers, were exploited in the research.

  19. On the distribution of relative humidity in cirrus clouds

    Directory of Open Access Journals (Sweden)

    P. Spichtinger

    2004-01-01

    Full Text Available We have analysed relative humidity statistics from measurements in cirrus clouds taken unintentionally during the Measurement of OZone by Airbus In-service airCraft project (MOZAIC. The shapes of the in-cloud humidity distributions change from nearly symmetric in relatively warm cirrus (warmer than −40°C to considerably positively skew (i.e. towards high humidities in colder clouds. These results are in agreement to findings obtained recently from the INterhemispheric differences in Cirrus properties from Anthropogenic emissions (INCA campaign (Ovarlez et al., 2002. We interprete the temperature dependence of the shapes of the humidity distributions as an effect of the length of time a cirrus cloud needs from formation to a mature equilibrium stage, where the humidity is close to saturation. The duration of this transitional period increases with decreasing temperature. Hence cold cirrus clouds are more often met in the transitional stage than warm clouds.

  20. Antecedent moisture and temperature conditions modulate the response of ecosystem respiration to elevated CO2 and warming

    Science.gov (United States)

    Terrestrial plant and soil respiration, or ecosystem respiration (Reco), represents a major CO2 flux in the global carbon cycle. However, there is disagreement in how Reco will respond to future global changes, such as elevated atmosphere CO2 and warming. To address this, we synthesized six years (2...

  1. ASPECTS OF THE DESTRUCTIVE CHANGES IN THE MAIN NUTRIENTS OF CANNED MEAT IN PIECES «STEWED BEEF OF THE TOP GRADE» UNDER THE NON-NORMATIVE TEMPERATURE AND HUMIDITY CONDITIONS OF STORAGE

    Directory of Open Access Journals (Sweden)

    V. B. Krylova

    2016-01-01

    Full Text Available The scientifically substantiated and established temperature and humidity conditions of storage of sterilized canned meat are a temperature in a range from 0 to + 20 °С and the air relative humidity not more than 75%. However, in the harsh and extreme climateconditions of the Russian regions, it is extremely difficult or practically impossible to ensure the normative temperature and humidity conditions when transporting canned foods to a consumer, as well as at short-term storage. Therefore, obtaining new experimental data on an effect of the non-normative temperature and humidityconditions of the sterilized canned foods on the indicators of product safety and quality are topical and important for understanding the character and depth of the destructive processes occurring in a product.It was noted that an abrupt change in the climatic conditions did not have a stimulating effect on microflora development in the tested samples. All samples were commercially sterile. The histological investigations proved an increase in the degree of muscle tissue destruction in the unregulated storage conditions: microfractures and narrow cross fractions had a multiple character, an amount of fine-grained proteinous mass  increased. It was established that freezing and subsequent storage had a stronger negative effect on the degree of protein destruction and aroma of the broth and meat of the canned foods compared to the unregulated temperature and humidity storage conditions. For example, the mass fraction of protein nitrogen and essential amino acids decreased on average by 7.8%. The preservation of the fatty constituent of the canned foods in the stably freezing condition was considerably higher than in case of alternating freezing and defrosting. The degree of a decrease in the sum content of monounsaturated fatty acids in the canned foods in the unregulated conditionswas on average more than 20%, those of polyunsaturated fatty acids was more than 31%. It

  2. Compact Buried Ducts in a Hot-Humid Climate House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, Dave [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2016-01-07

    "9A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely on encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences; 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs; 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.

  3. Lightning Location System Data from Wind Power Plants Compared to Meteorological Conditions of Warm- and Cold Thunderstorm Events

    DEFF Research Database (Denmark)

    Vogel, Stephan; Lopez, Javier; Garolera, Anna Candela

    2016-01-01

    of topography, height above mean sea level (AMSL), and average ground flash density. For three sites, the most severe lightning events have been identified during the warm and cold months whereas the other two locations exhibit severe lightning detections mainly during the warm months. In this work severity......Five years of Lightning Location System (LLS) data from five different wind turbine sites in Europe are analysed. The sites are located in Croatia, Italy, Spain, France and one offshore wind power plant in the North sea. Each location exhibits individual characteristic properties in terms...... of such an episode can vary from tens of minutes to several hours in the case of new storms being continuously developed in the same area. The distance of the charge separating -10◦ C and the ground is usually larger than 3000 meters. This analyse provides information about the different thunderstorm types which...

  4. Dynamics of leaf litter humidity, depth and quantity: two restoration strategies failed to mimic ground microhabitat conditions of a low montane and premontane forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Zaidett Barrientos

    2012-09-01

    Full Text Available Little is known about how restoration strategies affect aspects like leaf litter’s quantity, depth and humidity. I analyzed leaf litter’s quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration and a 40 year old Cupressus lusitanica plantation (natural understory. The three habitats are located in the Río Macho Forest Reserve, Costa Rica. Twenty litter samples were taken every three months (April 2009-April 2010 in each habitat; humidity was measured in 439g samples (average, depth and quantity were measured in five points inside 50x50cm plots. None of the restoration strategies reproduced the primary forest leaf litter humidity, depth and quantity yearly patterns. Primary forest leaf litter humidity was higher and more stable (x=73.2, followed by secondary forest (x=63.3 and cypress plantation (x=52.9 (Kruskall-Wallis=77.93, n=232, p=0.00. In the primary (Kruskal-Wallis=31.63, n=78, pPoco se sabe acerca de cómo las estrategias de restauración afectan aspectos como la cantidad, profundidad y humedad de la hojarasca. Se analizaron estas variables en un bosque tropical húmedo montano bajo, considerado bosque primario y dos áreas restauradas: un bosque secundario de 15 años (restauración natural y una plantación de Cupressus lusitanica de 40 años con sotobosque restaurado naturalmente. Los sitios estudiados se ubican en la reserva forestal Río Macho, Costa Rica. Los muestreos se realizaron cada tres meses (abril 2009-abril 2010. En cada ocasión se escogieron al azar 20 cuadrículas de 50x50cm de las que se recogió 439g en promedio de hojarasca para medir la humedad por diferencia entre peso seco y húmedo. En cada cuadrícula se midió la profundidad y cantidad de hojarasca haciendo un promedio de cinco puntos. La cantidad se midió con el número de hojas ensartadas en un picahielos. La profundidad se midió con una

  5. An Air-conditioned Global Warming. The Description of Settings in Ian McEwan’s Solar

    Directory of Open Access Journals (Sweden)

    Elisa Bolchi

    2016-12-01

    Full Text Available The three main settings of McEwan’s Solar, a novel described as “the first great global-warming novel” (Walsh 2010 are significant: from London, to the Artic Pole, up to the desert in New Mexico, these places are all described through the interior monologue of the anti-hero Michael Beard, a character allegorical of humanity’s greed for selfish over-consumption. As Beard moves in the real environment only through the non-places of supermodernity (Augé, the paper ana¬lyses the descriptions of settings to underline how McEwan uses them to write about climate- change in a new “novelistic” way (McEwan.

  6. EFFECT OF PRE-COOLING ON REPEAT-SPRINT PERFORMANCE IN SEASONALLY ACCLIMATISED MALES DURING AN OUTDOOR SIMULATED TEAM-SPORT PROTOCOL IN WARM CONDITIONS

    Directory of Open Access Journals (Sweden)

    Carly J. Brade

    2013-09-01

    Full Text Available Whether precooling is beneficial for exercise performance in warm climates when heat acclimatised is unclear. The purpose of this study was to determine the effect of precooling on repeat-sprint performance during a simulated team-sport circuit performed outdoors in warm, dry field conditions in seasonally acclimatised males (n = 10. They performed two trials, one with precooling (PC; ice slushy and cooling jacket and another without (CONT. Trials began with a 30-min baseline/cooling period followed by an 80 min repeat-sprint protocol, comprising 4 x 20-min quarters, with 2 x 5-min quarter breaks and a 10-min half-time recovery/cooling period. A clear and substantial (negative; PC slower effect was recorded for first quarter circuit time. Clear and trivial effects were recorded for overall circuit time, third and fourth quarter sprint times and fourth quarter best sprint time, otherwise unclear and trivial effects were recorded for remaining performance variables. Core temperature was moderately lower (Cohen's d=0.67; 90% CL=-1.27, 0.23 in PC at the end of the precooling period and quarter 1. No differences were found for mean skin temperature, heart rate, thermal sensation, or rating of perceived exertion, however, moderate Cohen's d effect sizes suggested a greater sweat loss in PC compared with CONT. In conclusion, repeat- sprint performance was neither clearly nor substantially improved in seasonally acclimatised players by using a combination of internal and external cooling methods prior to and during exercise performed in the field in warm, dry conditions. Of practical importance, precooling appears unnecessary for repeat-sprint performance if athletes are seasonally acclimatised or artificially acclimated to heat, as it provides no additional benefit

  7. Global warming

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Canada's Green Plan strategy for dealing with global warming is being implemented as a multidepartmental partnership involving all Canadians and the international community. Many of the elements of this strategy are built on an existing base of activities predating the Green Plan. Elements of the strategy include programs to limit emissions of greenhouse gases, such as initiatives to encourage more energy-efficient practices and development of alternate fuel sources; studies and policy developments to help Canadians prepare and adapt to climate change; research on the global warming phenomenon; and stimulation of international action on global warming, including obligations arising out of the Framework Convention on Climate Change. All the program elements have been approved, funded, and announced. Major achievements to date are summarized, including improvements in the Energy Efficiency Act, studies on the socioeconomic impacts of global warming, and participation in monitoring networks. Milestones associated with the remaining global warming initiatives are listed

  8. Controlled humidity gas circulators

    International Nuclear Information System (INIS)

    Gruner, S.M.

    1981-01-01

    A programmable circulator capable of regulating the humidity of a gas stream over a wide range of humidity is described. An optical dew-point hygrometer is used as a feedback element to control the addition or removal of water vapor. Typical regulation of the gas is to a dew-point temperature of +- 0.2 0 C and to an accuracy limited by the dew-point hygrometer

  9. Laboratory setup for temperature and humidity measurements

    CERN Document Server

    Eimre, Kristjan

    2015-01-01

    In active particle detectors, the temperature and humidity conditions must be under constant monitoring and control, as even small deviations from the norm cause changes to detector characteristics and result in a loss of precision. To monitor the temperature and humidity, different kinds of sensors are used, which must be calibrated beforehand to ensure their accuracy. To calibrate the large number of sensors that are needed for the particle detectors and other laboratory work, a calibration system is needed. The purpose of the current work was to develop a laboratory setup for temperature and humidity sensor measurements and calibration.

  10. INFLUENCE OF TEMPERATURE AND RELATIVE HUMIDITY ON THE STUDDED AGARICUS BLAZEI MURRILL MUSHROOM COMPOST

    Directory of Open Access Journals (Sweden)

    Sándor Rózsa

    2017-12-01

    Full Text Available Almond mushroom, Agaricus blazei Murrill, is the so-called secondary saprophyte, developing on partially processed substrate, in which microorganisms reduced complex ligno-cellulose compounds. Numerous authors have shown that due to the similar life cycle in the cultivation of almond mushroom technologies developed for white button mushroom may be applied. However, almond mushroom requires high temperature and high humidity as well as access to light to form fruiting bodies. In Brazil, due to the advantageous climatic conditions this species is frequently grown outdoors; however, in other countries - mainly due to its high temperature requirements - such cultivation system is risky and may only be successful during very warm summers. In this study, we analyzed four kind of compost studded by Agaricus blazei Murrill mushroom mycelium. We recorded every hour the air and compost temperature and the air relative humidity. The best studded compost was the classical, followed by synthetic and then by the mixt compost.

  11. Warm and cold molecular gas conditions modelled in 87 galaxies observed by the Herschel SPIRE Fourier transform spectrometer

    Science.gov (United States)

    Kamenetzky, J.; Rangwala, N.; Glenn, J.

    2017-11-01

    We have conducted two-component, non-local thermodynamic equilibrium modelling of the CO lines from J = 1-0 through J = 13-12 in 87 galaxies observed by the Herschel SPIRE Fourier Transform Spectrometer (FTS). We find the average pressure of the cold molecular gas, traced especially by CO J = 1-0, is ˜105.0±0.5 K cm-3. The mid- to high-J lines of CO trace higher pressure gas at 106.5 ± 0.6 K cm-3; this pressure is slightly correlated with LFIR. Two components are often necessary to accurately fit the Spectral Line Energy Distributions; a one-component fit often underestimates the flux of carbon monoxide (CO) J = 1-0 and the mass. If low-J lines are not included, mass is underestimated by an order of magnitude. Even when modelling the low-J lines alone or using an αCO conversion factor, the mass should be considered to be uncertain to a factor of at least 0.4 dex, and the vast majority of the CO luminosity will be missed (median, 65 per cent). We find a very large spread in our derived values of αCO, though they do not have a discernible trend with LFIR; the best fit is a constant 0.7 M⊙ (K km s- 1 pc2)-1, with a standard deviation of 0.36 dex, and a range of 0.3-1.6 M⊙ (K km s- 1 pc2)-1. We find average molecular gas depletion times (τdep) of 108 yr that decrease with increasing star formation rate. Finally, we note that the J = 11-10/J = 1-0 line flux ratio is diagnostic of the warm component pressure, and discuss the implications of this comprehensive study of SPIRE FTS extragalactic spectra for future study post-Herschel.

  12. Humidity control device in a reactor container

    International Nuclear Information System (INIS)

    Aizawa, Motohiro; Igarashi, Hiroo; Osumi, Katsumi; Kimura, Takashi.

    1986-01-01

    Purpose: To provide a device capable of maintaining the inside of a container under high humidity circumstantial conditions causing less atmospheric corrosions, in order to prevent injuries due to atmospheric corrosions to smaller diameter stainless steel pipeways in the reactor container. Constitution: Stress corrosion cracks (SCC) to the smaller diameter stainless steel pipeways are caused dependent on the relative humidity and it is effective as the countermeasure against SCC to maintain the relative humidity at a low level less than 30 % or high level greater than 60 %. Based on the above findings, a humidity control device is disposed so as to maintain the relative humidity for the atmosphere within a reactor core on a higher humidity region. The device is adapted such that recycling gas in the dry-well coolant circuit is passed through an orifice to atomize the water introduced from feedwater pipe and introduce into a reactor core or such that the recycling gases in the dry-well cooling circuit are bubbled into water to remove chlorine gas in the reactor container gas thereby increasing the humidity in the reactor container. (Kamimura, M.)

  13. Sensitivity Analysis of Snow Patterns in Swiss Ski Resorts to Shifts in Temperature, Precipitation and Humidity Under Condition of Climate Change

    Science.gov (United States)

    Uhlmann, B.; Goyette, S.; Beniston, M.

    2008-12-01

    The value of snow as a resource has considerably increased in Swiss mountain regions, in particular in the context of winter tourism. In the perspective of a warming climate, it is thus important to quantify the potential changes in snow amount and duration that could have large repercussions on the economy of ski resorts. Because of the fine spatial variability of snow, the use of a Surface Energy Balance Model (SEBM) is adequate to simulate local snow cover evolution. A perturbation method has been developed to generate plausible future meteorological input data required for SEBM simulations in order to assess the changes in snow cover patterns. Current and future snow depths have also been simulated within the ski areas themselves. The results show a large decrease of the snow depths and duration, even at high elevation in a warmer climate and emphasize the sensitivity of snow to topographical characteristics of the resorts. The study highlights the fact that not only the altitude of a domain but also its exposure, localization inland and slope gradients need to be taken into account when evaluating current and future snow depths. This method enables a precise assessment of the snow pattern over a small area.

  14. G-warm inflation

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Ramón, E-mail: ramon.herrera@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Casilla 4059, Valparaíso (Chile)

    2017-05-01

    A warm inflationary universe in the context of Galileon model or G-model is studied. Under a general formalism we study the inflationary dynamics and the cosmological perturbations considering a coupling of the form G (φ, X )= g (φ) X . As a concrete example, we consider an exponential potential together with the cases in which the dissipation and Galilean coefficients are constants. Also, we study the weak regime given by the condition R <1+3 gH φ-dot , and the strong regime in which 1< R +3 gH φ-dot . Additionally, we obtain constraints on the parameters during the evolution of G-warm inflation, assuming the condition for warm inflation in which the temperature T > H , the conditions or the weak and strong regimes, together with the consistency relation r = r ( n {sub s} ) from Planck data.

  15. G-warm inflation

    Science.gov (United States)

    Herrera, Ramón

    2017-05-01

    A warm inflationary universe in the context of Galileon model or G-model is studied. Under a general formalism we study the inflationary dynamics and the cosmological perturbations considering a coupling of the form G(phi,X)=g(phi) X. As a concrete example, we consider an exponential potential together with the cases in which the dissipation and Galilean coefficients are constants. Also, we study the weak regime given by the condition RR+3gHdot phi. Additionally, we obtain constraints on the parameters during the evolution of G-warm inflation, assuming the condition for warm inflation in which the temperature T>H, the conditions or the weak and strong regimes, together with the consistency relation r=r(ns) from Planck data.

  16. Hands-on Humidity.

    Science.gov (United States)

    Pankiewicz, Philip R.

    1992-01-01

    Presents five hands-on activities that allow students to detect, measure, reduce, and eliminate moisture. Students make a humidity detector and a hygrometer, examine the effects of moisture on different substances, calculate the percent of water in a given food, and examine the absorption potential of different desiccants. (MDH)

  17. Effect of humidity on radon exhalation rate from concrete

    International Nuclear Information System (INIS)

    Yamanishi, Hirokuni; Obayashi, Haruo; Tsuji, Naruhito; Nakayoshi, Hisao

    1998-01-01

    The objective of the present study is evaluation of seasonal humidity effect on radon exhalation rate from concrete. Three concrete pieces have been placed in three different fixed humidity circumstances for about a year. The three fixed humidities are selected 3, 10, 25 g m -3 in absolute humidity, those correspond to dry condition as control, winter and summer, respectively. Radon exhalation rate from each concrete piece is measured every one month during humidity exposure. Under the lower humidity, radon exhalation rate from concrete is small. On the contrary, radon exhalation rate is large in the higher humidity circumstance. This trend is consistent with the seasonal variation of indoor air radon concentration in low air-exchange-rate room. (author)

  18. Low Humidity Characteristics of Polymer-Based Capacitive Humidity Sensors

    OpenAIRE

    Majewski Jacek

    2017-01-01

    Polymer-based capacitive humidity sensors emerged around 40 years ago; nevertheless, they currently constitute large part of sensors’ market within a range of medium (climatic and industrial) humidity 20−80%RH due to their linearity, stability and cost-effectiveness. However, for low humidity values (0−20%RH) that type of sensor exhibits increasingly nonlinear characteristics with decreasing of humidity values. This paper presents the results of some experimental trials of CMOS polymer-based ...

  19. Humidity effects on wire insulation breakdown strength.

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  20. Overview of humidity driven reliability issues of electronics

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2017-01-01

    Electronic control units, power modules, and consumer electronics are used today in a wide variety of varying climatic conditions. Varying external climatic conditions of temperature and humidity can cause an uncontrolled local climate inside the device enclosure. Uncontrolled humidity together w...

  1. Methods of humidity determination Part II: Determination of material humidity

    OpenAIRE

    Rübner, Katrin; Balköse, Devrim; Robens, E.

    2008-01-01

    Part II covers the most common methods of measuring the humidity of solid material. State of water near solid surfaces, gravimetric measurement of material humidity, measurement of water sorption isotherms, chemical methods for determination of water content, measurement of material humidity via the gas phase, standardisation, cosmonautical observations are reviewed.

  2. Preferred Air Velocity and Local Cooling Effect of desk fans in warm environments

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.

    2013-01-01

    to compensate for higher environmental temperatures at the expense of no or relatively low energy consumption. When using desk fans, local air movement is generated around the occupant and a certain cooling effect is perceived. The impact of the local air movement generated by different air flow patterns......Common experiences, standards, and laboratory studies show that increased air velocity helps to offset warm sensation due to high environmental temperatures. In warm climate regions the opening of windows and the use of desk or ceiling fans are the most common systems to generate increased airflows......, and the possibility to keep comfortable conditions for the occupants in warm environments were evaluated in studies with human subjects. In an office-like climatic chamber, the effect of higher air velocity was investigated at room temperatures between 26°C to 34°C and at constant absolute humidity of 12.2 g...

  3. Application of Humidity-Controlled Dynamic Mechanical Analysis (DMA-RH to Moisture-Sensitive Edible Casein Films for Use in Food Packaging

    Directory of Open Access Journals (Sweden)

    Laetitia M. Bonnaillie

    2015-01-01

    Full Text Available Protein-based and other hydrophilic thin films are promising materials for the manufacture of edible food packaging and other food and non-food applications. Calcium caseinate (CaCas films are highly hygroscopic and physical characterization under broad environmental conditions is critical to application development and film optimization. A new technology, humidity-controlled dynamic mechanical analysis (DMA-RH was explored to characterize CaCas/glycerol films (3:1 ratio during isohume temperature (T ramps and steps, and isothermal RH ramps and steps, to determine their mechanical and moisture-sorption properties during extensive T and RH variations. When RH and/or T increased, CaCas/Gly films became strongly plasticized and underwent several primary and secondary humidity-dependent transition temperatures (or transition humidities; the CaCas/Gly network hypothetically rearranged itself to adapt to the increased water-content and heat-induced molecular mobility. Between 5–40 °C and 20%–61% RH, moisture-sorption was rapid and proportional to humidity between transition points and accelerated greatly during transitions. CaCas/Gly films seemed unsuitable for storage or utilization in warm/humid conditions as they lost their mechanical integrity around Tm ~ 40 °C at 50% RH and Tm decreased greatly with increased RH. However, below Tm, both moisture- and heat-induced structural changes in the films were fully reversible and casein films may withstand a variety of moderate abuse conditions.

  4. On the Breeding of Bivoltine Breeds of the Silkworm, Bombyx mori L. (Lepidoptera: Bombycidae, Tolerant to High Temperature and High Humidity Conditions of the Tropics

    Directory of Open Access Journals (Sweden)

    Harjeet Singh

    2010-01-01

    Full Text Available The hot climatic conditions of tropics prevailing particularly in summer are contributing to the poor performance of the bivoltine breeds and the most important aspect is that many quantitative characters such as viability and cocoon traits decline sharply when temperature is high. Hence, in a tropical country like India, it is very essential to develop bivoltine breeds/hybrids which can withstand the high temperature stress conditions. This has resulted in the development of CSR18 × CSR19, compatible hybrid for rearing throughout the year by utilizing Japanese thermotolerant hybrids as breeding resource material. Though, the introduction of CSR18 × CSR19 in the field during summer months had considerable impact, the productivity level and returns realized do not match that of other productive CSR hybrids. Therefore, the acceptance level of this hybrid with the farmers was not up to the expected level. This has necessitated the development of a temperature tolerant hybrid with better productivity traits than CSR18 × CSR19. Though, it was a difficult task to break the negative correlation associated with survival and productivity traits, attempts on this line had resulted in the development of CSR46 × CSR47, a temperature tolerant bivoltine hybrid with better productivity traits than CSR18 × CSR19. However, though, these hybrids are tolerant to high temperature environments, they are not tolerant to many of the silkworm diseases. Keeping this in view, an attempt is made to develop silkworm hybrids tolerant to high temperature environments.

  5. Interactive effects of ocean acidification and warming on coral reef associated epilithic algal communities under past, present-day and future ocean conditions

    Science.gov (United States)

    Vogel, N.; Cantin, N. E.; Strahl, J.; Kaniewska, P.; Bay, L.; Wild, C.; Uthicke, S.

    2016-06-01

    Epilithic algal communities play critical ecological roles on coral reefs, but their response to individual and interactive effects of ocean warming (OW) and ocean acidification (OA) is still largely unknown. We investigated growth, photosynthesis and calcification of early epilithic algal community assemblages exposed for 6 months to four temperature profiles (-1.1, ±0.0, +0.9, +1.6 °C) that were crossed with four carbon dioxide partial pressure (pCO2) levels (360, 440, 650, 940 µatm), under flow-through conditions and natural light regimes. Additionally, we compared the cover of heavily calcified crustose coralline algae (CCA) and lightly calcified red algae of the genus Peyssonnelia among treatments. Increase in cover of epilithic communities showed optima under moderately elevated temperatures and present pCO2, while cover strongly decreased under high temperatures and high-pCO2 conditions, particularly due to decreasing cover of CCA. Similarly, community calcification rates were strongly decreased at high pCO2 under both measured temperatures. While final cover of CCA decreased under high temperature and pCO2 (additive negative effects), cover of Peyssonnelia spp. increased at high compared to annual average and moderately elevated temperatures. Thus, cover of Peyssonnelia spp. increased in treatment combinations with less CCA, which was supported by a significant negative correlation between organism groups. The different susceptibility to stressors most likely derived from a different calcification intensity and/or mineral. Notably, growth of the epilithic communities and final cover of CCA were strongly decreased under reduced-pCO2 conditions compared to the present. Thus, CCA may have acclimatized from past to present-day pCO2 conditions, and changes in carbonate chemistry, regardless in which direction, negatively affect them. However, if epilithic organisms cannot further acclimatize to OW and OA, the interacting effects of both factors may change

  6. Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold-edge range limit under ambient and warmed conditions

    Science.gov (United States)

    Moyes, Andrew B.; Germino, Matthew J.; Kueppers, Lara M.

    2015-01-01

    Climate change is altering plant species distributions globally, and warming is expected to promote uphill shifts in mountain trees. However, at many cold-edge range limits, such as alpine treelines in the western United States, tree establishment may be colimited by low temperature and low moisture, making recruitment patterns with warming difficult to predict.

  7. Global warming

    International Nuclear Information System (INIS)

    Houghton, John

    2005-01-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources

  8. Ambient humidity and the skin: the impact of air humidity in healthy and diseased states.

    Science.gov (United States)

    Goad, N; Gawkrodger, D J

    2016-08-01

    Humidity, along with other climatic factors such as temperature and ultraviolet radiation, can have an important impact on the skin. Limited data suggest that external humidity influences the water content of the stratum corneum. An online literature search was conducted through Pub-Med using combinations of the following keywords: skin, skin disease, humidity, dermatoses, dermatitis, eczema, and mist. Publications included in this review were limited to (i) studies in humans or animals, (ii) publications showing relevance to the field of dermatology, (iii) studies published in English and (iv) publications discussing humidity as an independent influence on skin function. Studies examining environmental factors as composite influences on skin health are only included where the impact of humidity on the skin is also explored in isolation of other environmental factors. A formal systematic review was not feasible for this topic due to the heterogeneity of the available research. Epidemiological studies indicated an increase in eczema with low internal (indoors) humidity and an increase in eczema with external high humidity. Other studies suggest that symptoms of dry skin appear with low humidity internal air-conditioned environments. Murine studies determined that low humidity caused a number of changes in the skin, including the impairment of the desquamation process. Studies in humans demonstrated a reduction in transepidermal water loss (TEWL) (a measure of the integrity of the skin's barrier function) with low humidity, alterations in the water content in the stratum corneum, decreased skin elasticity and increased roughness. Intervention with a humidifying mist increased the water content of the stratum corneum. Conversely, there is some evidence that low humidity conditions can actually improve the barrier function of the skin. Ambient relative humidity has an impact on a range of parameters involved in skin health but the literature is inconclusive. Further

  9. Analysis of the methods for the achievement of comfort conditions of humidity and temperature in energetically efficient designs; Analisis de los mtodos para lograr condiciones de confort higrotermico en disenos energeticamente eficientes

    Energy Technology Data Exchange (ETDEWEB)

    Mesa A., N. A.; Morillon G., D. [Division de Estudios de Posgrado de la Facultad de Arquitectura, Universidad Nacional Autonoma de Mexico (Mexico)

    1997-12-31

    This paper presents the analysis of the tools commonly utilized in Bioclimatic Design, for the achievement of humidity an temperature comfort conditions in architectonic spaces. The analysis was performed by means of field studies and experimentally for different sport activities, carried out in spaces designed for each purpose. In the experimental part, inside ambient temperature and relative humidity were measured in the different spaces where sport activities were conducted, such as calisthenics, dance, judo, wrestling, weight lifting, boxing, basket-ball, volley-ball, gymnastics and fencing. At the same time an inquiry was conducted among their occupants in respect to the thermal sensation they experimented while conducting such activities. The results obtained in the inquiry were compared with the results reported by other researchers, by means of tables and psychometric diagrams as optimum values for temperature comfort. As a conclusion it was decided that the graphic and mathematical methods analyzed, are based on a sedentary activity, therefore in using them for the design of spaces for different activities uncomfortable conditions are experimented with the consequential necessity of air conditioning, which implies energy consumption and the corresponding expenditure, lastly it is necessary to adapt these tools, that is, consider the activity that is going to be performed in the buildings. [Espanol] En este documento se presenta el analisis de las herramientas, comunmente utilizadas en Diseo Bioclimatico, para lograr el confort higrotermico de espacios arquitectonicos, el analisis se realizo mediante estudios de campo y experimental, para diversas actividades deportivas, llevadas a cabo en espacios disenados para ello. En la parte experimental, se tomaron mediciones de temperatura y humedad relativa internas, de los distintos espacios en los cuales se desarrollaban las actividades deportivas, tales como calistenia, danza, judo, lucha, trabajo con pesas

  10. Analysis of the methods for the achievement of comfort conditions of humidity and temperature in energetically efficient designs; Analisis de los mtodos para lograr condiciones de confort higrotermico en disenos energeticamente eficientes

    Energy Technology Data Exchange (ETDEWEB)

    Mesa A, N A; Morillon G, D [Division de Estudios de Posgrado de la Facultad de Arquitectura, Universidad Nacional Autonoma de Mexico (Mexico)

    1998-12-31

    This paper presents the analysis of the tools commonly utilized in Bioclimatic Design, for the achievement of humidity an temperature comfort conditions in architectonic spaces. The analysis was performed by means of field studies and experimentally for different sport activities, carried out in spaces designed for each purpose. In the experimental part, inside ambient temperature and relative humidity were measured in the different spaces where sport activities were conducted, such as calisthenics, dance, judo, wrestling, weight lifting, boxing, basket-ball, volley-ball, gymnastics and fencing. At the same time an inquiry was conducted among their occupants in respect to the thermal sensation they experimented while conducting such activities. The results obtained in the inquiry were compared with the results reported by other researchers, by means of tables and psychometric diagrams as optimum values for temperature comfort. As a conclusion it was decided that the graphic and mathematical methods analyzed, are based on a sedentary activity, therefore in using them for the design of spaces for different activities uncomfortable conditions are experimented with the consequential necessity of air conditioning, which implies energy consumption and the corresponding expenditure, lastly it is necessary to adapt these tools, that is, consider the activity that is going to be performed in the buildings. [Espanol] En este documento se presenta el analisis de las herramientas, comunmente utilizadas en Diseo Bioclimatico, para lograr el confort higrotermico de espacios arquitectonicos, el analisis se realizo mediante estudios de campo y experimental, para diversas actividades deportivas, llevadas a cabo en espacios disenados para ello. En la parte experimental, se tomaron mediciones de temperatura y humedad relativa internas, de los distintos espacios en los cuales se desarrollaban las actividades deportivas, tales como calistenia, danza, judo, lucha, trabajo con pesas

  11. Should Workers Avoid Consumption of Chilled Fluids in a Hot and Humid Climate?

    Directory of Open Access Journals (Sweden)

    Matt B. Brearley

    2017-12-01

    Full Text Available Despite provision of drinking water as the most common method of occupational heat stress prevention, there remains confusion in hydration messaging to workers. During work site interactions in a hot and humid climate, workers commonly report being informed to consume tepid fluids to accelerate rehydration. When questioned on the evidence supporting such advice, workers typically cite that fluid absorption is delayed by ingestion of chilled beverages. Presumably, delayed absorption would be a product of fluid delivery from the gut to the intestines, otherwise known as gastric emptying. Regulation of gastric emptying is multifactorial, with gastric volume and beverage energy density the primary factors. If gastric emptying is temperature dependent, the impact of cooling is modest in both magnitude and duration (≤ 5 minutes due to the warming of fluids upon ingestion, particularly where workers have elevated core temperature. Given that chilled beverages are most preferred by workers, and result in greater consumption than warm fluids during and following physical activity, the resultant increased consumption of chilled fluids would promote gastric emptying through superior gastric volume. Hence, advising workers to avoid cool/cold fluids during rehydration appears to be a misinterpretation of the research. More appropriate messaging to workers would include the thermal benefits of cool/cold fluid consumption in hot and humid conditions, thereby promoting autonomy to trial chilled beverages and determine personal preference. In doing so, temperature-based palatability would be maximized and increase the likelihood of workers maintaining or restoring hydration status during and after their work shift. Keywords: Fluid consumption, gastric emptying, hot and humid conditions, hydration, occupational

  12. Performance of desiccant air conditioning system with geothermal energy under different climatic conditions

    International Nuclear Information System (INIS)

    El-Agouz, S.A.; Kabeel, A.E.

    2014-01-01

    Highlights: • The performance of the hybrid air conditioning system is studied. • The influence of important operating parameters are estimated. • The ventilation, makeup and mix cycles are investigated at different climate. • The highest COP of the hybrid air conditioning system is 1.03. • The hybrid system provides a human thermal comfort at different climates. - Abstract: Energy saving still and continue a major seek in our life, due to the continuous increase in energy consumptions. So, a desiccant air conditioning system with geothermal energy is conducted in the current study. The thermal analysis of air conditioning system with its different components desiccant wheel, solar collector, heat exchanger, ground heat exchanger and water spray evaporative cooler is presented. Three different air conditioning cycles are simulated in the current study for different zones like: hot-dry zone, warm-dry zone, hot-humid zone and the warm-humid zone. The results show that the desiccant air conditioning system successfully provides a better thermal comfort condition in different climates. This hybrid system significantly decreases the supplied air temperature from 12.7 to 21.7 °C at different climate zones. When ω in , air and T Reg increasing, COP decreases and the ventilation cycle provides the better COP. The highest COP value of the desiccant air conditioning system is about 1.03 while the lowest value is about 0.15. The SHR of makeup cycle is higher than that ventilation cycle at warm and hot-humid zone and vice versa at warm and hot-dry zone. The highest SHR value of the desiccant air conditioning system is about 0.99 while the lowest value is about 0.2. The T sup,air , ω sup,air , COP and SHR isolines may easily be used for pre-evaluating of various cooling cycles in different climates. The hybrid system provides a human thermal comfort at different climates

  13. Temperature, humidity and time. Combined effects on radiochromic film dosimeters

    DEFF Research Database (Denmark)

    Abdel-Fattah, A.A.; Miller, A.

    1996-01-01

    The effects of both relative humidity and temperature during irradiation on the dose response of FWT-60-00 and Riso B3 radiochromic film dosimeters have been investigated in the relative humidity (RH) range 11-94% and temperature range 20-60 degrees C for irradiation by Co-60 photons and 10-Me......V electrons. The results show that humidity and temperature cannot be treated as independent variables, rather there appears to be interdependence between absorbed dose, temperature, and humidity. Dose rate does not seem to play a significant role. The dependence of temperature during irradiation is +0.......25 +/- 0.1% per degrees C for the FWT-60-00 dosimeters and +0.5 +/- 0.1% per degrees C For Riso B3 dosimeters at temperatures between 20 and 50 degrees C and at relative humidities between 20 and 53%. At extreme conditions both with respect to temperature and to humidity, the dosimeters show much stronger...

  14. Thermal comfort of people in the hot and humid area of China-impacts of season, climate, and thermal history.

    Science.gov (United States)

    Zhang, Y; Chen, H; Wang, J; Meng, Q

    2016-10-01

    We conducted a climate chamber study on the thermal comfort of people in the hot and humid area of China. Sixty subjects from naturally ventilated buildings and buildings with split air conditioners participated in the study, and identical experiments were conducted in a climate chamber in both summer and winter. Psychological and physiological responses were observed over a wide range of conditions, and the impacts of season, climate, and thermal history on human thermal comfort were analyzed. Seasonal and climatic heat acclimatization was confirmed, but they were found to have no significant impacts on human thermal sensation and comfort. The outdoor thermal history was much less important than the indoor thermal history in regard to human thermal sensation, and the indoor thermal history in all seasons of a year played a key role in shaping the subjects' sensations in a wide range of thermal conditions. A warmer indoor thermal history in warm seasons produced a higher neutral temperature, a lower thermal sensitivity, and lower thermal sensations in warm conditions. The comfort and acceptable conditions were identified for people in the hot and humid area of China. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Global warming potential of material fractions occurring in source-separated organic household waste treated by anaerobic digestion or incineration under different framework conditions.

    Science.gov (United States)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-12-01

    This study compared the environmental profiles of anaerobic digestion (AD) and incineration, in relation to global warming potential (GWP), for treating individual material fractions that may occur in source-separated organic household waste (SSOHW). Different framework conditions representative for the European Union member countries were considered. For AD, biogas utilisation with a biogas engine was considered and two potential situations investigated - biogas combustion with (1) combined heat and power production (CHP) and (2) electricity production only. For incineration, four technology options currently available in Europe were covered: (1) an average incinerator with CHP production, (2) an average incinerator with mainly electricity production, (3) an average incinerator with mainly heat production and (4) a state-of-the art incinerator with CHP working at high energy recovery efficiencies. The study was performed using a life cycle assessment in its consequential approach. Furthermore, the role of waste-sorting guidelines (defined by the material fractions allowed for SSOHW) in relation to GWP of treating overall SSOHW with AD was investigated. A case-study of treating 1tonne of SSOHW under framework conditions in Denmark was conducted. Under the given assumptions, vegetable food waste was the only material fraction which was always better for AD compared to incineration. For animal food waste, kitchen tissue, vegetation waste and dirty paper, AD utilisation was better unless it was compared to a highly efficient incinerator. Material fractions such as moulded fibres and dirty cardboard were attractive for AD, albeit only when AD with CHP and incineration with mainly heat production were compared. Animal straw, in contrast, was always better to incinerate. Considering the total amounts of individual material fractions in waste generated within households in Denmark, food waste (both animal and vegetable derived) and kitchen tissue are the main material

  16. Diurnal Thermal Behavior of Pavements, Vegetation, and Water Pond in a Hot-Humid City

    Directory of Open Access Journals (Sweden)

    Xiaoshan Yang

    2015-12-01

    Full Text Available This study investigated the diurnal thermal behavior of several urban surfaces and landscape components, including pavements, vegetation, and a water pond. The field experiment was conducted in a university campus of Guangzhou, South China, which is characterized by a hot and humid summer. The temperature of ground surface and grass leaves and the air temperature and humidity from 0.1 to 1.5 m heights were measured for a period of 24 h under hot summer conditions. The results showed that the concrete and granite slab pavements elevated the temperature of the air above them throughout the day. In contrast, the trees and the pond lowered the air temperature near ground during the daytime but produced a slight warming effect during the nighttime. The influence of vegetation on air temperature and humidity is affected by the configurations of greenery. Compared to the open lawn, the grass shaded by trees was more effective in cooling and the mixture of shrub and grass created a stronger cooling effect during the nighttime. The knowledge of thermal behavior of various urban surfaces and landscape components is an important tool for planners and designers. If utilized properly, it can lead to climatic rehabilitation in urban areas and an improvement of the outdoor thermal environment.

  17. Practices for Alleviating Heat Stress of Dairy Cows in Humid Continental Climates: A Literature Review

    Science.gov (United States)

    Fournel, Sébastien; Ouellet, Véronique; Charbonneau, Édith

    2017-01-01

    Simple Summary The severity of heat stress issues on dairy cows will increase as global warming progresses. Fortunately, major advances in environmental management, including fans, misters, sprinklers, and cooled waterbeds, can attenuate the effects of thermal stress on cow health, production, and reproduction. These cooling systems were, however, tested in subtropical areas and their efficiency in northern regions is uncertain. This article assesses the potential of existing technologies to cool cows in humid continental climates through calculation of heat stress indices. Abstract Heat stress negatively affects the health and performance of dairy cows, resulting in considerable economic losses for the industry. In future years, climate change will exacerbate these losses by making the climate warmer. Physical modification of the environment is considered to be the primary means of reducing adverse effects of hot weather conditions. At present, to reduce stressful heat exposure and to cool cows, dairy farms rely on shade screens and various forms of forced convection and evaporative cooling that may include fans and misters, feed-line sprinklers, and tunnel- or cross-ventilated buildings. However, these systems have been mainly tested in subtropical areas and thus their efficiency in humid continental climates, such as in the province of Québec, Canada, is unclear. Therefore, this study reviewed the available cooling applications and assessed their potential for northern regions. Thermal stress indices such as the temperature-humidity index (THI) were used to evaluate the different cooling strategies. PMID:28468329

  18. Thermal conductivity at different humidity conditions

    DEFF Research Database (Denmark)

    Kristiansen, Finn Harken; Rode, Carsten

    1999-01-01

    by an accumulation of moisture as condensation in the parts of the insulation that lie immediately close to the cold side of the apparatus. The high l-values found are therefore of no practical importance in structures where no condensation occurs. Disregarding these condensation situations, the maximum increase...... humidified air can pass. Thus, it is possible to build up different degrees of moisture on each side of the test specimen.The thermal conductivity is determined for the following types of alternative insulation: sheep's wool, flax, paper insulation, perlite and mineral wool. The insulation products were...... Ekofiber Vind, Herawool (without support fibres), Heraflax, Isodan with and without salts, Miljø Isolering with and without salts, Perlite (water-repellent), and Rockwool A-batts for comparison.All measurements of the materials started with no affection of moisture. Nevertheless, results were achieved...

  19. Global warming

    CERN Document Server

    Hulme, M

    1998-01-01

    Global warming-like deforestation, the ozone hole and the loss of species- has become one of the late 20the century icons of global environmental damage. The threat, is not the reality, of such a global climate change has motivated governments. businesses and environmental organisations, to take serious action ot try and achieve serious control of the future climate. This culminated last December in Kyoto in the agreement for legally-binding climate protocol. In this series of three lectures I will provide a perspective on the phenomenon of global warming that accepts the scientific basis for our concern, but one that also recognises the dynamic interaction between climate and society that has always exited The future will be no different. The challenge of global warning is not to pretend it is not happening (as with some pressure groups), nor to pretend it threatens global civilisation (as with other pressure groups), and it is not even a challenge to try and stop it from happening-we are too far down the ro...

  20. Evaluation of a consolidation treatment in dolostones by mean of calcium hydroxide nanoparticles in high relative humidity conditions; Evaluacion del tratamiento de consolidacion de dolomias mediante nanoparticulas de hidroxido de calcio en condiciones de alta humedad relativa

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Villalba, L. s.; Lopez-Arce, P.; Zornoza, A.; Alvares de Buergo, M.; Fort, R.

    2011-07-01

    In this article, the results of a treatment applied to dolomitic stones using an isopropyl colloidal solution based on calcium hydroxide nanoparticles with a concentration of 2.0g/l are presented. The consolidation process in the stone has been checked before and after 28 days of exposure to 75% relative humidity. Morphologic and structural studies of the consolidating product confirmed the carbonation process. X ray diffraction, electron microscopy (TEM and ESEM), and electron diffraction carried out on the consolidating product have confirmed the transformation of portlandite phase to calcium carbonate polymorph, calcite, aragonite and vaterite. Petrophysical tests performed on the stone before and after the application of the product have shown the improvement in the physical and hydrical properties due to the increase in the ultrasound velocity and density of the material, and a decrease in the capillarity coefficient and open porosity without significant changes in colour and brightness. The application of the consolidating product in the proposed experimental conditions is a natural method, compatible with the petrological characteristics of the substrate, without secondary damages on the stone, being an effective method to improve the durability of carbonate stones. (Author) 26 refs.

  1. Changes of pressure and humidity affect olfactory function.

    Science.gov (United States)

    Kuehn, Michael; Welsch, Heiko; Zahnert, Thomas; Hummel, Thomas

    2008-03-01

    The present study aimed at investigating the question whether olfactory function changes in relation to barometric pressure and humidity. Using climate chambers, odor threshold and discrimination for butanol were tested in 75 healthy volunteers under hypobaric and hyperbaric, and different humidity conditions. Among other effects, olfactory sensitivity at threshold level, but not suprathreshold odor discrimination, was impaired in a hypobaric compared to a hyperbaric milieu, and thresholds were lower in humid, compared to relatively dry conditions. In conclusion, environmental conditions modulate the sense of smell, and may, consecutively, influence results from olfactory tests.

  2. Pre-Exercise Hyperhydration-Induced Bodyweight Gain Does Not Alter Prolonged Treadmill Running Time-Trial Performance in Warm Ambient Conditions

    Directory of Open Access Journals (Sweden)

    Eric D. B. Goulet

    2012-08-01

    Full Text Available This study compared the effect of pre-exercise hyperhydration (PEH and pre-exercise euhydration (PEE upon treadmill running time-trial (TT performance in the heat. Six highly trained runners or triathletes underwent two 18 km TT runs (~28 °C, 25%–30% RH on a motorized treadmill, in a randomized, crossover fashion, while being euhydrated or after hyperhydration with 26 mL/kg bodyweight (BW of a 130 mmol/L sodium solution. Subjects then ran four successive 4.5 km blocks alternating between 2.5 km at 1% and 2 km at 6% gradient, while drinking a total of 7 mL/kg BW of a 6% sports drink solution (Gatorade, USA. PEH increased BW by 1.00 ± 0.34 kg (P < 0.01 and, compared with PEE, reduced BW loss from 3.1% ± 0.3% (EUH to 1.4% ± 0.4% (HYP (P < 0.01 during exercise. Running TT time did not differ between groups (PEH: 85.6 ± 11.6 min; PEE: 85.3 ± 9.6 min, P = 0.82. Heart rate (5 ± 1 beats/min and rectal (0.3 ± 0.1 °C and body (0.2 ± 0.1 °C temperatures of PEE were higher than those of PEH (P < 0.05. There was no significant difference in abdominal discomfort and perceived exertion or heat stress between groups. Our results suggest that pre-exercise sodium-induced hyperhydration of a magnitude of 1 L does not alter 80–90 min running TT performance under warm conditions in highly-trained runners drinking ~500 mL sports drink during exercise.

  3. Anticipating the Emerging of Some Strategical Infectious Animal Diseases in Indonesia Related to The Effect of Global Warming and Climate Change

    OpenAIRE

    Sjamsul Bahri; T Syafriati

    2011-01-01

    The effect of global warming and climate change is changing the season, included flooding in one area and very dry in other area, changing the temperature and humidity. These changes will trigger changing of the life of biological agent (virus, bacteria, parasites and so on), variety of animal species, variety of vectors as reservoir host of animal with the role of transmitting the disease to other animal species, This condition will trigger the new animal disease (emerging disease) or old di...

  4. Humidity Graphs for All Seasons.

    Science.gov (United States)

    Esmael, F.

    1982-01-01

    In a previous article in this journal (Vol. 17, p358, 1979), a wet-bulb depression table was recommended for two simple experiments to determine relative humidity. However, the use of a graph is suggested because it gives the relative humidity directly from the wet and dry bulb readings. (JN)

  5. Humidity requirements in WSCF Laboratories

    International Nuclear Information System (INIS)

    Evans, R.A.

    1994-01-01

    The purpose of this paper is to develop and document a position on Relative Humidity (RH) requirements in the WSCF Laboratories. A current survey of equipment vendors for Organic, Inorganic and Radiochemical laboratories indicate that 25% - 80% relative humidity may meet the environmental requirements for safe operation and protection of all the laboratory equipment

  6. Scaling Potential Evapotranspiration with Greenhouse Warming (Invited)

    Science.gov (United States)

    Scheff, J.; Frierson, D. M.

    2013-12-01

    Potential evapotranspiration (PET) is a supply-independent measure of the evaporative demand of a terrestrial climate, of basic importance in climatology, hydrology, and agriculture. Future increases in PET from greenhouse warming are often cited as key drivers of global trends toward drought and aridity. The present work computes recent and business-as-usual-future Penman-Monteith (i.e. physically-based) PET fields at 3-hourly resolution in 14 modern global climate models. The %-change in local annual-mean PET over the upcoming century is almost always positive, modally low double-digit in magnitude, usually increasing with latitude, yet quite divergent between models. These patterns are understood as follows. In every model, the global field of PET %-change is found to be dominated by the direct, positive effects of constant-relative-humidity warming (via increasing vapor pressure deficit and increasing Clausius-Clapeyron slope.) This direct-warming term very accurately scales as the PET-weighted (warm-season daytime) local warming, times 5-6% per degree (related to the Clausius-Clapeyron equation), times an analytic factor ranging from about 0.25 in warm climates to 0.75 in cold climates, plus a small correction. With warming of several degrees, this product is of low double-digit magnitude, and the strong temperature dependence gives the latitude dependence. Similarly, the inter-model spread in the amount of warming gives most of the spread in this term. Additional spread in the total change comes from strong disagreement on radiation, relative-humidity, and windspeed changes, which make smaller yet substantial contributions to the full PET %-change fields.

  7. Temperature, humidity and time., Combined effects on radiochromic film dosimeters

    International Nuclear Information System (INIS)

    Abdel-Fattah, A.A.; Miller, A.

    1996-01-01

    The effects of both relative humidity and temperature during irradiation on the dose response of FWT-60-00 and Riso B3 radiochromic film dosimeters have been investigated in the relative humidity (RH) range 11-94% and temperature range 20-60 o C for irradiation by 60 Co photons and 10-MeV electrons. The results show that humidity and temperature cannot be treated as independent variables, rather there appears to be interdependence between absorbed dose, temperature, and humidity. Dose rate does not seem to play a significant role. The dependence of temperature during irradiation is + 0.25 ± 0.1% per o C for the FWT-60-00 dosimeters and +0.5 ± 0.1% per o C for Riso B3 dosimeters at temperatures between 20 and 50 o C and at relative humidities between 20 and 53%. At extreme conditions both with respect to temperature and to humidity, the dosimeters show much stronger dependences. Whenever possible one should use dosimeters sealed in pouches under controlled intermediate humidity conditions (30-50%) or, if that is impractical, one should maintain conditions of calibration as close as possible to the conditions of use. Without that precaution, severe dosimetry errors may result. (author)

  8. Herbaceous energy crops in humid lower South USA

    Energy Technology Data Exchange (ETDEWEB)

    Prine, G.M.; Woodard, K.R. [Univ. of Florida, Gainesville, FL (United States)

    1993-12-31

    The humid lower South has the long warm growing season and high rainfall conditions needed for producing high-yielding perennial herbaceous grasses and shrubs. Many potential biomass plants were evaluated during a ten-year period. Perennial tall grasses such as elephantgrass (Pennisetum purpureum), sugarcane and energycane (Saccharum spp.) and the leguminous shrub Leucaena leucocephala were the highest in biomass production. These perennial crops often have top growth killed by winter freezes and regenerate from underground parts. The tall grasses have high yields because of linear crop growth rates of 18 to 27 g m{sup 2} d{sup {minus}1} for long periods (140 to 196 d) each season. Tall grasses must be planted vegetatively, which is more costly than seed propagation, however, once established, they may persist for many seasons. Oven dry biomass yields have varied from 20 to 45 Mg ha{sup {minus}1} yr{sup {minus}1} in colder subtropical to mild temperate locations to over 60 Mg ha{sup {minus}1} yr{sup {minus}1} in the lower portion of the Florida peninsular. Highest biomass yields have been produced when irrigated with sewage effluent or when grown on phosphatic clay and muck soils in south Florida. The energy content of 1 Mg of oven dry tall grass and leucaena is equivalent to that of about 112 and 123 gallons of number 2 diesel fuel, respectively.

  9. Projected changes of snow conditions and avalanche activity in a warming climate: the French Alps over the 2020-2050 and 2070-2100 periods

    Science.gov (United States)

    Castebrunet, H.; Eckert, N.; Giraud, G.; Durand, Y.; Morin, S.

    2014-09-01

    Projecting changes in snow cover due to climate warming is important for many societal issues, including the adaptation of avalanche risk mitigation strategies. Efficient modelling of future snow cover requires high resolution to properly resolve the topography. Here, we introduce results obtained through statistical downscaling techniques allowing simulations of future snowpack conditions including mechanical stability estimates for the mid and late 21st century in the French Alps under three climate change scenarios. Refined statistical descriptions of snowpack characteristics are provided in comparison to a 1960-1990 reference period, including latitudinal, altitudinal and seasonal gradients. These results are then used to feed a statistical model relating avalanche activity to snow and meteorological conditions, so as to produce the first projection on annual/seasonal timescales of future natural avalanche activity based on past observations. The resulting statistical indicators are fundamental for the mountain economy in terms of anticipation of changes. Whereas precipitation is expected to remain quite stationary, temperature increase interacting with topography will constrain the evolution of snow-related variables on all considered spatio-temporal scales and will, in particular, lead to a reduction of the dry snowpack and an increase of the wet snowpack. Overall, compared to the reference period, changes are strong for the end of the 21st century, but already significant for the mid century. Changes in winter are less important than in spring, but wet-snow conditions are projected to appear at high elevations earlier in the season. At the same altitude, the southern French Alps will not be significantly more affected than the northern French Alps, which means that the snowpack will be preserved for longer in the southern massifs which are higher on average. Regarding avalanche activity, a general decrease in mean (20-30%) and interannual variability is

  10. The Design of Temperature and Humidity Chamber Monitor and Controller

    OpenAIRE

    Tibebu, Simachew

    2016-01-01

    The temperature and humidity chamber, (climate chamber) is a device located at the Technobothnia Education and Research Center that simulates different climate conditions. The simulated environment is used to test the capabilities of electrical equipment in different temperature and humidity conditions. The climate chamber, among other things houses a dedicated computer, the control PC, and a control software running in it which together are responsible for running and control-ling these simu...

  11. Temperature and relative humidity dependence of radiochromic film dosimeter response to gamma electron radiation

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Puhl, J.M.; Miller, A.

    1995-01-01

    on some earlier studies, their response functions have been reported to be dependent on the temperature and relative humidity during irradiation. The present study investigates differences in response over practical ranges of temperature, relative humidity, dose, and for different recent batches of films...... humidity) and should be calibrated under environmental conditions (temperature) at which they will be used routinely....

  12. Impact of individually controlled facially applied air movement on perceived air quality at high humidity

    DEFF Research Database (Denmark)

    Skwarczynski, Mariusz; Melikov, Arsen Krikor; Kaczmarczyk, J.

    2010-01-01

    and local air velocity under a constant air temperature of 26 degrees C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front...

  13. Determination of equilibrium humidities using temperature and humidity controlled X-ray diffraction (RH-XRD)

    International Nuclear Information System (INIS)

    Linnow, Kirsten; Steiger, Michael

    2007-01-01

    Confined growth of crystals in porous building materials is generally considered to be a major cause of damage. We report on the use of X-ray diffraction under controlled conditions of temperature and relative humidity (RH-XRD) for the investigation of potentially deleterious phase transition reactions. An improved procedure based on rate measurements is used for the accurate and reproducible determination of equilibrium humidities of deliquescence and hydration reactions. The deliquescence humidities of NaCl (75.4 ± 0.5% RH) and Ca(NO 3 ) 2 .4H 2 O (50.8 ± 0.7% RH) at 25 deg. C determined with this improved RH-XRD technique are in excellent agreement with available literature data. Measurement of the hydration of anhydrous Ca(NO 3 ) 2 to form Ca(NO 3 ) 2 .2H 2 O revealed an equilibrium humidity of 10.2 ± 0.3%, which is also in reasonable agreement with available data. In conclusion, dynamic X-ray diffraction measurements are an appropriate method for the accurate and precise determination of equilibrium humidities with a number of interesting future applications

  14. A Fuzzy mathematical model to estimate the effects of global warming on the vitality of Laelia purpurata orchids.

    Science.gov (United States)

    Putti, Fernando Ferrari; Filho, Luis Roberto Almeida Gabriel; Gabriel, Camila Pires Cremasco; Neto, Alfredo Bonini; Bonini, Carolina Dos Santos Batista; Rodrigues Dos Reis, André

    2017-06-01

    This study aimed to develop a fuzzy mathematical model to estimate the impacts of global warming on the vitality of Laelia purpurata growing in different Brazilian environmental conditions. In order to develop the mathematical model was considered as intrinsic factors the parameters: temperature, humidity and shade conditions to determine the vitality of plants. Fuzzy model results could accurately predict the optimal conditions for cultivation of Laelia purpurata in several sites of Brazil. Based on fuzzy model results, we found that higher temperatures and lacking of properly shading can reduce the vitality of orchids. Fuzzy mathematical model could precisely detect the effect of higher temperatures causing damages on vitality of plants as a consequence of global warming. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. High-performance membrane electrode assembly with multi-functional Pt/SnO2eSiO2/C catalyst for proton exchange membrane fuel cell operated under low-humidity conditions

    CSIR Research Space (South Africa)

    Hou, S

    2016-06-01

    Full Text Available A novel self-humidifying membrane electrode assembly (MEA) with homemade multifunctional Pt/SnO(sub2)-SiO(sub2)/C as the anode was developed to improve the performance of a proton exchange membrane fuel cell under low humidity. The MEAs' performance...

  16. Early warming of tropical South America at the last glacial-interglacial transition.

    Science.gov (United States)

    Seltzer, G O; Rodbell, D T; Baker, P A; Fritz, S C; Tapia, P M; Rowe, H D; Dunbar, R B

    2002-05-31

    Glaciation in the humid tropical Andes is a sensitive indicator of mean annual temperature. Here, we present sedimentological data from lakes beyond the glacial limit in the tropical Andes indicating that deglaciation from the Last Glacial Maximum led substantial warming at high northern latitudes. Deglaciation from glacial maximum positions at Lake Titicaca, Peru/Bolivia (16 degrees S), and Lake Junin, Peru (11 degrees S), occurred 22,000 to 19,500 calendar years before the present, several thousand years before the Bølling-Allerød warming of the Northern Hemisphere and deglaciation of the Sierra Nevada, United States (36.5 degrees to 38 degrees N). The tropical Andes deglaciated while climatic conditions remained regionally wet, which reflects the dominant control of mean annual temperature on tropical glaciation.

  17. Behavior of HEPA filters under high humidity airflows

    International Nuclear Information System (INIS)

    Ricketts, C.I.

    1992-10-01

    To help determine and improve the safety margins of High Efficiency Particulate Air (HEPA) filter units in nuclear facilities under possible accident conditions, the structural limits and failure mechanisms of filter in high-humidity airflows were established and the fundamental physical phenomena underlying filter failure or malfunction in humid air were identified. Empirical models for increases in filter pressure drop with time in terms of the relevant airstream parameters were also developed. The weaknesses of currently employed humidity countermeasures used in filter protection are discussed and fundamental explanations for reported filter failures in normal service are given. (orig./DG) [de

  18. Numerical Modelling Of Humid Air Flow Around A Porous Body

    Directory of Open Access Journals (Sweden)

    Bohojło-Wiśniewska Aneta

    2015-09-01

    Full Text Available This paper presents an example of humid air flow around a single head of Chinese cabbage under conditions of complex heat transfer. This kind of numerical simulation allows us to create a heat and humidity transfer model between the Chinese cabbage and the flowing humid air. The calculations utilize the heat transfer model in porous medium, which includes the temperature difference between the solid (vegetable tissue and fluid (air phases of the porous medium. Modelling and calculations were performed in ANSYS Fluent 14.5 software.

  19. A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations

    Science.gov (United States)

    Dai, Aiguo; Rasmussen, Roy M.; Liu, Changhai; Ikeda, Kyoko; Prein, Andreas F.

    2017-08-01

    Climate models project increasing precipitation intensity but decreasing frequency as greenhouse gases increase. However, the exact mechanism for the frequency decrease remains unclear. Here we investigate this by analyzing hourly data from regional climate change simulations with 4 km grid spacing covering most of North America using the Weather Research and Forecasting model. The model was forced with present and future boundary conditions, with the latter being derived by adding the CMIP5 19-model ensemble mean changes to the ERA-interim reanalysis. The model reproduces well the observed seasonal and spatial variations in precipitation frequency and histograms, and the dry interval between rain events over the contiguous US. Results show that overall precipitation frequency indeed decreases during the warm season mainly due to fewer light-moderate precipitation (0.1 2.0 mm/h) events, while heavy (2 10 mm/h) events increase. Dry spells become longer and more frequent, together with a reduction in time-mean relative humidity (RH) in the lower troposphere during the warm season. The increased dry hours and decreased RH lead to a reduction in overall precipitation frequency and also for light-moderate precipitation events, while water vapor-induced increases in precipitation intensity and the positive latent heating feedback in intense storms may be responsible for the large increase in intense precipitation. The size of intense storms increases while their number decreases in the future climate, which helps explain the increase in local frequency of heavy precipitation. The results generally support a new hypothesis for future warm-season precipitation: each rainstorm removes ≥7% more moisture from the air per 1 K local warming, and surface evaporation and moisture advection take slightly longer than currently to replenish the depleted moisture before the next storm forms, leading to longer dry spells and a reduction in precipitation frequency, as well as

  20. Effect of temperature and relative humidity on the development times and survival of Synopsyllus fonquerniei and Xenopsylla cheopis, the flea vectors of plague in Madagascar.

    Science.gov (United States)

    Kreppel, Katharina S; Telfer, Sandra; Rajerison, Minoarisoa; Morse, Andy; Baylis, Matthew

    2016-02-11

    Plague, a zoonosis caused by Yersinia pestis, is found in Asia, the Americas but mainly in Africa, with the island of Madagascar reporting almost one third of human cases worldwide. In the highlands of Madagascar, plague is transmitted predominantly by two flea species which coexist on the island, but differ in their distribution. The endemic flea, Synopsyllus fonquerniei, dominates flea communities on rats caught outdoors, while the cosmopolitan flea, Xenopsylla cheopis, is found mostly on rats caught in houses. Additionally S. fonquerniei seems restricted to areas above 800 m. Climatic constraints on the development of the two main vectors of plague could explain the differences in their distribution and the seasonal changes in their abundance. Here we present the first study on effects of temperature and relative humidity on the immature stages of both vector species. We examined the two species' temperature and humidity requirements under experimental conditions at five different temperatures and two relative humidities. By employing multivariate and survival analysis we established the impact of temperature and relative humidity on development times and survival for both species. Using degree-day analysis we then predicted the average developmental threshold for larvae to reach pupation and for pupae to complete development under each treatment. This analysis was undertaken separately for the two relative humidities and for the two species. Development times and time to death differed significantly, with the endemic S. fonquerniei taking on average 1.79 times longer to complete development and having a shorter time to death than X. cheopis under adverse conditions with high temperature and low humidity. Temperature had a significant effect on the development times of flea larvae and pupae. While humidity did not affect the development times of either species, it did influence the time of death of S. fonquerniei. Using degree-day analysis we estimated an

  1. Factors Influencing the Formation of Corrosive Conditions in Puget Sound and the Extreme Conditions Observed During Summer 2015 Associated with the NE Pacific Warm Anomaly (a.k.a. The Blob)

    Science.gov (United States)

    Alin, S. R.; Curry, B.; Newton, J.; Feely, R. A.; Sutton, A.

    2016-02-01

    Puget Sound is a complex glacial estuarine system that receives input from many rivers and streams, in addition to runoff from the urban and agricultural environments surrounding the southern part of the Salish Sea ecosystem. A series of glacial sills restrict estuarine circulation such that intrusions of seawater only occur episodically, resulting in long residence times in some parts of the basin. Through survey cruises and stationary time-series, we have observed the dynamic biogeochemical cycles in various sub-basins of Puget Sound since 2008. Areas of Puget Sound with restricted circulation may experience conditions of high pCO2, low pH, and low aragonite saturation state throughout the year. Historically, the highest pCO2 and lowest pH and aragonite saturation states have been observed in early fall in Hood Canal. Upwelling of dense, nutrient- and CO2-rich but oxygen-poor water along the coast provides the marine source water for Puget Sound's deep waters. We estimate that marine waters entering Puget Sound via the Strait of Juan de Fuca are now corrosive 95% of the time, representing a 26% increase in frequency since the preindustrial era. Both river inputs and intense primary production in surface waters drive remineralization in deep waters of Puget Sound basins, contributing to the formation of corrosive conditions in waters below the productive surface. In addition, we estimate that regionally enhanced atmospheric CO2 content may result in an increase in CO2 uptake in the region. In 2015 many features of the seasonal carbon cycle were accelerated relative to earlier years, as a result of the influence of the NE Pacific warm anomaly. In southern Hood Canal, the surface spring bloom began weeks earlier than usual, and in July, we saw the lowest estimated pH and aragonite saturation values in deep waters observed to date in Washington marine environments, which was about two months earlier than historical seasonal minima in pH and aragonite saturation.

  2. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    Science.gov (United States)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  3. Is Obsidian Hydration Dating Affected by Relative Humidity?

    Science.gov (United States)

    Friedman, I.; Trembour, F.W.; Smith, G.I.; Smith, F.L.

    1994-01-01

    Experiments carried out under temperatures and relative humidities that approximate ambient conditions show that the rate of hydration of obsidian is a function of the relative humidity, as well as of previously established variables of temperature and obsidian chemical composition. Measurements of the relative humidity of soil at 25 sites and at depths of between 0.01 and 2 m below ground show that in most soil environments, at depths below about 0.25 m, the relative humidity is constant at 100%. We have found that the thickness of the hydrated layer developed on obsidian outcrops exposed to the sun and to relative humidities of 30-90% is similar to that formed on other portions of the outcrop that were shielded from the sun and exposed to a relative humidity of approximately 100%. Surface samples of obsidian exposed to solar heating should hydrate more rapidly than samples buried in the ground. However, the effect of the lower mean relative humidity experiences by surface samples tends to compensate for the elevated temperature, which may explain why obsidian hydration ages of surface samples usually approximate those derived from buried samples.

  4. Gas pre-warming for improving performances of heated humidifiers in neonatal ventilation.

    Science.gov (United States)

    Schena, E; De Paolis, E; Silvestri, S

    2011-01-01

    Adequate temperature and humidification of gas delivered must be performed during long term neonatal ventilation to avoid potential adverse health effects. Literature shows that performances of heated humidifiers are, at least in some cases, quite poor. In this study, a novel approach to gas conditioning, consisting of gas warming upstream the humidification chamber, is presented. Gas pre-warming, in combination with a control strategy based on a mathematical model taking into account a number of parameters, allows to significantly improve the heated humidifier performances. The theoretical model has been validated and experimental trials have been carried out in the whole volumetric flow-rate (Q) range of neonatal ventilation (lower than 10 L · min(-1)). Experimental results (temperature values ranging from 36 °C to 38 °C and relative humidity values from 90 % to 98 % in the whole range of Q) show values very close to the ideal thermo-hygrometric conditions. The proposed solution allows to avoid vapor condensation at low flow rates and decrease of relative humidity at high flow rates.

  5. Process of long-term tunnel instability by temperature and humidity variation in sedimentary rock

    International Nuclear Information System (INIS)

    Sawada, Masataka; Okada, Tetsuji; Nakata, Eiji

    2009-01-01

    It is concerned that tunnels in the sedimentary rock are seriously damaged during the long operation after excavation, while there are various plans to construct significant underground facilities such as a high-level radioactive waste disposal facility. A case history study on tunnel instability is important in order to assess and evaluate tunnel instability behavior. In this respect, an accelerated tunnel deformation test by removing tunnel supports was conducted. Instability of tunnel wall was observed before and after this test in the summer, when it is warm and humid in the test tunnel. Fiber optic sensing detected the instability. Scale of collapsed rock was evaluated from the variation of shape of tunnel cross-section measured by a 3-D lazar measurement tool. The maximum size of collapsed rock block is 1m in diameter. Surrounding sandstone has such a characteristic that crack growth is much faster and its strength decreases gradually in the condition of high relative humidity. Numerical simulation considering this decrease of rock strength reproduced the instable zone around the test tunnel. (author)

  6. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold. Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  7. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold.

    Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  8. Humidity effects on hydrophilic film dosimeter systems

    International Nuclear Information System (INIS)

    Gehringer, P.; Eschweiler, H.; Proksch, E.

    1979-11-01

    At dose-rates typical for 60 Co-gamma irradiation sources the radiation response of hexahydroxyethyl pararosanilin cyanide/50μm nylon radachromic films is dependent upon dose-rate as well as upon the moisture content of the film. Under equilibrium moisture conditions, the response measured at 606 nm 24 hours after end of irradiation shows its highest dose-rate dependence at about 32 % r.h. A decrease in dose-rate from 2.8 to 0.039 Gy.s -1 results in decrease in response by 17%. At higher humidities, the sensitivity of the film as well as the rate dependence decreases and at 86% r.h. no discernible dose-rate effect could be found. At nominal 0 % r.h. a second absorption band at 412 nm appears which is converted completely to an additional 606 nm absorption by exposure to a humid atmosphere. After that procedure the resultant response is somewhat lower but shows almost the same dose-rate dependence as at 32% r.h. Preliminary results concerning the influence of humidity on the response of Blue Cellophane are given, too. (author)

  9. Warm-up and performance in competitive swimming.

    Science.gov (United States)

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Marinho, Daniel A

    2014-03-01

    Warm-up before physical activity is commonly accepted to be fundamental, and any priming practices are usually thought to optimize performance. However, specifically in swimming, studies on the effects of warm-up are scarce, which may be due to the swimming pool environment, which has a high temperature and humidity, and to the complexity of warm-up procedures. The purpose of this study is to review and summarize the different studies on how warming up affects swimming performance, and to develop recommendations for improving the efficiency of warm-up before competition. Most of the main proposed effects of warm-up, such as elevated core and muscular temperatures, increased blood flow and oxygen delivery to muscle cells and higher efficiency of muscle contractions, support the hypothesis that warm-up enhances performance. However, while many researchers have reported improvements in performance after warm-up, others have found no benefits to warm-up. This lack of consensus emphasizes the need to evaluate the real effects of warm-up and optimize its design. Little is known about the effectiveness of warm-up in competitive swimming, and the variety of warm-up methods and swimming events studied makes it difficult to compare the published conclusions about the role of warm-up in swimming. Recent findings have shown that warm-up has a positive effect on the swimmer's performance, especially for distances greater than 200 m. We recommend that swimmers warm-up for a relatively moderate distance (between 1,000 and 1,500 m) with a proper intensity (a brief approach to race pace velocity) and recovery time sufficient to prevent the early onset of fatigue and to allow the restoration of energy reserves (8-20 min).

  10. Relative Humidity in the Tropopause Saturation Layer

    Science.gov (United States)

    Selkirk, H. B.; Schoeberl, M. R.; Pfister, L.; Thornberry, T. D.; Bui, T. V.

    2017-12-01

    The tropical tropopause separates two very different atmospheric regimes: the stable lower stratosphere where the air is both extremely dry and nearly always so, and a transition layer in the uppermost tropical troposphere, where humidity on average increases rapidly downward but can undergo substantial temporal fluctuations. The processes that control the humidity in this layer below the tropopause include convective detrainment (which can result in either a net hydration or dehydration), slow ascent, wave motions and advection. Together these determine the humidity of the air that eventually passes through the tropopause and into the stratosphere, and we refer to this layer as the tropopause saturation layer or TSL. We know from in situ water vapor observations such as Ticosonde's 12-year balloonsonde record at Costa Rica that layers of supersaturation are frequently observed in the TSL. While their frequency is greatest during the local rainy season from June through October, supersaturation is also observed in the boreal winter dry season when deep convection is well south of Costa Rica. In other words, local convection is not a necessary condition for the presence of supersaturation. Furthermore, there are indications from airborne measurements during the recent POSIDON campaign at Guam that if anything deep convection tends to `reset' the TSL locally to a state of just-saturation. Conversely, it may be that layers of supersaturation are the result of slow ascent. To explore these ideas we take Ticosonde water vapor observations from the TSL, stratify them on the basis of relative humidity and report on the differences in the the history of upstream convective influence between supersaturated parcels and those that are not.

  11. Ultrahigh humidity sensitivity of graphene oxide.

    Science.gov (United States)

    Bi, Hengchang; Yin, Kuibo; Xie, Xiao; Ji, Jing; Wan, Shu; Sun, Litao; Terrones, Mauricio; Dresselhaus, Mildred S

    2013-01-01

    Humidity sensors have been extensively used in various fields, and numerous problems are encountered when using humidity sensors, including low sensitivity, long response and recovery times, and narrow humidity detection ranges. Using graphene oxide (G-O) films as humidity sensing materials, we fabricate here a microscale capacitive humidity sensor. Compared with conventional capacitive humidity sensors, the G-O based humidity sensor has a sensitivity of up to 37800% which is more than 10 times higher than that of the best one among conventional sensors at 15%-95% relative humidity. Moreover, our humidity sensor shows a fast response time (less than 1/4 of that of the conventional one) and recovery time (less than 1/2 of that of the conventional one). Therefore, G-O appears to be an ideal material for constructing humidity sensors with ultrahigh sensitivity for widespread applications.

  12. Searching for new solutions Humidity measurements in the environments

    Directory of Open Access Journals (Sweden)

    Gianina Creţu

    2008-05-01

    Full Text Available More attention is nowadays being paid to thequality of the air we breathe, resulting in an increasingneed for humidity measurements in the home and officeenvironments. Maintaining the proper level of relativehumidity is also necessary to avoid conditions of extremehumidity condensation in buildings.The facts that construction problems and excessive waterand humidity often go together is well-known around theworld today. Moisture and water damage is a wellknown problem in construction in many countries.Problems of all construction are caused by humidity and50 per cent of all buildings have some kind of moisturerelatedproblems. Growing awareness of percentages suchas these has led to greater attention being paid toconstruction humidity and its measurement throughoutthe world in recent years.This paper presents a condensed review of nowadayshumidity sensors technology, problem implicated andsome modern tendencies.

  13. Sudden Stratospheric Warming Compendium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sudden Stratospheric Warming Compendium (SSWC) data set documents the stratospheric, tropospheric, and surface climate impacts of sudden stratospheric warmings. This...

  14. The Great Warming Brian Fagan

    Science.gov (United States)

    Fagan, B. M.

    2010-12-01

    The Great Warming is a journey back to the world of a thousand years ago, to the Medieval Warm Period. Five centuries of irregular warming from 800 to 1250 had beneficial effects in Europe and the North Atlantic, but brought prolonged droughts to much of the Americas and lands affected by the South Asian monsoon. The book describes these impacts of warming on medieval European societies, as well as the Norse and the Inuit of the far north, then analyzes the impact of harsh, lengthy droughts on hunting societies in western North America and the Ancestral Pueblo farmers of Chaco Canyon, New Mexico. These peoples reacted to drought by relocating entire communities. The Maya civilization was much more vulnerable that small-scale hunter-gatherer societies and subsistence farmers in North America. Maya rulers created huge water storage facilities, but their civilization partially collapsed under the stress of repeated multiyear droughts, while the Chimu lords of coastal Peru adapted with sophisticated irrigation works. The climatic villain was prolonged, cool La Niñalike conditions in the Pacific, which caused droughts from Venezuela to East Asia, and as far west as East Africa. The Great Warming argues that the warm centuries brought savage drought to much of humanity, from China to Peru. It also argues that drought is one of the most dangerous elements in today’s humanly created global warming, often ignored by preoccupied commentators, but with the potential to cause over a billion people to starve. Finally, I use the book to discuss the issues and problems of communicating multidisciplinary science to the general public.

  15. Air humidity requirements for human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole

    1999-01-01

    level near 100% rh. For respiratory comfort are the requirements much more stringent and results in lower permissible indoor air humidities. Compared with the upper humidity limit specified in existing thermal comfort standards, e.g. ASHRAE Addendum 55a, the humidity limit based on skin humidity......Upper humidity limits for the comfort zone determined from two recently presented models for predicting discomfort due to skin humidity and insufficient respiratory cooling are proposed. The proposed limits are compared with the maximum permissible humidity level prescribed in existing standards...... for the thermal indoor environment. The skin humidity model predicts discomfort as a function of the relative humidity of the skin, which is determined by existing models for human heat and moisture transfer based on environmental parameters, clothing characteristics and activity level. The respiratory model...

  16. The anthropogenic influence on heat and humidity in the US Midwest

    Science.gov (United States)

    Inda Diaz, H. A.; O'Brien, T. A.; Stone, D. A.

    2016-12-01

    Heatwaves, and extreme temperatures in general, have a wide range of negative impacts on society, and particularly on human health. In addition to temperature, humidity plays a key role in regulating human body temperature, with higher humidities tending to reduce the effectiveness of perspiration. There is recent theoretical and observational evidence that co-occurring extreme heat and humidity can potentially have a much more dramatic impact on human health than either extreme in isolation. There is an abundance of observational evidence indicating that anthropogenic increases in greenhouse gas (GHG) forcing have contributed to an increase in the intensity and frequency of temperature extremes on a global scale. However, aside from purely thermodynamically-driven increases in near-surface humidity, there is a paucity of similar evidence for anthropogenic impacts on humidity. Thermodynamic scaling would suggest that air masses originating from the ocean would be associated with higher specific humidity in a warmer world, and transpiration from irrigated crops could further increase humidity in warm air masses. In order to explore the role of anthropogenic GHG forcing on the co-occurrence of temperature and humidity extremes in the Midwestern United States (US), we evaluate a large ensemble of global climate model simulations with and without anthropogenic GHG forcing. In particular, we examine differences between the probability distributions of near-surface temperature, humidity, wet-bulb temperature, and the joint distribution of temperature and humidity in this ensemble. Finally, we explore augmenting this experimental framework with additional simulations to explore the role of anthropogenic changes in the land surface, and in particular irrigated crops, on co-occurring extreme heat and humidity.

  17. Effect of varying relative humidity on the rancidity of cashew ...

    African Journals Online (AJOL)

    Post harvest deterioration by microbes due to improper storage condition is considered to be the major cause of spoilage and rancidity of most oil-bearing seeds like cashew nuts through lipolytic action of lipase enzyme. Roasted cashew nuts were subjected to four different storage conditions with different relative humidity ...

  18. Air humidity as key determinant of morphogenesis and productivity of the rare temperate woodland fern Polystichum braunii.

    Science.gov (United States)

    Schwerbrock, R; Leuschner, C

    2016-07-01

    (1) Most ferns are restricted to moist and shady habitats, but it is not known whether soil moisture or atmospheric water status are decisive limiting factors, or if both are equally important. (2) Using the rare temperate woodland fern Polystichum braunii, we conducted a three-factorial climate chamber experiment (soil moisture (SM) × air humidity (RH) × air temperature (T)) to test the hypotheses that: (i) atmospheric water status (RH) exerts a similarly large influence on the fern's biology as soil moisture, and (ii) both a reduction in RH and an increase in air temperature reduce vigour and growth. (3) Nine of 11 morphological, physiological and growth-related traits were significantly influenced by an increase in RH from 65% to 95%, leading to higher leaf conductance, increased above- and belowground productivity, higher fertility, more epidermal trichomes and fewer leaf deformities under high air humidity. In contrast, soil moisture variation (from 66% to 70% in the moist to ca. 42% in the dry treatment) influenced only one trait (specific leaf area), and temperature variation (15 °C versus 19 °C during daytime) only three traits (leaf conductance, root/shoot ratio, specific leaf area); RH was the only factor affecting productivity. (4) This study is the first experimental proof for a soil moisture-independent air humidity effect on the growth of terrestrial woodland ferns. P. braunii appears to be an air humidity hygrophyte that, whithin the range of realistic environmental conditions set in this study, suffers more from a reduction in RH than in soil moisture. A climate warming-related increase in summer temperatures, however, seems not to directly threaten this endangered species. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Condições de temperatura, umidade relativa e atmosfera controlada para o armazenamento de cebolas da cultivar 'Crioula' Temperature, relative humidity and controlled atmosphere conditions to storage 'Crioula' onions

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    2010-08-01

    Full Text Available O objetivo deste trabalho foi de avaliar condições de armazenamento para ampliar o período de pós-colheita de cebola da cultivar 'Crioula'. Para tanto, foram executados três experimentos para avaliar o efeito da temperatura, umidade relativa (UR e atmosfera controlada (AC: experimento 1 (diferentes temperaturas: [1] -0,5°C, [2] 0,5°C, [3] 2°C, [4] 4°C, [5] 6°C e [6] 10°C; experimento 2 (níveis de UR: [1] 70%, [2] 80% e [3] 90%; e experimento 3 (condições de AC: [1] 21kPa O2+0,03kPa CO2, [2] 0,5kPa O2+0kPa CO2, [3] 1,0kPa O2+0kPa CO2, [4] 2,0kPa O2+0kPa CO2, [5] 1,0kPa O2+2,0kPa CO2 e [6]1,0kPa O2+4,0kPa CO2. O delineamento experimental utilizado foi o inteiramente casualizado. Após seis meses de armazenamento, foram realizadas as análises no momento da saída dos bulbos das câmaras e após 15 dias de exposição a 20°C. A brotação e a podridão foram inibidas na temperatura de 0,5°C, diferentemente das temperaturas iguais e superiores a 4°C, em que mais de 90% dos bulbos brotaram. As UR de 70 e 80% foram melhores, pois ocorreu menor brotação. O baixo oxigênio controlou a brotação dos bulbos, proporcionando maior número de bulbos comerciáveis após seis meses em AC e também após 15 dias de exposição a 20°C.The aim of this research was to evaluate conditions to maintain postharvest quality of 'Crioula' onions. Three experiments were done, evaluating the effect of temperature, relative humidity (RH and controlled atmosphere (CA: different temperatures: [1] -0.5°C, [2] 0.5°C, [3] 2°C, [4] 4°C, [5] 6°C and [6] 10°C. Levels of RH: [1] 70%, [2] 80% and [3] 90%; and different CA conditions: [1] 21kPa O2+0.03kPa CO2, [2] 0.5kPa O2+0kPa CO2, [3] 1.0kPa O2+0kPa CO2, [4] 2.0kPa O2+0kPa CO2, [5] 1.0kPa O2+2.0kPa CO2 and [6] O2 1.0kPa+4.0kPa CO2. The experimental design was completely randomized. Ripening and quality evaluations were carried out after six months of storage more fifteen days at 20°C. The sprout and rot

  20. Humidity dependence of adhesion for silane coated microcantilevers

    International Nuclear Information System (INIS)

    De Boer, Maarten P.; Mayer, Thomas M.; Carpick, Robert W.; Michalske, Terry A.; Srinivasan, U.; Maboudian, R.

    1999-01-01

    This study examines adhesion between silane-coated micromachined surfaces that are exposed to humid conditions. Our quantitative values for interfacial adhesion energies are determined from an in-situ optical measurement of deformations in partly-adhered cantilever beams. We coated micromachined cantilevers with either ODTS (C(sub 18)H(sub 37)SiCl(sub 3)) or FDTS (C(sub 8)F(sub 17)C(sub 2)H(sub 4)SiCl(sub 3)) with the objective of creating hydrophobic surfaces whose adhesion would be independent of humidity. In both cases, the adhesion energy is significantly lower than for uncoated, hydrophilic surfaces. For relative humidities (RH) less than 95% (ODTS) and 80% (FDTS) the adhesion energy was extremely low and constant. In fact, ODTS-coated beams exposed to saturated humidity conditions and long (48 hour) exposures showed only a factor of two increase in adhesion energy. Surprisingly, FDTS coated beams, which initially have a higher contact angle (115(degree)) with water than do ODTS coated beams (112(degree)), proved to be much more sensitive to humidity. The FDTS coated surfaces showed a factor of one hundred increase in adhesion energy after a seven hour exposure to 90% RH. Atomic force microscopy revealed agglomerated coating material after exposed to high RH, suggesting a redistribution of the monolayer film. This agglomeration was more prominent for FDTS than ODTS. These findings suggest a new mechanism for uptake of moisture under high humidity conditions. At high humidities, the silane coatings can reconfigure from a surface to a bulk phase leaving behind locally hydrophilic sites which increase the average measured adhesion energy. In order for the adhesion increase to be observed, a significant fraction of the monolayer must be converted from the surface to the bulk phase

  1. Variations of relative humidity in relation to meningitis in Africa

    Science.gov (United States)

    Seefeldt, M. W.; Hopson, T. M.

    2011-12-01

    The meningitis belt is a region covering Sub-Saharan Africa from the Sahel of West Africa eastward to western Ethiopia. The region is prone to meningitis epidemics during the dry season extending from approximately January to May, depending on the region. Relative humidity has been found to be a critical environmental factor indicating the susceptibility of a region to meningitis epidemics. This study evaluates the variation of relative humidity across West Africa over 30 dry-seasons (1979 - 2009) using the NASA-MERRA dataset. The method of self-organizing maps is employed to characterize the changes in relative humidity patterns across the region within a given dry season as well as changes over the 30 years. A general pattern of changes in relative humidity is indicated as the rainbelt retreats to the south at the onset of the dry season and then returns to the region at the end of the dry season. Within each dry season there is a unique pattern. The climatological conditions of relative humidity at the onset of the dry season provide an indication of the moisture environment for the entire dry season. Year to year variation in the relative humidity patterns are found to be gradual. Future applications involve using the results from the SOM evaluation to be used for future decisions involving prevention of meningitis epidemics.

  2. Humidity effects on scanning polarization force microscopy imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yue, E-mail: shenyue@isl.ac.cn [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); Key Laboratory of Interfacial Physics and Technology of Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhou, Yuan, E-mail: zhouy@isl.ac.cn [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); Sun, Yanxia; Zhang, Lijuan [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Ying; Hu, Jun; Zhang, Yi [Key Laboratory of Interfacial Physics and Technology of Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2017-08-01

    Highlights: • The humidity dramatically affects the contrast of scanning polarization force microscopy (SPFM) imaging on mica surface. • This influence roots in the sensitive dielectric constant of mica surface to the humidity change. • A strategy of controllable and repeatable imaging the local dielectric properties of nanomaterials with SPFM is proposed. - Abstract: Scanning polarization force microscopy (SPFM) is a useful surface characterization technique to visually characterize and distinguish nanomaterial with different local dielectric properties at nanometer scale. In this paper, taking the individual one-atom-thick graphene oxide (GO) and reduced graphene oxide (rGO) sheets on mica as examples, we described the influences of environmental humidity on SPFM imaging. We found that the apparent heights (AHs) or contrast of SPFM imaging was influenced significantly by relative humidity (RH) at a response time of a few seconds. And this influence rooted in the sensitive dielectric constant of mica surface to the RH change. While dielectric properties of GO and rGO sheets were almost immune to the humidity change. In addition, we gave the method to determine the critical humidity at which the contrast conversion happened under different conditions. And this is important to the contrast control and repeatable imaging of SPFM through RH adjusting. These findings suggest a strategy of controllable and repeatable imaging the local dielectric properties of nanomaterials with SPFM, which is critically important for further distinguishment, manipulation, electronic applications, etc.

  3. Thermal sensations and comfort investigations in transient conditions in tropical office.

    Science.gov (United States)

    Dahlan, Nur Dalilah; Gital, Yakubu Yau

    2016-05-01

    The study was done to identify affective and sensory responses observed as a result of hysteresis effects in transient thermal conditions consisting of warm-neutral and neutral - warm performed in a quasi-experiment setting. Air-conditioned building interiors in hot-humid areas have resulted in thermal discomfort and health risks for people moving into and out of buildings. Reports have shown that the instantaneous change in air temperature can cause abrupt thermoregulation responses. Thermal sensation vote (TSV) and thermal comfort vote (TCV) assessments as a consequence of moving through spaces with distinct thermal conditions were conducted in an existing single-story office in a hot-humid microclimate, maintained at an air temperature 24 °C (± 0.5), relative humidity 51% (± 7), air velocity 0.5 m/s (± 0.5), and mean radiant temperature (MRT) 26.6 °C (± 1.2). The measured office is connected to a veranda that showed the following semi-outdoor temperatures: air temperature 35 °C (± 2.1), relative humidity 43% (± 7), air velocity 0.4 m/s (± 0.4), and MRT 36.4 °C (± 2.9). Subjective assessments from 36 college-aged participants consisting of thermal sensations, preferences and comfort votes were correlated against a steady state predicted mean vote (PMV) model. Local skin temperatures on the forehead and dorsal left hand were included to observe physiological responses due to thermal transition. TSV for veranda-office transition showed that no significant means difference with TSV office-veranda transition were found. However, TCV collected from warm-neutral (-0.24, ± 1.2) and neutral-warm (-0.72, ± 1.3) conditions revealed statistically significant mean differences (p thermal transition after travel from warm-neutral-warm conditions did not replicate the hysteresis effects of brief, slightly cool, thermal sensations found in previous laboratory experiments. These findings also indicate that PMV is an acceptable alternative to predict thermal

  4. Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans.

    Science.gov (United States)

    Russell, Joshua; Vidal-Gadea, Andrés G; Makay, Alex; Lanam, Carolyn; Pierce-Shimomura, Jonathan T

    2014-06-03

    All terrestrial animals must find a proper level of moisture to ensure their health and survival. The cellular-molecular basis for sensing humidity is unknown in most animals, however. We used the model nematode Caenorhabditis elegans to uncover a mechanism for sensing humidity. We found that whereas C. elegans showed no obvious preference for humidity levels under standard culture conditions, worms displayed a strong preference after pairing starvation with different humidity levels, orienting to gradients as shallow as 0.03% relative humidity per millimeter. Cell-specific ablation and rescue experiments demonstrate that orientation to humidity in C. elegans requires the obligatory combination of distinct mechanosensitive and thermosensitive pathways. The mechanosensitive pathway requires a conserved DEG/ENaC/ASIC mechanoreceptor complex in the FLP neuron pair. Because humidity levels influence the hydration of the worm's cuticle, our results suggest that FLP may convey humidity information by reporting the degree that subcuticular dendritic sensory branches of FLP neurons are stretched by hydration. The thermosensitive pathway requires cGMP-gated channels in the AFD neuron pair. Because humidity levels affect evaporative cooling, AFD may convey humidity information by reporting thermal flux. Thus, humidity sensation arises as a metamodality in C. elegans that requires the integration of parallel mechanosensory and thermosensory pathways. This hygrosensation strategy, first proposed by Thunberg more than 100 y ago, may be conserved because the underlying pathways have cellular and molecular equivalents across a wide range of species, including insects and humans.

  5. Energy-Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    Withers, Jr., Charles R. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2016-12-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split on seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.

  6. Influence of Temperature and Humidity on Bakelite Resistivity

    CERN Document Server

    Arnaldi, R; Barret, V; Bastid, N; Blanchard, G; Chiavassa, E; Cortese, P; Crochet, Philippe; Dellacasa, G; De Marco, N; Dupieux, P; Espagnon, B; Fargeix, J; Ferretti, A; Gallio, M; Lamoine, L; Luquin, Lionel; Manso, F; Mereu, P; Métivier, V; Musso, A; Oppedisano, C; Piccotti, A; Rahmani, A; Royer, L; Roig, O; Scalas, E; Scomparin, E; Vercellin, Ermanno

    1999-01-01

    Presentation made at RPC99 and submitted to Elsevier PreprintThe use of phenolic or melaminic bakelite as RPC electrodes is widespread. The electrode resistivity is an important parameter for the RPC performance. As recent studies have pointed out, the bakelite resistivity changes with temperature and is influenced by humidity. In order to gain a quantitative understanding on the influence of temperature and humidity on RPC electrodes, we assembled an apparatus to measure resistivity in well-controlled conditions. A detailed description of the experimental set-up as well as the first resistivity measurements for various laminates in different environmental conditions are presented.

  7. Direct versus indirect effects of tropospheric humidity changes on the hydrologic cycle

    International Nuclear Information System (INIS)

    Sherwood, S C

    2010-01-01

    Abundant evidence indicates that tropospheric specific humidity increases in a warmer atmosphere, at rates roughly comparable to those at constant relative humidity. While the implications for the planetary energy budget and global warming are well recognized, it is the net atmospheric cooling (or surface heating) that controls the hydrologic cycle. Relative humidity influences this directly through gas-phase radiative transfer, and indirectly by affecting cloud cover (and its radiative effects) and convective heating. Simple calculations show that the two indirect impacts are larger than the direct impact by roughly one and two orders of magnitude respectively. Global or regional relative humidity changes could therefore have significant indirect impacts on energy and water cycles, especially by altering deep convection, even if they are too small to significantly affect global temperature. Studies of climate change should place greater emphasis on these indirect links, which may not be adequately represented in models.

  8. High temperature humidity sensing materials

    International Nuclear Information System (INIS)

    Tsai, P.P.; Tanase, S.; Greenblatt, M.

    1989-01-01

    This paper reports on new proton conducting materials prepared and characterized for potential applications in humidity sensing at temperatures higher than 100 degrees C by complex impedance or galvanic cell type techniques. Calcium metaphosphate, β-Ca(PO 3 ) 2 as a galvanic cell type sensor material yields reproducible signals in the range from 5 to 200 mm Hg water vapor pressure at 578 degrees C, with short response time (∼ 30 sec). Polycrystalline samples of α-Zr(HPO 4 ) 2 and KMo 3 P 5.8 Si 2 O 25 , and the gel converted ceramic, 0.10Li 2 O-0.25P 2 O 5 -0.65SiO 2 as impedance sensor materials show decreases in impedance with increasing humidity in the range from 9 mm Hg to 1 atm water vapor pressure at 179 degrees C

  9. Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs

    DEFF Research Database (Denmark)

    Hagen, Anke; Chen, Ming; Neufeld, Kai

    2009-01-01

    Anode supported SOFCs based on Ni-YSZ anodes, YSZ electrolytes, and LSM-YSZ cathodes were studied with respect to durability in humid air (~4%) over typically 1500 hours. Operating temperature and current density were varied between 750 and 850 oC and 0.25-0.75 A/cm2, respectively. It was found...... that the introduction of humidity affected the cell voltage under polarization of the cell and that this effect was (at least partly) reversible upon switching off the humidity, probably related to a segregation of impurities towards the three phase boundary in the presence of humidity. Generally, the studied cells...... were successfully operated in humid air under technologically relevant conditions. Improvements at the cathode/electrolyte interface made it possible to obtain highly stable cells, which can be operated under high current density and at 750 oC in humid air - conditions that are known to cause...

  10. Impact of individually controlled facially applied air movement on perceived air quality at high humidity

    Energy Technology Data Exchange (ETDEWEB)

    Skwarczynski, M.A. [Faculty of Environmental Engineering, Institute of Environmental Protection Engineering, Department of Indoor Environment Engineering, Lublin University of Technology, Lublin (Poland); International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Melikov, A.K.; Lyubenova, V. [International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Kaczmarczyk, J. [Faculty of Energy and Environmental Engineering, Department of Heating, Ventilation and Dust Removal Technology, Silesian University of Technology, Gliwice (Poland)

    2010-10-15

    The effect of facially applied air movement on perceived air quality (PAQ) at high humidity was studied. Thirty subjects (21 males and 9 females) participated in three, 3-h experiments performed in a climate chamber. The experimental conditions covered three combinations of relative humidity and local air velocity under a constant air temperature of 26 C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front toward the upper part of the body (upper chest, head). The subjects could control the flow rate (velocity) of the supplied air in the vicinity of their bodies. The results indicate an airflow with elevated velocity applied to the face significantly improves the acceptability of the air quality at the room air temperature of 26 C and relative humidity of 70%. (author)

  11. Humidity and Buildings. Technical Paper No. 188.

    Science.gov (United States)

    Hutcheon, N. B.

    Modified and controlled relative humidity in buildings for certain occupancies is discussed. New criteria are used in determining the needs, desirability and problems associated with humidities in a building. Severe winter climate requires that special attention be given to the problems associated with increased indoor humidities during cold…

  12. Development of Smart Ventilation Control Algorithms for Humidity Control in High-Performance Homes in Humid U.S. Climates

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ticci, Sara [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-11

    , Orlando, Houston, Charleston, Memphis and Baltimore). The control options were compared to a baseline system that supplies outdoor air to a central forced air cooling (and heating) system (CFIS) that is often used in hot humid climates. Simulations were performed with CFIS ventilation systems operating on a 33% duty-cycle, consistent with 62.2-2013. The CFIS outside airflow rates were set to 0%, 50% and 100% of 62.2-2013 requirements to explore effects of ventilation rate on indoor high humidity. These simulations were performed with and without a dehumidifier in the model. Ten control algorithms were developed and tested. Analysis of outdoor humidity patterns facilitated smart control development. It was found that outdoor humidity varies most strongly seasonally—by month of the year—and that all locations follow the similar pattern of much higher humidity during summer. Daily and hourly variations in outdoor humidity were found to be progressively smaller than the monthly seasonal variation. Patterns in hourly humidity are driven by diurnal daily patterns, so they were predictable but small, and were unlikely to provide much control benefit. Variation in outdoor humidity between days was larger, but unpredictable, except by much more complex climate models. We determined that no-sensor strategies might be able to take advantage of seasonal patterns in humidity, but that real-time smart controls were required to capture variation between days. Sensor-based approaches are also required to respond dynamically to indoor conditions and variations not considered in our analysis. All smart controls face trade-offs between sensor accuracy, cost, complexity and robustness.

  13. Cropping Systems and Climate Change in Humid Subtropical Environments

    Directory of Open Access Journals (Sweden)

    Ixchel M. Hernandez-Ochoa

    2018-02-01

    Full Text Available In the future, climate change will challenge food security by threatening crop production. Humid subtropical regions play an important role in global food security, with crop rotations often including wheat (winter crop and soybean and maize (summer crops. Over the last 30 years, the humid subtropics in the Northern Hemisphere have experienced a stronger warming trend than in the Southern Hemisphere, and the trend is projected to continue throughout the mid- and end of century. Past rainfall trends range, from increases up to 4% per decade in Southeast China to −3% decadal decline in East Australia; a similar trend is projected in the future. Climate change impact studies suggest that by the middle and end of the century, wheat yields may not change, or they will increase up to 17%. Soybean yields will increase between 3% and 41%, while maize yields will increase by 30% or decline by −40%. These wide-ranging climate change impacts are partly due to the region-specific projections, but also due to different global climate models, climate change scenarios, single-model uncertainties, and cropping system assumptions, making it difficult to make conclusions from these impact studies and develop adaptation strategies. Additionally, most of the crop models used in these studies do not include major common stresses in this environment, such as heat, frost, excess water, pests, and diseases. Standard protocols and impact assessments across the humid subtropical regions are needed to understand climate change impacts and prepare for adaptation strategies.

  14. Humidity Testing for Human Rated Spacecraft

    Science.gov (United States)

    Johnson, Gary B.

    2009-01-01

    Determination that equipment can operate in and survive exposure to the humidity environments unique to human rated spacecraft presents widely varying challenges. Equipment may need to operate in habitable volumes where the atmosphere contains perspiration, exhalation, and residual moisture. Equipment located outside the pressurized volumes may be exposed to repetitive diurnal cycles that may result in moisture absorption and/or condensation. Equipment may be thermally affected by conduction to coldplate or structure, by forced or ambient air convection (hot/cold or wet/dry), or by radiation to space through windows or hatches. The equipment s on/off state also contributes to the equipment s susceptibility to humidity. Like-equipment is sometimes used in more than one location and under varying operational modes. Due to these challenges, developing a test scenario that bounds all physical, environmental and operational modes for both pressurized and unpressurized volumes requires an integrated assessment to determine the "worst-case combined conditions." Such an assessment was performed for the Constellation program, considering all of the aforementioned variables; and a test profile was developed based on approximately 300 variable combinations. The test profile has been vetted by several subject matter experts and partially validated by testing. Final testing to determine the efficacy of the test profile on actual space hardware is in the planning stages. When validation is completed, the test profile will be formally incorporated into NASA document CxP 30036, "Constellation Environmental Qualification and Acceptance Testing Requirements (CEQATR)."

  15. Influence of fine water droplets to temperature and humidity

    Science.gov (United States)

    Hafidzal, M. H. M.; Hamzah, A.; Manaf, M. Z. A.; Saadun, M. N. A.; Zakaria, M. S.; Roslizar, A.; Jumaidin, R.

    2015-05-01

    Excessively dry air can cause dry skin, dry eyes and exacerbation of medical conditions. Therefore, many researches have been done in order to increase humidity in our environment. One of the ways is by using water droplets. Nowadays, it is well known in market stand fan equipped with water mister in order to increase the humidity of certain area. In this study, the same concept is applied to the ceiling fan. This study uses a model that combines a humidifier which functions as cooler, ceiling fan and scaled down model of house. The objective of this study is to analyze the influence of ceiling fan humidifier to the temperature and humidity in a house. The mechanism of this small model uses batteries as the power source, connected to the fan and the humidifier. The small water tank's function is to store and supply water to the humidifier. The humidifier is used to cool the room by changing water phase to fine water droplets. Fine water droplets are created from mechanism of the humidifier, which is by increasing the kinetic energy of water molecule using high frequency vibration that overcome the holding force between water molecules. Thus, the molecule of water will change to state of gas or mist. The fan is used to spread out the mist of water to surrounding of the room in order to enhance the humidity. Thermocouple and humidity meter are used to measure temperature and humidity in some period of times. The result shows that humidity increases and temperature decreases with time. This application of water droplet can be applied in the vehicles and engine in order to decrease the temperature.

  16. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    Science.gov (United States)

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  17. Humidity data for 9975 shipping packages with cane fiberboard

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W. L. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-05-01

    The 9975 surveillance program is developing a technical basis to support extending the storage period of 9975 packages in K-Area Complex beyond the currently approved 15 years. A key element of this effort is developing a better understanding of degradation of the fiberboard assembly under storage conditions. This degradation is influenced greatly by the moisture content of the fiberboard, which is not well characterized on an individual package basis. Direct measurements of humidity and fiberboard moisture content have been made on two test packages with cane fiberboard and varying internal heat levels from 0 up to 19W. With an internal heat load, a temperature gradient in the fiberboard assembly leads to varying relative humidity in the air around the fiberboard. However, the absolute humidity tends to remain approximately constant throughout the package. The moisture content of fiberboard varies under the influence of several phenomena. Changes in local fiberboard temperature (from an internal heat load) can cause fiberboard moisture changes through absorption or evaporation. Fiberboard degradation at elevated temperature will produce water as a byproduct. And the moisture level within the package is constantly seeking equilibrium with that of the surrounding room air, which varies on a daily and seasonal basis. One indicator of the moisture condition within a 9975 package might be obtained by measuring the relative humidity in the upper air space, by inserting a humidity probe through a caplug hole. However, the data indicate that for the higher internal heat loads (15 and 19 watts), a large variation in internal moisture conditions produces little or no variation in the air space relative humidity. Therefore, this approach does not appear to be sensitive to fiberboard moisture variations at the higher heat loads which are of most interest to maintaining fiberboard integrity.

  18. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment.

    Science.gov (United States)

    Tran Trong, Than; Riera, Florence; Rinaldi, Kévin; Briki, Walid; Hue, Olivier

    2015-01-01

    A recent laboratory study demonstrated that the ingestion of a cold/menthol beverage improved exercise performance in a hot and humid environment during 20 km of all-out cycling. Therefore, the aim of this study was to determine whether the ingestion of cold water/ice-slurry with menthol would improve performance in hot and humid outdoor conditions. Ten trained males completed three trials of five blocks consisting of 4-km cycling and 1.5-km running. During warm-up, every block and recovery, the athletes drank 190 ml of aromatized (i.e., with 0.05 mL of menthol) beverage at three temperatures: Neutral (ambient temperature) (28.7°C±0. 5°C), Cold (3.1°C±0.6°C) or Ice-slurry (0.17°C±0.07°C). Trial time, core temperature (Tco), heart rate (HR), rate of perceived exertion (RPE), thermal sensation (TS) and thermal comfort (TC) were assessed. Ice-slurry/menthol increased performance by 6.2% and 3.3% compared with neutral water/menthol and cold water/menthol, respectively. No between-trial differences were noted for Tco, HR, RPE, TC and TS was lower with ice-slurry/menthol and cold water/menthol compared with neutral water/menthol. A low drink temperature combined with menthol lessens the performance decline in hot/humid outdoor conditions (i.e., compared with cold water alone). Performances were better with no difference in psycho-physiological stress (Tco, HR and RPE) between trials. The changes in perceptual parameters caused by absorbing a cold/menthol beverage reflect the psychological impact. The mechanism leading to these results seems to involve brain integration of signals from physiological and psychological sources.

  19. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment.

    Directory of Open Access Journals (Sweden)

    Than Tran Trong

    Full Text Available A recent laboratory study demonstrated that the ingestion of a cold/menthol beverage improved exercise performance in a hot and humid environment during 20 km of all-out cycling. Therefore, the aim of this study was to determine whether the ingestion of cold water/ice-slurry with menthol would improve performance in hot and humid outdoor conditions.Ten trained males completed three trials of five blocks consisting of 4-km cycling and 1.5-km running. During warm-up, every block and recovery, the athletes drank 190 ml of aromatized (i.e., with 0.05 mL of menthol beverage at three temperatures: Neutral (ambient temperature (28.7°C±0. 5°C, Cold (3.1°C±0.6°C or Ice-slurry (0.17°C±0.07°C. Trial time, core temperature (Tco, heart rate (HR, rate of perceived exertion (RPE, thermal sensation (TS and thermal comfort (TC were assessed.Ice-slurry/menthol increased performance by 6.2% and 3.3% compared with neutral water/menthol and cold water/menthol, respectively. No between-trial differences were noted for Tco, HR, RPE, TC and TS was lower with ice-slurry/menthol and cold water/menthol compared with neutral water/menthol.A low drink temperature combined with menthol lessens the performance decline in hot/humid outdoor conditions (i.e., compared with cold water alone. Performances were better with no difference in psycho-physiological stress (Tco, HR and RPE between trials. The changes in perceptual parameters caused by absorbing a cold/menthol beverage reflect the psychological impact. The mechanism leading to these results seems to involve brain integration of signals from physiological and psychological sources.

  20. Whey protein concentrate storage at elevated temperature and humidity

    Science.gov (United States)

    Dairy processors are finding new export markets for whey protein concentrate (WPC), a byproduct of cheesemaking, but they need to know if full-sized bags of this powder will withstand high temperature and relative humidity (RH) levels during unrefrigerated storage under tropical conditions. To answ...

  1. Adsorption of moisture on molecular sieve adsorbents at low humidity

    International Nuclear Information System (INIS)

    Singh, V.P.; Ruthven, D.M.

    1984-07-01

    This report summarizes the results and conclusions of a contractor's study on the performance of 4A molecular sieve under very low humidity conditions, e.g., as expected in fusion reactor plants. The results suggest that: (a) very efficient regeneration of the sieve to low residual moisture contents ( 2 O/4A sieve system

  2. Humidity Testing of PME and BME Ceramic Capacitors with Cracks

    Science.gov (United States)

    Teverovsky, Alexander A.; Herzberger, Jaemi

    2014-01-01

    Cracks in ceramic capacitors are one of the major causes of failures during operation of electronic systems. Humidity testing has been successfully used for many years to verify the absence of cracks and assure quality of military grade capacitors. Traditionally, only precious metal electrode (PME) capacitors were used in high reliability applications and the existing requirements for humidity testing were developed for this type of parts. With the advance of base metal electrode (BME) capacitors, there is a need for assessment of the applicability of the existing techniques for the new technology capacitors. In this work, variety of different PME and BME capacitors with introduced cracks were tested in humid environments at different voltages and temperatures. Analysis of the test results indicates differences in the behavior and failure mechanisms for BME and PME capacitors and the need for different testing conditions.

  3. Humidity Data for 9975 Shipping Packages with Softwood Fiberboard

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-12

    The 9975 surveillance program is developing a technical basis to support extending the storage period of 9975 packages in K-Area Complex beyond the currently approved 15 years. A key element of this effort is developing a better understanding of degradation of the fiberboard assembly under storage conditions. This degradation is influenced greatly by the moisture content of the fiberboard, which is not well characterized on an individual package basis. Direct measurements of humidity and fiberboard moisture content have been made on two test packages with softwood fiberboard and varying internal heat levels from 0 up to 19W. Comparable measurements with cane fiberboard have been reported previously. With an internal heat load, a temperature gradient in the fiberboard assembly leads to varying relative humidity in the air around the fiberboard. However, the absolute humidity tends to remain approximately constant throughout the package, especially at lower heat loads.

  4. Performance of new generation TWC catalytic systems working under different conditions in order to reduce the emission of a global warming gas: N{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Mac-Beath, I.; Castillo, S.; Camposeco, R.; Moran-Pineda, M. [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico). Programa de Ingenieria Molecular

    2010-07-01

    In this work, three-way catalytic systems (TWC-K, TWC-M and TWC-P) were prepared and tested experimentally in order to analyze N{sub 2}O emissions. Various types and quantities of precious metals (Pt-Pd-Rh), and different mixed oxides (CexBayLazMgwO{sub 2}-Al{sub 2}O{sub 3}) to prepare the supports were used. The catalytic tests were carried out by using common exhaust gases from a gasoline engine under different oxidizing conditions. The TWC catalytic compositions were based on catalytic converters used in retrofitting programs in the Metropolitan Area in Mexico City. Fresh and aged TWC catalytic samples were tested; in both conditions, the catalytic compositions were characterized by BET, TEM-EDS and XRD in order to analyze the efficiency of the catalytic behavior. Due to the fact that the 4{sup th} TWC generation (Pd-Only TWC) has Pd as main active metal, the tested TWC catalytic samples were synthesized by having Pd in a higher proportion with regard to Pt and Rh used as complements with some differences in support composition. (orig.)

  5. Warm Mix Asphalt

    Science.gov (United States)

    2009-04-17

    State of Alaska State of Alaska - Warm Mix Project Warm Mix Project: Location - Petersburg, Alaska which is Petersburg, Alaska which is located in the heart of Southeast Alaska located in the heart of Southeast Alaska's Inside Passage at the tip of M...

  6. VAB Temperature and Humidity Study

    Science.gov (United States)

    Lane, John E.; Youngquist, Robert C.; Muktarian, Edward; Nurge, Mark A.

    2014-01-01

    In 2012, 17 data loggers were placed in the VAB to measure temperature and humidity at 10-minute intervals over a one-year period. In 2013, the data loggers were replaced with an upgraded model and slight adjustments to their locations were made to reduce direct solar heating effects. The data acquired by the data loggers was compared to temperature data provided by three wind towers located around the building. It was found that the VAB acts as a large thermal filter, delaying and reducing the thermal oscillations occurring outside of the building. This filtering is typically more pronounced at higher locations in the building, probably because these locations have less thermal connection with the outside. We surmise that the lower elevations respond more to outside temperature variations because of air flow through the doors. Temperatures inside the VAB rarely exceed outdoor temperatures, only doing so when measurements are made directly on a surface with connection to the outside (such as a door or wall) or when solar radiation falls directly on the sensor. A thermal model is presented to yield approximate filter response times for various locations in the building. Appendix A contains historical thermal and humidity data from 1994 to 2009.

  7. Characterization of spacecraft humidity condensate

    Science.gov (United States)

    Muckle, Susan; Schultz, John R.; Sauer, Richard L.

    1994-01-01

    When construction of Space Station Freedom reaches the Permanent Manned Capability (PMC) stage, the Water Recovery and Management Subsystem will be fully operational such that (distilled) urine, spent hygiene water, and humidity condensate will be reclaimed to provide water of potable quality. The reclamation technologies currently baselined to process these waste waters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that the baseline technologies will be able to effectively remove those compounds presenting a health risk to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in waste waters representative of those to be encountered on the Space Station. With the application of new analytical methods and the analysis of waste water samples more representative of the Space Station environment, advances in the identification of the specific contaminants continue to be made. Efforts by the Water and Food Analytical Laboratory at JSC were successful in enlarging the database of contaminants in humidity condensate. These efforts have not only included the chemical characterization of condensate generated during ground-based studies, but most significantly the characterization of cabin and Spacelab condensate generated during Shuttle missions. The analytical results presented in this paper will be used to show how the composition of condensate varies amongst enclosed environments and thus the importance of collecting condensate from an environment close to that of the proposed Space Station. Although advances were made in the characterization of space condensate, complete characterization, particularly of the organics, requires further development of analytical methods.

  8. Effects of humidity and filter material on diffusive sampling of isocyanates using reagent-coated filters

    NARCIS (Netherlands)

    Henneken, H.; Vogel, M.; Karst, U.

    2006-01-01

    Diffusive sampling of methyl isocyanate (MIC) on 4-nitro-7-piperazinobenzo-2-oxa-1,3-diazole (NBDPZ)-coated glass fibre (GF) filters is strongly affected by high relative humidity (RH) conditions. It is shown that the humidity interference is a physical phenomenon, based on displacement of reagent

  9. Urban warming reduces aboveground carbon storage

    DEFF Research Database (Denmark)

    Meineke, Emily; Youngsteadt, Elsa; Dunn, Robert Roberdeau

    2016-01-01

    sequestration (carbon stored per year) of mature trees. Urban warming increased herbivorous arthropod abundance on trees, but these herbivores had negligible effects on tree carbon sequestration. Instead, urban warming was associated with an estimated 12% loss of carbon sequestration, in part because...... photosynthesis was reduced at hotter sites. Ecosystem service assessments that do not consider urban conditions may overestimate urban tree carbon storage. Because urban and global warming are becoming more intense, our results suggest that urban trees will sequester even less carbon in the future....

  10. Comparison of land surface humidity between observations and CMIP5 models

    Science.gov (United States)

    Dunn, Robert J. H.; Willett, Kate M.; Ciavarella, Andrew; Stott, Peter A.

    2017-08-01

    the observations in all regions, and this over-correlation may be due to missing processes in the models. The observed temporal behaviour appears to be a robust climate feature rather than observational error. It has been previously documented and is theoretically consistent with faster warming rates over land compared to oceans. Thus, the poor replication in the models, especially in the atmosphere-only model, leads to questions over future projections of impacts related to changes in surface relative humidity. It also precludes any formal detection and attribution assessment.

  11. Building America Case Study: Compact Buried Ducts in a Hot-Humid Climate House, Lady's Island, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    2016-02-01

    A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely on encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences, 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs, and 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.

  12. Effect of nitrogen and potassium fertilization on the production and quality of oil in Jatropha curcas L. under the dry and warm climate conditions of Colombia

    Directory of Open Access Journals (Sweden)

    Omar Montenegro R.

    2014-08-01

    Full Text Available This study was conducted to assess fruit and seed yield, oil content and oil composition of Jatropha curcas fertilized with different doses of nitrogen and potassium in Espinal (Tolima, Colombia. The yields ranged from 4,570 to 8,800 kg ha-1 of fruits and from 2,430 to 4,746 kg ha-1 of seeds. These yields showed that the fertilizer dose of 150 kg ha-1 N + 120 kg ha-1 K increased fruit production by 92% and seed production by 95%, which represents an increase of about 100% in oil production, which increased from 947 to 1,900 kg ha-1. The total oil content in the seeds ranged from 38.7 to 40.1% (w/w with a high content of the unsaturated fatty acids oleic (> 47% and linoleic acid (> 29%. The highest content of oleic acid in the seed oil was from the unfertilized control plants and plants with an application of 100 kg ha-1 of N and 60 kg ha-1 of K, with an average of 48%. The lowest content of oleic acid was registered when a low dose of nitrogen and a high level of potassium were applied at a ratio of 1:2.4 and doses of 50 kg ha-1 N + 120 kg ha-1 K, respectively. Low contents of the saturated fatty acids palmitic (13.4% and stearic (7.26% were obtained, making this oil suitable for biodiesel production. The nitrogen was a more important nutrient for the production and quality of oil in J. curcas than potassium under the studied conditions of soil and climate.

  13. Influence of Quaternary Benzophenantridine and Protopine Alkaloids on Growth Performance, Dietary Energy, Carcass Traits, Visceral Mass, and Rumen Health in Finishing Ewes under Conditions of Severe Temperature-humidity Index

    Directory of Open Access Journals (Sweden)

    A. Estrada-Angulo

    2016-05-01

    Full Text Available Twenty Pelibuey×Katahdin ewes (35±2.3 kg were used to determine the effects of the consumption of standardized plant extract containing a mixture of quaternary benzophenanthridine alkaloids and protopine alkaloids (QBA+PA on growth performance, dietary energetics, visceral mass, and ruminal epithelial health in heat-stressed ewes fed with a high-energy corn-based diet. The basal diet (13.9% crude protein and 2.09 Mcal of net energy [NE] of maintenance/kg of dry matter contained 49.7% starch and 15.3% neutral detergent fiber. Source of QBA+PA was Sangrovit RS (SANG which contains 3 g of quaternary benzophenathridine and protopine alkaloids per kg of product. Treatments consisted of a daily consumption of 0 or 0.5 g SANG/ewe. Ewes were grouped by weight and assigned to 10 pens (5 pens/treatment, with two ewes per pen. The experimental period lasted 70 days. The mean temperature humidity index during the course of this experiment was 81.7±1.0 (severe heat stress. There were no treatment effects on water intake. Dry matter intake was not affected (p = 0.70 by treatments, but the group fed SANG had a numerically (11.2% higher gain in comparison to the control group, SANG improved gain efficiency (8.3%, p = 0.04, dietary NE (5.2%, p<0.01 and the observed-to-expected NE (5.9%, p<0.01. Supplemental SANG did not affect (p≥0.12 carcass characteristics, chemical composition of shoulder, and organ weights (g/kg empty body weight of stomach complex, intestines, and heart/lung. Supplemental SANG decreased liver weight (10.3%, p = 0.02 and increased visceral fat (16.9%, p = 0.02. Rumen epithelium of ewes fed SANG had lower scores for cellular dropsical degeneration (2.08 vs 2.34, p = 0.02, parakeratosis (1.30 vs 1.82, p = 0.03 and neutrophil infiltration (2.08 vs 2.86, p = 0.05 than controls. It is concluded that SANG supplementation helped ameliorate the negative effects of severe heat on growth performance of feedlot ewes fed high-energy corn

  14. Plant movements and climate warming

    DEFF Research Database (Denmark)

    De Frenne, Pieter; Coomes, David A.; De Schrijver, An

    2014-01-01

    environments can establish in nonlocal sites. •We assess the intraspecific variation in growth responses to nonlocal soils by planting a widespread grass of deciduous forests (Milium effusum) into an experimental common garden using combinations of seeds and soil sampled in 22 sites across its distributional...... range, and reflecting movement scenarios of up to 1600 km. Furthermore, to determine temperature and forest-structural effects, the plants and soils were experimentally warmed and shaded. •We found significantly positive effects of the difference between the temperature of the sites of seed and soil...... collection on growth and seedling emergence rates. Migrant plants might thus encounter increasingly favourable soil conditions while tracking the isotherms towards currently ‘colder’ soils. These effects persisted under experimental warming. Rising temperatures and light availability generally enhanced plant...

  15. Shallow Land Burial Technology - Humid

    International Nuclear Information System (INIS)

    Davis, E.C.; Spalding, B.P.; Lee, S.Y.

    1983-01-01

    The Shallow Land Burial Technology - Humid Project is being conducted for the Department of Energy Low-Level Waste Management Program with the objective of identifying and demonstrating improved technology for disposing of low-level solid waste in humid environments. Two improved disposal techniques are currently being evaluated using nine demonstration trenches at the Engineered Test Facility (ETF). The first is use of a cement-bentonite grout applied as a waste backfill material prior to trench closure and covering. The second is complete hydrologic isolation of waste by emplacement in a trench that is lined on all four sides, top and bottom using synthetic impermeable lining material. An economic analysis of the trench grouting and lining demonstration favored the trench lining operation ($1055/demonstration trench) over trench grouting ($1585/demonstration trench), with the cost differential becoming even greater (as much as a factor of 6 in favor of lining for typical ORNL trenches) as trench dimensions increase and trench volumes exceed those of the demonstration trenches. In addition to the evaluation of trench grouting and lining, major effort has centered on characterization of the ETF site. Though only a part of the overall study, characterization is an extremely important component of the site selection process; it is during these activities that potential problems, which may obviate the site from further consideration, are found. Characterization of the ETF has included studies of regional and site-specific geology, the physical and chemical properties of the soils in which the demonstration trenches are located, and hydrology of the small watershed of which the ETF is a part. 12 references, 6 figures, 2 tables

  16. Passive Wireless SAW Humidity Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the preliminary development of passive wireless surface acoustic wave (SAW) based humidity sensors for NASA application to distributed...

  17. Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity

    Science.gov (United States)

    Kandula, M.

    2012-01-01

    Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.

  18. Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs

    DEFF Research Database (Denmark)

    Hagen, Anke; Neufeld, Kai; Liu, Yi-Lin

    2010-01-01

    Anode-supported solid oxide fuel cells (SOFCs) based on Ni–yttria-stabilized zirconia (YSZ) anodes, YSZ electrolytes, and lanthanum strontium manganite (LSM)–YSZ cathodes were studied with respect to durability in humid air (~4%) typically over 1500 h. Operating temperature and current density were...... varied between 750 and 850°C and 0.25–0.75 A/cm2, respectively. The introduction of humidity affected the cell voltage under polarization of the cell, and this effect was (at least partly) reversible upon switching off the humidity. Generally, the studied cells were operated in humid air under...... technologically relevant conditions over more than 1500 h. Improvements at the cathode/electrolyte interface made it possible to obtain highly stable cells, which can be operated under high current density and at 750°C in humid air, conditions that cause significant cell voltage degradation in dry air on cells...

  19. Experimental study of humidity distribution inside electronic enclosure and effect of internal heating

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Ambat, Rajan

    2016-01-01

    on the humidity and temperature profile inside typical electronic enclosures. Defined parameters include external temperature and humidity conditions, temperature and time of the internal heat cycle, thermal mass, and ports/openings size. The effect of the internal humidity on electronic reliability has been......Corrosion reliability of electronic products is a key factor for electronics industry, and today there is a large demand for performance reliability in a wide range of temperature and humidity during day and night time periods. Corrosion failures are still a challenge due to the combined effects...... of temperature, humidity and corrosion accelerating species in the atmosphere. Moreover the surface region of printed circuit board assemblies is often contaminated by various aggressive chemical species.This study describes the overall effect of the exposure to severe climate conditions and internal heat cycles...

  20. Heat and mass transfer during the warming of a bottle of beer - doi: 10.4025/actascitechnol.v32i2.8273

    Directory of Open Access Journals (Sweden)

    Cláudio Vinicius Barbosa Monteiro

    2010-07-01

    Full Text Available The warming of a bottle of beer during a Friday evening happy hour directly involves transport phenomena, such as mass transfer due to condensation of air humidity on the bottle surface and heat transfer from the ambient to the bottle, which occurs by free convection and water condensation. Both processes happen simultaneously and are directly associated with the heat and mass transfer coefficients involved, which are affected by the ambient humidity and temperature. Several runs were made in several ambient conditions by exposing a cold bottle of beer to varied temperature and humidity and measuring the temperature of beer and the mass of water condensed on the bottle surface over time. From these measures, a theoretical and experimental methodology was developed and applied for the evaluation of the heat and mass transfer coefficients that govern this process. Both the relative humidity and ambient temperature exert a significant influence on the convective heat transfer coefficient. However, the mass transfer coefficient is affected only by the temperature.

  1. Thermal Comfort and Optimum Humidity Part 1

    Directory of Open Access Journals (Sweden)

    M. V. Jokl

    2002-01-01

    Full Text Available The hydrothermal microclimate is the main component in indoor comfort. The optimum hydrothermal level can be ensured by suitable changes in the sources of heat and water vapor within the building, changes in the environment (the interior of the building and in the people exposed to the conditions inside the building. A change in the heat source and the source of water vapor involves improving the heat - insulating properties and the air permeability of the peripheral walls and especially of the windows. The change in the environment will bring human bodies into balance with the environment. This can be expressed in terms of an optimum or at least an acceptable globe temperature, an adequate proportion of radiant heat within the total amount of heat from the environment (defined by the difference between air and wall temperature, uniform cooling of the human body by the environment, defined a by the acceptable temperature difference between head and ankles, b by acceptable temperature variations during a shift (location unchanged, or during movement from one location to another without a change of clothing. Finally, a moisture balance between man and the environment is necessary (defined by acceptable relative air humidity. A change for human beings means a change of clothes which, of course, is limited by social acceptance in summer and by inconvenient heaviness in winter. The principles of optimum heating and cooling, humidification and dehumidification are presented in this paper.Hydrothermal comfort in an environment depends on heat and humidity flows (heat and water vapors, occurring in a given space in a building interior and affecting the total state of the human organism.

  2. Thermal Comfort and Optimum Humidity Part 2

    Directory of Open Access Journals (Sweden)

    M. V. Jokl

    2002-01-01

    Full Text Available The hydrothermal microclimate is the main component in indoor comfort. The optimum hydrothermal level can be ensured by suitable changes in the sources of heat and water vapor within the building, changes in the environment (the interior of the building and in the people exposed to the conditions inside the building. A change in the heat source and the source of water vapor involves improving the heat - insulating properties and the air permeability of the peripheral walls and especially of the windows. The change in the environment will bring human bodies into balance with the environment. This can be expressed in terms of an optimum or at least an acceptable globe temperature, an adequate proportion of radiant heat within the total amount of heat from the environment (defined by the difference between air and wall temperature, uniform cooling of the human body by the environment, defined a by the acceptable temperature difference between head and ankles, b by acceptable temperature variations during a shift (location unchanged, or during movement from one location to another without a change of clothing. Finally, a moisture balance between man and the environment is necessary (defined by acceptable relative air humidity. A change for human beings means a change of clothes which, of course, is limited by social acceptance in summer and by inconvenient heaviness in winter. The principles of optimum heating and cooling, humidification and dehumidification are presented in this paper.Hydrothermal comfort in an environment depends on heat and humidity flows (heat and water vapors, occurring in a given space in a building interior and affecting the total state of the human organism.

  3. Global Warming: A Myth?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 7. Global Warming: A Myth? - Credibility of Climate Scenarios Predicted by Systems Simulations. Deepanjan Majumdar. General Article Volume 6 Issue 7 July 2001 pp 13-21 ...

  4. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  5. Global warming yearbook: 1998

    Energy Technology Data Exchange (ETDEWEB)

    Arris, L. [ed.

    1999-02-01

    The report brings together a year`s worth of global warming stories - over 280 in all - in one convenient volume. It provides a one-stop report on the scientific, political and industrial implications of global warming. The report includes: detailed coverage of negotiations on the Kyoto Protocol; scientific findings on carbon sources and sinks, coral bleaching, Antarctic ice shelves, plankton, wildlife and tree growth; new developments on fuel economy, wind power, fuel cells, cogeneration, energy labelling and emissions trading.

  6. Media Pembelajaran Global Warming

    OpenAIRE

    Tham, Fikri Jufri; Liliana, Liliana; Purba, Kristo Radion

    2016-01-01

    Computer based learning media is one of the media has an important role in learning. Learning media will be attractive when packaged through interactive media , such as interactive media created in paper manufacture " instructional media global warming" . The advantage gained is that it can increase knowledge, generally educate people to be more concerned about the environment , and also can be a means of entertainment. This application is focused to learn about global warming and packaged in...

  7. Refrigeration and global warming

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Some aspects of global warming in general, and the implications for refrigerants and refrigerator efficiency in particular, are briefly considered in a question and answer format. The concepts of Global Warming Potential (GWP) and Total Equivalent Warming Impact (TEWI) are explained. GWP is an index which allows a simple comparison to be make between the warming effects of different gases on a kg to kg basis relative to carbon. The GWP depends both on the lifetime of a substance in the atmosphere and its infra-red absorption capacity. The overall warming effect of operating a refrigeration system for its entire life is measured by its TEWI. Chloroflourocarbons (CFCs) which have been widely used as refrigerants are powerful greenhouse gases with high GWPs. Because of the bank of CFCs in refrigerating systems, their levels in the atmosphere are still increasing and it will be some time before refrigerant changes will be effective in reducing the warming effects of refrigerant releases. Hydrocarbons, hydroflourocarbons and ammonia all have a part to play as substitute refrigerants. Refrigerator efficiency is very important in terms of reducing CO 2 emissions. (UK)

  8. Consistency of the tachyon warm inflationary universe models

    International Nuclear Information System (INIS)

    Zhang, Xiao-Min; Zhu, Jian-Yang

    2014-01-01

    This study concerns the consistency of the tachyon warm inflationary models. A linear stability analysis is performed to find the slow-roll conditions, characterized by the potential slow-roll (PSR) parameters, for the existence of a tachyon warm inflationary attractor in the system. The PSR parameters in the tachyon warm inflationary models are redefined. Two cases, an exponential potential and an inverse power-law potential, are studied, when the dissipative coefficient Γ = Γ 0 and Γ = Γ(φ), respectively. A crucial condition is obtained for a tachyon warm inflationary model characterized by the Hubble slow-roll (HSR) parameter ε H , and the condition is extendable to some other inflationary models as well. A proper number of e-folds is obtained in both cases of the tachyon warm inflation, in contrast to existing works. It is also found that a constant dissipative coefficient (Γ = Γ 0 ) is usually not a suitable assumption for a warm inflationary model

  9. Graphene based humidity-insensitive films

    KAUST Repository

    Tai, Yanlong; Lubineau, Gilles

    2017-01-01

    A humidity nonsensitive material based on reduced-graphene oxide (r-GO) and methods of making the same are provided, in an embodiment, the materia! has a resistance/humidity variation of about -15% to 15% based on different sintering time

  10. Temperature and Humidity Control in Livestock Stables

    DEFF Research Database (Denmark)

    Hansen, Michael; Andersen, Palle; Nielsen, Kirsten M.

    2010-01-01

    The paper describes temperature and humidity control of a livestock stable. It is important to have a correct air flow pattern in the livestock stable in order to achieve proper temperature and humidity control as well as to avoid draught. In the investigated livestock stable the air flow...

  11. Communicating the deadly consequences of global warming for human heat stress

    Science.gov (United States)

    Matthews, Tom K. R.; Wilby, Robert L.; Murphy, Conor

    2017-04-01

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  12. Communicating the deadly consequences of global warming for human heat stress.

    Science.gov (United States)

    Matthews, Tom K R; Wilby, Robert L; Murphy, Conor

    2017-04-11

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  13. [Evaluation of the influence of humidity and temperature on the drug stability by initial average rate experiment].

    Science.gov (United States)

    He, Ning; Sun, Hechun; Dai, Miaomiao

    2014-05-01

    To evaluate the influence of temperature and humidity on the drug stability by initial average rate experiment, and to obtained the kinetic parameters. The effect of concentration error, drug degradation extent, humidity and temperature numbers, humidity and temperature range, and average humidity and temperature on the accuracy and precision of kinetic parameters in the initial average rate experiment was explored. The stability of vitamin C, as a solid state model, was investigated by an initial average rate experiment. Under the same experimental conditions, the kinetic parameters obtained from this proposed method were comparable to those from classical isothermal experiment at constant humidity. The estimates were more accurate and precise by controlling the extent of drug degradation, changing humidity and temperature range, or by setting the average temperature closer to room temperature. Compared with isothermal experiments at constant humidity, our proposed method saves time, labor, and materials.

  14. Effect of ambient humidity on the rate at which blood spots dry and the size of the spot produced.

    Science.gov (United States)

    Denniff, Philip; Woodford, Lynsey; Spooner, Neil

    2013-08-01

    For shipping and storage, dried blood spot (DBS) samples must be sufficiently dry to protect the integrity of the sample. When the blood is spotted the humidity has the potential to affect the size of the spot created and the speed at which it dries. The area of DBS produced on three types of substrates were not affected by the humidity under which they were generated. DBS samples reached a steady moisture content 150 min after spotting and 90 min for humidities less than 60% relative humidity. All packaging materials examined provided some degree of protection from external extreme conditions. However, none of the packaging examined provided a total moisture barrier to extreme environmental conditions. Humidity was shown not to affect the spot area and DBS samples were ready for shipping and storage 2 h after spotting. The packing solutions examined all provided good protection from external high humidity conditions.

  15. A comparison of temperature and humidity effects on phosphor-converted LED packages and the prediction of remaining useful life with state estimation

    Energy Technology Data Exchange (ETDEWEB)

    Lall, Pradeep; Zhang, Hao; Davis, Lynn

    2016-05-31

    This paper focuses on the failure mechanisms and color stability of a commercially available high power LED under harsh environmental conditions. 3 groups of the same pc-HB warm white LED were used in the experiment. The first group was subjected to both high temperature and high relative humidity (85°C/85%RH) with a 350mA bias current. The second group was subjected to only temperature stress at 105°C with a 350mA bias current. The last group was subjected to extreme high temperature 175°C and high bias current (500mA). Samples were taken out from the chamber for both photometric and colorimetric analysis at periodic intervals to investigate the change of the optical parameters. The physics of failure due to the material degradation has been correlated with the change in the photometric and colorimetric parameters of the LED packages. At the end of the experiment, 6000 hours of data is projected forward with state estimation methods to compare with projections made with the TM-21 method. Experimental results shows that only optical parts degrades at high temperature conditions. However, at both high temperature and high relative humidity condition, the phosphor layer of the pc-LED can swell and the color stability of LEDs degrades significantly. Also, comparison between TM-21 method and state estimation method shows that state estimation can achieve the same goal with a relatively easy method.

  16. Humidity detection using chitosan film based sensor

    Science.gov (United States)

    Nasution, T. I.; Nainggolan, I.; Dalimunthe, D.; Balyan, M.; Cuana, R.; Khanifah, S.

    2018-02-01

    A humidity sensor made of the natural polymer chitosan has been successfully fabricated in the film form by a solution casting method. Humidity testing was performed by placing a chitosan film sensor in a cooling machine room, model KT-2000 Ahu. The testing results showed that the output voltage values of chitosan film sensor increased with the increase in humidity percentage. For the increase in humidity percentage from 30 to 90% showed that the output voltage of chitosan film sensor increased from 32.19 to 138.75 mV. It was also found that the sensor evidenced good repeatability and stability during the testing. Therefore, chitosan has a great potential to be used as new sensing material for the humidity detection of which was cheaper and environmentally friendly.

  17. Graphene based humidity-insensitive films

    KAUST Repository

    Tai, Yanlong

    2017-09-08

    A humidity nonsensitive material based on reduced-graphene oxide (r-GO) and methods of making the same are provided, in an embodiment, the materia! has a resistance/humidity variation of about -15% to 15% based on different sintering time or temperature. In an aspect, the resistance variation to humidity can be close to zero or -0.5% to 0.5%, showing a humidity non sensitivity property. In an embodiment, a humidity nonsensitive material based on the r-GO and carbon nanotube (CNT) composites is provided, wherein the ratio of CNT to r-GO is adjusted. The ratio can be adjusted based on the combined contribution of carbon nanotube (positive resistance variation) and reduced- graphene oxide (negative resistance variation) behaviors.

  18. Global warming on trial

    International Nuclear Information System (INIS)

    Broeker, W.S.

    1992-01-01

    Jim Hansen, a climatologist at NASA's Goddard Space Institute, is convinced that the earth's temperature is rising and places the blame on the buildup of greenhouse gases in the atmosphere. Unconvinced, John Sununu, former White House chief of staff, doubts that the warming will be great enough to produce serious threat and fears that measures to reduce the emissions would throw a wrench into the gears that drive the Unites States' troubled economy. During his three years at the White House, Sununu's view prevailed, and although his role in the debate has diminished, others continue to cast doubt on the reality of global warming. A new lobbying group called the Climate Council has been created to do just this. Burning fossil fuels is not the only problem; a fifth of emissions of carbon dioxide now come from clearing and burning forests. Scientists are also tracking a host of other greenhouse gases that emanate from a variety of human activities; the warming effect of methane, chlorofluorocarbons and nitrous oxide combined equals that of carbon dioxide. Although the current warming from these gases may be difficult to detect against the background noise of natural climate variation, most climatologists are certain that as the gases continue to accumulate, increases in the earth's temperature will become evident even to skeptics. If the reality of global warming were put on trial, each side would have trouble making its case. Jim Hansen's side could not prove beyond a reasonable doubt that carbon dioxide and other greenhouse gases have warmed the planet. But neither could John Sununu's side prove beyond a reasonable doubt that the warming expected from greenhouse gases has not occurred. To see why each side would have difficulty proving its case, this article reviews the arguments that might be presented in such a hearing

  19. Long range global warming

    International Nuclear Information System (INIS)

    Rolle, K.C.; Pulkrabek, W.W.; Fiedler, R.A.

    1995-01-01

    This paper explores one of the causes of global warming that is often overlooked, the direct heating of the environment by engineering systems. Most research and studies of global warming concentrate on the modification that is occurring to atmospheric air as a result of pollution gases being added by various systems; i.e., refrigerants, nitrogen oxides, ozone, hydrocarbons, halon, and others. This modification affects the thermal radiation balance between earth, sun and space, resulting in a decrease of radiation outflow and a slow rise in the earth's steady state temperature. For this reason the solution to the problem is perceived as one of cleaning up the processes and effluents that are discharged into the environment. In this paper arguments are presented that suggest, that there is a far more serious cause for global warming that will manifest itself in the next two or three centuries; direct heating from the exponential growth of energy usage by humankind. Because this is a minor contributor to the global warming problem at present, it is overlooked or ignored. Energy use from the combustion of fuels and from the output of nuclear reactions eventually is manifest as warming of the surroundings. Thus, as energy is used at an ever increasing rate the consequent global warming also increases at an ever increasing rate. Eventually this rate will become equal to a few percent of solar radiation. When this happens the earth's temperature will have risen by several degrees with catastrophic results. The trends in world energy use are reviewed and some mathematical models are presented to suggest future scenarios. These models can be used to predict when the global warming problem will become undeniably apparent, when it will become critical, and when it will become catastrophic

  20. Stable and Selective Humidity Sensing Using Stacked Black Phosphorus Flakes.

    Science.gov (United States)

    Yasaei, Poya; Behranginia, Amirhossein; Foroozan, Tara; Asadi, Mohammad; Kim, Kibum; Khalili-Araghi, Fatemeh; Salehi-Khojin, Amin

    2015-10-27

    Black phosphorus (BP) atomic layers are known to undergo chemical degradation in humid air. Yet in more robust configurations such as films, composites, and embedded structures, BP can potentially be utilized in a large number of practical applications. In this study, we explored the sensing characteristics of BP films and observed an ultrasensitive and selective response toward humid air with a trace-level detection capability and a very minor drift over time. Our experiments show that the drain current of the BP sensor increases by ∼4 orders of magnitude as the relative humidity (RH) varies from 10% to 85%, which ranks it among the highest ever reported values for humidity detection. The mechanistic studies indicate that the operation principle of the BP film sensors is based on the modulation in the leakage ionic current caused by autoionization of water molecules and ionic solvation of the phosphorus oxoacids produced on moist BP surfaces. Our stability tests reveal that the response of the BP film sensors remains nearly unchanged after prolonged exposures (up to 3 months) to ambient conditions. This study opens up the route for utilizing BP stacked films in many potential applications such as energy generation/storage systems, electrocatalysis, and chemical/biosensing.

  1. Lower-tropospheric humidity: climatology, trends and the relation to the ITCZ

    Directory of Open Access Journals (Sweden)

    Alexander Läderach

    2013-07-01

    Full Text Available The tropical region is an area of maximum humidity and serves as the major humidity source of the globe. Among other phenomena, it is governed by the so-called Inter-Tropical Convergence Zone (ITCZ which is commonly defined by converging low-level winds or enhanced precipitation. Given its importance as a humidity source, we investigate the humidity fields in the tropics in different reanalysis data sets, deduce the climatology and variability and assess the relationship to the ITCZ. Therefore, a new analysis method of the specific humidity distribution is introduced which allows detecting the location of the humidity maximum, the strength and the meridional extent. The results show that the humidity maximum in boreal summer is strongly shifted northward over the warm pool/Asia Monsoon area and the Gulf of Mexico. These shifts go along with a peak in the strength in both areas; however, the extent shrinks over the warm pool/Asia Monsoon area, whereas it is wider over the Gulf of Mexico. In winter, such connections between location, strength and extent are not found. Still, a peak in strength is again identified over the Gulf of Mexico in boreal winter. The variability of the three characteristics is dominated by inter-annual signals in both seasons. The results using ERA-interim data suggest a positive trend in the Gulf of Mexico/Atlantic region from 1979 to 2010, showing an increased northward shift in the recent years. Although the trend is only weakly confirmed by the results using MERRA reanalysis data, it is in phase with a trend in hurricane activity – a possible hint of the importance of the new method on hurricanes. Furthermore, the position of the maximum humidity coincides with one of the ITCZ in most areas. One exception is the western and central Pacific, where the area is dominated by the double ITCZ in boreal winter. Nevertheless, the new method enables us to gain more insight into the humidity distribution, its variability and

  2. Global warming and neurodegenerative disorders: speculations on their linkage

    Science.gov (United States)

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders. PMID:25671171

  3. Global warming and neurodegenerative disorders: speculations on their linkage.

    Science.gov (United States)

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders.

  4. Roller compaction: Effect of relative humidity of lactose powder.

    Science.gov (United States)

    Omar, Chalak S; Dhenge, Ranjit M; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D

    2016-09-01

    The effect of storage at different relative humidity conditions, for various types of lactose, on roller compaction behaviour was investigated. Three types of lactose were used in this study: anhydrous lactose (SuperTab21AN), spray dried lactose (SuperTab11SD) and α-lactose monohydrate 200M. These powders differ in their amorphous contents, due to different manufacturing processes. The powders were stored in a climatic chamber at different relative humidity values ranging from 10% to 80% RH. It was found that the roller compaction behaviour and ribbon properties were different for powders conditioned to different relative humidities. The amount of fines produced, which is undesirable in roller compaction, was found to be different at different relative humidity. The minimum amount of fines produced was found to be for powders conditioned at 20-40% RH. The maximum amount of fines was produced for powders conditioned at 80% RH. This was attributed to the decrease in powder flowability, as indicated by the flow function coefficient ffc and the angle of repose. Particle Image Velocimetry (PIV) was also applied to determine the velocity of primary particles during ribbon production, and it was found that the velocity of the powder during the roller compaction decreased with powders stored at high RH. This resulted in less powder being present in the compaction zone at the edges of the rollers, which resulted in ribbons with a smaller overall width. The relative humidity for the storage of powders has shown to have minimal effect on the ribbon tensile strength at low RH conditions (10-20%). The lowest tensile strength of ribbons produced from lactose 200M and SD was for powders conditioned at 80% RH, whereas, ribbons produced from lactose 21AN at the same condition of 80% RH showed the highest tensile strength. The storage RH range 20-40% was found to be an optimum condition for roll compacting three lactose powders, as it resulted in a minimum amount of fines in the

  5. Hygroscopical behaviour of basic electrodes in a tropical humid climate

    International Nuclear Information System (INIS)

    Valencia, E.; Galeano, N.J.

    1993-01-01

    The study of the wetting kynetics of basic electrodes in a tropical humid climate is very important since the water contained in them is the main source for the atomic hydrogen absorbed by the fused metal during electric arc welding. It is also the origin of multiple defects in the added metal. A calculating method is established for evaluating the kynetics of wetness incorporation to the coating of basic electrodes exposed to a humid tropical climate. The method is based on the Fick's diffusion equation for both adequate system geometry and boundary conditions, which allows the evaluation of the effective diffusion coefficient and critical times of exposure to the different environments, along with the packing and storage conditions of electrodes. (Author)

  6. Absolute humidity and the seasonal onset of influenza in the continental United States.

    Directory of Open Access Journals (Sweden)

    Jeffrey Shaman

    2010-02-01

    Full Text Available Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent reanalysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here, we extend these findings to the human population level, showing that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions.

  7. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    International Nuclear Information System (INIS)

    Hongbin Zhao, H.; Yue, P.; Cao, L.

    2009-01-01

    A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT), and solar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  8. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    Directory of Open Access Journals (Sweden)

    Hongbin Zhao

    2009-01-01

    Full Text Available A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT, and sollar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  9. Projected changes of snow conditions and avalanche activity in a warming climate: a case study in the French Alps over the 2020-2050 and 2070-2100 periods

    Science.gov (United States)

    Castebrunet, H.; Eckert, N.; Giraud, G.; Durand, Y.; Morin, S.

    2014-01-01

    Projecting changes in snow cover due to climate warming is important for many societal issues, including adaptation of avalanche risk mitigation strategies. Efficient modeling of future snow cover requires high resolution to properly resolve the topography. Here, we detail results obtained through statistical downscaling techniques allowing simulations of future snowpack conditions for the mid- and late 21st century in the French Alps under three climate change scenarios. Refined statistical descriptions of snowpack characteristics are provided with regards to a 1960-1990 reference period, including latitudinal, altitudinal and seasonal gradients. These results are then used to feed a statistical model of avalanche activity-snow conditions-meteorological conditions relationships, so as to produce the first prognoses at annual/seasonal time scales of future natural avalanche activity eventually based on past observations. The resulting statistical indicators are fundamental for the mountain economy in terms of changes anticipation. At all considered spatio-temporal scales, whereas precipitations are expected to remain quite stationary, temperature increase interacting with topography will control snow-related variables, for instance the rate of decrease of total and dry snow depths, and the successive increase/decrease of the wet snow pack. Overall, with regards to the reference period, changes are strong for the end of the 21st century, but already significant for the mid-century. Changes in winter are somewhat less important than in spring, but wet snow conditions will appear at high elevations earlier in the season. For a given altitude, the Southern French Alps will not be significantly more affected than the Northern French Alps, so that the snowpack characteristics will be preserved more lately in the southern massifs of higher mean altitude. Regarding avalanche activity, a general -20-30% decrease and interannual variability is forecasted, relatively strong

  10. The global warming problem

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this chapter, a discussion is presented of the global warming problem and activities contributing to the formation of acid rain, urban smog and to the depletion of the ozone layer. Globally, about two-thirds of anthropogenic carbon dioxide emissions arise from fossil-fuel burning; the rest arise primarily from deforestation. Chlorofluorocarbons are the second largest contributor to global warming, accounting for about 20% of the total. The third largest contributor is methane, followed by ozone and nitrous oxide. A study of current activities in the US that contribute to global warming shows the following: electric power plants account for about 33% of carbon dioxide emissions; motor vehicles, planes and ships (31%); industrial plants (24%); commercial and residential buildings (11%)

  11. Effect of humidity and temperature on the survival of Listeria monocytogenes on surfaces.

    Science.gov (United States)

    Redfern, J; Verran, J

    2017-04-01

    Listeria monocytogenes is a pathogenic bacterium, with human disease and infection linked to dairy products, seafood, ready-to-eat meat and raw & undercooked meats. Stainless steel is the most common food preparation surface and therefore, it is important to understand how food storage conditions such as surface materials, temperature and relative humidity can affect survival of L. monocytogenes. In this study, survival of L. monocytogenes on stainless steel was investigated at three temperatures (4, 10 and 21°C), each approx. 11, 50 and 85% humidity. Results indicate that the lower the temperature, the more cells were recovered in all three humidity environments, while medium humidity enhances survival, irrespective of temperature. Lower humidity decreases recovery at all temperatures. These data support the guidance noted above that humidity control is important, and that lower humidity environments are less likely to support retention of viable L. monocytogenes on a stainless steel surface. Understanding survival of potential food-borne pathogens is essential for the safe production and preparation of food. While it has long been 'common knowledge' that relative humidity can affect the growth and survival of micro-organisms, this study systematically describes the survival of L. monocytogenes on stainless steel under varying humidity and temperatures for the first time. The outcomes from this paper will allow those involved with food manufacture and preparation to make informed judgement on environmental conditions relating to humidity control, which is lacking in the food standards guidelines. © 2017 The Society for Applied Microbiology.

  12. Greenhouse Warming Research

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    2016-01-01

    The changing greenhouse effect caused by natural and anthropogenic causes is explained and efforts to model the behavior of the near-surface constituents of the Earth's land, ocean and atmosphere are discussed. Emissions of various substances and other aspects of human activity influence...... the greenhouse warming, and the impacts of the warming may again impact the wellbeing of human societies. Thus physical modeling of the near-surface ocean-soil-atmosphere system cannot be carried out without an idea of the development of human activities, which is done by scenario analysis. The interactive...

  13. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.

    1999-01-01

    and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6......Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...

  14. It is warm outside today

    DEFF Research Database (Denmark)

    Nielsen, Per Peetz; Wredle, Ewa

    2016-01-01

    The effect of Temperature Humidity Index (THI) on dairy cows’ willingness to be on pasture was examined. Information for 2 years regarding weather, milk production, and time for voluntarily passing a gate between the barn and pasture of cows milked with an automatic milking system was studied. When...... the THI exceeded 72 during the day, more cows spent time on pasture compared to when the THI was less than 72 (27.0% vs. 19.2% of cows on pasture, respectively). However, the time of day influenced the proportion of cows on pasture, and when the THI exceeded 72, more cows were on pasture at night and less...... during the afternoon compared to days when the THI was less than 72. In conclusion, even under Swedish conditions, THI might have an effect on cows’ behaviour. However, when the cows have free access to roughage and pasture, an increased THI does not affect milk production....

  15. Humidity Response of Polyaniline Based Sensor

    Directory of Open Access Journals (Sweden)

    Mamta PANDEY

    2010-02-01

    Full Text Available Abstract: This paper presents hitherto unreported humidity sensing capacity of emeraldine salt form of polyaniline. Humidity plays a major role in different processes in industries ranging from food to electronic goods besides human comfort and therefore its monitoring is an essential requirement during various processes. Polyaniline has a wide use for making sensors as it can be easily synthesized and has long stability. Polyaniline is synthesized here by chemical route and is found to sense humidity as it shows variation in electrical resistance with variation in relative humidity. Results are presented here for a range of 15 to 90 RH%. The resistance falls from 5.8 to 0.72 Giga ohms as RH varies from 15 to 65 % and then falls to 13.9 Mega ohms as RH approaches 90 %. The response and recovery times are also measured.

  16. Warm pre-stressing

    International Nuclear Information System (INIS)

    Hedner, G.

    1983-01-01

    Literature survey and critical evaluation of the phenomenon of warm pre-stressing (WPS) is presented. It is found that the cause of it is not clear and a calculated control is missing. The effect of irradiation is unknown, and the influence of WPS on the behaviour of reactor vessels is discussed. (G.B.)

  17. Being Warm-Hearted

    Institute of Scientific and Technical Information of China (English)

    李函; 任汉鼎

    2017-01-01

    Good morning,ladies and gentlemen.It’s my honor to address[向……致辞] you.My English name is Isabella.I’m a high school student of 17.I have some good personality traits[特点],including being warm-hearted.So here comes my topic:Being

  18. Warm and Cool Cityscapes

    Science.gov (United States)

    Jubelirer, Shelly

    2012-01-01

    Painting cityscapes is a great way to teach first-grade students about warm and cool colors. Before the painting begins, the author and her class have an in-depth discussion about big cities and what types of buildings or structures that might be seen in them. They talk about large apartment and condo buildings, skyscrapers, art museums,…

  19. The global warming scare

    International Nuclear Information System (INIS)

    Sunavala, P.D.

    1992-01-01

    It is argued that the present propaganda about the global warming with its disastrous consequences is a scare spread by some First World countries, especially the United States, to prevent the rapid industrialization of developing third world countries. (author). 6 refs., 1 tab

  20. Paralyzed warming world

    Czech Academy of Sciences Publication Activity Database

    Ač, Alexander

    2010-01-01

    Roč. 2, č. 2 (2010), s. 81-86 ISSN 1876-8156 Institutional research plan: CEZ:AV0Z60870520 Keywords : global warming * climate Subject RIV: EH - Ecology, Behaviour http://ojs.ubvu.vu.nl/alf/article/view/134/250

  1. Mask humidity during CPAP: influence of ambient temperature, heated humidification and heated tubing.

    Science.gov (United States)

    Nilius, Georg; Domanski, Ulrike; Schroeder, Maik; Woehrle, Holger; Graml, Andrea; Franke, Karl-Josef

    2018-01-01

    Mucosal drying during continuous positive airway pressure (CPAP) therapy is problematic for many patients. This study assessed the influence of ambient relative humidity (rH) and air temperature (T) in winter and summer on mask humidity during CPAP, with and without mask leak, and with or without heated humidification ± heated tubing. CPAP (8 and 12 cmH 2 O) without humidification (no humidity [nH]), with heated humidification controlled by ambient temperature and humidity (heated humidity [HH]) and HH plus heated tubing climate line (CL), with and without leakage, were compared in 18 subjects with OSA during summer and winter. The absolute humidity (aH) and the T inside the mask during CPAP were significantly lower in winter versus summer under all applied conditions. Overall, absolute humidity differences between summer and winter were statistically significant in both HH and CL vs. nH ( p humidification or with standard HH. Clinically-relevant reductions in aH were documented during CPAP given under winter conditions. The addition of heated humidification, using a heated tube to avoid condensation is recommended to increase aH, which could be useful in CPAP users complaining of nose and throat symptoms.

  2. Humidity measurements in the precast concrete

    International Nuclear Information System (INIS)

    Hurez, M.

    1986-01-01

    The precast concrete industry manufactures requires a good knowledge and control of the humidity factor: during the manufacturing process, in order to regulate the water content of aggregates, or the fresh concrete workability: during the quality control of the product characteristics. The principles of measurements: conductivity, dielectric characteristics and neutron moisture meters are compared for cost, humidity range, accuracy, temperature dependence, interfering elements, density dependence, grain size and shape [fr

  3. Study on the Correlation between Humidity and Material Strains in Separable Micro Humidity Sensor Design

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Chang

    2017-05-01

    Full Text Available Incidents of injuries caused by tiles falling from building exterior walls are frequently reported in Taiwan. Humidity is an influential factor in tile deterioration but it is more difficult to measure the humidity inside a building structure than the humidity in an indoor environment. Therefore, a separable microsensor was developed in this study to measure the humidity of the cement mortar layer with a thickness of 1.5–2 cm inside the external wall of a building. 3D printing technology is used to produce an encapsulation box that can protect the sensor from damage caused by the concrete and cement mortar. The sensor is proven in this study to be capable of measuring temperature and humidity simultaneously and the measurement results are then used to analyze the influence of humidity on external wall tile deterioration.

  4. Effect of retreating sea ice on Arctic cloud cover in simulated recent global warming

    Directory of Open Access Journals (Sweden)

    M. Abe

    2016-11-01

    Full Text Available This study investigates the effect of sea ice reduction on Arctic cloud cover in historical simulations with the coupled atmosphere–ocean general circulation model MIROC5. Arctic sea ice has been substantially retreating since the 1980s, particularly in September, under simulated global warming conditions. The simulated sea ice reduction is consistent with satellite observations. On the other hand, Arctic cloud cover has been increasing in October, with about a 1-month lag behind the sea ice reduction. The delayed response leads to extensive sea ice reductions because the heat and moisture fluxes from the underlying open ocean into the atmosphere are enhanced. Sensitivity experiments with the atmospheric part of MIROC5 clearly show that sea ice reduction causes increases in cloud cover. Arctic cloud cover increases primarily in the lower troposphere, but it decreases in the near-surface layers just above the ocean; predominant temperature rises in these near-surface layers cause drying (i.e., decreases in relative humidity, despite increasing moisture flux. Cloud radiative forcing due to increases in cloud cover in autumn brings an increase in the surface downward longwave radiation (DLR by approximately 40–60 % compared to changes in clear-sky surface DLR in fall. These results suggest that an increase in Arctic cloud cover as a result of reduced sea ice coverage may bring further sea ice retreat and enhance the feedback processes of Arctic warming.

  5. Simulation of electronic circuit sensitivity towards humidity using electrochemical data on water layer

    DEFF Research Database (Denmark)

    Joshy, Salil; Verdingovas, Vadimas; Jellesen, Morten Stendahl

    2015-01-01

    Climatic conditions like temperature and humidity have direct influence on the operation of electronic circuits. The effects of temperature on the operation of electronic circuits have been widely investigated, while the effect of humidity and solder flux residues are not well understood including...... the effect on circuit and PCBA (printed circuit board assembly) layout design. This paper elucidates a methodology for analyzing the sensitivity of an electronic circuit based on parasitic circuit analysis using data on electrical property of the water layer formed under humid as well as contaminated...

  6. Integrated passive and wireless sensor for magnetic fields, temperature and humidity

    KAUST Repository

    Li, Bodong

    2013-11-01

    This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.

  7. Effects of atmospheric humidity on uptake of elemental iodine by plants

    International Nuclear Information System (INIS)

    Angeletti, L.; Guenot, J.; Caput, C.

    1983-01-01

    A laboratory study was performed under controlled experimental conditions in order to evaluate the effects of the relative humidity and the exposure time on the velocity of deposition of vapour iodine onto aerials parts of plants. The results show that: - the deposition velocity increases by a factor of 2 for each increase of relative humidity of 25%, - the deposition velocity is independent of the exposure time. The foliar uptake of vapour iodine seems to be related both to stomatal opening and cuticular sorption. The importance of cuticular sorption increases rapidly with the relative humidity [fr

  8. Integrated passive and wireless sensor for magnetic fields, temperature and humidity

    KAUST Repository

    Li, Bodong; Yassine, Omar; Kosel, Jü rgen

    2013-01-01

    This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.

  9. Improving PAQ and comfort conditions in Spanish office buildings with passive climate control

    Energy Technology Data Exchange (ETDEWEB)

    Orosa, Jose A.; Baalina, A. [Departamento de Energia y P.M. Escuela Tecnica Superior de N. y M, Universidade da Coruna, Paseo de Ronda 51, P.C.:15011 A Coruna (Spain)

    2009-03-15

    Some researchers have demonstrated that passive moisture transfer between indoor air and hygroscopic structures has the potential to moderate variations of indoor air relative humidity and, thus, to improve comfort and PAQ [Simonson CJ, Salonvaara M, Ojalen T. The effect of structures on indoor humidity-possibility to improve comfort and perceived air quality. Indoor Air 2002; 12: 243-51; Simonson CJ, Salonvaara M, Ojalen T. Improving indoor climate and comfort with wooden structures. Espoo 2001. Technical Research Centre of Finland, VTT Publications 431.200p+app 91p]. The main objective of this study is to show the internal wall coating effect on indoor air conditions and, as a consequence of this, in comfort conditions and PAQ. In a previous paper [Orosa JA, Baalina A. Passive climate control in Spanish office buildings for long periods of time. Building and Environment 2008], we analysed the influence of permeable and impermeable materials on indoor air conditions, during the unoccupied period, in 25 office buildings in different seasons. Results obtained lead us to conclude that real coverings such as permeable, semi-permeable and impermeable types, present different behavioural patterns in indoor air conditions. Furthermore, we concluded that an absorbent structure will moderate relative humidity indoors. In this paper, we study this indoor relative humidity effect on local thermal discomfort, due to decreased respiratory cooling, and indoor ambience acceptability for the early hours of morning applying PD and Acc models [Toftum J, Jorgensen AS, Fanger PO. Upper limits for indoor air humidity to avoid uncomfortably humid skin. Energy and buildings 1998; 28: 1-13; Toftum J, Jorgensen AS, Fanger PO. Upper limits of air humidity for preventing warm respiratory discomfort. Energy and Buildings 1998; 28: 15-23] such as that proposed by Simonson et al. [The effect of structures on indoor humidity-possibility to improve comfort and perceived air quality. Indoor Air

  10. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae; Zhang, Fang; Logan, Bruce E.

    2014-01-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry

  11. A Smart Gas Sensor Insensitive to Humidity and Temperature Variations

    International Nuclear Information System (INIS)

    Hajmirzaheydarali, Mohammadreza; Ghafarinia, Vahid

    2011-01-01

    The accuracy of the quantitative sensing of volatile organic compounds by chemoresistive gas sensors suffers from the fluctuations in the background atmospheric conditions. This is caused by the drift-like terms introduced in the responses by these instabilities, which should be identified and compensated. Here, a mathematical model is presented for a specific chemoresistive gas sensor, which facilitates these identification and compensation processes. The resistive gas sensor was considered as a multi-input-single-output system. Along with the steady state value of the measured sensor resistance, the ambient humidity and temperature are the inputs to the system, while the concentration level of the target gas is the output. The parameters of the model were calculated based on the experimental database. The model was simulated by the utilization of an artificial neural network. This was connected to the sensor and could deliver the correct contamination level upon receiving the measured gas response, ambient humidity and temperature.

  12. Suscetibilidade do ambiente a ocorrências de queimadas sob condições climáticas atuais e de futuro aquecimento global Environmental susceptibility for the occurance of vegetacion burning under present day and future clobal warming conditions

    Directory of Open Access Journals (Sweden)

    Anailton Sales Mélo

    2011-09-01

    warming conditions, in particular for the Amazon region.

  13. Aerosol Indirect Effect on Warm Clouds over Eastern China Using Combined CALIOP and MODIS Observations

    Science.gov (United States)

    Guo, Jianping; Wang, Fu; Huang, Jingfeng; Li, Xiaowen

    2015-04-01

    season. It is likely associated with an increase in the emission of light absorbing aerosol like smoke (black carbon), mainly caused by coal-fired heating during the cold season in China. As expected, the sensitivity of CDR to AOD is much weaker for "Separated" cases, irrespective of warm or cold seasons, indicating no real aerosol indirect effect occurring in this case. In contrast, for heavy aerosol loading (AOD>0.4), an increasing CDR with AOD can be seen in "Mixed" scenario during the warm season. Conversely, a closer look at the responses of CDR during the cold season shows that CDR decreases with AOD, although the strength is not much large. Therefore, we argue that cloud droplet size decreases with aerosol loading during cold season, irrespective of moderate or heavy atmospheric pollution. Finally, we discuss the possible factors that may influence the aerosol indirect effects on warm clouds investigated here. For instance, aerosol-cloud interaction conundrum might be affected by aerosol humidification, which is the case for MODIS AOD during warm seasons. But this issue can be partly overcome by categorizing dataset into warm-season and cold-season subsets, representing different ambient humidity condition in the atmosphere. The different boomerang shapes observed during various seasons, particularly after transition zone due to droplet saturation effect, have great implications for climate forcing by aerosol in eastern China.

  14. Relationship of the moisture content of Finnish wheat flour and relative humidity

    Directory of Open Access Journals (Sweden)

    Yu-Yen Linko

    1968-01-01

    Full Text Available Changes in the moisture content of Finnish commercial wheat flour stored at variable relative humidities, representing the conditions typical of flour storage in Finland, were investigated. It could be shown that flour of 15 % moisture at the time of packing tends to dry considerably during normal storage conditions. Owing to the hysteresis effect, the moisture content of once dried flour is not likely to reach detrimental levels during normal storage, even if the relative humidity would exceed the critical level of 75—80 % for short periods. Minimum warehouse relative humidity was observed during Januay, at which time flour moisture had decreased to 6.7 %. The equilibrium humidity for flour of 15 % original moisture content was found to be about 70 %.

  15. The Influence Of Switching-Off The Big Lamps On The Humidity Operation Hall

    International Nuclear Information System (INIS)

    Wiranto, Slamet; Sriawan

    2001-01-01

    When there is no activity in the Operation Hall, the big lamps in this are switched off. Due to the water trap of ventilation system is not in good function, the humidity of the Operation Hall increases. In any point of time the humidity rise over the permitted limit value. To avoid this problem it is needed to investigate the characteristic by measuring the humidity of the Operation Hall at various condition and situation. From the characteristic, it can be determined that for normal condition, the Operation Hall big lamps should be switched off, and 2 days before start-up reactor, the all operation building lamps should be switched on for about 5 days as the operation building humidity back to normal value

  16. Humidity control of an incubator using the microcontroller-based active humidifier system employing an ultrasonic nebulizer.

    Science.gov (United States)

    Güler, I; Burunkaya, M

    2002-01-01

    Relative humidity levels of an incubator were measured and controlled. An ultrasonic nebulizer system as an active humidifier was used to humidify the incubator environment. An integrated circuit-type humidity sensor was used to measure the humidity level of the incubator environment. Measurement and control processes were achieved by a PIC microcontroller. The high-performance and high-speed PIC provided the flexibility of the system. The developed system can be used effectively for the intensive care of newborns and/or premature babies. Since the humidifier generates an aerosol in ambient conditions, it is possible to provide the high relative humidity level for therapeutic and diagnostic purposes in medicine.

  17. Building America Case Study: Energy Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates, Cocoa, Florida

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split on seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.

  18. Influence of temperature and humidity on carbon based printed flexible sensors

    KAUST Repository

    Nag, Anindya

    2018-03-02

    This paper presents the response of two different types of novel printed sensors towards the change in temperature and humidity. The electrodes of all the sensors were based on carbon materials. Followed by the design and fabrication of the sensors, the responses of the sensors were analyzed for different temperature and humidity conditions in an incubator. These results provide a podium to enhance the alternation of the fabrication procedure of carbon-based printed sensors.

  19. Influence of temperature and humidity on carbon based printed flexible sensors

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas; Kosel, Jü rgen

    2018-01-01

    This paper presents the response of two different types of novel printed sensors towards the change in temperature and humidity. The electrodes of all the sensors were based on carbon materials. Followed by the design and fabrication of the sensors, the responses of the sensors were analyzed for different temperature and humidity conditions in an incubator. These results provide a podium to enhance the alternation of the fabrication procedure of carbon-based printed sensors.

  20. Reconstructing warm inflation

    Science.gov (United States)

    Herrera, Ramón

    2018-03-01

    The reconstruction of a warm inflationary universe model from the scalar spectral index n_S(N) and the tensor to scalar ratio r( N) as a function of the number of e-folds N is studied. Under a general formalism we find the effective potential and the dissipative coefficient in terms of the cosmological parameters n_S and r considering the weak and strong dissipative stages under the slow roll approximation. As a specific example, we study the attractors for the index n_S given by nS-1∝ N^{-1} and for the ratio r∝ N^{-2}, in order to reconstruct the model of warm inflation. Here, expressions for the effective potential V(φ ) and the dissipation coefficient Γ (φ ) are obtained.

  1. Thinking About Global Warming

    International Nuclear Information System (INIS)

    Baron, J.

    2006-01-01

    Attitudes toward global warming are influenced by various heuristics, which may distort policy away from what is optimal for the well-being of people. These possible distortions, or biases, include: a focus on harms that we cause, as opposed to those that we can remedy more easily; a feeling that those who cause a problem should fix it; a desire to undo a problem rather than compensate for its presence; parochial concern with one's own group (nation); and neglect of risks that are not available. Although most of these biases tend to make us attend relatively too much to global warming, other biases, such as wishful thinking, cause us to attend too little. I discuss these possible effects and illustrate some of them with an experiment conducted on the World Wide Web

  2. Climate change - global warming

    International Nuclear Information System (INIS)

    Ciconkov, Risto

    2001-01-01

    An explanation about climate, weather, climate changes. What is a greenhouse effect, i.e. global warming and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warming Potential) as a factor for estimating their influence on the greenhouse effect. Indicators of the climate changes in the previous period by known international institutions, higher concentrations of global average temperature. Projecting of likely scenarios for the future climate changes and consequences of them on the environment and human activities: industry, energy, agriculture, water resources. The main points of the Kyoto Protocol and problems in its realization. The need of preparing a country strategy concerning the acts of the Kyoto Protocol, suggestions which could contribute in the preparation of the strategy. A special attention is pointed to the energy, its resources, the structure of energy consumption and the energy efficiency. (Author)

  3. Warm natural inflation

    International Nuclear Information System (INIS)

    Mishra, Hiranmaya; Mohanty, Subhendra; Nautiyal, Akhilesh

    2012-01-01

    In warm inflation models there is the requirement of generating large dissipative couplings of the inflaton with radiation, while at the same time, not de-stabilising the flatness of the inflaton potential due to radiative corrections. One way to achieve this without fine tuning unrelated couplings is by supersymmetry. In this Letter we show that if the inflaton and other light fields are pseudo-Nambu-Goldstone bosons then the radiative corrections to the potential are suppressed and the thermal corrections are small as long as the temperature is below the symmetry breaking scale. In such models it is possible to fulfil the contrary requirements of an inflaton potential which is stable under radiative corrections and the generation of a large dissipative coupling of the inflaton field with other light fields. We construct a warm inflation model which gives the observed CMB-anisotropy amplitude and spectral index where the symmetry breaking is at the GUT scale.

  4. Slowing global warming

    International Nuclear Information System (INIS)

    Flavin, C.

    1990-01-01

    According to the authors, global warming promises to be one of the central environmental issues of the nineties. After a decade of scientific concern but popular neglect, the eighties ended with a growing political as well as scientific consensus that the world can no longer afford to procrastinate about this issue. This paper reports on coping with global warming which, according to the author, will force societies to move rapidly into uncharted terrain, reversing powerful trends that have dominated the industrial age. This challenge cannot be met without a strong commitment on the part of both individual consumers and governments. In terms of the earth's carbon balance, the unprecedented policy changes that have now become urgent include a new commitment to greater energy efficiency and renewable energy sources, a carbon tax on fossil fuels, a reversal of deforestation in tropical countries, and the rapid elimination of CFCs

  5. Military Implications of Global Warming.

    Science.gov (United States)

    1999-05-20

    U.S. environmental issues also have important global implications. This paper analyzes current U.S. Policy as it pertains to global warming and climate...for military involvement to reduce global warming . Global warming and other environmental issues are important to the U.S. military. As the United

  6. Adjustment of web-building initiation to high humidity: a constraint by humidity-dependent thread stickiness in the spider Cyrtarachne.

    Science.gov (United States)

    Baba, Yuki G; Kusahara, Miki; Maezono, Yasunori; Miyashita, Tadashi

    2014-07-01

    Cyrtarachne is an orb-weaving spider belonging to the subfamily Cyrtarachninae (Araneidae) which includes triangular-web-building Pasilobus and bolas spiders. The Cyrtarachninae is a group of spiders specialized in catching moths, which is thought to have evolved from ordinary orb-weaving araneids. Although the web-building time of nocturnal spiders is in general related to the time of sunset, anecdotal evidence has suggested variability of web-building time in Cyrtarachne and its closely related genera. This study has examined the effects of temperature, humidity, moonlight intensity, and prey (moths) availability on web-building time of Cyrtarachne bufo, Cyrtarachne akirai, and Cyrtarachne nagasakiensis. Generalized linear mixed model (GLMM) have revealed that humidity, and not prey availability, was the essential variable that explained the daily variability of web-building time. Experiments measuring thread stickiness under different humidities showed that, although the thread of Cyrtarachne was found to have strong stickiness under high humidity, low humidity caused a marked decrease of thread stickiness. By contrast, no obvious change in stickiness was seen in an ordinary orb-weaving spider, Larinia argiopiformis. These findings suggest that Cyrtarachne adjusts its web-building time to favorable conditions of high humidity maintaining strong stickiness, which enables the threads to work efficiently for capturing prey.

  7. EFFECTS OF GLOBAL WARMING

    OpenAIRE

    Dr. Basanti Jain

    2017-01-01

    The abnormal increase in the concentration of the greenhouse gases is resulting in higher temperatures. We call this effect is global warming. The average temperature around the world has increased about 1'c over 140 years, 75% of this has risen just over the past 30 years. The solar radiation, as it reaches the earth, produces "greenhouse effect" in the atmosphere. The thick atmospheric layers over the earth behaves as a glass surface, as it permits short wave radiations from coming in, but ...

  8. Warm natural inflation

    International Nuclear Information System (INIS)

    Mishra, Hiranmaya; Mohanty, Subhendra; Nautiyal, Akhilesh

    2013-01-01

    In warm inflation models there is the requirement of generating large dissipative couplings of the inflation with radiation, while at the same Âătime, not de-stabilising the flatness of the inflation potential due to radiative corrections. One way to achieve this without fine tuning unrelated couplings is by supersymmetry. In this talk we will discuss warm inflation with Pseudo-Nambu-Goldstone Bosons (PNGB). In this case inflation and other light fields are PNGB. So, the radiative corrections to the potential are suppressed and the thermal Âăcorrections are small as long as the temperature is below the symmetry breaking scale. In such models it is possible to fulfill the contrary requirements of an inflation potential which is stable under radiative corrections and the generation of a large dissipative coupling of the inflation field with other light fields. This warm inflation model with PNGB gives the observed CMB-anisotropy amplitude and spectral index having the symmetry breaking scale at the GUT scale. (author)

  9. Effects of relative humidity, temperature, and population density on production of cuticular hydrocarbons in housefly Musca domestica L.

    NARCIS (Netherlands)

    Noorman, N; Den Otter, CJ

    The production of cuticular hydrocarbons by both males and females of Musca domestica L. under very wet conditions (90% relative humidity) compared to the production at 50 and 20% relative humidity is delayed up to at least 3 days after emergence from the pupae. Eight days after emergence, however,

  10. Crystallization speed of salbutamol as a function of relative humidity and temperature.

    Science.gov (United States)

    Zellnitz, Sarah; Narygina, Olga; Resch, Christian; Schroettner, Hartmuth; Urbanetz, Nora Anne

    2015-07-15

    Spray dried salbutamol sulphate and salbutamol base particles are amorphous as a result of spray drying. As there is always the risk of recrystallization of amorphous material, the aim of this work is the evaluation of the temperature and humidity dependent recrystallization of spray dried salbutamol sulphate and base. Therefore in-situ Powder X-ray Diffraction (PXRD) studies of the crystallization process at various temperature (25 and 35 °C) and humidity (60%, 70%, 80%, 90% relative humidity) conditions were performed. It was shown that the crystallization speed of salbutamol sulphate and base is a non-linear function of both temperature and relative humidity. The higher the relative humidity the higher is the crystallization speed. At 60% relative humidity salbutamol base as well as salbutamol sulphate were found to be amorphous even after 12 h, however samples changed optically. At 70% and 90% RH recrystallization of salbutamol base is completed after 3 h and 30 min and recrystallization of salbutamol sulphate after 4h and 1h, respectively. Higher temperature (35 °C) also leads to increased crystallization speeds at all tested values of relative humidity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effect of vulcanization temperature and humidity on the properties of RTV silicone rubber

    Science.gov (United States)

    Wu, Xutao; Li, Xiuguang; Hao, Lu; Wen, Xishan; Lan, Lei; Yuan, Xiaoqing; Zhang, Qingping

    2017-06-01

    In order to study the difference in performance of room temperature vulcanized (RTV) silicone rubber in vulcanization environment with different temperature and humidity, static contact angle method, FTIR and TG is utilized to depict the properties of hydrophobicity, transfer of hydrophobicity, functional groups and thermal stability of RTV silicone rubber. It is found that different vulcanization conditions have effects on the characteristics of RTV silicone rubber, which shows that the hydrophobicity of RTV silicone rubber changes little with the vulcanization temperature but a slight increase with the vulcanization humidity. Temperature and humidity have obvious effects on the hydrophobicity transfer ability of RTV silicone rubber, which is better when vulcanization temperature is 5°C or vulcanization humidity is 95%. From the Fourier transform infrared spectroscopy, it can be concluded that humidity and temperature of vulcanization conditions have great effect on the functional groups of silicone rubber, and vulcanization conditions also have effect on thermal stability of RTV silicone rubber. When vulcanization temperature is 5°C or vulcanization humidity is 15% or 95%, the thermal stability of silicone rubber becomes worse.

  12. Understanding the tropical warm temperature bias simulated by climate models

    Science.gov (United States)

    Brient, Florent; Schneider, Tapio

    2017-04-01

    The state-of-the-art coupled general circulation models have difficulties in representing the observed spatial pattern of surface tempertaure. A majority of them suffers a warm bias in the tropical subsiding regions located over the eastern parts of oceans. These regions are usually covered by low-level clouds scattered from stratus along the coasts to more vertically developed shallow cumulus farther from them. Models usually fail to represent accurately this transition. Here we investigate physical drivers of this warm bias in CMIP5 models through a near-surface energy budget perspective. We show that overestimated solar insolation due to a lack of stratocumulus mostly explains the warm bias. This bias also arises partly from inter-model differences in surface fluxes that could be traced to differences in near-surface relative humidity and air-sea temperature gradient. We investigate the role of the atmosphere in driving surface biases by comparing historical and atmopsheric (AMIP) experiments. We show that some differences in boundary-layer characteristics, mostly those related to cloud fraction and relative humidity, are already present in AMIP experiments and may be the drivers of coupled biases. This gives insights in how models can be improved for better simulations of the tropical climate.

  13. Global warming and its implication to emission reduction strategies for residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoming; Chen, Dong; Ren, Zhengen [CSIRO Climate Adaptation Flagship and CSIRO Ecosystem Sciences, Commonwealth Scientific and Industrial Research Organisation (CSIRO), P.O. Box 56, Graham Road, Highett, Victoria 3190 (Australia)

    2011-04-15

    Carbon emission reduction schemes by improving residential building energy performance are often developed and assessed upon the assumption of current or stationary climates. This study investigated the heating and cooling (H-C) energy requirements and corresponding carbon emissions of residential houses in different climatic conditions in relation to global warming. This included assessing and quantifying the efficacy of emission reduction schemes based on emission reduction capacity (ERC). ERC represents the percentage of projected carbon emission reduction under changing climate in a specific year compared to the expected reduction by a scheme at current or stationary climates. It is shown that in a heating-dominated region with a cold climate or temperate climate with cold winter, ERC is projected to increase (or the projected emission reduction is higher than the expected reduction under the emission reduction scheme) in the presence of global warming. In contrast, in a cooling-dominated region with a hot dry or hot humid climate or an H-C balanced temperate climate, ERC is projected to decline. This implies that emission reductions will be lower than those initially targeted by the emission reduction scheme without consideration of global warming. Additionally, to reflect the changing carbon emission over years due to climate change, the average emission reduction capacity (AERC) was also proposed for the assessment of reduction schemes. It was concluded that the design and assessment of carbon emission reduction schemes for residential buildings need to move beyond its assumptions of a current or stationary climate to take into account climate change impacts. (author)

  14. MECO Warming Changes Continental Rainfall Patterns in Eocene Western North America

    Science.gov (United States)

    Methner, K.; Mulch, A.; Fiebig, J.; Wacker, U.; Gerdes, A.; Graham, S. A.; Chamberlain, C. P.

    2016-12-01

    Eocene hyperthermals represent temperature extremes superimposed on an existing warm climate. They dramatically affected the marine and terrestrial biosphere, but still remain among the most enigmatic phenomena of Cenozoic climate dynamics. To evaluate the impacts of global warm periods on terrestrial temperature and rainfall records in continental interiors, we sampled a suite of middle Eocene ( 40 Ma) paleosols from a high-elevation mammal fossil locality in the hinterland of the North American Cordillera (Sage Creek Basin, Montana, USA) and integrated laser ablation U-Pb dating of pedogenic carbonate, stable isotope (δ18O) and clumped isotope temperature (Δ47) records. Δ47 temperature data of soil carbonates progressively increase from 23 °C ±3 °C to peak temperatures of 32 °C ±3 °C and subsequently drop to 21 °C ±2 °C and delineate a rapid +9/-11 °C temperature excursion in the paleosol record. This hyperthermal event is accompanied by large and rapid shifts towards low δ18O values and reduced pedogenic CaCO3 contents. U-Pb geochronology of the paleosol carbonate confirms a middle Eocene age for soil carbonate formation (39.5 ±1.4 Ma and 40.1 ±0.8 Ma). Based on U-Pb geochronology, magneto- and biostratigraphy we suggest that the recorded Δ47 temperature excursion reflects peak warming during the Middle Eocene Climatic Optimum (MECO). The MECO in continental western North America appears to be characterized by warmer and wetter (sub-humid) conditions in this high-elevation site. Shifts in δ18O values of precipitation and pedogenic CaCO3 contents parallel temperature changes and require modification of mid-latitude rainfall patterns, indicating a profound impact of the MECO on the hydrological cycle and consequently on atmospheric circulation patterns in the hinterland of the North American Cordillera.

  15. 40 CFR 90.310 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a) Humidity...

  16. Humidity sorption on natural building stone

    Science.gov (United States)

    Franzen, C.; Mirwald, P.

    2003-04-01

    processes, physical, chemical or biological, depend on the presence of water. Like most porous materials building stone respond on humidity by water uptake. The sorption isotherm represents the equilibrium moisture, specific for each material. The determination of the isotherm for stone of low and small porosity like marble is difficult. With the help of a newly developed water sorption analysis chamber [2], which allows the simultaneous measurement of 11 samples, good results on stone/rock samples have been obtained. Even at marble species with pore volumes lower than 0.4 % isotherms are measured. This analytical method offers new insights in the pore behaviour of low porosity materials. The advantages of this technique which supplements other techniques (e.g. BET, Hg-porosimetry) are: i) the testing agent is identical to the weathering agent, water; ii) the atmospheric parameters at the measurement reflect the natural conditions - thus no changes to the material properties have to be considered; iii) due to the small diameter of the water molecule (~0.28 nm), smaller pores are reached than e.g. with N2 (~0.31 nm). Sorption isotherms of sandstone (Baumberg, Obernkirchen, Groeden), granite (Brixen), and marble (Sterzing, Laas) are presented. Particular as to marbles the resolution is considerably higher. A previously observed negative hysteresis [3] seems an effect due to limited data resolution. [1] Snethlage, R. (1984) Steinkonservierung, Bayer. LA Denkmalpflege, Ah. 22, 203 S. [2] Griesser, U.J., Dillenz, J. (2002) Neuartiges, vollautomatisches Feuchtesorptionsprüfgerät mit hohem Probendurchsatz, Feuchtetag 2002, Weimar, 85-93. [3] Fimmel, R. (1996) Verwitterungsverhalten der alpinen Marmore von Laas und Sterzing, Diss. Univ. Ibk, 116 S.

  17. Humidification tower for humid air gas turbine cycles: Experimental analysis

    International Nuclear Information System (INIS)

    Traverso, A.

    2010-01-01

    In the HAT (humid air turbine) cycle, the humidification of compressed air can be provided by a pressurised saturator (i.e. humidification tower or saturation tower), this solution being known to offer several attractive features. This work is focused on an experimental study of a pressurised humidification tower, with structured packing. After a description of the test rig employed to carry out the measuring campaign, the results relating to the thermodynamic process are presented and discussed. The experimental campaign was carried out over 162 working points, covering a relatively wide range of possible operating conditions. It is shown that the saturator behaviour, in terms of air outlet humidity and temperature, is primarily driven by, in decreasing order of relevance, the inlet water temperature, the inlet water over inlet dry air mass flow ratio and the inlet air temperature. The exit relative humidity is consistently over 100%, which may be explained partially by measurement accuracy and droplet entrainment, and partially by the non-ideal behaviour of air-steam mixtures close to saturation. Experimental results have been successfully correlated using a set of new non-dimensional groups: such a correlation is able to capture the air outlet temperature with a standard deviation σ = 2.8 K.

  18. Seagrass ecophysiological performance under ocean warming and acidification.

    Science.gov (United States)

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R; Rosa, Inês C; Grilo, Tiago F; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-02-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, F v /F m ) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and F v /F m (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming.

  19. Aging Impairs Whole-Body Heat Loss in Women under Both Dry and Humid Heat Stress.

    Science.gov (United States)

    Notley, Sean R; Poirier, Martin P; Hardcastle, Stephen G; Flouris, Andreas D; Boulay, Pierre; Sigal, Ronald J; Kenny, Glen P

    2017-11-01

    This study was designed to determine whether age-related impairments in whole-body heat loss, which are known to exist in dry heat, also occur in humid heat in women. To evaluate this possibility, 10 young (25 ± 4 yr) and 10 older (51 ± 7 yr) women matched for body surface area (young, 1.69 ± 0.11; older, 1.76 ± 0.14 m, P = 0.21) and peak oxygen consumption (V˙O2peak) (young, 38.6 ± 4.6; older, 34.8 ± 6.6 mL·kg·min, P = 0.15) performed four 15-min bouts of cycling at a fixed metabolic heat production rate (300 W; equivalent to ~45% V˙O2peak), each separated by a 15-min recovery, in dry (35°C, 20% relative humidity) and humid heat (35°C, 60% relative humidity). Total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat storage was measured as the temporal summation of heat production and loss. Total heat loss was lower in humid conditions compared with dry conditions during all exercise bouts in both groups (all P body heat storage in young and older women, respectively (both P body heat storage was 29% and 16% greater in older women compared with young women in dry and humid conditions, respectively (both P < 0.05). Increasing ambient humidity reduces heat loss capacity in young and older women. However, older women display impaired heat loss relative to young women in both dry and humid heat, and may therefore be at greater risk of heat-related injury during light-to-moderate activity.

  20. building material preferences in warm-humid and hot-dry climates

    African Journals Online (AJOL)

    User

    2Department of Building Technology, College of Architecture and Planning, KNUST, Kumasi,. Ghana. ABSTRACT ..... DHPR to benefit research, teaching and the development of the ..... “Integration Management for Green Business to achieve ...

  1. building material preferences in warm-humid and hot-dry climates

    African Journals Online (AJOL)

    User

    more pressure on urban land for various uses over the entire .... the use of plain sheet glass louvre blades in ..... parametric test c2 (Chi-squared) was run to ..... Boamah, N. A., Gyimah, C. and Nelson, J. K. ... Hangen, J. and Dye, J. (1974).

  2. Kohl's Aims for Energy Savings in Warm-Humid Climates (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-12-01

    Kohl's Department Stores partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to build new stores that consume at least 50% less than the requirements set by ASHRAE/ANSI/IESNA Standard 90.1-20041 as part of DOE's Commercial Building Partnership (CBP) program. The National Renewable Energy Laboratory (NREL) provided technical expertise on the project.

  3. Indoor-outdoor relationship of fungal aerosols in domestic homes situated in humid-warm climate

    International Nuclear Information System (INIS)

    ACeron Palma, I. M.; Lopez Pacheco, M.; Perez Sanchez, M. M.; Quintal Franco, C.; Giacoman Vallejos, G.; Ponce Caballero, C.

    2009-01-01

    Among the different kinds of bio aerosols, fungi represent a heterogeneous group, which plays an important role in human pathology. These microorganisms can be the cause of a variety of infectious diseases as well as allergic and toxic effects. Therefore, it is necessary to assess their composition and concentrations indoors, outdoors and in domestic environments. The study of indoor-air quality is a relatively new activity in the world, and very recent in Mexico. The aim of this study was to establish the relation between indoors and outdoors fungal aerosols in domestic homes. Air samples were collected, using the 6-stage Andersen impactor, inside and outside thirty domestic homes of Merida city, in Yucatan, Mexico. (Author)

  4. Demonstration of Antimicrobial Corrosion-Resisting Interior Coating Systems for Military Facilities in Warm, Humid Locations

    Science.gov (United States)

    2017-06-01

    solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense...was unexpectedly upgraded soon after the demonstration coatings were applied, apparently due to a scheduling change or miscommunication re- lated...oils and grease, so no cleaning solution was needed. Sherwin Williams ProMar 200 acrylic primer was used to prime all gyp- sum surfaces that were

  5. Tests of a system to exclude roots from buried radioactive waste in a warm, humid climate

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Corey, J.C.; Adriano, D.C.; Decker, O.D.; Griggs, R.D.

    1989-01-01

    Vegetation is commonly used to stabilize the ground covering buried waste sites. However, constituents of buried waste can be brought to the surface if the waste is penetrated by plant roots. An ideal waste burial system would allow the use of vegetation to stabilize the soil above the buried waste but would exclude roots from the waste. One system that shows considerable promise is a slow release encapsulation of a root growth inhibitor (Trifluralin). Projected lifetimes of the capsule are in the order of 100 years. The capsule is bonded to a geotextile, which provides an easy means of distributing the capsule evenly over the area to be protected. Vegetation grown in the soil above the barrier has provided good ground cover, although some decrease in growth has been found in some species. Of the species tested the sensitivity to the biobarrier, as measured by the distance root growth stops near the barrier, is bamboo> bahia grass> bermuda grass> soybean. Potential uses for the biobarrier at the Savannah River Site (SRS) include the protection of clay caps over buried, low-level saltstone and protection of gravel drains and clay caps over decommissioned seepage basins. Trails of the biobarrier as part of waste site caps are scheduled to begin during the next 12 months

  6. Integrated CMOS dew point sensors for relative humidity measurement

    Science.gov (United States)

    Savalli, Nicolo; Baglio, Salvatore; Castorina, Salvatore; Sacco, Vincenzo; Tringali, Cristina

    2004-07-01

    This work deals with the development of integrated relative humidity dew point sensors realized by adopting standard CMOS technology for applications in various fields. The proposed system is composed by a suspended plate that is cooled by exploiting integrated Peltier cells. The cold junctions of the cells have been spread over the plate surface to improve the homogeneity of the temperature distribution over its surface, where cooling will cause the water condensation. The temperature at which water drops occur, named dew point temperature, is a function of the air humidity. Measurement of such dew point temperature and the ambient temperature allows to know the relative humidity. The detection of water drops is achieved by adopting a capacitive sensing strategy realized by interdigited fixed combs, composed by the upper layer of the adopted process. Such a capacitive sensor, together with its conditioning circuit, drives a trigger that stops the cooling of the plate and enables the reading of the dew point temperature. Temperature measurements are achieved by means of suitably integrated thermocouples. The analytical model of the proposed system has been developed and has been used to design a prototype device and to estimate its performances. In such a prototype, the thermoelectric cooler is composed by 56 Peltier cells, made by metal 1/poly 1 junctions. The plate has a square shape with 200 μm side, and it is realized by exploiting the oxide layers. Starting from the ambient temperature a temperature variation of ΔT = 15 K can be reached in 10 ms thus allowing to measure a relative humidity greater than 40%.

  7. Relative humidity measurements with thermocouple psychrometer and capacitance sensors

    International Nuclear Information System (INIS)

    Mao, Naihsien.

    1991-01-01

    The relative humidity is one of the important hydrological parameters affecting waste package performance. Water potential of a system is defined as the amount of work required to reversibly and isothermally move an infinitesimal quantity of water from a pool of pure water to that system at the same elevation. The thermocouple psychrometer, which acts as a wet-dry bulb instrument based on the Peltier effect, is used to measure water potential. The thermocouple psychrometer works only for relative humidity greater than 94 percent. Other sensors must be used for drier conditions. Hence, the author also uses a Vaisala Humicap, which measures the capacitance change due to relative humidity change. The operation range of the Humicap (Model HMP 135Y) is from 0 to 100 percent relative humidity and up to 160C (320F) in temperature. A psychrometer has three thermocouple junctions. Two copper-constantan junctions serve as reference temperature junctions and the constantan-chromel junction is the sensing junction. Current is passed through the thermocouple causing cooling of the sensing junction by the Peltier effect. When the temperature of the junction is below the dew point, water will condense upon the junction from the air. The Peltier current is discontinued and the thermocouple output is recorded as the temperature of the thermocouple returns to ambient. The temperature changes rapidly toward the ambient temperature until it reaches the wet bulb depression temperature. At this point, evaporation of the water from the junction produces a cooling effect upon the junction that offsets the heat absorbed from the ambient surroundings. This continues until the water is depleted and the thermocouple temperature returns to the ambient temperature (Briscoe, 1984). The datalogger starts to take data roughly at the wet bulb depression temperature

  8. All-Optical Graphene Oxide Humidity Sensors

    Directory of Open Access Journals (Sweden)

    Weng Hong Lim

    2014-12-01

    Full Text Available The optical characteristics of graphene oxide (GO were explored to design and fabricate a GO-based optical humidity sensor. GO film was coated onto a SU8 polymer channel waveguide using the drop-casting technique. The proposed sensor shows a high TE-mode absorption at 1550 nm. Due to the dependence of the dielectric properties of the GO film on water content, this high TE-mode absorption decreases when the ambient relative humidity increases. The proposed sensor shows a rapid response (<1 s to periodically interrupted humid air flow. The transmission of the proposed sensor shows a linear response of 0.553 dB/% RH in the range of 60% to 100% RH.

  9. All-optical graphene oxide humidity sensors.

    Science.gov (United States)

    Lim, Weng Hong; Yap, Yuen Kiat; Chong, Wu Yi; Ahmad, Harith

    2014-12-17

    The optical characteristics of graphene oxide (GO) were explored to design and fabricate a GO-based optical humidity sensor. GO film was coated onto a SU8 polymer channel waveguide using the drop-casting technique. The proposed sensor shows a high TE-mode absorption at 1550 nm. Due to the dependence of the dielectric properties of the GO film on water content, this high TE-mode absorption decreases when the ambient relative humidity increases. The proposed sensor shows a rapid response (<1 s) to periodically interrupted humid air flow. The transmission of the proposed sensor shows a linear response of 0.553 dB/% RH in the range of 60% to 100% RH.

  10. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths

    Science.gov (United States)

    von Arx, Martin; Goyret, Joaquín; Davidowitz, Goggy; Raguso, Robert A.

    2012-01-01

    Most research on plant–pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue—transient humidity gradients—using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12–24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator. PMID:22645365

  11. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths.

    Science.gov (United States)

    von Arx, Martin; Goyret, Joaquín; Davidowitz, Goggy; Raguso, Robert A

    2012-06-12

    Most research on plant-pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue--transient humidity gradients--using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12-24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator.

  12. Influence of air humidity on polymeric microresonators

    International Nuclear Information System (INIS)

    Schmid, S; Kühne, S; Hierold, C

    2009-01-01

    The influence of air humidity on polymeric microresonators is investigated by means of three different resonator types. SU-8 microbeams, SU-8 microstrings and a silicon micromirror with SU-8 hinges are exposed to relative humidities between 3% and 60%. The shifts of the resonant frequencies as a function of the relative humidity (RH) are explained based on mechanical models which are extended with water absorption models in polymer materials. The dominant effect causing the resonant frequency change is evaluated for each structure type. The eigenfrequency of the microstrings and the micromirror in the out-of-plane mode, which both mainly are defined by the pre-stress of the polymeric structures, are found to be highly sensitive to changes of air humidity. The humidity-induced (hygrometric) volume expansion reversibly reduces the pre-stress which results in relative frequency changes of up to 0.78%/%RH for the microstrings. A maximum coefficient of humidity-induced volume expansion for SU-8 of α hyg = 52.3 ppm/%RH is evaluated by fitting the data with the analytical model. It was found that microstrings that were stored at 150 °C over 150 h are more moisture sensitive compared to structures that were stored at room temperature. For the SU-8 microbeams and the micromirror in the tilt mode, the eigenfrequency is mainly defined by the modulus of the polymer material. The measured relative resonant frequency changes were below 1% for the given RH range. For low RH values, antiplasticization is observed (the modulus increases) followed by a plasticization for increasing RH values

  13. Performance investigation on a multi-unit heat pump for simultaneous temperature and humidity control

    International Nuclear Information System (INIS)

    Fan, Hongming; Shao, Shuangquan; Tian, Changqing

    2014-01-01

    Highlights: • A multi-unit heat pump is proposed for simultaneous temperature and humidity control. • Condensation heat is non, partly or fully recovered for temperature regulation. • Highly integrated heat pump for residential cooling, dehumidification and heating. • High energy saving potential for all-year-round operation in wet and warm regions. - Abstract: A multi-unit heat pump is presented for simultaneous humidity and temperature control to improve the energy efficiency and the thermal comfort. Two parallel connected condensers are employed in the system, locating at the back of the indoor evaporator and the outdoor unit, respectively. The heat pump can operate in four modes, including heating, cooling and dehumidification without and/or with partial or total condensing heat recovery. The experimental investigation shows that the temperature control capacity is from 3.5 kW for cooling to 3.8 kW for heating with the cooling and heating efficiency higher than 3.5 kW kW −1 , and the dehumidification rate is about 2.0 kg h −1 with the efficiency about 2.0 kg h −1 kW −1 . The supply air temperature and humidity can be simultaneously regulated with high accuracy and high efficiency by adjusting the indoor and/or outdoor air volumes. It provides an integrated and effective solution for simultaneous indoor air temperature and humidity control for all-year-round operation in residential buildings

  14. Intensified Arctic warming under greenhouse warming by vegetation–atmosphere–sea ice interaction

    International Nuclear Information System (INIS)

    Jeong, Jee-Hoon; Kug, Jong-Seong; Linderholm, Hans W; Chen, Deliang; Kim, Baek-Min; Jun, Sang-Yoon

    2014-01-01

    Observations and modeling studies indicate that enhanced vegetation activities over high latitudes under an elevated CO 2 concentration accelerate surface warming by reducing the surface albedo. In this study, we suggest that vegetation-atmosphere-sea ice interactions over high latitudes can induce an additional amplification of Arctic warming. Our hypothesis is tested by a series of coupled vegetation-climate model simulations under 2xCO 2 environments. The increased vegetation activities over high latitudes under a 2xCO 2 condition induce additional surface warming and turbulent heat fluxes to the atmosphere, which are transported to the Arctic through the atmosphere. This causes additional sea-ice melting and upper-ocean warming during the warm season. As a consequence, the Arctic and high-latitude warming is greatly amplified in the following winter and spring, which further promotes vegetation activities the following year. We conclude that the vegetation-atmosphere-sea ice interaction gives rise to additional positive feedback of the Arctic amplification. (letter)

  15. A Humidity-Dependent Lifetime Derating Factor for DC Film Capacitors

    DEFF Research Database (Denmark)

    Wang, Huai; Reigosa, Paula Diaz; Blaabjerg, Frede

    2015-01-01

    accelerated testing of film capacitors under different humidity conditions, enabling a more justified lifetime prediction of film capacitors for DC-link applications under specific climatic environments. The analysis of the testing results and the detailed discussion on the derating factor with different......Film capacitors are widely assumed to have superior reliability performance than Aluminum electrolytic capacitors in DC-link design of power electronic converters. However, the assumption needs to be critically judged especially for applications under high humidity environments. This paper proposes...... a humidity-dependent lifetime derating factor for a type of plastic-boxed metallized DC film capacitors. It overcomes the limitation that the humidity impact is not considered in the state-of-the-art DC film capacitor lifetime models. The lifetime derating factor is obtained based on a total of 8,700 hours...

  16. Humidity fluctuations in the marine boundary layer measured at a coastal site with an infrared humidity sensor

    DEFF Research Database (Denmark)

    Sempreviva, A.M.; Gryning, Sven-Erik

    1996-01-01

    An extensive set of humidity turbulence data has been analyzed from 22-m height in the marine boundary layer. Fluctuations of humidity were measured by an ''OPHIR'', an infrared humidity sensor with a 10 Hz scanning frequency and humidity spectra were produced. The shapes of the normalized spectra...... follow the established similarity functions. However the 10-min time averaged measurements underestimate the value of the absolute humidity. The importance of the humidity flux contribution in a marine environment in calculating the Obukhov stability length has been studied. Deviations from Monin......-Obukhov similarity theory seem to be connected to a low correlation between humidity and temperature....

  17. PECULIAR FEATURES OF HEAT-HUMIDITY MODE PERTAINING TO POROUS LAYERS OF ASPHALT CONCRETE PAVEMENTS

    Directory of Open Access Journals (Sweden)

    V. Verenko

    2012-01-01

    Full Text Available The paper presents results of experimental investigations and points out the fact that conventional approaches to design and calculations of road pavements that presuppose application of porous asphalt concrete on compact bedding can cause some deformations and destructions initiated due to humidity migration in large internal material pores and lead to material destruction during warm season of the year when water is characterized by high activity. Such processes result in bitumen washing-out, white spot occurrence on the pavement and quick destruction of the pavement.The paper proposes to reconsider existing approaches to design and calculation of road pavements, estimation of reliability and service-ability levels of the applied construction materials. In particular it is necessary to calculate a road pavement with respect to thermo-physical action while excluding condensate and humidity accumulation in porous materials. 

  18. Prediction of concrete compressive strength considering humidity and temperature in the construction of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seung Hee; Jang, Kyung Pil [Department of Civil and Environmental Engineering, Myongji University, Yongin (Korea, Republic of); Bang, Jin-Wook [Department of Civil Engineering, Chungnam National University, Daejeon (Korea, Republic of); Lee, Jang Hwa [Structural Engineering Research Division, Korea Institute of Construction Technology (Korea, Republic of); Kim, Yun Yong, E-mail: yunkim@cnu.ac.kr [Structural Engineering Research Division, Korea Institute of Construction Technology (Korea, Republic of)

    2014-08-15

    Highlights: • Compressive strength tests for three concrete mixes were performed. • The parameters of the humidity-adjusted maturity function were determined. • Strength can be predicted considering temperature and relative humidity. - Abstract: This study proposes a method for predicting compressive strength developments in the early ages of concretes used in the construction of nuclear power plants. Three representative mixes with strengths of 6000 psi (41.4 MPa), 4500 psi (31.0 MPa), and 4000 psi (27.6 MPa) were selected and tested under various curing conditions; the temperature ranged from 10 to 40 °C, and the relative humidity from 40 to 100%. In order to consider not only the effect of the temperature but also that of humidity, an existing model, i.e. the humidity-adjusted maturity function, was adopted and the parameters used in the function were determined from the test results. A series of tests were also performed in the curing condition of a variable temperature and constant humidity, and a comparison between the measured and predicted strengths were made for the verification.

  19. Evaluation of Temperature and Humidity Profiles of Unified Model and ECMWF Analyses Using GRUAN Radiosonde Observations

    Directory of Open Access Journals (Sweden)

    Young-Chan Noh

    2016-07-01

    Full Text Available Temperature and water vapor profiles from the Korea Meteorological Administration (KMA and the United Kingdom Met Office (UKMO Unified Model (UM data assimilation systems and from reanalysis fields from the European Centre for Medium-Range Weather Forecasts (ECMWF were assessed using collocated radiosonde observations from the Global Climate Observing System (GCOS Reference Upper-Air Network (GRUAN for January–December 2012. The motivation was to examine the overall performance of data assimilation outputs. The difference statistics of the collocated model outputs versus the radiosonde observations indicated a good agreement for the temperature, amongst datasets, while less agreement was found for the relative humidity. A comparison of the UM outputs from the UKMO and KMA revealed that they are similar to each other. The introduction of the new version of UM into the KMA in May 2012 resulted in an improved analysis performance, particularly for the moisture field. On the other hand, ECMWF reanalysis data showed slightly reduced performance for relative humidity compared with the UM, with a significant humid bias in the upper troposphere. ECMWF reanalysis temperature fields showed nearly the same performance as the two UM analyses. The root mean square differences (RMSDs of the relative humidity for the three models were larger for more humid conditions, suggesting that humidity forecasts are less reliable under these conditions.

  20. Model, Proxy and Isotopic Perspectives on the East African Humid Period

    Science.gov (United States)

    Tierney, Jessica E.; Lewis, Sophie C.; Cook, Benjamin I.; LeGrande, Allegra N.; Schmidt, Gavin A.

    2011-01-01

    Both North and East Africa experienced more humid conditions during the early and mid-Holocene epoch (11,000-5000yr BP; 11-5 ka) relative to today. The North African Humid Period has been a major focus of paleoclimatic study, and represents a response of the hydrological cycle to the increase in boreal summer insolation and associated ocean, atmosphere and land surface feedbacks. Meanwhile, the mechanisms that caused the coeval East African Humid Period are poorly understood. Here, we use results from isotopeenabled coupled climate modeling experiments to investigate the cause of the East African Humid Period. The modeling results are interpreted alongside proxy records of both water balance and the isotopic composition of rainfall. Our simulations show that the orbitally-induced increase in dry season precipitation and the subsequent reduction in precipitation seasonality can explain the East African Humid Period, and this scenario agrees well with regional lake level and pollen paleoclimate data. Changes in zonal moisture flux from both the Atlantic and Indian Ocean account for the simulated increase in precipitation from June through November. Isotopic paleoclimate data and simulated changes in moisture source demonstrate that the western East African Rift Valley in particular experienced more humid conditions due to the influx of Atlantic moisture and enhanced convergence along the Congo Air Boundary. Our study demonstrates that zonal changes in moisture advection are an important determinant of climate variability in the East African region.

  1. Global warning, global warming

    International Nuclear Information System (INIS)

    Benarde, M.A.

    1992-01-01

    This book provides insights into the formidable array of issues which, in a warmer world, could impinge upon every facet of readers lives. It examines climatic change and long-term implications of global warming for the ecosystem. Topics include the ozone layer and how it works; the greenhouse effect; the dangers of imbalance and its effects on human and animal life; disruptions to the basic ecology of the planet; and the real scientific evidence for and against aberrant climatic shifts. The author also examines workable social and political programs and changes that must be instituted to avoid ecological disaster

  2. Physics of greenhouse effect and convection in warm oceans

    Science.gov (United States)

    Inamdar, A. K.; Ramanathan, V.

    1994-01-01

    Sea surface temperature (SST) in roughly 50% of the tropical Pacific Ocean is warm enough (SST greater than 300 K) to permit deep convection. This paper examines the effects of deep convection on the climatological mean vertical distributions of water vapor and its greenhouse effect over such warm oceans. The study, which uses a combination of satellite radiation budget observations, atmospheric soundings deployed from ships, and radiation model calculations, also examines the link between SST, vertical distribution of water vapor, and its greenhouse effect in the tropical oceans. Since the focus of the study is on the radiative effects of water vapor, the radiation model calculations do not include the effects of clouds. The data are grouped into nonconvective and convective categories using SST as an index for convective activity. On average, convective regions are more humid, trap significantly more longwave radiation, and emit more radiation to the sea surface. The greenhouse effect in regions of convection operates as per classical ideas, that is, as the SST increases, the atmosphere traps the excess longwave energy emitted by the surface and reradiates it locally back to the ocean surface. The important departure from the classical picture is that the net (up minus down) fluxes at the surface and at the top of the atmosphere decrease with an increase in SST; that is, the surface and the surface-troposphere column lose the ability to radiate the excess energy to space. The cause of this super greenhouse effect at the surface is the rapid increase in the lower-troposphere humidity with SST; that of the column is due to a combination of increase in humidity in the entire column and increase in the lapse rate within the lower troposphere. The increase in the vertical distribution of humidity far exceeds that which can be attributed to the temperature dependence of saturation vapor pressure; that is, the tropospheric relative humidity is larger in convective

  3. Global Warming: A Reduced Threat?.

    Science.gov (United States)

    Michaels, Patrick J.; Stooksbury, David E.

    1992-10-01

    One popular and apocalyptic vision of the world influenced by increasing concentrations of infrared-absorbing trace gases is that of ecological disaster brought about by rapidly rising temperatures, sea level, and evaporation rates. This vision developed from a suite of climate models that have since considerably changed in both their dynamics and their estimates of prospective warming. Observed temperatures indicate that much more warming should already have taken place than predicted by earlier models in the Northern Hemisphere, and that night, rather than day, readings in that hemisphere show a relative warming. A high-latitude polar-night warming or a general night warming could be either benign or beneficial. A large number of plant species show both increased growth and greater water-use efficiency under enhanced carbon dioxide.An extensive body of evidence now indicates that anthropo-generated sulfate emissions are mitigating some of the warming, and that increased cloudiness as a result of these emissions will further enhance night, rather than day, warming. The sulfate emissions, though, are not sufficient to explain all of the night warming. However, the sensitivity of climate to anthropogenerated aerosols, and the general lack of previously predicted warming, could drastically alter the debate on global warming in favor of less expensive policies.

  4. An increase in aerosol burden due to the land-sea warming contrast

    Science.gov (United States)

    Hassan, T.; Allen, R.; Randles, C. A.

    2017-12-01

    Climate models simulate an increase in most aerosol species in response to warming, particularly over the tropics and Northern Hemisphere midlatitudes. This increase in aerosol burden is related to a decrease in wet removal, primarily due to reduced large-scale precipitation. Here, we show that the increase in aerosol burden, and the decrease in large-scale precipitation, is related to a robust climate change phenomenon—the land/sea warming contrast. Idealized simulations with two state of the art climate models, the National Center for Atmospheric Research Community Atmosphere Model version 5 (NCAR CAM5) and the Geophysical Fluid Dynamics Laboratory Atmospheric Model 3 (GFDL AM3), show that muting the land-sea warming contrast negates the increase in aerosol burden under warming. This is related to smaller decreases in near-surface relative humidity over land, and in turn, smaller decreases in large-scale precipitation over land—especially in the NH midlatitudes. Furthermore, additional idealized simulations with an enhanced land/sea warming contrast lead to the opposite result—larger decreases in relative humidity over land, larger decreases in large-scale precipitation, and larger increases in aerosol burden. Our results, which relate the increase in aerosol burden to the robust climate projection of enhanced land warming, adds confidence that a warmer world will be associated with a larger aerosol burden.

  5. MOISTURE HUMIDITY EQUILIBRIUM OF WOOD CHIPS FROM ENERGETIC CROPS

    Directory of Open Access Journals (Sweden)

    Jan Barwicki

    2008-09-01

    Full Text Available Processes occurring during storage of wood chips for energetic or furniture industry purposes were presented. As a result of carried out investigations, dependences of temperature and relative humidity changes of surrounding air were shown. Modified Henderson equation can be utilized for computer simulation of storing and drying processes concerning wood chips for energetic and furniture industry purposes. It reflects also obtained results from experiments carried out with above mentioned material. Using computer simulation program we can examine different wood chips storing conditions to avoid overheating and loss problems.

  6. Humidity Control System In The Neutron Detector Of Guide Tube

    International Nuclear Information System (INIS)

    Alibasya Harahap, Sentot

    2001-01-01

    The probable symptom neutron detector damage as cause decrease resistivity and corrosion in the electrical terminal, further more occasion to voltage failure and leak current in the isolation. The prevent of voltage failure in detector a needed humidity controller's with dry air supply to guide tube with 2 kg/cm exp.2 air pressure and 7 l/min, air flow as soon as continuity dryer process in the guide tube. Reactor shutdown and operation condition of diffusion rate is 0,476 cm exp.3/year and 6,46 cm exp.3/year

  7. Mars MetNet Mission Pressure and Humidity Devices

    Science.gov (United States)

    Haukka, H.; Harri, A.-M.; Schmidt, W.; Genzer, M.; Polkko, J.; Kemppinen, O.; Leinonen, J.

    2012-09-01

    A new kind of planetary exploration mission for Mars is being developed in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission [1] is based on a new semi-hard landing vehicle called MetNet Lander (MNL). MetBaro and MetHumi are part of the scientific payload of the MNL. Main scientific goal of both devices is to measure the meteorological phenomena (pressure and humidity) of the Martian atmosphere and complement the previous Mars mission atmospheric measurements (Viking and Phoenix) for better understanding of the Martian atmospheric conditions.

  8. Antarctica: Cooling or Warming?

    Science.gov (United States)

    Bunde, Armin; Ludescher, Josef; Franzke, Christian

    2013-04-01

    We consider the 14 longest instrumental monthly mean temperature records from the Antarctica and analyse their correlation properties by wavelet and detrended fluctuation analysis. We show that the stations in the western and the eastern part of the Antarctica show significant long-term memory governed by Hurst exponents close to 0.8 and 0.65, respectively. In contrast, the temperature records at the inner part of the continent (South Pole and Vostok), resemble white noise. We use linear regression to estimate the respective temperature differences in the records per decade (i) for the annual data, (ii) for the summer and (iii) for the winter season. Using a recent approach by Lennartz and Bunde [1] we estimate the respective probabilities that these temperature differences can be exceeded naturally without inferring an external (anthropogenic) trend. We find that the warming in the western part of the continent and the cooling at the South Pole is due to a gradually changes in the cold extremes. For the winter months, both cooling and warming are well outside the 95 percent confidence interval, pointing to an anthropogenic origin. In the eastern Antarctica, the temperature increases and decreases are modest and well within the 95 percent confidence interval. [1] S. Lennartz and A. Bunde, Phys. Rev. E 84, 021129 (2011)

  9. Humidity sensing characteristics of hydrotungstite thin films

    Indian Academy of Sciences (India)

    The electrical conductivity of the films is observed to vary with humidity and selectively show high sensitivity to moisture at room temperature. In order to understand the mechanism of sensing, the films were examined by X-ray diffraction at elevated temperatures and in controlled atmospheres. Based on these observations ...

  10. Soil erosion in humid regions: a review

    Science.gov (United States)

    Daniel J. Holz; Karl W.J. Williard; Pamela J. Edwards; Jon E. Schoonover

    2015-01-01

    Soil erosion has significant implications for land productivity and surface water quality, as sediment is the leading water pollutant worldwide. Here, erosion processes are defined. The dominant factors influencing soil erosion in humid areas are reviewed, with an emphasis on the roles of precipitation, soil moisture, soil porosity, slope steepness and length,...

  11. Biochars as Innovative Humidity Sensing Materials

    Directory of Open Access Journals (Sweden)

    Daniele Ziegler

    2017-12-01

    Full Text Available In this work, biochar-based humidity sensors were prepared by drop-coating technique. Polyvinylpyrrolidone (PVP was added as an organic binder to improve the adhesion of the sensing material onto ceramic substrates having platinum electrodes. Two biochars obtained from different precursors were used. The sensors were tested toward relative humidity (RH at room temperature and showed a response starting around 5 RH%, varying the impedance of 2 orders of magnitude after exposure to almost 100% relative humidity. In both cases, biochar materials are behaving as p-type semiconductors under low amounts of humidity. On the contrary, for higher RH values, the impedance decreased due to water molecules adsorption. When PVP is added to SWP700 biochar, n-p heterojunctions are formed between the two semiconductors, leading to a higher sensitivity at low RH values for the sensors SWP700-10% PVP and SWP700-20% PVP with respect to pure SWP700 sensor. Finally, response and recovery times were both reasonably fast (in the order of 1 min.

  12. Recent Developments in Fiber Optics Humidity Sensors.

    Science.gov (United States)

    Ascorbe, Joaquin; Corres, Jesus M; Arregui, Francisco J; Matias, Ignacio R

    2017-04-19

    A wide range of applications such as health, human comfort, agriculture, food processing and storage, and electronic manufacturing, among others, require fast and accurate measurement of humidity. Sensors based on optical fibers present several advantages over electronic sensors and great research efforts have been made in recent years in this field. The present paper reports the current trends of optical fiber humidity sensors. The evolution of optical structures developed towards humidity sensing, as well as the novel materials used for this purpose, will be analyzed. Well-known optical structures, such as long-period fiber gratings or fiber Bragg gratings, are still being studied towards an enhancement of their sensitivity. Sensors based on lossy mode resonances constitute a platform that combines high sensitivity with low complexity, both in terms of their fabrication process and the equipment required. Novel structures, such as resonators, are being studied in order to improve the resolution of humidity sensors. Moreover, recent research on polymer optical fibers suggests that the sensitivity of this kind of sensor has not yet reached its limit. Therefore, there is still room for improvement in terms of sensitivity and resolution.

  13. Physical and chemical changes in whey protein concentrate stored at elevated temperature and humidity

    Science.gov (United States)

    The chemistry of whey protein concentrate (WPC) under adverse storage conditions was monitored to provide information on shelf life in hot, humid areas. WPC34 (34.9 g protein/100 g) and WPC80 (76.8 g protein/100 g) were stored for up to 18 mo under ambient conditions and at elevated temperature and...

  14. The Effect of Traditional Singing Warm-Up Versus Semioccluded Vocal Tract Exercises on the Acoustic Parameters of Singing Voice.

    Science.gov (United States)

    Duke, Emily; Plexico, Laura W; Sandage, Mary J; Hoch, Matthew

    2015-11-01

    This study investigated the effect of traditional vocal warm-up versus semioccluded vocal tract exercises on the acoustic parameters of voice through three questions: does vocal warm-up condition significantly alter the singing power ratio of the singing voice? Is singing power ratio dependent upon vowel? Is perceived phonatory effort affected by warm-up condition? Hypotheses were that vocal warm-up would alter the singing power ratio, and that semioccluded vocal tract warm-up would affect the singing power ratio more than no warm-up or traditional warm-up, that singing power ratio would vary across vowel, and that perceived phonatory effort would vary with warm-up condition. This study was a within-participant repeated measures design with counterbalanced conditions. Thirteen male singers were recorded under three different conditions: no warm-up, traditional warm-up, and semioccluded vocal tract exercise warm-up. Recordings were made of these singers performing the Star Spangled Banner, and singing power ratio (SPR) was calculated from four vowels. Singers rated their perceived phonatory effort (PPE) singing the Star Spangled Banner after each warm-up condition. Warm-up condition did not significantly affect SPR. SPR was significantly different for /i/ and /e/. PPE was not significantly different between warm-up conditions. The present study did not find significant differences in SPR between warm-up conditions. SPR differences for /i/, support previous findings. PPE did not differ significantly across warm-up condition despite the expectation that traditional or semioccluded warm-up would cause a decrease. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. Physiological and subjective responses to low relative humidity.

    Science.gov (United States)

    Sunwoo, Yujin; Chou, Chinmei; Takeshita, Junko; Murakami, Motoko; Tochihara, Yutaka

    2006-01-01

    In order to investigate the influence of low relative humidity, we measured saccharin clearance time (SCT), frequency of blinking, heart rate (HR), blood pressure, hydration state of skin, transepidermal water loss (TEWL), recovery sebum level and skin temperature as physiological responses. We asked subjects to judge thermal, dryness and comfort sensations as subjective responses using a rating scale. Sixteen non-smoking healthy male students were selected. The pre-room conditions were maintained at an air temperature (Ta) of 25 degrees C and a relative humidity (RH) of 50%. The test room conditions were adjusted to provide a Ta of 25 degrees C and RH levels of 10%, 30% and 50%.RH had no effect on the activity of the sebaceous gland and on cardiovascular reactions like blood pressure and HR. However, it was obvious that low RH affects SCT, the dryness of the ocular mucosa and the stratum corneum of the skin and causes a decrease in mean skin temperature. Under 30% RH, the eyes and skin become dry, and under 10% RH the nasal mucous membrane becomes dry as well as the eyes and skin, and the mean skin temperature decreases. These findings suggested that to avoid dryness of the eyes and skin, it is necessary to maintain an RH greater than 30%, and to avoid dryness of the nasal mucous membrane, it is necessary to maintain an RH greater than 10%. Subjects felt cold immediately after a change in RH while they had only a slight perception of dryness at the change of humidity.

  16. Fast humidity sensors based on CeO2 nanowires

    International Nuclear Information System (INIS)

    Fu, X Q; Wang, C; Yu, H C; Wang, Y G; Wang, T H

    2007-01-01

    Fast humidity sensors are reported that are based on CeO 2 nanowires synthesized by a hydrothermal method. Both the response and recovery time are about 3 s, and are independent of the humidity. The sensitivity increases gradually as the humidity increases, and is up to 85 at 97% RH. The resistance decreases exponentially with increasing humidity, implying ion-type conductivity as the humidity sensing mechanism. A model based on the morphology and surface energy of the nanowires is given to explain these results further. Our experimental results indicate a pathway to improving the performance of humidity sensors

  17. Determination of partition and diffusion coefficients of formaldehyde in selected building materials and impact of relative humidity (journal)

    Science.gov (United States)

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...

  18. Determination of partition and diffusion coefficient of formaldehyde in selected building materials and impact of relative humidity

    Science.gov (United States)

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...

  19. Coupled effects of the temperature and the relative humidity on gecko adhesion

    International Nuclear Information System (INIS)

    Peng, Zhilong; Yang, Yazheng; Chen, Shaohua

    2017-01-01

    To explain the inconsistent results of experiments on temperature-dependent gecko adhesion, a theoretical peeling model is established wherein a nano-thin film is adopted to simulate a gecko spatula. The model considers not only the respective effects of temperature and environmental humidity on the peel-off force but also the coupled effect of both factors. Increasing temperature is found to lead to a decreasing peel-off force if the environmental humidity is uncontrolled. However, if the environmental humidity is constant, the peel-off force is insensitive to the temperature and remains almost constant. The synthetic theoretical analysis demonstrates that the seemingly contradictory results of temperature-dependent gecko adhesion experiments are actually consistent under their respective experimental conditions. This inconsistency is mainly due to the environmental humidity, which varies with the changing temperature if it is not artificially controlled. The results cannot only reasonably explain the different experimental results for the effect of temperature on gecko adhesion but can also facilitate the design of temperature-controlled or humidity-controlled adhesion sensors by tuning the environmental humidity or temperature. (paper)

  20. Identifying Changes in the Probability of High Temperature, High Humidity Heat Wave Events

    Science.gov (United States)

    Ballard, T.; Diffenbaugh, N. S.

    2016-12-01

    Understanding how heat waves will respond to climate change is critical for adequate planning and adaptation. While temperature is the primary determinant of heat wave severity, humidity has been shown to play a key role in heat wave intensity with direct links to human health and safety. Here we investigate the individual contributions of temperature and specific humidity to extreme heat wave conditions in recent decades. Using global NCEP-DOE Reanalysis II daily data, we identify regional variability in the joint probability distribution of humidity and temperature. We also identify a statistically significant positive trend in humidity over the eastern U.S. during heat wave events, leading to an increased probability of high humidity, high temperature events. The extent to which we can expect this trend to continue under climate change is complicated due to variability between CMIP5 models, in particular among projections of humidity. However, our results support the notion that heat wave dynamics are characterized by more than high temperatures alone, and understanding and quantifying the various components of the heat wave system is crucial for forecasting future impacts.

  1. Global Warming on Triton

    Science.gov (United States)

    Elliot, J. L.; Hammel, H. B.; Wasserman, L. H.; Franz, O. G.; McDonald, S. W.; Person, M. J.; Olkin, C. B.; Dunham, E. J.; Spencer, J. R.; Stansberry, J. A.; hide

    1998-01-01

    Triton, Neptune's largest moon, has been predicted to undergo significant seasonal changes that would reveal themselves as changes in its mean frost temperature. But whether this temperature should at the present time be increasing, decreasing or constant depends on a number of parameters (such as the thermal properties of the surface, and frost migration patterns) that are unknown. Here we report observations of a recent stellar occultation by Triton which, when combined with earlier results, show that Triton has undergone a period of global warming since 1989. Our most conservative estimates of the rate of temperature and surface-pressure increase during this period imply that the atmosphere is doubling in bulk every 10 years, significantly faster than predicted by any published frost model for Triton. Our result suggests that permanent polar caps on Triton play a c dominant role in regulating seasonal atmospheric changes. Similar processes should also be active on Pluto.

  2. Structure of Warm Nuclei

    International Nuclear Information System (INIS)

    Aaberg, S.; Uhrenholt, H.

    2009-01-01

    We study the structure of nuclei in the energy region between the ground state and the neutron separation energy, here called warm nuclei. The onset of chaos in the nucleus as excitation energy is increased is briefly reviewed. Chaos implies fluctuations of energies and wave functions qualitatively the same for all chaotic nuclei. On the other hand, large structure effects are seen, e.g. in the level-density function at same excitation energies. A microscopic model for the level density is reviewed and we discuss effects on structure of the total level-density function, parity enhancement, and the spin distribution function. Comparisons to data are performed at the neutron separation energy for all observed nuclei, and structure of the level-density function for a few measured cases. The role of structure effects in the level-density function for fission dynamics is exemplified.

  3. Impact of warm winters on microbial growth

    Science.gov (United States)

    Birgander, Johanna; Rousk, Johannes; Axel Olsson, Pål

    2014-05-01

    Growth of soil bacteria has an asymmetrical response to higher temperature with a gradual increase with increasing temperatures until an optimum after which a steep decline occurs. In laboratory studies it has been shown that by exposing a soil bacterial community to a temperature above the community's optimum temperature for two months, the bacterial community grows warm-adapted, and the optimum temperature of bacterial growth shifts towards higher temperatures. This result suggests a change in the intrinsic temperature dependence of bacterial growth, as temperature influenced the bacterial growth even though all other factors were kept constant. An intrinsic temperature dependence could be explained by either a change in the bacterial community composition, exchanging less tolerant bacteria towards more tolerant ones, or it could be due to adaptation within the bacteria present. No matter what the shift in temperature tolerance is due to, the shift could have ecosystem scale implications, as winters in northern Europe are getting warmer. To address the question of how microbes and plants are affected by warmer winters, a winter-warming experiment was established in a South Swedish grassland. Results suggest a positive response in microbial growth rate in plots where winter soil temperatures were around 6 °C above ambient. Both bacterial and fungal growth (leucine incorporation, and acetate into ergosterol incorporation, respectively) appeared stimulated, and there are two candidate explanations for these results. Either (i) warming directly influence microbial communities by modulating their temperature adaptation, or (ii) warming indirectly affected the microbial communities via temperature induced changes in bacterial growth conditions. The first explanation is in accordance with what has been shown in laboratory conditions (explained above), where the differences in the intrinsic temperature relationships were examined. To test this explanation the

  4. Interacting warm dark matter

    International Nuclear Information System (INIS)

    Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo

    2013-01-01

    We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ m α ρ e β form, where ρ m and ρ e are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w m and w e of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used

  5. Comparison of Single-Point and Continuous Sampling Methods for Estimating Residential Indoor Temperature and Humidity.

    Science.gov (United States)

    Johnston, James D; Magnusson, Brianna M; Eggett, Dennis; Collingwood, Scott C; Bernhardt, Scott A

    2015-01-01

    Residential temperature and humidity are associated with multiple health effects. Studies commonly use single-point measures to estimate indoor temperature and humidity exposures, but there is little evidence to support this sampling strategy. This study evaluated the relationship between single-point and continuous monitoring of air temperature, apparent temperature, relative humidity, and absolute humidity over four exposure intervals (5-min, 30-min, 24-hr, and 12-days) in 9 northern Utah homes, from March-June 2012. Three homes were sampled twice, for a total of 12 observation periods. Continuous data-logged sampling was conducted in homes for 2-3 wks, and simultaneous single-point measures (n = 114) were collected using handheld thermo-hygrometers. Time-centered single-point measures were moderately correlated with short-term (30-min) data logger mean air temperature (r = 0.76, β = 0.74), apparent temperature (r = 0.79, β = 0.79), relative humidity (r = 0.70, β = 0.63), and absolute humidity (r = 0.80, β = 0.80). Data logger 12-day means were also moderately correlated with single-point air temperature (r = 0.64, β = 0.43) and apparent temperature (r = 0.64, β = 0.44), but were weakly correlated with single-point relative humidity (r = 0.53, β = 0.35) and absolute humidity (r = 0.52, β = 0.39). Of the single-point RH measures, 59 (51.8%) deviated more than ±5%, 21 (18.4%) deviated more than ±10%, and 6 (5.3%) deviated more than ±15% from data logger 12-day means. Where continuous indoor monitoring is not feasible, single-point sampling strategies should include multiple measures collected at prescribed time points based on local conditions.

  6. Dynamical Analysis of the Global Warming

    Directory of Open Access Journals (Sweden)

    J. A. Tenreiro Machado

    2012-01-01

    Full Text Available Global warming is a major concern nowadays. Weather conditions are changing, and it seems that human activity is one of the main causes. In fact, since the beginning of the industrial revolution, the burning of fossil fuels has increased the nonnatural emissions of carbon dioxide to the atmosphere. Carbon dioxide is a greenhouse gas that absorbs the infrared radiation produced by the reflection of the sunlight on the Earth’s surface, trapping the heat in the atmosphere. Global warming and the associated climate changes are being the subject of intensive research due to their major impact on social, economic, and health aspects of human life. This paper studies the global warming trend in the perspective of dynamical systems and fractional calculus, which is a new standpoint in this context. Worldwide distributed meteorological stations and temperature records for the last 100 years are analysed. It is shown that the application of Fourier transforms and power law trend lines leads to an assertive representation of the global warming dynamics and a simpler analysis of its characteristics.

  7. Local warming: daily temperature change influences belief in global warming.

    Science.gov (United States)

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  8. Testing the effects of temperature and humidity on printed passive UHF RFID tags on paper substrate

    Science.gov (United States)

    Linnea Merilampi, Sari; Virkki, Johanna; Ukkonen, Leena; Sydänheimo, Lauri

    2014-05-01

    This article is an interesting substrate material for environmental-friendly printable electronics. In this study, screen-printed RFID tags on paper substrate are examined. Their reliability was tested with low temperature, high temperature, slow temperature cycling, high temperature and high humidity and water dipping test. Environmental stresses affect the tag antenna impedance, losses and radiation characteristics due to their impact on the ink film and paper substrate. Low temperature, temperature cycling and high humidity did not have a radical effect on the measured parameters: threshold power, backscattered signal power or read range of the tags. However, the frequency response and the losses of the tags were slightly affected. Exposure to high temperature was found to even improve the tag performance due to the positive effect of high temperature on the ink film. The combined high humidity and high temperature had the most severe effect on the tag performance. The threshold power increased, backscattered power decreased and the read range was shortened. On the whole, the results showed that field use of these tags in high, low and changing temperature conditions and high humidity conditions is possible. Use of these tags in combined high-humidity and high-temperature conditions should be carefully considered.

  9. Relationship between humidity and influenza A viability in droplets and implications for influenza's seasonality.

    Directory of Open Access Journals (Sweden)

    Wan Yang

    Full Text Available Humidity has been associated with influenza's seasonality, but the mechanisms underlying the relationship remain unclear. There is no consistent explanation for influenza's transmission patterns that applies to both temperate and tropical regions. This study aimed to determine the relationship between ambient humidity and viability of the influenza A virus (IAV during transmission between hosts and to explain the mechanisms underlying it. We measured the viability of IAV in droplets consisting of various model media, chosen to isolate effects of salts and proteins found in respiratory fluid, and in human mucus, at relative humidities (RH ranging from 17% to 100%. In all media and mucus, viability was highest when RH was either close to 100% or below ∼50%. When RH decreased from 84% to 50%, the relationship between viability and RH depended on droplet composition: viability decreased in saline solutions, did not change significantly in solutions supplemented with proteins, and increased dramatically in mucus. Additionally, viral decay increased linearly with salt concentration in saline solutions but not when they were supplemented with proteins. There appear to be three regimes of IAV viability in droplets, defined by humidity: physiological conditions (∼100% RH with high viability, concentrated conditions (50% to near 100% RH with lower viability depending on the composition of media, and dry conditions (<50% RH with high viability. This paradigm could help resolve conflicting findings in the literature on the relationship between IAV viability in aerosols and humidity, and results in human mucus could help explain influenza's seasonality in different regions.

  10. Intermediate report on the problems of warm water drainage

    International Nuclear Information System (INIS)

    1976-01-01

    The investigation into the solution of the problems of warm water drainage and its related matters was conducted, and the result was summarized by the warm water drainage sectional committee of the central public nuisance-prevention council entrusted by the Environment Agency. The first section of this report deals with the background of the warm water drainage problems. In December 1970, the environmental pollution prevention act was revised so as to include warm water drainage in the law. The second section deals with the progress of deliberation by the sectional committee. The third section deals with the actual conditions of warm water drainage. The temperature difference at the inlet and outlet of water was 5 to 11 0 C in power plants, 5 to 16 0 C in iron and steel works, 4 to 11 0 C in petroleum refineries, and 7 to 25 0 C in petrochemical plants. The amount of heat energy discharged from power plants was greater than that from the others. Other sections deal with its effects on the living things in water, the forecast of diffusion of warm drainage, the concept of the regulation of warm drainage, and the present countermeasure. Twelve points which require future investigation are listed. They are the change in the phases of living things affected by the change in temperature and flow of warm drainage, the effects on fishery resources, the estimation system for the environmental calorific capacity in the sea, the mechanism of diffusion and the forecasting method for the diffusion range. (Iwakiri, K.)

  11. On the Temperature and Humidity Dissimilarity in the Marine Surface Layer

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Kelly, Mark C.; Sempreviva, Anna Maria

    2014-01-01

    there is an efficient latent heat transfer but negligible sensible heat transfer. Our data suggest that parametrization of humidity fluxes via similarity theory could still be reliable when the correlation coefficient >0.5, and in near-neutral conditions the humidity flux can be estimated without use of the sensible...... of the boundary-layer scale in breaking the “same source, same sink” assumption for scalar similarity. This is supported by the combination of our spectral analysis of scalar fluxes and corresponding measured and modelled boundary-layer depth. This assumption is also broken in near-neutral conditions, when...... heat flux....

  12. Physical mechanisms of spring and summertime drought related with the global warming over the northern America

    Science.gov (United States)

    Choi, W.; Kim, K. Y.

    2017-12-01

    Drought during the growing season (spring through summer) is severe natural hazard in the large cropland over the northern America. It is important to understand how the drought is related with the global warming and how it will change in the future. This study aims to investigate the physical mechanism of global warming impact on the spring and summertime drought over the northern America using Cyclostationary Empirical Orthogonal Function (CSEOF) analysis. The Northern Hemisphere surface warming, the most dominant mode of the surface air temperature, has resulted in decreased relative humidity and precipitation over the mid-latitude region of North America. For the viewpoint of atmospheric water demand, soil moisture and evaporation have also decreased significantly, exacerbating vulnerability of drought. These consistent features of changes in water demand and supply related with the global warming can provide a possibility of credible insight for future drought change.

  13. Wireless sensor for temperature and humidity measurement

    Science.gov (United States)

    Drumea, Andrei; Svasta, Paul

    2010-11-01

    Temperature and humidity sensors have a broad range of applications, from heating and ventilation of houses to controlled drying of fruits, vegetables or meat in food industry. Modern sensors are integrated devices, usually MEMS, factory-calibrated and with digital output of measured parameters. They can have power down modes for reduced energy consumption. Such an integrated device allows the implementation of a battery powered wireless sensor when coupled with a low power microcontroller and a radio subsystem. A radio sensor can work independently or together with others in a radio network. Presented paper focuses mainly on measurement and construction aspects of sensors for temperature and humidity designed and implemented by authors; network aspects (communication between two or more sensors) are not analyzed.

  14. The challenge of global warming

    International Nuclear Information System (INIS)

    Bryner, G.C.

    1992-01-01

    The chapter outlines the science of global warming, the likely consequences of global warming and some of the major challenges in dealing with global climate change. Some of the major international organisations concerned with environmental issues are listed. International agreements might be used to limit emissions of greenhouse gases. 32 refs., 2 tabs

  15. Global warming and prairie wetlands

    International Nuclear Information System (INIS)

    Poiani, K.A.; Johnson, W.C.

    1991-01-01

    In this article, the authors discuss current understanding and projections of global warming; review wetland vegetation dynamics to establish the strong relationship among climate, wetland hydrology, vegetation patterns and waterfowl habitat; discuss the potential effects of a greenhouse warming on these relationships; and illustrate the potential effects of climate change on wetland habitat by using a simulation model

  16. Warm Bodies: A Student Perspective.

    Science.gov (United States)

    Schario, Tracy A.

    A participant in forensic tournament competition presents her perspective as well as overall student reaction to the function of "warm bodies," competitors who are entered in a tournament by the coach or tournament director only to meet qualifying requirements. Overall, participants in an informal survey believed that the warm body…

  17. Calibration of Relative Humidity Sensors using a Dew Point Generator

    OpenAIRE

    Brooks, Milo

    2010-01-01

    A relative humidity sensor can be calibrated using a dew point generator to continuously supply an air stream of known constant humidity and a temperature chamber to control the dew point and ambient temperature.

  18. Humidity Detection Using Metal Organic Framework Coated on QCM

    KAUST Repository

    Kosuru, Lakshmoji; Bouchaala, Adam M.; Jaber, Nizar; Younis, Mohammad I.

    2016-01-01

    of a quartz crystal microbalance. The resonance frequencies of these sensors with varying relative humidity (RH) from 22% RH to 69% RH are measured using impedance analysis method. The sensitivity, humidity hysteresis, response, and recovery times

  19. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...... prehydration may occur. In the report both theoretical considerations and experimental data are presented. It is suggested that the initiation of hydration during water vapour exposure is nucleation controlled....

  20. Effect of relative humidity on solar potential

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol

    2005-01-01

    In this study, the effect of relative humidity on solar potential is investigated using artificial neural-networks. Two different models are used to train the neural networks. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine-duration, and mean temperature) are used in the input layer of the network (Model 1). But, relative humidity values are added to one network in model (Model 2). In other words, the only difference between the models is relative humidity. New formulae based on meteorological and geographical data, have been developed to determine the solar energy potential in Turkey using the networks' weights for both models. Scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM) learning algorithms and a logistic sigmoid transfer-function were used in the network. The best approach was obtained by the SCG algorithm with nine neurons for both models. Meteorological data for the four years, 2000-2003, for 18 cities (Artvin, Cesme, Bozkurt, Malkara, Florya, Tosya, Kizilcahamam, Yenisehir, Edremit, Gediz, Kangal, Solhan, Ergani, Selcuk, Milas, Seydisehir, Siverek and Kilis) spread over Turkey have been used as data in order to train the neural network. Solar radiation is in output layer. One month for each city was used as test data, and these months have not been used for training. The maximum mean absolute percentage errors (MAPEs) for Tosya are 2.770394% and 2.8597% for Models 1 and 2, respectively. The minimum MAPEs for Seydisehir are 1.055205% and 1.041% with R 2 (99.9862%, 99.9842%) for Models 1 and 2, respectively, in the SCG algorithm with nine neurons. The best value of R 2 for Models 1 and 2 are for Seydisehir. The minimum value of R 2 for Model 1 is 99.8855% for Tosya, and the value for Model 2 is 99.9001% for Yenisehir. Results show that the humidity has only a negligible effect upon the prediction of solar potential using artificial neural-networks

  1. Procedure for drying humidity-containing bodies

    International Nuclear Information System (INIS)

    Johnson, C.R.

    1976-01-01

    The invention concerns a decontamination process for extracting impurities, in particular humidity and gases, from nuclear fuel rods before they are sealed and inserted into the reactor. The fuel rod, which has a small drilling hole, is placed in a low pressure container. The container is filled with a liquid drying agent which washes out the impurities. A dry inert gas (nitrogen, noble gases) is used for rinsing. Alcohols, ketones, methanol, acetone are named as drying agents. (UWI) [de

  2. Application of nano-structured conducting polymers to humidity sensing

    Science.gov (United States)

    Park, Pilyeon

    moisture levels because even low humidity levels saturate the sample surface within a few minutes. Because of this, it was not perfect to distinguish the effects of etching the PEDOT film for humidity detection and difficult to apply nano-columned PEDOT films as a humidity sensors under continuously changing humidity conditions. However, nano-columned PEDOT films showed excellent performance in simulated breath tests, i.e., an area where the medical needs sensors for pulmonary monitoring. Since the polymers are sensitive to heat, it was important to characterize the influence of temperature on the sensor performance. PANI nanowires and nano-columned PEDOT sensors were tested in the environmental chamber developed in this work as a function of temperature with the humidity fixed, and only the temperature was varied. The PANI nanowires showed very fast degradation at temperatures above room temperature, while the nano-columned PEDOT film performed up to 50 °C. The influence of other gases was also tested for the potential of gas sensing, selectivity, and chemical stability. In order to exclude the moisture effect during the measurement, the samples were characterized under the lowest humidity condition, RH 14% preserved in the system. Under these conditions the PANI nanowires responded to the gases (hydrogen and carbon monoxide were used), but the moisture inside the PANI nanowire was forced to influence the gas detection. Therefore, samples were dried overnight under a nitrogen environment and tested again. With this careful control of the moisture present, it was found that PANI nanowires respond to both hydrogen and carbon monoxide gases, however, there is no selectivity between gases. Nano-columned PEDOT films were also tested under the same experimental moisture-controlling conditions. It was shown that there was little response to other gases. Any response that may have been presented was buried in the electrical noise. Finally, both samples were tested for long

  3. Dynamic temperature and humidity environmental profiles: impact for future emergency and disaster preparedness and response.

    Science.gov (United States)

    Ferguson, William J; Louie, Richard F; Tang, Chloe S; Paw U, Kyaw Tha; Kost, Gerald J

    2014-02-01

    During disasters and complex emergencies, environmental conditions can adversely affect the performance of point-of-care (POC) testing. Knowledge of these conditions can help device developers and operators understand the significance of temperature and humidity limits necessary for use of POC devices. First responders will benefit from improved performance for on-site decision making. To create dynamic temperature and humidity profiles that can be used to assess the environmental robustness of POC devices, reagents, and other resources (eg, drugs), and thereby, to improve preparedness. Surface temperature and humidity data from the National Climatic Data Center (Asheville, North Carolina USA) was obtained, median hourly temperature and humidity were calculated, and then mathematically stretched profiles were created to include extreme highs and lows. Profiles were created for: (1) Banda Aceh, Indonesia at the time of the 2004 Tsunami; (2) New Orleans, Louisiana USA just before and after Hurricane Katrina made landfall in 2005; (3) Springfield, Massachusetts USA for an ambulance call during the month of January 2009; (4) Port-au-Prince, Haiti following the 2010 earthquake; (5) Sendai, Japan for the March 2011 earthquake and tsunami with comparison to the colder month of January 2011; (6) New York, New York USA after Hurricane Sandy made landfall in 2012; and (7) a 24-hour rescue from Hawaii USA to the Marshall Islands. Profiles were validated by randomly selecting 10 days and determining if (1) temperature and humidity points fell inside and (2) daily variations were encompassed. Mean kinetic temperatures (MKT) were also assessed for each profile. Profiles accurately modeled conditions during emergency and disaster events and enclosed 100% of maximum and minimum temperature and humidity points. Daily variations also were represented well with 88.6% (62/70) of temperature readings and 71.1% (54/70) of relative humidity readings falling within diurnal patterns. Days

  4. Lead Oxide- PbO Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Sk. Khadeer Pasha

    2010-11-01

    Full Text Available Alcohol thermal route has been used to synthesize nanocrystalline PbO at a low temperature of 75 oC using lead acetate. The synthesized PbO (P75 was annealed in the temperatures ranging from 200-500 oC for 2 h to study the effect of crystal structure and phase changes and were labeled as P200, P300, P400 and P500, respectively. X-Ray diffraction and FT-IR spectroscopy were carried out to identify the structural phases and vibrational stretching frequencies respectively. The TEM images revealed the porous nature of P75 sample which is an important criterion for the humidity sensor. The dc resistance measurements were carried out in the relative humidity (RH range 5-98 %. Among the different prepared, P75 possessed the highest humidity sensitivity of 6250, while the heat treated sample P500 have a low sensitivity of 330. The response and recovery characteristics of the maximum sensitivity sample P75 were 170 s and 40 s respectively.

  5. Stomata of the CAM plant Tillandsia recurvata respond directly to humidity.

    Science.gov (United States)

    Lange, O L; Medina, E

    1979-01-01

    Under controlled conditions, CO 2 exchange of Tillandsia recurvata showed all characteristics of CAM. During the phase of nocturnal CO 2 fixation stomata of the plant responded sensitively to changes in ambient air humidity. Dry air resulted in an increase, moist air in a decrease of diffusion resistance. The evaporative demand of the air affected the level of stomatal resistance during the entire night period. Due to stomatal closure, the total nocturnal water loss of T. recurvata was less at low than at high humidity. It is concluded that stomata respond directly to humidity and not via bulk tissue water conditions of the leaves. Such control of transpiration may optimize water use efficiency for this almost rootless, extreme epiphyte.

  6. Warm ion effects on kinetic drift cyclotron loss cone instabilities

    International Nuclear Information System (INIS)

    Guo Shichong; Shen Jiewu; Cai Shidong

    1988-01-01

    The effects of adding warm plasmas on the kinetic DCLC mode in high β loss cone plasmas are investigated in detail. It is found that when the fluid DCLC mode is stabilized by a small amount of warm plasma, the kinetic excitation still remains due to two different mechanisms, namely, (1) magnetic drift resonance dissipation excites the negative energy wave; (2) a new type of positive energy wave can become unstable as the resonance condition is met. Comparing with fluid approximation theory, more warm plasmas are needed to suppress the kinetic DCLC instabilities

  7. 7 CFR 28.301 - Measurement: humidity; temperature.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70° F. ...

  8. A Standard CMOS Humidity Sensor without Post-Processing

    OpenAIRE

    Nizhnik, Oleg; Higuchi, Kohei; Maenaka, Kazusuke

    2011-01-01

    A 2 ?W power dissipation, voltage-output, humidity sensor accurate to 5% relative humidity was developed using the LFoundry 0.15 ?m CMOS technology without post-processing. The sensor consists of a woven lateral array of electrodes implemented in CMOS top metal, a Intervia Photodielectric 8023?10 humidity-sensitive layer, and a CMOS capacitance to voltage converter.

  9. Effect of the temperature and relative humidity in dosemeters used for personnel monitoring

    International Nuclear Information System (INIS)

    Antonio Filho, J.

    1982-12-01

    The systematics of the combined effect of temperature and humidity on photographic dosimeters of the type Agfa-Gevaert, Kodak type II, III and the thermoluminescent dosimeters LiF:Mg,Ti (TLD-100, Harshaw), D-CaSO 4 :Dy-0,4 (Teledyne), e CaSO 4 :Dy+NaCl (IPEN), used in personal monitoring in Brazil was investigated, in the temperature range of 20 0 C to 50 0 C and relative humidity of 65% to 95%, in order to determine the best manner of utilization of these detectors in Brazilian climatic conditions. The dosimeters were studied in different forms of packing-sheet such as aluminezed paper and polyethylene. For the determination of the systematics, the dosimeters were irradiated in three conditions: before, during and after of storage in climatic chambers to a maximum period of 60 days. It was found that the dosimetric filmes and thermoluminescent dosimeter CaSO 4 :Dy+NaCl without protection, presented a high dependence to temperature and humidity, and when protected presented good results. Therefore, the best manner of utilization of these monitors in environments with relative humidity and temperature greater them 75% and 30 0 C respectively, is achieved with the protection of aluminized paper. The LiF:Mg,Ti and D+CaSO 4 :Dy-0,4 dosimeters can be utilized in their original form because they presented low dependence with humidity and temperature in the range studied. (Author) [pt

  10. Forests and global warming

    International Nuclear Information System (INIS)

    Curren, T.

    1991-04-01

    The importance of forests to Canada, both in economic and environmental terms, is indisputable. A warmer global climate may well have profound effects on the Canadian boreal forest, and at least some of the effects will not be beneficial. With the state of the current knowledge of climate processes and climate change it is not possible to predict the extent or rate of projected changes of anthropogenic origin. Given these uncertainties, the appropriate course of action for the Canadian forest sector is to develop policies and strategies which will make good sense under the current climatic regime, and which will also be appropriate for actions in a warmer climate scenario. The business as usual approach is not acceptable in the context of pollution control as it has become clear that anthropogenic emissions of greenhouse gases and other pollutants must be substantially reduced, both to prevent (or at least slow the rate of) possible global warming, and to reduce impacts on the biophysical environment and human health. Effective mitigative actions must be introduced on both a national and global scale. Forest management policies more effectively geared to the sustainability of forests are needed. The programs that are developed out of such policies must be cognizant of the real possibility that climate in the present boreal forest regions may change in the near future. 13 refs

  11. Recent decrease in typhoon destructive potential and global warming implications

    Science.gov (United States)

    Lin, I-I; Chan, Johnny C.L.

    2015-01-01

    Typhoons (tropical cyclones) severely impact the half-billion population of the Asian Pacific. Intriguingly, during the recent decade, typhoon destructive potential (Power Dissipation Index, PDI) has decreased considerably (by ∼35%). This decrease, paradoxically, has occurred despite the increase in typhoon intensity and ocean warming. Using the method proposed by Emanuel (in 2007), we show that the stronger negative contributions from typhoon frequency and duration, decrease to cancel the positive contribution from the increasing intensity, controlling the PDI. Examining the typhoons' environmental conditions, we find that although the ocean condition became more favourable (warming) in the recent decade, the atmospheric condition ‘worsened' at the same time. The ‘worsened' atmospheric condition appears to effectively overpower the ‘better' ocean conditions to suppress PDI. This stronger negative contribution from reduced typhoon frequency over the increased intensity is also present under the global warming scenario, based on analysis of the simulated typhoon data from high-resolution modelling. PMID:25990561

  12. Effect of ambient humidity on the strength of the adhesion force of single yeast cell inside environmental-SEM

    International Nuclear Information System (INIS)

    Shen, Yajing; Nakajima, Masahiro; Ridzuan Ahmad, Mohd; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2011-01-01

    A novel method for measuring an adhesion force of single yeast cell is proposed based on a nanorobotic manipulation system inside an environmental scanning electron microscope (ESEM). The effect of ambient humidity on a single yeast cell adhesion force was studied. Ambient humidity was controlled by adjusting the chamber pressure and temperature inside the ESEM. It has been demonstrated that a thicker water film was formed at a higher humidity condition. The adhesion force between an atomic force microscopy (AFM) cantilever and a tungsten probe which later on known as a substrate was evaluated at various humidity conditions. A micro-puller was fabricated from an AFM cantilever by use of focused ion beam (FIB) etching. The adhesion force of a single yeast cell (W303) to the substrate was measured using the micro-puller at the three humidity conditions: 100%, 70%, and 40%. The results showed that the adhesion force between the single yeast cell and the substrate is much smaller at higher humidity condition. The yeast cells were still alive after being observed and manipulated inside ESEM based on the result obtained from the re-culturing of the single yeast cell. The results from this work would help us to understand the ESEM system better and its potential benefit to the single cell analysis research. -- Research highlights: → A nanorobotic manipulation system was developed inside an ESEM. → A micro-puller was designed for single yeast cell adhesion force measurement. → Yeast cells were still alive after being observed and manipulated inside ESEM. → Yeast cell adhesion force to substrate is smaller at high humidity condition than at low humidity condition.

  13. Effect of ambient humidity on the strength of the adhesion force of single yeast cell inside environmental-SEM

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yajing, E-mail: shen@robo.mein.nagoya-u.ac.jp [Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8603 (Japan); Nakajima, Masahiro [Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8603 (Japan); Ridzuan Ahmad, Mohd [Department of Mechatronics and Robotics, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai 81310 (Malaysia); Kojima, Seiji; Homma, Michio [Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan); Fukuda, Toshio [Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2011-07-15

    A novel method for measuring an adhesion force of single yeast cell is proposed based on a nanorobotic manipulation system inside an environmental scanning electron microscope (ESEM). The effect of ambient humidity on a single yeast cell adhesion force was studied. Ambient humidity was controlled by adjusting the chamber pressure and temperature inside the ESEM. It has been demonstrated that a thicker water film was formed at a higher humidity condition. The adhesion force between an atomic force microscopy (AFM) cantilever and a tungsten probe which later on known as a substrate was evaluated at various humidity conditions. A micro-puller was fabricated from an AFM cantilever by use of focused ion beam (FIB) etching. The adhesion force of a single yeast cell (W303) to the substrate was measured using the micro-puller at the three humidity conditions: 100%, 70%, and 40%. The results showed that the adhesion force between the single yeast cell and the substrate is much smaller at higher humidity condition. The yeast cells were still alive after being observed and manipulated inside ESEM based on the result obtained from the re-culturing of the single yeast cell. The results from this work would help us to understand the ESEM system better and its potential benefit to the single cell analysis research. -- Research highlights: {yields} A nanorobotic manipulation system was developed inside an ESEM. {yields} A micro-puller was designed for single yeast cell adhesion force measurement. {yields} Yeast cells were still alive after being observed and manipulated inside ESEM. {yields} Yeast cell adhesion force to substrate is smaller at high humidity condition than at low humidity condition.

  14. Humid microclimates within the plumage of mallard ducks (Anas platyrhynchos) can potentially facilitate long distance dispersal of propagules

    Science.gov (United States)

    Coughlan, Neil E.; Kelly, Tom C.; Davenport, John; Jansen, Marcel A. K.

    2015-05-01

    Birds as carriers of propagules are major agents in the dispersal of plants, animals, fungi and microbes. However, there is a lack of empirical data in relation to bird-mediated, epizoochorous dispersal. The microclimate found within the plumage likely plays a pivotal role in survival during flight conditions. To investigate the potential of epizoochory, we have analysed the microclimatic conditions within the plumage of mallard ducks (Anas platyrhynchos). Under similar ambient conditions of humidity and temperature, a sample of mallards showed a consistent microclimatic regime with variation across the body surface. The highest (mean) temperature and specific humidity occurred between feathers of the postpatagium. The lowest humidity was found between feathers of the centre back and the lowest temperature in the crissum. Observed differences in plumage depth and density, and distance from the skin, are all likely to be determining factors of microclimate condition. Specific humidity found within the plumage was on average 1.8-3.5 times greater than ambient specific humidity. Thus, the plumage can supply a microclimate buffered from that of the exterior environment. Extrapolating survival data for Lemna minor desiccation at various temperature and humidity levels to the measured plumage microclimatic conditions of living birds, survival for up to 6 h can be anticipated, especially in crissum, crural and breast plumage. The results are discussed in the context of potential long distance epizoochorous dispersal by A. platyrhynchos and similar species.

  15. Non-classic multiscale modeling of manipulation based on AFM, in aqueous and humid ambient

    Science.gov (United States)

    Korayem, M. H.; Homayooni, A.; Hefzabad, R. N.

    2018-05-01

    To achieve a precise manipulation, it is important that an accurate model consisting the size effect and environmental conditions be employed. In this paper, the non-classical multiscale modeling is developed to investigate the manipulation in a vacuum, aqueous and humid ambient. The manipulation structure is considered into two parts as a macro-field (MF) and a nano-field (NF). The governing equations of the AFM components (consist of the cantilever and tip) in the MF are derived based on the modified couple stress theory. The material length scale parameter is used to study the size effect. The fluid flow in the MF is assumed as the Couette and Creeping flows. Moreover, the NF is modeled using the molecular dynamics. The Electro-Based (ELBA) model is considered to model the ambient condition in the NF. The nanoparticle in the different conditions is taken into account to study the manipulation. The results of the manipulation indicate that the predicted deflection of the non-classical model is less than the classical one. Comparison of the nanoparticle travelled distance on substrate shows that the manipulation in the submerged condition is close to the ideal manipulation. The results of humid condition illustrate that by increasing the relative humidity (RH) the manipulation force decreases. Furthermore, Root Mean Square (RMS) as a criterion of damage demonstrates that the submerged nanoparticle has the minimum damage, however, the minimum manipulation force occurs in superlative humid ambient.

  16. Estimation of evaporation from equilibrium diurnal boundary layer humidity

    Science.gov (United States)

    Salvucci, G.; Rigden, A. J.; Li, D.; Gentine, P.

    2017-12-01

    Simplified conceptual models of the convective boundary layer as a well mixed profile of potential temperature (theta) and specific humidity (q) impinging on an initially stably stratified linear potential temperature profile have a long history in atmospheric sciences. These one dimensional representations of complex mixing are useful for gaining insights into land-atmosphere interactions and for prediction when state of the art LES approaches are infeasible. As previously shown (e.g. Betts), if one neglects the role of q in bouyancy, the framework yields a unique relation between mixed layer Theta, mixed layer height (h), and cumulative sensible heat flux (SH) throughout the day. Similarly assuming an initially q profile yields a simple relation between q, h, and cumulative latent heat flux (LH). The diurnal dynamics of theta and q are strongly dependent on SH and the initial lapse rates of theta (gamma_thet) and q (gamma q). In the estimation method proposed here, we further constrain these relations with two more assumptions: 1) The specific humidity is the same at the start of the period of boundary layer growth and at the collapse; and 2) Once the mixed layer reaches the LCL, further drying occurs proportionally to the deardorff convective velocity scale (omega) multiplied by q. Assumption (1) is based on the idea that below the cloud layer, there are no sinks of moisture within the mixed layer (neglecting lateral humidity divergence). Thus the net mixing of dry air aloft with evaporation from the surface must balance. Inclusion of the simple model of moisture loss above the LCL into the bulk-CBL model allows definition of an equilibrium humidity (q) condition at which the diurnal cycle of q repeats (i.e. additions of q from surface balance entrainment of dry air from above). Surprisingly, this framework allows estimation of LH from q, theta, and estimated net radiation by solving for the value of Evaporative Fraction (EF) for which the diurnal cycle of q

  17. Control optimization of the cryoplant warm compressor station for EAST

    International Nuclear Information System (INIS)

    Zhuang, M.; Hu, L. B.; Zhou, Z. W.; Xia, G. H.

    2014-01-01

    The cryogenic control system for EAST (Experimental Advanced Superconducting Tokamak) was designed based on DeltaV DCS of Emerson Corporation. The automatic control of the cryoplant warm compressors has been implemented. However, with ever-degrading performance of critical equipment, the cryoplant operation in the partial design conditions makes the control system fluctuate and unstable. In this paper, the warm compressor control system was optimized to eliminate the pressure oscillation based on the expert PID theory

  18. Recent warming of lake Kivu.

    Science.gov (United States)

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  19. Recent warming of lake Kivu.

    Directory of Open Access Journals (Sweden)

    Sergei Katsev

    Full Text Available Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  20. Does increasing active warm-up duration affect afternoon short-term maximal performance during Ramadan?

    Science.gov (United States)

    Baklouti, Hana; Aloui, Asma; Chtourou, Hamdi; Briki, Walid; Chaouachi, Anis; Souissi, Nizar

    2015-01-01

    The purpose of this study was to examine the effect of active warm-up duration on short-term maximal performance assessed during Ramadan in the afternoon. Twelve healthy active men took part in the study. The experimental design consisted of four test sessions conducted at 5 p.m., before and during Ramadan, either with a 5-minute or a 15-minute warm-up. The warm-up consisted in pedaling at 50% of the power output obtained at the last stage of a submaximal multistage cycling test. During each session, the subjects performed two vertical jump tests (squat jump and counter movement jump) for measurement of vertical jump height followed by a 30-second Wingate test for measurement of peak and mean power. Oral temperature was recorded at rest and after warming-up. Moreover, ratings of perceived exertion were obtained immediately after the Wingate test. Oral temperature was higher before Ramadan than during Ramadan at rest, and was higher after the 15-minute warm-up than the 5-minute warm-up both before and during Ramadan. In addition, vertical jump heights were not significantly different between the two warm-up conditions before and during Ramadan, and were lower during Ramadan than before Ramadan after both warm-up conditions. Peak and mean power were not significantly different between the two warm-up durations before Ramadan, but were significantly higher after the 5-minute warm-up than the 15-minute warm-up during Ramadan. Moreover, peak and mean power were lower during Ramadan than before Ramadan after both warm-up conditions. Furthermore, ratings of perceived exertion were higher after the 15-minute warm-up than the 5-minute warm-up only during Ramadan. The prolonged active warm-up has no effect on vertical jump height but impairs anaerobic power assessed during Ramadan in the afternoon.

  1. Effect of climate on the seminal characteristics of boars in a region of humid tropical forest

    International Nuclear Information System (INIS)

    Henao Restrepo, Guillermo; Trujillo Aramburo, Luis Emilio; Buritica Henao, Maria Elizabet; Sierra Perez, Carlos Ignacio; Correa Londono, Guillermo; Gonzalez Boto, Oscar Domingo

    2004-01-01

    In a region of humid tropical forest, ten boars of from 12 to 24 months of age were selected to evaluate the effect of climatic variables measured on the day of semen collection and for each of preceding 45 days. On seminal characteristics, the variability of each characteristic was separated into an intra individual component and an interindividual component, using maximum likelihood estimators (PROC VARCOMP of SAS). In order to relate the seminal characteristics with the climatic variables, morphological abnormalities were grouped according to the affected spermatic region, into head. Midsection and main section abnormalities; the other characteristics were evaluated without any modification. Possible correlations between seminal characteristics and climatic variables were evaluated. In a total of 298 ejaculates collected weekly during a period of 30 weeks, except for total volume and morphological abnormalities. The seminal characteristics presented low or moderate intra and interindividual variation and were similar to those found in other latitudes, with a tendency to present greater seminal volumes and concentrations maximum temperature minimum temperature. Range among temperatures. Relative humidity and precipitation of the day of the semen collection and on each of the preceding 45 days had low effects on the seminal characteristics. It is possible that the boars in warm humid tropical areas develop a high level of adaptation that permits an adequate testicular thermoregulation that favors the spermatogenic function of the seminiferous tubules in a way that does not perceptibly affect production the seminal quality

  2. Dynamics of the temperature-humidity index in the Mediterranean basin

    Science.gov (United States)

    Segnalini, Maria; Nardone, Alessandro; Bernabucci, Umberto; Vitali, Andrea; Ronchi, Bruno; Lacetera, Nicola

    2011-03-01

    The study was aimed at describing the temperature humidity index (THI) dynamics over the Mediterranean basin for the period 1951-2007. The THI combines temperature and humidity into a single value, and may help to predict the effects of environmental warmth in farm animals. In particular, on the basis of THI values, numerous studies have been performed to establish thresholds for heat stress in dairy cows. The THI was calculated by using monthly mean values of temperature and humidity obtained from the National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis project. The analysis demonstrated a high degree of heterogeneity of THI patterns over the Mediterranean basin, a strong north-south gradient, and an overall warming during the study period, which was particularly marked during summer seasons. Results indicated that several areas of the basin present summer THI values which were unfavorable to cow welfare and productivity, and that risk of heat stress for cows is generally greater in the countries of the south coast of the basin. Furthermore, THI data from the summer 2003 revealed that severe positive anomalies may impact areas normally characterized by a favorable climate for animal production. In conclusion, THI dynamics should be taken into careful consideration by farmers and policy makers operating in Mediterranean countries when planning investments in the sector of animal production. The investments should at least partially be directed towards implementation of adaptation measures, which may help to alleviate the impact of hot on farm animals welfare, performance and health.

  3. Improving stomatal functioning at elevated growth air humidity: A review.

    Science.gov (United States)

    Fanourakis, Dimitrios; Bouranis, Dimitrios; Giday, Habtamu; Carvalho, Dália R A; Rezaei Nejad, Abdolhossein; Ottosen, Carl-Otto

    2016-12-01

    Plants grown at high relative air humidity (RH≥85%) are prone to lethal wilting upon transfer to conditions of high evaporative demand. The reduced survival of these plants is related to (i) increased cuticular permeability, (ii) changed anatomical features (i.e., longer pore length and higher stomatal density), (iii) reduced rehydration ability, (iv) impaired water potential sensitivity to leaf dehydration and, most importantly, (v) compromised stomatal closing ability. This review presents a critical analysis of the strategies which stimulate stomatal functioning during plant development at high RH. These include (a) breeding for tolerant cultivars, (b) interventions with respect to the belowground environment (i.e., water deficit, increased salinity, nutrient culture and grafting) as well as (c) manipulation of the aerial environment [i.e., increased proportion of blue light, increased air movement, temporal temperature rise, and spraying with abscisic acid (ABA)]. Root hypoxia, mechanical disturbance, as well as spraying with compounds mimicking ABA, lessening its inactivation or stimulating its within-leaf redistribution are also expected to improve stomatal functioning of leaves expanded in humid air. Available evidence leaves little doubt that genotypic and phenotypic differences in stomatal functioning following cultivation at high RH are realized through the intermediacy of ABA. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Humidity May Modify the Relationship between Temperature and Cardiovascular Mortality in Zhejiang Province, China.

    Science.gov (United States)

    Zeng, Jie; Zhang, Xuehai; Yang, Jun; Bao, Junzhe; Xiang, Hao; Dear, Keith; Liu, Qiyong; Lin, Shao; Lawrence, Wayne R; Lin, Aihua; Huang, Cunrui

    2017-11-14

    Background : The evidence of increased mortality attributable to extreme temperatures is widely characterized in climate-health studies. However, few of these studies have examined the role of humidity on temperature-mortality association. We investigated the joint effect between temperature and humidity on cardiovascular disease (CVD) mortality in Zhejiang Province, China. Methods : We collected data on daily meteorological and CVD mortality from 11 cities in Zhejiang Province during 2010-2013. We first applied time-series Poisson regression analysis within the framework of distributed lag non-linear models to estimate the city-specific effect of temperature and humidity on CVD mortality, after controlling for temporal trends and potential confounding variables. We then applied a multivariate meta-analytical model to pool the effect estimates in the 11 cities to generate an overall provincial estimate. The joint effects between them were calculated by the attributable fraction (AF). The analyses were further stratified by gender, age group, education level, and location of cities. Results : In total, 120,544 CVD deaths were recorded in this study. The mean values of temperature and humidity were 17.6 °C and 72.3%. The joint effect between low temperature and high humidity had the greatest impact on the CVD death burden over a lag of 0-21 days with a significant AF of 31.36% (95% eCI: 14.79-38.41%), while in a condition of low temperature and low humidity with a significant AF of 16.74% (95% eCI: 0.89, 24.44). The AFs were higher at low temperature and high humidity in different subgroups. When considering the levels of humidity, the AFs were significant at low temperature and high humidity for males, youth, those with a low level of education, and coastal area people. Conclusions : The combination of low temperature and high humidity had the greatest impact on the CVD death burden in Zhejiang Province. This evidence has important implications for developing CVD

  5. Humidity May Modify the Relationship between Temperature and Cardiovascular Mortality in Zhejiang Province, China

    Science.gov (United States)

    Zeng, Jie; Zhang, Xuehai; Yang, Jun; Bao, Junzhe; Dear, Keith; Liu, Qiyong; Lin, Shao; Lin, Aihua; Huang, Cunrui

    2017-01-01

    Background: The evidence of increased mortality attributable to extreme temperatures is widely characterized in climate-health studies. However, few of these studies have examined the role of humidity on temperature-mortality association. We investigated the joint effect between temperature and humidity on cardiovascular disease (CVD) mortality in Zhejiang Province, China. Methods: We collected data on daily meteorological and CVD mortality from 11 cities in Zhejiang Province during 2010–2013. We first applied time-series Poisson regression analysis within the framework of distributed lag non-linear models to estimate the city-specific effect of temperature and humidity on CVD mortality, after controlling for temporal trends and potential confounding variables. We then applied a multivariate meta-analytical model to pool the effect estimates in the 11 cities to generate an overall provincial estimate. The joint effects between them were calculated by the attributable fraction (AF). The analyses were further stratified by gender, age group, education level, and location of cities. Results: In total, 120,544 CVD deaths were recorded in this study. The mean values of temperature and humidity were 17.6 °C and 72.3%. The joint effect between low temperature and high humidity had the greatest impact on the CVD death burden over a lag of 0–21 days with a significant AF of 31.36% (95% eCI: 14.79–38.41%), while in a condition of low temperature and low humidity with a significant AF of 16.74% (95% eCI: 0.89, 24.44). The AFs were higher at low temperature and high humidity in different subgroups. When considering the levels of humidity, the AFs were significant at low temperature and high humidity for males, youth, those with a low level of education, and coastal area people. Conclusions: The combination of low temperature and high humidity had the greatest impact on the CVD death burden in Zhejiang Province. This evidence has important implications for developing CVD

  6. Humidity May Modify the Relationship between Temperature and Cardiovascular Mortality in Zhejiang Province, China

    Directory of Open Access Journals (Sweden)

    Jie Zeng

    2017-11-01

    Full Text Available Background: The evidence of increased mortality attributable to extreme temperatures is widely characterized in climate-health studies. However, few of these studies have examined the role of humidity on temperature-mortality association. We investigated the joint effect between temperature and humidity on cardiovascular disease (CVD mortality in Zhejiang Province, China. Methods: We collected data on daily meteorological and CVD mortality from 11 cities in Zhejiang Province during 2010–2013. We first applied time-series Poisson regression analysis within the framework of distributed lag non-linear models to estimate the city-specific effect of temperature and humidity on CVD mortality, after controlling for temporal trends and potential confounding variables. We then applied a multivariate meta-analytical model to pool the effect estimates in the 11 cities to generate an overall provincial estimate. The joint effects between them were calculated by the attributable fraction (AF. The analyses were further stratified by gender, age group, education level, and location of cities. Results: In total, 120,544 CVD deaths were recorded in this study. The mean values of temperature and humidity were 17.6 °C and 72.3%. The joint effect between low temperature and high humidity had the greatest impact on the CVD death burden over a lag of 0–21 days with a significant AF of 31.36% (95% eCI: 14.79–38.41%, while in a condition of low temperature and low humidity with a significant AF of 16.74% (95% eCI: 0.89, 24.44. The AFs were higher at low temperature and high humidity in different subgroups. When considering the levels of humidity, the AFs were significant at low temperature and high humidity for males, youth, those with a low level of education, and coastal area people. Conclusions: The combination of low temperature and high humidity had the greatest impact on the CVD death burden in Zhejiang Province. This evidence has important implications

  7. Global warming: the complete briefing

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, J

    1994-01-01

    The science of global warming, its impacts, and what action might be taken, are described in this book, in a way which the intelligent non-scientist can understand. It also examines ethical and moral issues of concern about global warming, considering mankind as stewards of the earth. Chapter headings of the book are: global warming and climate change; the greenhouse effect; the greenhouse gases; climates of the past; modelling the climate; climate change and business-as-usual; the impacts of climate change; why should we be concerned ; weighing the uncertainty; action to slow and stabilize climate change; energy and transport for the future; and the global village.

  8. Amplified Arctic warming by phytoplankton under greenhouse warming.

    Science.gov (United States)

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  9. Bond Strength of Resin Composite to Dentin with Different Adhesive Systems: Influence of Relative Humidity and Application Time.

    Science.gov (United States)

    Amsler, Fabienne; Peutzfeldt, Anne; Lussi, Adrian; Flury, Simon

    2015-06-01

    To investigate the influence of relative humidity and application time on bond strength to dentin of different classes of adhesive systems. A total of 360 extracted human molars were ground to mid-coronal dentin. The dentin specimens were treated with one of six adhesive systems (Syntac Classic, OptiBond FL, Clearfil SE Bond, AdheSE, Xeno Select, or Scotchbond Universal), and resin composite (Filtek Z250) was applied to the treated dentin surface under four experimental conditions (45% relative humidity/application time according to manufacturers' instructions; 45% relative humidity/reduced application time; 85% relative humidity/application time according to manufacturers' instructions; 85% relative humidity/reduced application time). After storage (37°C, 100% humidity, 24 h), shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by Kruskal-Wallis tests and Mann-Whitney U-tests with Bonferroni-Holm correction for multiple testing (level of significance: α = 0.05). Increased relative humidity and reduced application time had no effect on SBS for Clearfil SE Bond and Scotchbond Universal (p = 1.00). For Syntac Classic, OptiBond FL, AdheSE, and Xeno Select there was no effect on SBS of reduced application time of the adhesive system (p ≥ 0.403). However, increased relative humidity significantly reduced SBS for Syntac Classic, OptiBond FL, and Xeno Select irrespective of application time (p ≤ 0.003), whereas for AdheSE, increased relative humidity significantly reduced SBS at recommended application time only (p = 0.002). Generally, increased relative humidity had a detrimental effect on SBS to dentin, but reduced application time had no effect.

  10. Experimental determination of the effect of temperature and humidity on the development of colour in Pinus radiata

    Directory of Open Access Journals (Sweden)

    M. McCurdy

    2005-06-01

    Full Text Available Experiments were undertaken to determine the effects of drying conditions (temperature and humidity on the development of kiln brown stain in radiata pine during drying. Eight schedules were tested with temperatures ranging from 50°C to 120°C and relative humidity from 14% to 67%. The variables measured were moisture content, color expressed using the CIELab color space, and nitrogen content. The experiments have shown that the kiln brown stain is influenced by drying temperature and drying time. The recommendation is therefore that low-temperature and low-humidity schedules be developed for controlling color development.

  11. Heat and mass transfer during the warming of a bottle of beer - doi: 10.4025/actascitechnol.v32i2.8273

    OpenAIRE

    Monteiro, Cláudio Vinicius Barbosa; UEM; Righetto, Aderson Roberto; Universidade Estadual de Maringá; Souza, Leonardo César de; Universidade Estadual de Maringá; Paraíso, Paulo Roberto; UEM; Jorge, Luiz Mario de Matos; UEM

    2010-01-01

    The warming of a bottle of beer during a Friday evening happy hour directly involves transport phenomena, such as mass transfer due to condensation of air humidity on the bottle surface and heat transfer from the ambient to the bottle, which occurs by free convection and water condensation. Both processes happen simultaneously and are directly associated with the heat and mass transfer coefficients involved, which are affected by the ambient humidity and temperature. Several runs were made in...

  12. Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates

    International Nuclear Information System (INIS)

    Xu, J.; Li, Y.; Wang, R.Z.; Liu, W.; Zhou, P.

    2015-01-01

    Highlights: • Experimental performance of evaporative cooling in humid climate is investigated. • 5 working modes are studied in the greenhouse. • Vertical and horizontal temperature and relative humidity variations are analysed. • Indoor temperature can be kept in required level by proper working modes. - Abstract: To solve the overheating problem caused by the solar radiation and to keep the indoor temperature and humidity at a proper level for plants or crops, cooling technologies play vital role in greenhouse industry, and among which evaporative cooling is one of the most commonly-used methods. However, the main challenge of the evaporative cooling is its suitability to local climatic and agronomic condition. In this study, the performance of evaporative cooling pads was investigated experimentally in a 2304-m 2 glass multi-span greenhouse in Shanghai in the southeast of China. Temperature and humidity distributions were measured and reported for different working modes, including the use of evaporative cooling alone and the use of evaporative cooling with shading or ventilation. These experiments were conducted in humid subtropical climates where were considered unfavourable for evaporative cooling pad systems. Quantified analyses from the energy perspective are also made based on the experimental results and the evaporative cooling fan–pad system is demonstrated to be an effective option for greenhouse cooling even in the humid climate. Suggestions and possible solutions for further improving the performance of the system are proposed. The results of this work will be useful for the optimisation of the energy management of greenhouses in humid climates and for the validation of the mathematical model in future work

  13. Reversible adhesion switching of porous fibrillar adhesive pads by humidity.

    Science.gov (United States)

    Xue, Longjian; Kovalev, Alexander; Dening, Kirstin; Eichler-Volf, Anna; Eickmeier, Henning; Haase, Markus; Enke, Dirk; Steinhart, Martin; Gorb, Stanislav N

    2013-01-01

    We report reversible adhesion switching on porous fibrillar polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) adhesive pads by humidity changes. Adhesion at a relative humidity of 90% was more than nine times higher than at a relative humidity of 2%. On nonporous fibrillar adhesive pads of the same material, adhesion increased only by a factor of ~3.3. The switching performance remained unchanged in at least 10 successive high/low humidity cycles. Main origin of enhanced adhesion at high humidity is the humidity-induced decrease in the elastic modulus of the polar component P2VP rather than capillary force. The presence of spongelike continuous internal pore systems with walls consisting of P2VP significantly leveraged this effect. Fibrillar adhesive pads on which adhesion is switchable by humidity changes may be used for preconcentration of airborne particulates, pollutants, and germs combined with triggered surface cleaning.

  14. Sensitivity of honeybee hygroreceptors to slow humidity changes and temporal humidity variation detected in high resolution by mobile measurements.

    Science.gov (United States)

    Tichy, Harald; Kallina, Wolfgang

    2014-01-01

    The moist cell and the dry cell on the antenna of the male honeybee were exposed to humidities slowly rising and falling at rates between -1.5%/s and +1.5%/s and at varying amplitudes in the 10 to 90% humidity range. The two cells respond to these slow humidity oscillations with oscillations in impulse frequency which depend not only on instantaneous humidity but also on the rate with which humidity changes. The impulse frequency of each cell was plotted as a function of these two parameters and regression planes were fitted to the data points of single oscillation periods. The regression slopes, which estimate sensitivity, rose with the amplitude of humidity oscillations. During large-amplitude oscillations, moist and dry cell sensitivity for instantaneous humidity and its rate of change was high. During small-amplitude oscillations, their sensitivity for both parameters was low, less exactly reflecting humidity fluctuations. Nothing is known about the spatial and temporal humidity variations a honeybee may encounter when flying through natural environments. Microclimatic parameters (absolute humidity, temperature, wind speed) were measured from an automobile traveling through different landscapes of Lower Austria. Landscape type affected extremes and mean values of humidity. Differences between peaks and troughs of humidity fluctuations were generally smaller in open grassy fields or deciduous forests than in edge habitats or forest openings. Overall, fluctuation amplitudes were small. In this part of the stimulus range, hygroreceptor sensitivity is not optimal for encoding instantaneous humidity and the rate of humidity change. It seems that honeybee's hygroreceptors are specialized for detecting large-amplitude fluctuations that are relevant for a specific behavior, namely, maintaining a sufficiently stable state of water balance. The results suggest that optimal sensitivity of both hygroreceptors is shaped not only by humidity oscillation amplitudes but also

  15. Tack Measurements of Prepreg Tape at Variable Temperature and Humidity

    Science.gov (United States)

    Wohl, Christopher; Palmieri, Frank L.; Forghani, Alireza; Hickmott, Curtis; Bedayat, Houman; Coxon, Brian; Poursartip, Anoush; Grimsley, Brian

    2017-01-01

    NASA’s Advanced Composites Project has established the goal of achieving a 30 percent reduction in the timeline for certification of primary composite structures for application on commercial aircraft. Prepreg tack is one of several critical parameters affecting composite manufacturing by automated fiber placement (AFP). Tack plays a central role in the prevention of wrinkles and puckers that can occur during AFP, thus knowledge of tack variation arising from a myriad of manufacturing and environmental conditions is imperative for the prediction of defects during AFP. A full design of experiments was performed to experimentally characterize tack on 0.25-inch slit-tape tow IM7/8552-1 prepreg using probe tack testing. Several process parameters (contact force, contact time, retraction speed, and probe diameter) as well as environmental parameters (temperature and humidity) were varied such that the entire parameter space could be efficiently evaluated. Mid-point experimental conditions (i.e., parameters not at either extrema) were included to enable prediction of curvature in relationships and repeat measurements were performed to characterize experimental error. Collectively, these experiments enable determination of primary dependencies as well as multi-parameter relationships. Slit-tape tow samples were mounted to the bottom plate of a rheometer parallel plate fixture using a jig to prevent modification of the active area to be interrogated with the top plate, a polished stainless steel probe, during tack testing. The probe surface was slowly brought into contact with the pre-preg surface until a pre-determined normal force was achieved (2-30 newtons). After a specified dwell time (0.02-10 seconds), during which the probe substrate interaction was maintained under displacement control, the probe was retracted from the surface (0.1-50 millimeters per second). Initial results indicated a clear dependence of tack strength on several parameters, with a particularly

  16. Tribology of Si/SiO2 in humid air: transition from severe chemical wear to wearless behavior at nanoscale.

    Science.gov (United States)

    Chen, Lei; He, Hongtu; Wang, Xiaodong; Kim, Seong H; Qian, Linmao

    2015-01-13

    Wear at sliding interfaces of silicon is a main cause for material loss in nanomanufacturing and device failure in microelectromechanical system (MEMS) applications. However, a comprehensive understanding of the nanoscale wear mechanisms of silicon in ambient conditions is still lacking. Here, we report the chemical wear of single crystalline silicon, a material used for micro/nanoscale devices, in humid air under the contact pressure lower than the material hardness. A transmission electron microscopy (TEM) analysis of the wear track confirmed that the wear of silicon in humid conditions originates from surface reactions without significant subsurface damages such as plastic deformation or fracture. When rubbed with a SiO2 ball, the single crystalline silicon surface exhibited transitions from severe wear in intermediate humidity to nearly wearless states at two opposite extremes: (a) low humidity and high sliding speed conditions and (b) high humidity and low speed conditions. These transitions suggested that at the sliding interfaces of Si/SiO2 at least two different tribochemical reactions play important roles. One would be the formation of a strong "hydrogen bonding bridge" between hydroxyl groups of two sliding interfaces and the other the removal of hydroxyl groups from the SiO2 surface. The experimental data indicated that the dominance of each reaction varies with the ambient humidity and sliding speed.

  17. Effects of the "New Climate" warmed in North Africa and Western Mediterranean: the situation of recent meteorological droughts and floods

    Science.gov (United States)

    Karrouk, Mohammed-Said

    2017-04-01

    "New Climate" subjected to North Africa, Western Mediterranean and geoclimatic midlatitude space atmospheric effects of the new regime characterized by the supremacy of the meridian circulation (MAC: Meridian Atmospheric Circulation), by alternating cool conditions (humidity) heat (drought) along the year, and imposes situation of anxiety and perplexity vis-a-vis their socio-economic activities; shoved agricultural calendar, hesitant policymakers, uncertainty and waiting, ... etc. The recent example of the fall-winter 2015-2016 is indicative of the conditions that have left a deep psychological imprint on economic and social Moroccans. During this period, the summer heat has extended to the end of autumn and even winter. And precipitation contracted by more than 51% of accumulated rainfall autumn, compared with the same period a normal year. A slowdown in economic growth has been felt since last December and was extended until the rains return (and snow!) In mid February 2016. Weather conditions during this period were marked by the succession and persistence of very active planetary peaks, projected to the northern borders of Western Europe (Heat Christmas 2015!), Rejecting the negative waves to the east: Algeria, Tunisia, Italy, the Balkans, Anatolia, and even the Middle East. These conditions are the consequences of the "New Climate" warmed, strengthened by the strong El Niño event in 2015 decennial. The identification of hemispheric and regional climate mechanisms of these atmospheric regime systems based on energy balance and atmospheric circulation will be defined, with links of cause and effect, in view of integrating these characters to extreme events in the New Climate Warmed.

  18. Measuring relative humidity in the radioactive environment of the IRRAD proton facility

    CERN Document Server

    Paerg, Marten

    2017-01-01

    The aim of the project was to obtain information on relative humidity conditions at different locations in the IRRAD proton facility. Due to high radiation levels inside the facility, different sensors had to be qualified and dedicated electronics had to be built to transfer the data of the sensors over long wires to a less radioactive area, where it could be collected.

  19. Thermal Comfort: An Index for Hot, Humid Asia. Educational Building Digest 12.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    The sensation of thermal comfort is determined by a combination of air temperature, humidity of the air, rate of movement of the air, and radiant heat. This digest is intended to assist architects to design educational facilities that are as thermally comfortable as is possible without recourse to mechanical air conditioning. A nomogram is…

  20. Boron nutrition and chilling tolerance of warm climate crop species.

    Science.gov (United States)

    Huang, Longbin; Ye, Zhengqian; Bell, Richard W; Dell, Bernard

    2005-10-01

    Field observations and glasshouse studies have suggested links between boron (B)-deficiency and leaf damage induced by low temperature in crop plants, but causal relationships between these two stresses at physiological, biochemical and molecular levels have yet to be explored. Limited evidence at the whole-plant level suggests that chilling temperature in the root zone restricts B uptake capacity and/or B distribution/utilization efficiency in the shoot, but the nature of this interaction depends on chilling tolerance of species concerned, the mode of low temperature treatment (abrupt versus gradual temperature decline) and growth conditions (e.g. photon flux density and relative humidity) that may exacerbate chilling stress. This review explores roles of B nutrition in chilling tolerance of continual root or transient shoot chills in crop species adapted to warm season conditions. It reviews current research on combined effects of chilling temperature (ranging from >0 to 20 degrees C) and B deficiency on growth and B nutrition responses in crop species differing in chilling tolerance. For subtropical/tropical species (e.g. cucumber, cassava, sunflower), root chilling at 10-17 degrees C decreases B uptake efficiency and B utilization in the shoot and increases the shoot : root ratio, but chilling-tolerant temperate species (e.g. oilseed rape, wheat) require much lower root chill temperatures (2-5 degrees C) to achieve the same responses. Boron deficiency exacerbates chilling injuries in leaf tissues, particularly under high photon flux density. Suggested mechanisms for B x chilling interactions in plants are: (a) chilling-induced reduction in plasmalemma hydraulic conductivity, membrane fluidity, water channel activity and root pressure, which contribute to the decrease in root hydraulic conductance, water uptake and associated B uptake; (b) chilling-induced stomatal dysfunction affecting B transport from root to shoot and B partitioning in t