WorldWideScience

Sample records for wap four-disulfide core

  1. WAP explained

    International Nuclear Information System (INIS)

    Kaiser, M.J.; Pulsipher, A.G.

    2004-01-01

    The Weatherization Assistance Program (WAP) is a federal block grant program administered by all 50 states and the District of Columbia through community action agencies, state energy offices, local government, and other nonprofit organizations to provide weatherization services to eligible households. The WAP was established in 1976 to increase the energy efficiency, reduce the energy expenditures, and improve the health and safety of low-income households, especially those households that are particularly vulnerable such as families with children, persons with disabilities, and the elderly. The manner in which WAP funds have been allocated to states, however, has been a contentious issue since the inception of the program. Southern states have argued that too much of the federal funding goes to cold-climate and rural states. Northern states disagree. In 1990, Congress amended the Energy Conservation and Production Act and required the Department of Energy to develop a new funding formula. The Department of Energy currently uses a three-factor formula developed in 1995 in conjunction with a two-factor formula developed in 1977 and a hold-harmless provision to allocate WAP funding. The purpose of this paper is to explain the WAP allocation mechanism and the assumptions associated with the 1977 and the 1995 funding formula. The factors that compose each funding formula are critically assessed and various implementation issues are reviewed, including the selection of the trigger point and program capacity levels. It is not possible to define the need for weatherization assistance objectively and in a unique manner, and this ambiguity is the main reason why the WAP allocation mechanism is expected to remain a lively topic of debate and contention

  2. Business Applications of WAP.

    Science.gov (United States)

    van Steenderen, Margaret

    2002-01-01

    Explains the development of WAP (wireless application protocol), how it works, and what the major advantages and disadvantages are, especially when applied to the use of information. Topics include standardization; mobile communications; the effect of WAP on business tools, electronic commerce, and information services; consumers; corporate users;…

  3. The WAP four-disulfide core domain protein HE4: a novel biomarker for heart failure.

    Science.gov (United States)

    de Boer, Rudolf A; Cao, Qi; Postmus, Douwe; Damman, Kevin; Voors, Adriaan A; Jaarsma, Tiny; van Veldhuisen, Dirk J; Arnold, William D; Hillege, Hans L; Silljé, Herman H W

    2013-04-01

    This study investigated clinical determinants and added prognostic value of HE4 as a biomarker not previously described in heart failure (HF). Identification of plasma biomarkers that help to risk stratify HF patients may help to improve treatment. Plasma HE4 levels were determined in 567 participants of the COACH (Coordinating study evaluating outcomes of Advising and Counseling in Heart failure). Patients had been hospitalized for HF and were followed for 18 months. The primary endpoint of this study was a composite of all-cause mortality and HF hospitalization. HE4 showed a strong correlation with HF severity, according to New York Heart Association functional class and brain natriuretic peptide (BNP) levels (p Inc. All rights reserved.

  4. Safety evaluation of Whole Algalin Protein (WAP) from Chlorella protothecoides.

    Science.gov (United States)

    Szabo, Nancy J; Matulka, Ray A; Chan, Teresa

    2013-09-01

    Microalgae such as Chlorella spp., were once consumed as traditional human foods; now they are being developed as ingredients for modern diets. Whole Algalin Protein (WAP) from dried milled Chlorella protothecoides was evaluated for dietary safety in a 13-week feeding trial in rodents with genotoxic potential evaluated using in vitro and in vivo assays and the likelihood of food allergy potential evaluated via human repeat-insult patch test (HRIPT). In the subchronic study, rats consumed feed containing 0, 25,000, 50,000 or 100,000 ppm WAP for 92-93 days. No treatment-related mortalities or effects in general condition, body weight, food consumption, ophthalmology, urinalysis, hematology, clinical chemistry, gross pathology, organ weights, and histopathology occurred. Several endpoints exhibited statistically significant effects, but none was dose-related. The no-observed-adverse-effect level (NOAEL) was based on the highest WAP concentration consumed by the rats and was equivalent to 4805 mg/kg/day in males and 5518 mg/kg/day in females. No mutagenicity occurred in Salmonella typhimurium or Escherichia coli tester strains (≤5000 μg/plate WAP) with or without mutagenic activation. No clastogenic response occurred in bone marrow from mice administered a single oral dose (2000 mg/kg WAP). Skin sensitization was not induced by WAP via HRIPT, indicating little potential for food allergy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Migrating an Online Service to WAP - A Case Study.

    Science.gov (United States)

    Klasen, Lars

    2002-01-01

    Discusses mobile access via wireless application protocol (WAP) to online services that is offered in Sweden through InfoTorg. Topics include the Swedish online market; filtering HTML data from an Internet/Web server into WML (wireless markup language); mobile phone technology; microbrowsers; WAP protocol; and future possibilities. (LRW)

  6. WAP - based telemedicine applications

    International Nuclear Information System (INIS)

    Hung, K.; Zhang, Y.T.

    2001-01-01

    Telemedicine refers to the utilization of telecommunication technology for medical diagnosis, treatment, and patient care. Its aim is to provide expert-based health care to remote sites through telecommunication and information technologies. The significant advances in technologies have enabled the introduction of a broad range of telemedicine applications, which are supported by computer networks, wireless communication, and information superhighway. For example, some hospitals are using tele-radiology for remote consultation. Such a system includes medical imaging devices networked with computers and databases. Another growing area is patient monitoring, in which sensors are used to acquire biomedical signals, such as electrocardiogram (ECG), blood pressure, and body temperature, from a remote patient, who could be in bed or moving freely. The signals are then relayed to remote systems for viewing and analysis. Telemedicine can be divided into two basic modes of operations: real-time mode, in which the patient data can be accessed remotely in real-time, and store-and-forward mode, in which the acquired data does not have to be accessed immediately. In the recent years, many parties have demonstrated various telemedicine applications based on the Internet and cellular phone as these two fields have been developing rapidly. A current, recognizable trend in telecommunication is the convergence of wireless communication and computer network technologies. This has been reflected in recently developed telemedicine systems. For example, in 1998 J. Reponen, et al. have demonstrated transmission and display of computerized tomography (CT) examinations using a remote portable computer wirelessly connected to a computer network through TCP/IP on a GSM cellular phone. Two years later, they carried out the same tests with a GSM-based wireless personal digital assistant (PDA). The WAP (Wireless Application Protocol) Forum was founded in 1997 to create a global protocol

  7. A Proxy Architecture to Enhance the Performance of WAP 2.0 by Data Compression

    Directory of Open Access Journals (Sweden)

    Yin Zhanping

    2005-01-01

    Full Text Available This paper presents a novel proxy architecture for wireless application protocol (WAP employing an advanced data compression scheme. Though optional in WAP , a proxy can isolate the wireless from the wired domain to prevent error propagations and to eliminate wireless session delays (WSD by enabling long-lived connections between the proxy and wireless terminals. The proposed data compression scheme combines content compression together with robust header compression (ROHC, which minimizes the air-interface traffic data, thus significantly reduces the wireless access time. By using the content compression at the transport layer, it also enables TLS tunneling, which overcomes the end-to-end security problem in WAP 1.x. Performance evaluations show that while WAP 1.x is optimized for narrowband wireless channels, WAP utilizing TCP/IP outperforms WAP 1.x over wideband wireless channels even without compression. The proposed data compression scheme reduces the wireless access time of WAP by over in CDMA2000 1XRTT channels, and in low-speed IS-95 channels, substantially reduces access time to give comparable performance to WAP 1.x. The performance enhancement is mainly contributed by the reply content compression, with ROHC offering further enhancements.

  8. A Proxy Architecture to Enhance the Performance of WAP 2.0 by Data Compression

    Directory of Open Access Journals (Sweden)

    Yin Zhanping

    2005-01-01

    Full Text Available This paper presents a novel proxy architecture for wireless application protocol (WAP 2.0 employing an advanced data compression scheme. Though optional in WAP 2.0 , a proxy can isolate the wireless from the wired domain to prevent error propagations and to eliminate wireless session delays (WSD by enabling long-lived connections between the proxy and wireless terminals. The proposed data compression scheme combines content compression together with robust header compression (ROHC, which minimizes the air-interface traffic data, thus significantly reduces the wireless access time. By using the content compression at the transport layer, it also enables TLS tunneling, which overcomes the end-to-end security problem in WAP 1.x. Performance evaluations show that while WAP 1.x is optimized for narrowband wireless channels, WAP 2.0 utilizing TCP/IP outperforms WAP 1.x over wideband wireless channels even without compression. The proposed data compression scheme reduces the wireless access time of WAP 2.0 by over 45% in CDMA2000 1XRTT channels, and in low-speed IS-95 channels, substantially reduces access time to give comparable performance to WAP 1.x. The performance enhancement is mainly contributed by the reply content compression, with ROHC offering further enhancements.

  9. Web Air Permits (WAP R7)

    Data.gov (United States)

    U.S. Environmental Protection Agency — THIS DATA ASSET NO LONGER ACTIVE: This is metadata documentation for Web Air Permits in Region 7 (WAP R7), a Lotus Notes application that once tracked comment...

  10. Towards the Design of a WAP-based Environmental Information Service

    Directory of Open Access Journals (Sweden)

    Joerg Westbomke

    2004-12-01

    Full Text Available Cellular phones have almost replaced conventional telephones for public use in Western European countries. Modern WAP enhanced phones or smart phones offer mobile access to the internet, anytime and anyplace. This technique therefore appears to be very attractive for transferring up-to-date information about the environmental situation to the public, i.e. air and water quality measurements or weather conditions as well as forecasted values of these processes. The Wireless Application Protocol (WAP is the key technology in this respect. According to the upcoming importance of mobile internet access the WAP technology has great potentials to play an important role in the design of modern information services which are user centered. Because of upcoming environmental laws in Europe the citizen will gain the right to access the environmental information collected and stored by the public authorities. But due to size and resolution of the displays used in the actual versions of the cellular phones it is not sufficient to transfer the concepts and architectures known from internet information systems to WAP-based systems. It is rather necessary to develop special concepts for the design of WAPbased services, with a special focus on the appropriate structuring and presentation of environmental data. This paper gives an overview of the main problems WAP system designer had actually to deal with and shows concepts how to solve them. At the end of the paper we present two mobile environmental information services, which were realized on the basis of the presented concepts.

  11. Kinetic study of the interaction of glutathione with four antitumor disulfides: possible mechanism for cellular glutathione depletion.

    Science.gov (United States)

    Kirkpatrick, D L

    1989-01-01

    The reactions between the cellular tripeptide, glutathione (GSH) and four disulfide derivatives of 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) (compounds 1-4) were studied kinetically. The decyl and phenyl derivatives of 6-MP and 6-TG were reacted with GSH in phosphate buffer (pH 7.4 or 6.0) at 25.0 degrees C and were monitored spectrophotometrically by observing the release of 6-MP and 6-TG. Second order kinetics were observed, with rate constants of 142, 564, 4174 and 429 M-1 s-1 being measured for compounds 1-4, respectively. When the reactions were carried out in the presence of GSH-S-transferase the rates were enhanced 1.3-5.4 times those observed in the absence of enzyme. Products of the reactions were isolated by chromatography and tentatively identified by TLC or fast atom bombardment mass spectrometry. It was observed that GSH reacted with each disulfide in a 1:1 manner, forming a mixed disulfide between GSH and decanethiol or thiophenol while releasing 6-MP or 6-TG. It was concluded that the reported depletion of GSH from EMT6 cells after exposure to these disulfides could be due to their reaction with GSH, and the formation of the mixed disulfides.

  12. Phone Application Based Wireless Application Protocol (Wap)

    OpenAIRE

    Berrie Nugraha Adiwinata; Sunarto Usna

    2001-01-01

    WAP mobile phone sales in Indonesia is quite high, evidenced by a recent survey saidnearly about 5% of mobile phone users in Indonesia is a mobile phone using WAPtechnology. For those who always need accurate information and quick. WAPtechnology a ride on a GSM network still has weaknesses such as an expensiveaccess costs. But do not close the possibility that one day we will get a perfect WAPphones.

  13. Integración de un sistema de pago para móvil mediante un intermediario para una aplicación WAP

    OpenAIRE

    Paradell Cases, David

    2012-01-01

    Nou sistema de pagament per mòbil. [ANGLÈS] Integration of a mobile payment system using Mobile 365 company to a WAP application. [CASTELLÀ] Integración de un sistema de pago para móvil mediante Mobile 365 para una aplicación WAP. [CATALÀ] Integració d'un sistema de pagament per mòbil mitjançant Mobile 365 per a una aplicació WAP.

  14. Steric effects in peptide and protein exchange with activated disulfides.

    Science.gov (United States)

    Kerr, Jason; Schlosser, Jessica L; Griffin, Donald R; Wong, Darice Y; Kasko, Andrea M

    2013-08-12

    Disulfide exchange is an important bioconjugation tool, enabling chemical modification of peptides and proteins containing free cysteines. We previously reported the synthesis of a macromer bearing an activated disulfide and its incorporation into hydrogels. Despite their ability to diffuse freely into hydrogels, larger proteins were unable to undergo in-gel disulfide exchange. In order to understand this phenomenon, we synthesized four different activated disulfide-bearing model compounds (Mn = 300 Da to 10 kDa) and quantified their rate of disulfide exchange with a small peptide (glutathione), a moderate-sized protein (β-lactoglobulin), and a large protein (bovine serum albumin) in four different pH solutions (6.0, 7.0, 7.4, and 8.0) to mimic biological systems. Rate constants of exchange depend significantly on the size and accessibility of the thiolate. pH also significantly affects the rate of reaction, with the faster reactions occurring at higher pH. Surprisingly, little difference in exchange rates is seen between macromolecular disulfides of varying size (Mn = 2 kDa - 10 kDa), although all undergo exchange more slowly than their small molecule analogue (MW = 300 g/mol). The maximum exchange efficiencies (% disulfides exchanged after 24 h) are not siginificantly affected by thiol size or pH, but somewhat affected by disulfide size. Therefore, while all three factors investigated (pH, disulfide size, and thiolate size) can influence the exchange kinetics and extent of reaction, the size of the thiolate and its accessibility plays the most significant role.

  15. Epigenetic modifications and chromatin loop organization explain the different expression profiles of the Tbrg4, WAP and Ramp3 genes

    International Nuclear Information System (INIS)

    Montazer-Torbati, Mohammad Bagher; Hue-Beauvais, Cathy; Droineau, Stephanie; Ballester, Maria; Coant, Nicolas; Aujean, Etienne; Petitbarat, Marie; Rijnkels, Monique; Devinoy, Eve

    2008-01-01

    Whey Acidic Protein (WAP) gene expression is specific to the mammary gland and regulated by lactogenic hormones to peak during lactation. It differs markedly from the more constitutive expression of the two flanking genes, Ramp3 and Tbrg4. Our results show that the tight regulation of WAP gene expression parallels variations in the chromatin structure and DNA methylation profile throughout the Ramp3-WAP-Tbrg4 locus. Three Matrix Attachment Regions (MAR) have been predicted in this locus. Two of them are located between regions exhibiting open and closed chromatin structures in the liver. The third, located around the transcription start site of the Tbrg4 gene, interacts with topoisomerase II in HC11 mouse mammary cells, and in these cells anchors the chromatin loop to the nuclear matrix. Furthermore, if lactogenic hormones are present in these cells, the chromatin loop surrounding the WAP gene is more tightly attached to the nuclear structure, as observed after a high salt treatment of the nuclei and the formation of nuclear halos. Taken together, our results point to a combination of several epigenetic events that may explain the differential expression pattern of the WAP locus in relation to tissue and developmental stages

  16. Conformational analysis and design of cross-strand disulfides in antiparallel β-sheets.

    Science.gov (United States)

    Indu, S; Kochat, V; Thakurela, S; Ramakrishnan, C; Varadarajan, Raghavan

    2011-01-01

    Cross-strand disulfides bridge two cysteines in a registered pair of antiparallel β-strands. A nonredundant data set comprising 5025 polypeptides containing 2311 disulfides was used to study cross-strand disulfides. Seventy-six cross-strand disulfides were found of which 75 and 1 occurred at non-hydrogen-bonded (NHB) and hydrogen-bonded (HB) registered pairs, respectively. Conformational analysis and modeling studies demonstrated that disulfide formation at HB pairs necessarily requires an extremely rare and positive χ¹ value for at least one of the cysteine residues. Disulfides at HB positions also have more unfavorable steric repulsion with the main chain. Thirteen pairs of disulfides were introduced in NHB and HB pairs in four model proteins: leucine binding protein (LBP), leucine, isoleucine, valine binding protein (LIVBP), maltose binding protein (MBP), and Top7. All mutants LIVBP T247C V331C showed disulfide formation either on purification, or on treatment with oxidants. Protein stability in both oxidized and reduced states of all mutants was measured. Relative to wild type, LBP and MBP mutants were destabilized with respect to chemical denaturation, although the sole exposed NHB LBP mutant showed an increase of 3.1°C in T(m). All Top7 mutants were characterized for stability through guanidinium thiocyanate chemical denaturation. Both exposed and two of the three buried NHB mutants were appreciably stabilized. All four HB Top7 mutants were destabilized (ΔΔG⁰ = -3.3 to -6.7 kcal/mol). The data demonstrate that introduction of cross-strand disulfides at exposed NHB pairs is a robust method of improving protein stability. All four exposed Top7 disulfide mutants showed mild redox activity. © 2010 Wiley-Liss, Inc.

  17. Diseño y montaje de una página wap que implemente el acceso a la información académica de la universidad francisco de paula santander

    Directory of Open Access Journals (Sweden)

    Dinael Guevara-Ibarra

    2003-01-01

    Full Text Available WAP is the acronym for Wireless Application Protocol (Wireless Application Protocol and is the means of transport communications between wireless devices and servers. The University Francisco de Paula Santander will from the second half of 2003 with a WAP portal that will allow students and interested, consult the information from the institution using the benefits of mobile communications equipment (cell. This article briefly describes the theoretical bases that were the subject of study for the project of the WAP page of the institution such as the WAP standard, the layers of the WAP protocol, the components and the operating model of a WAP system and the programming language to develop WAP applications; In addition, the parameters taken into account for the selection of the information to be displayed on the portal and the tools used in the manufacture and assembly of mobile Internet page of the University Francisco de Paula Santander exposed

  18. Demonstrating compliance with WAPS 1.3 in the Hanford waste vitrification plant process

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M.F.; Piepel, G.F.; Simpson, D.B.

    1996-03-01

    The high-level waste (HLW) vitrification plant at the Hanford Site was being designed to immobilize transuranic and high-level radioactive waste in borosilicate glass. This document describes the statistical procedure to be used in verifying compliance with requirements imposed by Section 1.3 of the Waste Acceptance Product Specifications (WAPS, USDOE 1993). WAPS 1.3 is a specification for ``product consistency,`` as measured by the Product Consistency Test (PCT, Jantzen 1992b), for each of three elements: lithium, sodium, and boron. Properties of a process batch and the resulting glass are largely determined by the composition of the feed material. Empirical models are being developed to estimate some property values, including PCT results, from data on feed composition. These models will be used in conjunction with measurements of feed composition to control the HLW vitrification process and product.

  19. Enhancing Protein Disulfide Bond Cleavage by UV Excitation and Electron Capture Dissociation for Top-Down Mass Spectrometry.

    Science.gov (United States)

    Wongkongkathep, Piriya; Li, Huilin; Zhang, Xing; Loo, Rachel R Ogorzalek; Julian, Ryan R; Loo, Joseph A

    2015-11-15

    The application of ion pre-activation with 266 nm ultraviolet (UV) laser irradiation combined with electron capture dissociation (ECD) is demonstrated to enhance top-down mass spectrometry sequence coverage of disulfide bond containing proteins. UV-based activation can homolytically cleave a disulfide bond to yield two separated thiol radicals. Activated ECD experiments of insulin and ribonuclease A containing three and four disulfide bonds, respectively, were performed. UV-activation in combination with ECD allowed the three disulfide bonds of insulin to be cleaved and the overall sequence coverage to be increased. For the larger sized ribonuclease A with four disulfide bonds, irradiation from an infrared laser (10.6 µm) to disrupt non-covalent interactions was combined with UV-activation to facilitate the cleavage of up to three disulfide bonds. Preferences for disulfide bond cleavage are dependent on protein structure and sequence. Disulfide bonds can reform if the generated radicals remain in close proximity. By varying the time delay between the UV-activation and the ECD events, it was determined that disulfide bonds reform within 10-100 msec after their UV-homolytic cleavage.

  20. Structures and related properties of helical, disulfide-stabilized peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pagel, Mark D. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1993-11-01

    The three dimensional structure of several peptides were determined by NMR spectroscopy and distance geometry calculations. Each peptide formed a predictable, rigid structure, consisting of an α-helix, a "scaffold" region which packed along one face of the helix, and two disulfide bridges which covalently connect the helix and scaffold regions. The peptide Apa-M5 was designed to constrain the M5 peptide from MLCK in a helical geometry using the apamin disulfide scaffold. This scaffold constrains the N- terminal end of the helix with two disulfide bridges and a reverse turn. Like the M5 peptide, Apa-M5 was found to bind calmodulin in a Ca2+-dependent 1:1 stoichiometry. However, the dissociation constant of the (Apa-M5)-calmodulin complex, 107 nM, was 100-fold higher than the dissociation constant of the M5-calmodulin complex. This difference was due to a putative steric overlap between the Apa-M5 scaffold and calmodulin. The peptide Apa-Cro was designed to replace the large structural protein matrix of λ Cro with the apamin disulfide scaffold. However, Apa-Cro did not bind the consensus DNA operator half-site of λ Cro, probably due to a steric overlap between the Apa-Cro disulfide framework and the DNA. The amino acid sequence of the scaffold-disulfide bridge arrangement of the peptide Max was derived from the core sequence of scyllatoxin, which contains an α-helix constrained at the C-terminal end by two disulfide bridges and a two-stranded βsheet scaffold. Max was shown to fold with >84% yield to form a predictable, stable structure that is similar to scyllatoxin. The folding and stability properties of Max make this scaffold and disulfide bridge arrangement an ideal candidate for the development of hybrid sequence peptides. The dynamics of a fraying C-terminal end of the helix of the peptide Apa-AlaN was determined by analysis of 15N NMR relaxation properties.

  1. The C-terminal domain of the nuclear factor I-B2 isoform is glycosylated and transactivates the WAP gene in the JEG-3 cells

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sudit S.; Rosen, Jeffrey M.

    2007-01-01

    The transcription factor nuclear factor I (NFI) has been shown previously both in vivo and in vitro to be involved in the cooperative regulation of whey acidic protein (WAP) gene transcription along with the glucocorticoid receptor and STAT5. In addition, one of the specific NFI isoforms, NFI-B2, was demonstrated in transient co-transfection experiments in JEG cells, which lack endogenous NFI, to be preferentially involved in the cooperative regulation of WAP gene expression. A comparison of the DNA-binding specificities of the different NFI isoforms only partially explained their differential ability to activate the WAP gene transcription. Here, we analyzed the transactivation regions of two NFI isoforms by making chimeric proteins between the NFI-A and B isoforms. Though, their DNA-binding specificities were not altered as compared to the corresponding wild-type transcription factors, the C-terminal region of the NFI-B isoform was shown to preferentially activate WAP gene transcription in cooperation with GR and STAT5 in transient co-transfection assays in JEG-3 cells. Furthermore, determination of serine and threonine-specific glycosylation (O-linked N-acetylglucosamine) of the C-terminus of the NFI-B isoform suggested that the secondary modification by O-GlcNAc might play a role in the cooperative regulation of WAP gene transcription by NFI-B2 and STAT5

  2. Generation of a Multicomponent Library of Disulfide Donor-Acceptor Architectures Using Dynamic Combinatorial Chemistry.

    Science.gov (United States)

    Drożdż, Wojciech; Kołodziejski, Michał; Markiewicz, Grzegorz; Jenczak, Anna; Stefankiewicz, Artur R

    2015-07-17

    We describe here the generation of new donor-acceptor disulfide architectures obtained in aqueous solution at physiological pH. The application of a dynamic combinatorial chemistry approach allowed us to generate a large number of new disulfide macrocyclic architectures together with a new type of [2]catenanes consisting of four distinct components. Up to fifteen types of structurally-distinct dynamic architectures have been generated through one-pot disulfide exchange reactions between four thiol-functionalized aqueous components. The distribution of disulfide products formed was found to be strongly dependent on the structural features of the thiol components employed. This work not only constitutes a success in the synthesis of topologically- and morphologically-complex targets, but it may also open new horizons for the use of this methodology in the construction of molecular machines.

  3. Quantification of thiols and disulfides

    DEFF Research Database (Denmark)

    Winther, Jakob R.; Thorpe, Colin

    2014-01-01

    lengths to regulate thiol-disulfide bond homeostasis, typically with several, apparently redundant, systems working in parallel. Dissecting the extent of oxidation and reduction of disulfides is an ongoing challenge due, in part, to the facility of thiol/disulfide exchange reactions.......Disulfide bond formation is a key posttranslational modification, with implications for structure, function and stability of numerous proteins. While disulfide bond formation is a necessary and essential process for many proteins, it is deleterious and disruptive for others. Cells go to great...

  4. Additional disulfide bonds in insulin

    DEFF Research Database (Denmark)

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper

    2015-01-01

    The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B......-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had...... in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus...

  5. The road to the first, fully active and more stable human insulin variant with an additional disulfide bond

    DEFF Research Database (Denmark)

    Vinther, Tine N.; Kjeldsen, Thomas B.; Jensen, Knud Jørgen

    2015-01-01

    Insulin, a small peptide hormone, is crucial in maintaining blood glucose homeostasis. The stability and activity of the protein is directed by an intricate system involving disulfide bonds to stabilize the active monomeric species and by their non-covalent oligomerization. All known insulin...... variants in vertebrates consist of two peptide chains and have six cysteine residues, which form three disulfide bonds, two of them link the two chains and a third is an intra-chain bond in the A-chain. This classical insulin fold appears to have been conserved over half a billion years of evolution. We...... addressed the question whether a human insulin variant with four disulfide bonds could exist and be fully functional. In this review, we give an overview of the road to engineering four-disulfide bonded insulin analogs. During our journey, we discovered several active four disulfide bonded insulin analogs...

  6. A single WAP domain (SWD)-containing protein with antiviral activity from Pacific white shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Yang, Linwei; Niu, Shengwen; Gao, Jiefeng; Zuo, Hongliang; Yuan, Jia; Weng, Shaoping; He, Jianguo; Xu, Xiaopeng

    2018-02-01

    The single whey acidic protein (WAP) domain (SWD)-containing proteins, also called type III crustins, are a group of antimicrobial peptides (AMPs) in crustaceans. At present, a number of SWDs have been identified in shrimp, which showed essential antibacterial activities. However, the roles of SWDs in antiviral immune responses have not been reported up to now. In this study, a novel SWD (LvSWD3) was identified from Pacific white shrimp, Litopenaeus vannamei, which contained a typical single WAP domain homologous to those of other crustacean SWDs. Although lacking the pro and arg-rich region between the signal peptide and the WAP domain, LvSWD3 was closely clustered with other shrimp SWDs in the phylogenetic tree. Similar to many shrimp SWDs, the highest expression of LvSWD3 was detected in hemocytes. The LvSWD3 expression exhibited only limited changes after challenges with Vibrio parahaemolyticus, Poly (I:C) and lipopolysaccharide, but was significantly up-regulated after white spot syndrome virus (WSSV) infection. Silencing of LvSWDs significantly accelerated the death of the WSSV-infected but not the V. parahaemolyticus-infected shrimp. The recombinant LvSWD3 protein did not show proteinase inhibitory and antibacterial activities but could significantly postpone the death of WSSV-infected shrimp and reduce the viral load in tissues. These suggested that LvSWD3 was a novel SWD with antiviral activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Four-terminal circuit element with photonic core

    Science.gov (United States)

    Sampayan, Stephen

    2017-08-29

    A four-terminal circuit element is described that includes a photonic core inside of the circuit element that uses a wide bandgap semiconductor material that exhibits photoconductivity and allows current flow through the material in response to the light that is incident on the wide bandgap material. The four-terminal circuit element can be configured based on various hardware structures using a single piece or multiple pieces or layers of a wide bandgap semiconductor material to achieve various designed electrical properties such as high switching voltages by using the photoconductive feature beyond the breakdown voltages of semiconductor devices or circuits operated based on electrical bias or control designs. The photonic core aspect of the four-terminal circuit element provides unique features that enable versatile circuit applications to either replace the semiconductor transistor-based circuit elements or semiconductor diode-based circuit elements.

  8. Functional differences in yeast protein disulfide isomerases

    DEFF Research Database (Denmark)

    Nørgaard, P; Westphal, V; Tachibana, C

    2001-01-01

    PDI1 is the essential gene encoding protein disulfide isomerase in yeast. The Saccharomyces cerevisiae genome, however, contains four other nonessential genes with homology to PDI1: MPD1, MPD2, EUG1, and EPS1. We have investigated the effects of simultaneous deletions of these genes. In several...

  9. Disulfide Linkage Characterization of Disulfide Bond-Containing Proteins and Peptides by Reducing Electrochemistry and Mass Spectrometry

    DEFF Research Database (Denmark)

    Cramer, Christian N; Haselmann, Kim F; Olsen, Jesper V

    2016-01-01

    in protein sequencing by tandem MS (MS/MS). Electrochemical (EC) reduction of disulfide bonds has recently been demonstrated to provide efficient reduction efficiencies, significantly enhancing sequence coverages in online coupling with MS characterization. In this study, the potential use of EC disulfide...... link between parent disulfide-linked fragments and free reduced peptides in an LC-EC-MS platform of nonreduced proteolytic protein digestions. Here we report the successful use of EC as a partial reduction approach in mapping of disulfide bonds of intact human insulin (HI) and lysozyme. In addition, we...... established a LC-EC-MS platform advantageous in disulfide characterization of complex and highly disulfide-bonded proteins such as human serum albumin (HSA) by online EC reduction of nonreduced proteolytic digestions....

  10. HIGH ANGULAR RESOLUTION OBSERVATIONS OF FOUR CANDIDATE BLAST HIGH-MASS STARLESS CORES

    International Nuclear Information System (INIS)

    Olmi, Luca; Poventud, Carlos M.; Araya, Esteban D.; Chapin, Edward L.; Gibb, Andrew; Hofner, Peter; Martin, Peter G.

    2010-01-01

    We discuss high angular resolution observations of ammonia toward four candidate high-mass starless cores (HMSCs). The cores were identified by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) during its 2005 survey of the Vulpecula region where 60 compact sources were detected simultaneously at 250, 350, and 500 μm. Four of these cores, with no IRAS-PSC or MSX counterparts, were mapped with the NRAO Very Large Array and observed with the Effelsberg 100 m telescope in the NH 3 (1,1) and (2,2) spectral lines. Our observations indicate that the four cores are cold (T k -1 . The four BLAST cores appear to be colder and more quiescent than other previously observed HMSC candidates, suggesting an earlier stage of evolution.

  11. Amino Acid Patterns around Disulfide Bonds

    Directory of Open Access Journals (Sweden)

    Brett Drury

    2010-11-01

    Full Text Available Disulfide bonds provide an inexhaustible source of information on molecular evolution and biological specificity. In this work, we described the amino acid composition around disulfide bonds in a set of disulfide-rich proteins using appropriate descriptors, based on ANOVA (for all twenty natural amino acids or classes of amino acids clustered according to their chemical similarities and Scheffé (for the disulfide-rich proteins superfamilies statistics. We found that weakly hydrophilic and aromatic amino acids are quite abundant in the regions around disulfide bonds, contrary to aliphatic and hydrophobic amino acids. The density distributions (as a function of the distance to the center of the disulfide bonds for all defined entities presented an overall unimodal behavior: the densities are null at short distances, have maxima at intermediate distances and decrease for long distances. In the end, the amino acid environment around the disulfide bonds was found to be different for different superfamilies, allowing the clustering of proteins in a biologically relevant way, suggesting that this type of chemical information might be used as a tool to assess the relationship between very divergent sets of disulfide-rich proteins.

  12. Enhancing Protein Disulfide Bond Cleavage by UV Excitation and Electron Capture Dissociation for Top-Down Mass Spectrometry

    OpenAIRE

    Wongkongkathep, Piriya; Li, Huilin; Zhang, Xing; Loo, Rachel R. Ogorzalek; Julian, Ryan R.; Loo, Joseph A.

    2015-01-01

    The application of ion pre-activation with 266 nm ultraviolet (UV) laser irradiation combined with electron capture dissociation (ECD) is demonstrated to enhance top-down mass spectrometry sequence coverage of disulfide bond containing proteins. UV-based activation can homolytically cleave a disulfide bond to yield two separated thiol radicals. Activated ECD experiments of insulin and ribonuclease A containing three and four disulfide bonds, respectively, were performed. UV-activation in comb...

  13. Reduction-Triggered Transformation of Crosslinking Modules of Disulfide-Containing Micelles with Chemically Tunable Rates.

    Science.gov (United States)

    Deng, Zhengyu; Yuan, Shuai; Xu, Ronald X; Liang, Haojun; Liu, Shiyong

    2018-05-16

    A dilemma exists between the circulation stability and cargo release/mass diffusion at desired sites for designing delivery nanocarriers and in vivo nanoreactors. We herein report disulfide-crosslinked (DCL) micelles exhibiting reduction-triggered switching of crosslinking modules and synchronized hydrophobic-to-hydrophilic transition. Tumor cell-targeted DCL micelles undergo cytoplasmic milieu-triggered disulfide cleavage and cascade self-immolative decaging reactions at chemically adjustable rates, generating primary amine moieties. Extensive amidation reactions with neighboring ester moieties then occur due to high local concentrations and suppression of apparent amine pKa within hydrophobic cores, leading to the transformation of crosslinking modules and formation of tracelessly crosslinked (TCL) micelles with hydrophilic cores inside live cells. We further integrate this design principle with theranostic nanocarriers for selective intracellular drug transport guided by enhanced magnetic resonance (MR) imaging performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins

    International Nuclear Information System (INIS)

    Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune

    2012-01-01

    NOEs between the β-protons of cysteine residues across disulfide bonds in proteins provide direct information on the connectivities and conformations of these important cross-links, which are otherwise difficult to investigate. With conventional [U- 13 C, 15 N]-proteins, however, fast spin diffusion processes mediated by strong dipolar interactions between geminal β-protons prohibit the quantitative measurements and thus the analyses of long-range NOEs across disulfide bonds. We describe a robust approach for alleviating such difficulties, by using proteins selectively labeled with an equimolar mixture of (2R, 3S)-[β- 13 C; α,β- 2 H 2 ] Cys and (2R, 3R)-[β- 13 C; α,β- 2 H 2 ] Cys, but otherwise fully deuterated. Since either one of the prochiral methylene protons, namely β2 (proS) or β3 (proR), is always replaced with a deuteron and no other protons remain in proteins prepared by this labeling scheme, all four of the expected NOEs for the β-protons across disulfide bonds could be measured without any spin diffusion interference, even with long mixing times. Therefore, the NOEs for the β2 and β3 pairs across each of the disulfide bonds could be observed at high sensitivity, even though they are 25% of the theoretical maximum for each pair. With the NOE information, the disulfide bond connectivities can be unambiguously established for proteins with multiple disulfide bonds. In addition, the conformations around disulfide bonds, namely χ 2 and χ 3 , can be determined based on the precise proton distances of the four β-proton pairs, by quantitative measurements of the NOEs across the disulfide bonds. The feasibility of this method is demonstrated for bovine pancreatic trypsin inhibitor, which has three disulfide bonds.

  15. Thiol-Disulfide Exchange between Glutaredoxin and Glutathione

    DEFF Research Database (Denmark)

    Iversen, Rasmus; Andersen, Peter Anders; Jensen, Kristine Steen

    2010-01-01

    Glutaredoxins are ubiquitous thiol-disulfide oxidoreductases which catalyze the reduction of glutathione-protein mixed disulfides. Belonging to the thioredoxin family, they contain a conserved active site CXXC motif. The N-proximal active site cysteine can form a mixed disulfide with glutathione ...... has been replaced with serine. The exchange reaction between the reduced protein and oxidized glutathione leading to formation of the mixed disulfide could readily be monitored by isothermal titration calorimetry (ITC) due to the enthalpic contributions from the noncovalent interactions...

  16. Multiple ways to make disulfides

    DEFF Research Database (Denmark)

    Bulleid, Neil J; Ellgaard, Lars

    2011-01-01

    Our concept of how disulfides form in proteins entering the secretory pathway has changed dramatically in recent years. The discovery of endoplasmic reticulum (ER) oxidoreductin 1 (ERO1) was followed by the demonstration that this enzyme couples oxygen reduction to de novo formation of disulfides...

  17. Compact conformations of human protein disulfide isomerase.

    Directory of Open Access Journals (Sweden)

    Shang Yang

    Full Text Available Protein disulfide isomerase (PDI composed of four thioredoxin-like domains a, b, b', and a', is a key enzyme catalyzing oxidative protein folding in the endoplasmic reticulum. Large scale molecular dynamics simulations starting from the crystal structures of human PDI (hPDI in the oxidized and reduced states were performed. The results indicate that hPDI adopts more compact conformations in solution than in the crystal structures, which are stabilized primarily by inter-domain interactions, including the salt bridges between domains a and b' observed for the first time. A prominent feature of the compact conformations is that the two catalytic domains a and a' can locate close enough for intra-molecular electron transfer, which was confirmed by the characterization of an intermediate with a disulfide between the two domains. Mutations, which disrupt the inter-domain interactions, lead to decreased reductase activity of hPDI. Our molecular dynamics simulations and biochemical experiments reveal the intrinsic conformational dynamics of hPDI and its biological impact.

  18. Polymeric Micelles with Ionic Cores Containing Biodegradable Crosslinks for Delivery of Chemotherapeutic Agents

    OpenAIRE

    Kim, Jong Oh; Sahay, Gaurav; Kabanov, Alexander V.; Bronich, Tatiana K.

    2010-01-01

    Novel functional polymeric nanocarriers with ionic cores containing biodegradable cross-links were developed for delivery of chemotherapeutic agents. Block ionomer complexes (BIC) of poly(ethylene oxide)-b-poly(methacylic acid) (PEO-b-PMA) and divalent metal cations (Ca2+) were utilized as templates. Disulfide bonds were introduced into the ionic cores by using cystamine as a biodegradable cross-linker. The resulting cross-linked micelles with disulfide bonds represented soft, hydrogel-like n...

  19. Inactivation of barley limit dextrinase inhibitor by thioredoxin-catalysed disulfide reduction

    DEFF Research Database (Denmark)

    Jensen, Johanne Mørch; Hägglund, Per; Christensen, Hans Erik Mølager

    2012-01-01

    and one glutathionylated cysteine. Here, thioredoxin is shown to progressively reduce disulfide bonds in LDI accompanied by loss of activity. A preferential reduction of the glutathionylated cysteine, as indicated by thiol quantification and molecular mass analysis using electrospray ionisation mass......Barley limit dextrinase (LD) that catalyses hydrolysis of α-1,6 glucosidic linkages in starch-derived dextrins is inhibited by limit dextrinase inhibitor (LDI) found in mature seeds. LDI belongs to the chloroform/methanol soluble protein family (CM-protein family) and has four disulfide bridges...... spectrometry, was not related to LDI inactivation. LDI reduction is proposed to cause conformational destabilisation leading to loss of function....

  20. Widespread Disulfide Bonding in Proteins from Thermophilic Archaea

    Directory of Open Access Journals (Sweden)

    Julien Jorda

    2011-01-01

    Full Text Available Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaeal branch, which are essentially all hyperthermophilic, are universally rich in disulfide bonding while lesser degrees of disulfide bonding are found among the thermophilic Euryarchaea, excluding those that are methanogenic. The results help clarify which parts of the archaeal lineage are likely to yield more examples and additional specific data on protein disulfide bonding, as increasing genomic sequencing efforts are brought to bear.

  1. Widespread disulfide bonding in proteins from thermophilic archaea.

    Science.gov (United States)

    Jorda, Julien; Yeates, Todd O

    2011-01-01

    Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaeal branch, which are essentially all hyperthermophilic, are universally rich in disulfide bonding while lesser degrees of disulfide bonding are found among the thermophilic Euryarchaea, excluding those that are methanogenic. The results help clarify which parts of the archaeal lineage are likely to yield more examples and additional specific data on protein disulfide bonding, as increasing genomic sequencing efforts are brought to bear.

  2. Gene expression profiling: cell cycle deregulation and aneuploidy do not cause breast cancer formation in WAP-SVT/t transgenic animals.

    Science.gov (United States)

    Klein, Andreas; Guhl, Eva; Zollinger, Raphael; Tzeng, Yin-Jeh; Wessel, Ralf; Hummel, Michael; Graessmann, Monika; Graessmann, Adolf

    2005-05-01

    Microarray studies revealed that as a first hit the SV40 T/t antigen causes deregulation of 462 genes in mammary gland cells (ME cells) of WAP-SVT/t transgenic animals. The majority of deregulated genes are cell proliferation specific and Rb-E2F dependent, causing ME cell proliferation and gland hyperplasia but not breast cancer formation. In the breast tumor cells a further 207 genes are differentially expressed, most of them belonging to the cell communication category. In tissue culture breast tumor cells frequently switch off WAP-SVT/t transgene expression and regain the morphology and growth characteristics of normal ME cells, although the tumor-revertant cells are aneuploid and only 114 genes regain the expression level of normal ME cells. The profile of retransformants shows that only 38 deregulated genes are tumor-specific, and that none of them is considered to be a typical breast cancer gene.

  3. Uniform Au@Pt core-shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction

    Science.gov (United States)

    Su, Shao; Zhang, Chi; Yuwen, Lihui; Liu, Xingfen; Wang, Lihua; Fan, Chunhai; Wang, Lianhui

    2015-12-01

    Herein, we presented a facile seeded growth method to prepare high-quality three-dimensional (3D) Au@Pt bimetallic nanodendrite-decorated molybdenum disulfide (MoS2) nanosheets (Au@Pt/MoS2). Transmission electron microscopy (TEM) and high-resolution TEM exhibited that Au@Pt core-shell nanostructures were dispersed onto the surface of MoS2 nanosheets. More importantly, the thickness of the Pt shell of the Au@Pt bimetallic nanodendrites on the surface of the MoS2 nanosheets could be easily tuned via simply changing the synthesis parameters, such as the concentration of H2PtCl6, reaction time and temperature, which greatly influence the catalytic ability of Au@Pt/MoS2 nanohybrids. Both cyclic voltammetry (CV) and chronoamperometry (CA) demonstrated that the as-prepared Au@Pt/MoS2 nanohybrids possessed much higher electrocatalytic activity and stability than Pt/MoS2 or commercial Pt/C catalyst. The peak current mass density of the selected Au@Pt/MoS2 was 6.24 A mg-1, which was 3389 and 20.3 times those of Pt/C (0.00184 A mg-1) and Pt/MoS2 (0.307 A mg-1), respectively. The presented method may be a facile approach for the synthesis of MoS2-supported bimetallic nanocomposites, which is significant for the development of high performance MoS2-based sensors and catalysts.Herein, we presented a facile seeded growth method to prepare high-quality three-dimensional (3D) Au@Pt bimetallic nanodendrite-decorated molybdenum disulfide (MoS2) nanosheets (Au@Pt/MoS2). Transmission electron microscopy (TEM) and high-resolution TEM exhibited that Au@Pt core-shell nanostructures were dispersed onto the surface of MoS2 nanosheets. More importantly, the thickness of the Pt shell of the Au@Pt bimetallic nanodendrites on the surface of the MoS2 nanosheets could be easily tuned via simply changing the synthesis parameters, such as the concentration of H2PtCl6, reaction time and temperature, which greatly influence the catalytic ability of Au@Pt/MoS2 nanohybrids. Both cyclic voltammetry (CV

  4. DEEP JHKs AND SPITZER IMAGING OF FOUR ISOLATED MOLECULAR CLOUD CORES

    International Nuclear Information System (INIS)

    Chapman, Nicholas L.; Mundy, Lee G.

    2009-01-01

    We present observations in eight wavebands from 1.25 to 24 μm of four dense cores: L204C-2, L1152, L1155C-2, and L1228. Our goals are to study the young stellar object (YSO) population of these cores and to measure the mid-infrared extinction law. With our combined near-infrared and Spitzer photometry, we classify each source in the cores as, among other things, background stars, galaxies, or embedded YSOs. L1152 contains three YSOs and L1228 has seven, but neither L204C-2 nor L1155C-2 appear to contain any YSOs. We estimate an upper limit of 7 x 10 -5 to 5 x 10 -4 L sun for any undiscovered YSOs in our cores. We also compute the line-of-sight extinction law toward each background star. These measurements are averaged spatially, to create χ 2 maps of the changes in the mid-infrared extinction law throughout our cores, and also in different ranges of extinction. From the χ 2 maps, we identify two small regions in L1152 and L1228 where the outflows in those cores appear to be destroying the larger dust grains, thus altering the extinction law in those regions. On average, however, our extinction law is relatively flat from 3.6 to 24 μm for all ranges of extinction and in all four cores. From 3.6 to 8 μm, this law is consistent with a dust model that includes larger dust grains than the diffuse interstellar medium, which suggests grain growth has occurred in our cores. At 24 μm, our extinction law is two to four times higher than predicted by dust models. However, it is similar to other empirical measurements.

  5. CuI-Catalyzed: One-Pot Synthesis of Diaryl Disulfides from Aryl Halides and Carbon Disulfide

    Directory of Open Access Journals (Sweden)

    Mohammad Soleiman-Beigi

    2013-01-01

    Full Text Available A new application of carbon disulfide in the presence of KF/Al2O3 is reported for the synthesis of organic symmetrical diaryl disulfides. These products were synthesized by one-pot reaction of aryl halides with the in situ generated trithiocarbonate ion in the presence of copper under air atmosphere.

  6. Reduced Toxicity With Intensity Modulated Radiation Therapy (IMRT) for Desmoplastic Small Round Cell Tumor (DSRCT): An Update on the Whole Abdominopelvic Radiation Therapy (WAP-RT) Experience

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Neil B. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Stein, Nicholas F. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); LaQuaglia, Michael P. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Alektiar, Kaled M. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Kushner, Brian H.; Modak, Shakeel; Magnan, Heather M. [Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Goodman, Karyn [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wolden, Suzanne L., E-mail: woldens@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2013-01-01

    Purpose: Desmoplastic small round cell tumor (DSRCT) is a rare malignancy typically involving the peritoneum in young men. Whole abdominopelvic radiation therapy (WAP-RT) using conventional 2-dimensional (2D) radiation therapy (RT) is used to address local recurrence but has been limited by toxicity. Our objectives were to assess the benefit of intensity modulated radiation therapy (IMRT) on toxicity and to update the largest series on radiation for DSRCT. Methods and Materials: The records of 31 patients with DSRCT treated with WAP-RT (22 with 2D-RT and 9 with IMRT) between 1992 and 2011 were retrospectively reviewed. All received multi-agent chemotherapy and maximal surgical debulking followed by 30 Gy of WAP-RT. A further focal boost of 12 to 24 Gy was used in 12 cases. Boost RT and autologous stem cell transplantation were nearly exclusive to patients treated with 2D-RT. Toxicities were assessed with the Common Terminology Criteria for Adverse Events. Dosimetric analysis compared IMRT and simulated 2D-RT dose distributions. Results: Of 31 patients, 30 completed WAP-RT, with a median follow-up after RT of 19 months. Acute toxicity was reduced with IMRT versus 2D-RT: P=.04 for gastrointestinal toxicity of grade 2 or higher (33% vs 77%); P=.02 for grade 4 hematologic toxicity (33% vs 86%); P=.01 for rates of granulocyte colony-stimulating factor; and P=.04 for rates of platelet transfusion. Post treatment red blood cell and platelet transfusion rates were also reduced (P=.01). IMRT improved target homogeneity ([D05-D95]/D05 of 21% vs 46%) and resulted in a 21% mean bone dose reduction. Small bowel obstruction was the most common late toxicity (23% overall). Updated 3-year overall survival and progression-free survival rates were 50% and 24%, respectively. Overall survival was associated with distant metastasis at diagnosis on multivariate analysis. Most failures remained intraperitoneal (88%). Conclusions: IMRT for consolidative WAP-RT in DSRCT improves

  7. How thioredoxin dissociates its mixed disulfide.

    Directory of Open Access Journals (Sweden)

    Goedele Roos

    2009-08-01

    Full Text Available The dissociation mechanism of the thioredoxin (Trx mixed disulfide complexes is unknown and has been debated for more than twenty years. Specifically, opposing arguments for the activation of the nucleophilic cysteine as a thiolate during the dissociation of the complex have been put forward. As a key model, the complex between Trx and its endogenous substrate, arsenate reductase (ArsC, was used. In this structure, a Cys29(Trx-Cys89(ArsC intermediate disulfide is formed by the nucleophilic attack of Cys29(Trx on the exposed Cys82(ArsC-Cys89(ArsC in oxidized ArsC. With theoretical reactivity analysis, molecular dynamics simulations, and biochemical complex formation experiments with Cys-mutants, Trx mixed disulfide dissociation was studied. We observed that the conformational changes around the intermediate disulfide bring Cys32(Trx in contact with Cys29(Trx. Cys32(Trx is activated for its nucleophilic attack by hydrogen bonds, and Cys32(Trx is found to be more reactive than Cys82(ArsC. Additionally, Cys32(Trx directs its nucleophilic attack on the more susceptible Cys29(Trx and not on Cys89(ArsC. This multidisciplinary approach provides fresh insights into a universal thiol/disulfide exchange reaction mechanism that results in reduced substrate and oxidized Trx.

  8. Radioiodine-labeled disulfide: a novel radiotracer for evaluation of tumor uptake

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, E. K.; Choi, Y. S.; Byun, S. S.; Baek, J. Y.; Lee, K. H.; Kim, S. E.; Choi, Y.; Kim, B. T. [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    Diallyl disulfide found in garlic has been known to inhibit the growth of various cancer cells. In this study, iodine-substituted disulfides were synthesized and their growth inhibitory effects on cancer cells (SUN C5 and MCF-7) were investigated. Dibenzyl disulfide was labeled with {sup 123}I/{sup 125}I for evaluation of tumor uptake. Halogen-substituted disulfides were synthesized using 2,2'-dithiobis(benzothiazole) and one equivalent each of the corresponding thiols. Growth inhibition studies were performed on cancer cells that were grown at 37 .deg. C for 48 hr prior to exposure to the disulfides. Radioiodine-labeled disulfide was prepared by halogen exchange reaction on the 4-bromodibenzyl disulfide in the presence of Na{sup 123}I/{sup 125}I and CuCl at 150 .deg. C for 60 min, followed by HPLC purification. Uptake of the radioactivity to SUN C5 cells was measured as a function of time, and inhibition studies were performed in the presence of either S-methyl methanethiosulfonate (MMTS) or diallyl disulfide. Disulfides were synthesized in the high yields (90%). Tumor growth inhibition studies by the 3 iododisulfides showed the inhibition (>95%) comparable to diallyl disulfide (100%). Cu(I)-assisted radioiodination gave 4-{sup 123}I/{sup 125}I-iododibenzyl disulfide in overall 30-40% radiochemical yield and with high specific activity. Cell uptake studies of the radiolabeled disulfide showed a time-dependent increase of the uptake (4-fold increase from 15 min to 2 hr). Both MMTS, a glutathione depleting agent, and diallyl disulfide reduced the uptake of the radioactivity in a dose-dependent manner. Inhibition studies suggest that uptake of disulfide to the tumor cells could be mediated by thiol-disulfide exchange. This study demonstrates that radioiodine-labeled dibenzyl disulfide may be useful for evaluation of tumor uptake.

  9. Polymeric micelles with ionic cores containing biodegradable cross-links for delivery of chemotherapeutic agents.

    Science.gov (United States)

    Kim, Jong Oh; Sahay, Gaurav; Kabanov, Alexander V; Bronich, Tatiana K

    2010-04-12

    Novel functional polymeric nanocarriers with ionic cores containing biodegradable cross-links were developed for delivery of chemotherapeutic agents. Block ionomer complexes (BIC) of poly(ethylene oxide)-b-poly(methacylic acid) (PEO-b-PMA) and divalent metal cations (Ca(2+)) were utilized as templates. Disulfide bonds were introduced into the ionic cores by using cystamine as a biodegradable cross-linker. The resulting cross-linked micelles with disulfide bonds represented soft, hydrogel-like nanospheres and demonstrated a time-dependent degradation in the conditions mimicking the intracellular reducing environment. The ionic character of the cores allowed to achieve a very high level of doxorubicin (DOX) loading (50% w/w) into the cross-linked micelles. DOX-loaded degradable cross-linked micelles exhibited more potent cytotoxicity against human A2780 ovarian carcinoma cells as compared to micellar formulations without disulfide linkages. These novel biodegradable cross-linked micelles are expected to be attractive candidates for delivery of anticancer drugs.

  10. Domain architecture of protein-disulfide isomerase facilitates its dual role as an oxidase and an isomerase in Ero1p-mediated disulfide formation

    DEFF Research Database (Denmark)

    Kulp, M. S.; Frickel, E. M.; Ellgaard, Lars

    2006-01-01

    reduction/rearrangement of non-native disulfides is poorly understood. We analyzed the role of individual PDI domains in disulfide bond formation in a reaction driven by their natural oxidant, Ero1p. We found that Ero1p oxidizes the isolated PDI catalytic thioredoxin domains, A and A' at the same rate......Native disulfide bond formation in eukaryotes is dependent on protein-disulfide isomerase (PDI) and its homologs, which contain varying combinations of catalytically active and inactive thioredoxin domains. However, the specific contribution of PDI to the formation of new disulfides versus...... catalytic (A) domain. The specific order of thioredoxin domains in PDI is important in establishing the asymmetry in the rate of oxidation of the two active sites thus allowing A and A', two thioredoxin domains that are similar in sequence and structure, to serve opposing functional roles as a disulfide...

  11. Dynamic combinatorial chemistry with diselenides and disulfides in water

    DEFF Research Database (Denmark)

    Rasmussen, Brian; Sørensen, Anne; Gotfredsen, Henrik

    2014-01-01

    Diselenide exchange is introduced as a reversible reaction in dynamic combinatorial chemistry in water. At neutral pH, diselenides are found to mix with disulfides and form dynamic combinatorial libraries of diselenides, disulfides, and selenenylsulfides. This journal is......Diselenide exchange is introduced as a reversible reaction in dynamic combinatorial chemistry in water. At neutral pH, diselenides are found to mix with disulfides and form dynamic combinatorial libraries of diselenides, disulfides, and selenenylsulfides. This journal is...

  12. Soft Computing Methods for Disulfide Connectivity Prediction.

    Science.gov (United States)

    Márquez-Chamorro, Alfonso E; Aguilar-Ruiz, Jesús S

    2015-01-01

    The problem of protein structure prediction (PSP) is one of the main challenges in structural bioinformatics. To tackle this problem, PSP can be divided into several subproblems. One of these subproblems is the prediction of disulfide bonds. The disulfide connectivity prediction problem consists in identifying which nonadjacent cysteines would be cross-linked from all possible candidates. Determining the disulfide bond connectivity between the cysteines of a protein is desirable as a previous step of the 3D PSP, as the protein conformational search space is highly reduced. The most representative soft computing approaches for the disulfide bonds connectivity prediction problem of the last decade are summarized in this paper. Certain aspects, such as the different methodologies based on soft computing approaches (artificial neural network or support vector machine) or features of the algorithms, are used for the classification of these methods.

  13. The synthesis of unsymmetric disulfides for use as radio-protectives

    International Nuclear Information System (INIS)

    Chang, S.H.H.

    1988-01-01

    Unsymmetric disulfides with radioprotective potential were synthesized by linking biomolecules, and related substances, to known radio-protective aminothiols via a disulfide bond. The biomolecules used in this research include mercaptoalcohols, mercaptopyridines and mercaptophenothiazines. Unsymmetric disulfides were synthesized by reacting two thiols with diethyl azodicarboxylate sequentially at low temperature. The reactions of thiols with thiosulfinate were studied as an alternative for synthesizing disulfides. A cross-linked polystyrene was thiolated by different reagents. The thiolation of polymers is part of a methodological study using solid phase synthesis to synthesize unsymmetric disulfides

  14. A single disulfide bond disruption in the β3 integrin subunit promotes thiol/disulfide exchange, a molecular dynamics study.

    Directory of Open Access Journals (Sweden)

    Lihie Levin

    Full Text Available The integrins are a family of membrane receptors that attach a cell to its surrounding and play a crucial function in cell signaling. The combination of internal and external stimuli alters a folded non-active state of these proteins to an extended active configuration. The β3 subunit of the platelet αIIbβ3 integrin is made of well-structured domains rich in disulfide bonds. During the activation process some of the disulfides are re-shuffled by a mechanism requiring partial reduction of some of these bonds; any disruption in this mechanism can lead to inherent blood clotting diseases. In the present study we employed Molecular Dynamics simulations for tracing the sequence of structural fluctuations initiated by a single cysteine mutation in the β3 subunit of the receptor. These simulations showed that in-silico protein mutants exhibit major conformational deformations leading to possible disulfide exchange reactions. We suggest that any mutation that prevents Cys560 from reacting with one of the Cys(567-Cys(581 bonded pair, thus disrupting its ability to participate in a disulfide exchange reaction, will damage the activation mechanism of the integrin. This suggestion is in full agreement with previously published experiments. Furthermore, we suggest that rearrangement of disulfide bonds could be a part of a natural cascade of thiol/disulfide exchange reactions in the αIIbβ3 integrin, which are essential for the native activation process.

  15. Widespread Disulfide Bonding in Proteins from Thermophilic Archaea

    OpenAIRE

    Jorda, Julien; Yeates, Todd O.

    2011-01-01

    Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaea...

  16. Thiol-disulfide exchange in peptides derived from human growth hormone.

    Science.gov (United States)

    Chandrasekhar, Saradha; Epling, Daniel E; Sophocleous, Andreas M; Topp, Elizabeth M

    2014-04-01

    Disulfide bonds stabilize proteins by cross-linking distant regions into a compact three-dimensional structure. They can also participate in hydrolytic and oxidative pathways to form nonnative disulfide bonds and other reactive species. Such covalent modifications can contribute to protein aggregation. Here, we present experimental data for the mechanism of thiol-disulfide exchange in tryptic peptides derived from human growth hormone in aqueous solution. Reaction kinetics was monitored to investigate the effect of pH (6.0-10.0), temperature (4-50°C), oxidation suppressants [ethylenediaminetetraacetic acid (EDTA) and N2 sparging], and peptide secondary structure (amide cyclized vs. open form). The concentrations of free thiol containing peptides, scrambled disulfides, and native disulfide-linked peptides generated via thiol-disulfide exchange and oxidation reactions were determined using reverse-phase HPLC and liquid chromatography-mass spectrometry. Concentration versus time data were fitted to a mathematical model using nonlinear least squares regression analysis. At all pH values, the model was able to fit the data with R(2) ≥ 0.95. Excluding oxidation suppressants (EDTA and N2 sparging) resulted in an increase in the formation of scrambled disulfides via oxidative pathways but did not influence the intrinsic rate of thiol-disulfide exchange. In addition, peptide secondary structure was found to influence the rate of thiol-disulfide exchange. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Kinetic and Thermodynamic Aspects of Cellular Thiol-Disulfide Redox Regulation

    DEFF Research Database (Denmark)

    Jensen, Kristine Steen; Hansen, Rosa Erritzøe; Winther, Jakob R

    2009-01-01

    . In the cytosol regulatory disulfide bonds are typically formed in spite of the prevailing reducing conditions and may thereby function as redox switches. Such disulfide bonds are protected from enzymatic reduction by kinetic barriers and are thus allowed to exist long enough to elicit the signal. Factors......Regulation of intracellular thiol-disulfide redox status is an essential part of cellular homeostasis. This involves the regulation of both oxidative and reductive pathways, production of oxidant scavengers and, importantly, the ability of cells to respond to changes in the redox environment...... that affect the rate of thiol-disulfide exchange and stability of disulfide bonds are discussed within the framework of the underlying chemical foundations. This includes the effect of thiol acidity (pKa), the local electrostatic environment, molecular strain and entropy. Even though a thiol-disulfide...

  18. On the relevance of sophisticated structural annotations for disulfide connectivity pattern prediction.

    Directory of Open Access Journals (Sweden)

    Julien Becker

    Full Text Available Disulfide bridges strongly constrain the native structure of many proteins and predicting their formation is therefore a key sub-problem of protein structure and function inference. Most recently proposed approaches for this prediction problem adopt the following pipeline: first they enrich the primary sequence with structural annotations, second they apply a binary classifier to each candidate pair of cysteines to predict disulfide bonding probabilities and finally, they use a maximum weight graph matching algorithm to derive the predicted disulfide connectivity pattern of a protein. In this paper, we adopt this three step pipeline and propose an extensive study of the relevance of various structural annotations and feature encodings. In particular, we consider five kinds of structural annotations, among which three are novel in the context of disulfide bridge prediction. So as to be usable by machine learning algorithms, these annotations must be encoded into features. For this purpose, we propose four different feature encodings based on local windows and on different kinds of histograms. The combination of structural annotations with these possible encodings leads to a large number of possible feature functions. In order to identify a minimal subset of relevant feature functions among those, we propose an efficient and interpretable feature function selection scheme, designed so as to avoid any form of overfitting. We apply this scheme on top of three supervised learning algorithms: k-nearest neighbors, support vector machines and extremely randomized trees. Our results indicate that the use of only the PSSM (position-specific scoring matrix together with the CSP (cysteine separation profile are sufficient to construct a high performance disulfide pattern predictor and that extremely randomized trees reach a disulfide pattern prediction accuracy of [Formula: see text] on the benchmark dataset SPX[Formula: see text], which corresponds to

  19. Chemoreactomic analysis of thiamine disulfide, thiamine hydrochloride, and benfotiamine molecules

    Directory of Open Access Journals (Sweden)

    O. A. Gromova

    2017-01-01

    Full Text Available Objective: to analyze the interactions that could indicate the potential pharmacological properties of the molecules of thiamin, thiamine disulfide, and others.Material and methods. The investigators simulated the properties of thiamine disulfide (bistiamin versus those of the reference molecules of thiamin hydrochloride and benfotiamine. The study was performed using chemoreactomic simulation that is the newest area in post-genome pharmacology.Results and discussion. Chemoreactomic analysis has shown that thiamine disulfide can inhibit the molecular receptors involved in blood pressure regulation: adrenoceptors, vasopressin receptor, and angiotensin receptor. Thiamine disulfide can inhibit the reuptake of serotonin, increase its levels, inhibit benzodiazepine receptor and dopamine reuptake, and enhance neuronal acetylcholine release to a large extent than benfotiamine. These molecular effects are consistent with the sedative and anticonvulsant action profile of thiamine disulfide. Simulation has indicated that thiamine disulfide has neuroprotective, anti-inflammatory, normolipidemic, and antitumor activities.Conclusion. The simulation results are confirmed by the available clinical and experimental findings and indicate the virtually unstudied molecular mechanisms of action of thiamine disulfide, benfotiamine, and thiamin hydrochloride. 

  20. Impaired Thiol-Disulfide Balance in Acute Brucellosis.

    Science.gov (United States)

    Kolgelier, Servet; Ergin, Merve; Demir, Lutfi Saltuk; Inkaya, Ahmet Cagkan; Aktug Demir, Nazlim; Alisik, Murat; Erel, Ozcan

    2017-05-24

    The objective of this study was to examine a novel profile: thiol-disulfide homeostasis in acute brucellosis. The study included 90 patients with acute brucellosis, and 27 healthy controls. Thiol-disulfide profile tests were analyzed by a recently developed method, and ceruloplasmin levels were determined. Native thiol levels were 256.72 ± 48.20 μmol/L in the acute brucellosis group and 461.13 ± 45.37 μmol/L in the healthy group, and total thiol levels were 298.58 ± 51.78 μmol/L in the acute brucellosis group and 504.83 ± 51.05 μmol/L in the healthy group (p brucellosis than in the healthy controls (p brucellosis. The strong associations between thiol-disulfide parameters and a positive acute-phase reactant reflected the disruption of the balance between the antioxidant and oxidant systems. Since thiol groups act as anti-inflammatory mediators, the alteration in the thiol-disulfide homeostasis may be involved in brucellosis.

  1. On the photostability of the disulfide bond

    DEFF Research Database (Denmark)

    Stephansen, Anne Boutrup; Larsen, Martin Alex Bjørn; Klein, Liv Bærenholdt

    2014-01-01

    Photostability is an essential property of molecular building blocks of nature. Disulfides are central in the structure determination of proteins, which is in striking contradiction to the result that the S-S bond is a photochemically labile structural entity that cleaves to form free radicals upon...... on a sub 50 fs timescale without further ado. In a cyclic motif resembling the cysteine-disulfide bond in proteins, light can perturb the S-S bond to generate short-lived diradicaloid species, but the sulfur atoms are conformationally restricted by the ring that prevents the sulfur atoms from flying apart...... the photostability of disulfide-bonds must be ascribed a cyclic structural arrangement....

  2. Regional cerebral blood flow after long-term exposure to carbon disulfide

    International Nuclear Information System (INIS)

    Aaserud, O.; Russell, D.; Nyberg-Hansen, R.; Joergensen, E.B.; Gjerstad, L.; Rootwelt, K.; Nakstad, P.; Hommeren, O.J.; Tvedt, B.

    1992-01-01

    Sixteen former rayon viscose workers were investigated four years after the exposure to carbon disulfide was discontinued. Median age was 58 years (range 43-65 years), median exposure time was 17 years (range 10-35 years). Encephalopathy was diagnosed in altogether 14 workers. To further explore pathophysiological mechanisms, cerebrovascular investigations were employed. Doppler ultrasound examination of the precerebral vessels in 15 workers showed a slight stenosis of the left internal carotid artery in one. Regional cerebral blood flow investigation (rCBF) with single photon emission computerized tomography (SPECT) with Xenon-133 gas was performed in 14. There was no significant difference from a control group. Regional side-to-side asymmetries beyond reference limits were demonstrated in eight workers. The abnormalities were modest, but may indicate a tendency toward focal blood flow disturbances in workers with long-term exposure to carbon disulfide. (au)

  3. Regulation of interleukin-4 signaling by extracellular reduction of intramolecular disulfides

    International Nuclear Information System (INIS)

    Curbo, Sophie; Gaudin, Raphael; Carlsten, Mattias; Malmberg, Karl-Johan; Troye-Blomberg, Marita; Ahlborg, Niklas; Karlsson, Anna; Johansson, Magnus; Lundberg, Mathias

    2009-01-01

    Interleukin-4 (IL-4) contains three structurally important intramolecular disulfides that are required for the bioactivity of the cytokine. We show that the cell surface of HeLa cells and endotoxin-activated monocytes can reduce IL-4 intramolecular disulfides in the extracellular space and inhibit binding of IL-4 to the IL-4Rα receptor. IL-4 disulfides were in vitro reduced by thioredoxin 1 (Trx1) and protein disulfide isomerase (PDI). Reduction of IL-4 disulfides by the cell surface of HeLa cells was inhibited by auranofin, an inhibitor of thioredoxin reductase that is an electron donor to both Trx1 and PDI. Both Trx1 and PDI have been shown to be located at the cell surface and our data suggests that these enzymes are involved in catalyzing reduction of IL-4 disulfides. The pro-drug N-acetylcysteine (NAC) that promotes T-helper type 1 responses was also shown to mediate the reduction of IL-4 disulfides. Our data provides evidence for a novel redox dependent pathway for regulation of cytokine activity by extracellular reduction of intramolecular disulfides at the cell surface by members of the thioredoxin enzyme family.

  4. Brain MRI findings of carbon disulfide poisoning

    International Nuclear Information System (INIS)

    Cha, Joo Hee; Kim, Mi Jung; Yim, Sang Hyuk; Kim, Sam Soo; Han, Heon; Kim, Rok Ho

    2002-01-01

    To evaluate the findings of brain MRI in patients with carbon disulfide poisoning. Ninety-one patients who had suffered carbon disulfide poisoning [male:female=87:4; age, 32-74 (mean 53.3) years] were included in this study. To determine the extent of white matter hyperintensity (Grade 0-V) and lacunar infarction, T2-weighted MR imaging of the brain was performed. T2-weighted images depicted white matter hyperintensity in 70 patients (76.9%) and lacunar infarcts in 27 (29.7%). In these patients, the prevalent findings at T2-weighted MR imaging of the brain were white matter hyperintensity and lacunar infarcts. Disturbance of the cardiovascular system by carbon disulfide might account for these results

  5. Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins.

    Science.gov (United States)

    Lakbub, Jude C; Shipman, Joshua T; Desaire, Heather

    2018-04-01

    Disulfide bonds are important structural moieties of proteins: they ensure proper folding, provide stability, and ensure proper function. With the increasing use of proteins for biotherapeutics, particularly monoclonal antibodies, which are highly disulfide bonded, it is now important to confirm the correct disulfide bond connectivity and to verify the presence, or absence, of disulfide bond variants in the protein therapeutics. These studies help to ensure safety and efficacy. Hence, disulfide bonds are among the critical quality attributes of proteins that have to be monitored closely during the development of biotherapeutics. However, disulfide bond analysis is challenging because of the complexity of the biomolecules. Mass spectrometry (MS) has been the go-to analytical tool for the characterization of such complex biomolecules, and several methods have been reported to meet the challenging task of mapping disulfide bonds in proteins. In this review, we describe the relevant, recent MS-based techniques and provide important considerations needed for efficient disulfide bond analysis in proteins. The review focuses on methods for proper sample preparation, fragmentation techniques for disulfide bond analysis, recent disulfide bond mapping methods based on the fragmentation techniques, and automated algorithms designed for rapid analysis of disulfide bonds from liquid chromatography-MS/MS data. Researchers involved in method development for protein characterization can use the information herein to facilitate development of new MS-based methods for protein disulfide bond analysis. In addition, individuals characterizing biotherapeutics, especially by disulfide bond mapping in antibodies, can use this review to choose the best strategies for disulfide bond assignment of their biologic products. Graphical Abstract This review, describing characterization methods for disulfide bonds in proteins, focuses on three critical components: sample preparation, mass

  6. Servicio de M-comercio: Sistema de interacción entre un centro comercial y sus visitantes utilizando las tecnologías WAP y Bluetooth M-commerce service: Interaction system between a mall and visitors using WAP and Bluetooth technologies

    Directory of Open Access Journals (Sweden)

    Jorge Gómez Rojas

    2013-04-01

    Full Text Available El servicio de interacción es un medio de comunicación que mejora las relaciones comerciales entre los centros comerciales y sus visitantes, utilizando las tecnologías de comunicaciones móviles WAP y Bluetooth como una nueva alternativa de negocios, y sin usar la red del operador de telefonía móvil celular. El sistema de interacción mencionado permite el intercambio de información de un grupo potencial de compradores entre los visitantes de un centro comercial y la administración de los diferentes comercios utilizando el teléfono celular. El sistema se compone de una aplicación móvil en J2ME, puntos de acceso Bluetooth y Wi-Fi, un servidor Bluetooth y un servidor Web con aplicaciones para ser accedidas por dispositivos móviles.The interaction service is a means of communication that improves trade relations between the mall and visitors using mobile communications technology WAP and Bluetooth, as a new business alternative, and without operator's network using the mobile phone. The proposed system of interaction, allows the exchange of information from a potential pool of buyers among visitors to a shopping center and the administration of the various shops, through the cell phone. The system consists of a mobile application in J2ME, the access points, Bluetooth server, and Web server with applications to mobile devices.

  7. Functional Poly(ε-caprolactone)s via Copolymerization of ε-Caprolactone and Pyridyl Disulfide-Containing Cyclic Carbonate: Controlled Synthesis and Facile Access to Reduction-Sensitive Biodegradable Graft Copolymer Micelles

    NARCIS (Netherlands)

    Chen, Wei; Zou, Yan; Jia, Junna; Meng, Fenghua; Cheng, Ru; Deng, Chao; Feijen, Jan; Zhong, Zhiyuan

    2013-01-01

    Pyridyl disulfide-functionalized cyclic carbonate (PDSC) monomer was obtained in four straightforward steps from 3-methyl-3-oxetanemethanol and exploited for facile preparation of functional poly(ε-caprolactone) (PCL) containing pendant pyridyl disulfide (PDS) groups via ring-opening

  8. Servicio de M-comercio: Sistema de interacción entre un centro comercial y sus visitantes utilizando las tecnologías WAP y Bluetooth M-commerce service: Interaction system between a mall and visitors using WAP and Bluetooth technologies

    OpenAIRE

    Jorge Gómez Rojas; Luis Leonardo Camargo Ariza; Byron Medina Delgado

    2013-01-01

    El servicio de interacción es un medio de comunicación que mejora las relaciones comerciales entre los centros comerciales y sus visitantes, utilizando las tecnologías de comunicaciones móviles WAP y Bluetooth como una nueva alternativa de negocios, y sin usar la red del operador de telefonía móvil celular. El sistema de interacción mencionado permite el intercambio de información de un grupo potencial de compradores entre los visitantes de un centro comercial y la administración de los difer...

  9. Engineering nutritious proteins: improvement of stability in the designer protein MB-1 via introduction of disulfide bridges.

    Science.gov (United States)

    Doucet, Alain; Williams, Martin; Gagnon, Mylene C; Sasseville, Maxime; Beauregard, Marc

    2002-01-02

    Protein design is currently used for the creation of new proteins with desirable traits. In this laboratory the focus has been on the synthesis of proteins with high essential amino acid content having potential applications in animal nutrition. One of the limitations faced in this endeavor is achieving stable proteins despite a highly biased amino acid content. Reported here are the synthesis and characterization of two disulfide-bridged mutants derived from the MB-1 designer protein. Both mutants outperformed their parent protein MB-1 with their bridge formed, as shown by circular dichroism, size exclusion chromatography, thermal denaturation, and proteolytic degradation experiments. When the disulfide bridges were cleaved, the mutants' behavior changed: the mutants significantly unfolded, suggesting that the introduction of Cys residues was deleterious to MB-1-folding. In an attempt to compensate for the mutations used, a Tyr62-Trp mutation was performed, leading to an increase in bulk and hydrophobicity in the core. The Trp-containing disulfide-bridged mutants did not behave as well as the original MB-1Trp, suggesting that position 62 might not be adequate for a compensatory mutation.

  10. Measurement of glutathione-protein mixed disulfides

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.

    1984-01-01

    The development of a sensitive and highly specific assay for the presence of mixed disulfides between protein thiol groups and endogenous thiols has been undertaken. Previous investigations on the concentrations of glutathione (GSH), glutathione disulfide (GSSG) and protein glutathione mixed disulfides (ProSSG) have been of limited usefulness because of the poor specificity of the assays used. Our assay for these forms of glutathione is based on high performance liquid chromatography (HPLC) and is an extension of an earlier method. After perchloric acid precipitation, the protein sample is washed with an organic solvent to fully denature the protein. Up to a 10-fold increase in GSH released from fetal bovine serum (FBS) protein has been found when the protein precipitate is washed with ethanol rather than ether, as earlier suggested. Similar effects have been observed with an as yet unidentified thiol which elutes in the chromatography system with a retention volume similar to cysteine

  11. Engineered disulfide bonds increase active-site local stability and reduce catalytic activity of a cold-adapted alkaline phosphatase.

    Science.gov (United States)

    Asgeirsson, Bjarni; Adalbjörnsson, Björn Vidar; Gylfason, Gudjón Andri

    2007-06-01

    Alkaline phosphatase is an extracellular enzyme that is membrane-bound in eukaryotes but resides in the periplasmic space of bacteria. It normally carries four cysteine residues that form two disulfide bonds, for instance in the APs of Escherichia coli and vertebrates. An AP variant from a Vibrio sp. has only one cysteine residue. This cysteine is second next to the nucleophilic serine in the active site. We have individually modified seven residues to cysteine that are on two loops predicted to be within a 5 A radius. Four of them formed a disulfide bond to the endogenous cysteine. Thermal stability was monitored by circular dichroism and activity measurements. Global stability was similar to the wild-type enzyme. However, a significant increase in heat-stability was observed for the disulfide-containing variants using activity as a measure, together with a large reduction in catalytic rates (k(cat)) and a general decrease in Km values. The results suggest that a high degree of mobility near the active site and in the helix carrying the endogenous cysteine is essential for full catalytic efficiency in the cold-adapted AP.

  12. Thiol/disulfide redox states in signaling and sensing

    Science.gov (United States)

    Go, Young-Mi; Jones, Dean P.

    2015-01-01

    Rapid advances in redox systems biology are creating new opportunities to understand complexities of human disease and contributions of environmental exposures. New understanding of thiol-disulfide systems have occurred during the past decade as a consequence of the discoveries that thiol and disulfide systems are maintained in kinetically controlled steady-states displaced from thermodynamic equilibrium, that a widely distributed family of NADPH oxidases produces oxidants that function in cell signaling, and that a family of peroxiredoxins utilize thioredoxin as a reductant to complement the well-studied glutathione antioxidant system for peroxide elimination and redox regulation. This review focuses on thiol/disulfide redox state in biologic systems and the knowledge base available to support development of integrated redox systems biology models to better understand the function and dysfunction of thiol-disulfide redox systems. In particular, central principles have emerged concerning redox compartmentalization and utility of thiol/disulfide redox measures as indicators of physiologic function. Advances in redox proteomics show that, in addition to functioning in protein active sites and cell signaling, cysteine residues also serve as redox sensors to integrate biologic functions. These advances provide a framework for translation of redox systems biology concepts to practical use in understanding and treating human disease. Biological responses to cadmium, a widespread environmental agent, are used to illustrate the utility of these advances to the understanding of complex pleiotropic toxicities. PMID:23356510

  13. A structural model of pestivirus E(rns) based on disulfide bond connectivity and homology modeling reveals an extremely rare vicinal disulfide

    NARCIS (Netherlands)

    Langedijk, J.P.M.; Veelen, van P.A.; Schaaper, W.M.M.; Ru, de A.H.; Meloen, R.H.; Hulst, M.M.

    2002-01-01

    Erns is a pestivirus envelope glycoprotein and is the only known viral surface protein with RNase activity. Erns is a disulfide-linked homodimer of 100 kDa; it is found on the surface of pestivirus-infected cells and is secreted into the medium. In this study, the disulfide arrangement of the nine

  14. Folding and activity of hybrid sequence, disulfide-stabilized peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pease, J.H.B.; Storrs, R.W.; Wemmer, D.E. (Univ. of California, Berkeley (USA))

    1990-08-01

    Peptides have been synthesized that have hybrid sequences, partially derived from the bee venom peptide apamin and partially from the S peptide of ribonuclease A. The hybrid peptides were demonstrated by NMR spectroscopy to fold, forming the same disulfides and basic three-dimensional structure as native apamin, containing a {beta}-turn and an {alpha}-helix. These hybrids were active in complementing S protein, reactivating nuclease activity. In addition, the hybrid peptide was effective in inducing antibodies that cross-react with the RNase, without conjugation to a carrier protein. The stability of the folded structure of this peptide suggests that it should be possible to elicit antibodies that will react not only with a specific sequence, but also with a specific secondary structure. Hybrid sequence peptides also provide opportunities to study separately nucleation and propagation steps in formation of secondary structure. The authors show that in S peptide the {alpha}-helix does not end abruptly but rather terminates gradually over four or five residues. In general, these hybrid sequence peptides, which fold predictably because of disulfide bond formation, can provide opportunities for examining structure - function relationships for many biologically active sequences.

  15. Folding and activity of hybrid sequence, disulfide-stabilized peptides

    International Nuclear Information System (INIS)

    Pease, J.H.B.; Storrs, R.W.; Wemmer, D.E.

    1990-01-01

    Peptides have been synthesized that have hybrid sequences, partially derived from the bee venom peptide apamin and partially from the S peptide of ribonuclease A. The hybrid peptides were demonstrated by NMR spectroscopy to fold, forming the same disulfides and basic three-dimensional structure as native apamin, containing a β-turn and an α-helix. These hybrids were active in complementing S protein, reactivating nuclease activity. In addition, the hybrid peptide was effective in inducing antibodies that cross-react with the RNase, without conjugation to a carrier protein. The stability of the folded structure of this peptide suggests that it should be possible to elicit antibodies that will react not only with a specific sequence, but also with a specific secondary structure. Hybrid sequence peptides also provide opportunities to study separately nucleation and propagation steps in formation of secondary structure. The authors show that in S peptide the α-helix does not end abruptly but rather terminates gradually over four or five residues. In general, these hybrid sequence peptides, which fold predictably because of disulfide bond formation, can provide opportunities for examining structure - function relationships for many biologically active sequences

  16. Quantifying the global cellular thiol-disulfide status

    DEFF Research Database (Denmark)

    Hansen, Rosa E; Roth, Doris; Winther, Jakob R

    2009-01-01

    It is widely accepted that the redox status of protein thiols is of central importance to protein structure and folding and that glutathione is an important low-molecular-mass redox regulator. However, the total cellular pools of thiols and disulfides and their relative abundance have never been...... determined. In this study, we have assembled a global picture of the cellular thiol-disulfide status in cultured mammalian cells. We have quantified the absolute levels of protein thiols, protein disulfides, and glutathionylated protein (PSSG) in all cellular protein, including membrane proteins. These data...... cell types. However, when cells are exposed to a sublethal dose of the thiol-specific oxidant diamide, PSSG levels increase to >15% of all protein cysteine. Glutathione is typically characterized as the "cellular redox buffer"; nevertheless, our data show that protein thiols represent a larger active...

  17. A molybdenum disulfide/carbon nanotube heterogeneous complementary inverter.

    Science.gov (United States)

    Huang, Jun; Somu, Sivasubramanian; Busnaina, Ahmed

    2012-08-24

    We report a simple, bottom-up/top-down approach for integrating drastically different nanoscale building blocks to form a heterogeneous complementary inverter circuit based on layered molybdenum disulfide and carbon nanotube (CNT) bundles. The fabricated CNT/MoS(2) inverter is composed of n-type molybdenum disulfide (MOS(2)) and p-type CNT transistors, with a high voltage gain of 1.3. The CNT channels are fabricated using directed assembly while the layered molybdenum disulfide channels are fabricated by mechanical exfoliation. This bottom-up fabrication approach for integrating various nanoscale elements with unique characteristics provides an alternative cost-effective methodology to complementary metal-oxide-semiconductors, laying the foundation for the realization of high performance logic circuits.

  18. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions.

    Science.gov (United States)

    Netto, Luis Eduardo S; de Oliveira, Marcos Antonio; Tairum, Carlos A; da Silva Neto, José Freire

    2016-01-01

    Thiol-disulfide exchange reactions are highly reversible, displaying nucleophilic substitutions mechanism (S(N)2 type). For aliphatic, low molecular thiols, these reactions are slow, but can attain million times faster rates in enzymatic processes. Thioredoxin (Trx) proteins were the first enzymes described to accelerate thiol-disulfide exchange reactions and their high reactivity is related to the high nucleophilicity of the attacking thiol. Substrate specificity in Trx is achieved by several factors, including polar, hydrophobic, and topological interactions through a groove in the active site. Glutaredoxin (Grx) enzymes also contain the Trx fold, but they do not share amino acid sequence similarity with Trx. A conserved glutathione binding site is a typical feature of Grx that can reduce substrates by two mechanisms (mono and dithiol). The high reactivity of Grx enzymes is related to the very acid pK(a) values of reactive Cys that plays roles as good leaving groups. Therefore, although distinct oxidoreductases catalyze similar thiol–disulfide exchange reactions, their enzymatic mechanisms vary. PDI and DsbA are two other oxidoreductases, but they are involved in disulfide bond formation, instead of disulfide reduction, which is related to the oxidative environment where they are found. PDI enzymes and DsbC are endowed with disulfide isomerase activity, which is related with their tetra-domain architecture. As illustrative description of specificity in thiol-disulfide exchange, redox aspects of transcription activation in bacteria, yeast, and mammals are presented in an evolutionary perspective. Therefore, thiol-disulfide exchange reactions play important roles in conferring specificity to pathways, a required feature for signaling.

  19. Intracellular drug delivery nanocarriers of glutathione-responsive degradable block copolymers having pendant disulfide linkages.

    Science.gov (United States)

    Khorsand, Behnoush; Lapointe, Gabriel; Brett, Christopher; Oh, Jung Kwon

    2013-06-10

    Self-assembled micelles of amphiphilic block copolymers (ABPs) with stimuli-responsive degradation (SRD) properties have a great promise as nanotherapeutics exhibiting enhanced release of encapsulated therapeutics into targeted cells. Here, thiol-responsive degradable micelles based on a new ABP consisting of a pendant disulfide-labeled methacrylate polymer block (PHMssEt) and a hydrophilic poly(ethylene oxide) (PEO) block were investigated as effective intracellular nanocarriers of anticancer drugs. In response to glutathione (GSH) as a cellular trigger, the cleavage of pendant disulfide linkages in hydrophobic PHMssEt blocks of micellar cores caused the destabilization of self-assembled micelles due to change in hydrophobic/hydrophilic balance. Such GSH-triggered micellar destabilization changed their size distribution with an appearance of large aggregates and led to enhanced release of encapsulated anticancer drugs. Cell culture results from flow cytometry and confocal laser scanning microscopy for cellular uptake as well as cell viability measurements for high anticancer efficacy suggest that new GSH-responsive degradable PEO-b-PHMssEt micelles offer versatility in multifunctional drug delivery applications.

  20. Structure of conkunitzin-S1, a neurotoxin and Kunitz-fold disulfide variant from cone snail

    International Nuclear Information System (INIS)

    Dy, Catherine Y.; Buczek, Pawel; Imperial, Julita S.; Bulaj, Grzegorz; Horvath, Martin P.

    2006-01-01

    Most Kunitz proteins like BPTI and α-dendrotoxin are stabilized by three disulfide bonds. The crystal structure shows how subtle repacking of non-covalent interactions may compensate for disulfide bond loss in a naturally occurring two-disulfide variant, conkunitzin-S1, the first discovered member of a new conotoxin family. Cone snails (Conus) are predatory marine mollusks that immobilize prey with venom containing 50–200 neurotoxic polypeptides. Most of these polypeptides are small disulfide-rich conotoxins that can be classified into families according to their respective ion-channel targets and patterns of cysteine–cysteine disulfides. Conkunitzin-S1, a potassium-channel pore-blocking toxin isolated from C. striatus venom, is a member of a newly defined conotoxin family with sequence homology to Kunitz-fold proteins such as α-dendrotoxin and bovine pancreatic trypsin inhibitor (BPTI). While conkunitzin-S1 and α-dendrotoxin are 42% identical in amino-acid sequence, conkunitzin-S1 has only four of the six cysteines normally found in Kunitz proteins. Here, the crystal structure of conkunitzin-S1 is reported. Conkunitzin-S1 adopts the canonical 3 10 –β–β–α Kunitz fold complete with additional distinguishing structural features including two completely buried water molecules. The crystal structure, although completely consistent with previously reported NMR distance restraints, provides a greater degree of precision for atomic coordinates, especially for S atoms and buried solvent molecules. The region normally cross-linked by cysteines II and IV in other Kunitz proteins retains a network of hydrogen bonds and van der Waals interactions comparable to those found in α-dendrotoxin and BPTI. In conkunitzin-S1, glycine occupies the sequence position normally reserved for cysteine II and the special steric properties of glycine allow additional van der Waals contacts with the glutamine residue substituting for cysteine IV. Evolution has thus defrayed the

  1. UV Photofragmentation Dynamics of Protonated Cystine: Disulfide Bond Rupture.

    Science.gov (United States)

    Soorkia, Satchin; Dehon, Christophe; Kumar, S Sunil; Pedrazzani, Mélanie; Frantzen, Emilie; Lucas, Bruno; Barat, Michel; Fayeton, Jacqueline A; Jouvet, Christophe

    2014-04-03

    Disulfide bonds (S-S) play a central role in stabilizing the native structure of proteins against denaturation. Experimentally, identification of these linkages in peptide and protein structure characterization remains challenging. UV photodissociation (UVPD) can be a valuable tool in identifying disulfide linkages. Here, the S-S bond acts as a UV chromophore and absorption of one UV photon corresponds to a σ-σ* transition. We have investigated the photodissociation dynamics of protonated cystine, which is a dimer of two cysteines linked by a disulfide bridge, at 263 nm (4.7 eV) using a multicoincidence technique in which fragments coming from the same fragmentation event are detected. Two types of bond cleavages are observed corresponding to the disulfide (S-S) and adjacent C-S bond ruptures. We show that the S-S cleavage leads to three different fragment ions via three different fragmentation mechanisms. The UVPD results are compared to collision-induced dissociation (CID) and electron-induced dissociation (EID) studies.

  2. The human protein disulfide isomerase gene family

    Directory of Open Access Journals (Sweden)

    Galligan James J

    2012-07-01

    Full Text Available Abstract Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs. These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX. As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR. Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.

  3. Modification of molybdenum disulfide in methanol solvent for hydrogen evolution reaction

    Science.gov (United States)

    Niyitanga, Theophile; Jeong, Hae Kyung

    2018-05-01

    Molybdenum disulfide is a promising catalyst to replace the expensive platinum as an electrocatalyst but needs to be modified to present excellent electrocatalytic properties. Herein, we successfully modify molybdenum disulfide in methanol solvent for hydrogen evolution reaction by using a simple hydrothermal method. Overpotential reduced to -0.6 V from -1.5 V, and energy band gap decreased from 1.73 eV to 1.58 eV after the modification. The modified molybdenum disulfide also demonstrated lower resistance (42 Ω) at high frequency (1000 kHz) compared with that (240 Ω) of the precursor, showing that conductivity of the modified molybdenum disulfide has improved.

  4. Identification of Thioredoxin Target Disulfides Using Isotope-Coded Affinity Tags

    DEFF Research Database (Denmark)

    Hägglund, Per; Bunkenborg, Jakob; Maeda, Kenji

    2014-01-01

    Thioredoxins (Trx) are small redox proteins that reduce disulfide bonds in various target proteins and maintain cellular thiol redox control. Here, a thiol-specific labeling and affinity enrichment approach for identification and relative quantification of Trx target disulfides in complex protein...... reduction is determined by LC-MS/MS-based quantification of tryptic peptides labeled with "light" (12C) and "heavy" (13C) ICAT reagents. The methodology can be adapted to monitor the effect of different reductants or oxidants on the redox status of thiol/disulfide proteomes in biological systems....... extracts is described. The procedure utilizes the isotope-coded affinity tag (ICAT) reagents containing a thiol reactive iodoacetamide group and a biotin affinity tag to target peptides containing reduced cysteine residues. The identification of substrates for Trx and the extent of target disulfide...

  5. Thermodynamic and mechanical effects of disulfide bonds in CXCLl7 chemokine

    Science.gov (United States)

    Singer, Christopher

    Chemokines are a family of signaling proteins mainly responsible for the chemotaxis of leukocytes, where their biological activity is modulated by their oligomerization state. Here, the dynamics and thermodynamic stability are characterized in monomer and homodimer structures of CXCL7, one of the most abundant platelet chemokines. The effects of dimerization and disulfide bond formation are investigated using computational methods that include molecular dynamics (MD) simulations and the Distance Constraint Model (DCM). A consistent picture emerges for the effect of dimerization and role of the Cys5-Cys31 and Cys7- Cys47 disulfide bonds. Surprisingly, neither disulfide bond is critical for maintaining structural stability in the monomer or dimer, although the monomer is destabilized more than the dimer upon removal of disulfide bonds. Instead, it is found that disulfide bonds influence the native state dynamics as well as modulates the relative stability between monomer and dimer. The combined analysis elucidates how CXCL7 is mechanically stable as a monomer, and how upon dimerization flexibly correlated motions are induced between the 30s and 50s loop within each monomer and across the dimer interface. Interestingly, the greatest gain in flexibility upon dimerization occurs when both disulfide bonds are present in each domain, and the homodimer is least stable relative to its two monomers. These results suggest the highly conserved disulfide bonds in chemokines facilitate a structural mechanism for distinguishing functional characteristics between monomer and dimer.

  6. Protein disulfide bond generation in Escherichia coli DsbB–DsbA

    International Nuclear Information System (INIS)

    Inaba, Kenji

    2008-01-01

    The crystal structure of the DsbB–DsbA–ubiquinone ternary complex has revealed a mechanism of protein disulfide bond generation in Escherichia coli. Protein disulfide bond formation is catalyzed by a series of Dsb enzymes present in the periplasm of Escherichia coli. The crystal structure of the DsbB–DsbA–ubiquinone ternary complex provided important insights into mechanisms of the de novo disulfide bond generation cooperated by DsbB and ubiquinone and of the disulfide bond shuttle from DsbB to DsbA. The structural basis for prevention of the crosstalk between the DsbA–DsbB oxidative and the DsbC–DsbD reductive pathways has also been proposed

  7. Disulfide bond effects on protein stability: designed variants of Cucurbita maxima trypsin inhibitor-V.

    Science.gov (United States)

    Zavodszky, M; Chen, C W; Huang, J K; Zolkiewski, M; Wen, L; Krishnamoorthi, R

    2001-01-01

    bonds in the same flexible region of CMTI-V resulted in less destabilization despite larger changes in the enthalpy and entropy of denaturation. The effect of a cross-link on the denatured state of CMTI-V was estimated directly by means of a four-state thermodynamic cycle consisting of native and denatured states of CMTI-V and CMTI-V*. Overall, the results show that an enthalpy-entropy compensation accompanies disulfide bond effects and protein stabilization is profoundly modulated by altered hydrophobicity of both native and denatured states, altered flexibility near the cross-link, and residual structure in the denatured state.

  8. Effect of trastuzumab interchain disulfide bond cleavage on Fcγ receptor binding and antibody-dependent tumour cell phagocytosis.

    Science.gov (United States)

    Suzuki, Mami; Yamanoi, Ayaka; Machino, Yusuke; Ootsubo, Michiko; Izawa, Ken-ichi; Kohroki, Junya; Masuho, Yasuhiko

    2016-01-01

    The Fc domain of human IgG1 binds to Fcγ receptors (FcγRs) to induce effector functions such as phagocytosis. There are four interchain disulfide bonds between the H and L chains. In this study, the disulfide bonds within the IgG1 trastuzumab (TRA), which is specific for HER2, were cleaved by mild S-sulfonation or by mild reduction followed by S-alkylation with three different reagents. The cleavage did not change the binding activities of TRA to HER2-bearing SK-BR-3 cells. The binding activities of TRA to FcγRIIA and FcγRIIB were greatly enhanced by modification with mild reduction and S-alkylation with ICH2CONH2 or N-(4-aminophenyl) maleimide, while the binding activities of TRA to FcγRI and FcγRIIIA were decreased by any of the four modifications. However, the interchain disulfide bond cleavage by the different modifications did not change the antibody-dependent cell-mediated phagocytosis (ADCP) of SK-BR-3 cells by activated THP-1 cells. The order of FcγR expression levels on the THP-1 cells was FcγRII > FcγRI > FcγRIII and ADCP was inhibited by blocking antibodies against FcγRI and FcγRII. These results imply that the effect of the interchain disulfide bond cleavage on FcγRs binding and ADCP is dependent on modifications of the cysteine residues and the FcγR isotypes. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  9. Preventing disulfide bond formation weakens non-covalent forces among lysozyme aggregates.

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Ravi

    Full Text Available Nonnative disulfide bonds have been observed among protein aggregates in several diseases like amyotrophic lateral sclerosis, cataract and so on. The molecular mechanism by which formation of such bonds promotes protein aggregation is poorly understood. Here in this work we employ previously well characterized aggregation of hen eggwhite lysozyme (HEWL at alkaline pH to dissect the molecular role of nonnative disulfide bonds on growth of HEWL aggregates. We employed time-resolved fluorescence anisotropy, atomic force microscopy and single-molecule force spectroscopy to quantify the size, morphology and non-covalent interaction forces among the aggregates, respectively. These measurements were performed under conditions when disulfide bond formation was allowed (control and alternatively when it was prevented by alkylation of free thiols using iodoacetamide. Blocking disulfide bond formation affected growth but not growth kinetics of aggregates which were ∼50% reduced in volume, flatter in vertical dimension and non-fibrillar in comparison to control. Interestingly, single-molecule force spectroscopy data revealed that preventing disulfide bond formation weakened the non-covalent interaction forces among monomers in the aggregate by at least ten fold, thereby stalling their growth and yielding smaller aggregates in comparison to control. We conclude that while constrained protein chain dynamics in correctly disulfide bonded amyloidogenic proteins may protect them from venturing into partial folded conformations that can trigger entry into aggregation pathways, aberrant disulfide bonds in non-amyloidogenic proteins (like HEWL on the other hand, may strengthen non-covalent intermolecular forces among monomers and promote their aggregation.

  10. The effect of tensile stress on the conformational free energy landscape of disulfide bonds.

    Directory of Open Access Journals (Sweden)

    Padmesh Anjukandi

    Full Text Available Disulfide bridges are no longer considered to merely stabilize protein structure, but are increasingly recognized to play a functional role in many regulatory biomolecular processes. Recent studies have uncovered that the redox activity of native disulfides depends on their C-C-S-S dihedrals, χ2 and χ'2. Moreover, the interplay of chemical reactivity and mechanical stress of disulfide switches has been recently elucidated using force-clamp spectroscopy and computer simulation. The χ2 and χ'2 angles have been found to change from conformations that are open to nucleophilic attack to sterically hindered, so-called closed states upon exerting tensile stress. In view of the growing evidence of the importance of C-C-S-S dihedrals in tuning the reactivity of disulfides, here we present a systematic study of the conformational diversity of disulfides as a function of tensile stress. With the help of force-clamp metadynamics simulations, we show that tensile stress brings about a large stabilization of the closed conformers, thereby giving rise to drastic changes in the conformational free energy landscape of disulfides. Statistical analysis shows that native TDi, DO and interchain Ig protein disulfides prefer open conformations, whereas the intrachain disulfide bridges in Ig proteins favor closed conformations. Correlating mechanical stress with the distance between the two a-carbons of the disulfide moiety reveals that the strain of intrachain Ig protein disulfides corresponds to a mechanical activation of about 100 pN. Such mechanical activation leads to a severalfold increase of the rate of the elementary redox S(N2 reaction step. All these findings constitute a step forward towards achieving a full understanding of functional disulfides.

  11. Enhancing the Thermal Resistance of a Novel Acidobacteria-Derived Phytase by Engineering of Disulfide Bridges.

    Science.gov (United States)

    Tan, Hao; Miao, Renyun; Liu, Tianhai; Cao, Xuelian; Wu, Xiang; Xie, Liyuan; Huang, Zhongqian; Peng, Weihong; Gan, Bingcheng

    2016-10-28

    A novel phytase of Acidobacteria was identified from a soil metagenome, cloned, overexpressed, and purified. It has low sequence similarity (phytases. At the optimum pH (2.5), the phytase shows an activity level of 1,792 μmol/min/mg at physiological temperature (37°C) and could retain 92% residual activity after 30 min, indicating the phytase is acidophilic and acidostable. However the phytase shows poor stability at high temperatures. To improve its thermal resistance, the enzyme was redesigned using Disulfide by Design 2.0, introducing four additional disulfide bridges. The half-life time of the engineered phytase at 60°C and 80°C, respectively, is 3.0× and 2.8× longer than the wild-type, and its activity and acidostability are not significantly affected.

  12. Determination of disulfide bridges of two spider toxins: hainantoxin-III and hainantoxin-IV

    Directory of Open Access Journals (Sweden)

    W Wang

    2009-01-01

    Full Text Available Peptide toxins are usually highly bridged proteins with multipairs of intrachain disulfide bonds. Analysis of disulfide connectivity is an important facet of protein structure determination. In this paper, we successfully assigned the disulfide linkage of two novel peptide toxins, called HNTX-III and HNTX-IV, isolated from the venom of Ornithoctonus hainana spider. Both peptides are useful inhibitors of TTX-sensitive voltage-gated sodium channels and are composed of six cysteine residues that form three disulfide bonds, respectively. Firstly, the peptides were partially reduced by tris(2-carboxyethyl-phosphine (TCEP in 0.1 M citrate buffer containing 6 M guanidine-HCl at 40° C for ten minutes. Subsequently, the partially reduced intermediates containing free thiols were separated by reversed-phase high-performance liquid chromatography (RP-HPLC and alkylated by rapid carboxamidomethylation. Then, the disulfide bonds of the intermediates were analyzed by Edman degradation. By using the strategy above, disulfide linkages of HNTX-III and HNTX-IV were determined as I-IV, II-V and III-VI pattern. In addition, this study also showed that this method may have a great potential for determining the disulfide bonds of spider peptide toxins.

  13. In-Depth Characterization of Protein Disulfide Bonds by Online Liquid Chromatography-Electrochemistry-Mass Spectrometry

    Science.gov (United States)

    Switzar, Linda; Nicolardi, Simone; Rutten, Julie W.; Oberstein, Saskia A. J. Lesnik; Aartsma-Rus, Annemieke; van der Burgt, Yuri E. M.

    2016-01-01

    Disulfide bonds are an important class of protein post-translational modifications, yet this structurally crucial modification type is commonly overlooked in mass spectrometry (MS)-based proteomics approaches. Recently, the benefits of online electrochemistry-assisted reduction of protein S-S bonds prior to MS analysis were exemplified by successful characterization of disulfide bonds in peptides and small proteins. In the current study, we have combined liquid chromatography (LC) with electrochemistry (EC) and mass analysis by Fourier transform ion cyclotron resonance (FTICR) MS in an online LC-EC-MS platform to characterize protein disulfide bonds in a bottom-up proteomics workflow. A key advantage of a LC-based strategy is the use of the retention time in identifying both intra- and interpeptide disulfide bonds. This is demonstrated by performing two sequential analyses of a certain protein digest, once without and once with electrochemical reduction. In this way, the "parent" disulfide-linked peptide detected in the first run has a retention time-based correlation with the EC-reduced peptides detected in the second run, thus simplifying disulfide bond mapping. Using this platform, both inter- and intra-disulfide-linked peptides were characterized in two different proteins, ß-lactoglobulin and ribonuclease B. In order to prevent disulfide reshuffling during the digestion process, proteins were digested at a relatively low pH, using (a combination of) the high specificity proteases trypsin and Glu-C. With this approach, disulfide bonds in ß-lactoglobulin and ribonuclease B were comprehensively identified and localized, showing that online LC-EC-MS is a useful tool for the characterization of protein disulfide bonds.

  14. Structural characterization of PTX3 disulfide bond network and its multimeric status in cumulus matrix organization.

    Science.gov (United States)

    Inforzato, Antonio; Rivieccio, Vincenzo; Morreale, Antonio P; Bastone, Antonio; Salustri, Antonietta; Scarchilli, Laura; Verdoliva, Antonio; Vincenti, Silvia; Gallo, Grazia; Chiapparino, Caterina; Pacello, Lucrezia; Nucera, Eleonora; Serlupi-Crescenzi, Ottaviano; Day, Anthony J; Bottazzi, Barbara; Mantovani, Alberto; De Santis, Rita; Salvatori, Giovanni

    2008-04-11

    PTX3 is an acute phase glycoprotein that plays key roles in resistance to certain pathogens and in female fertility. PTX3 exerts its functions by interacting with a number of structurally unrelated molecules, a capacity that is likely to rely on its complex multimeric structure stabilized by interchain disulfide bonds. In this study, PAGE analyses performed under both native and denaturing conditions indicated that human recombinant PTX3 is mainly composed of covalently linked octamers. The network of disulfide bonds supporting this octameric assembly was resolved by mass spectrometry and Cys to Ser site-directed mutagenesis. Here we report that cysteine residues at positions 47, 49, and 103 in the N-terminal domain form three symmetric interchain disulfide bonds stabilizing four protein subunits in a tetrameric arrangement. Additional interchain disulfide bonds formed by the C-terminal domain cysteines Cys(317) and Cys(318) are responsible for linking the PTX3 tetramers into octamers. We also identified three intrachain disulfide bonds within the C-terminal domain that we used as structural constraints to build a new three-dimensional model for this domain. Previously it has been shown that PTX3 is a key component of the cumulus oophorus extracellular matrix, which forms around the oocyte prior to ovulation, because cumuli from PTX3(-/-) mice show defective matrix organization. Recombinant PTX3 is able to restore the normal phenotype ex vivo in cumuli from PTX3(-/-) mice. Here we demonstrate that PTX3 Cys to Ser mutants, mainly assembled into tetramers, exhibited wild type rescue activity, whereas a mutant, predominantly composed of dimers, had impaired functionality. These findings indicate that protein oligomerization is essential for PTX3 activity within the cumulus matrix and implicate PTX3 tetramers as the functional molecular units required for cumulus matrix organization and stabilization.

  15. Survey of Recipients of WAP Services Assessment of Household Budget and Energy Behaviors Pre to Post Weatherization DOE

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rose, Erin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hawkins, Beth A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    This report presents results from the national survey of weatherization recipients. This research was one component of the retrospective and Recovery Act evaluations of the U.S. Department of Energy s Weatherization Assistance Program. Survey respondents were randomly selected from a nationally representative sample of weatherization recipients. The respondents and a comparison group were surveyed just prior to receiving their energy audits and then again approximately 18 months post-weatherization. This report focuses on budget issues faced by WAP households pre- and post-weatherization, whether household energy behaviors changed from pre- to post, the effectiveness of approaches to client energy education, and use and knowledge about thermostats.

  16. Large area synthesis, characterization, and anisotropic etching of two dimensional tungsten disulfide films

    International Nuclear Information System (INIS)

    Mutlu, Zafer; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2016-01-01

    Emergent properties of tungsten disulfide at the quantum confinement limit hold promise for electronic and optoelectronic applications. Here we report on the large area synthesis of atomically thin tungsten disulfide films with strong photoluminescence properties via sulfurization of the pre-deposited tungsten films. Detailed characterization of the pre-deposited tungsten films and tungsten disulfide films are performed using microscopy and spectroscopy methods. By directly heating tungsten disulfide films in air, we have shown that the films tend to be etched into a series of triangular shaped pits with the same orientations, revealing the anisotropic etching behavior of tungsten disulfide edges. Moreover, the dimensions of the triangular pits increase with the number of layers, suggesting a thickness dependent behavior of etching in tungsten disulfide films. This method offers a promising new avenue for engineering the edge structures of tungsten disulfide films. - Highlights: • Large-scale synthesis of WS_2 films is achieved via sulfurization of W films. • Annealing of W films leads to a substantial improvement in the quality of WS_2 films. • WS_2 films show laser power dependent photoluminescence characteristics. • WS_2 films are etched with well-oriented triangular pits upon annealing in air. • Anisotropic oxidative etching is greatly affected by the thickness of WS_2 films.

  17. Characterization and identification of microRNA core promoters in four model species.

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhou

    2007-03-01

    Full Text Available MicroRNAs are short, noncoding RNAs that play important roles in post-transcriptional gene regulation. Although many functions of microRNAs in plants and animals have been revealed in recent years, the transcriptional mechanism of microRNA genes is not well-understood. To elucidate the transcriptional regulation of microRNA genes, we study and characterize, in a genome scale, the promoters of intergenic microRNA genes in Caenorhabditis elegans, Homo sapiens, Arabidopsis thaliana, and Oryza sativa. We show that most known microRNA genes in these four species have the same type of promoters as protein-coding genes have. To further characterize the promoters of microRNA genes, we developed a novel promoter prediction method, called common query voting (CoVote, which is more effective than available promoter prediction methods. Using this new method, we identify putative core promoters of most known microRNA genes in the four model species. Moreover, we characterize the promoters of microRNA genes in these four species. We discover many significant, characteristic sequence motifs in these core promoters, several of which match or resemble the known cis-acting elements for transcription initiation. Among these motifs, some are conserved across different species while some are specific to microRNA genes of individual species.

  18. Analysis of Disulfide Bond Formation

    NARCIS (Netherlands)

    Braakman, Ineke; Lamriben, Lydia; van Zadelhoff, Guus; Hebert, Daniel N.

    2017-01-01

    In this unit, protocols are provided for detection of disulfide bond formation in cultures of intact cells and in an in vitro translation system containing isolated microsomes or semi-permeabilized cells. First, the newly synthesized protein of interest is biosynthetically labeled with radioactive

  19. Electrostatic influence of local cysteine environments on disulfide exchange kinetics.

    Science.gov (United States)

    Snyder, G H; Cennerazzo, M J; Karalis, A J; Field, D

    1981-11-10

    The ionic strength dependence of the bimolecular rate constant for reaction of the negative disulfide 5,5'-dithiobis (2-nitrobenzoic acid) with cysteines in fragments of naturally occurring proteins was determined by stopped-flow spectroscopy. The Debye-Hückel relationship was applied to determine the effective charge at the cysteine and thereby determine the extent to which nearby neighbors in the primary sequence influence the kinetics. Corrections for the secondary salt effect on cysteine pKs were determined by direct spectrometric pH titration of sulfhydryl groups or by observation of the ionic strength dependence of kinetics of cysteine reaction with the neutral disulfide 2,2'-dithiodipyridine. Quantitative expressions was verified by model studies with N-acetyl-cystein. At ionic strengths equal to or greater than 20 mM, the net charge at the polypeptide cysteine site is the sum of the single negative charge of the thiolate anion and the charges of the amino acids immediately preceding and following the cysteine in the primary sequence. At lower ionic strengths, more distant residues influence kinetics. At pH 7.0, 23 degree C, and an ionic strength of 20 mM, rate constants for reaction of the negative disulfide with a cysteine having two positive neighbors, one positive and one neutral neighbor, or two neutral neighbors are 132000, 3350, and 367 s-1 M-1, respectively. This corresponds to a contribution to the activation energy of 0.65- 1.1 kcal/mol per ion pair involved in collision between the cysteine and disulfide regions. The results permit the estimation that cysteine local environments may provide a means of achieving a 10(6)-fold range in rate constants in disulfide exchange reactions in random-coil proteins. This range may prove useful in developing strategies for directing disulfide pairing in synthetic proteins.

  20. Intradomain Confinement of Disulfides in the Folding of Two Consecutive Modules of the LDL Receptor.

    Directory of Open Access Journals (Sweden)

    Juan Martínez-Oliván

    Full Text Available The LDL receptor internalizes circulating LDL and VLDL particles for degradation. Its extracellular binding domain contains ten (seven LA and three EGF cysteine-rich modules, each bearing three disulfide bonds. Despite the enormous number of disulfide combinations possible, LDLR oxidative folding leads to a single native species with 30 unique intradomain disulfides. Previous folding studies of the LDLR have shown that non native disulfides are initially formed that lead to compact species. Accordingly, the folding of the LDLR has been described as a "coordinated nonvectorial" reaction, and it has been proposed that early compaction funnels the reaction toward the native structure. Here we analyze the oxidative folding of LA4 and LA5, the modules critical for ApoE binding, isolated and in the LA45 tandem. Compared to LA5, LA4 folding is slow and inefficient, resembling that of LA5 disease-linked mutants. Without Ca++, it leads to a mixture of many two-disulfide scrambled species and, with Ca++, to the native form plus two three-disulfide intermediates. The folding of the LA45 tandem seems to recapitulate that of the individual repeats. Importantly, although the folding of the LA45 tandem takes place through formation of scrambled isomers, no interdomain disulfides are detected, i.e. the two adjacent modules fold independently without the assistance of interdomain covalent interactions. Reduction of incredibly large disulfide combinatorial spaces, such as that in the LDLR, by intradomain confinement of disulfide bond formation might be also essential for the efficient folding of other homologous disulfide-rich receptors.

  1. Structural basis for target protein recognition by the protein disulfide reductase thioredoxin

    DEFF Research Database (Denmark)

    Maeda, Kenji; Hägglund, Per; Finnie, Christine

    2006-01-01

    Thioredoxin is ubiquitous and regulates various target proteins through disulfide bond reduction. We report the structure of thioredoxin (HvTrxh2 from barley) in a reaction intermediate complex with a protein substrate, barley alpha-amylase/subtilisin inhibitor (BASI). The crystal structure...... of this mixed disulfide shows a conserved hydrophobic motif in thioredoxin interacting with a sequence of residues from BASI through van der Waals contacts and backbone-backbone hydrogen bonds. The observed structural complementarity suggests that the recognition of features around protein disulfides plays...... a major role in the specificity and protein disulfide reductase activity of thioredoxin. This novel insight into the function of thioredoxin constitutes a basis for comprehensive understanding of its biological role. Moreover, comparison with structurally related proteins shows that thioredoxin shares...

  2. Edge eigen-stress and eigen-displacement of armchair molybdenum disulfide nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Quan; Li, Xi [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Volinsky, Alex A., E-mail: volinsky@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620 (United States); Su, Yanjing, E-mail: yjsu@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China)

    2017-05-10

    Edge effects on mechanical properties of armchair molybdenum disulfide nanoribbons were investigated using first principles calculations. The edge eigen-stress model was applied to explain the relaxation process of forming molybdenum disulfide nanoribbon. Edge effects on surface atoms fluctuation degree were obtained from each fully relaxed nanoribbon with different width. Changes of the relaxed armchair molybdenum disulfide nanoribbons structure can be expressed using hexagonal perimeters pattern. Based on the thickness change, relaxed armchair molybdenum disulfide nanoribbons tensile/compression tests were simulated, providing intrinsic edge elastic parameters, such as eigen-stress, Young's modulus and Poisson's ratio. - Highlights: • Edge effects on mechanical properties of armchair MoS{sub 2} nanoribbons were investigated. • Structure changes of different width armchair MoS{sub 2} nanoribbons were obtained. • Tensile/compressive tests were conducted to determine elastic constants. • Mechanical properties are compared for two and three dimensional conditions.

  3. Positions of disulfide bonds in rye (Secale cereale) seed chitinase-a.

    Science.gov (United States)

    Yamagami, T; Funatsu, G; Ishiguro, M

    2000-06-01

    The positions of disulfide bonds of rye seed chitinase-a (RSC-a) were identified by the isolation of disulfide-containing peptides produced with enzymatic and/or chemical cleavages of RSC-a, followed by sequencing them. An unequivocal assignment of disulfide bonds in this enzyme was as follows: Cys3-Cysl8, Cys12-Cys24, Cys15-Cys42, Cys17-Cys31, and Cys35-Cys39 in the chitin-binding domain (CB domain), Cys82-Cys144, Cys156-Cys164, and Cys282-Cys295 in the catalytic domain (Cat domain), and Cys263 was a free form.

  4. Disulfide bond within mu-calpain active site inhibits activity and autolysis.

    Science.gov (United States)

    Lametsch, René; Lonergan, Steven; Huff-Lonergan, Elisabeth

    2008-09-01

    Oxidative processes have the ability to influence mu-calpain activity. In the present study the influence of oxidation on activity and autolysis of mu-calpain was examined. Furthermore, LC-MS/MS analysis was employed to identify and characterize protein modifications caused by oxidation. The results revealed that the activity of mu-calpain is diminished by oxidation with H2O2 in a reversible manner involving cysteine and that the rate of autolysis of mu-calpain concomitantly slowed. The LC-MS/MS analysis of the oxidized mu-calpain revealed that the amino acid residues 105-133 contained a disulfide bond between Cys(108) and Cys(115). The finding that the active site cysteine in mu-calpain is able to form a disulfide bond has, to our knowledge, not been reported before. This could be part of a unique oxidation mechanism for mu-calpain. The results also showed that the formation of the disulfide bond is limited in the control (no oxidant added), and further limited in a concentration-dependent manner when beta-mercaptoethanol is added. However, the disulfide bond is still present to some extent in all conditions indicating that the active site cysteine is potentially highly susceptible to the formation of this intramolecular disulfide bond.

  5. Hazardous Waste Code Determination for First/Second-Stage Sludge Waste Stream (IDCs 001, 002, 800)

    International Nuclear Information System (INIS)

    Arbon, R.E.

    2001-01-01

    This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream

  6. Worry About Caregiving Performance: A Confirmatory Factor Analysis

    Directory of Open Access Journals (Sweden)

    Ruijie Li

    2018-03-01

    Full Text Available Recent studies on the Zarit Burden Interview (ZBI support the existence of a unique factor, worry about caregiving performance (WaP, beyond role and personal strain. Our current study aims to confirm the existence of WaP within the multidimensionality of ZBI and to determine if predictors of WaP differ from the role and personal strain. We performed confirmatory factor analysis (CFA on 466 caregiver-patient dyads to compare between one-factor (total score, two-factor (role/personal strain, three-factor (role/personal strain and WaP, and four-factor models (role strain split into two factors. We conducted linear regression analyses to explore the relationships between different ZBI factors with socio-demographic and disease characteristics, and investigated the stage-dependent differences between WaP with role and personal strain by dyadic relationship. The four-factor structure that incorporated WaP and split role strain into two factors yielded the best fit. Linear regression analyses reveal that different variables significantly predict WaP (adult child caregiver and Neuropsychiatric Inventory Questionnaire (NPI-Q severity from role/personal strain (adult child caregiver, instrumental activities of daily living, and NPI-Q distress. Unlike other factors, WaP was significantly endorsed in early cognitive impairment. Among spouses, WaP remained low across Clinical Dementia Rating (CDR stages until a sharp rise in CDR 3; adult child and sibling caregivers experience a gradual rise throughout the stages. Our results affirm the existence of WaP as a unique factor. Future research should explore the potential of WaP as a possible intervention target to improve self-efficacy in the milder stages of burden.

  7. Modulation of Thiol-Disulfide Oxidoreductases for Increased Production of Disulfide-Bond-Containing Proteins in Bacillus subtilis

    NARCIS (Netherlands)

    Kouwen, Thijs R. H. M.; Dubois, Jean-Yves F.; Freudl, Roland; Quax, Wim J.; van Dijl, Jan Maarten

    2008-01-01

    Disulfide bonds are important for the correct folding, structural integrity, and activity of many biotechnologically relevant proteins. For synthesis and subsequent secretion of these proteins in bacteria, such as the well-known "cell factory" Bacillus subtilis, it is often the correct formation of

  8. Inhibition of carbon disulfide on bio-desulfurization in the process of ...

    African Journals Online (AJOL)

    Biological desulfurization is a novel technology for the removal of hydrogen sulfide from some biogas or sour gas, in which there are always a certain amounts of carbon disulfide together with much hydrogen sulfide. Nowadays, carbon disulfide is found to have negative effect on the biological desulfurization, but seldom ...

  9. Insulin analog with additional disulfide bond has increased stability and preserved activity

    DEFF Research Database (Denmark)

    Vinther, Tine N.; Norrman, Mathias; Ribel, Ulla

    2013-01-01

    Insulin is a key hormone controlling glucose homeostasis. All known vertebrate insulin analogs have a classical structure with three 100% conserved disulfide bonds that are essential for structural stability and thus the function of insulin. It might be hypothesized that an additional disulfide...... bond may enhance insulin structural stability which would be highly desirable in a pharmaceutical use. To address this hypothesis, we designed insulin with an additional interchain disulfide bond in positions A10/B4 based on Cα-Cα distances, solvent exposure, and side-chain orientation in human insulin...... (HI) structure. This insulin analog had increased affinity for the insulin receptor and apparently augmented glucodynamic potency in a normal rat model compared with HI. Addition of the disulfide bond also resulted in a 34.6°C increase in melting temperature and prevented insulin fibril formation...

  10. Disulfide Bridges: Bringing Together Frustrated Structure in a Bioactive Peptide.

    Science.gov (United States)

    Zhang, Yi; Schulten, Klaus; Gruebele, Martin; Bansal, Paramjit S; Wilson, David; Daly, Norelle L

    2016-04-26

    Disulfide bridges are commonly found covalent bonds that are usually believed to maintain structural stability of proteins. Here, we investigate the influence of disulfide bridges on protein dynamics through molecular dynamics simulations on the cysteine-rich trypsin inhibitor MCoTI-II with three disulfide bridges. Correlation analysis of the reduced cyclic peptide shows that two of the three disulfide distances (Cys(11)-Cys(23) and Cys(17)-Cys(29)) are anticorrelated within ∼1 μs of bridge formation or dissolution: when the peptide is in nativelike structures and one of the distances shortens to allow bond formation, the other tends to lengthen. Simulations over longer timescales, when the denatured state is less structured, do not show the anticorrelation. We propose that the native state contains structural elements that frustrate one another's folding, and that the two bridges are critical for snapping the frustrated native structure into place. In contrast, the Cys(4)-Cys(21) bridge is predicted to form together with either of the other two bridges. Indeed, experimental chromatography and nuclear magnetic resonance data show that an engineered peptide with the Cys(4)-Cys(21) bridge deleted can still fold into its near-native structure even in its noncyclic form, confirming the lesser role of the Cys(4)-Cys(21) bridge. The results highlight the importance of disulfide bridges in a small bioactive peptide to bring together frustrated structure in addition to maintaining protein structural stability. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Chemoreactomic analysis of thiamine disulfide, thiamine hydrochloride, and benfotiamine molecules

    OpenAIRE

    O. A. Gromova; I. Yu. Torshin; L. V. Stakhovskaya; L. E. Fedotova

    2017-01-01

    Objective: to analyze the interactions that could indicate the potential pharmacological properties of the molecules of thiamin, thiamine disulfide, and others.Material and methods. The investigators simulated the properties of thiamine disulfide (bistiamin) versus those of the reference molecules of thiamin hydrochloride and benfotiamine. The study was performed using chemoreactomic simulation that is the newest area in post-genome pharmacology.Results and discussion. Chemoreactomic analysis...

  12. Identification of thioredoxin target disulfides in proteins released from barley aleurone layers

    DEFF Research Database (Denmark)

    Hägglund, Per; Bunkenborg, J.; Yang, Fen

    2010-01-01

    Thioredoxins are ubiquitous disulfide reductases involved in a wide range of cellular processes including DNA synthesis, oxidative stress response and apoptosis. In cereal seeds thioredoxins are proposed to facilitate the germination process by reducing disulfide bonds in storage proteins and other...

  13. Kinetic analysis of the mechanism and specificity of protein-disulfide isomerase using fluorescence-quenched peptides

    DEFF Research Database (Denmark)

    Westphal, V; Spetzler, J C; Meldal, M

    1998-01-01

    Protein-disulfide isomerase (PDI) is an abundant folding catalyst in the endoplasmic reticulum of eukaryotic cells. PDI introduces disulfide bonds into newly synthesized proteins and catalyzes disulfide bond isomerizations. We have synthesized a library of disulfide-linked fluorescence......-quenched peptides, individually linked to resin beads, for two purposes: 1) to probe PDI specificity, and 2) to identify simple, sensitive peptide substrates of PDI. Using this library, beads that became rapidly fluorescent by reduction by human PDI were selected. Amino acid sequencing of the bead-linked peptides...

  14. WAP Based An Alternative Solution for Traffic Transportation Problem in Sidoarjo Surrounding Area Using AHP

    Directory of Open Access Journals (Sweden)

    Arna Fariza

    2009-08-01

    Full Text Available In line with the increasing interest on Lapindo mud disaster which causes several roadway covered by mud, there is a need to give an alternative solution for traffic transportation problem in surrounding area. The possible criteria for the solution of this road way are length, surface, traffic, and width of the road. Types of vehicle across the road also give a contribution to the criteria. By using Geography Information System (GIS, it is easy to all drivers to take decision which way has to be chosen based on the real condition. GIS is used to visualize the alternative road, which is possible to take. Analytic Hierarchy Processing (AHP is a decision method which is based on many criteria and alternatives. The input of AHP can be a preference or real value. Applied AHP to decide value of each alternative is based on application of Wireless Application Protocol (WAP assessment.

  15. Characterization of Disulfide-Linked Peptides Using Tandem Mass Spectrometry Coupled with Automated Data Analysis Software

    Science.gov (United States)

    Liang, Zhidan; McGuinness, Kenneth N.; Crespo, Alejandro; Zhong, Wendy

    2018-05-01

    Disulfide bond formation is critical for maintaining structure stability and function of many peptides and proteins. Mass spectrometry has become an important tool for the elucidation of molecular connectivity. However, the interpretation of the tandem mass spectral data of disulfide-linked peptides has been a major challenge due to the lack of appropriate tools. Developing proper data analysis software is essential to quickly characterize disulfide-linked peptides. A thorough and in-depth understanding of how disulfide-linked peptides fragment in mass spectrometer is a key in developing software to interpret the tandem mass spectra of these peptides. Two model peptides with inter- and intra-chain disulfide linkages were used to study fragmentation behavior in both collisional-activated dissociation (CAD) and electron-based dissociation (ExD) experiments. Fragments generated from CAD and ExD can be categorized into three major types, which result from different S-S and C-S bond cleavage patterns. DiSulFinder is a computer algorithm that was newly developed based on the fragmentation observed in these peptides. The software is vendor neutral and capable of quickly and accurately identifying a variety of fragments generated from disulfide-linked peptides. DiSulFinder identifies peptide backbone fragments with S-S and C-S bond cleavages and, more importantly, can also identify fragments with the S-S bond still intact to aid disulfide linkage determination. With the assistance of this software, more comprehensive disulfide connectivity characterization can be achieved. [Figure not available: see fulltext.

  16. Characterization of Disulfide-Linked Peptides Using Tandem Mass Spectrometry Coupled with Automated Data Analysis Software.

    Science.gov (United States)

    Liang, Zhidan; McGuinness, Kenneth N; Crespo, Alejandro; Zhong, Wendy

    2018-01-25

    Disulfide bond formation is critical for maintaining structure stability and function of many peptides and proteins. Mass spectrometry has become an important tool for the elucidation of molecular connectivity. However, the interpretation of the tandem mass spectral data of disulfide-linked peptides has been a major challenge due to the lack of appropriate tools. Developing proper data analysis software is essential to quickly characterize disulfide-linked peptides. A thorough and in-depth understanding of how disulfide-linked peptides fragment in mass spectrometer is a key in developing software to interpret the tandem mass spectra of these peptides. Two model peptides with inter- and intra-chain disulfide linkages were used to study fragmentation behavior in both collisional-activated dissociation (CAD) and electron-based dissociation (ExD) experiments. Fragments generated from CAD and ExD can be categorized into three major types, which result from different S-S and C-S bond cleavage patterns. DiSulFinder is a computer algorithm that was newly developed based on the fragmentation observed in these peptides. The software is vendor neutral and capable of quickly and accurately identifying a variety of fragments generated from disulfide-linked peptides. DiSulFinder identifies peptide backbone fragments with S-S and C-S bond cleavages and, more importantly, can also identify fragments with the S-S bond still intact to aid disulfide linkage determination. With the assistance of this software, more comprehensive disulfide connectivity characterization can be achieved. Graphical Abstract ᅟ.

  17. The Chemistry of Alk-1-yn-1-yl DisulfidesA Review

    DEFF Research Database (Denmark)

    Senning, Alexander Erich Eugen

    2009-01-01

    The preparation and the properties of the elusive alk-1-yn-1-yl disulfides are reviewed, including the most recent quantum chemical findings with regard to their reactivity.......The preparation and the properties of the elusive alk-1-yn-1-yl disulfides are reviewed, including the most recent quantum chemical findings with regard to their reactivity....

  18. Complete Mapping of Complex Disulfide Patterns with Closely-Spaced Cysteines by In-Source Reduction and Data-Dependent Mass Spectrometry

    DEFF Research Database (Denmark)

    Cramer, Christian N; Kelstrup, Christian D; Olsen, Jesper V

    2017-01-01

    bonds are present in complicated patterns. This includes the presence of disulfide bonds in nested patterns and closely spaced cysteines. Unambiguous mapping of such disulfide bonds typically requires advanced MS approaches. In this study, we exploited in-source reduction (ISR) of disulfide bonds during...... the electrospray ionization process to facilitate disulfide bond assignments. We successfully developed a LC-ISR-MS/MS methodology to use as an online and fully automated partial reduction procedure. Postcolumn partial reduction by ISR provided fast and easy identification of peptides involved in disulfide bonding......Mapping of disulfide bonds is an essential part of protein characterization to ensure correct cysteine pairings. For this, mass spectrometry (MS) is the most widely used technique due to fast and accurate characterization. However, MS-based disulfide mapping is challenged when multiple disulfide...

  19. PDILT, a divergent testis-specific protein disulfide isomerase with a non-classical SXXC motif that engages in disulfide-dependent interactions in the endoplasmic reticulum.

    Science.gov (United States)

    van Lith, Marcel; Hartigan, Nichola; Hatch, Jennifer; Benham, Adam M

    2005-01-14

    Protein disulfide isomerase (PDI) is the archetypal enzyme involved in the formation and reshuffling of disulfide bonds in the endoplasmic reticulum (ER). PDI achieves its redox function through two highly conserved thioredoxin domains, and PDI can also operate as an ER chaperone. The substrate specificities and the exact functions of most other PDI family proteins remain important unsolved questions in biology. Here, we characterize a new and striking member of the PDI family, which we have named protein disulfide isomerase-like protein of the testis (PDILT). PDILT is the first eukaryotic SXXC protein to be characterized in the ER. Our experiments have unveiled a novel, glycosylated PDI-like protein whose tissue-specific expression and unusual motifs have implications for the evolution, catalytic function, and substrate selection of thioredoxin family proteins. We show that PDILT is an ER resident glycoprotein that liaises with partner proteins in disulfide-dependent complexes within the testis. PDILT interacts with the oxidoreductase Ero1alpha, demonstrating that the N-terminal cysteine of the CXXC sequence is not required for binding of PDI family proteins to ER oxidoreductases. The expression of PDILT, in addition to PDI in the testis, suggests that PDILT performs a specialized chaperone function in testicular cells. PDILT is an unusual PDI relative that highlights the adaptability of chaperone and redox function in enzymes of the endoplasmic reticulum.

  20. Solvent Induced Disulfide Bond Formation in 2,5-dimercapto-1,3,4-thiadiazole

    OpenAIRE

    Palanisamy Kalimuthu; Palraj Kalimuthu; S. Abraham John

    2007-01-01

    Disulfide bond formation is the decisive event in the protein folding to determine the conformation and stability of protein. To achieve this disulfide bond formation in vitro, we took 2,5-dimercapto-1,3,4-thiadiazole (DMcT) as a model compound. We found that disulfide bond formation takes place between two sulfhydryl groups of DMcT molecules in methanol. UV-Vis, FT-IR and mass spectroscopic as well as cyclic voltammetry were used to monitor the course of reaction. We proposed a mechanism for...

  1. Efficient soluble expression of disulfide bonded proteins in the cytoplasm of Escherichia coli in fed-batch fermentations on chemically defined minimal media.

    Science.gov (United States)

    Gąciarz, Anna; Khatri, Narendar Kumar; Velez-Suberbie, M Lourdes; Saaranen, Mirva J; Uchida, Yuko; Keshavarz-Moore, Eli; Ruddock, Lloyd W

    2017-06-15

    The production of recombinant proteins containing disulfide bonds in Escherichia coli is challenging. In most cases the protein of interest needs to be either targeted to the oxidizing periplasm or expressed in the cytoplasm in the form of inclusion bodies, then solubilized and re-folded in vitro. Both of these approaches have limitations. Previously we showed that soluble expression of disulfide bonded proteins in the cytoplasm of E. coli is possible at shake flask scale with a system, known as CyDisCo, which is based on co-expression of a protein of interest along with a sulfhydryl oxidase and a disulfide bond isomerase. With CyDisCo it is possible to produce disulfide bonded proteins in the presence of intact reducing pathways in the cytoplasm. Here we scaled up production of four disulfide bonded proteins to stirred tank bioreactors and achieved high cell densities and protein yields in glucose fed-batch fermentations, using an E. coli strain (BW25113) with the cytoplasmic reducing pathways intact. Even without process optimization production of purified human single chain IgA 1 antibody fragment reached 139 mg/L and hen avidin 71 mg/L, while purified yields of human growth hormone 1 and interleukin 6 were around 1 g/L. Preliminary results show that human growth hormone 1 was also efficiently produced in fermentations of W3110 strain and when glucose was replaced with glycerol as the carbon source. Our results show for the first time that efficient production of high yields of soluble disulfide bonded proteins in the cytoplasm of E. coli with the reducing pathways intact is feasible to scale-up to bioreactor cultivations on chemically defined minimal media.

  2. Selective removal of heavy metal ions by disulfide linked polymer networks

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Dongah [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Lee, Joo Sung [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); Patel, Hasmukh A. [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Jakobsen, Mogens H. [Department of Micro and Nano technology, Technical University of Denmark, Ørsteds Plads, 345B, 2800 Kgs. Lyngby (Denmark); Hwang, Yuhoon [Department of Environmental Engineering, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 01811 (Korea, Republic of); Yavuz, Cafer T. [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); Hansen, Hans Chr. Bruun [Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Andersen, Henrik R., E-mail: henrik@ndersen.net [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark)

    2017-06-15

    Highlights: • Disulfide/thiol polymer networks are promising as sorbent for heavy metals. • Rapid sorption and high Langmuir affinity constant (a{sub L}) for stormwater treatment. • Selective sorption for copper, cadmium, and zinc in the presence of calcium. • Reusability likely due to structure stability of disulfide linked polymer networks. - Abstract: Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions–copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water.

  3. Electrochemistry-assisted top-down characterization of disulfide-containing proteins.

    Science.gov (United States)

    Zhang, Yun; Cui, Weidong; Zhang, Hao; Dewald, Howard D; Chen, Hao

    2012-04-17

    Covalent disulfide bond linkage in a protein represents an important challenge for mass spectrometry (MS)-based top-down protein structure analysis as it reduces the backbone cleavage efficiency for MS/MS dissociation. This study presents a strategy for solving this critical issue via integrating electrochemistry (EC) online with a top-down MS approach. In this approach, proteins undergo electrolytic reduction in an electrochemical cell to break disulfide bonds and then undergo online ionization into gaseous ions for analysis by electron-capture dissociation (ECD) and collision-induced dissociation (CID). The electrochemical reduction of proteins allows one to remove disulfide bond constraints and also leads to increased charge numbers of the resulting protein ions. As a result, sequence coverage was significantly enhanced, as exemplified by β-lactoglobulin A (24 vs 75 backbone cleavages before and after electrolytic reduction, respectively) and lysozyme (5 vs 66 backbone cleavages before and after electrolytic reduction, respectively). This methodology is fast and does not need chemical reductants, which would have an important impact in high-throughput proteomics research.

  4. Selective disulfide reduction for labeling and enhancement of Fab antibody fragments

    International Nuclear Information System (INIS)

    Kirley, Terence L.; Greis, Kenneth D.; Norman, Andrew B.

    2016-01-01

    Many methods have been developed for chemical labeling and enhancement of the properties of antibodies and their common fragments, including the Fab and F(ab’) 2 fragments. Somewhat selective reduction of some antibody disulfide bonds has been previously achieved, yielding antibodies and antibody fragments that can be labeled at defined sites, enhancing their utility and properties. Selective reduction of the two hinge disulfide bonds present in F(ab’) 2 fragments using mild reduction has been useful. However, such reduction is often not quantitative and results in the reduction of multiple disulfide bonds, and therefore subsequent multiple labeling or conjugation sites are neither homogenous nor stoichiometric. Here, a simple and efficient selective reduction of the single disulfide bond linking the partial heavy chain and the intact light chain which compose the Fab fragment is accomplished utilizing tris(2-carboxyethyl)phosphine (TCEP) immobilized on agarose beads. The resultant reduced cysteine residues were labeled with several cysteine-selective fluorescent reagents, as well as by cysteine-directed PEGylation. These two cysteine residues can also be re-ligated by means of a bifunctional cysteine cross-linking agent, dibromobimane, thereby both restoring a covalent linkage between the heavy and light chains at this site, far removed from the antigen binding site, and also introducing a fluorescent probe. There are many other research and clinical uses for these selectively partially reduced Fab fragments, including biotinylation, toxin and drug conjugation, and incorporation of radioisotopes, and this technique enables simple generation of very useful Fab fragment derivatives with many potential applications. - Highlights: • TCEP agarose is effective for selective reduction of a single Fab disulfide bond. • This disulfide is solvent accessible and distant from the antigen binding site. • A variety of buffers of varying pHs can be used, simplifying

  5. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice

    International Nuclear Information System (INIS)

    Andres, A.C.; Schoenenberger, C.A.; Groner, B.; Henninghausen, L.; LeMeur, M.; Gelinger, P.

    1987-01-01

    The activated human Ha-ras oncogene was subjected to the control of the promoter region of the murine whey acidic protein (Wap) gene, which is expressed in mammary epithelial cells in response to lactogenic hormones. The Wap-ras gene was stably introduced into the mouse germ line of five transgenic mice (one male and four females). Wap-ras expression was observed in the mammary glands of lactating females in two lines derived from female founders. The tissue-directed and hormone-dependent Wap expression was conferred on the Ha-ras oncogene. The signals governing Wap expression are located within 2.5 kilobases of 5' flanking sequence. The other two lines derived from female founders did not express the chimeric gene. In the line derived from the male founder the Wap-ras gene is integrated into the Y chromosome. Expression was found in the salivary gland of male animals only. After a long latency, Wap-ras-expressing mice developed tumors. The tumors arose in tissues expressing Wap-ras - i.e., mammary or salivary glands. Compared to the corresponding nonmalignant tissues, Wap-ras expression was enhanced in the tumors

  6. Xenon oscillation tests in four-loop PWR cores

    International Nuclear Information System (INIS)

    Aoki, Norihiko; Osaka, Kenichi; Shimada, Shoichiro; Tochihara, Hiroshi; Machii, Seigo

    1980-01-01

    The Kansai Electric Power Co.'s OHI Unit 1 and 2 are the first 4-loop PWRs in Japan which use 17 x 17 fuel assemblies and have essentially the same plant parameters. A 4-loop core has larger core radius and higher power density than those of 2- or 3-loop cores, and is less stable for Xe oscillation. It is therefore important to confirm that Xe oscillations in radial direction are sufficiently stable in a 4-loop core. Radial and axial Xe oscillation tests were performed during the startup physics tests of OHI Unit 1 and 2; Xe oscillation was induced by perturbation of control rods and the Xe effect on power distribution observed periodically. The test results show that the transverse Xe oscillation in the 4-loop core is sufficiently stable and that the agreement between the measurement and the calculated prediction is good. (author)

  7. 'STARLESS' SUPER-JEANS CORES IN FOUR GOULD BELT CLOUDS

    International Nuclear Information System (INIS)

    Sadavoy, Sarah I.; Di Francesco, James; Johnstone, Doug

    2010-01-01

    From a survey of 729 cores based on JCMT/SCUBA data, we present an analysis of 17 candidate starless cores with masses that exceed their stable Jeans masses. We re-examine the classification of these super-Jeans cores using Spitzer maps and find that 3 are re-classified as protostellar, 11 have ambiguous emission near the core positions, and 3 appear to be genuinely starless. We suggest that the 3 starless and 11 undetermined super-Jeans cores represent excellent targets for future observational and computational study to understand the evolution of dense cores and the process of star formation.

  8. New thiol-responsive mono-cleavable block copolymer micelles labeled with single disulfides.

    Science.gov (United States)

    Sourkohi, Behnoush Khorsand; Schmidt, Rolf; Oh, Jung Kwon

    2011-10-18

    Thiol-responsive symmetric triblock copolymers having single disulfide linkages in the middle blocks (called mono-cleavable block copolymers, ss-ABP(2)) were synthesized by atom transfer radical polymerization in the presence of a disulfide-labeled difunctional Br-initiator. These brush-like triblock copolymers consist of a hydrophobic polyacrylate block having pendent oligo(propylene oxide) and a hydrophilic polymethacrylate block having pendent oligo(ethylene oxide). Gel permeation chromatography and (1)H NMR results confirmed the synthesis of well-defined mono-cleavable block copolymers and revealed that polymerizations were well controlled. Because of amphiphilic nature, these copolymers self-assembled to form colloidally stable micelles above critical micellar concentration of 0.032 mg · mL(-1). In response to reductive reactions, disulfides in thiol-responsive micelles were cleaved. Atomic force microscopy and dynamic light scattering analysis suggested that the cleavage of disulfides caused dissociation of micelles to smaller-sized assembled structures in water. Moreover, in a biomedical perspective, the mono-cleavable block copolymer micelles are not cytotoxic and thus biocompatible. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A Genome-Wide Association Study and Complex Network Identify Four Core Hub Genes in Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Zengyan Xie

    2017-12-01

    Full Text Available Bipolar disorder is a common and severe mental illness with unsolved pathophysiology. A genome-wide association study (GWAS has been used to find a number of risk genes, but it is difficult for a GWAS to find genes indirectly associated with a disease. To find core hub genes, we introduce a network analysis after the GWAS was conducted. Six thousand four hundred fifty eight single nucleotide polymorphisms (SNPs with p < 0.01 were sifted out from Wellcome Trust Case Control Consortium (WTCCC dataset and mapped to 2045 genes, which are then compared with the protein–protein network. One hundred twelve genes with a degree >17 were chosen as hub genes from which five significant modules and four core hub genes (FBXL13, WDFY2, bFGF, and MTHFD1L were found. These core hub genes have not been reported to be directly associated with BD but may function by interacting with genes directly related to BD. Our method engenders new thoughts on finding genes indirectly associated with, but important for, complex diseases.

  10. Distribution of immunodeficiency fact files with XML – from Web to WAP

    Directory of Open Access Journals (Sweden)

    Riikonen Pentti

    2005-06-01

    Full Text Available Abstract Background Although biomedical information is growing rapidly, it is difficult to find and retrieve validated data especially for rare hereditary diseases. There is an increased need for services capable of integrating and validating information as well as proving it in a logically organized structure. A XML-based language enables creation of open source databases for storage, maintenance and delivery for different platforms. Methods Here we present a new data model called fact file and an XML-based specification Inherited Disease Markup Language (IDML, that were developed to facilitate disease information integration, storage and exchange. The data model was applied to primary immunodeficiencies, but it can be used for any hereditary disease. Fact files integrate biomedical, genetic and clinical information related to hereditary diseases. Results IDML and fact files were used to build a comprehensive Web and WAP accessible knowledge base ImmunoDeficiency Resource (IDR available at http://bioinf.uta.fi/idr/. A fact file is a user oriented user interface, which serves as a starting point to explore information on hereditary diseases. Conclusion The IDML enables the seamless integration and presentation of genetic and disease information resources in the Internet. IDML can be used to build information services for all kinds of inherited diseases. The open source specification and related programs are available at http://bioinf.uta.fi/idml/.

  11. Electrochemical reduction of disulfide-containing proteins for hydrogen/deuterium exchange monitored by mass spectrometry

    DEFF Research Database (Denmark)

    Mysling, Simon; Salbo, Rune; Ploug, Michael

    2014-01-01

    Characterization of disulfide bond-containing proteins by hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) requires reduction of the disulfide bonds under acidic and cold conditions, where the amide hydrogen exchange reaction is quenched (pH 2.5, 0 °C). The reduction typically...... of TCEP. In the present study, we explore the feasibility of using electrochemical reduction as a substitute for TCEP in HDX-MS analyses. Our results demonstrate that efficient disulfide bond reduction is readily achieved by implementing an electrochemical cell into the HDX-MS workflow. We also identify...... some challenges in using electrochemical reduction in HDX-MS analyses and provide possible conditions to attenuate these limitations. For example, high salt concentrations hamper disulfide bond reduction, necessitating additional dilution of the sample with aqueous acidic solution at quench conditions....

  12. Dissecting the role of disulfide bonds on the amyloid formation of insulin

    International Nuclear Information System (INIS)

    Li, Yang; Gong, Hao; Sun, Yue; Yan, Juan; Cheng, Biao; Zhang, Xin; Huang, Jing; Yu, Mengying; Guo, Yu; Zheng, Ling; Huang, Kun

    2012-01-01

    Highlights: ► We dissect how individual disulfide bond affects the amyloidogenicity of insulin. ► A controlled reduction system for insulin is established in this study. ► Disulfide breakage is associated with unfolding and increased amyloidogenicity. ► Breakage of A6-A11 is associated with significantly increased cytotoxicity. ► Analogs without A6-A11 have a higher potency to form high order toxic oligomers. -- Abstract: Disulfide bonds play a critical role in the stability and folding of proteins. Here, we used insulin as a model system, to investigate the role of its individual disulfide bond during the amyloid formation of insulin. Tris(2-carboxyethyl)phosphine (TCEP) was applied to reduce two of the three disulfide bonds in porcine insulin and the reduced disulfide bonds were then alkylated by iodoacetamide. Three disulfide bond-modified insulin analogs, INS-2 (lack of A6-A11), INS-3 (lack of A7-B7) and INS-6 (lack of both A6-A11 and A7-B7), were obtained. Far-UV circular dichroism (CD) spectroscopy results indicated that the secondary structure of INS-2 was the closest to insulin under neutral conditions, followed by INS-3 and INS-6, whereas in an acidic solution all analogs were essentially unfolded. To test how these modifications affect the amyloidogenicity of insulin, thioflavin-T (ThT) fluorescence and transmission electronic microscopy (TEM) were performed. Our results showed that all analogs were more prone to aggregation than insulin, with the order of aggregation rates being INS-6 > INS-3 > INS-2. Cross-linking of unmodified proteins (PICUP) assay results showed that analogs without A6-A11 (INS-2 and INS-6) have a higher potential for oligomerization than insulin and INS-3, which is accompanied with a higher cytotoxicity as the hemolytic assays of human erythrocytes suggested. The results indicated that breakage of A7-B7 induced more unfolding of the insulin structure and a higher amyloidogenicity than breakage of A6-A11, but breakage of A6

  13. Selecting core-hole localization or delocalization in CS2 by photofragmentation dynamics.

    Science.gov (United States)

    Guillemin, R; Decleva, P; Stener, M; Bomme, C; Marin, T; Journel, L; Marchenko, T; Kushawaha, R K; Jänkälä, K; Trcera, N; Bowen, K P; Lindle, D W; Piancastelli, M N; Simon, M

    2015-01-21

    Electronic core levels in molecules are highly localized around one atomic site. However, in single-photon ionization of symmetric molecules, the question of core-hole localization versus delocalization over two equivalent atoms has long been debated as the answer lies at the heart of quantum mechanics. Here, using a joint experimental and theoretical study of core-ionized carbon disulfide (CS2), we demonstrate that it is possible to experimentally select distinct molecular-fragmentation pathways in which the core hole can be considered as either localized on one sulfur atom or delocalized between two indistinguishable sulfur atoms. This feat is accomplished by measuring photoelectron angular distributions within the frame of the molecule, directly probing entanglement or disentanglement of quantum pathways as a function of how the molecule dissociates.

  14. Cytoplasmic glutathione redox status determines survival upon exposure to the thiol-oxidant 4,4'-dipyridyl disulfide

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Thorsen, Michael; Kielland-Brandt, Morten C

    2007-01-01

    Dipyridyl disulfide (DPS) is a highly reactive thiol oxidant that functions as electron acceptor in thiol-disulfide exchange reactions. DPS is very toxic to yeasts, impairing growth at low micromolar concentrations. The genes TRX2 (thioredoxin), SOD1 (superoxide dismutase), GSH1 (gamma-glutamyl-c......Dipyridyl disulfide (DPS) is a highly reactive thiol oxidant that functions as electron acceptor in thiol-disulfide exchange reactions. DPS is very toxic to yeasts, impairing growth at low micromolar concentrations. The genes TRX2 (thioredoxin), SOD1 (superoxide dismutase), GSH1 (gamma...... antioxidant pools of glutathione (GSH) and thioredoxin are required for resistance to DPS. We found that DPS-sensitive mutants display increases in the disulfide form of GSH (GSSG) during DPS exposure that roughly correlate with their more oxidizing GSH redox potential in the cytosol and their degree of DPS...

  15. Four-fluid model of PWR degraded cores

    International Nuclear Information System (INIS)

    Dearing, J.F.

    1985-01-01

    This paper describes the new two-dimensional, four-fluid fluid dynamics and heat transfer (FLUIDS) module of the MELPROG code. MELPROG is designed to give an integrated, mechanistic treatment of pressurized water reactor (PWR) core meltdown accidents from accident initiation to vessel melt-through. The code has a modular data storage and transfer structure, with each module providing the others with boundary conditions at each computational time step. Thus the FLUIDS module receives mass and energy source terms from the fuel pin module, the structures module, and the debris bed module, and radiation energy source terms from the radiation module. MELPROG, which models the reactor vessel, is also designed to model the vessel as a component in the TRAC/PF1 networking solution of a PWR reactor coolant system (RCS). The coupling between TRAC and MELPROG is implicit in the fluid dynamics of the reactor coolant (liquid water and steam) allowing an accurate simulation of the coupling between the vessel and the rest of the RCS during an accident. This paper deals specifically with the numerical model of fluid dynamics and heat transfer within the reactor vessel, which allows a much more realistic simulation (with less restrictive assumptions on physical behavior) of the accident than has been possible before

  16. Synthesis of Reusable Silica Nanosphere-Supported Pt(IV Complex for Formation of Disulfide Bonds in Peptides

    Directory of Open Access Journals (Sweden)

    Xiaonan Hou

    2017-02-01

    Full Text Available Some peptide-based drugs, including oxytocin, vasopressin, ziconotide, pramlintide, nesiritide, and octreotide, contain one intramolecular disulfide bond. A novel and reusable monodispersed silica nanosphere-supported Pt(IV complex (SiO2@TPEA@Pt(IV; TPEA: N-[3-(trimethoxysilylpropyl]ethylenediamine was synthesized via a four-step procedure and was used for the formation of intramolecular disulfide bonds in peptides. Transmission electron microscopy (TEM and chemical mapping results for the Pt(II intermediates and for SiO2@TPEA@Pt(IV show that the silica nanospheres possess a monodisperse spherical structure and contain uniformly-distributed Si, O, C, N, Cl, and Pt. The valence state of Pt on the silica nanospheres was characterized by X-ray photoelectron spectroscopy (XPS. The Pt(IV loaded on SiO2@TPEA@Pt(IV was 0.15 mmol/g, as determined by UV-VIS spectrometry. The formation of intramolecular disulfides in six dithiol-containing peptides of variable lengths by the use of SiO2@TPEA@Pt(IV was investigated, and the relative oxidation yields were determined by high-performance liquid chromatography (HPLC. In addition, peptide 1 (Ac-CPFC-NH2 was utilized to study the reusability of SiO2@TPEA@Pt(IV. No significant decrease in the relative oxidation yield was observed after ten reaction cycles. Moreover, the structure of SiO2@TPEA@Pt(IV after being used for ten cycles was determined to be similar to its initial one, demonstrating the cycling stability of the complex.

  17. The significance of disulfide bonding in biological activity of HB-EGF, a mutagenesis approach

    OpenAIRE

    Hoskins, J.T.; Zhou, Z.; Harding, P.A.

    2008-01-01

    A site-directed mutagenesis approach was taken to disrupt each of 3 disulfide bonds within human HB-EGF by substituting serine for both cysteine residues that contribute to disulfide bonding. Each HB-EGF disulfide analogue (HB-EGF-Cys/Ser108/121, HB-EGF-Cys/Ser116/132, and HB-EGF-Cys/Ser134/143) was cloned under the regulation of the mouse metallothionein (MT) promoter and stably expressed in mouse fibroblasts. HB-EGF immunoreactive proteins with Mr of 6.5, 21 and 24kDa were observed from lys...

  18. Radiation-induced cleavage of disulfide bonds in proteins. Clivage radiolytique des ponts disulfure des proteines

    Energy Technology Data Exchange (ETDEWEB)

    Favaudon, V; Tourbez, H; Lhoste, J M [Paris-11 Univ., 91 - Orsay (FR); Houee-Levin, C [Paris-5 Univ., 75 (FR)

    1991-06-01

    The reduction of the disulfide bonds in apo-Riboflavin-Binding Protein (apoRBP) by the CO{sub 2}{sup -}{center dot} radical occurred under {gamma}-ray irradiation as a chain reaction whose efficiency increased upon acidification of the medium. Pulse-radiolysis analysis showed a rapid one-electron oxidation of the disulfide bonds yielding the anionic or protonated form of the disulfide radical. The main decay path of this radical under acidic conditions consisted of the rapid formation of a thiyl radical intermediate in equilibrium with the closed, cyclic form. At pH 8 the disulfide radical anion decayed via intramolecular and/or intermolecular routes including disproportionation, protein-protein crosslinking, non-dismutative recombination processes, and reaction with sulfhydryl groups in pre-reduced systems.

  19. An analytic study of molybdenum disulfide nanofluids using the modern approach of Atangana-Baleanu fractional derivatives

    Science.gov (United States)

    Ali Abro, Kashif; Hussain, Mukkarum; Mahmood Baig, Mirza

    2017-10-01

    The significance of the different shapes of molybdenum disulfide nanoparticles contained in ethylene glycol has recently attracted researchers, because of the numerical or experimental analyses on the shapes of molybdenum disulfide and the lack of fractionalized analytic approaches. This work is dedicated to examining the shape impacts of molybdenum disulfide nanofluids in the mixed convection flow with magnetic field and a porous medium. Ethylene glycol is chosen as the base fluid in which molybdenum disulfide nanoparticles are suspended. Non-spherically shaped molybdenum disulfide nanoparticles, namely, platelet, blade, cylinder and brick, are utilized in this analysis. The modeling of the problem is characterized by employing the modern approach of Atangana-Baleanu fractional derivatives and the governing partial differential equations are solved via Laplace transforms with inversion. Solutions are obtained for temperature distribution and velocity field and expressed in terms of compact form of M-function, Mba(T) . In the end, a figures are drawn to compare the different non-spherically shaped molybdenum disulfide nanoparticles. Furthermore, the Atangana-Baleanu fractional derivatives model has been compared with ordinary derivatives models and discussed graphically by setting various rheological parameters.

  20. Synthesis of tetraalkyl thiuram disulfides using different oxidants in recycling solvent mixture

    Directory of Open Access Journals (Sweden)

    Milosavljević Milutin M.

    2012-01-01

    Full Text Available A new optimized laboratory synthesis of tetraalkyl thiuram disulfides, starting from dialkyl amines and carbon disulfide in presence of three oxidants (hydrogen peroxide, potassium peroxodisulfate and sodium hypochlorite and appropriate reaction medium: two mixtures of isopropyl alcohol - water used in two consecutive syntheses, was presented in this work. First synthesis was performed in a recycled azeotropic mixture of isopropyl alcohol - water 87.7% - 12.3%, and second in a filtrate obtained after first synthesis, which was a mixture of isopropyl alcohol - water 70.4% - 29.6%. After the second synthesis and filtration, recycled azeotropic mixture isopropyl alcohol - water 87.7% - 12.3% was regenerated from the filtrate by rectification. Considering this, the technology for beneficial use of recycling isopropyl alcohol - water mixture as reaction medium for tetraalkyl thiuram disulfides synthesis was developed. Such concept contributes to extraordinary economical benefit of implemented optimal laboratory synthesis at semi-industrial level. High yields of tetraalkyl thiuram disulfides syntheses were obtained at both laboratory and semiindustrial level. Structure and purity of synthesized compounds were confirmed by elemental analysis, as well as FTIR, 1H and 13C NMR, and MS spectral data.

  1. Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond.

    Science.gov (United States)

    Liu, Jinny L; Goldman, Ellen R; Zabetakis, Dan; Walper, Scott A; Turner, Kendrick B; Shriver-Lake, Lisa C; Anderson, George P

    2015-10-09

    Single domain antibodies derived from the variable region of the unique heavy chain antibodies found in camelids yield high affinity and regenerable recognition elements. Adding an additional disulfide bond that bridges framework regions is a proven method to increase their melting temperature, however often at the expense of protein production. To fulfill their full potential it is essential to achieve robust protein production of these stable binding elements. In this work, we tested the hypothesis that decreasing the isoelectric point of single domain antibody extra disulfide bond mutants whose production fell due to the incorporation of the extra disulfide bond would lead to recovery of the protein yield, while maintaining the favorable melting temperature and affinity. Introduction of negative charges into a disulfide bond mutant of a single domain antibody specific for the L1 antigen of the vaccinia virus led to approximately 3.5-fold increase of protein production to 14 mg/L, while affinity and melting temperature was maintained. In addition, refolding following heat denaturation improved from 15 to 70 %. It also maintained nearly 100 % of its binding function after heating to 85 °C for an hour at 1 mg/mL. Disappointingly, the replacement of neutral or positively charged amino acids with negatively charged ones to lower the isoelectric point of two anti-toxin single domain antibodies stabilized with a second disulfide bond yielded only slight increases in protein production. Nonetheless, for one of these binders the charge change itself stabilized the structure equivalent to disulfide bond addition, thus providing an alternative route to stabilization which is not accompanied by loss in production. The ability to produce high affinity, stable single domain antibodies is critical for their utility. While the addition of a second disulfide bond is a proven method for enhancing stability of single domain antibodies, it frequently comes at the cost of reduced

  2. A novel engineered interchain disulfide bond in the constant region enhances the thermostability of adalimumab Fab.

    Science.gov (United States)

    Nakamura, Hitomi; Oda-Ueda, Naoko; Ueda, Tadashi; Ohkuri, Takatoshi

    2018-01-01

    We constructed a system for expressing the Fab of the therapeutic human monoclonal antibody adalimumab at a yield of 20 mg/L in the methylotrophic yeast Pichia pastoris. To examine the contribution of interchain disulfide bonds to conformational stability, we prepared adalimumab Fab from which the interchain disulfide bond at the C-terminal region at both the CH 1 and CL domains was deleted by substitution of Cys with Ala (Fab ΔSS ). DSC measurements showed that the Tm values of Fab ΔSS were approximately 5 °C lower than those of wild-type Fab, suggesting that the interchain disulfide bond contributes to conformational thermostability. Using computer simulations, we designed a novel interchain disulfide bond outside the C-terminal region to increase the stability of Fab ΔSS . The resulting Fab (mutSS Fab ΔSS ) had the mutations H:V177C and L:Q160C in Fab ΔSS , confirming the formation of the disulfide bond between CH 1 and CL. The thermostability of mutSS Fab ΔSS was approximately 5 °C higher than that of Fab ΔSS . Therefore, the introduction of the designed interchain disulfide bond enhanced the thermostability of Fab ΔSS and mitigated the destabilization caused by partial reduction of the interchain disulfide bond at the C-terminal region, which occurs in site-specific modification such as PEGylation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Alpha-cyclodextrins reversibly capped with disulfide bonds

    Czech Academy of Sciences Publication Activity Database

    Kumprecht, Lukáš; Buděšínský, Miloš; Bouř, Petr; Kraus, Tomáš

    2010-01-01

    Roč. 34, č. 10 (2010), s. 2254-2260 ISSN 1144-0546 R&D Projects: GA AV ČR IAA400550810 Institutional research plan: CEZ:AV0Z40550506 Keywords : cyclodextrins * disulfide bond * dynamic covalent bond Subject RIV: CC - Organic Chemistry Impact factor: 2.631, year: 2010

  4. Photo-reduction on the rupture of disulfide bonds and the related protein assembling

    Science.gov (United States)

    Wang, Wei

    It has been found that many proteins can self-assemble into nanoscale assemblies when they unfold or partially unfold under harsh conditions, such as low pH, high temperature, or the presence of denaturants, and so on. These nanoscale assemblies can have some applications such as the drug-delivery systems (DDSs). Here we report a study that a very physical way, the UV illumination, can be used to facilitate the formation of protein fibrils and nanoparticles under native conditions by breaking disulfide bonds in some disulfide-containing proteins. By controlling the intensity of UV light and the illumination time, we realized the preparation of self-assembly nanoparticles which encapsulate the anticancer drug doxorubicin (DOX) and can be used as the DDS for inhibiting the growth of tumor. The formation of fibrillary assemblies was also observed. The rupture of disulfide bonds through photo-reduction process due to the effect of tryptophan and tyrosine was studied, and the physical mechanism of the assembling of the related disulfide-containing proteins was also discussed. We thank the financial support from NSF of China and the 973 project.

  5. The significance of disulfide bonding in biological activity of HB-EGF, a mutagenesis approach

    International Nuclear Information System (INIS)

    Hoskins, J.T.; Zhou, Z.; Harding, P.A.

    2008-01-01

    A site-directed mutagenesis approach was taken to disrupt each of 3 disulfide bonds within human HB-EGF by substituting serine for both cysteine residues that contribute to disulfide bonding. Each HB-EGF disulfide analogue (HB-EGF-Cys/Ser 108/121 , HB-EGF-Cys/Ser 116/132 , and HB-EGF-Cys/Ser 134/143 ) was cloned under the regulation of the mouse metallothionein (MT) promoter and stably expressed in mouse fibroblasts. HB-EGF immunoreactive proteins with M r of 6.5, 21 and 24 kDa were observed from lysates of HB-EGF and each HB-EGF disulfide analogue. HB-EGF immunohistochemical analyses of each HB-EGF stable cell line demonstrated ubiquitous protein expression except HB-EGF-Cys/Ser 108/121 and HB-EGF-Cys/Ser 116/132 stable cell lines which exhibited accumulated expression immediately outside the nucleus. rHB-EGF, HB-EGF, and HB-EGF 134/143 proteins competed with 125 I-EGF in an A431 competitive binding assay, whereas HB-EGF-Cys/Ser 108/121 and HB-EGF-Cys/Ser 116/132 failed to compete. Each HB-EGF disulfide analogue lacked the ability to stimulate tyrosine phosphorylation of the 170 kDa EGFR. These results suggest that HB-EGF-Cys/Ser 134/143 antagonizes EGFRs

  6. Novel Roles of the Non-catalytic Elements of Yeast Protein-disulfide Isomerase in Its Interplay with Endoplasmic Reticulum Oxidoreductin 1*

    Science.gov (United States)

    Niu, Yingbo; Zhang, Lihui; Yu, Jiaojiao; Wang, Chih-chen; Wang, Lei

    2016-01-01

    The formation of disulfide bonds in the endoplasmic reticulum (ER) of eukaryotic cells is catalyzed by the sulfhydryl oxidase, ER oxidoreductin 1 (Ero1), and protein-disulfide isomerase (PDI). PDI is oxidized by Ero1 to continuously introduce disulfides into substrates, and feedback regulates Ero1 activity by manipulating the regulatory disulfides of Ero1. In this study we find that yeast Ero1p is enzymatically active even with its regulatory disulfides intact, and further activation of Ero1p by reduction of the regulatory disulfides requires the reduction of non-catalytic Cys90-Cys97 disulfide in Pdi1p. The principal client-binding site in the Pdi1p b′ domain is necessary not only for the functional Ero1p-Pdi1p disulfide relay but also for the activation of Ero1p. We also demonstrate by complementary activation assays that the regulatory disulfides in Ero1p are much more stable than those in human Ero1α. These new findings on yeast Ero1p-Pdi1p interplay reveal significant differences from our previously identified mode of human Ero1α-PDI interplay and provide insights into the evolution of the eukaryotic oxidative protein folding pathway. PMID:26846856

  7. Improvement in the thermostability of chitosanase from Bacillus ehimensis by introducing artificial disulfide bonds.

    Science.gov (United States)

    Sheng, Jun; Ji, Xiaofeng; Zheng, Yuan; Wang, Zhipeng; Sun, Mi

    2016-10-01

    To determine the effects of artificial disulfide bridges on the thermostability and catalytic efficiency of chitosanase EAG1. Five artificial disulfide bridges were designed based on the structural information derived from the three-dimensional (3-D) model of chitosanase EAG1. Two beneficial mutants (G113C/D116C, A207C-L286C) were located in the flexible surface loop region, whereas the similar substitutions introduced in α-helices regions had a negligible effect. Mut5, the most active mutant, had a longer half-life at 50 °C (from 10.5 to 69.3 min) and a 200 % higher catalytic efficiency (K cat/K m) than that of the original EAG1. The contribution of disulfide bridges to enzyme thermostability is mainly dependent on its location within the polypeptide chain. Strategical placement of a disulfide bridge in flexible regions provides a rigid support and creation of a protected microenvironment, which is effective in improving enzyme's thermostability and catalytic efficiency.

  8. Increasing the reactivity of an artificial dithiol-disulfide pair through modification of the electrostatic milieu

    DEFF Research Database (Denmark)

    Hansen, Rosa E; Østergaard, Henrik; Winther, Jakob R

    2005-01-01

    K(a) value of Cys149, as well as favorable electrostatic interactions with the negatively charged reagents. The results presented here show that the electrostatic milieu of cysteine thiols in proteins can have substantial effects on the rates of the thiol-disulfide exchange reactions.......The thiol-disulfide exchange reaction plays a central role in the formation of disulfide bonds in newly synthesized proteins and is involved in many aspects of cellular metabolism. Because the thiolate form of the cysteine residue is the key reactive species, its electrostatic milieu is thought...... surface. We have studied properties of vicinal cysteine residues in proteins using a model system based on redox-sensitive yellow fluorescent protein (rxYFP). In this system, the formation of a disulfide bond between two cysteines Cys149 and Cys202 is accompanied by a 2.2-fold decrease in fluorescence...

  9. Identification of Thioredoxin Disulfide Targets Using a Quantitative Proteomics Approach Based on Isotope-Coded Affinity Tags

    DEFF Research Database (Denmark)

    Hägglund, Per; Bunkenborg, Jakob; Maeda, Kenji

    2008-01-01

    Thioredoxin (Trx) is a ubiquitous protein disulfide reductase involved in a wide range of cellular redox processes. A large number of putative target proteins have been identified using proteomics approaches, but insight into target specificity at the molecular level is lacking since the reactivity...... of Trx toward individual disulfides has not been quantified. Here, a novel proteomics procedure is described for quantification of Trx-mediated target disulfide reduction based on thiol-specific differential labeling with the iodoacetamide-based isotope-coded affinity tag (ICAT) reagents. Briefly......, protein extract of embryos from germinated barley seeds was treated +/- Trx, and thiols released from target protein disulfides were irreversibly blocked with iodoacetamide. The remaining cysteine residues in the Trx-treated and the control (-Trx) samples were then chemically reduced and labeled...

  10. Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli

    Directory of Open Access Journals (Sweden)

    Hatahet Feras

    2010-09-01

    Full Text Available Abstract Background The formation of native disulfide bonds is a complex and essential post-translational modification for many proteins. The large scale production of these proteins can be difficult and depends on targeting the protein to a compartment in which disulfide bond formation naturally occurs, usually the endoplasmic reticulum of eukaryotes or the periplasm of prokaryotes. It is currently thought to be impossible to produce large amounts of disulfide bond containing protein in the cytoplasm of wild-type bacteria such as E. coli due to the presence of multiple pathways for their reduction. Results Here we show that the introduction of Erv1p, a sulfhydryl oxidase and FAD-dependent catalyst of disulfide bond formation found in the inter membrane space of mitochondria, allows the efficient formation of native disulfide bonds in heterologously expressed proteins in the cytoplasm of E. coli even without the disruption of genes involved in disulfide bond reduction, for example trxB and/or gor. Indeed yields of active disulfide bonded proteins were higher in BL21 (DE3 pLysSRARE, an E. coli strain with the reducing pathways intact, than in the commercial Δgor ΔtrxB strain rosetta-gami upon co-expression of Erv1p. Conclusions Our results refute the current paradigm in the field that disruption of at least one of the reducing pathways is essential for the efficient production of disulfide bond containing proteins in the cytoplasm of E. coli and open up new possibilities for the use of E. coli as a microbial cell factory.

  11. Photodegradable, Photoadaptable Hydrogels via Radical-Mediated Disulfide Fragmentation Reaction.

    Science.gov (United States)

    Fairbanks, Benjamin D; Singh, Samir P; Bowman, Christopher N; Anseth, Kristi S

    2011-04-26

    Various techniques have been adopted to impart a biological responsiveness to synthetic hydrogels for the delivery of therapeutic agents as well as the study and manipulation of biological processes and tissue development. Such techniques and materials include polyelectrolyte gels that swell and deswell with changes in pH, thermosensitive gels that contract at physiological temperatures, and peptide cross-linked hydrogels that degrade upon peptidolysis by cell-secreted enzymes. Herein we report a unique approach to photochemically deform and degrade disulfide cross-linked hydrogels, mitigating the challenges of light attenuation and low quantum yield, permitting the degradation of hydrogels up to 2 mm thick within 120 s at low light intensities (10 mW/cm(2) at 365 nm). Hydrogels were formed by the oxidation of thiol-functionalized 4-armed poly(ethylene glycol) macromolecules. These disulfide cross-linked hydrogels were then swollen in a lithium acylphosphinate photoinitiator solution. Upon exposure to light, photogenerated radicals initiate multiple fragmentation and disulfide exchange reactions, permitting and promoting photodeformation, photowelding, and photodegradation. This novel, but simple, approach to generate photoadaptable hydrogels portends the study of cellular response to mechanically and topographically dynamic substrates as well as novel encapsulations by the welding of solid substrates. The principles and techniques described herein hold implications for more than hydrogel materials but also for photoadaptable polymers more generally.

  12. Structural Basis of a Thiol-Disulfide Oxidoreductase in the Hedgehog-Forming Actinobacterium Corynebacterium matruchotii.

    Science.gov (United States)

    Luong, Truc Thanh; Tirgar, Reyhaneh; Reardon-Robinson, Melissa E; Joachimiak, Andrzej; Osipiuk, Jerzy; Ton-That, Hung

    2018-05-01

    The actinobacterium Corynebacterium matruchotii has been implicated in nucleation of oral microbial consortia leading to biofilm formation. Due to the lack of genetic tools, little is known about basic cellular processes, including protein secretion and folding, in this organism. We report here a survey of the C. matruchotii genome, which encodes a large number of exported proteins containing paired cysteine residues, and identified an oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA (MdbA Cd ). Crystallization studies uncovered that the 1.2-Å resolution structure of C. matruchotii MdbA (MdbA Cm ) possesses two conserved features found in actinobacterial MdbA enzymes, a thioredoxin-like fold and an extended α-helical domain. By reconstituting the disulfide bond-forming machine in vitro , we demonstrated that MdbA Cm catalyzes disulfide bond formation within the actinobacterial pilin FimA. A new gene deletion method supported that mdbA is essential in C. matruchotii Remarkably, heterologous expression of MdbA Cm in the C. diphtheriae Δ mdbA mutant rescued its known defects in cell growth and morphology, toxin production, and pilus assembly, and this thiol-disulfide oxidoreductase activity required the catalytic motif CXXC. Altogether, the results suggest that MdbA Cm is a major thiol-disulfide oxidoreductase, which likely mediates posttranslocational protein folding in C. matruchotii by a mechanism that is conserved in Actinobacteria IMPORTANCE The actinobacterium Corynebacterium matruchotii has been implicated in the development of oral biofilms or dental plaque; however, little is known about the basic cellular processes in this organism. We report here a high-resolution structure of a C. matruchotii oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA. By biochemical analysis, we demonstrated that C. matruchotii MdbA catalyzes disulfide

  13. Simultaneous electrochemical determination of L-cysteine and L-cysteine disulfide at carbon ionic liquid electrode.

    Science.gov (United States)

    Safavi, Afsaneh; Ahmadi, Raheleh; Mahyari, Farzaneh Aghakhani

    2014-04-01

    A linear sweep voltammetric method is used for direct simultaneous determination of L-cysteine and L-cysteine disulfide (cystine) based on carbon ionic liquid electrode. With carbon ionic liquid electrode as a high performance electrode, two oxidation peaks for L-cysteine (0.62 V) and L-cysteine disulfide (1.3 V) were observed with a significant separation of about 680 mV (vs. Ag/AgCl) in phosphate buffer solution (pH 6.0). The linear ranges were obtained as 1.0-450 and 5.0-700 μM and detection limits were estimated to be 0.298 and 4.258 μM for L-cysteine and L-cysteine disulfide, respectively. This composite electrode was applied for simultaneous determination of L-cysteine and L-cysteine disulfide in two real samples, artificial urine and nutrient broth. Satisfactory results were obtained which clearly indicate the applicability of the proposed electrode for simultaneous determination of these compounds in complex matrices.

  14. Selective disulfide reduction for labeling and enhancement of Fab antibody fragments.

    Science.gov (United States)

    Kirley, Terence L; Greis, Kenneth D; Norman, Andrew B

    2016-11-25

    Many methods have been developed for chemical labeling and enhancement of the properties of antibodies and their common fragments, including the Fab and F(ab') 2 fragments. Somewhat selective reduction of some antibody disulfide bonds has been previously achieved, yielding antibodies and antibody fragments that can be labeled at defined sites, enhancing their utility and properties. Selective reduction of the two hinge disulfide bonds present in F(ab') 2 fragments using mild reduction has been useful. However, such reduction is often not quantitative and results in the reduction of multiple disulfide bonds, and therefore subsequent multiple labeling or conjugation sites are neither homogenous nor stoichiometric. Here, a simple and efficient selective reduction of the single disulfide bond linking the partial heavy chain and the intact light chain which compose the Fab fragment is accomplished utilizing tris(2-carboxyethyl)phosphine (TCEP) immobilized on agarose beads. The resultant reduced cysteine residues were labeled with several cysteine-selective fluorescent reagents, as well as by cysteine-directed PEGylation. These two cysteine residues can also be re-ligated by means of a bifunctional cysteine cross-linking agent, dibromobimane, thereby both restoring a covalent linkage between the heavy and light chains at this site, far removed from the antigen binding site, and also introducing a fluorescent probe. There are many other research and clinical uses for these selectively partially reduced Fab fragments, including biotinylation, toxin and drug conjugation, and incorporation of radioisotopes, and this technique enables simple generation of very useful Fab fragment derivatives with many potential applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Photoinduced Cross-Linking of Dynamic Poly(disulfide) Films via Thiol Oxidative Coupling.

    Science.gov (United States)

    Feillée, Noémi; Chemtob, Abraham; Ley, Christian; Croutxé-Barghorn, Céline; Allonas, Xavier; Ponche, Arnaud; Le Nouen, Didier; Majjad, Hicham; Jacomine, Léandro

    2016-01-01

    Initially developed as an elastomer with an excellent record of barrier and chemical resistance properties, poly(disulfide) has experienced a revival linked to the dynamic nature of the S-S covalent bond. A novel photobase-catalyzed oxidative polymerization of multifunctional thiols to poly(disulfide) network is reported. Based solely on air oxidation, the single-step process is triggered by the photodecarboxylation of a xanthone acetic acid liberating a strong bicyclic guanidine base. Starting with a 1 μm thick film based on trithiol poly(ethylene oxide) oligomer, the UV-mediated oxidation of thiols to disulfides occurs in a matter of minutes both selectively, i.e., without overoxidation, and quantitatively as assessed by a range of spectroscopic techniques. Thiolate formation and film thickness determine the reaction rates and yield. Spatial control of the photopolymerization serves to generate robust micropatterns, while the reductive cleavage of S-S bridges allows the recycling of 40% of the initial thiol groups. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. New analogs of the CART peptide with anorexigenic potency: the importance of individual disulfide bridges.

    Science.gov (United States)

    Blechová, Miroslava; Nagelová, Veronika; Záková, Lenka; Demianová, Zuzana; Zelezná, Blanka; Maletínská, Lenka

    2013-01-01

    The CART (cocaine- and amphetamine-regulated transcript) peptide is an anorexigenic neuropeptide that acts in the hypothalamus. The receptor and the mechanism of action of this peptide are still unknown. In our previous study, we showed that the CART peptide binds specifically to PC12 rat pheochromocytoma cells in both the native and differentiated into neuronal phenotype. Two biologically active forms, CART(55-102) and CART(61-102), with equal biological activity, contain three disulfide bridges. To clarify the importance of each of these disulfide bridges in maintaining the biological activity of CART(61-102), an Ala scan at particular S-S bridges forming cysteines was performed, and analogs with only one or two disulfide bridges were synthesized. In this study, a stabilized CART(61-102) analog with norleucine instead of methionine at position 67 was also prepared and was found to bind to PC12 cells with an anorexigenic potency similar to that of CART(61-102). The binding study revealed that out of all analogs tested, [Ala(68,86)]CART(61-102), which contains two disulfide bridges (positions 74-94 and 88-101), preserved a high affinity to both native PC12 cells and those that had been differentiated into neurons. In food intake and behavioral tests with mice after intracerebroventricular administration, this analog showed strong and long-lasting anorexigenic potency. Therefore, the disulfide bridge between cysteines 68 and 86 in CART(61-102) can be omitted without a loss of biological activity, but the preservation of two other disulfide bridges and the full-length peptide are essential for biological activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. A novel disulfide bond in the SH2 Domain of the C-terminal Src kinase controls catalytic activity.

    Science.gov (United States)

    Mills, Jamie E; Whitford, Paul C; Shaffer, Jennifer; Onuchic, Jose N; Adams, Joseph A; Jennings, Patricia A

    2007-02-02

    The SH2 domain of the C-terminal Src kinase [Csk] contains a unique disulfide bond that is not present in other known SH2 domains. To investigate whether this unusual disulfide bond serves a novel function, the effects of disulfide bond formation on catalytic activity of the full-length protein and on the structure of the SH2 domain were investigated. The kinase activity of full-length Csk decreases by an order of magnitude upon formation of the disulfide bond in the distal SH2 domain. NMR spectra of the fully oxidized and fully reduced SH2 domains exhibit similar chemical shift patterns and are indicative of similar, well-defined tertiary structures. The solvent-accessible disulfide bond in the isolated SH2 domain is highly stable and far from the small lobe of the kinase domain. However, reduction of this bond results in chemical shift changes of resonances that map to a cluster of residues that extend from the disulfide bond across the molecule to a surface that is in direct contact with the small lobe of the kinase domain in the intact molecule. Normal mode analyses and molecular dynamics calculations suggest that disulfide bond formation has large effects on residues within the kinase domain, most notably within the active-site cleft. Overall, the data indicate that reversible cross-linking of two cysteine residues in the SH2 domain greatly impacts catalytic function and interdomain communication in Csk.

  18. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein

    DEFF Research Database (Denmark)

    Østergaard, H.; Henriksen, A.; Hansen, Flemming G.

    2001-01-01

    To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease...... in the intrinsic fluorescence. Inter conversion between the two redox states could thus be followed in vitro as well as in vivoby non- invasive fluorimetric measurements. The 1.5 Angstrom crystal structure of the oxidized protein revealed a disulfide bond- induced distortion of the beta -barrel, as well...... the physiological range for redox-active cysteines. In the cytoplasm of Escherichia coli, the protein was a sensitive probe for the redox changes that occur upon disruption of the thioredoxin reductive pathway....

  19. Role of protein disulfide isomerase and other thiol-reactive proteins in HIV-1 envelope protein-mediated fusion

    International Nuclear Information System (INIS)

    Ou Wu; Silver, Jonathan

    2006-01-01

    Cell-surface protein disulfide isomerase (PDI) has been proposed to promote disulfide bond rearrangements in HIV-1 envelope protein (Env) that accompany Env-mediated fusion. We evaluated the role of PDI in ways that have not been previously tested by downregulating PDI with siRNA and by overexpressing wild-type or variant forms of PDI in transiently and stably transfected cells. These manipulations, as well as treatment with anti-PDI antibodies, had only small effects on infection or cell fusion mediated by NL4-3 or AD8 strains of HIV-1. However, the cell-surface thiol-reactive reagent 5, 5'-dithiobis(2-nitrobenzoic acid) (DTNB) had a much stronger inhibitory effect in our system, suggesting that cell-surface thiol-containing molecules other than PDI, acting alone or in concert, have a greater effect than PDI on HIV-1 Env-mediated fusion. We evaluated one such candidate, thioredoxin, a PDI family member reported to reduce a labile disulfide bond in CD4. We found that the ability of thioredoxin to reduce the disulfide bond in CD4 is enhanced in the presence of HIV-1 Env gp120 and that thioredoxin also reduces disulfide bonds in gp120 directly in the absence of CD4. We discuss the implications of these observations for identification of molecules involved in disulfide rearrangements in Env during fusion

  20. Study of the helium cross-section of unsymmetric disulfide self-assembled monolayers on Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Albayrak, Erol [Department of Materials and Metallurgical Engineering, Ahi Evran University, Kırşehir 40000 (Turkey); Karabuga, Semistan [Department of Chemistry, Kahramanmaraş Sütçü İmam University, Kahramanmaraş 46030 (Turkey); Bracco, Gianangelo [CNR-IMEM and Department of Physics, University of Genoa, Via Dodecaneso 33, Genoa 16146 (Italy); Danışman, M. Fatih, E-mail: danisman@metu.edu.tr [Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)

    2016-12-30

    Highlights: • Unsymmetrtic disulfide (HDD and HOD) self assembled monolayers were grown on Au(111) by supersonic molecular beam deposition. • Helium scattering cross sections for these two different unsymmetric disulfides were determined. • A common low temperature film phase was observed for the studied disulfides. - Abstract: We have investigated the formation of self-assembled monolayers (SAMs) of 11-hydroxyundecyl decyl disulfide (CH{sub 3}-(CH{sub 2}){sub 9}-S-S-(CH{sub 2}){sub 11}-OH, HDD) and 11-hydroxyundecyl octadecyl disulfide (CH{sub 3}-(CH{sub 2}){sub 17}-S-S-(CH{sub 2}){sub 11}-OH, HOD) produced by supersonic molecular beam deposition (SMBD). The study has been carried out by means of helium diffraction at very low film coverage. In this regime helium single molecule cross sections have been estimated in a temperature range between 100 K and 450 K. The results show a different behavior above 300 K that has been interpreted as the starting of mobility with the formation of two thiolate moieties either linked by a gold adatom or distant enough to prevent cross section overlapping. Finally, helium diffraction patterns measured at 80 K for the SAMs grown at 200 K are discussed and the results support the proposed hypothesis of molecular dissociation based on the cross section data.

  1. Changes in Thiol-Disulfide Homeostasis of the Body to Surgical Trauma in Laparoscopic Cholecystectomy Patients.

    Science.gov (United States)

    Polat, Murat; Ozcan, Onder; Sahan, Leyla; Üstündag-Budak, Yasemin; Alisik, Murat; Yilmaz, Nigar; Erel, Özcan

    2016-12-01

    We aimed to investigate the short-term effect of laparoscopic surgery on serum thiol-disulfide homeostasis levels as a marker of oxidant stress of surgical trauma in elective laparoscopic cholecystectomy patients. Venous blood samples were collected, and levels of native thiols, total thiols, and disulfides were determined with a novel automated assay. Total antioxidant capacity (measured as the ferric-reducing ability of plasma) and serum ischemia modified albumin, expressed as absorbance units assayed by the albumin cobalt binding test, were determined. The major findings of the present study were that native thiol (283 ± 45 versus 241 ± 61 μmol/L), total thiol (313 ± 49 versus 263 ± 67 μmol/L), and disulfide (14.9 ± 4.6 versus 11.0 ± 6.1 μmol/L) levels were decreased significantly during operation and although they increased, they did not return to preoperation levels 24 hours after laparoscopic surgery compared to the levels at baseline. Disulfide/native thiol and disulfide/total thiol levels did not change during laparoscopic surgery. The decrease in plasma level of native and total thiol groups suggests impairment of the antioxidant capacity of plasma; however, the delicate balance between the different redox forms of thiols was maintained during surgery.

  2. The synthesis of four-layer gold-silver-polymer-silver core-shell nanomushroom with inbuilt Raman molecule for surface-enhanced Raman scattering

    Science.gov (United States)

    Jiang, Tao; Wang, Xiaolong; Zhou, Jun

    2017-12-01

    A facial two-step reduction method was proposed to synthesize four-layer gold-silver-polymer-silver (Au@Ag@PSPAA@Ag) core-shell nanomushrooms (NMs) with inbuilt Raman molecule. The surface-enhanced Raman scattering (SERS) intensity of 4MBA adhered on the surface of Au core gradually increased with the modification of middle Ag shell and then Ag mushroom cap due to the formation of two kinds of ultra-small interior nanogap. Compared with the initial Au nanoparticles, the SERS enhancement ratio of the Au@Ag@PSPAA@Ag NMs approached to nearly 40. The novel core-shell NMs also exhibited homogeneous SERS signals for only one sample and reproducible signals for 10 different samples, certified by the low relative standard deviation values of less than 10% and 15% for the character peaks of 4-mercaptobenzoic acid, respectively. Such a novel four-layer core-shell nanostructure with reliable SERS performance has great potential application in quantitative SERS-based immunoassay.

  3. Dissecting molecular interactions involved in recognition of target disulfides by the barley thioredoxin system

    DEFF Research Database (Denmark)

    Björnberg, Olof; Maeda, Kenji; Svensson, Birte

    2012-01-01

    Thioredoxin reduces disulfide bonds, thus regulating activities of target proteins in various biological systems, e.g., inactivation of inhibitors of starch hydrolases and proteases in germinating plant seeds. In the three-dimensional structure of a complex with barley α-amylase/subtilisin inhibi......Thioredoxin reduces disulfide bonds, thus regulating activities of target proteins in various biological systems, e.g., inactivation of inhibitors of starch hydrolases and proteases in germinating plant seeds. In the three-dimensional structure of a complex with barley α...... thioredoxin reductase. HvTrxh2 M88G and M88A adjacent to the invariant cis-proline lost efficiency in both BASI disulfide reduction and recycling by thioredoxin reductase. These effects were further pronounced in M88P lacking a backbone NH group. Remarkably, HvTrxh2 E86R in the same loop displayed overall...... retained catalytic properties, with the exception of a 3-fold increased activity toward BASI. From the 104VGA106 loop, a backbone hydrogen bond donated by A106 appears to be important for target disulfide recognition as A106P lost 90% activity toward BASI but was efficiently recycled by thioredoxin...

  4. Thiol/Disulfide system plays a crucial role in redox protection in the acidophilic iron-oxidizing bacterium Leptospirillum ferriphilum.

    Directory of Open Access Journals (Sweden)

    Javiera Norambuena

    Full Text Available Thiol/disulfide systems are involved in the maintenance of the redox status of proteins and other molecules that contain thiol/disulfide groups. Leptospirillum ferriphilum DSM14647, an acidophilic bacterium that uses Fe(2+ as electron donor, and withstands very high concentrations of iron and other redox active metals, is a good model to study how acidophiles preserve the thiol/disulfide balance. We studied the composition of thiol/disulfide systems and their role in the oxidative stress response in this extremophile bacterium. Bioinformatic analysis using genomic data and enzymatic assays using protein extracts from cells grown under oxidative stress revealed that the major thiol/disulfide system from L. ferriphilum are a cytoplasmic thioredoxin system (composed by thioredoxins Trx and thioredoxin reductase TR, periplasmic thiol oxidation system (DsbA/DsbB and a c-type cytochrome maturation system (DsbD/DsbE. Upon exposure of L. ferriphilum to reactive oxygen species (ROS-generating compounds, transcriptional activation of the genes encoding Trxs and the TR enzyme, which results in an increase of the corresponding activity, was observed. Altogether these data suggest that the thioredoxin-based thiol/disulfide system plays an important role in redox protection of L. ferriphilum favoring the survival of this microorganism under extreme environmental oxidative conditions.

  5. Evaluation of dynamic serum thiol/disulfide homeostasis in locally advanced and metastatic gastric cancer

    Directory of Open Access Journals (Sweden)

    Mutlu Hizal

    2018-04-01

    Full Text Available Background: Gastric cancer is one the most diagnosed cancer and the third leading cause of death from cancer worldwide. As an indicator of antioxidant capacity thiol/disulfide homeostasis regulates detoxification, cell signal mechanisms, apoptosis, transcription and antioxidant defense mechanisms. Disregulation of thiol/disulfide homeostasis identified in other cancer types by recent data. In this study, we aimed to evaluate the thiol/disulfide homeostasis in advanced gastric cancer patients. Methods: The patients who diagnosed with gastric cancer and healthy control subjects were included to study. Serum samples for the thiol-disulphide test were obtained at the time of diagnosis. Thiol-disulphide homeostasis tests were measured by the automated spectrophotometric method. Thiol-disulphide homeostasis was also measured according to clinical and laboratory features. Results: Thirty newly diagnosed advanced gastric adenocarcinoma patients and 28 healthy controls were enrolled in the study. The native thiol (NT and total thiol (TT levels of patients' group were significantly lower compared with controls (p = 0.001 and p < 0.001. In the CEA high (≥5.4 ng/ml group, DS/NT ratio were higher compared with CEA low (<5.4 ng/ml group (p = 0.024. In CA.19-9 high (≥28.3 kU/L group, both DS and DS/NT ratio were significantly higher compared with a CA19-9 low(<28.3 kU/L group (p < 0.05 both. The correlation between CEA and DS levels was also significant (p = 0.02. There was also a positive correlation between CEA levels and DS/NT ratio (p = 0.01. Conclusion: Derangements of thiol/disulfide homeostasis may have a role in gastric cancer pathogenesis and the higher level of oxidative stress may relate to extensive and aggressiveness of the advanced disease. The diagnostic and prognostic values of thiol/disulfide products need to identify with further studies. Keywords: Thiol, Disulfide, Oxidative stress, Gastric cancer, Metastatic

  6. Photo-responsive liquid crystalline epoxy networks with exchangeable disulfide bonds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuzhan [Washington State Univ., Pullman, WA (United States); Zhang, Yuehong [Washington State Univ., Pullman, WA (United States); Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Keum, Jong K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kessler, Michael R. [Washington State Univ., Pullman, WA (United States); North Dakota State Univ., Fargo, ND (United States)

    2017-07-27

    The increasing demand for intelligent materials has driven the development of polymers with a variety of functionalities. However, combining multiple functionalities within one polymer is still challenging because of the difficulties encountered in coordinating different functional building blocks during fabrication. In this work, we demonstrate the fabrication of a multifunctional liquid crystalline epoxy network (LCEN) using the combination of thermotropic liquid crystals, photo-responsive azobenzene molecules, and exchangeable disulfide bonds. In addition to shape memory behavior enabled by the reversible liquid crystalline phase transition and photo-induced bending behavior resulting from the photo-responsive azobenzene molecules, the introduction of dynamic disulfide bonds into the LCEN resulted in a structurally dynamic network, allowing the reshaping, repairing, and recycling of the material.

  7. Interchange reaction of disulfides and denaturation of oxytocin by copper(II)/ascorbic acid/O2 system.

    Science.gov (United States)

    Inoue, H; Hirobe, M

    1987-05-29

    The interchange reaction of disulfides was caused by the copper(II)/ascorbic acid/O2 system. The incubation of two symmetric disulfides, L-cystinyl-bis-L-phenylalanine (PP) and L-cystinyl-bis-L-tyrosine (TT), with L-ascorbic acid and CuSO4 in potassium phosphate buffer (pH 7.2, 50 mM) resulted in the formation of an asymmetric disulfide, L-cystinyl-L-phenylalanine-L-tyrosine (PT), and the final ratio of PP:PT:TT was 1:2:1. As the reaction was inhibited by catalase and DMSO only at the initial time, hydroxyl radical generated by the copper(II)/ascorbic acid/O2 system seemed to be responsible for the initiation of the reaction. Oxytocin and insulin were denatured by this system, and catalase and DMSO similarly inhibited these denaturations. As the composition of amino acids was unchanged after the reaction, hydroxyl radical was thought to cause the cleavage and/or interchange reaction of disulfides to denature the peptides.

  8. Weatherization Works--Summary of Findings from the Retrospective Evaluation of the U.S. DOE's Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carroll, David [APPRISE, Inc., Princeton, NJ (United States); Pigg, Scott [Energy Center of Wisconsin, Madison, WI (United States); Blasnik, Michael [Blasnik & Associates, Roslindale, MA (United States); Dalhoff, Greg [Dalhoff & Associates, Verona, WI (United States); Berger, Jacqueline [APPRISE, Inc., Princeton, NJ (United States); Rose, Erin M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hawkins, Beth A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eisenberg, Joel Fred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ucar, Ferit [APPRISE, Inc., Princeton, NJ (United States); Bensch, Ingo [Energy Center of Wisconsin, Madison, WI (United States); Cowan, Claire [Energy Center of Wisconsin, Madison, WI (United States)

    2015-10-01

    This report presents a summary of the studies and analyses that compose the retrospective evaluation of the U.S. Department of Energy s low-income Weatherization Assistance Program (WAP). WAP provides grants to Grantees (i.e., states) that then provide grants to Subgrantees (i.e., local weatherization agencies) to weatherize low-income homes. This evaluation focused on the WAP Program Year 2008. The retrospective evaluation produced twenty separate reports, including this summary. Four separate reports address the energy savings, energy cost savings, and cost effectiveness of WAP across four housing types: single family, mobile home, small multifamily, and large multifamily. Other reports address the environmental emissions, macroeconomic, and health and household-related benefits attributable to WAP, and characterize the program, its recipients, and those eligible for the program. Major field studies are also summarized, including a major indoor air quality study and a follow-up ventilation study, an in-depth in-field assessment of weatherization work and quality, and a study that assesses reasons for variations in energy savings across homes. Results of surveys of weatherization staff, occupants, occupants satisfaction with weatherization services provided, and weatherization trainees are summarized. Lastly, this report summarizes a set of fifteen case studies of high-performing and unique local weatherization agencies.

  9. Electrical Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide

    Science.gov (United States)

    2014-07-14

    Lou, Sina Najmaei, Matin Amani, Matthew L. Chin, Zheng Se. TASK NUMBER Liu Sf. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8...Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide Sina Najmaei,t.§ Matin Ama ni,M Matthew L. Chin,* Zhe ng liu/ ·"·v: A. Gle n

  10. Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidation-mediated pathways.

    Science.gov (United States)

    Nagy, Péter

    2013-05-01

    Disulfides are important building blocks in the secondary and tertiary structures of proteins, serving as inter- and intra-subunit cross links. Disulfides are also the major products of thiol oxidation, a process that has primary roles in defense mechanisms against oxidative stress and in redox regulation of cell signaling. Although disulfides are relatively stable, their reduction, isomerisation, and interconversion as well as their production reactions are catalyzed by delicate enzyme machineries, providing a dynamic system in biology. Redox homeostasis, a thermodynamic parameter that determines which reactions can occur in cellular compartments, is also balanced by the thiol-disulfide pool. However, it is the kinetic properties of the reactions that best represent cell dynamics, because the partitioning of the possible reactions depends on kinetic parameters. This review is focused on the kinetics and mechanisms of thiol-disulfide substitution and redox reactions. It summarizes the challenges and advances that are associated with kinetic investigations in small molecular and enzymatic systems from a rigorous chemical perspective using biological examples. The most important parameters that influence reaction rates are discussed in detail. Kinetic studies of proteins are more challenging than small molecules, and quite often investigators are forced to sacrifice the rigor of the experimental approach to obtain the important kinetic and mechanistic information. However, recent technological advances allow a more comprehensive analysis of enzymatic systems via using the systematic kinetics apparatus that was developed for small molecule reactions, which is expected to provide further insight into the cell's machinery.

  11. Antagonistic effect of disulfide-rich peptide aptamers selected by cDNA display on interleukin-6-dependent cell proliferation

    International Nuclear Information System (INIS)

    Nemoto, Naoto; Tsutsui, Chihiro; Yamaguchi, Junichi; Ueno, Shingo; Machida, Masayuki; Kobayashi, Toshikatsu; Sakai, Takafumi

    2012-01-01

    Highlights: ► Disulfide-rich peptide aptamer inhibits IL-6-dependent cell proliferation. ► Disulfide bond of peptide aptamer is essential for its affinity to IL-6R. ► Inhibitory effect of peptide depends on number and pattern of its disulfide bonds. -- Abstract: Several engineered protein scaffolds have been developed recently to circumvent particular disadvantages of antibodies such as their large size and complex composition, low stability, and high production costs. We previously identified peptide aptamers containing one or two disulfide-bonds as an alternative ligand to the interleukin-6 receptor (IL-6R). Peptide aptamers (32 amino acids in length) were screened from a random peptide library by in vitro peptide selection using the evolutionary molecular engineering method “cDNA display”. In this report, the antagonistic activity of the peptide aptamers were examined by an in vitro competition enzyme-linked immunosorbent assay (ELISA) and an IL-6-dependent cell proliferation assay. The results revealed that a disulfide-rich peptide aptamer inhibited IL-6-dependent cell proliferation with similar efficacy to an anti-IL-6R monoclonal antibody.

  12. Engineering an improved IgG4 molecule with reduced disulfide bond heterogeneity and increased Fab domain thermal stability.

    Science.gov (United States)

    Peters, Shirley J; Smales, C Mark; Henry, Alistair J; Stephens, Paul E; West, Shauna; Humphreys, David P

    2012-07-13

    The integrity of antibody structure, stability, and biophysical characterization are becoming increasingly important as antibodies receive increasing scrutiny from regulatory authorities. We altered the disulfide bond arrangement of an IgG4 molecule by mutation of the Cys at the N terminus of the heavy chain constant domain 1 (C(H)1) (Kabat position 127) to a Ser and introduction of a Cys at a variety of positions (positions 227-230) at the C terminus of C(H)1. An inter-LC-C(H)1 disulfide bond is thus formed, which mimics the disulfide bond arrangement found in an IgG1 molecule. The antibody species present in the supernatant following transient expression in Chinese hamster ovary cells were analyzed by immunoblot to investigate product homogeneity, and purified product was analyzed by a thermofluor assay to determine thermal stability. We show that the light chain can form an inter-LC-C(H)1 disulfide bond with a Cys when present at several positions on the upper hinge (positions 227-230) and that such engineered disulfide bonds can consequently increase the Fab domain thermal stability between 3 and 6.8 °C. The IgG4 disulfide mutants displaying the greatest increase in Fab thermal stability were also the most homogeneous in terms of disulfide bond arrangement and antibody species present. Importantly, mutations did not affect the affinity for antigen of the resultant molecules. In combination with the previously described S241P mutation, we present an IgG4 molecule with increased Fab thermal stability and reduced product heterogeneity that potentially offers advantages for the production of IgG4 molecules.

  13. Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli.

    Directory of Open Access Journals (Sweden)

    Julie K Klint

    Full Text Available Disulfide-rich peptides are the dominant component of most animal venoms. These peptides have received much attention as leads for the development of novel therapeutic agents and bioinsecticides because they target a wide range of neuronal receptors and ion channels with a high degree of potency and selectivity. In addition, their rigid disulfide framework makes them particularly well suited for addressing the crucial issue of in vivo stability. Structural and functional characterization of these peptides necessitates the development of a robust, reliable expression system that maintains their native disulfide framework. The bacterium Escherichia coli has long been used for economical production of recombinant proteins. However, the expression of functional disulfide-rich proteins in the reducing environment of the E. coli cytoplasm presents a significant challenge. Thus, we present here an optimised protocol for the expression of disulfide-rich venom peptides in the periplasm of E. coli, which is where the endogenous machinery for production of disulfide-bonds is located. The parameters that have been investigated include choice of media, induction conditions, lysis methods, methods of fusion protein and peptide purification, and sample preparation for NMR studies. After each section a recommendation is made for conditions to use. We demonstrate the use of this method for the production of venom peptides ranging in size from 2 to 8 kDa and containing 2-6 disulfide bonds.

  14. Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions.

    Science.gov (United States)

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2005-12-01

    Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.

  15. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm

    Directory of Open Access Journals (Sweden)

    Lobstein Julie

    2012-05-01

    Full Text Available Abstract Background Production of correctly disulfide bonded proteins to high yields remains a challenge. Recombinant protein expression in Escherichia coli is the popular choice, especially within the research community. While there is an ever growing demand for new expression strains, few strains are dedicated to post-translational modifications, such as disulfide bond formation. Thus, new protein expression strains must be engineered and the parameters involved in producing disulfide bonded proteins must be understood. Results We have engineered a new E. coli protein expression strain named SHuffle, dedicated to producing correctly disulfide bonded active proteins to high yields within its cytoplasm. This strain is based on the trxB gor suppressor strain SMG96 where its cytoplasmic reductive pathways have been diminished, allowing for the formation of disulfide bonds in the cytoplasm. We have further engineered a major improvement by integrating into its chromosome a signal sequenceless disulfide bond isomerase, DsbC. We probed the redox state of DsbC in the oxidizing cytoplasm and evaluated its role in assisting the formation of correctly folded multi-disulfide bonded proteins. We optimized protein expression conditions, varying temperature, induction conditions, strain background and the co-expression of various helper proteins. We found that temperature has the biggest impact on improving yields and that the E. coli B strain background of this strain was superior to the K12 version. We also discovered that auto-expression of substrate target proteins using this strain resulted in higher yields of active pure protein. Finally, we found that co-expression of mutant thioredoxins and PDI homologs improved yields of various substrate proteins. Conclusions This work is the first extensive characterization of the trxB gor suppressor strain. The results presented should help researchers design the appropriate protein expression conditions using

  16. Selenocysteine in thiol/disulfide-like exchange reactions.

    Science.gov (United States)

    Hondal, Robert J; Marino, Stefano M; Gladyshev, Vadim N

    2013-05-01

    Among trace elements used as cofactors in enzymes, selenium is unique in that it is incorporated into proteins co-translationally in the form of an amino acid, selenocysteine (Sec). Sec differs from cysteine (Cys) by only one atom (selenium versus sulfur), yet this switch dramatically influences important aspects of enzyme reactivity. The main focus of this review is an updated and critical discussion on how Sec might be used to accelerate thiol/disulfide-like exchange reactions in natural selenoenzymes, compared with their Cys-containing homologs. We discuss in detail three major aspects associated with thiol/disulfide exchange reactions: (i) nucleophilicity of the attacking thiolate (or selenolate); (ii) electrophilicity of the center sulfur (or selenium) atom; and (iii) stability of the leaving group (sulfur or selenium). In all these cases, we analyze the benefits that selenium might provide in these types of reactions. It is the biological thiol oxidoreductase-like function that benefits from the use of Sec, since Sec functions to chemically accelerate the rate of these reactions. We review various hypotheses that could help explain why Sec is used in enzymes, particularly with regard to competitive chemical advantages provided by the presence of the selenium atom in enzymes. Ultimately, these chemical advantages must be connected to biological functions of Sec.

  17. N-glycosylation and disulfide bonding affects GPRC6A receptor expression, function, and dimerization

    DEFF Research Database (Denmark)

    Nørskov-Lauritsen, Lenea; Jørgensen, Stine; Bräuner-Osborne, Hans

    2015-01-01

    Investigation of post-translational modifications of receptor proteins is important for our understanding of receptor pharmacology and disease physiology. However, our knowledge about post-translational modifications of class C G protein-coupled receptors and how these modifications regulate expr...... covalently linked dimers through cysteine disulfide linkage in the extracellular amino-terminal domain and here we show that GPRC6A indeed is a homodimer and that a disulfide bridge between the C131 residues is formed....

  18. MTH1745, a protein disulfide isomerase-like protein from thermophilic archaea, Methanothermobacter thermoautotrophicum involving in stress response.

    Science.gov (United States)

    Ding, Xia; Lv, Zhen-Mei; Zhao, Yang; Min, Hang; Yang, Wei-Jun

    2008-01-01

    MTH1745 is a putative protein disulfide isomerase characterized with 151 amino acid residues and a CPAC active-site from the anaerobic archaea Methanothermobacter thermoautotrophicum. The potential functions of MTH1745 are not clear. In the present study, we show a crucial role of MTH1745 in protecting cells against stress which may be related to its functions as a disulfide isomerase and its chaperone properties. Using real-time polymerase chain reaction analyses, the level of MTH1745 messenger RNA (mRNA) in the thermophilic archaea M. thermoautotrophicum was found to be stress-induced in that it was significantly higher under low (50 degrees C) and high (70 degrees C) growth temperatures than under the optimal growth temperature for the organism (65 degrees C). Additionally, the expression of MTH1745 mRNA was up-regulated by cold shock (4 degrees C). Furthermore, the survival of MTH1745 expressing Escherichia coli cells was markedly higher than that of control cells in response to heat shock (51.0 degrees C). These results indicated that MTH1745 plays an important role in the resistance of stress. By assay of enzyme activities in vitro, MTH1745 also exhibited a chaperone function by promoting the functional folding of citrate synthase after thermodenaturation. On the other hand, MTH1745 was also shown to function as a disulfide isomerase on the refolding of denatured and reduced ribonuclease A. On the basis of its single thioredoxin domain, function as a disulfide isomerase, and its chaperone activity, we suggest that MTH1745 may be an ancient protein disulfide isomerase. These studies may provide clues to the understanding of the function of protein disulfide isomerase in archaea.

  19. Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica.

    Science.gov (United States)

    Nadrah, Peter; Maver, Uroš; Jemec, Anita; Tišler, Tatjana; Bele, Marjan; Dražić, Goran; Benčina, Mojca; Pintar, Albin; Planinšek, Odon; Gaberšček, Miran

    2013-05-01

    With the advancement of drug delivery systems based on mesoporous silica nanoparticles (MSNs), a simple and efficient method regulating the drug release kinetics is needed. We developed redox-responsive release systems with three levels of hindrance around the disulfide bond. A model drug (rhodamine B dye) was loaded into MSNs' mesoporous voids. The pore opening was capped with β-cyclodextrin in order to prevent leakage of drug. Indeed, in absence of a reducing agent the systems exhibited little leakage, while the addition of dithiothreitol cleaved the disulfide bonds and enabled the release of cargo. The release rate and the amount of released dye were tuned by the level of hindrance around disulfide bonds, with the increased hindrance causing a decrease in the release rate as well as in the amount of released drug. Thus, we demonstrated the ability of the present mesoporous systems to intrinsically control the release rate and the amount of the released cargo by only minor structural variations. Furthermore, an in vivo experiment on zebrafish confirmed that the present model delivery system is nonteratogenic.

  20. Kinetics and Mechanisms of Thiol–Disulfide Exchange Covering Direct Substitution and Thiol Oxidation-Mediated Pathways

    Science.gov (United States)

    2013-01-01

    Abstract Significance: Disulfides are important building blocks in the secondary and tertiary structures of proteins, serving as inter- and intra-subunit cross links. Disulfides are also the major products of thiol oxidation, a process that has primary roles in defense mechanisms against oxidative stress and in redox regulation of cell signaling. Although disulfides are relatively stable, their reduction, isomerisation, and interconversion as well as their production reactions are catalyzed by delicate enzyme machineries, providing a dynamic system in biology. Redox homeostasis, a thermodynamic parameter that determines which reactions can occur in cellular compartments, is also balanced by the thiol–disulfide pool. However, it is the kinetic properties of the reactions that best represent cell dynamics, because the partitioning of the possible reactions depends on kinetic parameters. Critical Issues: This review is focused on the kinetics and mechanisms of thiol–disulfide substitution and redox reactions. It summarizes the challenges and advances that are associated with kinetic investigations in small molecular and enzymatic systems from a rigorous chemical perspective using biological examples. The most important parameters that influence reaction rates are discussed in detail. Recent Advances and Future Directions: Kinetic studies of proteins are more challenging than small molecules, and quite often investigators are forced to sacrifice the rigor of the experimental approach to obtain the important kinetic and mechanistic information. However, recent technological advances allow a more comprehensive analysis of enzymatic systems via using the systematic kinetics apparatus that was developed for small molecule reactions, which is expected to provide further insight into the cell's machinery. Antioxid. Redox Signal. 18, 1623–1641. PMID:23075118

  1. Crystallographic Studies Evidencing the High Energy Tolerance to Disrupting the Interface Disulfide Bond of Thioredoxin 1 from White Leg Shrimp Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Adam A. Campos-Acevedo

    2014-12-01

    Full Text Available Thioredoxin (Trx is a small 12-kDa redox protein that catalyzes the reduction of disulfide bonds in proteins from different biological systems. A recent study of the crystal structure of white leg shrimp thioredoxin 1 from Litopenaeus vannamei (LvTrx revealed a dimeric form of the protein mediated by a covalent link through a disulfide bond between Cys73 from each monomer. In the present study, X-ray-induced damage in the catalytic and the interface disulfide bond of LvTrx was studied at atomic resolution at different transmission energies of 8% and 27%, 12.8 keV at 100 K in the beamline I-24 at Diamond Light Source. We found that at an absorbed dose of 32 MGy, the X-ray induces the cleavage of the disulfide bond of each catalytic site; however, the interface disulfide bond was cleaved at an X-ray adsorbed dose of 85 MGy; despite being the most solvent-exposed disulfide bond in LvTrx (~50 Å2. This result clearly established that the interface disulfide bond is very stable and, therefore, less susceptible to being reduced by X-rays. In fact, these studies open the possibility of the existence in solution of a dimeric LvTrx.

  2. Crystallographic studies evidencing the high energy tolerance to disrupting the interface disulfide bond of thioredoxin 1 from white leg shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Campos-Acevedo, Adam A; Rudiño-Piñera, Enrique

    2014-12-15

    Thioredoxin (Trx) is a small 12-kDa redox protein that catalyzes the reduction of disulfide bonds in proteins from different biological systems. A recent study of the crystal structure of white leg shrimp thioredoxin 1 from Litopenaeus vannamei (LvTrx) revealed a dimeric form of the protein mediated by a covalent link through a disulfide bond between Cys73 from each monomer. In the present study, X-ray-induced damage in the catalytic and the interface disulfide bond of LvTrx was studied at atomic resolution at different transmission energies of 8% and 27%, 12.8 keV at 100 K in the beamline I-24 at Diamond Light Source. We found that at an absorbed dose of 32 MGy, the X-ray induces the cleavage of the disulfide bond of each catalytic site; however, the interface disulfide bond was cleaved at an X-ray adsorbed dose of 85 MGy; despite being the most solvent-exposed disulfide bond in LvTrx (~50 Å2). This result clearly established that the interface disulfide bond is very stable and, therefore, less susceptible to being reduced by X-rays. In fact, these studies open the possibility of the existence in solution of a dimeric LvTrx.

  3. Increased Functional Half-life of Fibroblast Growth Factor-1 by Recovering a Vestigial Disulfide Bond

    Directory of Open Access Journals (Sweden)

    Jihun Lee

    2010-12-01

    Full Text Available The fibroblast growth factor (FGF family of proteins contains an absolutely conserved Cys residue at position 83 that is present as a buried free cysteine. We have previously shown that mutation of the structurally adjacent residue, Ala66, to cysteine results in the formation of a stabilizing disulfide bond in FGF-1. This result suggests that the conserved free cysteine residue at position 83 in the FGF family of proteins represents a vestigial half-cystine. Here, we characterize the functional half-life and mitogenic activity of the oxidized form of the Ala66Cys mutation to identify the effect of the recovered vestigial disulfide bond between Cys83 and Cys66 upon the cellular function of FGF-1. The results show that the mitogenic activity of this mutant is significantly increased and that its functional half-life is greatly extended. These favorable effects are conferred by the formation of a disulfide bond that simultaneously increases thermodynamic stability of the protein and removes a reactive buried thiol at position 83. Recovering this vestigial disulfide by introducing a cysteine at position 66 is a potentially useful protein engineering strategy to improve the functional half-life of other FGF family members.

  4. Dynamic thiol/disulfide homeostasis and effects of smoking on homeostasis parameters in patients with psoriasis.

    Science.gov (United States)

    Emre, Selma; Demirseren, Duriye Deniz; Alisik, Murat; Aktas, Akin; Neselioglu, Salim; Erel, Ozcan

    2017-12-01

    Recently, increased reactive oxygen species (ROS), reduced antioxidant capacity, and oxidative stress have been suggested in the pathogenesis of psoriasis. The aim of this study to evaluate the thiol/disulfide homeostasis in patients with psoriasis. Ninety patients with psoriasis who did not receive any systemic treatment in the last six  months were included in the study. Seventy-six age and gender-matched healthy volunteers served as control group. Thiol/disulfide homeostasis was measured in venous blood samples obtained from patient and control groups. Native thiol and total thiol levels were significantly higher in patients than in control group. When thiol/disulfide hemostasis parameters and clinical and demographic characteristics were compared, a negative correlation was detected between native thiol and total thiol with age. The levels of total thiols had also negative correlation with PASI and duration of the disease. When we divided the patients into smokers and non-smokers, native thiol and total thiol levels were significantly higher in smokers than in controls, whereas native thiol and total thiol levels were comparable in non-smoker patients and controls. Thiol/disulfide balance shifted towards thiol in psoriasis patients and this may be responsible for increased keratinocyte proliferation in the pathogenesis of psoriasis.

  5. Differential expression of disulfide reductase enzymes in a free-living platyhelminth (Dugesia dorotocephala.

    Directory of Open Access Journals (Sweden)

    Alberto Guevara-Flores

    Full Text Available A search of the disulfide reductase activities expressed in the adult stage of the free-living platyhelminth Dugesia dorotocephala was carried out. Using GSSG or DTNB as substrates, it was possible to obtain a purified fraction containing both GSSG and DTNB reductase activities. Through the purification procedure, both disulfide reductase activities were obtained in the same chromatographic peak. By mass spectrometry analysis of peptide fragments obtained after tryptic digestion of the purified fraction, the presence of glutathione reductase (GR, thioredoxin-glutathione reductase (TGR, and a putative thioredoxin reductase (TrxR was detected. Using the gold compound auranofin to selectively inhibit the GSSG reductase activity of TGR, it was found that barely 5% of the total GR activity in the D. dorotocephala extract can be assigned to GR. Such strategy did allow us to determine the kinetic parameters for both GR and TGR. Although It was not possible to discriminate DTNB reductase activity due to TrxR from that of TGR, a chromatofocusing experiment with a D. dorotocephala extract resulted in the obtention of a minor protein fraction enriched in TrxR, strongly suggesting its presence as a functional protein. Thus, unlike its parasitic counterparts, in the free-living platyhelminth lineage the three disulfide reductases are present as functional proteins, albeit TGR is still the major disulfide reductase involved in the reduction of both Trx and GSSG. This fact suggests the development of TGR in parasitic flatworms was not linked to a parasitic mode of life.

  6. Characterization of cyclic peptides containing disulfide bonds

    OpenAIRE

    Johnson, Mindy; Liu, Mingtao; Struble, Elaine; Hettiarachchi, Kanthi

    2015-01-01

    Unlike linear peptides, analysis of cyclic peptides containing disulfide bonds is not straightforward and demands indirect methods to achieve a rigorous proof of structure. Three peptides that belong to this category, p-Cl-Phe-DPDPE, DPDPE, and CTOP, were analyzed and the results are presented in this paper. The great potential of two dimensional NMR and ESI tandem mass spectrometry was harnessed during the course of peptide characterizations. A new RP-HPLC method for the analysis of trifluor...

  7. Chaperonin GroE-facilitated refolding of disulfide-bonded and reduced Taka-amylase A from Aspergillus oryzae.

    Science.gov (United States)

    Kawata, Y; Hongo, K; Mizobata, T; Nagai, J

    1998-12-01

    The refolding characteristics of Taka-amylase A (TAA) from Aspergillus oryzae in the presence of the chaperonin GroE were studied in terms of activity and fluorescence. Disulfide-bonded (intact) TAA and non-disulfide-bonded (reduced) TAA were unfolded in guanidine hydrochloride and refolded by dilution into buffer containing GroE. The intermediates of both intact and reduced enzymes were trapped by GroEL in the absence of nucleotide. Upon addition of nucleotides such as ATP, ADP, CTP or UTP, the intermediates were released from GroEL and recovery of activity was detected. In both cases, the refolding yields in the presence of GroEL and ATP were higher than spontaneous recoveries. Fluorescence studies of intrinsic tryptophan and a hydrophobic probe, 8-anilinonaphthalene-1-sulfonate, suggested that the intermediates trapped by GroEL assumed conformations with different hydrophobic properties. The presence of protein disulfide isomerase or reduced and oxidized forms of glutathione in addition to GroE greatly enhanced the refolding reaction of reduced TAA. These findings suggest that GroE has an ability to recognize folding intermediates of TAA protein and facilitate refolding, regardless of the existence or absence of disulfide bonds in the protein.

  8. Selective removal of heavy metal ions by disulfide linked polymer networks

    DEFF Research Database (Denmark)

    Ko, Dongah; Sung Lee, Joo; Patel, Hasmukh A.

    2017-01-01

    Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has...... a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal...... sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions―copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water....

  9. CD44 Binding to Hyaluronic Acid Is Redox Regulated by a Labile Disulfide Bond in the Hyaluronic Acid Binding Site.

    Directory of Open Access Journals (Sweden)

    Helena Kellett-Clarke

    Full Text Available CD44 is the primary leukocyte cell surface receptor for hyaluronic acid (HA, a component of the extracellular matrix. Enzymatic post translational cleavage of labile disulfide bonds is a mechanism by which proteins are structurally regulated by imparting an allosteric change and altering activity. We have identified one such disulfide bond in CD44 formed by Cys77 and Cys97 that stabilises the HA binding groove. This bond is labile on the surface of leukocytes treated with chemical and enzymatic reducing agents. Analysis of CD44 crystal structures reveal the disulfide bond to be solvent accessible and in the-LH hook configuration characteristic of labile disulfide bonds. Kinetic trapping and binding experiments on CD44-Fc chimeric proteins show the bond is preferentially reduced over the other disulfide bonds in CD44 and reduction inhibits the CD44-HA interaction. Furthermore cells transfected with CD44 no longer adhere to HA coated surfaces after pre-treatment with reducing agents. The implications of CD44 redox regulation are discussed in the context of immune function, disease and therapeutic strategies.

  10. Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity.

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Yu

    Full Text Available The key to enzyme function is the maintenance of an appropriate balance between molecular stability and structural flexibility. The lid domain which is very important for "interfacial activation" is the most flexible part in the lipase structure. In this work, rational design was applied to explore the relationship between lid rigidity and lipase activity by introducing a disulfide bond in the hinge region of the lid, in the hope of improving the thermostability of R. chinensis lipase through stabilization of the lid domain without interfering with its catalytic performance. A disulfide bridge between F95C and F214C was introduced into the lipase from R. chinensis in the hinge region of the lid according to the prediction of the "Disulfide by Design" algorithm. The disulfide variant showed substantially improved thermostability with an eleven-fold increase in the t(1/2 value at 60°C and a 7°C increase of T(m compared with the parent enzyme, probably contributed by the stabilization of the geometric structure of the lid region. The additional disulfide bond did not interfere with the catalytic rate (k(cat and the catalytic efficiency towards the short-chain fatty acid substrate, however, the catalytic efficiency of the disulfide variant towards pNPP decreased by 1.5-fold probably due to the block of the hydrophobic substrate channel by the disulfide bond. Furthermore, in the synthesis of fatty acid methyl esters, the maximum conversion rate by RCLCYS reached 95% which was 9% higher than that by RCL. This is the first report on improving the thermostability of the lipase from R. chinensis by introduction of a disulfide bond in the lid hinge region without compromising the catalytic rate.

  11. Molecular Characterization and Analysis of a Novel Protein Disulfide Isomerase-Like Protein of Eimeria tenella

    OpenAIRE

    Han, Hongyu; Dong, Hui; Zhu, Shunhai; Zhao, Qiping; Jiang, Lianlian; Wang, Yange; Li, Liujia; Wu, Youlin; Huang, Bing

    2014-01-01

    Protein disulfide isomerase (PDI) and PDI-like proteins are members of the thioredoxin superfamily. They contain thioredoxin-like domains and catalyze the physiological oxidation, reduction and isomerization of protein disulfide bonds, which are involved in cell function and development in prokaryotes and eukaryotes. In this study, EtPDIL, a novel PDI-like gene of Eimeria tenella, was cloned using rapid amplification of cDNA ends (RACE) according to the expressed sequence tag (EST). The EtPDI...

  12. Natural disulfide bond-disrupted mutants of AVR4 of the tomato pathogen Cladosporium fulvum are sensitive to proteolysis, circumvent Cf-4-mediated resistance, but retain their chitin binding ability.

    NARCIS (Netherlands)

    Burg, van den H.A.; Westerink, N.; Francoijs, C.J.J.; Roth, R.; Woestenenk, E.A.; Boeren, J.A.; Wit, de P.J.G.M.; Joosten, M.H.A.J.; Vervoort, J.J.M.

    2003-01-01

    The extracellular AVR4 elicitor of the pathogenic fungus Cladosporium fulvum induces defense responses in the tomato genotype Cf-4. Here, the four disulfide bonds of AVR4 were identified as Cys-11-41, Cys-21-27, Cys-35-80, and Cys-57-72 by partial reduction with Tris-(2-carboxyethyl)-phosphine

  13. Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation.

    Science.gov (United States)

    Han, Dehui; Tong, Xia; Zhao, Yue

    2012-02-07

    We report the design and demonstration of a dual-stimuli-responsive block copolymer (BCP) micelle with increased complexity and control. We have synthesized and studied a new amphiphilic ABA-type triblock copolymer whose hydrophobic middle block contains two types of stimuli-sensitive functionalities regularly and repeatedly positioned in the main chain. Using a two-step click chemistry approach, disulfide and o-nitrobenzyle methyl ester groups are inserted into the main chain, which react to reducing agents and light, respectively. With the end blocks being poly(ethylene oxide), micelles formed by this BCP possess a core that can be disintegrated either rapidly via photocleavage of o-nitrobenzyl methyl esters or slowly through cleavage of disulfide groups by a reducing agent in the micellar solution. This feature makes possible either burst release of an encapsulated hydrophobic species from disintegrated micelles by UV light, or slow release by the action of a reducing agent, or release with combined fast-slow rate profiles using the two stimuli.

  14. Disulfide scrambling in superoxide dismutase 1 reduces its cytotoxic effect in cultured cells and promotes protein aggregation.

    Directory of Open Access Journals (Sweden)

    Lina Leinartaitė

    Full Text Available Mutations in the gene coding for superoxide dismutase 1 (SOD1 are associated with familiar forms of the neurodegenerative disease amyotrophic lateral sclerosis (ALS. These mutations are believed to result in a "gain of toxic function", leading to neuronal degeneration. The exact mechanism is still unknown, but misfolding/aggregation events are generally acknowledged as important pathological events in this process. Recently, we observed that demetallated apoSOD1, with cysteine 6 and 111 substituted for alanine, is toxic to cultured neuroblastoma cells. This toxicity depended on an intact, high affinity Zn(2+ site. It was therefor contradictory to discover that wild-type apoSOD1 was not toxic, despite of its high affinity for Zn(2+. This inconsistency was hypothesized to originate from erroneous disulfide formation involving C6 and C111. Using high resolution non-reducing SDS-PAGE, we have in this study demonstrated that the inability of wild-type apoSOD1 to cause cell death stems from formation of non-native intra-molecular disulfides. Moreover, monomeric apoSOD1 variants capable of such disulfide scrambling aggregated into ThT positive oligomers under physiological conditions without agitation. The oligomers were stabilized by inter-molecular disulfides and morphologically resembled what has in other neurodegenerative diseases been termed protofibrils. Disulfide scrambling thus appears to be an important event for misfolding and aggregation of SOD1, but may also be significant for protein function involving cysteines, e.g. mitochondrial import and copper loading.

  15. Role of the Disulfide Bond in Prion Protein Amyloid Formation: A Thermodynamic and Kinetic Analysis.

    Science.gov (United States)

    Honda, Ryo

    2018-02-27

    Prion diseases are associated with the structural conversion of prion protein (PrP) to a β-sheet-rich aggregate, PrP Sc . Previous studies have indicated that a reduction of the disulfide bond linking C179 and C214 of PrP yields an amyloidlike β-rich aggregate in vitro. To gain mechanistic insights into the reduction-induced aggregation, here I characterized how disulfide bond reduction modulates the protein folding/misfolding landscape of PrP, by examining 1) the equilibrium stabilities of the native (N) and aggregated states relative to the unfolded (U) state, 2) the transition barrier separating the U and aggregated states, and 3) the final structure of amyloidlike misfolded aggregates. Kinetic and thermodynamic experiments revealed that disulfide bond reduction decreases the equilibrium stabilities of both the N and aggregated states by ∼3 kcal/mol, without changing either the amyloidlike aggregate structure, at least at the secondary structural level, or the transition barrier of aggregation. Therefore, disulfide bond reduction modulates the protein folding/misfolding landscape by entropically stabilizing disordered states, including the U and transition state of aggregation. This also indicates that the equilibrium stability of the N state, but not the transition barrier of aggregation, is the dominant factor determining the reduction-induced aggregation of PrP. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Conformational analysis of large and highly disulfide-stabilized proteins by integrating online electrochemical reduction into an optimized H/D exchange mass spectrometry workflow

    DEFF Research Database (Denmark)

    Trabjerg, Esben; Jakobsen, Rasmus Uffe; Mysling, Simon

    2015-01-01

    Analysis of disulfide-bonded proteins by HDX-MS requires effective and rapid reduction of disulfide bonds before enzymatic digestion in order to increase sequence coverage. In a conventional HDX-MS workflow, disulfide bonds are reduced chemically by addition of a reducing agent to the quench......-antibody, respectively. The presented results demonstrate the successful electrochemical reduction during HDX-MS analysis of both a small exceptional tightly disulfide-bonded protein (NGF) as well as the largest protein attempted to date (IgG1-antibody). We envision that online electrochemical reduction...... the electrochemical reduction efficiency during HDX-MS analysis of two particularly challenging disulfide stabilized proteins: a therapeutic IgG1-antibody and Nerve Growth Factor-β (NGF). Several different parameters (flow rate, applied square wave potential as well as the type of labeling- and quench buffer) were...

  17. Rhodium-Catalyzed Insertion Reaction of PhP Group of Pentaphenylcyclopentaphosphine with Acyclic and Cyclic Disulfides.

    Science.gov (United States)

    Arisawa, Mieko; Sawahata, Kyosuke; Yamada, Tomoki; Sarkar, Debayan; Yamaguchi, Masahiko

    2018-02-16

    Organophosphorus compounds with a phosphorus atom attached to a phenyl group and two organothio/organoseleno groups were synthesized using the rhodium-catalyzed insertion reaction of the PhP group of pentaphenylcyclopentaphosphine (PhP) 5 with acyclic disulfides and diselenides. The method was applied to the synthesis of heterocyclic compounds containing the S-P-S group by the reaction of (PhP) 5 and cyclic disulfides such as 1,2-dithietes, 1,2-dithiocane, 1,4,5-dithiopane, and 1,2-dithiolanes.

  18. Mechanism of thioredoxin-catalyzed disulfide reduction. Activation of the buried thiol and role of the variable active-site residues

    NARCIS (Netherlands)

    Carvalho, A.P.; Swart, M.; van Stralen, J.N.P.; Fernandes, P.A.; Ramos, M.E.; Bickelhaupt, F.M.

    2008-01-01

    Thioredoxins (Trx) are enzymes with a characteristic CXYC active-site motif that catalyze the reduction of disulfide bonds in other proteins. We have theoretically explored this reaction mechanism, both in the gas phase and in water, using density functional theory. The mechanism of disulfide

  19. Rethinking Cysteine Protective Groups: S-Alkylsulfonyl-l-Cysteines for Chemoselective Disulfide Formation.

    Science.gov (United States)

    Schäfer, Olga; Huesmann, David; Muhl, Christian; Barz, Matthias

    2016-12-12

    The ability to reversibly cross-link proteins and peptides grants the amino acid cysteine its unique role in nature as well as in peptide chemistry. We report a novel class of S-alkylsulfonyl-l-cysteines and N-carboxy anhydrides (NCA) thereof for peptide synthesis. The S-alkylsulfonyl group is stable against amines and thus enables its use under Fmoc chemistry conditions and the controlled polymerization of the corresponding NCAs yielding well-defined homo- as well as block co-polymers. Yet, thiols react immediately with the S-alkylsulfonyl group forming asymmetric disulfides. Therefore, we introduce the first reactive cysteine derivative for efficient and chemoselective disulfide formation in synthetic polypeptides, thus bypassing additional protective group cleavage steps. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Autonomic healable waterborne organic-inorganic polyurethane hybrids based on aromatic disulfide moieties

    Directory of Open Access Journals (Sweden)

    R. H. Aguirresarobe

    2017-04-01

    Full Text Available Aromatic disulfide dynamic structures were incorporated as chain extenders in waterborne organic-inorganic polyurethane hybrids in order to provide autonomic healable characteristics. The synthesis was carried out following the acetone process methodology and the influence of the introduction of the healing agents in the polymer dispersion stability was analyzed. After the crosslinking process at room temperature, organic-inorganic hybrid films, which presented autonomic healing characteristics, were obtained. These features were evaluated by means of stress-strain tests and the films showed repetitive healing abilities. Thus, the optimum healing time at room temperature (25 °C as well as the influence of different parameters in the healing efficiency, such the aromatic disulfide concentration or the physical properties of the polymer matrix were analyzed.

  1. Grain-size data from four cores from Walker Lake, Nevada

    International Nuclear Information System (INIS)

    Yount, J.C.; Quimby, M.F.

    1990-01-01

    A number of cores, taken from within and near Walker Lake, Nevada are being studied by various investigators in order to evaluate the late-Pleistocene paleoclimate of the west-central Great Basin. In particular, the cores provide records that can be interpreted in terms of past climate and compared to proposed numerical models of the region's climate. All of these studies are being carried out as part of an evaluation of the regional paleoclimatic setting of a proposed high-level nuclear waste storage facility at Yucca Mountain, Nevada. Changes in past climate often manifest themselves in changes in sedimentary processes or in changes in the volume of sediment transported by those processes. One fundamental sediment property that can be related to depositional processes is grain size. Grain size effects other physical properties of sediment such as porosity and permeability which, in turn, affect the movement and chemistry of fluids. The purposes of this report are: (1) to document procedures of sample preparation and analysis, and (2) to summarize grain-size statistics for 659 samples from Walker Lake cores 84-4, 84-5, 84-8 and 85-2. Plots of mean particle diameter, percent sand, and the ratio of silt to clay are illustrated for various depth intervals within each core. Summary plots of mean grain size, sorting, and skewness parameters allow comparison of textural data between each core. 15 refs., 8 figs., 3 tabs

  2. Flow with boiling in four-cusp channels simulating damaged core in PWR type reactors

    International Nuclear Information System (INIS)

    Esteves, M.M.

    1985-01-01

    The study of subcooled nucleate flow boiling in non-circular channels is of great importance to engineering applications in particular to Nuclear Engineering. In the present work, an experimental apparatus, consisting basically of a refrigeration system, running on refrigerant-12, has been developed. Preliminary tests were made with a circular tube. The main objective has been to analyse subcooled flow boiling in four-cusp channels simulating the flow conditions in a PWR core degraded by accident. Correlations were developed for the forced convection film coefficient for both single-phase and subcooled flow boiling. The incipience of boiling in such geometry has also been studied. (author) [pt

  3. Combining biophysical methods to analyze the disulfide bond in SH2 domain of C-terminal Src kinase.

    Science.gov (United States)

    Liu, Dongsheng; Cowburn, David

    2016-01-01

    The Src Homology 2 (SH2) domain is a structurally conserved protein domain that typically binds to a phosphorylated tyrosine in a peptide motif from the target protein. The SH2 domain of C-terminal Src kinase (Csk) contains a single disulfide bond, which is unusual for most SH2 domains. Although the global motion of SH2 domain regulates Csk function, little is known about the relationship between the disulfide bond and binding of the ligand. In this study, we combined X-ray crystallography, solution NMR, and other biophysical methods to reveal the interaction network in Csk. Denaturation studies have shown that disulfide bond contributes significantly to the stability of SH2 domain, and crystal structures of the oxidized and C122S mutant showed minor conformational changes. We further investigated the binding of SH2 domain to a phosphorylated peptide from Csk-binding protein upon reduction and oxidation using both NMR and fluorescence approaches. This work employed NMR, X-ray cryptography, and other biophysical methods to study a disulfide bond in Csk SH2 domain. In addition, this work provides in-depth understanding of the structural dynamics of Csk SH2 domain.

  4. Differential Labeling of Free and Disulfide-Bound Thiol Functions in Proteins

    NARCIS (Netherlands)

    Seiwert, B.; Hayen, H.; Karst, U.

    2008-01-01

    A method for the simultaneous determination of the number of free cysteine groups and disulfide-bound cysteine groups in proteins has been developed based on the sequential labeling of free and bound thiol functionalities with two ferrocene-based maleimide reagents. Liquid

  5. Protein and non-protein sulfhydryls and disulfides in gastric mucosa and liver after gastrotoxic chemicals and sucralfate: possible new targets of pharmacologic agents.

    Science.gov (United States)

    Nagy, Lajos; Nagata, Miki; Szabo, Sandor

    2007-04-14

    To investigate the role of major non-protein and protein sulfhydryls and disulfides in chemically induced gastric hemorrhagic mucosal lesions (HML) and the mechanism of gastroprotective effect of sucralfate. Rats were given 1 mL of 75% ethanol, 25% NaCl, 0.6 mol/L HCl, 0.2 mol/L NaOH or 1% ammonia solutions intragastrically (i.g.) and sacrificed 1, 3, 6 or 12 min later. Total (reduced and oxidized) glutathione (GSH + GSSG), glutathione disulfide (GSSG), protein free sulfhydryls (PSH), protein-glutathione mixed disulfides (PSSG) and protein cystine disulfides (PSSP) were measured in gastric mucosa and liver. Reduced glutathione (GSH) was depleted in the gastric mucosa after ethanol, HCl or NaCl exposure, while oxidized glutathione (GSSG) concentrations increased, except by HCl and NaOH exposure. Decreased levels of PSH after exposure to ethanol were observed, NaCl or NaOH while the total protein disulfides were increased. Ratios of reduced to oxidized glutathione or sulfhydrils to disulfides were decreased by all chemicals. No changes in thiol homeostasis were detected in the liver after i.g. abbreviation should be spelled out the first time here administration of ethanol. Sucralfate increased the concentrations of GSH and PSH and prevented the ethanol-induced changes in gastric mucosal thiol concentrations. Our modified methods are now suitable for direct measurements of major protein and non-protein thiols/disulfides in the gastric mucosa or liver. A common element in the pathogenesis of chemically induced HML and in the mechanism of gastroprotective drugs seems to be the decreased ratios of reduced and oxidized glutathione as well as protein sulfhydryls and disulfides.

  6. Protein and non-protein sulfhydryls and disulfides in gastric mucosa and liver after gastrotoxic chemicals and sucralfate: Possible new targets of pharmacologic agents

    Institute of Scientific and Technical Information of China (English)

    Lajos Nagy; Miki Nagata; Sandor Szabo

    2007-01-01

    AIM: To investigate the role of major non-protein and protein sulfhydryls and disulfides in chemically induced gastric hemorrhagic mucosal lesions (HML) and the mechanism of gastroprotective effect of sucralfate.METHODS: Rats were given 1 mL of 75% ethanol, 25%NaCl, 0.6 mol/L HCI, 0.2 mol/L NaOH or 1% ammonia solutions intragastrically (i.g.) and sacrificed 1, 3, 6 or 12 min later. Total (reduced and oxidized) glutathione (GSH + GSSG), glutathione disulfide (GSSG), protein free sulfhydryls (PSH), protein-glutathione mixed disulfides (PSSG) and protein cystine disulfides (PSSP) were measured in gastric mucosa and liver.RESULTS: Reduced glutathione (GSH) was depleted in the gastric mucosa after ethanol, HCI or NaCl exposure,while oxidized glutathione (GSSG) concentrations increased, except by HCI and NaOH exposure. Decreased levels of PSH after exposure to ethanol were observed,NaCl or NaOH while the total protein disulfides were increased. Ratios of reduced to oxidized glutathione or sulfhydrils to disulfides were decreased by all chemicals.No changes in thiol homeostasis were detected in the liver after i.g. abbreviation should be spelled out the first time here administration of ethanol. Sucralfate increased the concentrations of GSH and PSH and prevented the ethanol-induced changes in gastric mucosal thiol concentrations.CONCLUSION: Our modified methods are now suitable for direct measurements of major protein and nonprotein thiols/disulfides in the gastric mucosa or liver.A common element in the pathogenesis of chemically induced HML and in the mechanism of gastroprotective drugs seems to be the decreased ratios of reduced and oxidized glutathione as well as protein sulfhydryls and disulfides.

  7. Identification of a disulfide bridge important for transport function of SNAT4 neutral amino acid transporter.

    Directory of Open Access Journals (Sweden)

    Rugmani Padmanabhan Iyer

    Full Text Available SNAT4 is a member of system N/A amino acid transport family that primarily expresses in liver and muscles and mediates the transport of L-alanine. However, little is known about the structure and function of the SNAT family of transporters. In this study, we showed a dose-dependent inhibition in transporter activity of SNAT4 with the treatment of reducing agents, dithiothreitol (DTT and Tris(2-carboxyethylphosphine (TCEP, indicating the possible involvement of disulfide bridge(s. Mutation of residue Cys-232, and the two highly conserved residues Cys-249 and Cys-321, compromised the transport function of SNAT4. However, this reduction was not caused by the decrease of SNAT4 on the cell surface since the cysteine-null mutant generated by replacing all five cysteines with alanine was equally capable of being expressed on the cell surface as wild-type SNAT4. Interestingly, by retaining two cysteine residues, 249 and 321, a significant level of L-alanine uptake was restored, indicating the possible formation of disulfide bond between these two conserved residues. Biotinylation crosslinking of free thiol groups with MTSEA-biotin provided direct evidence for the existence of a disulfide bridge between Cys-249 and Cys-321. Moreover, in the presence of DTT or TCEP, transport activity of the mutant retaining Cys-249 and Cys-321 was reduced in a dose-dependent manner and this reduction is gradually recovered with increased concentration of H2O2. Disruption of the disulfide bridge also decreased the transport of L-arginine, but to a lesser degree than that of L-alanine. Together, these results suggest that cysteine residues 249 and 321 form a disulfide bridge, which plays an important role in substrate transport but has no effect on trafficking of SNAT4 to the cell surface.

  8. Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides

    DEFF Research Database (Denmark)

    Safavi-Hemami, Helena; Li, Qing; Jackson, Ronneshia L.

    2016-01-01

    Formation of correct disulfide bonds in the endoplasmic reticulum is a crucial step for folding proteins destined for secretion. Protein disulfide isomerases (PDIs) play a central role in this process. We report a previously unidentified, hypervariable family of PDIs that represents the most...... diverse gene family of oxidoreductases described in a single genus to date. These enzymes are highly expressed specifically in the venom glands of predatory cone snails, animals that synthesize a remarkably diverse set of cysteine-rich peptide toxins (conotoxins). Enzymes in this PDI family, termed...

  9. Conversion of a disulfide bond into a thioacetal group during echinomycin biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, Kinya; Keegan, Ronan M.; Ranganathan, Soumya; Fang, Minyi; Bibby, Jaclyn; Winn, Martyn D.; Sato, Michio; Lian, Mingzhu; Watanabe, Kenji; Rigden, Daniel J.; Kim, Chu-Young (Liverpool); (Daresbury); (NU Singapore); (Shizuoka); (RAL)

    2013-12-02

    Echinomycin is a nonribosomal depsipeptide natural product with a range of interesting bioactivities that make it an important target for drug discovery and development. It contains a thioacetal bridge, a unique chemical motif derived from the disulfide bond of its precursor antibiotic triostin A by the action of an S-adenosyl-L-methionine-dependent methyltransferase, Ecm18. The crystal structure of Ecm18 in complex with its reaction products S-adenosyl-L-homocysteine and echinomycin was determined at 1.50 Å resolution. Phasing was achieved using a new molecular replacement package called AMPLE, which automatically derives search models from structure predictions based on ab initio protein modelling. Structural analysis indicates that a combination of proximity effects, medium effects, and catalysis by strain drives the unique transformation of the disulfide bond into the thioacetal linkage.

  10. Preparation of waste analysis plans under the Resource Conservation and Recovery Act (Interim guidance)

    International Nuclear Information System (INIS)

    1993-03-01

    This document is organized to coincide with the suggested structure of the actual Waste Analysis Plans (WAP) discussed in the previous section. The contents of the remaining eleven chapters and appendices that comprise this document are described below: Chapter 2 addresses waste streams, test parameters, and rationale for sampling and analytical method selection; test methods for analyzing parameters; proceduresfor collecting representative samples; and frequency of sample collection and analyses. These are the core WAP requirements. Chapter 3 addresses analysis requirements for waste received from off site. Chapter 4addresses additional requirements for ignitable, reactive, or incompatible wastes. Chapter 5 addresses unit-specific requirements. Chapter 6 addresses special procedures for radioactive mixed waste. Chapter 7 addresses wastes subject to the land disposal restrictions. Chapter 8 addresses QA/QC procedures. Chapter 9 compares the waste analysis requirements of an interim status facility with those of a permitted facility. Chapter 10 describes the petition process required for sampling and analytical procedures to deviate from accepted methods, such as those identified in promulgated regulations. Chapter 11 reviews the process for modification of WAPs as waste type or handling practices change at a RCRA permitted TSDF. Chapter 12 is the list of references that were used in the preparation of this guidance. Appendix A is a sample WAP addressing physical/chemical treatment and container storage. Appendix B is a sample WAP addressing an incinerator and tank systems. Appendix C discusses the relationship of the WAP to other permitting requirements and includes specific examples of how waste analysis is used to comply with certain parts of a RCRA permit. Appendix D contains the exact wording for the notification/certification requirements under theland disposal restrictions

  11. Self-Assembly of Fluorescent Hybrid Core-Shell Nanoparticles and Their Application.

    Science.gov (United States)

    Wang, Chun; Tang, Fu; Wang, Xiaoyu; Li, Lidong

    2015-06-24

    In this work, a fluorescent hybrid core-shell nanoparticle was prepared by coating a functional polymer shell onto silver nanoparticles via a facile one-pot method. The biomolecule poly-L-lysine (PLL) was chosen as the polymer shell and assembled onto the silver core via the amine-reactive cross-linker, 3,3'-dithiobis(sulfosuccinimidylpropionate). The fluorescent anticancer drug, doxorubicin, was incorporated into the PLL shell through the same linkage. As the cross-linker possesses a thiol-cleavable disulfide bond, disassembly of the PLL shell was observed in the presence of glutathione, leading to controllable doxorubicin release. The silver core there provided an easily modified surface to facilitate the shell coating and ensures the efficient separation of as-prepared nanoparticles from their reaction mixture through centrifugation. Cell assays show that the prepared hybrid fluorescent nanoparticles can internalize into cells possessing excellent biocompatibility prior to the release of doxorubicin, terminating cancer cells efficiently as the doxorubicin is released at the intracellular glutathione level. Such properties are important for designing smart containers for target drug delivery and cellular imaging.

  12. MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis.

    Science.gov (United States)

    Liu, Shuzhen; Liu, Hua; Johnston, Andrea; Hanna-Addams, Sarah; Reynoso, Eduardo; Xiang, Yougui; Wang, Zhigao

    2017-09-05

    Mixed-lineage kinase domain-like protein (MLKL) is essential for TNF-α-induced necroptosis. How MLKL promotes cell death is still under debate. Here we report that MLKL forms SDS-resistant, disulfide bond-dependent polymers during necroptosis in both human and mouse cells. MLKL polymers are independent of receptor-interacting protein kinase 1 and 3 (RIPK1/RIPK3) fibers. Large MLKL polymers are more than 2 million Da and are resistant to proteinase K digestion. MLKL polymers are fibers 5 nm in diameter under electron microscopy. Furthermore, the recombinant N-terminal domain of MLKL forms amyloid-like fibers and binds Congo red dye. MLKL mutants that cannot form polymers also fail to induce necroptosis efficiently. Finally, the compound necrosulfonamide conjugates cysteine 86 of human MLKL and blocks MLKL polymer formation and subsequent cell death. These results demonstrate that disulfide bond-dependent, amyloid-like MLKL polymers are necessary and sufficient to induce necroptosis.

  13. Structural Characterization and Disulfide Assignment of Spider Peptide Phα1β by Mass Spectrometry

    Science.gov (United States)

    Wormwood, Kelly L.; Ngounou Wetie, Armand Gatien; Gomez, Marcus Vinicius; Ju, Yue; Kowalski, Paul; Mihasan, Marius; Darie, Costel C.

    2018-05-01

    Native Phα1β is a peptide purified from the venom of the armed spider Phoneutria nigriventer that has been shown to have an extensive analgesic effect with fewer side effects than ω-conotoxin MVIIA. Recombinant Phα1β mimics the effects of the native Phα1β. Because of this, it has been suggested that Phα1β may have potential to be used as a therapeutic for controlling persistent pathological pain. The amino acid sequence of Phα1β is known; however, the exact structure and disulfide arrangement has yet to be determined. Determination of the disulfide linkages and exact structure could greatly assist in pharmacological analysis and determination of why this peptide is such an effective analgesic. Here, we used biochemical and mass spectrometry approaches to determine the disulfide linkages present in the recombinant Phα1β peptide. Using a combination of MALDI-MS, direct infusion ESI-MS, and nanoLC-MS/MS analysis of the undigested recombinant Phα1β peptide and digested with AspN, trypsin, or AspN/trypsin, we were able to identify and confirm all six disulfide linkages present in the peptide as Cys1-2, Cys3-4, Cys5-6, Cys7-8, Cys9-10, and Cys11-12. These results were also partially confirmed in the native Phα1β peptide. These experiments provide essential structural information about Phα1β and may assist in providing insight into the peptide's analgesic effect with very low side effects. [Figure not available: see fulltext.

  14. Structural Characterization and Disulfide Assignment of Spider Peptide Phα1β by Mass Spectrometry

    Science.gov (United States)

    Wormwood, Kelly L.; Ngounou Wetie, Armand Gatien; Gomez, Marcus Vinicius; Ju, Yue; Kowalski, Paul; Mihasan, Marius; Darie, Costel C.

    2018-04-01

    Native Phα1β is a peptide purified from the venom of the armed spider Phoneutria nigriventer that has been shown to have an extensive analgesic effect with fewer side effects than ω-conotoxin MVIIA. Recombinant Phα1β mimics the effects of the native Phα1β. Because of this, it has been suggested that Phα1β may have potential to be used as a therapeutic for controlling persistent pathological pain. The amino acid sequence of Phα1β is known; however, the exact structure and disulfide arrangement has yet to be determined. Determination of the disulfide linkages and exact structure could greatly assist in pharmacological analysis and determination of why this peptide is such an effective analgesic. Here, we used biochemical and mass spectrometry approaches to determine the disulfide linkages present in the recombinant Phα1β peptide. Using a combination of MALDI-MS, direct infusion ESI-MS, and nanoLC-MS/MS analysis of the undigested recombinant Phα1β peptide and digested with AspN, trypsin, or AspN/trypsin, we were able to identify and confirm all six disulfide linkages present in the peptide as Cys1-2, Cys3-4, Cys5-6, Cys7-8, Cys9-10, and Cys11-12. These results were also partially confirmed in the native Phα1β peptide. These experiments provide essential structural information about Phα1β and may assist in providing insight into the peptide's analgesic effect with very low side effects. [Figure not available: see fulltext.

  15. Nicotinamidase/pyrazinamidase of Mycobacterium tuberculosis forms homo-dimers stabilized by disulfide bonds.

    Science.gov (United States)

    Rueda, Daniel; Sheen, Patricia; Gilman, Robert H; Bueno, Carlos; Santos, Marco; Pando-Robles, Victoria; Batista, Cesar V; Zimic, Mirko

    2014-12-01

    Recombinant wild-pyrazinamidase from H37Rv Mycobacterium tuberculosis was analyzed by gel electrophoresis under differential reducing conditions to evaluate its quaternary structure. PZAse was fractionated by size exclusion chromatography under non-reducing conditions. PZAse activity was measured and mass spectrometry analysis was performed to determine the identity of proteins by de novo sequencing and to determine the presence of disulfide bonds. This study confirmed that M. tuberculosis wild type PZAse was able to form homo-dimers in vitro. Homo-dimers showed a slightly lower specific PZAse activity compared to monomeric PZAse. PZAse dimers were dissociated into monomers in response to reducing conditions. Mass spectrometry analysis confirmed the existence of disulfide bonds (C72-C138 and C138-C138) stabilizing the quaternary structure of the PZAse homo-dimer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The Glycosyltransferases of LPS Core: A Review of Four Heptosyltransferase Enzymes in Context

    Directory of Open Access Journals (Sweden)

    Joy M. Cote

    2017-10-01

    Full Text Available Bacterial antibiotic resistance is a rapidly expanding problem in the world today. Functionalization of the outer membrane of Gram-negative bacteria provides protection from extracellular antimicrobials, and serves as an innate resistance mechanism. Lipopolysaccharides (LPS are a major cell-surface component of Gram-negative bacteria that contribute to protecting the bacterium from extracellular threats. LPS is biosynthesized by the sequential addition of sugar moieties by a number of glycosyltransferases (GTs. Heptosyltransferases catalyze the addition of multiple heptose sugars to form the core region of LPS; there are at most four heptosyltransferases found in all Gram-negative bacteria. The most studied of the four is HepI. Cells deficient in HepI display a truncated LPS on their cell surface, causing them to be more susceptible to hydrophobic antibiotics. HepI–IV are all structurally similar members of the GT-B structural family, a class of enzymes that have been found to be highly dynamic. Understanding conformational changes of heptosyltransferases are important to efficiently inhibiting them, but also contributing to the understanding of all GT-B enzymes. Finding new and smarter methods to inhibit bacterial growth is crucial, and the Heptosyltransferases may provide an important model for how to inhibit many GT-B enzymes.

  17. Conformational landscape and pathway of disulfide bond reduction of human alpha defensin

    NARCIS (Netherlands)

    Snijder, Joost; Van De Waterbeemd, Michiel; Glover, Matthew S.; Shi, Liuqing; Clemmer, David E.; Heck, Albert J R

    2015-01-01

    Human alpha defensins are a class of antimicrobial peptides with additional antiviral activity. Such antimicrobial peptides constitute a major part of mammalian innate immunity. Alpha defensins contain six cysteines, which form three well defined disulfide bridges under oxidizing conditions.

  18. Disulfide-functional poly(amido amine)s with tunable degradability for gene delivery

    NARCIS (Netherlands)

    Elzes, M. Rachel; Akeroyd, Niels; Engbersen, Johan F. J.; Paulusse, Jos M. J.

    2016-01-01

    Controlled degradability in response to the local environment is one of the most effective strategies to achieve spatiotemporal release of genes from a polymeric carrier. Exploiting the differences in reduction potential between the extracellular and intracellular environment, disulfides are

  19. Synthesis of core-fluorescent four-armed star and dicyclic 8-shaped poly(THF)s by electrostatic self-assembly and covalent fixation (ESA–CF) protocol

    KAUST Repository

    Fujiwara, Susumu; Yamamoto, Takuya; Tezuka, Yasuyuki; Habuchi, Satoshi

    2013-01-01

    A pair of four-armed star and dicyclic 8-shaped poly(tetrahydrofuran)s, poly(THF)s, possessing a perylene diimide group at the core position (Ia and Ib, respectively) were synthesized by means of an electrostatic self-assembly and covalent fixation (ESA–CF) protocol. Mono- and bifunctional poly(THF)s having N-phenylpiperidinium salt end groups accompanying a perylene diimide tetracarboxylate as a counteranion were prepared by the ion-exchange reaction, and the subsequent covalent conversion by reflux in toluene afforded the corresponding core-fluorescent four-armed star and dicyclic 8-shaped poly(THF)s, (Ia and Ib, respectively) for the use of single-molecule fluorescence microscopy measurements.

  20. Synthesis of core-fluorescent four-armed star and dicyclic 8-shaped poly(THF)s by electrostatic self-assembly and covalent fixation (ESA–CF) protocol

    KAUST Repository

    Fujiwara, Susumu

    2013-12-07

    A pair of four-armed star and dicyclic 8-shaped poly(tetrahydrofuran)s, poly(THF)s, possessing a perylene diimide group at the core position (Ia and Ib, respectively) were synthesized by means of an electrostatic self-assembly and covalent fixation (ESA–CF) protocol. Mono- and bifunctional poly(THF)s having N-phenylpiperidinium salt end groups accompanying a perylene diimide tetracarboxylate as a counteranion were prepared by the ion-exchange reaction, and the subsequent covalent conversion by reflux in toluene afforded the corresponding core-fluorescent four-armed star and dicyclic 8-shaped poly(THF)s, (Ia and Ib, respectively) for the use of single-molecule fluorescence microscopy measurements.

  1. A Disulfide Bond in the Membrane Protein IgaA Is Essential for Repression of the RcsCDB System

    Directory of Open Access Journals (Sweden)

    M. Graciela Pucciarelli

    2017-12-01

    Full Text Available IgaA is an integral inner membrane protein that was discovered as repressor of the RcsCDB phosphorelay system in the intracellular pathogen Salmonella enterica serovar Typhimurium. The RcsCDB system, conserved in many members of the family Enterobacteriaceae, regulates expression of varied processes including motility, biofilm formation, virulence and response to envelope stress. IgaA is an essential protein to which, in response to envelope perturbation, the outer membrane lipoprotein RcsF has been proposed to bind in order to activate the RcsCDB phosphorelay. Envelope stress has also been reported to be sensed by a surface exposed domain of RcsF. These observations support a tight control of the RcsCDB system by RcsF and IgaA via mechanisms that, however, remain unknown. Interestingly, RcsF and IgaA have four conserved cysteine residues in loops exposed to the periplasmic space. Two non-consecutive disulfide bonds were shown to be required for RcsF function. Here, we report mutagenesis studies supporting the presence of one disulfide bond (C404-C425 in the major periplasmic loop of IgaA that is essential for repression of the RcsCDB phosphorelay. Our data therefore suggest that the redox state of the periplasm may be critical for the control of the RcsCDB system by its two upstream regulators, RcsF and IgaA.

  2. Resolution of Disulfide Heterogeneity in Nogo Receptor 1 Fusion Proteins by Molecular Engineering

    Energy Technology Data Exchange (ETDEWEB)

    P Weinreb; D Wen; F Qian; C Wildes; E Garber; L Walus; M Jung; J Wang; J Relton; et al.

    2011-12-31

    NgRI (Nogo-66 receptor) is part of a signalling complex that inhibits axon regeneration in the central nervous system. Truncated soluble versions of NgRI have been used successfully to promote axon regeneration in animal models of spinal-cord injury, raising interest in this protein as a potential therapeutic target. The LRR (leucine-rich repeat) regions in NgRI are flanked by N- and C-terminal disulfide-containing 'cap' domains (LRRNT and LRRCT respectively). In the present work we show that, although functionally active, the NgRI(310)-Fc fusion protein contains mislinked and heterogeneous disulfide patterns in the LRRCT domain, and we report the generation of a series of variant molecules specifically designed to prevent this heterogeneity. Using these variants we explored the effects of modifying the NgRI truncation site or the spacing between the NgRI and Fc domains, or replacing cysteines within the NgRI or IgG hinge regions. One variant, which incorporates replacements of Cys{sup 266} and Cys{sup 309} with alanine residues, completely eliminated disulfide scrambling while maintaining functional in vitro and in vivo efficacy. This modified NgRI-Fc molecule represents a significantly improved candidate for further pharmaceutical development, and may serve as a useful model for the optimization of other IgG fusion proteins made from LRR proteins.

  3. Quantitation of a PEGylated protein in monkey serum by UHPLC-HRMS using a surrogate disulfide-containing peptide: A new approach to bioanalysis and in vivo stability evaluation of disulfide-rich protein therapeutics.

    Science.gov (United States)

    Zheng, Naiyu; Zeng, Jianing; Manney, Amy; Williams, Lakenya; Aubry, Anne-Françoise; Voronin, Kimberly; Buzescu, Adela; Zhang, Yan J; Allentoff, Alban; Xu, Carrie; Shen, Hongwu; Warner, William; Arnold, Mark E

    2016-04-15

    To quantify a therapeutic PEGylated protein in monkey serum as well as to monitor its potential in vivo instability and methionine oxidation, a novel ultra high performance liquid chromatography-high resolution mass spectrometric (UHPLC-HRMS) assay was developed using a surrogate disulfide-containing peptide, DCP(SS), and a confirmatory peptide, CP, a disulfide-free peptide. DCP(SS) was obtained by eliminating the step of reduction/alkylation before trypsin digestion. It contains an intact disulfide linkage between two peptide sequences that are essential for drug function but susceptible to potential in vivo cleavages. HRMS-based single ion monitoring (SIM) on a Q Exactive™ mass spectrometer was employed to improve assay specificity and sensitivity for DCP(SS) due to its poor fragmentation and low sensitivity with SRM detection. The assay has been validated for the protein drug in monkey serum using both surrogate peptides with excellent accuracy (within ±4.4%Dev) and precision (within 7.5%CV) with a lower limit of quantitation (LLOQ) at 10 ng mL(-1). The protein concentrations in monkey serum obtained from the DCP(SS)-based assay not only provided important pharmacokinetic parameters, but also confirmed in vivo stability of the peptide regions of interest by comparing drug concentrations with those obtained from the CP-based assay or from a ligand-binding assay (LBA). Furthermore, UHPLC-HRMS allowed simultaneous monitoring of the oxidized forms of both surrogate peptides to evaluate potential ex vivo/in vivo oxidation of one methionine present in each of both surrogate peptides. To the best of our knowledge, this is the first report of using a surrogate disulfide-containing peptide for LC-MS bioanalysis of a therapeutic protein. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Characterization of intramolecular disulfide bonds and secondary modifications of the glycoprotein from viral hemorrhagic septicemia virus, a fish rhabdovirus

    DEFF Research Database (Denmark)

    Einer-Jensen, Katja; Nielsen, Thomas Krogh; Roepstorff, Peter

    1998-01-01

    were analyzed by mass spectrometry before and after chemical reduction, and six disulfide bonds were identified: Cys29-Cys339, Cys44-Cys295, Cys90-Cys132, Cys172-Cys177, Cys195-Cys265, and Cys231-CyS236. Mass spectrometric analysis in combination with glycosidases allowed characterization of the glycan...... of the protein, The present study was initiated to identify the disulfide bonds and other structural aspects relevant to vaccine design. The N-terminal amino acid residue was identified as being a pyroglutamic acid, corresponding to Gln21 of the primary transcript, Peptides from endoproteinase-degraded G protein...... cysteine residues are situated at conserved positions, This finding suggests that there might be some common disulfide bonding pattern among the six rhabdoviruses....

  5. Determination of Disulfide Bond Connectivity of Cysteine-rich Peptide IpTx{sub a}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Won; Kim, Jim Il [Chonnam National Univ., Gwangju (Korea, Republic of); Sato, Kazuki [Fukuoka Women' s Univ., Fukuoka (Japan)

    2013-06-15

    Cysteine-rich peptides stabilized by intramolecular disulfide bonds have often been isolated from venoms of microbes, animals and plants. These peptides typically have much higher stability and improved biopharmaceutical properties compared to their linear counterparts. Therefore the correct disulfide bond formation of small proteins and peptides has been extensively studied for a better understanding of their folding mechanism and achieving efficient generation of the naturally occurring biologically active product. Imperatoxin A (IpTx{sub a}), a peptide toxin containing 6 cysteine residues, was isolated from the venom of scorpion Pandinus imperator, selectively binds the ryanodine receptors and activates Ca{sup 2+} release from sarcoplasmic reticulum (SR). IpTx{sub a} increases the binding of ryanodine to ryanodine receptors (RyRs) and encourages reconstituted single channel to induce subconductance states.

  6. CO2·- radical induced cleavage of disulfide bonds in proteins. A gamma-ray and pulse radiolysis mechanistic investigation

    International Nuclear Information System (INIS)

    Favaudon, V.; Tourbez, H.; Lhoste, J-M.; Houee-Levin, C.

    1990-01-01

    Disulfide bond reduction by the CO 2 ·- radical was investigated in aponeocarzinostatin, aporiboflavin-binding protein, and bovine immunoglobulin. Protein-bound cysteine free thiols were formed under γ-ray irradiation in the course of a pH-dependent and protein concentration dependent chain reaction. The chain efficiency increased upon acidification of the medium, with an apparent pK a around 5, and decreased abruptly below pH 3.6. It decreased also at neutral pH as cysteine accumulated. From pulse radiolysis analysis, CO 2 ·- proved able to induce rapid one-electron oxidation of thiols and of tyrosine phenolic groups in addition to one-electron donation to exposed disulfide bonds. The bulk rate constant of CO 2 ·- uptake by the native proteins was 5- to 10-fold faster at pH 3 than at pH 8, and the protonated form of the disulfide radical anion, appeared to be the major protein radical species formed under acidic conditions. Formation of the disulfide radical cation, phenoxyl radical Tyr-O · disproportionation, and phenoxyl radical induced oxidation of preformed thiol groups should also be taken into consideration to explain the fate of the oxygen-centered phenoxyl radical

  7. The role of short-range Cys171-Cys178 disulfide bond in maintaining cutinase active site integrity: A molecular dynamics simulation

    International Nuclear Information System (INIS)

    Matak, Mehdi Youssefi; Moghaddam, Majid Erfani

    2009-01-01

    Understanding structural determinants in enzyme active site integrity can provide a good knowledge to design efficient novel catalytic machineries. Fusarium solani pisi cutinase with classic triad Ser-His-Asp is a promising enzyme to scrutinize these structural determinants. We performed two MD simulations: one, with the native structure, and the other with the broken Cys171-Cys178 disulfide bond. This disulfide bond stabilizes a turn in active site on which catalytic Asp175 is located. Functionally important H-bonds and atomic fluctuations in catalytic pocket have been changed. We proposed that this disulfide bond within active site can be considered as an important determinant of cutinase active site structural integrity.

  8. Oxidative protein folding: from thiol-disulfide exchange reactions to the redox poise of the endoplasmic reticulum.

    Science.gov (United States)

    Hudson, Devin A; Gannon, Shawn A; Thorpe, Colin

    2015-03-01

    This review examines oxidative protein folding within the mammalian endoplasmic reticulum (ER) from an enzymological perspective. In protein disulfide isomerase-first (PDI-first) pathways of oxidative protein folding, PDI is the immediate oxidant of reduced client proteins and then addresses disulfide mispairings in a second isomerization phase. In PDI-second pathways the initial oxidation is PDI-independent. Evidence for the rapid reduction of PDI by reduced glutathione is presented in the context of PDI-first pathways. Strategies and challenges are discussed for determination of the concentrations of reduced and oxidized glutathione and of the ratios of PDI(red):PDI(ox). The preponderance of evidence suggests that the mammalian ER is more reducing than first envisaged. The average redox state of major PDI-family members is largely to almost totally reduced. These observations are consistent with model studies showing that oxidative protein folding proceeds most efficiently at a reducing redox poise consistent with a stoichiometric insertion of disulfides into client proteins. After a discussion of the use of natively encoded fluorescent probes to report the glutathione redox poise of the ER, this review concludes with an elaboration of a complementary strategy to discontinuously survey the redox state of as many redox-active disulfides as can be identified by ratiometric LC-MS-MS methods. Consortia of oxidoreductases that are in redox equilibrium can then be identified and compared to the glutathione redox poise of the ER to gain a more detailed understanding of the factors that influence oxidative protein folding within the secretory compartment. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Thiol/disulfide homeostasis in pregnant women with obstructive sleep apnea syndrome.

    Science.gov (United States)

    Üstündağ, Yasemin; Demirci, Hakan; Balık, Rifat; Erel, Ozcan; Özaydın, Fahri; Kücük, Bilgen; Ertaş, Dilber; Ustunyurt, Emin

    2017-11-27

    Repetitive episodes of hypoxia and reoxygenation during sleep in patients with obstructive sleep apnea syndrome (OSAS) resemble an ischemia-reperfusion injury. We aimed to test the hypothesis that oxidative stress occurs in pregnant women with OSAS. We also aimed to compare thiol/disulfide homeostasis with ischemia-modified albumin (IMA) and total antioxidant capacity (TAC) as markers of ischemia-reperfusion injury in pregnant women with and without OSAS and healthy control. This study included 29 pregnant women with OSAS, 30 women without OSAS in the third trimester applying for periodic examinations, and 30 healthy women. Serum IMA and TAC (using the ferric reducing power of plasma method) were measured. Serum thiol/disulfide homeostasis was determined by a novel automated method. The mean age of the pregnant women with OSAS was 31.0 ± 4.7 years with a mean gestational age of 36.5 ± 3.0 weeks. The mean age of pregnant women without OSAS was 29.8 ± 4.9 years with a mean gestational age of 36.9 ± 2.7 weeks. The mean age of the nonpregnant control group was 29.7 ± 6.4 years. Both native thiol (291 ± 29 μmol/L versus 314 ± 30 μmol/L; p = .018) and total thiol (325 ± 32 versus 350 ± 32, p = .025) levels were lower in pregnant women with OSAS compared to pregnant women without OSAS, respectively (p total thiol levels were lower in pregnant women with OSAS compared to those without OSAS. However, dynamic thiol/disulfide homeostasis parameters cannot provide valuable information to discriminate OSAS in pregnant women.

  10. Engineering out motion: introduction of a de novo disulfide bond and a salt bridge designed to close a dynamic cleft on the surface of cytochrome b5.

    Science.gov (United States)

    Storch, E M; Daggett, V; Atkins, W M

    1999-04-20

    A previous molecular dynamics (MD) simulation of cytochrome b5 (cyt b5) at 25 degrees C displayed localized dynamics on the surface of the protein giving rise to the periodic formation of a cleft that provides access to the heme through a protected hydrophobic channel [Storch and Daggett (1995) Biochemistry 34, 9682]. Here we describe the production and testing of mutants designed to prevent the cleft from opening using a combination of experimental and theoretical techniques. Two mutants have been designed to close the surface cleft: S18D to introduce a salt bridge and S18C:R47C to incorporate a disulfide bond. The putative cleft forms between two separate cores of the protein: one is structural in nature and can be monitored through the fluorescence of Trp 22, and the other binds the heme prosthetic group and can be tracked via heme absorbance. An increase in motion localized to the cleft region was observed for each protein, except for the disulfide-containing variant, in MD simulations at 50 degrees C compared to simulations at 25 degrees C. For the disulfide-containing variant, the cleft remained closed. Both urea and temperature denaturation curves were nearly identical for wild-type and mutant proteins when heme absorbance was monitored. In contrast, fluorescence studies revealed oxidized S18C:R47C to be considerably more stable based on the midpoints of the denaturation transitions, Tm and U1/2. Moreover, the fluorescence changes for each protein were complete at approximately 50 degrees C and a urea concentration of approximately 3.9 M, significantly below the temperature and urea concentration (62 degrees C, 5 M urea) required to observe heme release. In addition, solvent accessibility based on acrylamide quenching of Trp 22 was lower in the S18C:R47C mutant, particularly at 50 degrees C, before heme release [presented in the accompanying paper (58)]. The results suggest that a constraining disulfide bond can be designed to inhibit dynamic cleft formation

  11. Polymeric redox-responsive delivery systems bearing ammonium salts cross-linked via disulfides

    Directory of Open Access Journals (Sweden)

    Christian Dollendorf

    2013-08-01

    Full Text Available A redox-responsive polycationic system was synthesized via copolymerization of N,N-diethylacrylamide (DEAAm and 2-(dimethylaminoethyl methacrylate (DMAEMA. N,N’-bis(4-chlorobutanoylcystamine was used as disulfide-containing cross-linker to form networks by the quaternization of tertiary amine groups. The insoluble cationic hydrogels become soluble by reduction of disulfide to mercaptanes by use of dithiothreitol (DTT, tris(2-carboxyethylphosphine (TCEP or cysteamine, respectively. The soluble polymeric system can be cross-linked again by using oxygen or hydrogen peroxide under basic conditions. The redox-responsive polymer networks can be used for molecular inclusion and controlled release. As an example, phenolphthalein, methylene blue and reactive orange 16 were included into the network. After treatment with DTT a release of the dye could be recognized. Physical properties of the cross-linked materials, e.g., glass transition temperature (Tg, swelling behavior and cloud points (Tc were investigated. Redox-responsive behavior was further analyzed by rheological measurements.

  12. Snow precipitation at four ice core sites in East Antarctica: provenance, seasonality and blocking factors

    Energy Technology Data Exchange (ETDEWEB)

    Scarchilli, Claudio [ENEA, Rome (Italy); Universita degli studi di Trieste, Trieste (Italy); Frezzotti, Massimo; Ruti, Paolo Michele [ENEA, Rome (Italy)

    2011-11-15

    Snow precipitation is the primary mass input to the Antarctic ice sheet and is one of the most direct climatic indicators, with important implications for paleoclimatic reconstruction from ice cores. Provenance of precipitation and the dynamic conditions that force these precipitation events at four deep ice core sites (Dome C, Law Dome, Talos Dome, and Taylor Dome) in East Antarctica were analysed with air mass back trajectories calculated using the Lagrangian model and the mean composite data for precipitation, geopotential height and wind speed field data from the European Centre for Medium Range Weather Forecast from 1980 to 2001. On an annual basis, back trajectories showed that the Atlantic-Indian and Ross-Pacific Oceans were the main provenances of precipitation in Wilkes Land (80%) and Victoria Land (40%), respectively, whereas the greatest influence of the ice sheet was on the interior near the Vostok site (80%) and in the Southwest Ross Sea (50%), an effect that decreased towards the coast and along the Antarctic slope. Victoria Land received snowfall atypically with respect to other Antarctica areas in terms of pathway (eastern instead of western), seasonality (summer instead of winter) and velocity (old air age). Geopotential height patterns at 500 hPa at low (>10 days) and high (2-6 days) frequencies during snowfall cycles at two core sites showed large positive anomalies at low frequencies developing in the Tasman Sea-Eastern Indian Ocean at higher latitudes (60-70 S) than normal. This could be considered part of an atmospheric blocking event, with transient eddies acting to decelerate westerlies in a split region area and accelerate the flow on the flanks of the low-frequency positive anomalies. (orig.)

  13. {sup 13}C-NMR studies on disulfide bond isomerization in bovine pancreatic trypsin inhibitor (BPTI)

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Mitsuhiro [Kumamoto University, Department of Structural BioImaging, Faculty of Life Sciences (Japan); Miyanoiri, Yohei [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan); Terauchi, Tsutomu [Tokyo Metropolitan University, Graduate School of Science and Engineering (Japan); Kainosho, Masatsune, E-mail: kainosho@tmu.ac.jp [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan)

    2016-09-15

    Conformational isomerization of disulfide bonds is associated with the dynamics and thus the functional aspects of proteins. However, our understanding of the isomerization is limited by experimental difficulties in probing it. We explored the disulfide conformational isomerization of the Cys14–Cys38 disulfide bond in bovine pancreatic trypsin inhibitor (BPTI), by performing an NMR line-shape analysis of its Cys carbon peaks. In this approach, 1D {sup 13}C spectra were recorded at small temperature intervals for BPTI samples selectively labeled with site-specifically {sup 13}C-enriched Cys, and the recorded peaks were displayed in the order of the temperature after the spectral scales were normalized to a carbon peak. Over the profile of the line-shape, exchange broadening that altered with temperature was manifested for the carbon peaks of Cys14 and Cys38. The Cys14–Cys38 disulfide bond reportedly exists in equilibrium between a high-populated (M) and two low-populated states (m{sub c14} and m{sub c38}). Consistent with the three-site exchange model, biphasic exchange broadening arising from the two processes was observed for the peak of the Cys14 α-carbon. As the exchange broadening is maximized when the exchange rate equals the chemical shift difference in Hz between equilibrating sites, semi-quantitative information that was useful for establishing conditions for {sup 13}C relaxation dispersion experiments was obtained through the carbon line-shape profile. With respect to the m{sub c38} isomerization, the {sup 1}H-{sup 13}C signals at the β-position of the minor state were resolved from the major peaks and detected by exchange experiments at a low temperature.

  14. Loss of metal ions, disulfide reduction and mutations related to familial ALS promote formation of amyloid-like aggregates from superoxide dismutase.

    Directory of Open Access Journals (Sweden)

    Zeynep A Oztug Durer

    Full Text Available Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1 are one of the causes of familial amyotrophic lateral sclerosis (FALS. Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1 formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1.

  15. Hexa-histidin tag position influences disulfide structure but not binding behavior of in vitro folded N-terminal domain of rat corticotropin-releasing factor receptor type 2a

    OpenAIRE

    Klose, Jana; Wendt, Norbert; Kubald, Sybille; Krause, Eberhard; Fechner, Klaus; Beyermann, Michael; Bienert, Michael; Rudolph, Rainer; Rothemund, Sven

    2004-01-01

    The oxidative folding, particularly the arrangement of disulfide bonds of recombinant extracellular N-terminal domains of the corticotropin-releasing factor receptor type 2a bearing five cysteines (C2 to C6), was investigated. Depending on the position of a His-tag, two types of disulfide patterns were found. In the case of an N-terminal His-tag, the disulfide bonds C2–C3 and C4–C6 were found, leaving C5 free, whereas the C-terminal position of the His-tag led to the disulfide pattern C2–C5 a...

  16. UV-Photochemistry of the Disulfide Bond: Evolution of Early Photoproducts from Picosecond X-ray Absorption Spectroscopy at the Sulfur K-Edge.

    Science.gov (United States)

    Ochmann, Miguel; Hussain, Abid; von Ahnen, Inga; Cordones, Amy A; Hong, Kiryong; Lee, Jae Hyuk; Ma, Rory; Adamczyk, Katrin; Kim, Tae Kyu; Schoenlein, Robert W; Vendrell, Oriol; Huse, Nils

    2018-05-30

    We have investigated dimethyl disulfide as the basic moiety for understanding the photochemistry of disulfide bonds, which are central to a broad range of biochemical processes. Picosecond time-resolved X-ray absorption spectroscopy at the sulfur K-edge provides unique element-specific insight into the photochemistry of the disulfide bond initiated by 267 nm femtosecond pulses. We observe a broad but distinct transient induced absorption spectrum which recovers on at least two time scales in the nanosecond range. We employed RASSCF electronic structure calculations to simulate the sulfur-1s transitions of multiple possible chemical species, and identified the methylthiyl and methylperthiyl radicals as the primary reaction products. In addition, we identify disulfur and the CH 2 S thione as the secondary reaction products of the perthiyl radical that are most likely to explain the observed spectral and kinetic signatures of our experiment. Our study underscores the importance of elemental specificity and the potential of time-resolved X-ray spectroscopy to identify short-lived reaction products in complex reaction schemes that underlie the rich photochemistry of disulfide systems.

  17. Protein binding of N-2-mercaptoethyl-1,3-diaminopropane via mixed disulfide formation after oral administration of WR 2721

    Energy Technology Data Exchange (ETDEWEB)

    Tabachnik, N.F.; Blackburn, P.; Peterson, C.M.; Cerami, A.

    1982-02-01

    Earlier studies have shown that WR 2721 (H2N-(CH2)3-NH(CH2)2SPO3H2) is converted to its free thiol form, N-2-mercaptoethyl-1,3-diaminopropane (MDP), at the acidic pH of the stomach. MDP is a radioprotective compound and a mucolytic agent capable of decreasing sputum viscosity in the lungs of patients with cystic fibrosis. Conversion of WR 2721 and MDP to the corresponding sulfonic acid (MDP-SO3H) permits quantitative determination of these compounds in physiological fluids by use of an automatic amino acid analyzer. After oral administration of WR 2721 to human patients and rabbits it is converted to MDP and the free thiol form of the drug associates with plasma proteins by mixed disulfide linkage. The plasma proteins serve as a depot and reservoir of MDP for potential exchange at the tissues. When incubated with whole sputum or with purified mucin solutions in vitro, MDP decreased the viscosity of these solutions by reduction of the accessible disulfide bonds of the mucin molecule and was subsequently found in mixed disulfide association with the mucin molecule. The association of MDP with proteins via mixed disulfide linkage has important implications for the development of optimal dose regimens for administration of WR 2721 to patients.

  18. Protein binding of N-2-mercaptoethyl-1,3-diaminopropane via mixed disulfide formation after oral administration of WR 2721

    International Nuclear Information System (INIS)

    Tabachnik, N.F.; Blackburn, P.; Peterson, C.M.; Cerami, A.

    1982-01-01

    Earlier studies have shown that WR 2721 [H2N-(CH2)3-NH(CH2)2SPO3H2] is converted to its free thiol form, N-2-mercaptoethyl-1,3-diaminopropane (MDP), at the acidic pH of the stomach. MDP is a radioprotective compound and a mucolytic agent capable of decreasing sputum viscosity in the lungs of patients with cystic fibrosis. Conversion of WR 2721 and MDP to the corresponding sulfonic acid (MDP-SO3H) permits quantitative determination of these compounds in physiological fluids by use of an automatic amino acid analyzer. After oral administration of WR 2721 to human patients and rabbits it is converted to MDP and the free thiol form of the drug associates with plasma proteins by mixed disulfide linkage. The plasma proteins serve as a depot and reservoir of MDP for potential exchange at the tissues. When incubated with whole sputum or with purified mucin solutions in vitro, MDP decreased the viscosity of these solutions by reduction of the accessible disulfide bonds of the mucin molecule and was subsequently found in mixed disulfide association with the mucin molecule. The association of MDP with proteins via mixed disulfide linkage has important implications for the development of optimal dose regimens for administration of WR 2721 to patients

  19. Disulfide bonds in folding and transport of the mouse hepatitis virus glycoproteins

    NARCIS (Netherlands)

    Horzinek, M.C.; Opstelten, D.-J.E.; Groote, P. de; Vennema, H.; Rottier, P.J.M.

    1993-01-01

    We have analyzed the effects of reducing conditions on the folding of the spike (S) protein and on the intracellular transport of the membrane (M) protein of the mouse hepatitis coronavirus. These proteins differ in their potential to form disulfide bonds in the lumen of the endoplasmic reticulum

  20. Efficacy of HOCl scavenging by sulfur-containing compounds: antioxidant activity of glutathione disulfide?

    NARCIS (Netherlands)

    den Hartog, G.J.M.; Haenen, G.R.M.M.; Vegt, E.; van der Vijgh, W.J.F.; Bast, A.

    2002-01-01

    Efficacy of HOCl scavenging by sulfur-containing compounds: antioxidant activity of glutathione disulfide? den Hartog GJ, Haenen GR, Vegt E, van der Vijgh WJ, Bast A. Department of Pharmacology and Toxicology, Maastricht University, The Netherlands. Hypochlorous acid (HOCl) is a bactericidal

  1. Redox Reactivity of Cerium Oxide Nanoparticles Induces the Formation of Disulfide Bridges in Thiol-Containing Biomolecules.

    Science.gov (United States)

    Rollin-Genetet, Françoise; Seidel, Caroline; Artells, Ester; Auffan, Mélanie; Thiéry, Alain; Vidaud, Claude

    2015-12-21

    The redox state of disulfide bonds is implicated in many redox control systems, such as the cysteine-cystine couple. Among proteins, ubiquitous cysteine-rich metallothioneins possess thiolate metal binding groups susceptible to metal exchange in detoxification processes. CeO2 NPs are commonly used in various industrial applications due to their redox properties. These redox properties that enable dual oxidation states (Ce(IV)/Ce(III)) to exist at their surface may act as oxidants for biomolecules. The interaction among metallothioneins, cysteine, and CeO2 NPs was investigated through various biophysical approaches to shed light on the potential effects of the Ce(4+)/Ce(3+) redox system on the thiol groups of these biomolecules. The possible reaction mechanisms include the formation of a disulfide bridge/Ce(III) complex resulting from the interaction between Ce(IV) and the thiol groups, leading to metal unloading from the MTs, depending on their metal content and cluster type. The formation of stable Ce(3+) disulfide complexes has been demonstrated via their fluorescence properties. This work provides the first evidence of thiol concentration-dependent catalytic oxidation mechanisms between pristine CeO2 NPs and thiol-containing biomolecules.

  2. An efficient algorithmic approach for mass spectrometry-based disulfide connectivity determination using multi-ion analysis

    Directory of Open Access Journals (Sweden)

    Yen Ten-Yang

    2011-02-01

    Full Text Available Abstract Background Determining the disulfide (S-S bond pattern in a protein is often crucial for understanding its structure and function. In recent research, mass spectrometry (MS based analysis has been applied to this problem following protein digestion under both partial reduction and non-reduction conditions. However, this paradigm still awaits solutions to certain algorithmic problems fundamental amongst which is the efficient matching of an exponentially growing set of putative S-S bonded structural alternatives to the large amounts of experimental spectrometric data. Current methods circumvent this challenge primarily through simplifications, such as by assuming only the occurrence of certain ion-types (b-ions and y-ions that predominate in the more popular dissociation methods, such as collision-induced dissociation (CID. Unfortunately, this can adversely impact the quality of results. Method We present an algorithmic approach to this problem that can, with high computational efficiency, analyze multiple ions types (a, b, bo, b*, c, x, y, yo, y*, and z and deal with complex bonding topologies, such as inter/intra bonding involving more than two peptides. The proposed approach combines an approximation algorithm-based search formulation with data driven parameter estimation. This formulation considers only those regions of the search space where the correct solution resides with a high likelihood. Putative disulfide bonds thus obtained are finally combined in a globally consistent pattern to yield the overall disulfide bonding topology of the molecule. Additionally, each bond is associated with a confidence score, which aids in interpretation and assimilation of the results. Results The method was tested on nine different eukaryotic Glycosyltransferases possessing disulfide bonding topologies of varying complexity. Its performance was found to be characterized by high efficiency (in terms of time and the fraction of search space

  3. Per-2,3-O-alkylated beta-cyclodextrin duplexes connected with disulfide bonds

    Czech Academy of Sciences Publication Activity Database

    Tatar, Ameneh; Grishina, Anastasia; Buděšínský, Miloš; Kraus, Tomáš

    2017-01-01

    Roč. 29, č. 1 (2017), s. 40-48 ISSN 1061-0278 R&D Projects: GA MŠk LD12019 Grant - others:COST(XE) CM1005 Institutional support: RVO:61388963 Keywords : cyclodextrins * inclusion complexes * disulfide bonds Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 1.264, year: 2016

  4. Methods of measuring Protein Disulfide Isomerase activity: a critical overview

    Science.gov (United States)

    Watanabe, Monica; Laurindo, Francisco; Fernandes, Denise

    2014-09-01

    Protein disulfide isomerase is an essential redox chaperone from the endoplasmic reticulum (ER) and is responsible for correct disulfide bond formation in nascent proteins. PDI is also found in other cellular locations in the cell, particularly the cell surface. Overall, PDI contributes to ER and global cell redox homeostasis and signaling. The knowledge about PDI structure and function progressed substantially based on in vitro studies using recombinant PDI and chimeric proteins. In these experimental scenarios, PDI reductase and chaperone activities are readily approachable. In contrast, assays to measure PDI isomerase activity, the hallmark of PDI family, are more complex. Assessment of PDI roles in cells and tissues mainly relies on gain- or loss-of-function studies. However, there is limited information regarding correlation of experimental readouts with the distinct types of PDI activities. In this mini-review, we evaluate the main methods described for measuring the different kinds of PDI activity: thiol reductase, thiol oxidase, thiol isomerase and chaperone. We emphasize the need to use appropriate controls and the role of critical interferents (e.g., detergent, presence of reducing agents). We also discuss the translation of results from in vitro studies with purified recombinant PDI to cellular and tissue samples, with critical comments on the interpretation of results.

  5. Species-Specific Thiol-Disulfide Equilibrium Constant: A Tool To Characterize Redox Transitions of Biological Importance.

    Science.gov (United States)

    Mirzahosseini, Arash; Somlyay, Máté; Noszál, Béla

    2015-08-13

    Microscopic redox equilibrium constants, a new species-specific type of physicochemical parameters, were introduced and determined to quantify thiol-disulfide equilibria of biological significance. The thiol-disulfide redox equilibria of glutathione with cysteamine, cysteine, and homocysteine were approached from both sides, and the equilibrium mixtures were analyzed by quantitative NMR methods to characterize the highly composite, co-dependent acid-base and redox equilibria. The directly obtained, pH-dependent, conditional constants were then decomposed by a new evaluation method, resulting in pH-independent, microscopic redox equilibrium constants for the first time. The 80 different, microscopic redox equilibrium constant values show close correlation with the respective thiolate basicities and provide sound means for the development of potent agents against oxidative stress.

  6. Synthesis and stable isotope dilution assay of ethanethiol and diethyl disulfide in wine using solid phase microextraction. Effect of aging on their levels in wine.

    Science.gov (United States)

    Belancic Majcenovic, Andrea; Schneider, Rémi; Lepoutre, Jean-Paul; Lempereur, Valérie; Baumes, Raymond

    2002-11-06

    Ethanethiol and diethyl disulfide (DEDS) most often occurred at levels above their olfactive threshold in wines with nauseous sulfur-linked smells. As ethanethiol is very oxidizable and chemically reactive, a stable isotopic dilution analysis of both ethanethiol and its disulfide in wines using solid phase microextraction and GC-MS was developed. The latter involved the determination of the proportion of DEDS formed by oxidation of the thiol during the analysis conditions, which was obtained by the use of two differently labeled disulfide standards. An original synthesis of labeled ethanethiol standards in conditions minimizing oxidation was developed, and the corresponding labeled diethyl disulfides were obtained from these thiols. This analytical method was used to follow the levels of these sulfur compounds during aging in a young red wine spiked with ethanethiol and added with enological tannins, with or without oxygen addition. The total levels of these two sulfur compounds were shown to decrease steadily after 60 days of aging, up to 83%. The effect of oxygen sped this decrease, but the effect of enological tannins was very slight. Residual ethanethiol was detected in its disulfide form from approximately 36% in the nonoxygenated wines to 69% in the oxygenated samples.

  7. Metallic and highly conducting two-dimensional atomic arrays of sulfur enabled by molybdenum disulfide nanotemplate

    Science.gov (United States)

    Zhu, Shuze; Geng, Xiumei; Han, Yang; Benamara, Mourad; Chen, Liao; Li, Jingxiao; Bilgin, Ismail; Zhu, Hongli

    2017-10-01

    Element sulfur in nature is an insulating solid. While it has been tested that one-dimensional sulfur chain is metallic and conducting, the investigation on two-dimensional sulfur remains elusive. We report that molybdenum disulfide layers are able to serve as the nanotemplate to facilitate the formation of two-dimensional sulfur. Density functional theory calculations suggest that confined in-between layers of molybdenum disulfide, sulfur atoms are able to form two-dimensional triangular arrays that are highly metallic. As a result, these arrays contribute to the high conductivity and metallic phase of the hybrid structures of molybdenum disulfide layers and two-dimensional sulfur arrays. The experimentally measured conductivity of such hybrid structures reaches up to 223 S/m. Multiple experimental results, including X-ray photoelectron spectroscopy (XPS), transition electron microscope (TEM), selected area electron diffraction (SAED), agree with the computational insights. Due to the excellent conductivity, the current density is linearly proportional to the scan rate until 30,000 mV s-1 without the attendance of conductive additives. Using such hybrid structures as electrode, the two-electrode supercapacitor cells yield a power density of 106 Wh kg-1 and energy density 47.5 Wh kg-1 in ionic liquid electrolytes. Our findings offer new insights into using two-dimensional materials and their Van der Waals heterostructures as nanotemplates to pattern foreign atoms for unprecedented material properties.

  8. Preparation and Photoluminescence of Tungsten Disulfide Monolayer

    Directory of Open Access Journals (Sweden)

    Yanfei Lv

    2018-05-01

    Full Text Available Tungsten disulfide (WS2 monolayer is a direct band gap semiconductor. The growth of WS2 monolayer hinders the progress of its investigation. In this paper, we prepared the WS2 monolayer through chemical vapor transport deposition. This method makes it easier for the growth of WS2 monolayer through the heterogeneous nucleation-and-growth process. The crystal defects introduced by the heterogeneous nucleation could promote the photoluminescence (PL emission. We observed the strong photoluminescence emission in the WS2 monolayer, as well as thermal quenching, and the PL energy redshift as the temperature increases. We attribute the thermal quenching to the energy or charge transfer of the excitons. The redshift is related to the dipole moment of WS2.

  9. Design, Synthesis and Biological Evaluation of Brain-Targeted Thiamine Disulfide Prodrugs of Ampakine Compound LCX001

    Directory of Open Access Journals (Sweden)

    Dian Xiao

    2016-04-01

    Full Text Available Ampakine compounds have been shown to reverse opiate-induced respiratory depression by activation of amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA glutamate receptors. However, their pharmacological exploitations are hindered by low blood-brain barrier (BBB permeability and limited brain distribution. Here, we explored whether thiamine disulfide prodrugs with the ability of “lock-in” can be used to solve these problems. A series of thiamine disulfide prodrugs 7a–7f of ampakine compound LCX001 was synthesized and evaluated. The trials in vitro showed that prodrugs 7e, 7d, 7f possessed a certain stability in plasma and quickly decomposed in brain homogenate by the disulfide reductase. In vivo, prodrug 7e decreased the peripheral distribution of LCX001 and significantly increased brain distribution of LCX001 after i.v. administration. This compound showed 2.23- and 3.29-fold greater increases in the AUC0-t and MRT0-t of LCX001 in brain, respectively, than did LCX001 itself. A preliminary pharmacodynamic study indicated that the required molar dose of prodrug 7e was only one eighth that of LCX001 required to achieve the same effect in mice. These findings provide an important reference to evaluate the clinical outlook of ampakine compounds.

  10. Influence of Disulfide Connectivity on Structure and Bioactivity of α-Conotoxin TxIA

    Directory of Open Access Journals (Sweden)

    Yong Wu

    2014-01-01

    Full Text Available Cone snails express a sophisticated arsenal of small bioactive peptides known as conopeptides or conotoxins (CTxs. Through evolutionary selection, these peptides have gained the ability to interact with a range of ion channels and receptors, such as nicotinic acetylcholine receptors (nAChRs. Here, we used reversed-phase high performance liquid chromatography (RP-HPLC and electrospray ionization-mass spectrometry (ESI-MS to explore the venom peptide diversity of Conus textile, a species of cone snail native to Hainan, China. One fraction of C. textile crude venom potently blocked α3β2 nAChRs. Subsequent purification, synthesis, and tandem mass spectrometric analysis demonstrated that the most active compound in this fraction was identical to α-CTx TxIA, an antagonist of α3β2 nAChRs. Then three disulfide isoforms of α-CTx TxIA were synthesized and their activities were investigated systematically for the first time. As we observed, disulfide isomerisation was particularly important for α-CTx TxIA potency. Although both globular and ribbon isomers showed similar retention times in RP-HPLC, globular TxIA potently inhibited α3β2 nAChRs with an IC50 of 5.4 nM, while ribbon TxIA had an IC50 of 430 nM. In contrast, beads isomer had little activity towards α3β2 nAChRs. Two-step oxidation synthesis produced the highest yield of α-CTx TxIA native globular isomer, while a one-step production process based on random oxidation folding was not suitable. In summary, this study demonstrated the relationship between conotoxin activity and disulfide connectivity on α-CTx TxIA.

  11. Detection and function of an intramolecular disulfide bond in the pH-responsive CadC of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Dönhöfer Alexandra

    2011-04-01

    Full Text Available Abstract Background In an acidic and lysine-rich environment Escherichia coli induces expression of the cadBA operon which encodes CadA, the lysine decarboxylase, and CadB, the lysine/cadaverine antiporter. cadBA expression is dependent on CadC, a membrane-integrated transcriptional activator which belongs to the ToxR-like protein family. Activation of CadC requires two stimuli, lysine and low pH. Whereas lysine is detected by an interplay between CadC and the lysine-specific transporter LysP, pH alterations are sensed by CadC directly. Crystal structural analyses revealed a close proximity between two periplasmic cysteines, Cys208 and Cys272. Results Substitution of Cys208 and/or Cys272 by alanine resulted in CadC derivatives that were active in response to only one stimulus, either lysine or pH 5.8. Differential in vivo thiol trapping revealed a disulfide bond between these two residues at pH 7.6, but not at pH 5.8. When Cys208 and Cys272 were replaced by aspartate and lysine, respectively, virtually wild-type behavior was restored indicating that the disulfide bond could be mimicked by a salt bridge. Conclusion A disulfide bond was found in the periplasmic domain of CadC that supports an inactive state of CadC at pH 7.6. At pH 5.8 disulfide bond formation is prevented which transforms CadC into a semi-active state. These results provide new insights into the function of a pH sensor.

  12. 1.42 A crystal structure of mini-IGF-1(2): an analysis of the disulfide isomerization property and receptor binding property of IGF-1 based on the three-dimensional structure

    International Nuclear Information System (INIS)

    Yun Caihong; Tang Yuehua; Feng Youmin; An Xiaomin; Chang Wenrui; Liang Dongcai

    2004-01-01

    Insulin and insulin-like growth factor 1 (IGF-1) share a homologous sequence, a similar three-dimensional structure and weakly overlapping biological activity, but IGF-1 folds into two thermodynamically stable disulfide isomers, while insulin folds into one unique stable tertiary structure. This is a very interesting phenomenon in which one amino acid sequence encodes two three-dimensional structures, and its molecular mechanism has remained unclear for a long time. In this study, the crystal structure of mini-IGF-1(2), a disulfide isomer of an artificial analog of IGF-1, was solved by the SAD/SIRAS method using our in-house X-ray source. Evidence was found in the structure showing that the intra-A-chain/domain disulfide bond of some molecules was broken; thus, it was proposed that disulfide isomerization begins with the breakdown of this disulfide bond. Furthermore, based on the structural comparison of IGF-1 and insulin, a new assumption was made that in insulin the several hydrogen bonds formed between the N-terminal region of the B-chain and the intra-A-chain disulfide region of the A-chain are the main reason for the stability of the intra-A-chain disulfide bond and for the prevention of disulfide isomerization, while Phe B1 and His B5 are very important for the formation of these hydrogen bonds. Moreover, the receptor binding property of IGF-1 was analyzed in detail based on the structural comparison of mini-IGF-1(2), native IGF-1, and small mini-IGF-1

  13. Step-wise addition of disulfide bridge in firefly luciferase controls color shift through a flexible loop: a thermodynamic perspective.

    Science.gov (United States)

    Nazari, Mahboobeh; Hosseinkhani, Saman; Hassani, Leila

    2013-02-01

    Multi-color bioluminescence is developed using the introduction of single/double disulfide bridges in firefly luciferase. The bioluminescence reaction, which uses luciferin, Mg(2+)-ATP and molecular oxygen to yield an electronically excited oxyluciferin, is carried out by the luciferase and emits visible light. The bioluminescence color of firefly luciferases is determined by the luciferase sequence and assay conditions. It has been proposed that the stability of a protein may increase through the introduction of a disulfide bridge that decreases the configurational entropy of unfolding. Single and double disulfide bridges are introduced into Photinus pyralis firefly luciferase to make separate mutant enzymes with a single/double bridge (C(81)-A(105)C, L(306)C-L(309)C, P(451)C-V(469)C; C(81)-A(105)C/P(451)C-V(469)C, and A(296)C-A(326)C/P(451)C-V(469)C). By introduction of disulfide bridges using site-directed mutagenesis in Photinus pyralis luciferase the color of emitted light was changed to red or kept in different extents. The bioluminescence color shift occurred with displacement of a critical loop in the luciferase structure without any change in green emitter mutants. Thermodynamic analysis revealed that among mutants, L(306)C-L(309)C shows a remarkable stability against urea denaturation and also a considerable increase in kinetic stability and a clear shift in bioluminescence spectra towards red.

  14. Structural Characterization of Fibrils from Recombinant Human Islet Amyloid Polypeptide by Solid-State NMR: The Central FGAILS Segment Is Part of the β-Sheet Core.

    Directory of Open Access Journals (Sweden)

    Franziska Weirich

    Full Text Available Amyloid deposits formed from islet amyloid polypeptide (IAPP are a hallmark of type 2 diabetes mellitus and are known to be cytotoxic to pancreatic β-cells. The molecular structure of the fibrillar form of IAPP is subject of intense research, and to date, different models exist. We present results of solid-state NMR experiments on fibrils of recombinantly expressed and uniformly 13C, 15N-labeled human IAPP in the non-amidated, free acid form. Complete sequential resonance assignments and resulting constraints on secondary structure are shown. A single set of chemical shifts is found for most residues, which is indicative of a high degree of homogeneity. The core region comprises three to four β-sheets. We find that the central 23-FGAILS-28 segment, which is of critical importance for amyloid formation, is part of the core region and forms a β-strand in our sample preparation. The eight N-terminal amino acid residues of IAPP, forming a ring-like structure due to a disulfide bridge between residues C2 and C7, appear to be well defined but with an increased degree of flexibility. This study supports the elucidation of the structural basis of IAPP amyloid formation and highlights the extent of amyloid fibril polymorphism.

  15. Structural Characterization of Fibrils from Recombinant Human Islet Amyloid Polypeptide by Solid-State NMR: The Central FGAILS Segment Is Part of the β-Sheet Core

    Science.gov (United States)

    Weirich, Franziska; Gremer, Lothar; Mirecka, Ewa A.; Schiefer, Stephanie; Hoyer, Wolfgang; Heise, Henrike

    2016-01-01

    Amyloid deposits formed from islet amyloid polypeptide (IAPP) are a hallmark of type 2 diabetes mellitus and are known to be cytotoxic to pancreatic β-cells. The molecular structure of the fibrillar form of IAPP is subject of intense research, and to date, different models exist. We present results of solid-state NMR experiments on fibrils of recombinantly expressed and uniformly 13C, 15N-labeled human IAPP in the non-amidated, free acid form. Complete sequential resonance assignments and resulting constraints on secondary structure are shown. A single set of chemical shifts is found for most residues, which is indicative of a high degree of homogeneity. The core region comprises three to four β-sheets. We find that the central 23-FGAILS-28 segment, which is of critical importance for amyloid formation, is part of the core region and forms a β-strand in our sample preparation. The eight N-terminal amino acid residues of IAPP, forming a ring-like structure due to a disulfide bridge between residues C2 and C7, appear to be well defined but with an increased degree of flexibility. This study supports the elucidation of the structural basis of IAPP amyloid formation and highlights the extent of amyloid fibril polymorphism. PMID:27607147

  16. Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide

    OpenAIRE

    Sun, Xiaoli; Wang, Zhiguo; Fu, Yong Qing

    2015-01-01

    Monolayer Molybdenum Disulfide (MoS2) is a promising anode material for lithium ion batteries because of its high capacities. In this work, first principle calculations based on spin density functional theory were performed to investigate adsorption and diffusion of lithium on monolayer MoS2 with defects, such as single- and few-atom vacancies, antisite, and grain boundary. The values of adsorption energies on the monolayer MoS2 with the defects were increased compared to those on the pristin...

  17. Weatherization Works II - Summary of Findings from the ARRA Period Evaluation of the U.S. Department of Energy's Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carroll, David [APPRISE, Inc.. Princeton, NJ (United States); Rose, Erin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hawkins, Beth A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pigg, Scott [Energy Center of Wisconsin, Madison, WI (United States); Dalhoff, Greg [Dalhoff & Associates. Verona, WI (United STates); Blasnik, Michael [Blasnik & Associates, Boston, MA (United States); Eisenberg, Joel Fred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cowan, Claire [Energy Center of Wisconsin, Madison, WI (United States); Conlon, Brian [Univ. of Tennessee, Knoxville, TN (United States)

    2015-10-01

    This report presents a summary of the American Recovery and Reinvestment Act of 2009 (ARRA) evaluation of the U.S. Department of Energy s low-income Weatherization Program. This evaluation focused on the WAP Program Year 2010. The ARRA evaluation produced fourteen separate reports, including this summary. Three separate reports address the energy savings, energy cost savings, and cost effectiveness of WAP across four housing types: single family, mobile home, and large multifamily. Other reports address the environmental emissions benefits attributable to WAP, and characterize the program. Special studies were conducted to: estimate the impacts of weatherization and healthy homes interventions on asthma-related Medicaid claims in a small cohort in Washington State; assess how weatherization recipients communicate their weatherization experiences to those in their social network, and assess processes implemented to defer homes for weatherization. Small studies addressed energy use in refrigerators, WAP as implemented in the U.S. territories for the first time, and weatherization s impacts on air conditioning energy savings. The national occupant survey was mined for additional insights on the impacts of weatherization on household budgets and energy behaviors post-weatherization. Lastly, the results of a survey of weatherization training centers are summarized.

  18. Transmission properties of hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers.......Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers....

  19. Relative stability of core groups in pollination networks in a biodiversity hotspot over four years.

    Science.gov (United States)

    Fang, Qiang; Huang, Shuang-Quan

    2012-01-01

    Plants and their pollinators form pollination networks integral to the evolution and persistence of species in communities. Previous studies suggest that pollination network structure remains nested while network composition is highly dynamic. However, little is known about temporal variation in the structure and function of plant-pollinator networks, especially in species-rich communities where the strength of pollinator competition is predicted to be high. Here we quantify temporal variation of pollination networks over four consecutive years in an alpine meadow in the Hengduan Mountains biodiversity hotspot in China. We found that ranked positions and idiosyncratic temperatures of both plants and pollinators were more conservative between consecutive years than in non-consecutive years. Although network compositions exhibited high turnover, generalized core groups--decomposed by a k-core algorithm--were much more stable than peripheral groups. Given the high rate of turnover observed, we suggest that identical plants and pollinators that persist for at least two successive years sustain pollination services at the community level. Our data do not support theoretical predictions of a high proportion of specialized links within species-rich communities. Plants were relatively specialized, exhibiting less variability in pollinator composition at pollinator functional group level than at the species level. Both specialized and generalized plants experienced narrow variation in functional pollinator groups. The dynamic nature of pollination networks in the alpine meadow demonstrates the potential for networks to mitigate the effects of fluctuations in species composition in a high biodiversity area.

  20. Cysteine-Rich Peptide Family with Unusual Disulfide Connectivity from Jasminum sambac.

    Science.gov (United States)

    Kumari, Geeta; Serra, Aida; Shin, Joon; Nguyen, Phuong Q T; Sze, Siu Kwan; Yoon, Ho Sup; Tam, James P

    2015-11-25

    Cysteine-rich peptides (CRPs) are natural products with privileged peptidyl structures that represent a potentially rich source of bioactive compounds. Here, the discovery and characterization of a novel plant CRP family, jasmintides from Jasminum sambac of the Oleaceae family, are described. Two 27-amino acid jasmintides (jS1 and jS2) were identified at the gene and protein levels. Disulfide bond mapping of jS1 by mass spectrometry and its confirmation by NMR spectroscopy revealed disulfide bond connectivity of C-1-C-5, C-2-C-4, and C-3-C-6, a cystine motif that has not been reported in plant CRPs. Structural determination showed that jS1 displays a well-defined structure framed by three short antiparallel β-sheets. Genomic analysis showed that jasmintides share a three-domain precursor arrangement with a C-terminal mature domain preceded by a long pro-domain of 46 residues and an intron cleavage site between the signal sequence and pro-domain. The compact cysteine-rich structure together with an N-terminal pyroglutamic acid residue confers jasmintides high resistance to heat and enzymatic degradation, including exopeptidase treatment. Collectively, these results reveal a new plant CRP structure with an unusual cystine connectivity, which could be useful as a scaffold for designing peptide drugs.

  1. Functional Role of the Disulfide Isomerase ERp57 in Axonal Regeneration.

    Directory of Open Access Journals (Sweden)

    Valentina Castillo

    Full Text Available ERp57 (also known as grp58 and PDIA3 is a protein disulfide isomerase that catalyzes disulfide bonds formation of glycoproteins as part of the calnexin and calreticulin cycle. ERp57 is markedly upregulated in most common neurodegenerative diseases downstream of the endoplasmic reticulum (ER stress response. Despite accumulating correlative evidence supporting a neuroprotective role of ERp57, the contribution of this foldase to the physiology of the nervous system remains unknown. Here we developed a transgenic mouse model that overexpresses ERp57 in the nervous system under the control of the prion promoter. We analyzed the susceptibility of ERp57 transgenic mice to undergo neurodegeneration. Unexpectedly, ERp57 overexpression did not affect dopaminergic neuron loss and striatal denervation after injection of a Parkinson's disease-inducing neurotoxin. In sharp contrast, ERp57 transgenic animals presented enhanced locomotor recovery after mechanical injury to the sciatic nerve. These protective effects were associated with enhanced myelin removal, macrophage infiltration and axonal regeneration. Our results suggest that ERp57 specifically contributes to peripheral nerve regeneration, whereas its activity is dispensable for the survival of a specific neuronal population of the central nervous system. These results demonstrate for the first time a functional role of a component of the ER proteostasis network in peripheral nerve regeneration.

  2. Thermal ripples in model molybdenum disulfide monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Remsing, Richard C.; Klein, Michael L. [Institute for Computational Molecular Science, Center for the Computational, Design of Functional Layered Materials, and Department of Chemistry, Temple University, 1925 N. 12th St., 19122, Philadelphia, PA (United States); Waghmare, Umesh V. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560 064, Jakkur, Bangalore (India)

    2017-01-15

    Molybdenum disulfide (MoS{sub 2}) monolayers have the potential to revolutionize nanotechnology. To reach this potential, it will be necessary to understand the behavior of this two-dimensional (2D) material on large length scales and under thermal conditions. Herein, we use molecular dynamics (MD) simulations to investigate the nature of the rippling induced by thermal fluctuations in monolayers of the 2H and 1T phases of MoS{sub 2}. The 1T phase is found to be more rigid than the 2H phase. Both monolayer phases are predicted to follow long wavelength scaling behavior typical of systems with anharmonic coupling between vibrational modes as predicted by classic theories of membrane-like systems. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. 11-Hydroxyundecyl octadecyl disulfide self-assembled monolayers on Au(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Albayrak, Erol [Department of Materials and Metallurgical Engineering, Ahi Evran University, Kırşehir 40000 (Turkey); Karabuga, Semistan [Department of Chemistry, Kahramanmaraş Sütçü İmam University, Kahramanmaraş 46030 (Turkey); Bracco, Gianangelo [CNR-IMEM and Department of Physics, University of Genoa, via Dodecaneso 33, Genoa 16146 (Italy); Danışman, M. Fatih, E-mail: danisman@metu.edu.tr [Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)

    2014-08-30

    Highlights: • 11-Hydroxyundecyl octadecyl disulfide self-assembled monolayers on Au(1 1 1) surface were grown by supersonic molecular beam deposition. • Two different lying down monolayer phases were observed depending on the substrate temperature. • High temperature monolayer phase has a diffraction pattern similar to that of mercaptoundecanol SAMs. • Desorption from several different chemisorbed and physisorbed states were observed. - Abstract: Here, we report a helium atom diffraction study of 11-hydroxyundecyl octadecyl disulfide (CH{sub 3}-(CH{sub 2}){sub 17}-S-S-(CH{sub 2}){sub 11}-OH, HOD) self-assembled monolayers (SAMs) produced by supersonic molecular beam deposition (SMBD). Two different lying down monolayer phases were observed depending on the substrate temperature. At low temperatures a poorly ordered phase was observed, while the diffraction patterns of the film grown at high temperatures were similar to that of mercaptoundecanol (MUD) SAMs reported previously in the literature. The transition from the low temperature phase to the high temperature phase is due to S-S bond cleavage at the surface. Desorption from several different chemisorbed and physisorbed states were observed with energies in the same range as observed for MUD and octadecanelthiol (ODT) SAMs.

  4. Coupling gold nanoparticles to silica nanoparticles through disulfide bonds for glutathione detection

    International Nuclear Information System (INIS)

    Shi Yupeng; Zhang Heng; Zhang Zhaomin; Yi Changqing; Yue Zhenfeng; Teng, Kar-Seng; Li Meijin; Yang Mengsu

    2013-01-01

    Advances in the controlled assembly of nanoscale building blocks have resulted in functional devices which can find applications in electronics, biomedical imaging, drug delivery etc. In this study, novel covalent nanohybrid materials based upon [Ru(bpy) 3 ] 2+ -doped silica nanoparticles (SiNPs) and gold nanoparticles (AuNPs), which could be conditioned as OFF–ON probes for glutathione (GSH) detection, were designed and assembled in sequence, with the disulfide bonds as the bridging elements. The structural and optical properties of the nanohybrid architectures were characterized using transmission electron microscopy, UV–vis spectroscopy and fluorescence spectroscopy, respectively. Zeta potential measurements, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were employed to monitor the reaction processes of the SiNPs–S–S–COOH and SiNPs–S–S–AuNPs synthesis. It was found that the covalent nanohybrid architectures were fluorescently dark (OFF state), indicating that SiNPs were effectively quenched by AuNPs. The fluorescence of the OFF–ON probe was resumed (ON state) when the bridge of the disulfide bond was cleaved by reducing reagents such as GSH. This work provides a new platform and strategy for GSH detection using covalent nanohybrid materials. (paper)

  5. Can Psychiatric Rehabilitation Be Core to CORE?

    Science.gov (United States)

    Olney, Marjorie F.; Gill, Kenneth J.

    2016-01-01

    Purpose: In this article, we seek to determine whether psychiatric rehabilitation principles and practices have been more fully incorporated into the Council on Rehabilitation Education (CORE) standards, the extent to which they are covered in four rehabilitation counseling "foundations" textbooks, and how they are reflected in the…

  6. Research of the technology of obtaining pure and disperse molybdenum disulfide from molybdenum concentrate

    International Nuclear Information System (INIS)

    Hovsepyan, A.H.; Israyelyan, S.M.

    2009-01-01

    The technology of obtaining pure and disperse molybdenum disulfide is worked out. The processes of refinement from the flotation reagents and deslimation by means of decantation, refinement of molybdenite concentrate from impurities by selective leaching methods are studied. The optimal regime of technological process is chosen

  7. Ophthalmological and angiographic findings in workers exposed to carbon disulfide (author's transl)

    Energy Technology Data Exchange (ETDEWEB)

    Savic, S.

    1982-01-01

    Microaneurysms are important in the diagnosis of vascular changes caused by carbon disulfide. They can be diagnosed by ophtholmoscopy, angiography or angioscopy. In our opinion even a careful ophthalmoscopic investigation is sufficient for diagnosis, so that angiography is not absolutely necessary for any mass survey. The incidence of microaneurysms correlates with the duration (both daily and total) as well as with the intensity of exposure to carbon disulfide. The quantity correlates closely with the intensity of exposure. The incidence of microaneurysms is not correlated to age; however it was found to be highest in 40-50-year-old men working with staple fibers, whereas in the spinning department it occurred in 50-55-old men. Microaneurysms are found equally frequently in active workers and invalids. There was no difference between the two groups with regard to degenerative changes of the macula. However, the changes found in the eyes of men from the staple fiber department were more pronounced than in those from the spinning department.

  8. Structure of α-conotoxin BuIA: influences of disulfide connectivity on structural dynamics

    Directory of Open Access Journals (Sweden)

    Craik David J

    2007-04-01

    Full Text Available Abstract Background α-Conotoxins have exciting therapeutic potential based on their high selectivity and affinity for nicotinic acetylcholine receptors. The spacing between the cysteine residues in α-conotoxins is variable, leading to the classification of sub-families. BuIA is the only α-conotoxin containing a 4/4 cysteine spacing and thus it is of significant interest to examine the structure of this conotoxin. Results In the current study we show the native globular disulfide connectivity of BuIA displays multiple conformations in solution whereas the non-native ribbon isomer has a single well-defined conformation. Despite having multiple conformations in solution the globular form of BuIA displays activity at the nicotinic acetylcholine receptor, contrasting with the lack of activity of the structurally well-defined ribbon isomer. Conclusion These findings are opposite to the general trends observed for α-conotoxins where the native isomers have well-defined structures and the ribbon isomers are generally disordered. This study thus highlights the influence of the disulfide connectivity of BuIA on the dynamics of the three-dimensional structure.

  9. Lithium/disulfide battery R and D

    Science.gov (United States)

    Kaun, T. D.; Deluca, W.; Lee, J.; Redey, L.; Nelson, P. A.

    The focus of molten-salt cell R and D in the past year at Argonne National Laboratory has been on developing an understanding of the excellent performance and stability of a lithium/disulfide cell using LiCl-LiBr-KBr electrolyte. For further improvement, we have initiated development of a rod-electrode cell design and design of cells which can tolerate overdischarge and overcharge abuse. Earlier Li/FeS2 cells offered performance quite below expectations and had high capacity decline rates: 0.10 to 0.25 percent per cycle. Approaches for reducing the capacity decline rates of the earlier cells also reduced cell performance. However, our improved Li/FeS2 cell tests indicate good prospects for attaining cell development goals of specific energy of 200 Wh/kg at a 4-h discharge rate, a specific power of 200 W/kg at 80 percent depth of discharge, and a cycle life of 1000 cycles.

  10. Improved core protection calculator system algorithm

    International Nuclear Information System (INIS)

    Yoon, Tae Young; Park, Young Ho; In, Wang Kee; Bae, Jong Sik; Baeg, Seung Yeob

    2009-01-01

    Core Protection Calculator System (CPCS) is a digitized core protection system which provides core protection functions based on two reactor core operation parameters, Departure from Nucleate Boiling Ratio (DNBR) and Local Power Density (LPD). It generates a reactor trip signal when the core condition exceeds the DNBR or LPD design limit. It consists of four independent channels which adapted a two out of four trip logic. CPCS algorithm improvement for the newly designed core protection calculator system, RCOPS (Reactor COre Protection System), is described in this paper. New features include the improvement of DNBR algorithm for thermal margin, the addition of pre trip alarm generation for auxiliary trip function, VOPT (Variable Over Power Trip) prevention during RPCS (Reactor Power Cutback System) actuation and the improvement of CEA (Control Element Assembly) signal checking algorithm. To verify the improved CPCS algorithm, CPCS algorithm verification tests, 'Module Test' and 'Unit Test', would be performed on RCOPS single channel facility. It is expected that the improved CPCS algorithm will increase DNBR margin and enhance the plant availability by reducing unnecessary reactor trips

  11. Investigation of the deposition and thermal behavior of striped phases of unsymmetric disulfide self-assembled monolayers on Au(111): The case of 11-hydroxyundecyl decyl disulfide

    Energy Technology Data Exchange (ETDEWEB)

    Albayrak, Erol [Department of Materials and Metallurgical Engineering, Ahi Evran University, Kırşehir 40000 (Turkey); Karabuga, Semistan [Department of Chemistry, Kahramanmaraş Sütçü İmam University, Kahramanmaraş 46030 (Turkey); Bracco, Gianangelo [CNR-IMEM and Department of Physics, University of Genoa, via Dodecaneso 33, Genoa 16146 (Italy); Danışman, M. Fatih, E-mail: danisman@metu.edu.tr [Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)

    2015-01-07

    Self-assembled monolayers (SAMs) of unsymmetric disulfides on Au(111) are used to form mixed SAMs that can be utilized in many applications. Here, we have studied 11-hydroxyundecyl decyl disulfide (CH{sub 3}–(CH{sub 2}){sub 9}–S–S–(CH{sub 2}){sub 11}–OH, HDD) SAMs produced by supersonic molecular beam deposition and characterized by He diffraction. The film growth was monitored at different temperatures up to a coverage which corresponds to a full lying down phase and the diffraction analysis shows that below 250 K the phase is different from the phase measured above 300 K. During the annealing of the film, two phase transitions were observed, at 250 K and 350 K. The overall data suggest that the former is related to an irreversible phase separation of HDD above 250 K to decanethiolate (–S–(CH{sub 2}){sub 9}–CH{sub 3}, DTT) and hydroxyundecylthiolate (–S–(CH{sub 2}){sub 11}–OH, MUDT), while the latter to a reversible melting of the film. Above 450 K, the specular intensity shows an increase related to film desorption and different chemisorbed states were observed with energies in the same range as observed for decanethiol (H–S–(CH{sub 2}){sub 9}–CH{sub 3}, DT) and mercaptoundecanol (H–S–(CH{sub 2}){sub 11}–OH, MUD) SAMs.

  12. Dissulfeto de molibdênio, um material multifuncional e surpreendente Molybdenum disulfide, a multifunctional and remarkable material

    Directory of Open Access Journals (Sweden)

    Fernando Wypych

    2002-02-01

    Full Text Available The aim of this work is to review the chemical and physical properties of layered molybdenum disulfide. The three polymorphic/polytypic modifications of the compound were found, the polytypes 2H (molybdenite and 3R are semiconductors while the polymorph 1T is an electronic conductor. 2H-MoS2 has several important industrial applications as hydrotreatment catalysts, energy storage devices, solar cells, solid lubricants, among others. When intercalated, the 2H phase changes to a distorted 1T phase, producing unstable intercalation compounds that can be exfoliated in solution, producing single layers and consequently nanocomposites. The direct synthesis of the 1T phase produces stable intercalation compounds. Recently molybdenum disulfide was prepared as nanotubes and fulerene-like structures that bring new insights in the investigation of this important material.

  13. Progranulin, a glycoprotein deficient in frontotemporal dementia, is a novel substrate of several protein disulfide isomerase family proteins.

    Directory of Open Access Journals (Sweden)

    Sandra Almeida

    Full Text Available The reduced production or activity of the cysteine-rich glycoprotein progranulin is responsible for about 20% of cases of familial frontotemporal dementia. However, little is known about the molecular mechanisms that govern the level and secretion of progranulin. Here we show that progranulin is expressed in mouse cortical neurons and more prominently in mouse microglia in culture and is abundant in the endoplasmic reticulum (ER and Golgi. Using chemical crosslinking, immunoprecipitation, and mass spectrometry, we found that progranulin is bound to a network of ER Ca(2+-binding chaperones including BiP, calreticulin, GRP94, and four members of the protein disulfide isomerase (PDI family. Loss of ERp57 inhibits progranulin secretion. Thus, progranulin is a novel substrate of several PDI family proteins and modulation of the ER chaperone network may be a therapeutic target for controlling progranulin secretion.

  14. Intra- and inter-subunit disulfide bond formation is nonessential in adeno-associated viral capsids.

    Directory of Open Access Journals (Sweden)

    Nagesh Pulicherla

    Full Text Available The capsid proteins of adeno-associated viruses (AAV have five conserved cysteine residues. Structural analysis of AAV serotype 2 reveals that Cys289 and Cys361 are located adjacent to each other within each monomer, while Cys230 and Cys394 are located on opposite edges of each subunit and juxtaposed at the pentamer interface. The Cys482 residue is located at the base of a surface loop within the trimer region. Although plausible based on molecular dynamics simulations, intra- or inter-subunit disulfides have not been observed in structural studies. In the current study, we generated a panel of Cys-to-Ser mutants to interrogate the potential for disulfide bond formation in AAV capsids. The C289S, C361S and C482S mutants were similar to wild type AAV with regard to titer and transduction efficiency. However, AAV capsid protein subunits with C230S or C394S mutations were prone to proteasomal degradation within the host cells. Proteasomal inhibition partially blocked degradation of mutant capsid proteins, but failed to rescue infectious virions. While these results suggest that the Cys230/394 pair is critical, a C394V mutant was found viable, but not the corresponding C230V mutant. Although the exact nature of the structural contribution(s of Cys230 and Cys394 residues to AAV capsid formation remains to be determined, these results support the notion that disulfide bond formation within the Cys289/361 or Cys230/394 pair appears to be nonessential. These studies represent an important step towards understanding the role of inter-subunit interactions that drive AAV capsid assembly.

  15. Disulfide high mobility group box-1 causes bladder pain through bladder Toll-like receptor 4.

    Science.gov (United States)

    Ma, Fei; Kouzoukas, Dimitrios E; Meyer-Siegler, Katherine L; Westlund, Karin N; Hunt, David E; Vera, Pedro L

    2017-05-25

    Bladder pain is a prominent symptom in several urological conditions (e.g. infection, painful bladder syndrome/interstitial cystitis, cancer). Understanding the mechanism of bladder pain is important, particularly when the pain is not accompanied by bladder pathology. Stimulation of protease activated receptor 4 (PAR4) in the urothelium results in bladder pain through release of urothelial high mobility group box-1 (HMGB1). HGMB1 has two functionally active redox states (disulfide and all-thiol) and it is not known which form elicits bladder pain. Therefore, we investigated whether intravesical administration of specific HMGB1 redox forms caused abdominal mechanical hypersensitivity, micturition changes, and bladder inflammation in female C57BL/6 mice 24 hours post-administration. Moreover, we determined which of the specific HMGB1 receptors, Toll-like receptor 4 (TLR4) or receptor for advanced glycation end products (RAGE), mediate HMGB1-induced changes. Disulfide HMGB1 elicited abdominal mechanical hypersensitivity 24 hours after intravesical (5, 10, 20 μg/150 μl) instillation. In contrast, all-thiol HMGB1 did not produce abdominal mechanical hypersensitivity in any of the doses tested (1, 2, 5, 10, 20 μg/150 μl). Both HMGB1 redox forms caused micturition changes only at the highest dose tested (20 μg/150 μl) while eliciting mild bladder edema and reactive changes at all doses. We subsequently tested whether the effects of intravesical disulfide HMGB1 (10 μg/150 μl; a dose that did not produce inflammation) were prevented by systemic (i.p.) or local (intravesical) administration of either a TLR4 antagonist (TAK-242) or a RAGE antagonist (FPS-ZM1). Systemic administration of either TAK-242 (3 mg/kg) or FPS-ZM1 (10 mg/kg) prevented HMGB1 induced abdominal mechanical hypersensitivity while only intravesical TLR4 antagonist pretreatment (1.5 mg/ml; not RAGE) had this effect. The disulfide form of HMGB1 mediates bladder pain directly (not

  16. The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67phox

    Science.gov (United States)

    Bechor, Edna; Dahan, Iris; Fradin, Tanya; Berdichevsky, Yevgeny; Zahavi, Anat; Rafalowski, Meirav; Federman-Gross, Aya; Pick, Edgar

    2015-02-01

    The superoxide (O2.-)-generating NADPH oxidase of phagocytes consists of a membrane component, cytochrome b558 (a heterodimer of Nox2 and p22phox), and four cytosolic components, p47phox, p67phox, p40phox, and Rac. The catalytic component, responsible for O2.- generation, is Nox2. It is activated by the interaction of the dehydrogenase region (DHR) of Nox2 with the cytosolic components, principally with p67phox. Using a peptide-protein binding assay, we found that Nox2 peptides containing a 369CysGlyCys371 triad (CGC) bound p67phox with high affinity, dependent upon the establishment of a disulfide bond between the two cysteines. Serially truncated recombinant Nox2 DHR proteins bound p67phox only when they comprised the CGC triad. CGC resembles the catalytic motif (CGHC) of protein disulfide isomerases (PDIs). This led to the hypothesis that Nox2 establishes disulfide bonds with p67phox via a thiol-dilsulfide exchange reaction and, thus, functions as a PDI. Evidence for this was provided by the following: 1. Recombinant Nox2 protein, which contained the CGC triad, exhibited PDI-like disulfide reductase activity; 2. Truncation of Nox2 C-terminal to the CGC triad or mutating C369 and C371 to R, resulted in loss of PDI activity; 3. Comparison of the sequence of the DHR of Nox2 with PDI family members revealed three small regions of homology with PDIA3; 4. Two monoclonal anti-Nox2 antibodies, with epitopes corresponding to regions of Nox2/PDIA3 homology, reacted with PDIA3 but not with PDIA1; 5. A polyclonal anti-PDIA3 (but not an anti-PDIA1) antibody reacted with Nox2; 6. p67phox, in which all cysteines were mutated to serines, lost its ability to bind to a Nox2 peptide containing the CGC triad and had an impaired capacity to support oxidase activity in vitro. We propose a model of oxidase assembly in which binding of p67phox to Nox2 via disulfide bonds, by virtue of the intrinsic PDI activity of Nox2, stabilizes the primary interaction between the two components.

  17. Reduction of disulfide bonds in peptides and proteins. Reduction des groupes disulfure dans les peptides et proteines

    Energy Technology Data Exchange (ETDEWEB)

    Conte, D [Institut Curie, 75 - Paris (France); Houee-Levin, C [Paris-5 Univ., 75 (France)

    1993-04-01

    We have re-examined the mechanism of disulfide bond reduction in oxidized glutathione by C0[sub 2][sup .-] free radicals. The process appears to be a chain reaction whose initial yield depends on pH and on both peptide and formate ion concentrations, but remains independent on the radiation dose rate. Kinetic schemes drawn from studies on dithiothreitol are unable to account for the results obtained with glutathione and proteins, although the disulfide radical anion is the primary intermediate found with all compounds. The rate constant for its formation from C0[sub 2][sup .-] and glutathione is in the same range as those found using proteins, while decay pathways are somewhat different. Hypotheses are proposed to account for these differences. 6 figs., 2 tabs.

  18. A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice

    International Nuclear Information System (INIS)

    Pittius, C.W.; Hennighausen, L.; Lee, E.; Westphal, H.; Nicols, E.; Vitale, J.; Gordon, K.

    1988-01-01

    Whey acidic protein (WAP) is a major whey protein in mouse milk. Its gene is expressed in the lactating mammary gland and is inducible by steroid and peptide hormones. A series of transgenic mice containing a hybrid gene in which human tissue plasminogen activator (tPA) cDNA is under the control of the murine WAP gene promoter had previously been generated. In this study, 21 tissues from lactating and virgin transgenic female mice containing the WAP-tPA hybrid gene were screened for the distribution of murine WAP and human tPA transcripts. Like the endogenous WAP RNA, WAP-tPA RNA was expressed predominantly in mammary gland tissue and appeared to be inducible by lactation. Whereas WAP transcripts were not detected in 22 tissues of virgin mice, low levels of WAP-tPA RNA, which were not modulated during lactation, were found in tongue, kidney, and sublingual gland. These studies demonstrate that the WAP gene promoter can target the expression of a transgene to the mammary gland and that this expression is inducible during lactation

  19. Basal-plane thermal conductivity of few-layer molybdenum disulfide

    International Nuclear Information System (INIS)

    Jo, Insun; Ou, Eric; Shi, Li; Pettes, Michael Thompson; Wu, Wei

    2014-01-01

    We report the in-plane thermal conductivity of suspended exfoliated few-layer molybdenum disulfide (MoS 2 ) samples that were measured by suspended micro-devices with integrated resistance thermometers. The obtained room-temperature thermal conductivity values are (44–50) and (48–52) W m −1 K −1 for two samples that are 4 and 7 layers thick, respectively. For both samples, the peak thermal conductivity occurs at a temperature close to 120 K, above which the thermal conductivity is dominated by intrinsic phonon-phonon scattering although phonon scattering by surface disorders can still play an important role in these samples especially at low temperatures

  20. TMI-2 core examination plan

    International Nuclear Information System (INIS)

    Owen, D.E.; MacDonald, P.E.; Hobbins, R.R.; Ploggr, S.A.

    1982-01-01

    The Three Mile Island (TMI-2) core examination is divided into four stages: (1) before removing the head; (2) before removing the plenum; (3) during defueling; and (4) offsite examinations. Core examinations recommended during the first three stages are primarily devoted to documenting the post-accident condition of the core. The detailed analysis of core damage structures will be performed during offsite examinations at government and commercial hot cell facilities. The primary objectives of these examinations are to enhance the understanding of the degraded core accident sequence, to develop the technical bases for reactor regulations, and to improve LWR design and operation

  1. Decontamination of Oils Contaminated with Polychlorinated Biphenyls and Dibenzyl Disulfide Using Polar Aprotic Solvents

    Czech Academy of Sciences Publication Activity Database

    Kaštánek, František; Matějková, Martina; Spáčilová, Lucie; Maléterová, Ywetta; Kaštánek, P.; Šolcová, Olga

    2015-01-01

    Roč. 4, č. 2 (2015), s. 41-48 ISSN 2319-5967 R&D Projects: GA TA ČR(CZ) TA04020151 Institutional support: RVO:67985858 Keywords : corrosive sulfur * dibenzyl disulfide * polar aprotic solvents Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.ijesit.com/Volume%204/Issue%202/IJESIT201502_06.pdf

  2. Protein redox regulation in the thylakoid lumen: the importance of disulfide bonds for violaxanthin de-epoxidase.

    Science.gov (United States)

    Simionato, Diana; Basso, Stefania; Zaffagnini, Mirko; Lana, Tobia; Marzotto, Francesco; Trost, Paolo; Morosinotto, Tomas

    2015-04-02

    When exposed to saturating light conditions photosynthetic eukaryotes activate the xanthophyll cycle where the carotenoid violaxanthin is converted into zeaxanthin by the enzyme violaxanthin de-epoxidase (VDE). VDE protein sequence includes 13 cysteine residues, 12 of which are strongly conserved in both land plants and algae. Site directed mutagenesis of Arabidopsis thaliana VDE showed that all these 12 conserved cysteines have a major role in protein function and their mutation leads to a strong reduction of activity. VDE is also shown to be active in its completely oxidized form presenting six disulfide bonds. Redox titration showed that VDE activity is sensitive to variation in redox potential, suggesting the possibility that dithiol/disulfide exchange reactions may represent a mechanism for VDE regulation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Multimolecular Salivary Mucin Complex Is Altered in Saliva of Cigarette Smokers: Detection of Disulfide Bridges by Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Motoe Taniguchi

    2013-01-01

    Full Text Available Saliva contains mucins, which protect epithelial cells. We showed a smaller amount of salivary mucin, both MG1 and MG2, in the premenopausal female smokers than in their nonsmoking counterparts. Smokers' MG1, which contains almost 2% cysteine/half cystine in its amino acid residues, turned out to be chemically altered in the nonsmoker’s saliva. The smaller acidic glycoprotein bands were detectable only in smoker’s saliva in the range of 20–25 kDa and at 45 kDa, suggesting that degradation, at least in part, caused the reduction of MG1 mucin. This is in agreement with the previous finding that free radicals in cigarette smoke modify mucins in both sugar and protein moieties. Moreover, proteins such as amylase and albumin are bound to other proteins through disulfide bonds and are identifiable only after reduction with DTT. Confocal laser Raman microspectroscopy identified a disulfide stretch band of significantly stronger intensity per protein in the stimulated saliva of smokers alone. We conclude that the saliva of smokers, especially stimulated saliva, contains significantly more oxidized form of proteins with increased disulfide bridges, that reduces protection for oral epithelium. Raman microspectroscopy can be used for an easy detection of the damaged salivary proteins.

  4. Structural differences between glycosylated, disulfide-linked heterodimeric Knob-into-Hole Fc fragment and its homodimeric Knob-Knob and Hole-Hole side products.

    Science.gov (United States)

    Kuglstatter, A; Stihle, M; Neumann, C; Müller, C; Schaefer, W; Klein, C; Benz, J

    2017-09-01

    An increasing number of bispecific therapeutic antibodies are progressing through clinical development. The Knob-into-Hole (KiH) technology uses complementary mutations in the CH3 region of the antibody Fc fragment to achieve heavy chain heterodimerization. Here we describe the X-ray crystal structures of glycosylated and disulfide-engineered heterodimeric KiH Fc fragment and its homodimeric Knob-Knob and Hole-Hole side products. The heterodimer structure confirms the KiH design principle and supports the hypothesis that glycosylation stabilizes a closed Fc conformation. Both homodimer structures show parallel Fc fragment architectures, in contrast to recently reported crystal structures of the corresponding aglycosylated Fc fragments which in the absence of disulfide mutations show an unexpected antiparallel arrangement. The glycosylated Knob-Knob Fc fragment is destabilized as indicated by variability in the relative orientation of its CH3 domains. The glycosylated Hole-Hole Fc fragment shows an unexpected intermolecular disulfide bond via the introduced Y349C Hole mutation which results in a large CH3 domain shift and a new CH3-CH3 interface. The crystal structures of glycosylated, disulfide-linked KiH Fc fragment and its Knob-Knob and Hole-Hole side products reported here will facilitate further design of highly efficient antibody heterodimerization strategies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Differential regulation of tissue thiol-disulfide redox status in a murine model of peritonitis

    Directory of Open Access Journals (Sweden)

    Benton Shana M

    2012-10-01

    Full Text Available Abstract Background Glutathione (GSH/glutathione disulfide (GSSG and cysteine (Cys/cystine (CySS are major redox pools with important roles in cytoprotection. We determined the impact of septic peritonitis on thiol-disulfide redox status in mice. Methods FVB/N mice (6–12 week old; 8/group underwent laparotomy with cecal ligation and puncture (CLP or laparotomy alone (control. Sections of ileum, colon, lung and liver were obtained and GSH, GSSG, Cys and CySS concentrations determined by HPLC 24 h after laparotomy. Redox potential [Eh in millivolts (mV] of the GSH/GSSG and Cys/CySS pools was calculated using the Nernst equation. Data were analyzed by ANOVA (mean ± SE. Results GSH/GSSG Eh in ileum, colon, and liver was significantly oxidized in septic mice versus control mice (ileum: septic −202±4 versus control −228±2 mV; colon: -195±8 versus −214±1 mV; and liver: -194±3 vs. -210±1 mV, all Ph was unchanged with CLP, while liver and lung Cys/CySS Eh became significantly more reducing (liver: septic = −103±3 versus control −90±2 mV; lung: -101±5 versus −81±1 mV, each P Conclusions Septic peritonitis induced by CLP oxidizes ileal and colonic GSH/GSSG redox but Cys/CySS Eh remains unchanged in these intestinal tissues. In liver, CLP oxidizes the GSH/GSSG redox pool and CyS/CySS Eh becomes more reducing; in lung, CLP does not alter GSH/GSSG Eh, and Cys/CySS Eh is less oxidized. CLP-induced infection/inflammation differentially regulates major thiol-disulfide redox pools in this murine model.

  6. Live-cell and super-resolution imaging reveal that the distribution of wall-associated protein A is correlated with the cell chain integrity of Streptococcus mutans.

    Science.gov (United States)

    Li, Y; Liu, Z; Zhang, Y; Su, Q P; Xue, B; Shao, S; Zhu, Y; Xu, X; Wei, S; Sun, Y

    2015-10-01

    Streptococcus mutans is a primary pathogen responsible for dental caries. It has an outstanding ability to form biofilm, which is vital for virulence. Previous studies have shown that knockout of Wall-associated protein A (WapA) affects cell chain and biofilm formation of S. mutans. As a surface protein, the distribution of WapA remains unknown, but it is important to understand the mechanism underlying the function of WapA. This study applied the fluorescence protein mCherry as a reporter gene to characterize the dynamic distribution of WapA in S. mutans via time-lapse and super-resolution fluorescence imaging. The results revealed interesting subcellular distribution patterns of WapA in single, dividing and long chains of S. mutans cells. It appears at the middle of the cell and moves to the poles as the cell grows and divides. In a cell chain, after each round of cell division, such dynamic relocation results in WapA distribution at the previous cell division sites, resulting in a pattern where WapA is located at the boundary of two adjacent cell pairs. This WapA distribution pattern corresponds to the breaking segmentation of wapA deletion cell chains. The dynamic relocation of WapA through the cell cycle increases our understanding of the mechanism of WapA in maintaining cell chain integrity and biofilm formation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide

    Science.gov (United States)

    Sangwan, Vinod K.; Lee, Hong-Sub; Bergeron, Hadallia; Balla, Itamar; Beck, Megan E.; Chen, Kan-Sheng; Hersam, Mark C.

    2018-02-01

    Memristors are two-terminal passive circuit elements that have been developed for use in non-volatile resistive random-access memory and may also be useful in neuromorphic computing. Memristors have higher endurance and faster read/write times than flash memory and can provide multi-bit data storage. However, although two-terminal memristors have demonstrated capacity for basic neural functions, synapses in the human brain outnumber neurons by more than a thousandfold, which implies that multi-terminal memristors are needed to perform complex functions such as heterosynaptic plasticity. Previous attempts to move beyond two-terminal memristors, such as the three-terminal Widrow-Hoff memristor and field-effect transistors with nanoionic gates or floating gates, did not achieve memristive switching in the transistor. Here we report the experimental realization of a multi-terminal hybrid memristor and transistor (that is, a memtransistor) using polycrystalline monolayer molybdenum disulfide (MoS2) in a scalable fabrication process. The two-dimensional MoS2 memtransistors show gate tunability in individual resistance states by four orders of magnitude, as well as large switching ratios, high cycling endurance and long-term retention of states. In addition to conventional neural learning behaviour of long-term potentiation/depression, six-terminal MoS2 memtransistors have gate-tunable heterosynaptic functionality, which is not achievable using two-terminal memristors. For example, the conductance between a pair of floating electrodes (pre- and post-synaptic neurons) is varied by a factor of about ten by applying voltage pulses to modulatory terminals. In situ scanning probe microscopy, cryogenic charge transport measurements and device modelling reveal that the bias-induced motion of MoS2 defects drives resistive switching by dynamically varying Schottky barrier heights. Overall, the seamless integration of a memristor and transistor into one multi-terminal device could

  8. Photochemical synthesis of ultrafine organosilicon particles from trimethyl(2-propynyloxy)silane and carbon disulfide

    Czech Academy of Sciences Publication Activity Database

    Morita, H.; Nozawa, R.; Bastl, Zdeněk; Šubrt, Jan; Pola, Josef

    2006-01-01

    Roč. 179, 1-2 (2006), s. 142-148 ISSN 1010-6030 Grant - others:MEXT(JP) 767/15085203 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502; CEZ:AV0Z40720504 Keywords : ultrafine particles * photo-polymerization * trimethyl(2-propynyloxy)silane * carbon disulfide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.098, year: 2006

  9. A Protein Disulfide Isomerase Gene Fusion Expression System That Increases the Extracellular Productivity of Bacillus brevis

    Science.gov (United States)

    Kajino, Tsutomu; Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Udaka, Shigezo; Yamada, Yukio; Takahashi, Haruo

    2000-01-01

    We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system. PMID:10653729

  10. Self-homodimerization of an actinoporin by disulfide bridging reveals implications for their structure and pore formation.

    Science.gov (United States)

    Valle, Aisel; Pérez-Socas, Luis Benito; Canet, Liem; Hervis, Yadira de la Patria; de Armas-Guitart, German; Martins-de-Sa, Diogo; Lima, Jônatas Cunha Barbosa; Souza, Adolfo Carlos Barros; Barbosa, João Alexandre Ribeiro Gonçalves; de Freitas, Sonia Maria; Pazos, Isabel Fabiola

    2018-04-26

    The Trp111 to Cys mutant of sticholysin I, an actinoporin from Stichodactyla helianthus sea anemone, forms a homodimer via a disulfide bridge. The purified dimer is 193 times less hemolytic than the monomer. Ultracentrifugation, dynamic light scattering and size-exclusion chromatography demonstrate that monomers and dimers are the only independent oligomeric states encountered. Indeed, circular dichroism and fluorescence spectroscopies showed that Trp/Tyr residues participate in homodimerization and that the dimer is less thermostable than the monomer. A homodimer three-dimensional model was constructed and indicates that Trp147/Tyr137 are at the homodimer interface. Spectroscopy results validated the 3D-model and assigned 85° to the disulfide bridge dihedral angle responsible for dimerization. The homodimer model suggests that alterations in the membrane/carbohydrate-binding sites in one of the monomers, as result of dimerization, could explain the decrease in the homodimer ability to form pores.

  11. Contributions of a disulfide bond and a reduced cysteine side chain to the intrinsic activity of the high-density lipoprotein receptor SR-BI.

    Science.gov (United States)

    Yu, Miao; Lau, Thomas Y; Carr, Steven A; Krieger, Monty

    2012-12-18

    The high-density lipoprotein (HDL) receptor scavenger receptor class B, type I (SR-BI), binds HDL and mediates selective cholesteryl ester uptake. SR-BI's structure and mechanism are poorly understood. We used mass spectrometry to assign the two disulfide bonds in SR-BI that connect cysteines within the conserved Cys(321)-Pro(322)-Cys(323) (CPC) motif and connect Cys(280) to Cys(334). We used site-specific mutagenesis to evaluate the contributions of the CPC motif and the side chain of extracellular Cys(384) to HDL binding and lipid uptake. The effects of CPC mutations on activity were context-dependent. Full wild-type (WT) activity required Pro(322) and Cys(323) only when Cys(321) was present. Reduced intrinsic activities were observed for CXC and CPX, but not XXC, XPX, or XXX mutants (X ≠ WT residue). Apparently, a free thiol side chain at position 321 that cannot form an intra-CPC disulfide bond with Cys(323) is deleterious, perhaps because of aberrant disulfide bond formation. Pro(322) may stabilize an otherwise strained CPC disulfide bond, thus supporting WT activity, but this disulfide bond is not absolutely required for normal activity. C(384)X (X = S, T, L, Y, G, or A) mutants exhibited altered activities that varied with the side chain's size: larger side chains phenocopied WT SR-BI treated with its thiosemicarbazone inhibitor BLT-1 (enhanced binding, weakened uptake); smaller side chains produced almost inverse effects (increased uptake:binding ratio). C(384)X mutants were BLT-1-resistant, supporting the proposal that Cys(384)'s thiol interacts with BLT-1. We discuss the implications of our findings on the functions of the extracellular loop cysteines in SR-BI and compare our results to those presented by other laboratories.

  12. Rational Design of Disulfide Bonds Increases Thermostability of a Mesophilic 1,3-1,4-β-Glucanase from Bacillus terquilensis.

    Directory of Open Access Journals (Sweden)

    Chengtuo Niu

    Full Text Available 1,3-1,4-β-glucanase is an important biocatalyst in brewing industry and animal feed industry, while its low thermostability often reduces its application performance. In this study, the thermostability of a mesophilic β-glucanase from Bacillus terquilensis was enhanced by rational design and engineering of disulfide bonds in the protein structure. Protein spatial configuration was analyzed to pre-exclude the residues pairs which negatively conflicted with the protein structure and ensure the contact of catalytic center. The changes in protein overall and local flexibility among the wild-type enzyme and the designated mutants were predicted to select the potential disulfide bonds for enhancement of thermostability. Two residue pairs (N31C-T187C and P102C-N125C were chosen as engineering targets and both of them were proved to significantly enhance the protein thermostability. After combinational mutagenesis, the double mutant N31C-T187C/P102C-N125C showed a 48.3% increase in half-life value at 60°C and a 4.1°C rise in melting temperature (Tm compared to wild-type enzyme. The catalytic property of N31C-T187C/P102C-N125C mutant was similar to that of wild-type enzyme. Interestingly, the optimal pH of double mutant was shifted from pH6.5 to pH6.0, which could also increase its industrial application. By comparison with mutants with single-Cys substitutions, the introduction of disulfide bonds and the induced new hydrogen bonds were proved to result in both local and overall rigidification and should be responsible for the improved thermostability. Therefore, the introduction of disulfide bonds for thermostability improvement could be rationally and highly-effectively designed by combination with spatial configuration analysis and molecular dynamics simulation.

  13. Mutagenesis of the redox-active disulfide in mercuric ion reductase: Catalysis by mutant enzymes restricted to flavin redox chemistry

    International Nuclear Information System (INIS)

    Distefano, M.D.; Au, K.G.; Walsh, C.T.

    1989-01-01

    Mercuric reductase, a flavoenzyme that possesses a redox-active cystine, Cys 135 Cys 140 , catalyzes the reduction of Hg(II) to Hg(0) by NADPH. As a probe of mechanism, the authors have constructed mutants lacking a redox-active disulfide by eliminating Cys 135 (Ala 135 Cys 140 ), Cys 14 (Cys 135 Ala 140 ), or both (Ala 135 Ala 140 ). Additionally, they have made double mutants that lack Cys 135 (Ala 135 Cys 139 Cys 140 ) or Cys 140 (Cys 135 Cys 139 Ala 140 ) but introduce a new Cys in place of Gly 139 with the aim of constructing dithiol pairs in the active site that do not form a redox-active disulfide. The resulting mutant enzymes all lack redox-active disulfides and are hence restricted to FAD/FADH 2 redox chemistry. Each mutant enzyme possesses unique physical and spectroscopic properties that reflect subtle differences in the FAD microenvironment. Preliminary evidence for the Ala 135 Cys 139 Cys 14 mutant enzyme suggests that this protein forms a disulfide between the two adjacent Cys residues. Hg(II) titration experiments that correlate the extent of charge-transfer quenching with Hg(II) binding indicate that the Ala 135 Cys 140 protein binds Hg(II) with substantially less avidity than does the wild-type enzyme. All mutant mercuric reductases catalyze transhydrogenation and oxygen reduction reactions through obligatory reduced flavin intermediates at rates comparable to or greater than that of the wild-type enzyme. In multiple-turnover assays which monitored the production of Hg(0), two of the mutant enzymes were observed to proceed through at least 30 turnovers at rates ca. 1000-fold slower than that of wild-type mercuric reductase. They conclude that the Cys 135 and Cys 140 thiols serve as Hg(II) ligands that orient the Hg(II) for subsequent reduction by a reduced flavin intermediate

  14. The influence of the Cys46/Cys55 disulfide bond on the redox and spectroscopic properties of human neuroglobin.

    Science.gov (United States)

    Bellei, Marzia; Bortolotti, Carlo Augusto; Di Rocco, Giulia; Borsari, Marco; Lancellotti, Lidia; Ranieri, Antonio; Sola, Marco; Battistuzzi, Gianantonio

    2018-01-01

    Neuroglobin is a monomeric globin containing a six-coordinate heme b, expressed in the nervous system, which exerts an important neuroprotective role. In the human protein (hNgb), Cys46 and Cys55 form an intramolecular disulfide bond under oxidizing conditions, whose cleavage induces a helix-to-strand rearrangement of the CD loop that strengthens the bond between the heme iron and the distal histidine. Hence, it is conceivable that the intramolecular disulfide bridge modulates the functionality of human neuroglobin by controlling exogenous ligand binding. In this work, we investigated the influence of the Cys46/Cys55 disulfide bond on the redox properties and on the pH-dependent conformational equilibria of hNgb, using UV-vis spectroelectrochemistry, cyclic voltammetry, electronic absorption spectroscopy and magnetic circular dichroism (MCD). We found that the SS bridge significantly affects the heme Fe(III) to Fe(II) reduction enthalpy (ΔH°' rc ) and entropy (ΔS°' rc ), mostly as a consequence of changes in the reduction-induced solvent reorganization effects, without affecting the axial ligand-binding interactions and the polarity and electrostatics of the heme environment. Between pH3 and 12, the electronic properties of the heme of ferric hNgb are sensitive to five acid-base equilibria, which are scarcely affected by the Cys46/Cys55 disulfide bridge. The equilibria occurring at extreme pH values induce heme release, while those occurring between pH5 and 10 alter the electronic properties of the heme without modifying its axial coordination and low spin state. They involve the sidechains of non-coordinating aminoacids close to the heme and at least one heme propionate. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Two-dimensional thermal-hydraulic behavior in core in SCTF Core-II forced feed reflood tests

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Sobajima, Makoto; Okubo, Tsutomu; Ohnuki, Akira; Abe, Yutaka; Adachi, Hiromichi

    1987-01-01

    Major purpose of the Slab Core Test Program is to investigate the two-dimensional thermal-hydraulic behavior in the core during the reflood phase of a PWR-LOCA. It was revealed in the previous Slab Core Test Facility (SCTF) Core-II test results that the heat transfer was enhanced in the higher power bundles and degraded in the lower power bundles in the non-uniform radial power profile tests. In order to separately evaluate the effect of the radial power (Q) distribution itself and the effect of the radial temperature (T) distribution, four tests were performed with steep Q and T, flat Q and T, steep Q and flat T, and flat Q and steep T. Based on the test results, it was concluded that the radial temperature distribution which accompanied the radial power distribution was the dominant factor of the two-dimensional thermal-hydraulic behavior in the core during the initial period. Selected data from these four tests are also presented in this report. Some data from Test S2-12 (steep Q, T) were compared with TRAC post-test calculations performed by the Los Alamos National Laboratory. (author)

  16. The influence of zinc(II) on thioredoxin/glutathione disulfide exchange: QM/MM studies to explore how zinc(II) accelerates exchange in higher dielectric environments.

    Science.gov (United States)

    Kurian, Roby; Bruce, Mitchell R M; Bruce, Alice E; Amar, François G

    2015-08-01

    QM/MM studies were performed to explore the energetics of exchange reactions of glutathione disulfide (GSSG) and the active site of thioredoxin [Cys32-Gly33-Pro34-Cys35] with and without zinc(II), in vacuum and solvated models. The activation energy for exchange, in the absence of zinc, is 29.7 kcal mol(-1) for the solvated model. This is 3.3 kcal mol(-1) higher than the activation energy for exchange in the gas phase, due to ground state stabilization of the active site Cys-32 thiolate in a polar environment. In the presence of zinc, the activation energy for exchange is 4.9 kcal mol(-1) lower than in the absence of zinc (solvated models). The decrease in activation energy is attributed to stabilization of the charge-separated transition state, which has a 4-centered, cyclic arrangement of Zn-S-S-S with an estimated dipole moment of 4.2 D. A difference of 4.9 kcal mol(-1) in activation energy would translate to an increase in rate by a factor of about 4000 for zinc-assisted thiol-disulfide exchange. The calculations are consistent with previously reported experimental results, which indicate that metal-thiolate, disulfide exchange rates increase as a function of solvent dielectric. This trend is opposite to that observed for the influence of the dielectric environment on the rate of thiol-disulfide exchange in the absence of metal. The results suggest a dynamic role for zinc in thiol-disulfide exchange reactions, involving accessible cysteine sites on proteins, which may contribute to redox regulation and mechanistic pathways during oxidative stress.

  17. Validation of reactor core protection system

    International Nuclear Information System (INIS)

    Lee, Sang-Hoon; Bae, Jong-Sik; Baeg, Seung-Yeob; Cho, Chang-Ho; Kim, Chang-Ho; Kim, Sung-Ho; Kim, Hang-Bae; In, Wang-Kee; Park, Young-Ho

    2008-01-01

    Reactor COre Protection System (RCOPS), an advanced core protection calculator system, is a digitized one which provides core protection function based on two reactor core operation parameters, Departure from Nucleate Boiling Ratio (DNBR) and Local Power Density (LPD). It generates a reactor trip signal when the core condition exceeds the DNBR or LPD design limit. It consists of four independent channels adapted a two-out-of-four trip logic. System configuration, hardware platform and an improved algorithm of the newly designed core protection calculator system are described in this paper. One channel of RCOPS was implemented as a single channel facility for this R and D project where we performed final integration software testing. To implement custom function blocks, pSET is used. Software test is performed by two methods. The first method is a 'Software Module Test' and the second method is a 'Software Unit Test'. New features include improvement of core thermal margin through a revised on-line DNBR algorithm, resolution of the latching problem of control element assembly signal and addition of the pre-trip alarm generation. The change of the on-line DNBR calculation algorithm is considered to improve the DNBR net margin by 2.5%-3.3%. (author)

  18. Structure of thrombospondin type 3 repeats in bacterial outer membrane protein A reveals its intra-repeat disulfide bond-dependent calcium-binding capability

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shuyan; Sun, Cancan; Tan, Kemin; Ye, Sheng; Zhang, Rongguang

    2017-09-01

    Eukaryotic thrombospondin type 3 repeat (TT3R) is an efficient calcium ion (Ca2+) binding motif only found in mammalian thrombospondin family. TT3R has also been found in prokaryotic cellulase Cel5G, which was thought to forfeit the Ca2+-binding capability due to the formation of intra-repeat disulfide bonds, instead of the inter-repeat ones possessed by eukaryotic TT3Rs. In this study, we have identified an enormous number of prokaryotic TT3R-containing proteins belonging to several different protein families, including outer membrane protein A (OmpA), an important structural protein connecting the outer membrane and the periplasmic peptidoglycan layer in gram-negative bacteria. Here, we report the crystal structure of the periplasmic region of OmpA from Capnocytophaga gingivalis, which contains a linker region comprising five consecutive TT3Rs. The structure of OmpA-TT3R exhibits a well-ordered architecture organized around two tightly-coordinated Ca2+ and confirms the presence of abnormal intra-repeat disulfide bonds. Further mutagenesis studies showed that the Ca2+-binding capability of OmpA-TT3R is indeed dependent on the proper formation of intra-repeat disulfide bonds, which help to fix a conserved glycine residue at its proper position for Ca2+ coordination. Additionally, despite lacking inter repeat disulfide bonds, the interfaces between adjacent OmpA-TT3Rs are enhanced by both hydrophobic and conserved aromatic-proline interactions.

  19. Wire core reactor for NTP

    International Nuclear Information System (INIS)

    Harty, R.B.

    1991-01-01

    The development of the wire core system for Nuclear Thermal Propulsion (NTP) that took place from 1963 to 1965 is discussed. A wire core consists of a fuel wire with spacer wires. It's an annular flow core having a central control rod. There are actually four of these, with beryllium solid reflectors on both ends and all the way around. Much of the information on the concept is given in viewgraph form. Viewgraphs are presented on design details of the wire core, the engine design, engine weight vs. thrust, a technique used to fabricate the wire fuel element, and axial temperature distribution

  20. The Disulfide Bond Cys255-Cys279 in the Immunoglobulin-Like Domain of Anthrax Toxin Receptor 2 Is Required for Membrane Insertion of Anthrax Protective Antigen Pore.

    Directory of Open Access Journals (Sweden)

    Pedro Jacquez

    Full Text Available Anthrax toxin receptors act as molecular clamps or switches that control anthrax toxin entry, pH-dependent pore formation, and translocation of enzymatic moieties across the endosomal membranes. We previously reported that reduction of the disulfide bonds in the immunoglobulin-like (Ig domain of the anthrax toxin receptor 2 (ANTXR2 inhibited the function of the protective antigen (PA pore. In the present study, the disulfide linkage in the Ig domain was identified as Cys255-Cys279 and Cys230-Cys315. Specific disulfide bond deletion mutants were achieved by replacing Cys residues with Ala residues. Deletion of the disulfide bond C255-C279, but not C230-C315, inhibited the PA pore-induced release of the fluorescence dyes from the liposomes, suggesting that C255-C279 is essential for PA pore function. Furthermore, we found that deletion of C255-C279 did not affect PA prepore-to-pore conversion, but inhibited PA pore membrane insertion by trapping the PA membrane-inserting loops in proteinaceous hydrophobic pockets. Fluorescence spectra of Trp59, a residue adjacent to the PA-binding motif in von Willebrand factor A (VWA domain of ANTXR2, showed that deletion of C255-C279 resulted in a significant conformational change on the receptor ectodomain. The disulfide deletion-induced conformational change on the VWA domain was further confirmed by single-particle 3D reconstruction of the negatively stained PA-receptor heptameric complexes. Together, the biochemical and structural data obtained in this study provides a mechanistic insight into the role of the receptor disulfide bond C255-C279 in anthrax toxin action. Manipulation of the redox states of the receptor, specifically targeting to C255-C279, may become a novel strategy to treat anthrax.

  1. Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity.

    Science.gov (United States)

    Imani, Mehdi; Hosseinkhani, Saman; Ahmadian, Shahin; Nazari, Mahboobeh

    2010-08-01

    The thermal sensitivity and pH-sensitive spectral properties of firefly luciferase have hampered its application in a variety of fields. It is proposed that the stability of a protein can be increased by introduction of disulfide bridge that decreases the configurational entropy of unfolding. A disulfide bridge is introduced into Photinus pyralis firefly luciferase to make two separate mutant enzymes with a single bridge. Even though the A103C/S121C mutant showed remarkable thermal stability, its specific activity decreased, whereas the A296C/A326C mutant showed tremendous thermal stability, relative pH insensitivity and 7.3-fold increase of specific activity. Moreover, the bioluminescence emission spectrum of A296C/A326C was resistant against higher temperatures (37 degrees C). Far-UV CD analysis showed slight secondary structure changes for both mutants. Thermal denaturation analysis showed that conformational stabilities of A103C/S121C and A296C/A326C are more than native firefly luciferase. It is proposed that since A296 and A326 are situated in the vicinity of the enzyme active site microenvironment in comparison with A103 and S121, the formation of a disulfide bridge in this region has more impact on enzyme kinetic characteristics.

  2. An Internal Disulfide Locks a Misfolded Aggregation-prone Intermediate in Cataract-linked Mutants of Human γD-Crystallin.

    Science.gov (United States)

    Serebryany, Eugene; Woodard, Jaie C; Adkar, Bharat V; Shabab, Mohammed; King, Jonathan A; Shakhnovich, Eugene I

    2016-09-02

    Considerable mechanistic insight has been gained into amyloid aggregation; however, a large number of non-amyloid protein aggregates are considered "amorphous," and in most cases, little is known about their mechanisms. Amorphous aggregation of γ-crystallins in the eye lens causes cataract, a widespread disease of aging. We combined simulations and experiments to study the mechanism of aggregation of two γD-crystallin mutants, W42R and W42Q: the former a congenital cataract mutation, and the latter a mimic of age-related oxidative damage. We found that formation of an internal disulfide was necessary and sufficient for aggregation under physiological conditions. Two-chain all-atom simulations predicted that one non-native disulfide in particular, between Cys(32) and Cys(41), was likely to stabilize an unfolding intermediate prone to intermolecular interactions. Mass spectrometry and mutagenesis experiments confirmed the presence of this bond in the aggregates and its necessity for oxidative aggregation under physiological conditions in vitro Mining the simulation data linked formation of this disulfide to extrusion of the N-terminal β-hairpin and rearrangement of the native β-sheet topology. Specific binding between the extruded hairpin and a distal β-sheet, in an intermolecular chain reaction similar to domain swapping, is the most probable mechanism of aggregate propagation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. An Internal Disulfide Locks a Misfolded Aggregation-prone Intermediate in Cataract-linked Mutants of Human γD-Crystallin*

    Science.gov (United States)

    Serebryany, Eugene; Woodard, Jaie C.; Adkar, Bharat V.; Shabab, Mohammed; King, Jonathan A.; Shakhnovich, Eugene I.

    2016-01-01

    Considerable mechanistic insight has been gained into amyloid aggregation; however, a large number of non-amyloid protein aggregates are considered “amorphous,” and in most cases, little is known about their mechanisms. Amorphous aggregation of γ-crystallins in the eye lens causes cataract, a widespread disease of aging. We combined simulations and experiments to study the mechanism of aggregation of two γD-crystallin mutants, W42R and W42Q: the former a congenital cataract mutation, and the latter a mimic of age-related oxidative damage. We found that formation of an internal disulfide was necessary and sufficient for aggregation under physiological conditions. Two-chain all-atom simulations predicted that one non-native disulfide in particular, between Cys32 and Cys41, was likely to stabilize an unfolding intermediate prone to intermolecular interactions. Mass spectrometry and mutagenesis experiments confirmed the presence of this bond in the aggregates and its necessity for oxidative aggregation under physiological conditions in vitro. Mining the simulation data linked formation of this disulfide to extrusion of the N-terminal β-hairpin and rearrangement of the native β-sheet topology. Specific binding between the extruded hairpin and a distal β-sheet, in an intermolecular chain reaction similar to domain swapping, is the most probable mechanism of aggregate propagation. PMID:27417136

  4. An Experimental Performance Measurement of Implemented Wireless Access Point for Interworking Wi-Fi and HSDPA Networks

    Science.gov (United States)

    Byun, Tae-Young

    This paper presents a prototype of WAP(Wireless Access Point) that provides the wireless Internet access anywhere. Implemented WAP can be equipped with various wireless WAN interfaces such as WCDMA and HSDPA. WAP in the IP mechanism has to process connection setup procedure to one wireless WAN. Also, WAP can provide connection management procedures to reconnect interrupted connection automatically. By using WAP, several mobile devices such as netbook, UMPC and smart-phone in a moving vehicle can access to HSDPA network simultaneously. So, it has more convenient for using the WAP when there are needs to access wireless Internet more than two mobile devices in restricted spaces such as car, train and ship.

  5. Raman Signatures of Polytypism in Molybdenum Disulfide.

    Science.gov (United States)

    Lee, Jae-Ung; Kim, Kangwon; Han, Songhee; Ryu, Gyeong Hee; Lee, Zonghoon; Cheong, Hyeonsik

    2016-02-23

    Since the stacking order sensitively affects various physical properties of layered materials, accurate determination of the stacking order is important for studying the basic properties of these materials as well as for device applications. Because 2H-molybdenum disulfide (MoS2) is most common in nature, most studies so far have focused on 2H-MoS2. However, we found that the 2H, 3R, and mixed stacking sequences exist in few-layer MoS2 exfoliated from natural molybdenite crystals. The crystal structures are confirmed by HR-TEM measurements. The Raman signatures of different polytypes are investigated by using three different excitation energies that are nonresonant and resonant with A and C excitons, respectively. The low-frequency breathing and shear modes show distinct differences for each polytype, whereas the high-frequency intralayer modes show little difference. For resonant excitations at 1.96 and 2.81 eV, distinct features are observed that enable determination of the stacking order.

  6. Single Layer Molybdenum Disulfide under Direct Out-of-Plane Compression: Low-Stress Band-Gap Engineering

    Czech Academy of Sciences Publication Activity Database

    Álvarez, M. P.; del Corro, Elena; Morales-García, A.; Kavan, Ladislav; Kalbáč, Martin; Frank, Otakar

    2015-01-01

    Roč. 15, č. 5 (2015), s. 3139-3146 ISSN 1530-6984 R&D Projects: GA ČR GA14-15357S; GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : Molybdenum disulfide * band gap engineering * out-of-plane compression Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.779, year: 2015

  7. Performance modeling and analysis of parallel Gaussian elimination on multi-core computers

    Directory of Open Access Journals (Sweden)

    Fadi N. Sibai

    2014-01-01

    Full Text Available Gaussian elimination is used in many applications and in particular in the solution of systems of linear equations. This paper presents mathematical performance models and analysis of four parallel Gaussian Elimination methods (precisely the Original method and the new Meet in the Middle –MiM– algorithms and their variants with SIMD vectorization on multi-core systems. Analytical performance models of the four methods are formulated and presented followed by evaluations of these models with modern multi-core systems’ operation latencies. Our results reveal that the four methods generally exhibit good performance scaling with increasing matrix size and number of cores. SIMD vectorization only makes a large difference in performance for low number of cores. For a large matrix size (n ⩾ 16 K, the performance difference between the MiM and Original methods falls from 16× with four cores to 4× with 16 K cores. The efficiencies of all four methods are low with 1 K cores or more stressing a major problem of multi-core systems where the network-on-chip and memory latencies are too high in relation to basic arithmetic operations. Thus Gaussian Elimination can greatly benefit from the resources of multi-core systems, but higher performance gains can be achieved if multi-core systems can be designed with lower memory operation, synchronization, and interconnect communication latencies, requirements of utmost importance and challenge in the exascale computing age.

  8. Structure-based design of a disulfide-linked oligomeric form of the simian virus 40 (SV40) large T antigen DNA-binding domain

    International Nuclear Information System (INIS)

    Meinke, Gretchen; Phelan, Paul; Fradet-Turcotte, Amélie; Archambault, Jacques; Bullock, Peter A.

    2011-01-01

    With the aim of forming the ‘lock-washer’ conformation of the origin-binding domain of SV40 large T antigen in solution, using structure-based analysis an intermolecular disulfide bridge was engineered into the origin-binding domain to generate higher order oligomers in solution. The 1.7 Å resolution structure shows that the mutant forms a spiral in the crystal and has the de novo disulfide bond at the protein interface, although structural rearrangements at the interface are observed relative to the wild type. The modular multifunctional protein large T antigen (T-ag) from simian virus 40 orchestrates many of the events needed for replication of the viral double-stranded DNA genome. This protein assembles into single and double hexamers on specific DNA sequences located at the origin of replication. This complicated process begins when the origin-binding domain of large T antigen (T-ag ODB) binds the GAGGC sequences in the central region (site II) of the viral origin of replication. While many of the functions of purified T-ag OBD can be studied in isolation, it is primarily monomeric in solution and cannot assemble into hexamers. To overcome this limitation, the possibility of engineering intermolecular disulfide bonds in the origin-binding domain which could oligomerize in solution was investigated. A recent crystal structure of the wild-type T-ag OBD showed that this domain forms a left-handed spiral in the crystal with six subunits per turn. Therefore, we analyzed the protein interface of this structure and identified two residues that could potentially support an intermolecular disulfide bond if changed to cysteines. SDS–PAGE analysis established that the mutant T-ag OBD formed higher oligomeric products in a redox-dependent manner. In addition, the 1.7 Å resolution crystal structure of the engineered disulfide-linked T-ag OBD is reported, which establishes that oligomerization took place in the expected manner

  9. The Drosophila wings apart gene anchors a novel, evolutionarily conserved pathway of neuromuscular development.

    Science.gov (United States)

    Morriss, Ginny R; Jaramillo, Carmelita T; Mikolajczak, Crystal M; Duong, Sandy; Jaramillo, Maryann S; Cripps, Richard M

    2013-11-01

    wings apart (wap) is a recessive, semilethal gene located on the X chromosome in Drosophila melanogaster, which is required for normal wing-vein patterning. We show that the wap mutation also results in loss of the adult jump muscle. We use complementation mapping and gene-specific RNA interference to localize the wap locus to the proximal X chromosome. We identify the annotated gene CG14614 as the gene affected by the wap mutation, since one wap allele contains a non-sense mutation in CG14614, and a genomic fragment containing only CG14614 rescues the jump-muscle phenotypes of two wap mutant alleles. The wap gene lies centromere-proximal to touch-insensitive larva B and centromere-distal to CG14619, which is tentatively assigned as the gene affected in introverted mutants. In mutant wap animals, founder cell precursors for the jump muscle are specified early in development, but are later lost. Through tissue-specific knockdowns, we demonstrate that wap function is required in both the musculature and the nervous system for normal jump-muscle formation. wap/CG14614 is homologous to vertebrate wdr68, DDB1 and CUL4 associated factor 7, which also are expressed in neuromuscular tissues. Thus, our findings provide insight into mechanisms of neuromuscular development in higher animals and facilitate the understanding of neuromuscular diseases that may result from mis-expression of muscle-specific or neuron-specific genes.

  10. Raman investigation of molybdenum disulfide with different polytypes

    Science.gov (United States)

    Lee, Jae-Ung; Kim, Kangwon; Han, Songhee; Ryu, Gyeong Hee; Lee, Zonghoon; Cheong, Hyeonsik

    The Raman spectra of molybdenum disulfide (MoS2) with different polytypes are investigated. Although 2H-MoS2 is most common in nature, the 3R phase can exist due to a small difference in the formation energy. However, only a few studies are reported for the 3R phase, and most studies have focused on the 2H phase. We found the 2H, 3R and mixed phases of exfoliated few-layer MoS2 from natural molybdenite crystals. The crystal structures of 2H- and 3R-MoS2 are confirmed by the HR-TEM measurements. By using 3 different excitation energies, we compared the Raman spectra of different polytypes in detail. We show that the Raman spectroscopy can be used to identify not only the number of layers but also the polytypes of MoS2.

  11. Piezoelectricity in two dimensions: Graphene vs. molybdenum disulfide

    Science.gov (United States)

    Song, Xiaoxue; Hui, Fei; Knobloch, Theresia; Wang, Bingru; Fan, Zhongchao; Grasser, Tibor; Jing, Xu; Shi, Yuanyuan; Lanza, Mario

    2017-08-01

    The synthesis of piezoelectric two-dimensional (2D) materials is very attractive for implementing advanced energy harvesters and transducers, as these materials provide enormously large areas for the exploitation of the piezoelectric effect. Among all 2D materials, molybdenum disulfide (MoS2) has shown the largest piezoelectric activity. However, all research papers in this field studied just a single material, and this may raise concerns because different setups could provide different values depending on experimental parameters (e.g., probes used and areas analyzed). By using conductive atomic force microscopy, here we in situ demonstrate that the piezoelectric currents generated in MoS2 are gigantic (65 mA/cm2), while the same experiments in graphene just showed noise currents. These results provide the most reliable comparison yet reported on the piezoelectric effect in graphene and MoS2.

  12. Fast and efficient green synthesis of thiosulfonate S-esters by microwave-supported permanganate oxidation of symmetrical disulfides

    DEFF Research Database (Denmark)

    Thi, Luu Thi Xuan; Thi Nguyen, Thao-Tran; Le, Thach Ngoc

    2015-01-01

    Potassium permanganate absorbed on copper(II) sulfate pentahydrate has been found to be an efficient, inexpensive, and green oxidation agent for the synthesis of “symmetrical” thiosulfonate S-esters by oxidation of the corresponding symmetrical disulfides. The oxidation reactions were carried out...

  13. A Disulfide Bond-forming Machine Is Linked to the Sortase-mediated Pilus Assembly Pathway in the Gram-positive Bacterium Actinomyces oris*

    Science.gov (United States)

    Reardon-Robinson, Melissa E.; Osipiuk, Jerzy; Chang, Chungyu; Wu, Chenggang; Jooya, Neda; Joachimiak, Andrzej; Das, Asis; Ton-That, Hung

    2015-01-01

    Export of cell surface pilins in Gram-positive bacteria likely occurs by the translocation of unfolded precursor polypeptides; however, how the unfolded pilins gain their native conformation is presently unknown. Here, we present physiological studies to demonstrate that the FimA pilin of Actinomyces oris contains two disulfide bonds. Alanine substitution of cysteine residues forming the C-terminal disulfide bridge abrogates pilus assembly, in turn eliminating biofilm formation and polymicrobial interaction. Transposon mutagenesis of A. oris yielded a mutant defective in adherence to Streptococcus oralis, and revealed the essential role of a vitamin K epoxide reductase (VKOR) gene in pilus assembly. Targeted deletion of vkor results in the same defects, which are rescued by ectopic expression of VKOR, but not a mutant containing an alanine substitution in its conserved CXXC motif. Depletion of mdbA, which encodes a membrane-bound thiol-disulfide oxidoreductase, abrogates pilus assembly and alters cell morphology. Remarkably, overexpression of MdbA or a counterpart from Corynebacterium diphtheriae, rescues the Δvkor mutant. By alkylation assays, we demonstrate that VKOR is required for MdbA reoxidation. Furthermore, crystallographic studies reveal that A. oris MdbA harbors a thioredoxin-like fold with the conserved CXXC active site. Consistently, each MdbA enzyme catalyzes proper disulfide bond formation within FimA in vitro that requires the catalytic CXXC motif. Because the majority of signal peptide-containing proteins encoded by A. oris possess multiple Cys residues, we propose that MdbA and VKOR constitute a major folding machine for the secretome of this organism. This oxidative protein folding pathway may be a common feature in Actinobacteria. PMID:26170452

  14. A Disulfide Bond-forming Machine Is Linked to the Sortase-mediated Pilus Assembly Pathway in the Gram-positive Bacterium Actinomyces oris.

    Science.gov (United States)

    Reardon-Robinson, Melissa E; Osipiuk, Jerzy; Chang, Chungyu; Wu, Chenggang; Jooya, Neda; Joachimiak, Andrzej; Das, Asis; Ton-That, Hung

    2015-08-28

    Export of cell surface pilins in Gram-positive bacteria likely occurs by the translocation of unfolded precursor polypeptides; however, how the unfolded pilins gain their native conformation is presently unknown. Here, we present physiological studies to demonstrate that the FimA pilin of Actinomyces oris contains two disulfide bonds. Alanine substitution of cysteine residues forming the C-terminal disulfide bridge abrogates pilus assembly, in turn eliminating biofilm formation and polymicrobial interaction. Transposon mutagenesis of A. oris yielded a mutant defective in adherence to Streptococcus oralis, and revealed the essential role of a vitamin K epoxide reductase (VKOR) gene in pilus assembly. Targeted deletion of vkor results in the same defects, which are rescued by ectopic expression of VKOR, but not a mutant containing an alanine substitution in its conserved CXXC motif. Depletion of mdbA, which encodes a membrane-bound thiol-disulfide oxidoreductase, abrogates pilus assembly and alters cell morphology. Remarkably, overexpression of MdbA or a counterpart from Corynebacterium diphtheriae, rescues the Δvkor mutant. By alkylation assays, we demonstrate that VKOR is required for MdbA reoxidation. Furthermore, crystallographic studies reveal that A. oris MdbA harbors a thioredoxin-like fold with the conserved CXXC active site. Consistently, each MdbA enzyme catalyzes proper disulfide bond formation within FimA in vitro that requires the catalytic CXXC motif. Because the majority of signal peptide-containing proteins encoded by A. oris possess multiple Cys residues, we propose that MdbA and VKOR constitute a major folding machine for the secretome of this organism. This oxidative protein folding pathway may be a common feature in Actinobacteria. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Modified electrophoretic and digestion conditions allow a simplified mass spectrometric evaluation of disulfide bonds

    Czech Academy of Sciences Publication Activity Database

    Pompach, Petr; Man, Petr; Kavan, Daniel; Hofbauerová, Kateřina; Kumar, Vinay; Bezouška, Karel; Havlíček, Vladimír; Novák, Petr

    2009-01-01

    Roč. 44, č. 11 (2009), s. 1571-1578 ISSN 1076-5174 R&D Projects: GA AV ČR KJB400200501; GA AV ČR IAA5020403; GA AV ČR KJB500200612; GA MŠk LC545; GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50200510 Keywords : disulfide bond * cystamine * gel electrophoresis Subject RIV: CE - Biochemistry Impact factor: 3.411, year: 2009

  16. Lunar Core and Tides

    Science.gov (United States)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  17. Growth and characterization of tin disulfide (SnS2) thin film deposited by successive ionic layer adsorption and reaction (SILAR) technique

    International Nuclear Information System (INIS)

    Deshpande, N.G.; Sagade, A.A.; Gudage, Y.G.; Lokhande, C.D.; Sharma, Ramphal

    2007-01-01

    Thin films of tin disulfide (SnS 2 ) have been deposited by using low cost successive ionic layer adsorption and reaction (SILAR) technique. The deposition parameters such as SILAR cycles (60), immersion time (20 s), rinsing time (10 s) and deposition temperature (27 o C) were optimized to obtain good quality of films. Physical investigations were made to study the structural, optical and electrical properties. X-ray diffraction (XRD) patterns reveal that the deposited SnS 2 thin films have hexagonal crystal structure. Energy dispersive X-ray analysis (EDAX) indicated elemental ratio close to those for tin disulfide (SnS (2.02) ). Uniform deposition of the material over the entire glass substrate was revealed by scanning electron microscopy (SEM). Atomic force microscopy (AFM) showed the film is uniform and the substrate surface is well covered with small spherical grains merged in each other. A direct band gap of 2.22 eV was obtained. Photoluminescence (PL) showed two strong peaks corresponding to green and red emission. Ag/SnS 2 junction showed Schottky diode like I-V characteristics. The barrier height calculated was 0.22 eV. Thermoelectric power (TEP) properties showed that tin disulfide exhibits n-type conductivity

  18. Identification, activity and disulfide connectivity of C-di-GMP regulating proteins in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Kajal Gupta

    2010-11-01

    Full Text Available C-di-GMP, a bacterial second messenger plays a key role in survival and adaptation of bacteria under different environmental conditions. The level of c-di-GMP is regulated by two opposing activities, namely diguanylate cyclase (DGC and phosphodiesterase (PDE-A exhibited by GGDEF and EAL domain, respectively in the same protein. Previously, we reported a bifunctional GGDEF-EAL domain protein, MSDGC-1 from Mycobacterium smegmatis showing both these activities (Kumar and Chatterji, 2008. In this current report, we have identified and characterized the homologous protein from Mycobacterium tuberculosis (Rv 1354c named as MtbDGC. MtbDGC is also a bifunctional protein, which can synthesize and degrade c-di-GMP in vitro. Further we expressed Mtbdgc in M. smegmatis and it was able to complement the MSDGC-1 knock out strain by restoring the long term survival of M. smegmatis. Another protein Rv 1357c, named as MtbPDE, is an EAL domain protein and degrades c-di-GMP to pGpG in vitro. Rv1354c and 1357c have seven cysteine amino acids in their sequence, distributed along the full length of the protein. Disulfide bonds play an important role in stabilizing protein structure and regulating protein function. By proteolytic digestion and mass spectrometric analysis of MtbDGC, connectivity between cysteine pairs Cys94-Cys584, Cys2-Cys479 and Cys429-Cys614 was determined, whereas the third cysteine (Cys406 from N terminal was found to be free in MtbDGC protein, which was further confirmed by alkylation with iodoacetamide labeling. Bioinformatics modeling investigations also supported the pattern of disulfide connectivity obtained by Mass spectrometric analysis. Cys406 was mutated to serine by site directed mutagenesis and the mutant MtbC406S was not found to be active and was not able to synthesize or degrade c-di-GMP. The disulfide connectivity established here would help further in understanding the structure - function relationship in MtbDGC.

  19. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    Science.gov (United States)

    Voorhies, C. V.

    1999-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aide core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core, (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core is calculated to be at most 1.5 degrees per year.

  20. Influence of the degree of crosslinking on the depolymerization of disulfide polymer

    International Nuclear Information System (INIS)

    Rekalicj, J.V.; Radosavljevicj, D.S.; Popovicj, E.M.; Stashicj, L.

    1976-01-01

    The action of nucleophilic reagents (hydrogen sulfide ion, dithionite ion and hydrazine) on disulfide polymers prepd. from bis-2-chloroethyl formal and 1,2,3-trichloropropane, taken in various mol rations is studied. The depolymerization efficiency is higher with hydrazine and dithionite than with a mixt. of sodium hydrogen sulfide and sodium sulfite. An interpretation of the results is given, attempting to correlate the content of SH-groups in the obtained product with the same quantity in some defined compds. which can be present after the depolymerization

  1. “Invisible” Conformers of an Antifungal Disulfide Protein Revealed by Constrained Cold and Heat Unfolding, CEST-NMR Experiments, and Molecular Dynamics Calculations

    Science.gov (United States)

    Fizil, Ádám; Gáspári, Zoltán; Barna, Terézia; Marx, Florentine; Batta, Gyula

    2015-01-01

    Transition between conformational states in proteins is being recognized as a possible key factor of function. In support of this, hidden dynamic NMR structures were detected in several cases up to populations of a few percent. Here, we show by two- and three-state analysis of thermal unfolding, that the population of hidden states may weight 20–40 % at 298 K in a disulfide-rich protein. In addition, sensitive 15N-CEST NMR experiments identified a low populated (0.15 %) state that was in slow exchange with the folded PAF protein. Remarkably, other techniques failed to identify the rest of the NMR “dark matter”. Comparison of the temperature dependence of chemical shifts from experiments and molecular dynamics calculations suggests that hidden conformers of PAF differ in the loop and terminal regions and are most similar in the evolutionary conserved core. Our observations point to the existence of a complex conformational landscape with multiple conformational states in dynamic equilibrium, with diverse exchange rates presumably responsible for the completely hidden nature of a considerable fraction. PMID:25676351

  2. Core shroud corner joints

    Science.gov (United States)

    Gilmore, Charles B.; Forsyth, David R.

    2013-09-10

    A core shroud is provided, which includes a number of planar members, a number of unitary corners, and a number of subassemblies each comprising a combination of the planar members and the unitary corners. Each unitary corner comprises a unitary extrusion including a first planar portion and a second planar portion disposed perpendicularly with respect to the first planar portion. At least one of the subassemblies comprises a plurality of the unitary corners disposed side-by-side in an alternating opposing relationship. A plurality of the subassemblies can be combined to form a quarter perimeter segment of the core shroud. Four quarter perimeter segments join together to form the core shroud.

  3. Cleavage of the interchain disulfide bonds in rituximab increases its affinity for FcγRIIIA.

    Science.gov (United States)

    Suzuki, Mami; Yamanoi, Ayaka; Machino, Yusuke; Kobayashi, Eiji; Fukuchi, Kaori; Tsukimoto, Mitsutoshi; Kojima, Shuji; Kohroki, Junya; Akimoto, Kazunori; Masuho, Yasuhiko

    2013-07-05

    The Fc region of human IgG1 mediates effector function via binding to Fcγ receptors and complement activation. The H and L chains of IgG1 antibodies are joined by four interchain disulfide bonds. In this study, these bonds within the therapeutic IgG1 rituximab (RTX) were cleaved either by mild reduction followed by alkylation or by mild S-sulfonation; consequently, two modified RTXs - A-RTX (alkylated) and S-RTX (S-sulfonated) - were formed, and both were almost as potent as unmodified RTX when binding CD20 antigen. Unexpectedly, each modified RTX had a higher binding affinity for FcγRIIIA (CD16A) than did unmodified RTX. However, S-RTX and A-RTX were each less potent than RTX in an assay of antibody-dependent cellular cytotoxicity (ADCC). In this ADCC assay, each modified RTX showed decreased secretion of granzyme B, but no change in perforin secretion, from effector cells. These results provide significant information on the structures within IgG1 that are involved in binding FcγRIIIA, and they may be useful in the development of therapeutic antagonists for FcγRIIIA. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Transpeptidase activity of penicillin-binding protein SpoVD in peptidoglycan synthesis conditionally depends on the disulfide reductase StoA.

    Science.gov (United States)

    Bukowska-Faniband, Ewa; Hederstedt, Lars

    2017-07-01

    Endospore cortex peptidoglycan synthesis is not required for bacterial growth but essential for endospore heat resistance. It therefore constitutes an amenable system for research on peptidoglycan biogenesis. The Bacillus subtilis sporulation-specific class B penicillin-binding protein (PBP) SpoVD and many homologous PBPs contain two conserved cysteine residues of unknown function in the transpeptidase domain - one as residue x in the SxN catalytic site motif and the other in a flexible loop near the catalytic site. A disulfide bond between these residues blocks the function of SpoVD in cortex synthesis. With a combination of experiments with purified proteins and B. subtilis mutant cells, it was shown that in active SpoVD the two cysteine residues most probably interact by hydrogen bonding and that this is important for peptidoglycan synthesis in vivo. It was furthermore demonstrated that the sporulation-specific thiol-disulfide oxidoreductase StoA reduces SpoVD and that requirement of StoA for cortex synthesis can be suppressed by two completely different types of structural alterations in SpoVD. It is concluded that StoA plays a critical role mainly during maturation of SpoVD in the forespore outer membrane. The findings advance our understanding of essential PBPs and redox control of extra-cytoplasmic protein disulfides in bacterial cells. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  5. Solubilization and folding of a fully active recombinant Gaussia luciferase with native disulfide bonds by using a SEP-Tag.

    Science.gov (United States)

    Rathnayaka, Tharangani; Tawa, Minako; Nakamura, Takashi; Sohya, Shihori; Kuwajima, Kunihiro; Yohda, Masafumi; Kuroda, Yutaka

    2011-12-01

    Gaussia luciferase (GLuc) is the smallest known bioluminescent protein and is attracting much attention as a potential reporter protein. However, its 10 disulfide bond forming cysteines have hampered the efficient production of recombinant GLuc and thus limited its use in bio-imaging application. Here, we demonstrate that the addition of a short solubility enhancement peptide tag (SEP-Tag) to the C-terminus of GLuc (GLuc-C9D) significantly increased the fraction of soluble protein at a standard expression temperature. The expression time was much shorter, and the final yield of GLuc-C9D was significantly higher than with our previous pCold expression system. Reversed phase HPLC indicated that the GLuc-C9D variant folded with a single disulfide bond pattern after proper oxidization. Further, the thermal denaturation of GLuc-C9D was completely reversible, and its secondary structure content remained unchanged until 40°C as assessed by CD spectroscopy. The (1)H-NMR spectrum of GLuc indicated sharp well dispersed peaks typical for natively folded proteins. GLuc-C9D bioluminescence activity was strong and fully retained even after incubation at high temperatures. These results suggest that solubilization using SEP-Tags can be useful for producing large quantities of proteins containing multiple disulfide bonds. Copyright © 2011. Published by Elsevier B.V.

  6. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    Science.gov (United States)

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  7. Common Core in the Real World

    Science.gov (United States)

    Hess, Frederick M.; McShane, Michael Q.

    2013-01-01

    There are at least four key places where the Common Core intersects with current efforts to improve education in the United States--testing, professional development, expectations, and accountability. Understanding them can help educators, parents, and policymakers maximize the chance that the Common Core is helpful to these efforts and, perhaps…

  8. Anthropic reasoning and typicality in multiverse cosmology and string theory

    International Nuclear Information System (INIS)

    Weinstein, Steven

    2006-01-01

    Anthropic arguments in multiverse cosmology and string theory rely on the weak anthropic principle (WAP). We show that the principle is fundamentally ambiguous. It can be formulated in one of two ways, which we refer to as WAP 1 and WAP 2 . We show that WAP 2 , the version most commonly used in anthropic reasoning, makes no physical predictions unless supplemented by a further assumption of 'typicality', and we argue that this assumption is both misguided and unjustified. WAP 1 , however, requires no such supplementation; it directly implies that any theory that assigns a non-zero probability to our universe predicts that we will observe our universe with probability one. We argue, therefore, that WAP 1 is preferable, and note that it has the benefit of avoiding the inductive overreach characteristic of much anthropic reasoning

  9. Establishment, Growth and Biomass yield of three Grass species on a degraded Ultisol and their effect on soil loss.

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available Erosion is a cause for concern; this is because of its effects on the soil used for both agricultural and non-agricultural purposes. Experiments were carried out to check the establishment, growth and biomass field of 3 tropical plants and their effects on soil loss during 2007 planting season. The treatments comprised 3 grasses viz. Azonopus compressus. Panicum maximum and Andropogon gayanus. The grasses were laid our in the field using a randomized complete block design replicated 4 times. Bare soil was used as the control. The parameters tested were plant height, leaf area index, root density, root establishment and the amount of soil loss using erosion pins. The result showed that Andropogon gayanus has an edge over Panicum maximum and Axonopus compressus with reference to plant height, root establishment, root density and leaf area index. Andropogon gayanus had a higher plant height from 3,6,9 and 12WAP with plant heights of 3.30cm, 3.63cm,3.93cm and 4.30cm representing 15.7%, 19.3% and 28.8% respectively. It was followed by P. maximum while A. compressus maintained the lowest plant height from 3,6,9 and 12 WAP with plant height of 2.83cm, 3.05cm, 3.20cm and 3.45cm respectively. In terms of root density, A. compressus did not have much root density which was 0.02t/ha, also at 12WAP, P. maximum did not have much root density which was 0.06t/ha though it was higher than A. compressus. The trend was the same for A. gayanus whose root density was 0.75t/ha. In terms of leaf area index (LAI, it was shown that at 3WAP and 6WAP, A. compressus had the lowest leaf area index of 58.25 and 65.75 respectively. Also at 9WAP and 12WAP A. compressus had 72.28 and 75.08t/ha respectively. At 3WAP and 6WAP P.maximum had a high leaf area index of 66.60 and 77.25 respectively. A. gayanus at 3WAP and 6WAP had 87.73 gayanus at 3WAP and 6WAP had 87.73 and 90.80 for 9WAP and 12WAP respectively. A. compressus protected the soil, reducing soil loss as a total of 9

  10. S center dot center dot center dot N chalcogen bonded complexes of carbon disulfide with diazines. Theoretical study

    Czech Academy of Sciences Publication Activity Database

    Zierkiewicz, W.; Fanfrlík, Jindřich; Michalczyk, M.; Michalska, D.; Hobza, Pavel

    2018-01-01

    Roč. 500, Jan 26 (2018), s. 37-44 ISSN 0301-0104 Institutional support: RVO:61388963 Keywords : chalcogen bond * carbon disulfide * diazines * DFT Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.767, year: 2016

  11. Identification and prevention of antibody disulfide bond reduction during cell culture manufacturing.

    Science.gov (United States)

    Trexler-Schmidt, Melody; Sargis, Sandy; Chiu, Jason; Sze-Khoo, Stefanie; Mun, Melissa; Kao, Yung-Hsiang; Laird, Michael W

    2010-06-15

    In the biopharmaceutical industry, therapeutic monoclonal antibodies are primarily produced in mammalian cell culture systems. During the scale-up of a monoclonal antibody production process, we observed excessive mechanical cell shear as well as significant reduction of the antibody's interchain disulfide bonds during harvest operations. This antibody reduction event was catastrophic as the product failed to meet the drug substance specifications and the bulk product was lost. Subsequent laboratory studies have demonstrated that cells subjected to mechanical shear release cellular enzymes that contribute to this antibody reduction phenomenon (manuscript submitted; Kao et al., 2009). Several methods to prevent this antibody reduction event were developed using a lab-scale model to reproduce the lysis and reduction events. These methods included modifications to the cell culture media with chemicals (e.g., cupric sulfate (CuSO(4))), pre- and post-harvest chemical additions to the cell culture fluid (CCF) (e.g., CuSO(4), EDTA, L-cystine), as well as lowering the pH and air sparging of the harvested CCF (HCCF). These methods were evaluated for their effectiveness in preventing disulfide bond reduction and their impact to product quality. Effective prevention methods, which yielded acceptable product quality were evaluated for their potential to be implemented at manufacturing-scale. The work described here identifies numerous effective reduction prevention measures from lab-scale studies; several of these methods were then successfully translated into manufacturing processes. 2010 Wiley Periodicals, Inc.

  12. Graphite oxide and molybdenum disulfide composite for hydrogen evolution reaction

    Science.gov (United States)

    Niyitanga, Theophile; Jeong, Hae Kyung

    2017-10-01

    Graphite oxide and molybdenum disulfide (GO-MoS2) composite is prepared through a wet process by using hydrolysis of ammonium tetrathiomolybdate, and it exhibits excellent catalytic activity of the hydrogen evolution reaction (HER) with a low overpotential of -0.47 V, which is almost two and three times lower than those of precursor MoS2 and GO. The high performance of HER of the composite attributes to the reduced GO supporting MoS2, providing a conducting network for fast electron transport from MoS2 to electrodes. The composite also shows high stability after 500 cycles, demonstrating a synergistic effect of MoS2 and GO for efficient HER.

  13. Sample limited characterization of a novel disulfide-rich venom peptide toxin from terebrid marine snail Terebra variegata.

    Directory of Open Access Journals (Sweden)

    Prachi Anand

    Full Text Available Disulfide-rich peptide toxins found in the secretions of venomous organisms such as snakes, spiders, scorpions, leeches, and marine snails are highly efficient and effective tools for novel therapeutic drug development. Venom peptide toxins have been used extensively to characterize ion channels in the nervous system and platelet aggregation in haemostatic systems. A significant hurdle in characterizing disulfide-rich peptide toxins from venomous animals is obtaining significant quantities needed for sequence and structural analyses. Presented here is a strategy for the structural characterization of venom peptide toxins from sample limited (4 ng specimens via direct mass spectrometry sequencing, chemical synthesis and NMR structure elucidation. Using this integrated approach, venom peptide Tv1 from Terebra variegata was discovered. Tv1 displays a unique fold not witnessed in prior snail neuropeptides. The novel structural features found for Tv1 suggest that the terebrid pool of peptide toxins may target different neuronal agents with varying specificities compared to previously characterized snail neuropeptides.

  14. Effect of disulfide and sulfhydryl reagents on abortive and productive elongation catalyzed by ''Escheridia coli'' RNA polymerase

    International Nuclear Information System (INIS)

    Radlowski, M.; Job, D.

    1994-01-01

    The effect of disulfide and sulfhydryl reagents on the rate of abortive and productive elongation has been studied using ''Escherichia coli'' RNA polymerase holoenzyme and poly[d(A-T)] as template. In the presence of UTP as a single substrate and UpA as a primer, the enzyme catalyzed efficiently the synthesis of the trinucleotide product UpApU. Incubation of RNA polymerase with 1 mM 2-mercaptoethanol resulted in a 5-fold increase of the rate of UpApU synthesis. In contrast, incubation of the enzyme with 1 mM 5,5'-dithio-bis(2-nitrobenzoic) acid resulted in a 6-fold decrease of the rate of abortive elongation. Determination of the steady state kinetic constants associated with UpApU synthesis disclosed that the disulfide and sulfhydryl reagents mainly affected the rate of UpApU release from the ternary transcription complexes and therefore influenced the stability of such complexes. (author). 15 refs, 1 fig., 1 tab

  15. Oxidation of the N-terminal domain of the wheat metallothionein Ec -1 leads to the formation of three distinct disulfide bridges.

    Science.gov (United States)

    Tarasava, Katsiaryna; Chesnov, Serge; Freisinger, Eva

    2016-05-01

    Metallothioneins (MTs) are low molecular weight proteins, characterized by a high cysteine content and the ability to coordinate large amounts of d(10) metal ions, for example, Zn(II), Cd(II), and Cu(I), in form of metal-thiolate clusters. Depending on intracellular conditions such as redox potential or metal ion concentrations, MTs can occur in various states ranging from the fully metal-loaded holo- to the metal-free apo-form. The Cys thiolate groups in the apo-form can be either reduced or be involved in disulfide bridges. Although oxidation-mediated Zn(II) release might be a possible mechanism for the regulation of Zn(II) availability by MTs, no concise information regarding the associated pathways and the structure of oxidized apo-MT forms is available. Using the well-studied Zn2 γ-Ec -1 domain of the wheat Zn6 Ec -1 MT we attempt here to answer several question regarding the structure and biophysical properties of oxidized MT forms, such as: (1) does disulfide bond formation increase the stability against proteolysis, (2) is the overall peptide backbone fold similar for the holo- and the oxidized apo-MT form, and (3) are disulfide bridges specifically or randomly formed? Our investigations show that oxidation leads to three distinct disulfide bridges independently of the applied oxidation conditions and of the initial species used for oxidation, that is, the apo- or the holo-form. In addition, the oxidized apo-form is as stable against proteolysis as Zn2 γ-Ec -1, rendering the currently assumed degradation of oxidized MTs unlikely and suggesting a role of the oxidation process for the extension of protein lifetime in absence of sufficient amounts of metal ions. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 295-308, 2016. © 2016 Wiley Periodicals, Inc.

  16. Molecular Docking Simulation of Neuraminidase Influenza A Subtype H1N1 with Potential Inhibitor of Disulfide Cyclic Peptide (DNY, NNY, LRL)

    Science.gov (United States)

    Putra, R. P.; Imaniastuti, R.; Nasution, M. A. F.; Kerami, Djati; Tambunan, U. S. F.

    2018-04-01

    Oseltamivir resistance as an inhibitor of neuraminidase influenza A virus subtype H1N1 has been reported lately. Therefore, to solve this problem, several kinds of research has been conducted to design and discover disulfide cyclic peptide ligands through molecular docking method, to find the potential inhibitors for neuraminidase H1N1 which then can disturb the virus replication. This research was studied and evaluated the interaction of ligands toward enzyme using molecular docking simulation, which was performed on three disulfide cyclic peptide inhibitors (DNY, LRL, and NNT), along with oseltamivir and zanamivir as the standard ligands using MOE 2008.10 software. The docking simulation shows that all disulfide cyclic peptide ligands have lower Gibbs free binding energies (ΔGbinding) than the standard ligands, with DNY ligand has the lowest ΔGbinding at -7.8544 kcal/mol. Furthermore, these ligands were also had better molecular interactions with neuraminidase than the standards, owing by the hydrogen bonds that were formed during the docking simulation. In the end, we concluded that DNY, LRL and NNT ligands have the potential to be developed as the inhibitor of neuraminidase H1N1.

  17. Anthropic reasoning and typicality in multiverse cosmology and string theory

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Steven [Perimeter Institute for Theoretical Physics, 31 Caroline St, Waterloo, ON N2L 2Y5 (Canada); Department of Philosophy, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Department of Physics, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2006-06-21

    Anthropic arguments in multiverse cosmology and string theory rely on the weak anthropic principle (WAP). We show that the principle is fundamentally ambiguous. It can be formulated in one of two ways, which we refer to as WAP{sub 1} and WAP{sub 2}. We show that WAP{sub 2}, the version most commonly used in anthropic reasoning, makes no physical predictions unless supplemented by a further assumption of 'typicality', and we argue that this assumption is both misguided and unjustified. WAP{sub 1}, however, requires no such supplementation; it directly implies that any theory that assigns a non-zero probability to our universe predicts that we will observe our universe with probability one. We argue, therefore, that WAP{sub 1} is preferable, and note that it has the benefit of avoiding the inductive overreach characteristic of much anthropic reasoning.

  18. 40 CFR 63.500 - Back-end process provisions-carbon disulfide limitations for styrene butadiene rubber by emulsion...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Back-end process provisions-carbon disulfide limitations for styrene butadiene rubber by emulsion processes. 63.500 Section 63.500 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  19. The effects of morphology re-arrangements on the pseudocapacitive properties of mesoporous molybdenum disulfide (MoS2) nanoflakes

    CSIR Research Space (South Africa)

    Khawula, TNY

    2016-07-01

    Full Text Available Mesoporous molybdenum disulfide (MoS(sub2)) with different morphologies have been prepared via hydrothermal method using different solvents, water or water/acetone mixture. The MoS(sub2) obtained with water alone gave a graphene-like nanoflakes (g...

  20. Role of Conserved Disulfide Bridges and Aromatic Residues in Extracellular Loop 2 of Chemokine Receptor CCR8 for Chemokine and Small Molecule Binding

    DEFF Research Database (Denmark)

    Barington, Line; Rummel, Pia C; Lückmann, Michael

    2016-01-01

    and aromatic residues in extracellular loop 2 (ECL2) for ligand binding and activation in the chemokine receptor CCR8. We used IP3 accumulation and radioligand binding experiments to determine the impact of receptor mutagenesis on both chemokine and small molecule agonist and antagonist binding and action...... in CCR8. We find that the 7 transmembrane (7TM) receptor conserved disulfide bridge (7TM bridge) linking transmembrane helix (TM)III and ECL2 is crucial for chemokine and small molecule action, whereas the chemokine receptor conserved disulfide bridge between the N terminus and TMVII is needed only...

  1. A mathematical analysis of Prx2-STAT3 disulfide exchange rate constants for a bimolecular reaction mechanism.

    Science.gov (United States)

    Langford, Troy F; Deen, William M; Sikes, Hadley D

    2018-03-22

    Appreciation of peroxiredoxins as the major regulators of H 2 O 2 concentrations in human cells has led to a new understanding of redox signaling. In addition to their status as the primary reducers of H 2 O 2 to water, the oxidized peroxiredoxin byproduct of this reaction has recently been shown capable of participation in H 2 O 2 -mediated signaling pathways through disulfide exchange reactions with the transcription factor STAT3. The dynamics of peroxidase-transcription factor disulfide exchange reactions have not yet been considered in detail with respect to how these reactions fit into the larger network of competing reactions in human cells. In this study, we used a kinetic model of oxidation and reduction reactions related to H 2 O 2 metabolism in the cytosol of human cells to study the dynamics of peroxiredoxin-2 mediated oxidation of the redox-regulated transcription factor STAT3. In combination with previously reported experimental data, the model was used to estimate the rate coefficient of a biomolecular reaction between Prx2 and STAT3 for two sets of assumptions that constitute lower and upper bound cases. Using these estimates, we calculated the relative rates of the reaction of oxidized peroxiredoxin-2 and STAT3 and other competing reactions in the cytosol. These calculations revealed that peroxiredoxin-2-mediated oxidation of STAT3 likely occurs at a much slower rate than competing reactions in the cytosol. This analysis suggests the existence of more complex mechanisms, potentially involving currently unknown protein-protein recognition partners, which facilitate disulfide exchange reactions between peroxiredoxin-2 and STAT3. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases

    International Nuclear Information System (INIS)

    Premkumar, Lakshmanane; Heras, Begoña; Duprez, Wilko; Walden, Patricia; Halili, Maria; Kurth, Fabian; Fairlie, David P.; Martin, Jennifer L.

    2013-01-01

    The gene product of M. tuberculosis Rv2969c is shown to be a disulfide oxidase enzyme that has a canonical DsbA-like fold with novel structural and functional characteristics. The bacterial disulfide machinery is an attractive molecular target for developing new antibacterials because it is required for the production of multiple virulence factors. The archetypal disulfide oxidase proteins in Escherichia coli (Ec) are DsbA and DsbB, which together form a functional unit: DsbA introduces disulfides into folding proteins and DsbB reoxidizes DsbA to maintain it in the active form. In Mycobacterium tuberculosis (Mtb), no DsbB homologue is encoded but a functionally similar but structurally divergent protein, MtbVKOR, has been identified. Here, the Mtb protein Rv2969c is investigated and it is shown that it is the DsbA-like partner protein of MtbVKOR. It is found that it has the characteristic redox features of a DsbA-like protein: a highly acidic catalytic cysteine, a highly oxidizing potential and a destabilizing active-site disulfide bond. Rv2969c also has peptide-oxidizing activity and recognizes peptide segments derived from the periplasmic loops of MtbVKOR. Unlike the archetypal EcDsbA enzyme, Rv2969c has little or no activity in disulfide-reducing and disulfide-isomerase assays. The crystal structure of Rv2969c reveals a canonical DsbA fold comprising a thioredoxin domain with an embedded helical domain. However, Rv2969c diverges considerably from other DsbAs, including having an additional C-terminal helix (H8) that may restrain the mobility of the catalytic helix H1. The enzyme is also characterized by a very shallow hydrophobic binding surface and a negative electrostatic surface potential surrounding the catalytic cysteine. The structure of Rv2969c was also used to model the structure of a paralogous DsbA-like domain of the Ser/Thr protein kinase PknE. Together, these results show that Rv2969c is a DsbA-like protein with unique properties and a limited

  3. Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, Lakshmanane, E-mail: p.lakshmanane@imb.uq.edu.au; Heras, Begoña; Duprez, Wilko; Walden, Patricia; Halili, Maria; Kurth, Fabian; Fairlie, David P.; Martin, Jennifer L., E-mail: p.lakshmanane@imb.uq.edu.au [University of Queensland, St Lucia, QLD 4067 (Australia)

    2013-10-01

    The gene product of M. tuberculosis Rv2969c is shown to be a disulfide oxidase enzyme that has a canonical DsbA-like fold with novel structural and functional characteristics. The bacterial disulfide machinery is an attractive molecular target for developing new antibacterials because it is required for the production of multiple virulence factors. The archetypal disulfide oxidase proteins in Escherichia coli (Ec) are DsbA and DsbB, which together form a functional unit: DsbA introduces disulfides into folding proteins and DsbB reoxidizes DsbA to maintain it in the active form. In Mycobacterium tuberculosis (Mtb), no DsbB homologue is encoded but a functionally similar but structurally divergent protein, MtbVKOR, has been identified. Here, the Mtb protein Rv2969c is investigated and it is shown that it is the DsbA-like partner protein of MtbVKOR. It is found that it has the characteristic redox features of a DsbA-like protein: a highly acidic catalytic cysteine, a highly oxidizing potential and a destabilizing active-site disulfide bond. Rv2969c also has peptide-oxidizing activity and recognizes peptide segments derived from the periplasmic loops of MtbVKOR. Unlike the archetypal EcDsbA enzyme, Rv2969c has little or no activity in disulfide-reducing and disulfide-isomerase assays. The crystal structure of Rv2969c reveals a canonical DsbA fold comprising a thioredoxin domain with an embedded helical domain. However, Rv2969c diverges considerably from other DsbAs, including having an additional C-terminal helix (H8) that may restrain the mobility of the catalytic helix H1. The enzyme is also characterized by a very shallow hydrophobic binding surface and a negative electrostatic surface potential surrounding the catalytic cysteine. The structure of Rv2969c was also used to model the structure of a paralogous DsbA-like domain of the Ser/Thr protein kinase PknE. Together, these results show that Rv2969c is a DsbA-like protein with unique properties and a limited

  4. Peptide and nucleotide sequences of rat CD4 (W3/25) antigen: evidence for derivation from a structure with four immunoglobulin-related domains

    International Nuclear Information System (INIS)

    Clark, S.J.; Jefferies, W.A.; Barclay, A.N.; Gagnon, J.; Williams, A.F.

    1987-01-01

    The rat W3/25 antigen was the first marker antigen of helper T lymphocytes to be identified. Subsequently, the human OKT4 antigen (now called CD4) was described, and cell distribution and functional data suggested that W3/25 and OKT4 antigens were homologous. This is now confirmed by the matching of peptide sequences from W3/25 antigen with sequence predicted from rat cDNA clones detected by cross-hybridization with a cDNA probe for human CD4. Analysis of the two sequences suggests an evolutionary origin from a structure with four immunoglobulin-related domains, although only domain 1 at the NH 2 terminus meets the standard criteria for an immunoglobulin-related sequence. CD4 domains 2 and 4 contain disulfide bonds but seem like truncated immunoglobulin domains, whereas domain 3 may have a pattern of β-strands like an immunoglobulin variable domain, but without the disulfide bond

  5. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation

    Science.gov (United States)

    Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G.

    2016-01-01

    Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials. PMID:27767030

  6. Symmetric pseudocapacitors based on molybdenum disulfide (MoS2)-modified carbon nanospheres: correlating physicochemistry and synergistic interaction on energy storage

    CSIR Research Space (South Africa)

    Khawula, TNY

    2016-03-01

    Full Text Available Molybdenum disulfide-modified carbon nanospheres (MoS(sub2)/CNS) with two different morphologies (spherical and flower-like) have been synthesized using hydrothermal techniques and investigated as symmetric pseudocapacitors in an aqueous electrolyte...

  7. Reversible end-to-end assembly of gold nanorods using a disulfide-modified polypeptide

    International Nuclear Information System (INIS)

    Walker, David A; Gupta, Vinay K

    2008-01-01

    Directing the self-assembly of colloidal particles into nanostructures is of great interest in nanotechnology. Here, reversible end-to-end assembly of gold nanorods (GNR) is induced by pH-dependent changes in the secondary conformation of a disulfide-modified poly(L-glutamic acid) (SSPLGA). The disulfide anchoring group drives chemisorption of the polyacid onto the end of the gold nanorods in an ethanolic solution. A layer of poly(vinyl pyrrolidone) is adsorbed on the positively charged, surfactant-stabilized GNR to screen the surfactant bilayer charge and provide stability for dispersion of the GNR in ethanol. For comparison, irreversible end-to-end assembly using a bidentate ligand, namely 1,6-hexanedithiol, is also performed. Characterization of the modified GNR and its end-to-end linking behavior using SSPLGA and hexanedithiol is performed using dynamic light scattering (DLS), UV-vis absorption spectroscopy and transmission electron microscopy (TEM). Experimental results show that, in a colloidal solution of GNR-SSPLGA at a pH∼3.5, where the PLGA is in an α-helical conformation, the modified GNR self-assemble into one-dimensional nanostructures. The linking behavior can be reversed by increasing the pH (>8.5) to drive the conformation of the polypeptide to a random coil and this reversal with pH occurs rapidly within minutes. Cycling the pH multiple times between low and high pH values can be used to drive the formation of the nanostructures of the GNR and disperse them in solution.

  8. The multidrug resistance IncA/C transferable plasmid encodes a novel domain-swapped dimeric protein-disulfide isomerase.

    Science.gov (United States)

    Premkumar, Lakshmanane; Kurth, Fabian; Neyer, Simon; Schembri, Mark A; Martin, Jennifer L

    2014-01-31

    The multidrug resistance-encoding IncA/C conjugative plasmids disseminate antibiotic resistance genes among clinically relevant enteric bacteria. A plasmid-encoded disulfide isomerase is associated with conjugation. Sequence analysis of several IncA/C plasmids and IncA/C-related integrative and conjugative elements (ICE) from commensal and pathogenic bacteria identified a conserved DsbC/DsbG homolog (DsbP). The crystal structure of DsbP reveals an N-terminal domain, a linker region, and a C-terminal catalytic domain. A DsbP homodimer is formed through domain swapping of two DsbP N-terminal domains. The catalytic domain incorporates a thioredoxin-fold with characteristic CXXC and cis-Pro motifs. Overall, the structure and redox properties of DsbP diverge from the Escherichia coli DsbC and DsbG disulfide isomerases. Specifically, the V-shaped dimer of DsbP is inverted compared with EcDsbC and EcDsbG. In addition, the redox potential of DsbP (-161 mV) is more reducing than EcDsbC (-130 mV) and EcDsbG (-126 mV). Other catalytic properties of DsbP more closely resemble those of EcDsbG than EcDsbC. These catalytic differences are in part a consequence of the unusual active site motif of DsbP (CAVC); substitution to the EcDsbC-like (CGYC) motif converts the catalytic properties to those of EcDsbC. Structural comparison of the 12 independent subunit structures of DsbP that we determined revealed that conformational changes in the linker region contribute to mobility of the catalytic domain, providing mechanistic insight into DsbP function. In summary, our data reveal that the conserved plasmid-encoded DsbP protein is a bona fide disulfide isomerase and suggest that a dedicated oxidative folding enzyme is important for conjugative plasmid transfer.

  9. Significant improvement of thermal stability of glucose 1-dehydrogenase by introducing disulfide bonds at the tetramer interface.

    Science.gov (United States)

    Ding, Haitao; Gao, Fen; Liu, Danfeng; Li, Zeli; Xu, Xiaohong; Wu, Min; Zhao, Yuhua

    2013-12-10

    Rational design was applied to glucose 1-dehydrogenase (LsGDH) from Lysinibacillus sphaericus G10 to improve its thermal stability by introduction of disulfide bridges between subunits. One out of the eleven mutants, designated as DS255, displayed significantly enhanced thermal stability with considerable soluble expression and high specific activity. It was extremely stable at pH ranging from 4.5 to 10.5, as it retained nearly 100% activity after incubating at different buffers for 1h. Mutant DS255 also exhibited high thermostability, having a half-life of 9900min at 50°C, which was 1868-fold as that of its wild type. Moreover, both of the increased free energy of denaturation and decreased entropy of denaturation of DS255 suggested that the enzyme structure was stabilized by the engineered disulfide bonds. On account of its robust stability, mutant DS255 would be a competitive candidate in practical applications of chiral chemicals synthesis, biofuel cells and glucose biosensors. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Protein Disulfide Isomerase and Host-Pathogen Interaction

    Directory of Open Access Journals (Sweden)

    Beatriz S. Stolf

    2011-01-01

    Full Text Available Reactive oxygen species (ROS production by immunological cells is known to cause damage to pathogens. Increasing evidence accumulated in the last decade has shown, however, that ROS (and redox signals functionally regulate different cellular pathways in the host-pathogen interaction. These especially affect (i pathogen entry through protein redox switches and redox modification (i.e., intra- and interdisulfide and cysteine oxidation and (ii phagocytic ROS production via Nox family NADPH oxidase enzyme and the control of phagolysosome function with key implications for antigen processing. The protein disulfide isomerase (PDI family of redox chaperones is closely involved in both processes and is also implicated in protein unfolding and trafficking across the endoplasmic reticulum (ER and towards the cytosol, a thiol-based redox locus for antigen processing. Here, we summarise examples of the cellular association of host PDI with different pathogens and explore the possible roles of pathogen PDIs in infection. A better understanding of these complex regulatory steps will provide insightful information on the redox role and coevolutional biological process, and assist the development of more specific therapeutic strategies in pathogen-mediated infections.

  11. Identification of CTLA2A, DEFB29, WFDC15B, SERPINA1F and MUP19 as Novel Tissue-Specific Secretory Factors in Mouse.

    Directory of Open Access Journals (Sweden)

    Jibin Zhang

    Full Text Available Secretory factors in animals play an important role in communication between different cells, tissues and organs. Especially, the secretory factors with specific expression in one tissue may reflect important functions and unique status of that tissue in an organism. In this study, we identified potential tissue-specific secretory factors in the fat, muscle, heart, lung, kidney and liver in the mouse by analyzing microarray data from NCBI's Gene Expression Omnibus (GEO public repository and searching and predicting their subcellular location in GeneCards and WoLF PSORT, and then confirmed tissue-specific expression of the genes using semi-quantitative PCR reactions. With this approach, we confirmed 11 lung, 7 liver, 2 heart, 1 heart and muscle, 7 kidney and 2 adipose and liver-specific secretory factors. Among these genes, 1 lung-specific gene--CTLA2A (cytotoxic T lymphocyte-associated protein 2 alpha, 3 kidney-specific genes--SERPINA1F (serpin peptidase inhibitor, Clade A, member 1F, WFDC15B (WAP four-disulfide core domain 15B and DEFB29 (defensin beta 29 and 1 liver-specific gene--MUP19 (major urinary protein 19 have not been reported as secretory factors. These genes were tagged with hemagglutinin at the 3'end and then transiently transfected to HEK293 cells. Through protein detection in cell lysate and media using Western blotting, we verified secretion of the 5 genes and predicted the potential pathways in which they may participate in the specific tissue through data analysis of GEO profiles. In addition, alternative splicing was detected in transcripts of CTLA2A and SERPINA1F and the corresponding proteins were found not to be secreted in cell culture media. Identification of novel secretory factors through the current study provides a new platform to explore novel secretory factors and a general direction for further study of these genes in the future.

  12. Ultrasound-guided core needle biopsy for breast cancer

    International Nuclear Information System (INIS)

    Naqvi, S.Q.H.; Solangi, R.A.; Memon, M.; Solangi, R.A.

    2008-01-01

    To evaluate the efficacy of ultrasound-guided core needle biopsy (US-CNB) as a preoperative diagnostic modality for breast cancer. Females with solid and/or intermediate breast lesions visualized on ultrasonography. Apart from clinical work-up, all the above mentioned patients underwent ultrasound-guided core needle biopsy and excisional biopsy of their breast lesions. The histopathological diagnosis on ultrasound-guided core needle biopsy was then compared with the findings of the excisional biopsy. Out of the total 93 cases, 47(50.5%) had benign lesions on ultrasound; US-CNB showed 24 as fibroadenomata, four with chronic non-specific mastitis, five chronic suppurative mastitis, one tuberculosis, four fat necrosis, two lactational adenoma and seven cases with benign ductal hyperplasia without atypia. Nine (9.7%) cases showed suspicious abnormality on ultrasound; US-CNB revealed five cases with atypical ductal hyperplasia, one ductal carcinoma in situ and three invasive ductal carcinoma. Thirty seven (39.8%) cases were highly suggestive of malignancy on ultrasound; US-CNB showed 34 as invasive ductal carcinoma, two invasive lobular and one medullary carcinoma. Excisional biopsy confirmed the diagnosis of ultrasound-guided core needle biopsy in all cases except four; one case of chronic suppurative mastitis was diagnosed as that of tuberculosis and three cases of atypial ductal hyperplasia as invasive ductal carcinoma. Hence there was no false positive case, but four (4.3%) false negative cases. The sensitivity of the US-CNB was thus 100% and specificity 91.1%. Ultrasound guided core needle biopsy is a satisfactory procedure for the histopathological diagnosis of breast lesions. Any unsatisfactory, suspicious or atypical change on US-CNB should be followed by an open biopsy. (author)

  13. Engineered disulfide bonds restore chaperone-like function of DJ-1 mutants linked to familial Parkinson's disease.

    Science.gov (United States)

    Logan, Todd; Clark, Lindsay; Ray, Soumya S

    2010-07-13

    Loss-of-function mutations such as L166P, A104T, and M26I in the DJ-1 gene (PARK7) have been linked to autosomal-recessive early onset Parkinson's disease (PD). Cellular and structural studies of the familial mutants suggest that these mutations may destabilize the dimeric structure. To look for common dynamical signatures among the DJ-1 mutants, short MD simulations of up to 1000 ps were conducted to identify the weakest region of the protein (residues 38-70). In an attempt to stabilize the protein, we mutated residue Val 51 to cysteine (V51C) to make a symmetry-related disulfide bridge with the preexisting Cys 53 on the opposite subunit. We found that the introduction of this disulfide linkage stabilized the mutants A104T and M26I against thermal denaturation, improved their ability to scavenge reactive oxygen species (ROS), and restored a chaperone-like function of blocking alpha-synuclein aggregation. The L166P mutant was far too unstable to be rescued by introduction of the V51C mutation. The results presented here point to the possible development of pharmacological chaperones, which may eventually lead to PD therapeutics.

  14. A novel disulfide-rich protein motif from avian eggshell membranes.

    Directory of Open Access Journals (Sweden)

    Vamsi K Kodali

    2011-03-01

    Full Text Available Under the shell of a chicken egg are two opposed proteinaceous disulfide-rich membranes. They are fabricated in the avian oviduct using fibers formed from proteins that are extensively coupled by irreversible lysine-derived crosslinks. The intractability of these eggshell membranes (ESM has slowed their characterization and their protein composition remains uncertain. In this work, reductive alkylation of ESM followed by proteolytic digestion led to the identification of a cysteine rich ESM protein (abbreviated CREMP that was similar to spore coat protein SP75 from cellular slime molds. Analysis of the cysteine repeats in partial sequences of CREMP reveals runs of remarkably repetitive patterns. Module a contains a C-X(4-C-X(5-C-X(8-C-X(6 pattern (where X represents intervening non-cysteine residues. These inter-cysteine amino acid residues are also strikingly conserved. The evolutionarily-related module b has the same cysteine spacing as a, but has 11 amino acid residues at its C-terminus. Different stretches of CREMP sequences in chicken genomic DNA fragments show diverse repeat patterns: e.g. all a modules; an alternation of a-b modules; or an a-b-b arrangement. Comparable CREMP proteins are found in contigs of the zebra finch (Taeniopygia guttata and in the oviparous green anole lizard (Anolis carolinensis. In all these cases the long runs of highly conserved modular repeats have evidently led to difficulties in the assembly of full length DNA sequences. Hence the number, and the amino acid lengths, of CREMP proteins are currently unknown. A 118 amino acid fragment (representing an a-b-a-b pattern from a chicken oviduct EST library expressed in Escherichia coli is a well folded, highly anisotropic, protein with a large chemical shift dispersion in 2D solution NMR spectra. Structure is completely lost on reduction of the 8 disulfide bonds of this protein fragment. Finally, solid state NMR spectra suggest a surprising degree of order in intact

  15. Mixing core material into the envelopes of red grants

    International Nuclear Information System (INIS)

    Deupree, R.G.

    1986-01-01

    A discussion is presented of calculations of four core helium flashes in red giant stars. The starting point for these calculations is a point source explosion on the polar axis of a two-dimensional finite difference grid. The amount of residue of the core helium flash mixed into and above the hydrogen shell is calculated at four temperatures for the elements carbon, oxygen, neon, magnesium, silicon, and sulfur. 7 refs., 1 tab

  16. An antiviral disulfide compound blocks interaction between arenavirus Z protein and cellular promyelocytic leukemia protein

    International Nuclear Information System (INIS)

    Garcia, C.C.; Topisirovic, I.; Djavani, M.; Borden, K.L.B.; Damonte, E.B.; Salvato, M.S.

    2010-01-01

    The promyelocytic leukemia protein (PML) forms nuclear bodies (NB) that can be redistributed by virus infection. In particular, lymphocytic choriomeningitis virus (LCMV) influences disruption of PML NB through the interaction of PML with the arenaviral Z protein. In a previous report, we have shown that the disulfide compound NSC20625 has antiviral and virucidal properties against arenaviruses, inducing unfolding and oligomerization of Z without affecting cellular RING-containing proteins such as the PML. Here, we further studied the effect of the zinc-finger-reactive disulfide NSC20625 on PML-Z interaction. In HepG2 cells infected with LCMV or transiently transfected with Z protein constructs, treatment with NSC20625 restored PML distribution from a diffuse-cytoplasmic pattern to punctate, discrete NB which appeared identical to NB found in control, uninfected cells. Similar results were obtained in cells transfected with a construct expressing a Z mutant in zinc-binding site 2 of the RING domain, confirming that this Z-PML interaction requires the integrity of only one zinc-binding site. Altogether, these results show that the compound NSC20625 suppressed Z-mediated PML NB disruption and may be used as a tool for designing novel antiviral strategies against arenavirus infection.

  17. An Engineered Disulfide Bond Reversibly Traps the IgE-Fc3-4 in a Closed, Nonreceptor Binding Conformation

    Energy Technology Data Exchange (ETDEWEB)

    Wurzburg, Beth A.; Kim, Beomkyu; Tarchevskaya, Svetlana S.; Eggel, Alexander; Vogel, Monique; Jardetzky, Theodore S. [Bern; (Stanford-MED)

    2013-08-02

    IgE antibodies interact with the high affinity IgE Fc receptor, FcϵRI, and activate inflammatory pathways associated with the allergic response. The IgE-Fc region, comprising the C-terminal domains of the IgE heavy chain, binds FcϵRI and can adopt different conformations ranging from a closed form incompatible with receptor binding to an open, receptor-bound state. A number of intermediate states are also observed in different IgE-Fc crystal forms. To further explore this apparent IgE-Fc conformational flexibility and to potentially trap a closed, inactive state, we generated a series of disulfide bond mutants. Here we describe the structure and biochemical properties of an IgE-Fc mutant that is trapped in the closed, non-receptor binding state via an engineered disulfide at residue 335 (Cys-335). Reduction of the disulfide at Cys-335 restores the ability of IgE-Fc to bind to its high affinity receptor, FcϵRIα. The structure of the Cys-335 mutant shows that its conformation is within the range of previously observed, closed form IgE-Fc structures and that it retains the hydrophobic pocket found in the hinge region of the closed conformation. Locking the IgE-Fc into the closed state with the Cys-335 mutation does not affect binding of two other IgE-Fc ligands, omalizumab and DARPin E2_79, demonstrating selective blocking of the high affinity receptor binding.

  18. Four EIS Perspectives: A literature review

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Svejvig, Per

    A literature review of the Enterprise Information Systems literature reveals a number of recurring issues. We identify and detail four different perspectives that together categorizes the topics found. The first being a technical-rational perspective. The second being a social perspective....... The third being a more political and emergent perspective. Fourth, we identify a design-oriented perspective. We categorize the literature on EIS using these four perspectives, and for each perspective we identify core issues. Finally we discuss how the four perspectives complement each other....

  19. Dynamics of metallic contaminants at a basin scale--Spatial and temporal reconstruction from four sediment cores (Loire fluvial system, France).

    Science.gov (United States)

    Dhivert, E; Grosbois, C; Courtin-Nomade, A; Bourrain, X; Desmet, M

    2016-01-15

    From the 19th century, the Loire basin (France) presents potentially pollutant activities such as mining and heavy industries. This paper shows spatio-temporal distribution of trace elements in sediments at a basin-scale, based on a comparison of archived temporal signals recorded in four sedimentary cores. Anthropogenic sources contributing to sediment contamination are also characterized, using geochemical signatures recorded in river bank sediments of the most industrialized tributaries. This study highlights upstream-downstream differences concerning recorded contamination phases in terms of spatial influence and temporality of archiving processes. Such differences were related to (i) various spatial influences of contamination sources and (ii) polluted sediments dispersion controlled by transport capacity of metal-carrier phases and hydrosedimentary dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2016-03-01

    Full Text Available Yumin Zhang,1,* Junhui Zhou,2,* Cuihong Yang,1 Weiwei Wang,3 Liping Chu,1 Fan Huang,1 Qiang Liu,1 Liandong Deng,2 Deling Kong,3 Jianfeng Liu,1 Jinjian Liu1 1Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, 2Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, 3Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, People’s Republic of China *These authors contributed equally in this work Abstract: Although the shortcomings of small molecular antitumor drugs were efficiently improved by being entrapped into nanosized vehicles, premature drug release and insufficient tumor targeting demand innovative approaches that boost the stability and tumor responsiveness of drug-loaded nanocarriers. Here, we show the use of the core cross-linking method to generate a micelle with enhanced drug encapsulation ability and sensitivity of drug release in tumor. This kind of micelle could increase curcumin (Cur delivery to HeLa cells in vitro and improve tumor accumulation in vivo. We designed and synthesized the core cross-linked micelle (CCM with polyethylene glycol and folic acid-polyethylene glycol as the hydrophilic units, pyridyldisulfide as the cross-linkable and hydrophobic unit, and disulfide bond as the cross-linker. CCM showed spherical shape with a diameter of 91.2 nm by the characterization of dynamic light scattering and transmission electron microscope. Attributed to the core cross-linking, drug-loaded CCM displayed higher Nile Red or Cur-encapsulated stability and better sensitivity to glutathione than noncross-linked micelle (NCM. Cellular uptake and in vitro antitumor studies proved the enhanced endocytosis and better cytotoxicity of CCM-Cur against

  1. The calculation of the MEU-HEU coupled core in the KUCA

    International Nuclear Information System (INIS)

    Hayashi, M.; Shiroya, S.; Kanda, K.; Shibata, T.

    1984-01-01

    The KUCA has a plan for critical experiments of the MEU-HEU coupled core in 1984. The neutronics calculation has been performed for the MEU-HEU coupled core in the KUCA. The GGC-4 and THERMOS were used to generate the four-group constants and the 2D-FEM-KUR, based on the finite-element method, was used for the diffusion calculation. The calculations with four-group constants agreed with experiments within 1.8% for the both single-cores with the MEU and the HEU. (author)

  2. Impaired CK1 delta activity attenuates SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo.

    Directory of Open Access Journals (Sweden)

    Heidrun Hirner

    Full Text Available Simian virus 40 (SV40 is a powerful tool to study cellular transformation in vitro, as well as tumor development and progression in vivo. Various cellular kinases, among them members of the CK1 family, play an important role in modulating the transforming activity of SV40, including the transforming activity of T-Ag, the major transforming protein of SV40, itself. Here we characterized the effects of mutant CK1δ variants with impaired kinase activity on SV40-induced cell transformation in vitro, and on SV40-induced mammary carcinogenesis in vivo in a transgenic/bi-transgenic mouse model. CK1δ mutants exhibited a reduced kinase activity compared to wtCK1δ in in vitro kinase assays. Molecular modeling studies suggested that mutation N172D, located within the substrate binding region, is mainly responsible for impaired mutCK1δ activity. When stably over-expressed in maximal transformed SV-52 cells, CK1δ mutants induced reversion to a minimal transformed phenotype by dominant-negative interference with endogenous wtCK1δ. To characterize the effects of CK1δ on SV40-induced mammary carcinogenesis, we generated transgenic mice expressing mutant CK1δ under the control of the whey acidic protein (WAP gene promoter, and crossed them with SV40 transgenic WAP-T-antigen (WAP-T mice. Both WAP-T mice as well as WAP-mutCK1δ/WAP-T bi-transgenic mice developed breast cancer. However, tumor incidence was lower and life span was significantly longer in WAP-mutCK1δ/WAP-T bi-transgenic animals. The reduced CK1δ activity did not affect early lesion formation during tumorigenesis, suggesting that impaired CK1δ activity reduces the probability for outgrowth of in situ carcinomas to invasive carcinomas. The different tumorigenic potential of SV40 in WAP-T and WAP-mutCK1δ/WAP-T tumors was also reflected by a significantly different expression of various genes known to be involved in tumor progression, specifically of those involved in wnt-signaling and DNA

  3. Superconducting tin core fiber

    International Nuclear Information System (INIS)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary

    2015-01-01

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  4. 9-Fluorenylmethyl (Fm) Disulfides: Biomimetic Precursors for Persulfides

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chung-Min; Johnson, Brett A.; Duan, Jicheng; Park, Jeong-Jin; Day, Jacob J.; Gang, David; Qian, Wei-Jun; Xian, Ming

    2016-03-04

    Protein S-sulfhydration has been recognized as an important post-translational modification that regulates H2S signals. However, the reactivity and biological implications of the products of S-sulfhydration, i.e. persulfides, are still unclear. This is mainly due to the instability of persulfides and difficulty to access these molecules. Under physiological conditions persulfides mainly exist in anionic forms because of their low pKa values. However, current methods do not allow for the direct generation of persulfide anions under biomimetic and non-H2S conditions. Herein we report the development of a functional disulfide, FmSSPy-A (Fm =9-fluorenylmethyl; Py = pyridinyl). This reagent can effectively convert both small molecule and protein thiols (-SH) to form –S-SFm adducts under mild conditions. It allows for a H2S-free and biomimetic protocol to generate highly reactive persulfides (in their anionic forms). We also demonstrated the high nucleophilicity of persulfides toward a number of thiol-blocking reagents. This method holds promise for further understanding the chemical biology of persulfides and S-sulfhydration.

  5. Core-Plus Mathematics. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2010

    2010-01-01

    "Core-Plus Mathematics" is a four-year curriculum that replaces the traditional sequence with courses that each feature interwoven strands of algebra and functions, statistics and probability, geometry and trigonometry, and discrete mathematics. The first three courses in the series provide a common core of broadly useful mathematics,…

  6. Data for four geologic test holes in the Sacramento Valley, California

    Science.gov (United States)

    Berkstresser, C.F.; French, J.J.; Schaal, M.E.

    1985-01-01

    The report provides geological and geophysical data for four of seven test holes drilled as a part of the Central Valley Aquifer Project, which is part of the Regional Aquifer Systems Analysis. The holes were drilled with a rotary well drilling machine to depths of 900 feet in the southwestern part of the Sacramento Valley in Solano and Yolo Counties. Geologic data for each well include lithology, texture, color, character of the contact, sorting, rounding, and cementation, determined from cuttings, cores, and sidewall covers. Fifty cores, 3 feet long, were obtained from each hole, and from eight to fourteen sidewall cores were collected. Geophysical data include a dual-induction log, spherically focused log (SFL), compensated neutron-formation density log, gamma-ray log, and a caliper log. These data are presented in four tables and on four plates. (USGS)

  7. Limnological regime shifts caused by climate warming and Lesser Snow Goose population expansion in the western Hudson Bay Lowlands (Manitoba, Canada).

    Science.gov (United States)

    MacDonald, Lauren A; Farquharson, Nicole; Merritt, Gillian; Fooks, Sam; Medeiros, Andrew S; Hall, Roland I; Wolfe, Brent B; Macrae, Merrin L; Sweetman, Jon N

    2015-02-01

    Shallow lakes are dominant features in subarctic and Arctic landscapes and are responsive to multiple stressors, which can lead to rapid changes in limnological regimes with consequences for aquatic resources. We address this theme in the coastal tundra region of Wapusk National Park, western Hudson Bay Lowlands (Canada), where climate has warmed during the past century and the Lesser Snow Goose (LSG; Chen caerulescens caerulescens) population has grown rapidly during the past ∽40 years. Integration of limnological and paleolimnological analyses documents profound responses of productivity, nutrient cycling, and aquatic habitat to warming at three ponds ("WAP 12", "WAP 20", and "WAP 21″), and to LSG disturbance at the two ponds located in an active nesting area (WAP 20, WAP 21). Based on multiparameter analysis of (210)Pb-dated sediment records from all three ponds, a regime shift occurred between 1875 and 1900 CE marked by a transition from low productivity, turbid, and nutrient-poor conditions of the Little Ice Age to conditions of higher productivity, lower nitrogen availability, and the development of benthic biofilm habitat as a result of climate warming. Beginning in the mid-1970s, sediment records from WAP 20 and WAP 21 reveal a second regime shift characterized by accelerated productivity and increased nitrogen availability. Coupled with 3 years of limnological data, results suggest that increased productivity at WAP 20 and WAP 21 led to atmospheric CO2 invasion to meet algal photosynthetic demand. This limnological regime shift is attributed to an increase in the supply of catchment-derived nutrients from the arrival of LSG and their subsequent disturbance to the landscape. Collectively, findings discriminate the consequences of warming and LSG disturbance on tundra ponds from which we identify a suite of sensitive limnological and paleolimnological measures that can be utilized to inform aquatic ecosystem monitoring.

  8. Investigation of protein FTT1103 electroactivity using carbon and mercury electrodes. Surface-inhibition approach for disulfide oxidoreductases using silver amalgam powder

    Czech Academy of Sciences Publication Activity Database

    Večerková, R.; Hernychová, L.; Dobeš, P.; Vrba, J.; Josypčuk, Bohdan; Bartošík, M.; Vacek, J.

    2014-01-01

    Roč. 830, JUN 2014 (2014), s. 23-32 ISSN 0003-2670 Institutional support: RVO:61388955 Keywords : Disulfide bond forming protein * Electrochemical sensing * Membrane proteins Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.513, year: 2014

  9. Plasmon modes of bilayer molybdenum disulfide: a density functional study

    Science.gov (United States)

    Torbatian, Z.; Asgari, R.

    2017-11-01

    We explore the collective electronic excitations of bilayer molybdenum disulfide (MoS2) using density functional theory together with random phase approximation. The many-body dielectric function and electron energy-loss spectra are calculated using an ab initio based model involving material-realistic physical properties. The electron energy-loss function of the bilayer MoS2 system is found to be sensitive to either electron or hole doping and this is due to the fact that the Kohn-Sham band dispersions are not symmetric for energies above and below the zero Fermi level. Three plasmon modes are predicted, a damped high-energy mode, one optical mode (in-phase mode) for which the plasmon dispersion exhibits \\sqrt q in the long wavelength limit originating from low-energy electron scattering and finally a highly damped acoustic mode (out-of-phase mode).

  10. Purification of correctly oxidized MHC class I heavy-chain molecules under denaturing conditions: a novel strategy exploiting disulfide assisted protein folding

    DEFF Research Database (Denmark)

    Ferré, Henrik; Ruffet, Emmanuel; Blicher, Thomas

    2003-01-01

    The aim of this study has been to develop a strategy for purifying correctly oxidized denatured major histocompability complex class I (MHC-I) heavy-chain molecules, which on dilution, fold efficiently and become functional. Expression of heavy-chain molecules in bacteria results in the formation...... of insoluble cellular inclusion bodies, which must be solubilized under denaturing conditions. Their subsequent purification and refolding is complicated by the fact that (1). correct folding can only take place in combined presence of beta(2)-microglobulin and a binding peptide; and (2). optimal in vitro...... conditions for disulfide bond formation ( approximately pH 8) and peptide binding ( approximately pH 6.6) are far from complementary. Here we present a two-step strategy, which relies on uncoupling the events of disulfide bond formation and peptide binding. In the first phase, heavy-chain molecules...

  11. Purification of correctly oxidized MHC class I heavy-chain molecules under denaturing conditions: A novel strategy exploiting disulfide assisted protein folding

    DEFF Research Database (Denmark)

    Ferré, Henrik; Ruffet, E.; Blicher, T.

    2003-01-01

    The aim of this study has been to develop a strategy for purifying correctly oxidized denatured major histocompability complex class I (MHC-I) heavy-chain molecules, which on dilution, fold efficiently and become functional. Expression of heavy-chain molecules in bacteria results in the formation...... of insoluble cellular inclusion bodies, which must be solubilized under denaturing conditions. Their subsequent purification and refolding is complicated by the fact that (1) correct folding can only take place in combined presence of beta(2)-microglobulin and a binding peptide; and (2) optimal in vitro...... conditions for disulfide bond formation (similar topH 8) and peptide binding (similar topH 6.6) are far from complementary. Here we present a two-step strategy, which relies on uncoupling the events of disulfide bond formation and peptide binding. In the first phase, heavy-chain molecules with correct...

  12. Comparative genomics of four closely related Clostridium perfringens bacteriophages reveals variable evolution among core genes with therapeutic potential

    Directory of Open Access Journals (Sweden)

    Siragusa Gregory R

    2011-06-01

    Full Text Available Abstract Background Because biotechnological uses of bacteriophage gene products as alternatives to conventional antibiotics will require a thorough understanding of their genomic context, we sequenced and analyzed the genomes of four closely related phages isolated from Clostridium perfringens, an important agricultural and human pathogen. Results Phage whole-genome tetra-nucleotide signatures and proteomic tree topologies correlated closely with host phylogeny. Comparisons of our phage genomes to 26 others revealed three shared COGs; of particular interest within this core genome was an endolysin (PF01520, an N-acetylmuramoyl-L-alanine amidase and a holin (PF04531. Comparative analyses of the evolutionary history and genomic context of these common phage proteins revealed two important results: 1 strongly significant host-specific sequence variation within the endolysin, and 2 a protein domain architecture apparently unique to our phage genomes in which the endolysin is located upstream of its associated holin. Endolysin sequences from our phages were one of two very distinct genotypes distinguished by variability within the putative enzymatically-active domain. The shared or core genome was comprised of genes with multiple sequence types belonging to five pfam families, and genes belonging to 12 pfam families, including the holin genes, which were nearly identical. Conclusions Significant genomic diversity exists even among closely-related bacteriophages. Holins and endolysins represent conserved functions across divergent phage genomes and, as we demonstrate here, endolysins can have significant variability and host-specificity even among closely-related genomes. Endolysins in our phage genomes may be subject to different selective pressures than the rest of the genome. These findings may have important implications for potential biotechnological applications of phage gene products.

  13. Preliminary crystallographic data of the three homologues of the thiol–disulfide oxidoreductase DsbA in Neisseria meningitidis

    Energy Technology Data Exchange (ETDEWEB)

    Lafaye, Céline [Laboratoire des Protéines Membranaires, Institut de Biologie Structurale, CEA/CNRS/Université Joseph Fourier, 41 Rue Jules Horowitz, 38027 Grenoble CEDEX 01 (France); Iwena, Thomas; Ferrer, Jean-Luc [Laboratoire de Cristallogénèse et Cristallisation des Protéines, Institut de Biologie Structurale, CEA/CNRS/Université Joseph Fourier, 41 Rue Jules Horowitz, 38027 Grenoble CEDEX 01 (France); Kroll, J. Simon [Department of Paediatrics, Imperial College London, St Mary’s Hospital Campus, Norfolk Place, London W2 1PG (United Kingdom); Griat, Mickael; Serre, Laurence, E-mail: laurence.serre@ibs.fr [Laboratoire des Protéines Membranaires, Institut de Biologie Structurale, CEA/CNRS/Université Joseph Fourier, 41 Rue Jules Horowitz, 38027 Grenoble CEDEX 01 (France)

    2008-02-01

    The Neisseria meningitidis genome possesses three genes encoding active DsbAs. To throw light on the reason for this genetic multiplicity, the three enzymes have been purified and crystallized. Bacterial virulence depends on the correct folding of surface-exposed proteins, a process that is catalyzed by the thiol-disulfide oxidoreductase DsbA, which facilitates the synthesis of disulfide bonds in Gram-negative bacteria. Uniquely among bacteria, the Neisseria meningitidis genome possesses three genes encoding active DsbAs: DsbA1, DsbA2 and DsbA3. DsbA1 and DsbA2 have been characterized as lipoproteins involved in natural competence and in host-interactive biology, while the function of DsbA3 remains unknown. In an attempt to shed light on the reason for this multiplicity of dsbA genes, the three enzymes from N. meningitidis have been purified and crystallized in the presence of high concentrations of ammonium sulfate. The best crystals were obtained using DsbA1 and DsbA3; they belong to the orthorhombic and tetragonal systems and diffract to 1.5 and 2.7 Å resolution, respectively.

  14. Waste acceptance product specifications for vitrified high-level waste forms

    International Nuclear Information System (INIS)

    Applewhite-Ramsey, A.; Sproull, J.F.

    1994-01-01

    The Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) has developed Waste Acceptance Product Specifications (EM-WAPS). The EM-WAPS will be the basis for defining product acceptance criteria compatible with the requirements of the Civilian Radioactive Waste Management System (CRWMS). The relationship between the EM-WAPS and the CRWMS Systems Requirements document (WA-SRD) will be discussed. The impact of the EM-WAPS on the Savannah River Sit (SRS) Defense Waste Processing Facility's (DWPF) Waste Acceptance Program, Waste Qualification Run planning, and startup schedule will also be reported. 14 refs., 2 tabs

  15. Lunar Fluid Core and Solid-Body Tides

    Science.gov (United States)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2005-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2-5] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening has been improving [3,5] and now seems significant. This strengthens the case for a fluid lunar core.

  16. Antiradiation compounds XV: condensations of carbon disulfide with amino, chloro, cyanomethyl, and sulfonamido heterocycles

    International Nuclear Information System (INIS)

    Foye, W.O.; Kauffman, J.M.; Lanzillo, J.J.; LaSala, E.F.

    1975-01-01

    Condensations of carbon disulfide were carried out with amino, chloro, and diamino heterocycles to give condensed ring thiazoline-2-thiones and imidazoline-2-thiones, with cyanomethyl heterocycles to give dithio acid derivatives, and with heterocyclic sulfonamides to give sulfonyldithiocarbamates. Of several examples tested, pyrido[3,2-d]thiazoline-2-thione, disodium 2-(5-chloro-2-thienyl)-3,3-dimercaptoacrylonitrile, triethylammonium 4-sulfamoylphenyldithiocarbamate, ammonium β-phenethyldithiocarbamate, and methyl N-(thiophene-2-sulfonyl)dithiocarbamate, only the last-named compound showed any radiation protection for mice. Several compounds gave negative tests for antimalarial activity

  17. Synthesis of Axial Power Distribution Using 5-Level Ex-core Detector in a Core Protection System

    International Nuclear Information System (INIS)

    Koo, Bon-Seung; Lee, Chung-Chan; Zee, Sung-Quun

    2007-01-01

    In ABB-CE digital plants, Core Protection Calculator System (CPCS) is used for a core protection based on several online measured system parameters including 3- level safety grade ex-core detector signals. The CPCS provides four independent channels for the departure from a nucleate boiling ratio (DNBR) and local power density (LPD) trip signals to the reactor protection system. Each channel consists of a core protection calculator (CPC) and a control element assembly calculator (CEAC). The cubic spline synthesis technique has been used in online calculations of the core axial power distributions using 3-level ex-core detector signals in CPC. The pre-determined cubic spline function sets are used depending on the characteristics of the ex-core detector responses. But this method shows large power distribution errors for the extremely skewed axial shapes due to restrictive function sets and an incorrect SAM value. Especially thus situation is worse at a higher burnup. To solve these problems, the cubic spline function sets are improved and it is demonstrated that the axial power shapes can be synthesized more accurately with the new function sets than those of a conventional CPC. In this paper, synthesis of an axial power distribution using a 5-level ex-core detector is described and the axial power distributions are compared between 3-level and 5-level ex-core detector systems

  18. Neutronics of a mixed-flow gas-core reactor

    International Nuclear Information System (INIS)

    Soran, P.D.; Hansen, G.E.

    1977-11-01

    The study was made to investigate the neutronic feasibility of a mixed-flow gas-core reactor. Three reactor concepts were studied: four- and seven-cell radial reactors and a seven-cell scallop reactor. The reactors were fueled with UF 6 (either U-233 or U-235) and various parameters were varied. A four-cell reactor is not practical nor is the U-235 fueled seven-cell radial reactor; however, the 7-cell U-233 radial and scallop reactors can satisfy all design criteria. The mixed flow gas core reactor is a very attractive reactor concept and warrants further investigation

  19. Insights into the coal extractive solvent N-methyl-2-pyrrolidone + carbon disulfide

    Energy Technology Data Exchange (ETDEWEB)

    Santiago Aparicio; Mara J. Davila; Rafael Alcalde [University of Burgos, Burgos (Spain). Department of Chemistry

    2009-03-15

    A wide set of experimental and computational tools were used to characterize the N-methyl-2-pyrrolidone (NMP) + carbon disulfide mixed solvent in the full composition range. The interest in this solvent rose from its very efficient use for coal extraction through a mechanism still not fully understood. Thermophysical properties at ambient pressure together with pressure-volume-temperature (PVT) behavior were measured with the objective of providing the required data for the industrial use of the mixed fluid and to get insight into the fluid structure at the molecular level. NMR, FTIR, and solvatochromic studies were performed together with microwave dielectric relaxation spectroscopy (DRS) measurements, thus providing more information on the fluid's structure and allowing one to relate the molecular level behavior with the measured macroscopic properties. Moreover, density functional theory (DFT) and classical molecular dynamics simulations (MD) were used to obtain a detailed picture of the intermolecular interactions within the fluid, at short and long ranges, and of other relevant features leading to the structure of the studied system. The whole study leads to a fluid's picture in which carbon disulfide hinders the development of NMP/NMP intermolecular dipolar interactions, thus increasing the monomer population. We should remark that some properties reported in this work are in remarkable disagreement with previously reported studies, the most important one being the positive excess molar volume in the whole pressure-temperature range studied, which contrasts with the negative values reported in the literature. Previously reported properties are hardly justified with a coherent molecular level picture, whereas the whole collection of properties reported in this work leads to a more reasonable fluid's structure. 56 refs., 17 figs., 2 tabs.

  20. Ero1-PDI interactions, the response to redox flux and the implications for disulfide bond formation in the mammalian endoplasmic reticulum

    NARCIS (Netherlands)

    Benham, A.M.; Lith, M. van; Sitia, R.; Braakman, I.|info:eu-repo/dai/nl/073923737

    2013-01-01

    The protein folding machinery of the endoplasmic reticulum (ER) ensures that proteins entering the eukaryotic secretory pathway acquire appropriate post-translational modifications and reach a stably folded state. An important component of this protein folding process is the supply of disulfide

  1. Studies of the activity of cytosol on the mixed disulfide bond formed by proteins and radioprotector mercaptoethylguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, M [National Inst. of Oncology, Budapest (Hungary); Holland, J [Orszagos Onkologiai Intezet, Budapest (Hungary)

    1979-01-01

    The cytoplasm of normal and tumorous rat liver cells contains a heat-resistant compound with reducing ability to break the mixed disulfide bond of albumin-/sup 14/C-mercaptoethylguanidine. The reducing activity of cytosol is destoryed by 1000 krd /sup 60/Co-gamma-ray doses in diluted solution. In vivo supralethal of rats does not affect the activity of cytosol prepared from liver cells.

  2. What Core Competencies Are Related to Teachers' Innovative Teaching?

    Science.gov (United States)

    Zhu, Chang; Wang, Di; Cai, Yonghong; Engels, Nadine

    2013-01-01

    The purpose of this study is to investigate teachers' core competencies in relation to their innovative teaching performance. Based on the literature and previous studies in this field, four competencies (learning competency, educational competency, social competency and technological competency) are theorised as core competencies for teachers'…

  3. Core principles of evolutionary medicine

    Science.gov (United States)

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Abstract Background and objectives Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. Methodology The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Results Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. Conclusions and implications This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further. PMID:29493660

  4. Spin-Polarized Tunneling through Chemical Vapor Deposited Multilayer Molybdenum Disulfide.

    Science.gov (United States)

    Dankert, André; Pashaei, Parham; Kamalakar, M Venkata; Gaur, Anand P S; Sahoo, Satyaprakash; Rungger, Ivan; Narayan, Awadhesh; Dolui, Kapildeb; Hoque, Md Anamul; Patel, Ram Shanker; de Jong, Michel P; Katiyar, Ram S; Sanvito, Stefano; Dash, Saroj P

    2017-06-27

    The two-dimensional (2D) semiconductor molybdenum disulfide (MoS 2 ) has attracted widespread attention for its extraordinary electrical-, optical-, spin-, and valley-related properties. Here, we report on spin-polarized tunneling through chemical vapor deposited multilayer MoS 2 (∼7 nm) at room temperature in a vertically fabricated spin-valve device. A tunnel magnetoresistance (TMR) of 0.5-2% has been observed, corresponding to spin polarization of 5-10% in the measured temperature range of 300-75 K. First-principles calculations for ideal junctions result in a TMR up to 8% and a spin polarization of 26%. The detailed measurements at different temperature, bias voltages, and density functional theory calculations provide information about spin transport mechanisms in vertical multilayer MoS 2 spin-valve devices. These findings form a platform for exploring spin functionalities in 2D semiconductors and understanding the basic phenomena that control their performance.

  5. Four New Course Competencies for Majors.

    Science.gov (United States)

    Van Leuven, Jim

    1999-01-01

    Notes changes in the past decade in the field of public relations. Proposes four new required core competencies for all undergraduate public-relations majors in programs housed in journalism/mass-communication units. Articulates these regarding appropriate outcomes, pedagogies, and assessment methods. Notes special considerations for small,…

  6. Live-cell imaging of biothiols via thiol/disulfide exchange to trigger the photoinduced electron transfer of gold-nanodot sensor

    International Nuclear Information System (INIS)

    Liu, Ching-Ping; Wu, Te-Haw; Liu, Chia-Yeh; Lin, Shu-Yi

    2014-01-01

    Highlights: • The ultrasmall size, PAMAM dendrimer-entrapped Au 8 -clusters were synthesized. • Thiol/disulfide exchange with biothiols to release 2-PyT resulted in quenching. • The sensing platform can detect both low and high molecular weight thiols. • Capable of imaging biothiols including protein thiols in living cells. - Abstract: Biothiols have been reported to involve in intracellular redox-homeostasis against oxidative stress. In this study, a highly selective and sensitive fluorescent probe for sensing biothiols is explored by using an ultrasmall gold nanodot (AuND), the dendrimer-entrapped Au 8 -cluster. This strategy relies upon a thiol/disulfide exchange to trigger the fluorescence change through a photoinduced electron transfer (PET) process between the Au 8 -cluster (as an electron donor) and 2-pyridinethiol (2-PyT) (as an electron acceptor) for sensing biothiols. When 2-PyT is released via the cleavage of disulfide bonds by biothiols, the PET process from the Au 8 -cluster to 2-PyT is initiated, resulting in fluorescence quenching. The fluorescence intensity was found to decrease linearly with glutathione (GSH) concentration (0–1500 μM) at physiological relevant levels and the limit of detection for GSH was 15.4 μM. Compared to most nanoparticle-based fluorescent probes that are limited to detect low molecular weight thiols (LMWTs; i.e., GSH and cysteine), the ultrasmall Au 8 -cluster-based probe exhibited less steric hindrance and can be directly applied in selectively and sensitively detecting both LMWTs and high molecular weight thiols (HMWTs; i.e., protein thiols). Based on such sensing platform, the surface-functionalized Au 8 -cluster has significant promise for use as an efficient nanoprobe for intracellular fluorescence imaging of biothiols including protein thiols in living cells whereas other nanoparticle-based fluorescent probes cannot

  7. Live-cell imaging of biothiols via thiol/disulfide exchange to trigger the photoinduced electron transfer of gold-nanodot sensor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ching-Ping; Wu, Te-Haw; Liu, Chia-Yeh; Lin, Shu-Yi, E-mail: shuyi@nhri.org.tw

    2014-11-07

    Highlights: • The ultrasmall size, PAMAM dendrimer-entrapped Au{sub 8}-clusters were synthesized. • Thiol/disulfide exchange with biothiols to release 2-PyT resulted in quenching. • The sensing platform can detect both low and high molecular weight thiols. • Capable of imaging biothiols including protein thiols in living cells. - Abstract: Biothiols have been reported to involve in intracellular redox-homeostasis against oxidative stress. In this study, a highly selective and sensitive fluorescent probe for sensing biothiols is explored by using an ultrasmall gold nanodot (AuND), the dendrimer-entrapped Au{sub 8}-cluster. This strategy relies upon a thiol/disulfide exchange to trigger the fluorescence change through a photoinduced electron transfer (PET) process between the Au{sub 8}-cluster (as an electron donor) and 2-pyridinethiol (2-PyT) (as an electron acceptor) for sensing biothiols. When 2-PyT is released via the cleavage of disulfide bonds by biothiols, the PET process from the Au{sub 8}-cluster to 2-PyT is initiated, resulting in fluorescence quenching. The fluorescence intensity was found to decrease linearly with glutathione (GSH) concentration (0–1500 μM) at physiological relevant levels and the limit of detection for GSH was 15.4 μM. Compared to most nanoparticle-based fluorescent probes that are limited to detect low molecular weight thiols (LMWTs; i.e., GSH and cysteine), the ultrasmall Au{sub 8}-cluster-based probe exhibited less steric hindrance and can be directly applied in selectively and sensitively detecting both LMWTs and high molecular weight thiols (HMWTs; i.e., protein thiols). Based on such sensing platform, the surface-functionalized Au{sub 8}-cluster has significant promise for use as an efficient nanoprobe for intracellular fluorescence imaging of biothiols including protein thiols in living cells whereas other nanoparticle-based fluorescent probes cannot.

  8. Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress

    Directory of Open Access Journals (Sweden)

    Tyo Keith EJ

    2012-03-01

    Full Text Available Abstract Background The protein secretory pathway must process a wide assortment of native proteins for eukaryotic cells to function. As well, recombinant protein secretion is used extensively to produce many biologics and industrial enzymes. Therefore, secretory pathway dysfunction can be highly detrimental to the cell and can drastically inhibit product titers in biochemical production. Because the secretory pathway is a highly-integrated, multi-organelle system, dysfunction can happen at many levels and dissecting the root cause can be challenging. In this study, we apply a systems biology approach to analyze secretory pathway dysfunctions resulting from heterologous production of a small protein (insulin precursor or a larger protein (α-amylase. Results HAC1-dependent and independent dysfunctions and cellular responses were apparent across multiple datasets. In particular, processes involving (a degradation of protein/recycling amino acids, (b overall transcription/translation repression, and (c oxidative stress were broadly associated with secretory stress. Conclusions Apparent runaway oxidative stress due to radical production observed here and elsewhere can be explained by a futile cycle of disulfide formation and breaking that consumes reduced glutathione and produces reactive oxygen species. The futile cycle is dominating when protein folding rates are low relative to disulfide bond formation rates. While not strictly conclusive with the present data, this insight does provide a molecular interpretation to an, until now, largely empirical understanding of optimizing heterologous protein secretion. This molecular insight has direct implications on engineering a broad range of recombinant proteins for secretion and provides potential hypotheses for the root causes of several secretory-associated diseases.

  9. DANCE, BALANCE AND CORE MUSCLE PERFORMANCE MEASURES ARE IMPROVED FOLLOWING A 9-WEEK CORE STABILIZATION TRAINING PROGRAM AMONG COMPETITIVE COLLEGIATE Dancers.

    Science.gov (United States)

    Watson, Todd; Graning, Jessica; McPherson, Sue; Carter, Elizabeth; Edwards, Joshuah; Melcher, Isaac; Burgess, Taylor

    2017-02-01

    Dance performance requires not only lower extremity muscle strength and endurance, but also sufficient core stabilization during dynamic dance movements. While previous studies have identified a link between core muscle performance and lower extremity injury risk, what has not been determined is if an extended core stabilization training program will improve specific measures of dance performance. This study examined the impact of a nine-week core stabilization program on indices of dance performance, balance measures, and core muscle performance in competitive collegiate dancers. Within-subject repeated measures design. A convenience sample of 24 female collegiate dance team members (age = 19.7 ± 1.1 years, height = 164.3 ± 5.3 cm, weight 60.3 ± 6.2 kg, BMI = 22.5 ± 3.0) participated. The intervention consisted of a supervised and non-supervised core (trunk musculature) exercise training program designed specifically for dance team participants performed three days/week for nine weeks in addition to routine dance practice. Prior to the program implementation and following initial testing, transversus abdominis (TrA) activation training was completed using the abdominal draw-in maneuver (ADIM) including ultrasound imaging (USI) verification and instructor feedback. Paired t tests were conducted regarding the nine-week core stabilization program on dance performance and balance measures (pirouettes, single leg balance in passe' releve position, and star excursion balance test [SEBT]) and on tests of muscle performance. A repeated measures (RM) ANOVA examined four TrA instruction conditions of activation: resting baseline, self-selected activation, immediately following ADIM training and four days after completion of the core stabilization training program. Alpha was set at 0.05 for all analysis. Statistically significant improvements were seen on single leg balance in passe' releve and bilateral anterior reach for the SEBT (both p ≤ 0

  10. Korrelasjon mellom core styrke, core stabilitet og utholdende styrke i core

    OpenAIRE

    Berg-Olsen, Andrea Marie; Fugelsøy, Eivor; Maurstad, Ann-Louise

    2010-01-01

    Formålet med studien var å se hvilke korrelasjon det er mellom core styrke, core stabilitet og utholdende styrke i core. Testingen bestod av tre hoveddeler hvor vi testet core styrke, core stabilitet og utholdende styrke i core. Innenfor core styrke og utholdende styrke i core ble tre ulike tester utført. Ved måling av core stabilitet ble det gjennomført kun en test. I core styrke ble isometrisk abdominal fleksjon, isometrisk rygg ekstensjon og isometrisk lateral fleksjon testet. Sit-ups p...

  11. McClellan Nuclear Radiation Center (MNRC) TRIGA reactor: Four years of operations

    International Nuclear Information System (INIS)

    Heidel, C.C.; Richards, W.J.

    1994-01-01

    McClellan Air Force Base, at Sacramento, California, is headquarters for the Sacramento Air Force Logistics Center (SM-ALC). McClellan Air Force Base provides extensive inspection and maintenance capabilities for the F-111, F-1 5, and other military aircraft. Criticality of the MNRC TRIGA reactor was obtained on January 20, 1990 with 63 standard TRIGA fuel elements, three fuel-followed control rods and one air-followed control rod. Presently there are 93 fuel elements in the reactor core. The reactor can be operated at 1 MW steady state power, producing pulses up to three dollars worth of reactivity addition, and can be square waved up to 1 MW. The reactor core contains a circular grid plate and a graphite reflector assembly surrounding the core. Four tangential beam ports installed in the reflector assembly provide a thermal neutron flux to four radiography bays. The reactor tank is twenty-four (24) feet deep, seven and one-half (7.5) feet in diameter, and has a protrusion in the upper portion of the reactor tank. This protrusion is scheduled for use as a neutron thermal collimator in the future. Besides the neutron radiography capabilities, the reactor contains a pneumatic rabbit system, a central thimble, an in-core irradiation facility, and three additional cutouts that provide locations for additional irradiation facilities. The central thimble can be removed along with the B-ring locations of the upper portion of the grid plate to provide an additional and larger in-core irradiation facility. A new upper grid plate has been manufactured to expand one triangular cutout so that larger experiments can be inserted directly into the reactor core. Some operational problems experienced during the first four years of operations are the timeout of the CSC and DAC watchdogs, deterioration of the heat exchanger gaskets, and loss of thermocouples in the instrumented fuel elements. (author)

  12. Tailoring Sandwich Face/Core Interfaces for Improved Damage Tolerance

    DEFF Research Database (Denmark)

    Lundsgaard-Larsen, Christian; Berggreen, Christian; Carlsson, Leif A.

    2010-01-01

    A face/core debond in a sandwich structure may propagate in the interface or kink into either the face or core. It is found that certain modifications of the face/core interface region influence the kinking behavior, which is studied experimentally in the present paper. A sandwich double cantilever....... The transition points where the crack kinks are identified and the influence of four various interface design modifications on the propagation path and fracture resistance are investigated....

  13. Metallic molybdenum disulfide nanosheet-based electrochemical actuators

    Science.gov (United States)

    Acerce, Muharrem; Akdoğan, E. Koray; Chhowalla, Manish

    2017-09-01

    Actuators that convert electrical energy to mechanical energy are useful in a wide variety of electromechanical systems and in robotics, with applications such as steerable catheters, adaptive wings for aircraft and drag-reducing wind turbines. Actuation systems can be based on various stimuli, such as heat, solvent adsorption/desorption, or electrochemical action (in systems such as carbon nanotube electrodes, graphite electrodes, polymer electrodes and metals). Here we demonstrate that the dynamic expansion and contraction of electrode films formed by restacking chemically exfoliated nanosheets of two-dimensional metallic molybdenum disulfide (MoS2) on thin plastic substrates can generate substantial mechanical forces. These films are capable of lifting masses that are more than 150 times that of the electrode over several millimetres and for hundreds of cycles. Specifically, the MoS2 films are able to generate mechanical stresses of about 17 megapascals—higher than mammalian muscle (about 0.3 megapascals) and comparable to ceramic piezoelectric actuators (about 40 megapascals)—and strains of about 0.6 per cent, operating at frequencies up to 1 hertz. The actuation performance is attributed to the high electrical conductivity of the metallic 1T phase of MoS2 nanosheets, the elastic modulus of restacked MoS2 layers (2 to 4 gigapascals) and fast proton diffusion between the nanosheets. These results could lead to new electrochemical actuators for high-strain and high-frequency applications.

  14. Degradation of ethyl mercaptan and its major intermediate diethyl disulfide by Pseudomonas sp. strain WL2.

    Science.gov (United States)

    Wang, Xiangqian; Wu, Chao; Liu, Nan; Li, Sujing; Li, Wei; Chen, Jianmeng; Chen, Dongzhi

    2015-04-01

    A Pseudomonas sp. strain WL2 that is able to efficiently metabolize ethyl mercaptan (EM) into diethyl disulfide (DEDS) through enzymatic oxidation was isolated from the activated sludge of a pharmaceutical wastewater plant. One hundred percent removal of 113.5 mg L(-1) EM and 110.3 mg L(-1) DEDS were obtained within 14 and 32 h, respectively. A putative EM degradation pathway that involved the catabolism via DEDS was proposed, which indicated DEDS were further mineralized into carbon dioxide (CO2), bacterial cells, and sulfate (SO4 (2-)) through the transformation of element sulfur and ethyl aldehyde. Degradation kinetics for EM and DEDS with different initial concentrations by strain WL2 were evaluated using Haldane-Andrews model with maximum specific degradation rates of 3.13 and 1.33 g g(-1) h(-1), respectively, and maximum degradation rate constants of 0.522 and 0.175 h(-1) using pseudo-first-order kinetic model were obtained. Results obtained that aerobic degradation of EM by strain WL2 was more efficient than those from previous studies. Substrate range studies of strain WL2 demonstrated its ability to degrade several mercaptans, disulfides, aldehydes, and methanol. All the results obtained highlight the potential of strain WL2 for the use in the biodegradation of volatile organic sulfur compounds (VOSCs).

  15. Effect of foliar application of chitosan and salicylic acid on the growth of soybean (Glycine max (L.) Merr.) varieties

    Science.gov (United States)

    Hasanah, Y.; Sembiring, M.

    2018-02-01

    Elicitors such as chitosan and salicylic acid could be used not only to increase isoflavone concentration of soybean seeds, but also to increase the growth and seed yield. The objective of the present study was to determine the effects of foliar application of elicitor compounds (i.e. chitosan, and salicylic acid)on the growth of two soybean varieties under dry land conditions. Experimental design was a randomized block design with 2 factors and 3 replications. The first factor was soybean varieties (Wilis and Devon). The second factor was foliar application of elicitors consisted of without elicitor; chitosan at V4 (four trifoliate leaves are fully developed); chitosan at R3 (early podding); chitosan at V4 and R3; salicylic acid at V4; salicylic acid at R3 and salicylic acid at V4 and R3. Parameters observed was plant height at 2-7 week after planting (WAP), shoot dry weight and root dry weight. The results suggest that the Wilis variety had higher plant height 7 WAP than Devon. The foliar application of chitosan increased the plant height at 7 WAP, shoot dry weight and root dry weight. The foliar application of chitosan at V4 and R3 on Devon variety increased shoot dry weight.

  16. Distribution of Upper Circumpolar Deep Water on the warming continental shelf of the West Antarctic Peninsula

    Science.gov (United States)

    Couto, Nicole; Martinson, Douglas G.; Kohut, Josh; Schofield, Oscar

    2017-07-01

    We use autonomous underwater vehicles to characterize the spatial distribution of Upper Circumpolar Deep Water (UCDW) on the continental shelf of the West Antarctic Peninsula (WAP) and present the first near-synoptic measurements of mesoscale features (eddies) containing UCDW on the WAP. Thirty-three subsurface eddies with widths on the order of 10 km were detected during four glider deployments. Each eddy contributed an average of 5.8 × 1016 J to the subpycnocline waters, where a cross-shelf heat flux of 1.37 × 1019 J yr-1 is required to balance the diffusive loss of heat to overlying winter water and to the near-coastal waters. Approximately two-thirds of the heat coming onto the shelf diffuses across the pycnocline and one-third diffuses to the coastal waters; long-term warming of the subpycnocline waters is a small residual of this balance. Sixty percent of the profiles that contained UCDW were part of a coherent eddy. Between 20% and 53% of the lateral onshore heat flux to the WAP can be attributed to eddies entering Marguerite Trough, a feature in the southern part of the shelf which is known to be an important conduit for UCDW. A northern trough is identified as additional important location for eddy intrusion.

  17. Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation

    KAUST Repository

    Ostwal, Mayur; Shinde, Digambar B.; Wang, Xinbo; Gadwal, Ikhlas; Lai, Zhiping

    2017-01-01

    Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~75% by weight of MoS2 exhibited the highest H2 permeance of 804×10−9mol/m2·s·Pa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287×10−9mol/m2·s·Pa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability.

  18. Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation

    KAUST Repository

    Ostwal, Mayur

    2017-12-24

    Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~75% by weight of MoS2 exhibited the highest H2 permeance of 804×10−9mol/m2·s·Pa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287×10−9mol/m2·s·Pa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability.

  19. Room temperature humidity sensor based on polyaniline-tungsten disulfide composite

    Science.gov (United States)

    Manjunatha, S.; Chethan, B.; Ravikiran, Y. T.; Machappa, T.

    2018-05-01

    Polyaniline-tungsten disulfide (PANI-WS2) composite was synthesized using in situ polymerization technique by adding finely grinded powder of WS2 during the polymerization of aniline. Field emission scanning electron microscopy (FESEM) images showed the granular morphology with porous nature. Energy dispersive X-ray spectroscopy (EDX) confirmed the presence of carbon, nitrogen, chlorine of PANI, tungsten and sulfur elements of WS2. Humidity sensing property of the composite was investigated by plotting change in its resistance with different relative humidity environments ranging from 10 to 97% RH. Decrease in resistance of the composite was observed with increase in relative humidity. Maximum sensing response of the composite was found to be 88.46%. Response and recovery times of the composite at 97%RH were fair enough to fabricate a sensor based on it. Stability of the composite with respect to the humidity sensing behavior was observed to be unchanged even after two months.

  20. Two-dimensional tantalum disulfide: controlling structure and properties via synthesis

    Science.gov (United States)

    Zhao, Rui; Grisafe, Benjamin; Krishna Ghosh, Ram; Holoviak, Stephen; Wang, Baoming; Wang, Ke; Briggs, Natalie; Haque, Aman; Datta, Suman; Robinson, Joshua

    2018-04-01

    Tantalum disulfide (TaS2) is a transition metal dichalcogenide (TMD) that exhibits phase transition induced electronic property modulation at low temperature. However, the appropriate phase must be grown to enable the semiconductor/metal transition that is of interest for next generation electronic applications. In this work, we demonstrate direct and controllable synthesis of ultra-thin 1T-TaS2 and 2H-TaS2 on a variety of substrates (sapphire, SiO2/Si, and graphene) via powder vapor deposition. The synthesis process leads to single crystal domains ranging from 20 to 200 nm thick and 1-10 µm on a side. The TaS2 phase (1T or 2H) is controlled by synthesis temperature, which subsequently is shown to control the electronic properties. Furthermore, this work constitutes the first demonstration of a metal-insulator phase transition in directly synthesized 1T-TaS2 films and domains by electronic means.

  1. Highly Stretchable Supercapacitors Based on Aligned Carbon Nanotube/Molybdenum Disulfide Composites.

    Science.gov (United States)

    Lv, Tian; Yao, Yao; Li, Ning; Chen, Tao

    2016-08-01

    Stretchable supercapacitors that can sustain their performance under unpredictable tensile force are important elements for practical applications of various portable and wearable electronics. However, the stretchability of most reported supercapacitors was often lower than 100 % because of the limitation of the electrodes used. Herein we developed all-solid-state supercapacitors with a stretchability as high as 240 % by using aligned carbon nanotube composites with compact structure as electrodes. By combined with pseudocapacitive molybdenum disulfide nanosheets, the newly developed supercapacitor showed a specific capacitance of 13.16 F cm(-3) , and also showed excellent cycling retention (98 %) after 10 000 charge-discharge cycles. This work also presents a general and effective approach in developing high-performance electrodes for flexible and stretchable electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Void coefficient of reactivity calculation for AP-600 core

    International Nuclear Information System (INIS)

    Suparlina, L.; Budiono, T.A.; Mardha, A.; Tukiran

    1998-01-01

    Void coefficient of reactivity as one of reactor kinetics parameters has been carried out. The calculation was done into two steps which is cell calculation using WIMSD/4 and core calculation using Batan-2DIFF code programs with the condition of beginning of cycle with all fresh fuels elements and all control rods withdrawn. The one dimension transport program in four neutron energy groups is used to calculate the cell generation of various core materials cell has been calculated in 1/4 fuel element with cluster model and square pitch arrange. Moderator density have been reduced until 20% for the void coefficient of reactivity calculation. Macroscopic cross-section as the out put of WIMSD/4 is being used as the input at the diffusion neutron program for core calculation. The void coefficient of reactivity of the AP-600 core can be determined with regular neutron flux and adjoint in four energy groups and X-Y geometry. The results is shown that the K eff calculation value is different 5.2% from the design data

  3. Atypical protein disulfide isomerases (PDI: Comparison of the molecular and catalytic properties of poplar PDI-A and PDI-M with PDI-L1A.

    Directory of Open Access Journals (Sweden)

    Benjamin Selles

    Full Text Available Protein disulfide isomerases are overwhelmingly multi-modular redox catalysts able to perform the formation, reduction or isomerisation of disulfide bonds. We present here the biochemical characterization of three different poplar PDI isoforms. PDI-A is characterized by a single catalytic Trx module, the so-called a domain, whereas PDI-L1a and PDI-M display an a-b-b'-a' and a°-a-b organisation respectively. Their activities have been tested in vitro using purified recombinant proteins and a series of model substrates as insulin, NADPH thioredoxin reductase, NADP malate dehydrogenase (NADP-MDH, peroxiredoxins or RNase A. We demonstrated that PDI-A exhibited none of the usually reported activities, although the cysteines of the WCKHC active site signature are able to form a disulfide with a redox midpoint potential of -170 mV at pH 7.0. The fact that it is able to bind a [Fe2S2] cluster upon Escherichia coli expression and anaerobic purification might indicate that it does not have a function in dithiol-disulfide exchange reactions. The two other proteins were able to catalyze oxidation or reduction reactions, PDI-L1a being more efficient in most cases, except that it was unable to activate the non-physiological substrate NADP-MDH, in contrast to PDI-M. To further evaluate the contribution of the catalytic domains of PDI-M, the dicysteinic motifs have been independently mutated in each a domain. The results indicated that the two a domains seem interconnected and that the a° module preferentially catalyzed oxidation reactions whereas the a module catalyzed reduction reactions, in line with the respective redox potentials of -170 mV and -190 mV at pH 7.0. Overall, these in vitro results illustrate that the number and position of a and b domains influence the redox properties and substrate recognition (both electron donors and acceptors of PDI which contributes to understand why this protein family expanded along evolution.

  4. Development of hydrogel TentaGel shell-core beads for ultrahigh throughput solution-phase screening of encoded OBOC combinatorial small molecule libraries.

    Science.gov (United States)

    Baek, Hyoung Gee; Liu, Ruiwu; Lam, Kit S

    2009-01-01

    The one-bead one-compound (OBOC) combinatorial library method enables the rapid generation and screening of millions of discrete chemical compounds on beads. Most of the OBOC screening methods require the library compounds to remain tethered to the bead during screening process. Methods have also been developed to release library compounds from immobilized beads for in situ solution phase or "lawn" assays. However, this latter approach, while extremely powerful, is severely limited by the lack of suitable solid supports for such assays. Here, we report on the development of a novel hydrogel TentaGel shell-core (HTSC) bead in which hydrogel is grafted onto the polystyrene-based TentaGel (TG) bead as an outer shell (5-80 mum thick) via free radical surface-initiated polymerization. This novel shell-core bilayer resin enables the preparation of encoded OBOC combinatorial small molecule libraries, such that the library compounds reside on the highly hydrophilic outer layer and the coding tags reside in the polystyrene-based TG core. Using fluorescein as a model small molecule compound, we have demonstrated that fluorescein molecules that have been linked covalently to the hydrogel shell via a disulfide bond could readily diffuse out of the hydrogel layer into the bead surrounding after reduction with dithiothreitol. In contrast, under identical condition, the released fluorescein molecules remained bound to unmodified TG bead. We have prepared an encoded OBOC small molecule library on the novel shell-core beads and demonstrated that the beads can be readily decoded.

  5. Disulfide bonds in the ectodomain of anthrax toxin receptor 2 are required for the receptor-bound protective-antigen pore to function.

    Directory of Open Access Journals (Sweden)

    Jianjun Sun

    Full Text Available BACKGROUND: Cell-surface receptors play essential roles in anthrax toxin action by providing the toxin with a high-affinity anchor and self-assembly site on the plasma membrane, mediating the toxin entry into cells through endocytosis, and shifting the pH threshold for prepore-to-pore conversion of anthrax toxin protective antigen (PA to a more acidic pH, thereby inhibiting premature pore formation. Each of the two known anthrax toxin receptors, ANTXR1 and ANTXR2, has an ectodomain comprised of an N-terminal von Willebrand factor A domain (VWA, which binds PA, and an uncharacterized immunoglobulin-like domain (Ig that connects VWA to the membrane-spanning domain. Potential roles of the receptor Ig domain in anthrax toxin action have not been investigated heretofore. METHODOLOGY/PRINCIPAL FINDINGS: We expressed and purified the ANTXR2 ectodomain (R2-VWA-Ig in E. coli and showed that it contains three disulfide bonds: one in R2-VWA and two in R2-Ig. Reduction of the ectodomain inhibited functioning of the pore, as measured by K(+ release from liposomes or Chinese hamster ovary cells or by PA-mediated translocation of a model substrate across the plasma membrane. However, reduction did not affect binding of the ectodomain to PA or the transition of ectodomain-bound PA prepore to the pore conformation. The inhibitory effect depended specifically on reduction of the disulfides within R2-Ig. CONCLUSIONS/SIGNIFICANCE: We conclude that disulfide integrity within R2-Ig is essential for proper functioning of receptor-bound PA pore. This finding provides a novel venue to investigate the mechanism of anthrax toxin action and suggests new strategies for inhibiting toxin action.

  6. Approach to characterization of the higher order structure of disulfide-containing proteins using hydrogen/deuterium exchange and top-down mass spectrometry.

    Science.gov (United States)

    Wang, Guanbo; Kaltashov, Igor A

    2014-08-05

    Top-down hydrogen/deuterium exchange (HDX) with mass spectrometric (MS) detection has recently matured to become a potent biophysical tool capable of providing valuable information on higher order structure and conformational dynamics of proteins at an unprecedented level of structural detail. However, the scope of the proteins amenable to the analysis by top-down HDX MS still remains limited, with the protein size and the presence of disulfide bonds being the two most important limiting factors. While the limitations imposed by the physical size of the proteins gradually become more relaxed as the sensitivity, resolution and dynamic range of modern MS instrumentation continue to improve at an ever accelerating pace, the presence of the disulfide linkages remains a much less forgiving limitation even for the proteins of relatively modest size. To circumvent this problem, we introduce an online chemical reduction step following completion and quenching of the HDX reactions and prior to the top-down MS measurements of deuterium occupancy of individual backbone amides. Application of the new methodology to the top-down HDX MS characterization of a small (99 residue long) disulfide-containing protein β2-microglobulin allowed the backbone amide protection to be probed with nearly a single-residue resolution across the entire sequence. The high-resolution backbone protection pattern deduced from the top-down HDX MS measurements carried out under native conditions is in excellent agreement with the crystal structure of the protein and high-resolution NMR data, suggesting that introduction of the chemical reduction step to the top-down routine does not trigger hydrogen scrambling either during the electrospray ionization process or in the gas phase prior to the protein ion dissociation.

  7. A beam position monitor using an amorphous magnetic core

    International Nuclear Information System (INIS)

    Kobayashi, Toshiaki; Ueda, Toru; Yoshida, Yoichi; Kozawa, Takahiro; Uesaka, Mitsuru; Miya, Kenzo; Tagawa, Seiichi; Kobayashi, Hitoshi.

    1994-01-01

    A beam position monitor for an electron accelerator has been developed by using an amorphous magnetic core. The position is detected by the difference of leakage inductances of four pickup coils wound on the amorphous magnetic core. The accuracy of the beam position monitor is less than 1 mm for the various electron pulses from nanosecond to microsecond. (author)

  8. Benchmark for Neutronic Analysis of Sodium-cooled Fast Reactor Cores with Various Fuel Types and Core Sizes

    International Nuclear Information System (INIS)

    Stauff, N.E.; Kim, T.K.; Taiwo, T.A.; Buiron, L.; Rimpault, G.; Brun, E.; Lee, Y.K.; Pataki, I.; Kereszturi, A.; Tota, A.; Parisi, C.; Fridman, E.; Guilliard, N.; Kugo, T.; Sugino, K.; Uematsu, M.M.; Ponomarev, A.; Messaoudi, N.; Lin Tan, R.; Kozlowski, T.; Bernnat, W.; Blanchet, D.; Brun, E.; Buiron, L.; Fridman, E.; Guilliard, N.; Kereszturi, A.; Kim, T.K.; Kozlowski, T.; Kugo, T.; Lee, Y.K.; Lin Tan, R.; Messaoudi, N.; Parisi, C.; Pataki, I.; Ponomarev, A.; Rimpault, G.; Stauff, N.E.; Sugino, K.; Taiwo, T.A.; Tota, A.; Uematsu, M.M.; Monti, S.; Yamaji, A.; Nakahara, Y.; Gulliford, J.

    2016-01-01

    One of the foremost Generation IV International Forum (GIF) objectives is to design nuclear reactor cores that can passively avoid damage of the reactor when control rods fail to scram in response to postulated accident initiators (e.g. inadvertent reactivity insertion or loss of coolant flow). The analysis of such unprotected transients depends primarily on the physical properties of the fuel and the reactivity feedback coefficients of the core. Within the activities of the Working Party on Scientific Issues of Reactor Systems (WPRS), the Sodium Fast Reactor core Feed-back and Transient response (SFR-FT) Task Force was proposed to evaluate core performance characteristics of several Generation IV Sodium-cooled Fast Reactor (SFR) concepts. A set of four numerical benchmark cases was initially developed with different core sizes and fuel types in order to perform neutronic characterisation, evaluation of the feedback coefficients and transient calculations. Two 'large' SFR core designs were proposed by CEA: those generate 3 600 MW(th) and employ oxide and carbide fuel technologies. Two 'medium' SFR core designs proposed by ANL complete the set. These medium SFR cores generate 1 000 MW(th) and employ oxide and metallic fuel technologies. The present report summarises the results obtained by the WPRS for the neutronic characterisation benchmark exercise proposed. The benchmark definition is detailed in Chapter 2. Eleven institutions contributed to this benchmark: Argonne National Laboratory (ANL), Commissariat a l'energie atomique et aux energies alternatives (CEA of Cadarache), Commissariat a l'energie atomique et aux energies alternatives (CEA of Saclay), Centre for Energy Research (CER-EK), Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Nuclear Technology and Energy Systems (IKE), Japan Atomic Energy Agency (JAEA), Karlsruhe Institute of Technology (KIT

  9. Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering.

    Science.gov (United States)

    Wu, Shu-Wei; Liu, Xifeng; Miller, A Lee; Cheng, Yu-Shiuan; Yeh, Ming-Long; Lu, Lichun

    2018-07-15

    In the present study, we fabricated non-toxic, injectable, and thermo-sensitive NIPAAm-g-chitosan (NC) hydrogels with thiol modification for introduction of disulfide cross-linking strategy. Previously, NIPAAm and chitosan copolymer has been proven to have excellent biocompatibility, biodegradability and rapid phase transition after injection, suitable to serve as cell carriers or implanted scaffolds. However, weak mechanical properties significantly limit their potential for biomedical fields. In order to overcome this issue, we incorporated thiol side chains into chitosan by covalently conjugating N-acetyl-cysteine (NAC) with carbodiimide chemistry to strengthen mechanical properties. After oxidation of thiols into disulfide bonds, modified NC hydrogels did improve the compressive modulus over 9 folds (11.4 kPa). Oscillatory frequency sweep showed a positive correlation between storage modulus and cross-liking density as well. Additionally, there was no cytotoxicity observed to mesenchymal stem cells, fibroblasts and osteoblasts. We suggested that the thiol-modified thermo-sensitive polysaccharide hydrogels are promising to be a cell-laden biomaterial for tissue regeneration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Thiol and Disulfide Derivatives of Ephedra Alkaloids 2 : A Mechanistic Study of Their Effect on the Addition of Diethyl Zinc to Benzaldehyde

    NARCIS (Netherlands)

    Fitzpatrick, Kevin; Hulst, Ron; Kellogg, Richard M.

    Thiol and disulfide derivatives of ephedrine have been shown previously to catalyse in high enantiomeric excess (ee) the reaction of diethyl zinc with benzaldehyde. We find that this reaction involves non-linear correlations between the ee of product and catalyst. Osmotic measurements indicate a

  11. The relationship between core self-evaluations, views of god, and intrinsic/extrinsic religious motivation.

    Science.gov (United States)

    Smither, James W; Walker, Alan G

    2015-04-01

    Core self-evaluations refer to a higher-order construct that subsumes four well-established traits in the personality literature: self-esteem, generalized self-efficacy, (low) neuroticism, and (internal) locus of control. Studies that have examined the relationship between various measures of religiosity and individual components of core self-evaluations show no clear pattern of relationships. The absence of a clear pattern may be due to the failure of most previous studies in this area to use theory to guide research. Therefore, theories related to core self-evaluations, religious motivation, and views of God were used to develop and test four hypotheses. 220 adults completed measures of four religious attitudes (intrinsic religious motivation, extrinsic religious motivation, viewing God as loving, and viewing God as punitive), general religiosity, and core self-evaluations, separated by 6 weeks (with the order of measures counterbalanced). Multivariate multiple regression, controlling for general religiosity, showed that core self-evaluations were positively related to viewing God as loving, negatively related to viewing God as punitive, and negatively related to extrinsic religious motivation. The hypothesis that core self-evaluations would be positively related to intrinsic religious motivation was not supported.

  12. "Invisible" conformers of an antifungal disulfide protein revealed by constrained cold and heat unfolding, CEST-NMR experiments, and molecular dynamics calculations.

    Science.gov (United States)

    Fizil, Ádám; Gáspári, Zoltán; Barna, Terézia; Marx, Florentine; Batta, Gyula

    2015-03-23

    Transition between conformational states in proteins is being recognized as a possible key factor of function. In support of this, hidden dynamic NMR structures were detected in several cases up to populations of a few percent. Here, we show by two- and three-state analysis of thermal unfolding, that the population of hidden states may weight 20-40 % at 298 K in a disulfide-rich protein. In addition, sensitive (15) N-CEST NMR experiments identified a low populated (0.15 %) state that was in slow exchange with the folded PAF protein. Remarkably, other techniques failed to identify the rest of the NMR "dark matter". Comparison of the temperature dependence of chemical shifts from experiments and molecular dynamics calculations suggests that hidden conformers of PAF differ in the loop and terminal regions and are most similar in the evolutionary conserved core. Our observations point to the existence of a complex conformational landscape with multiple conformational states in dynamic equilibrium, with diverse exchange rates presumably responsible for the completely hidden nature of a considerable fraction. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  13. Four-Strand Core Suture Improves Flexor Tendon Repair Compared to Two-Strand Technique in a Rabbit Model

    Directory of Open Access Journals (Sweden)

    Alice Wichelhaus

    2016-01-01

    Full Text Available Introduction. This study was designed to investigate the influence of the amount of suture material on the formation of peritendinous adhesions of intrasynovial flexor tendon repairs. Materials and Methods. In 14 rabbits, the flexor tendons of the third and the fourth digit of the right hind leg were cut and repaired using a 2- or 4-strand core suture technique. The repaired tendons were harvested after three and eight weeks. The range of motion of the affected toes was measured and the tendons were processed histologically. The distance between the transected tendon ends, the changes in the peritendinous space, and cellular and extracellular inflammatory reaction were quantified by different staining. Results. A 4-strand core suture resulted in significantly less gap formation. The 2-strand core suture showed a tendency to less adhesion formation. Doubling of the intratendinous suture material was accompanied by an initial increase in leukocyte infiltration and showed a greater amount of formation of myofibroblasts. From the third to the eighth week after flexor tendon repair, both the cellular and the extracellular inflammation decreased significantly. Conclusion. A 4-strand core suture repair leads to a significantly better tendon healing process with less diastasis between the sutured tendon ends despite initially pronounced inflammatory response.

  14. Scan-rate dependence in protein calorimetry: the reversible transitions of Bacillus circulans xylanase and a disulfide-bridge mutant.

    OpenAIRE

    Davoodi, J.; Wakarchuk, W. W.; Surewicz, W. K.; Carey, P. R.

    1998-01-01

    The stabilities of Bacillus circulans xylanase and a disulfide-bridge-containing mutant (S100C/N148C) were investigated by differential scanning calorimetry (DSC) and thermal inactivation kinetics. The thermal denaturation of both proteins was found to be irreversible, and the apparent transition temperatures showed a considerable dependence upon scanning rate. In the presence of low (nondenaturing) concentrations of urea, calorimetric transitions were observed for both proteins in the second...

  15. The dynamics of massive starless cores with ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Kong, Shuo; Butler, Michael J. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Caselli, Paola [School of Physics and Astronomy, The University of Leeds, Leeds LS2 9JT (United Kingdom); Fontani, Francesco [INAF-Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy)

    2013-12-20

    How do stars that are more massive than the Sun form, and thus how is the stellar initial mass function (IMF) established? Such intermediate- and high-mass stars may be born from relatively massive pre-stellar gas cores, which are more massive than the thermal Jeans mass. The turbulent core accretion model invokes such cores as being in approximate virial equilibrium and in approximate pressure equilibrium with their surrounding clump medium. Their internal pressure is provided by a combination of turbulence and magnetic fields. Alternatively, the competitive accretion model requires strongly sub-virial initial conditions that then lead to extensive fragmentation to the thermal Jeans scale, with intermediate- and high-mass stars later forming by competitive Bondi-Hoyle accretion. To test these models, we have identified four prime examples of massive (∼100 M {sub ☉}) clumps from mid-infrared extinction mapping of infrared dark clouds. Fontani et al. found high deuteration fractions of N{sub 2}H{sup +} in these objects, which are consistent with them being starless. Here we present ALMA observations of these four clumps that probe the N{sub 2}D{sup +} (3-2) line at 2.''3 resolution. We find six N{sub 2}D{sup +} cores and determine their dynamical state. Their observed velocity dispersions and sizes are broadly consistent with the predictions of the turbulent core model of self-gravitating, magnetized (with Alfvén Mach number m{sub A} ∼ 1) and virialized cores that are bounded by the high pressures of their surrounding clumps. However, in the most massive cores, with masses up to ∼60 M {sub ☉}, our results suggest that moderately enhanced magnetic fields (so that m{sub A} ≅ 0.3) may be needed for the structures to be in virial and pressure equilibrium. Magnetically regulated core formation may thus be important in controlling the formation of massive cores, inhibiting their fragmentation, and thus helping to establish the stellar IMF.

  16. Molten core debris-sodium interactions: M-Series experiments

    International Nuclear Information System (INIS)

    Sowa, E.S.; Gabor, J.D.; Pavlik, J.R.; Cassulo, J.C.; Cook, C.J.; Baker, L. Jr.

    1979-01-01

    Five new kilogram-scale experiments have been carried out. Four of the experiments simulated the situation where molten core debris flows from a breached reactor vessel into a dry reactor cavity and is followed by a flow of sodium (Ex-vessel case) and one experiment simulated the flow of core debris into an existing pool of sodium (In-vessel case). The core debris was closely simulated by a thermite reaction which produced a molten mixture of UO 2 , ZrO 2 , and stainless steel. There was efficient fragmentation of the debris in all experiments with no explosive interactions observed

  17. Study of disulfide reduction and alkyl chloroformate derivatization of plasma sulfur amino acids using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Svagera, Zdeněk; Hanzlíková, Dagmar; Simek, Petr; Hušek, Petr

    2012-03-01

    Four disulfide-reducing agents, dithiothreitol (DTT), 2,3-dimercaptopropanesulfonate (DMPS), and the newly tested 2-mercaptoethanesulfonate (MESNA) and Tris(hydroxypropyl)phosphine (THP), were investigated in detail for release of sulfur amino acids in human plasma. After protein precipitation with trichloroacetic acid (TCA), the plasma supernatant was treated with methyl, ethyl, or propyl chloroformate via the well-proven derivatization-extraction technique and the products were subjected to gas chromatographic-mass spectrometric (GC-MS) analysis. All the tested agents proved to be rapid and effective reducing agents for the assay of plasma thiols. When compared with DTT, the novel reducing agents DMPS, MESNA, and THP provided much cleaner extracts and improved analytical performance. Quantification of homocysteine, cysteine, and methionine was performed using their deuterated analogues, whereas other analytes were quantified by means of 4-chlorophenylalanine. Precise and reliable assay of all examined analytes was achieved, irrespective of the chloroformate reagent used. Average relative standard deviations at each analyte level were ≤6%, quantification limits were 0.1-0.2 μmol L(-1), recoveries were 94-121%, and linearity was over three orders of magnitude (r(2) equal to 0.997-0.998). Validation performed with the THP agent and propyl chloroformate derivatization demonstrated the robustness and reliability of this simple sample-preparation methodology.

  18. Intermolecular-directed reactivity in solid media. Radiogenic formation of phosphorus-centered radicals in chiral diphosphine disulfides studied by ESR

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, O.M.; Janssen, R.A.J.; de Waal, B.F.M.; Buck, H.M. (Eindhoven Univ. of Technology (Netherlands)); Kanters, J.A.; Schouten, A. (State Univ. of Utrecht (Netherlands))

    1990-07-04

    Single-crystal, powder, and frozen-matrix ESR experiments have been performed to study the radiogenic electron-capture properties of several diastereoisomeric and asymmetric diphosphine disulfides (R{sub 1}R{sub 2}P(S)P(S)R{sub 3}R{sub 4}). The principal values of the hyperfine couplings of several phosphorus-centered radical configurations are determined and related to the spin density distribution. Attention is focused on the strong differences in radiogenic properties, observed between the meso and racemic forms of phenyl- and tolyl-substituted diphosphine disulfides. The most striking result is that X irradiation of the crystalline meso compounds MePhP(S)P(S)MePh, Me(p-Tol)P(S)P(S)Me(p-Tol), and Ph(PhCH{sub 2})P(S)P(S)Ph(CH{sub 2}Ph) does not lead to the formation of a three-electron bond P-P {sigma}* radical but invariably results in configurations in which the unpaired electron is primarily localized on one half of the molecule. X irradiation of the corresponding racemic forms, on the other hand, gives rise to P-P {sigma}* configurations.

  19. Ice core carbonyl sulfide measurements from a new South Pole ice core (SPICECORE)

    Science.gov (United States)

    Aydin, M.; Nicewonger, M. R.; Saltzman, E. S.

    2017-12-01

    Carbonyl sulfide (COS) is the most abundant sulfur gas in the troposphere with a present-day mixing ratio of about 500 ppt. Direct and indirect emissions from the oceans are the predominant sources of atmospheric COS. The primary removal mechanism is uptake by terrestrial plants during photosynthesis. Because plants do not respire COS, atmospheric COS levels are linked to terrestrial gross primary productivity (GPP). Ancient air trapped in polar ice cores has been used to reconstruct COS records of the past atmosphere, which can be used to infer past GPP variability and potential changes in oceanic COS emission. We are currently analyzing samples from a newly drilled intermediate depth ice core from South Pole, Antarctica (SPICECORE). This core is advantageous for studying COS because the cold temperatures of South Pole ice lead to very slow rates of in situ loss due to hydrolysis. One hundred and eighty-four bubbly ice core samples have been analyzed to date with gas ages ranging from about 9.2 thousand (733 m depth) to 75 years (126 m depth) before present. After a 2% correction for gravitational enrichment in the firn, the mean COS mixing ratio for the data set is 312±15 ppt (±1s), with the data set median also equal to 312 ppt. The only significant long-term trend in the record is a 5-10% increase in COS during the last 2-3 thousand years of the Holocene. The SPICECORE data agree with previously published ice core COS records from other Antarctic sites during times of overlap, confirming earlier estimates of COS loss rates to in situ hydrolysis in ice cores. Antarctic ice core data place strict constraints on the COS mixing ratio and its range of variability in the southern hemisphere atmosphere during the last several millennia. Implications for the atmospheric COS budget will be discussed.

  20. Calculation of ex-core detector responses

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, R. de; Haedens, M. [Tractebel Engineering, Brussels (Belgium); Baenst, H. de [Electrabel, Brussels (Belgium)

    2005-07-01

    The purpose of this work carried out by Tractebel Engineering, is to develop and validate a method for predicting the ex-core detector responses in the NPPs operated by Electrabel. Practical applications are: prediction of ex-core calibration coefficients for startup power ascension, replacement of xenon transients by theoretical predictions, and analysis of a Rod Drop Accident. The neutron diffusion program PANTHER calculates node-integrated fission sources which are combined with nodal importance representing the contribution of a neutron born in that node to the ex-core response. These importance are computed with the Monte Carlo program MCBEND in adjoint mode, with a model of the whole core at full power. Other core conditions are treated using sensitivities of the ex-core responses to water densities, computed with forward Monte Carlo. The Scaling Factors (SF), or ratios of the measured currents to the calculated response, have been established on a total of 550 in-core flux maps taken in four NPPs. The method has been applied to 15 startup transients, using the average SF obtained from previous cycles, and to 28 xenon transients, using the SF obtained from the in-core map immediately preceding the transient. The values of power (P) and axial offset (AOi) reconstructed with the theoretical calibration agree well with the measured values. The ex-core responses calculated during a rod drop transient have been successfully compared with available measurements, and with theoretical data obtained by alternative methods. In conclusion, the method is adequate for the practical applications previously listed. (authors)

  1. Removal of a C-terminal serine residue proximal to the inter-chain disulfide bond of a human IgG1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity

    Science.gov (United States)

    Shen, Yang; Zeng, Lin; Zhu, Aiping; Blanc, Tim; Patel, Dipa; Pennello, Anthony; Bari, Amtul; Ng, Stanley; Persaud, Kris; Kang, Yun (Kenneth); Balderes, Paul; Surguladze, David; Hindi, Sagit; Zhou, Qinwei; Ludwig, Dale L.; Snavely, Marshall

    2013-01-01

    Optimization of biophysical properties is a critical success factor for the developability of monoclonal antibodies with potential therapeutic applications. The inter-domain disulfide bond between light chain (Lc) and heavy chain (Hc) in human IgG1 lends structural support for antibody scaffold stability, optimal antigen binding, and normal Fc function. Recently, human IgG1λ has been suggested to exhibit significantly greater susceptibility to reduction of the inter Lc-Hc disulfide bond relative to the same disulfide bond in human IgG1κ. To understand the molecular basis for this observed difference in stability, the sequence and structure of human IgG1λ and human IgG1κ were compared. Based on this Lc comparison, three single mutations were made in the λ Lc proximal to the cysteine residue, which forms a disulfide bond with the Hc. We determined that deletion of S214 (dS) improved resistance of the association between Lc and Hc to thermal stress. In addition, deletion of this terminal serine from the Lc of IgG1λ provided further benefit, including an increase in stability at elevated pH, increased yield from transient transfection, and improved in vitro antibody dependent cell-mediated cytotoxicity (ADCC). These observations support the conclusion that the presence of the terminal serine of the λ Lc creates a weaker inter-chain disulfide bond between the Lc and Hc, leading to slightly reduced stability and a potential compromise in IgG1λ function. Our data from a human IgG1λ provide a basis for further investigation of the effects of deleting terminal serine from λLc on the stability and function of other human IgG1λ antibodies. PMID:23567210

  2. β-Boomerang Antimicrobial and Antiendotoxic Peptides: Lipidation and Disulfide Bond Effects on Activity and Structure.

    Science.gov (United States)

    Mohanram, Harini; Bhattacharjya, Surajit

    2014-04-21

    Drug-resistant Gram-negative bacterial pathogens and endotoxin- or lipopolysaccharide (LPS)-mediated inflammations are among some of the most  prominent health issues globally. Antimicrobial peptides (AMPs) are eminent molecules that can kill drug-resistant strains and neutralize LPS toxicity. LPS, the outer layer of the outer membrane of Gram-negative bacteria safeguards cell integrity against hydrophobic compounds, including antibiotics and AMPs. Apart from maintaining structural integrity, LPS, when released into the blood stream, also induces inflammatory pathways leading to septic shock. In previous works, we have reported the de novo design of a set of 12-amino acid long cationic/hydrophobic peptides for LPS binding and activity. These peptides adopt β-boomerang like conformations in complex with LPS. Structure-activity studies demonstrated some critical features of the β-boomerang scaffold that may be utilized for the further development of potent analogs. In this work, β-boomerang lipopeptides were designed and structure-activity correlation studies were carried out. These lipopeptides were homo-dimerized through a disulfide bridge to stabilize conformations and for improved activity. The designed peptides exhibited potent antibacterial activity and efficiently neutralized LPS toxicity under in vitro assays. NMR structure of C4YI13C in aqueous solution demonstrated the conserved folding of the lipopeptide with a boomerang aromatic lock stabilized with disulfide bond at the C-terminus and acylation at the N-terminus. These lipo-peptides displaying bacterial sterilization and low hemolytic activity may be useful for future applications as antimicrobial and antiendotoxin molecules.

  3. β-Boomerang Antimicrobial and Antiendotoxic Peptides: Lipidation and Disulfide Bond Effects on Activity and Structure

    Directory of Open Access Journals (Sweden)

    Harini Mohanram

    2014-04-01

    Full Text Available Drug-resistant Gram-negative bacterial pathogens and endotoxin- or lipopolysaccharide (LPS-mediated inflammations are among some of the most  prominent health issues globally. Antimicrobial peptides (AMPs are eminent molecules that can kill drug-resistant strains and neutralize LPS toxicity. LPS, the outer layer of the outer membrane of Gram-negative bacteria safeguards cell integrity against hydrophobic compounds, including antibiotics and AMPs. Apart from maintaining structural integrity, LPS, when released into the blood stream, also induces inflammatory pathways leading to septic shock. In previous works, we have reported the de novo design of a set of 12-amino acid long cationic/hydrophobic peptides for LPS binding and activity. These peptides adopt β-boomerang like conformations in complex with LPS. Structure-activity studies demonstrated some critical features of the β-boomerang scaffold that may be utilized for the further development of potent analogs. In this work, β-boomerang lipopeptides were designed and structure-activity correlation studies were carried out. These lipopeptides were homo-dimerized through a disulfide bridge to stabilize conformations and for improved activity. The designed peptides exhibited potent antibacterial activity and efficiently neutralized LPS toxicity under in vitro assays. NMR structure of C4YI13C in aqueous solution demonstrated the conserved folding of the lipopeptide with a boomerang aromatic lock stabilized with disulfide bond at the C-terminus and acylation at the N-terminus. These lipo-peptides displaying bacterial sterilization and low hemolytic activity may be useful for future applications as antimicrobial and antiendotoxin molecules.

  4. Simultaneous Disulfide and Boronic Acid Ester Exchange in Dynamic Combinatorial Libraries

    Directory of Open Access Journals (Sweden)

    Sanna L. Diemer

    2015-09-01

    Full Text Available Dynamic combinatorial chemistry has emerged as a promising tool for the discovery of complex receptors in supramolecular chemistry. At the heart of dynamic combinatorial chemistry are the reversible reactions that enable the exchange of building blocks between library members in dynamic combinatorial libraries (DCLs ensuring thermodynamic control over the system. If more than one reversible reaction operates in a single dynamic combinatorial library, the complexity of the system increases dramatically, and so does its possible applications. One can imagine two reversible reactions that operate simultaneously or two reversible reactions that operate independently. Both these scenarios have advantages and disadvantages. In this contribution, we show how disulfide exchange and boronic ester transesterification can function simultaneous in dynamic combinatorial libraries under appropriate conditions. We describe the detailed studies necessary to establish suitable reaction conditions and highlight the analytical techniques appropriate to study this type of system.

  5. Functional and structural studies of the disulfide isomerase DsbC from the plant pathogen Xylella fastidiosa reveals a redox-dependent oligomeric modulation in vitro.

    Science.gov (United States)

    Santos, Clelton A; Toledo, Marcelo A S; Trivella, Daniela B B; Beloti, Lilian L; Schneider, Dilaine R S; Saraiva, Antonio M; Crucello, Aline; Azzoni, Adriano R; Souza, Alessandra A; Aparicio, Ricardo; Souza, Anete P

    2012-10-01

    Xylella fastidiosa is a Gram-negative bacterium that grows as a biofilm inside the xylem vessels of susceptible plants and causes several economically relevant crop diseases. In the present study, we report the functional and low-resolution structural characterization of the X. fastidiosa disulfide isomerase DsbC (XfDsbC). DsbC is part of the disulfide bond reduction/isomerization pathway in the bacterial periplasm and plays an important role in oxidative protein folding. In the present study, we demonstrate the presence of XfDsbC during different stages of X. fastidiosa biofilm development. XfDsbC was not detected during X. fastidiosa planktonic growth; however, after administering a sublethal copper shock, we observed an overexpression of XfDsbC that also occurred during planktonic growth. These results suggest that X. fastidiosa can use XfDsbC in vivo under oxidative stress conditions similar to those induced by copper. In addition, using dynamic light scattering and small-angle X-ray scattering, we observed that the oligomeric state of XfDsbC in vitro may be dependent on the redox environment. Under reducing conditions, XfDsbC is present as a dimer, whereas a putative tetrameric form was observed under nonreducing conditions. Taken together, our findings demonstrate the overexpression of XfDsbC during biofilm formation and provide the first structural model of a bacterial disulfide isomerase in solution. © 2012 The Authors Journal compilation © 2012 FEBS.

  6. Geodynamo Modeling of Core-Mantle Interactions

    Science.gov (United States)

    Kuang, Wei-Jia; Chao, Benjamin F.; Smith, David E. (Technical Monitor)

    2001-01-01

    Angular momentum exchange between the Earth's mantle and core influences the Earth's rotation on time scales of decades and longer, in particular in the length of day (LOD) which have been measured with progressively increasing accuracy for the last two centuries. There are four possible coupling mechanisms for transferring the axial angular momentum across the core-mantle boundary (CMB): viscous, magnetic, topography, and gravitational torques. Here we use our scalable, modularized, fully dynamic geodynamo model for the core to assess the importance of these torques. This numerical model, as an extension of the Kuang-Bloxham model that has successfully simulated the generation of the Earth's magnetic field, is used to obtain numerical results in various physical conditions in terms of specific parameterization consistent with the dynamical processes in the fluid outer core. The results show that depending on the electrical conductivity of the lower mantle and the amplitude of the boundary topography at CMB, both magnetic and topographic couplings can contribute significantly to the angular momentum exchange. This implies that the core-mantle interactions are far more complex than has been assumed and that there is unlikely a single dominant coupling mechanism for the observed decadal LOD variation.

  7. New design on air-core resistive NMR imaging magnet

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan; Mingwu, Fan; Yixin, Miao

    1984-08-01

    A new type of NMR imaging air-core resistive magnet is designed. Based on the BIM Magnetostatic calculation the resultant four equiradial coils structure with optimized shapes of cross section possesses a larger spherical working volume obviously, comparing with the common four-coils imaging magnet. The manufacturing tolerance is also calculated.

  8. Venom allergen-like protein 28 in Clonorchis sinensis: four epitopes on its surface and the potential role of Cys124 for its conformational stability.

    Science.gov (United States)

    Lee, Myoung-Ro; Yoo, Won Gi; Kim, Yu Jung; Chung, Eun Ju; Cho, Shin-Hyeong; Ju, Jung-Won

    2018-06-06

    Venom allergen-like (VAL) proteins are important to host-parasite interactions. We previously demonstrated that a Clonorchis sinensis VAL (CsVAL) protein-derived synthetic peptide suppresses allergic and inflammatory responses. However, little is known regarding the physicochemical and antigenic properties of CsVAL proteins. Here, we identified a novel 194 amino acid VAL protein, named C. sinensis VAL 28 (CsVAL28), and characterized its functional motifs and structural details as a new member of the CAP superfamily. Unlike members of the Schistosoma mansoni VAL (SmVAL) family, CsVAL28 has a single CAP1 motif and six highly conserved disulfide bond-forming cysteines. Tertiary models of wild-type CsVAL28 and mutants were built using SmVAL4 as template via homology modeling. Normal mode analysis predicted that disulfide bond breaking by mutation of cysteine 124 to serine would greatly affect protein mobility. Four major immunoreactive linear epitopes were identified in the surface-exposed region or its vicinity via epitope mapping, using sera from clonorchiasis patients and healthy controls. Our findings provide in-depth knowledge on the structure-function properties of VAL proteins and may help determine highly antigenic regions for developing new diagnostic approaches.

  9. Enhanced photoresponse of monolayer molybdenum disulfide (MoS2) based on microcavity structure

    Science.gov (United States)

    Lu, Yanan; Yang, Guofeng; Wang, Fuxue; Lu, Naiyan

    2018-05-01

    There is an increasing interest in using monolayer molybdenum disulfide (MoS2) for optoelectronic devices because of its inherent direct band gap characteristics. However, the weak absorption of monolayer MoS2 restricts its applications, novel concepts need to be developed to address the weakness. In this work, monolayer MoS2 monolithically integrates with plane microcavity structure, which is formed by the top and bottom chirped distributed Bragg reflector (DBR), is demonstrated to improve the absorption of MoS2. The optical absorption is 17-fold enhanced, reaching values over 70% at work wavelength. Moreover, the monolayer MoS2-based photodetector device with microcavity presents a significantly increased photoresponse, demonstrating its promising prospects in MoS2-based optoelectronic devices.

  10. Assessment of the Mutagenic Potential of Carbon Disulfide, Carbon Tetrachloride, Dichloromethane, Ethylene Dichloride, and Methyl Bromide: A Comparative Analysis in Relation to Ethylene Dibromide

    Science.gov (United States)

    The document provides an evaluation of the mutagenic potential of five alternative fumigants to ethylene dibromide(EDB). These include carbon disulfide(CS2), carbon tetrachloride(CCl4), dichloromethane(DCM), ethylene dichloride(EDC), and methyl bromide (MB). Of the five proposed ...

  11. Assessing the Potential of Social Networks as a Means for Information Diffusion the Weatherization Experiences (WE) Project.

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Erin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hawkins, Beth A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    In April 2009, U.S. Department of Energy (DOE) formally tasked Oak Ridge National Laboratory (ORNL) with conducting two impact and process evaluations of DOE’s Weatherization Assistance Program (WAP), known as the retrospective and American Recovery and Reinvestment Act of 2009 (ARRA) period evaluations, respectively. The former focused on WAP Program Year (PY) 2008, which covers the period from April 2008 to June 2009. The latter focused on PY 2010. This report presents in-depth analyses from ORNL’s social network study, the Weatherization Experiences (WE) Project, an exploratory study conducted as part of the ARRA period WAP evaluation. The WE Project explored the potential for WAP recipients and staff to influence energy savings beyond their homes and day jobs. Several studies conducted through ORNL’s evaluation of WAP found that the program has the ability to profoundly impact the lives of the people it serves (Tonn et al. 2014b). Recipients of WAP provided statements ranging from the newfound ability to pay utility bills and prescription medication to reduced emergency department visits for asthma and medical conditions associated with thermal stress. Through this exploratory research project, the stories of hundreds of weatherization recipients and providers were documented. The WE Project was designed to further investigate whether or not shared experiences with weatherization have the power to stimulate home energy saving action within an individual’s social network.

  12. Weed diversity identification on growth phases of twelve maize varieties

    Science.gov (United States)

    Rahayu, M.; Yudono, P.; Indradewa, D.; Hanudin, E.

    2018-03-01

    Weed is one of the factors that disturb maize cultivation. Each maize variety has specific characteristics which will lead to weeds diversity in particular farm. This study aimed to identify the effect of maize variety on weed diversity on maize’s growth phases. The research was conducted from March to July 2016 in Banguntapan, Bantul, Yogyakarta, Indonesia. The field research was arranged by using Randomised Complete Block Design with three replications. The treatments were maize varieties, consist of 12 levels: ‘Bisi 18’, ‘Bisi 2’, ‘Pertiwi 3’, ‘NK 22’, ‘NK 33’, ‘DK 959’, ‘P23’, ‘DK 771’, ‘DK 95’, ‘Bima 19 Uri’, ‘Bisma’, and ‘Sukmaraga’. The results showed that at four weeks after planting (WAP) the most of weeds were growing on varieties ‘Bisi 18’, ‘NK 33’, ‘P 23’, and ‘DK 95’, there were 14 species. Bulbostylispuberula and Cyperusrotundus were growing on all maize varieties with the highest SDR on ‘Sukmaraga’ and ‘DK 959’. At six WAP, weeds that grew, most consists of four species of sedges, six species of grasses and 24 species of broadleaf. While at the age of eight WAP, the weeds that grow at least on ‘NK 33’ that were 13 species and the most on ‘P23’ that were 21 species. Dactyloctenium aeghypthium having highest SDR in all maize varieties except Bisi 18. The highest SDR value on Bisi 18 was Boerhaavia erecta about 16.23%.

  13. Kinetics and mechanism of the conversion of a coordinated thiol to a coordinated disulfide by the one-equivalent oxidants neptunium(VI) and cobalt(III) in aqueous perchloric acid

    International Nuclear Information System (INIS)

    Woods, M.; Karbwang, J.; Sullivan, J.C.; Deutsch, E.

    1976-01-01

    Reaction of excess (2-mercaptoethylamine-N,S)bis(ethylenediamine)cobalt(III), I, with the 1-equiv oxidant Np(VI) (or Co 3+ (aq)) in aqueous perchloric acid media is shown to lead to (2-aminoethyl-N 2-ammonioethyl disulfide-S 1 ) bis(ethylenediamine)cobalt(III), II, according to the stoichiometry 5H + + 2I + Np(VI) → II + Co 2+ (aq) + Np(V) + 2enH 2 2+ . This reaction follows the rate law -d[I]/dt = k'' [I] [oxidant]. For Np(VI) as oxidant k'' is independent of [H + ]; at 25 0 C, μ = 1.00 M (LiClO 4 ), k'' = k 0 = 2842 +- 15 M -1 s -1 , ΔH 0 * = 7.57 +- 0.08 kcal/mol, and ΔS 0 * = -17.4 +- 0.3 eu. For Co 3+ (aq) as oxidant, k'' = k 0 + k/sub -1/[H + ] -1 where the inverse acid path is taken to reflect oxidation by CoOH 2+ (aq); at 25 0 C, μ = 1.00 M (LiClO 4 ), k 0 = 933 +- 32 M -1 s -1 , k/sub -1/ = 1152 +- 22 s -1 , ΔH 0 * = 12.5 +- 0.7 kcal/mol, ΔH*/sub -1/ = 18.0 +- 0.4 kcal/mol, ΔS 0 *= -3.1 +- 2.4 eu, and ΔS*/sub -1/ = 15.8 +- 1.2 eu. It is proposed that the conversion of I to II proceeds by initial 1-equiv oxidation of the coordinated thiol, reaction of the resultant coordinated thiol radical (RS.) with additional I to form a relatively stable radical ion dimer (RSSR. - ), and then internal electron transfer within the dimer to yield Co 2+ (aq) and II which contains a coordinated disulfide. The possible generality of this mechanism and its relevance to biological metal-thiol-disulfide interactions are noted

  14. HCV Core Residues Critical for Infectivity Are Also Involved in Core-NS5A Complex Formation

    Science.gov (United States)

    Gawlik, Katarzyna; Baugh, James; Chatterji, Udayan; Lim, Precious J.; Bobardt, Michael D.; Gallay, Philippe A.

    2014-01-01

    Hepatitis C virus (HCV) infection is a major cause of liver disease. The molecular machinery of HCV assembly and particle release remains obscure. A better understanding of the assembly events might reveal new potential antiviral strategies. It was suggested that the nonstructural protein 5A (NS5A), an attractive recent drug target, participates in the production of infectious particles as a result of its interaction with the HCV core protein. However, prior to the present study, the NS5A-binding site in the viral core remained unknown. We found that the D1 domain of core contains the NS5A-binding site with the strongest interacting capacity in the basic P38-K74 cluster. We also demonstrated that the N-terminal basic residues of core at positions 50, 51, 59 and 62 were required for NS5A binding. Analysis of all substitution combinations of R50A, K51A, R59A, and R62A, in the context of the HCVcc system, showed that single, double, triple, and quadruple mutants were fully competent for viral RNA replication, but deficient in secretion of viral particles. Furthermore, we found that the extracellular and intracellular infectivity of all the mutants was abolished, suggesting a defect in the formation of infectious particles. Importantly, we showed that the interaction between the single and quadruple core mutants and NS5A was impaired in cells expressing full-length HCV genome. Interestingly, mutations of the four basic residues of core did not alter the association of core or NS5A with lipid droplets. This study showed for the first time that basic residues in the D1 domain of core that are critical for the formation of infectious extracellular and intracellular particles also play a role in core-NS5A interactions. PMID:24533158

  15. Hydrothermal Synthesis of Disulfide-Containing Uranyl Compounds. In Situ Ligand Synthesis versus Direct Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Clare E. [George Washington Univ., Washington, DC (United States); Belai, Nebebech [George Washington Univ., Washington, DC (United States); Knope, Karah E. [George Washington Univ., Washington, DC (United States); Cahill, Christopher L. [George Washington Univ., Washington, DC (United States)

    2010-01-29

    Three disulfide-containing uranyl compounds, [UO2(C7H4O2S)3]·H2O (1), [UO2(C7H4O2S)2(C7H5O2S)] (2), and [UO2(C7H4O2S)4] (3) have been hydrothermally synthesized. Both in situ disulfide bond formation from 3- and 4-mercaptobenzoic acid (C7H5O2S, MBA) to yield 3,3'- and 4,4'-dithiobisbenzoic acid (C14H8O4S2, DTBA) and direct assembly with the presynthesized dimeric ligands have been explored. While the starting materials 4-MBA and 4,4'-DTBA both yield 2 via in situ ligand synthesis and direct assembly, respectively, we observe the formation of 1 from the starting material 3-MBA via in situ ligand synthesis and of 3 from the direct assembly of the uranyl cation with 3,3'-DTBA. Concurrently with the synthesis of 1 and 2, we have observed the in situ formation of the crystalline dimeric organic species, 3,3'-DTBA, [(C7H5O2S)2] (4) and 4,4'-DTBA, [(C7H5O2S)2] (5). Herein we report the synthesis and crystallographic characterization of 1-5, as well as observations regarding the utility of product formation via direct assembly and in situ ligand synthesis.

  16. DNA origami deposition on native and passivated molybdenum disulfide substrates

    Directory of Open Access Journals (Sweden)

    Xiaoning Zhang

    2014-04-01

    Full Text Available Maintaining the structural fidelity of DNA origami structures on substrates is a prerequisite for the successful fabrication of hybrid DNA origami/semiconductor-based biomedical sensor devices. Molybdenum disulfide (MoS2 is an ideal substrate for such future sensors due to its exceptional electrical, mechanical and structural properties. In this work, we performed the first investigations into the interaction of DNA origami with the MoS2 surface. In contrast to the structure-preserving interaction of DNA origami with mica, another atomically flat surface, it was observed that DNA origami structures rapidly lose their structural integrity upon interaction with MoS2. In a further series of studies, pyrene and 1-pyrenemethylamine, were evaluated as surface modifications which might mitigate this effect. While both species were found to form adsorption layers on MoS2 via physisorption, 1-pyrenemethylamine serves as a better protective agent and preserves the structures for significantly longer times. These findings will be beneficial for the fabrication of future DNA origami/MoS2 hybrid electronic structures.

  17. A high pressure x-ray diffraction study of titanium disulfide

    International Nuclear Information System (INIS)

    Aksoy, Resul; Selvi, Emre; Knudson, Russell; Ma Yanzhang

    2009-01-01

    A high pressure angle dispersive synchrotron x-ray diffraction study of titanium disulfide (TiS 2 ) was carried out to pressures of 45.5 GPa in a diamond-anvil cell. We observed a phase transformation of TiS 2 beginning at about 20.7 GPa. The structure of the high pressure phase needs further identification. By fitting the pressure-volume data to the third-order Birch-Murnaghan equation of state, the bulk modulus, K 0T , was determined to be 45.9 ± 0.7 GPa with its pressure derivative, K' 0T , being 9.5 ± 0.3 at pressures lower than 17.8 GPa. It was found that the compression behavior of TiS 2 is anisotropic along the different axes. The compression ratio of the c-axis is about nine times larger than the a-axis when pressures are lower than 1 GPa. It suddenly decreases to three times larger at pressures of about 3 GPa. This ratio shows a linear decrease with a slope of negative 0.048 at pressures below phase transformation.

  18. Disulfide-crosslinked nanomicelles confer cancer-specific drug delivery and improve efficacy of paclitaxel in bladder cancer

    Science.gov (United States)

    Pan, Amy; Zhang, Hongyong; Li, Yuanpei; Lin, Tzu-yin; Wang, Fuli; Lee, Joyce; Cheng, Mingshan; Dall'Era, Marc; Li, Tianhong; deVere White, Ralph; Pan, Chong-Xian; Lam, Kit S.

    2016-10-01

    Chemotherapy commonly used in the treatment of advanced bladder cancer is only moderately effective and associated with significant toxicity. There has been no appreciable improvement in overall survival over the last three decades. The goal of this project is to develop and characterize bladder cancer-specific nanometer-scale micelles loaded with the chemotherapeutic drug paclitaxel (PTX) and determine the anti-tumor activity and toxicity. Micelle-building-material telodendrimers were synthesized through the stepwise conjugation of eight cholic acid units at one terminus of polyethylene glycol (PEG) and a bladder cancer-specific targeting peptide named PLZ4 at the other terminus. To synthesize disulfide-crosslinked PLZ4 nanomicelles (DC-PNM), cysteine was introduced between the cholic acid and PEG. DC-PNM-PTX was synthesized through the evaporation method by loading PTX in the core. The loading capacity of PTX in DC-PNM was 25% (W/W). The loading efficiency was over 99%. DC-PNM-PTX was spherical with the median size of 25 nm. The stability of DC-PNM-PTX was determined in a solution containing sodium docecyl sulfate (SDS). It was stable in a SDS solution, but dissolved within 5 min after the addition of glutathione at the physiological intracellular concentration of 10 mM. In vivo targeting and anti-tumor activity were determined in immunodeficient mice carrying patient-derived bladder cancer xenografts (PDXs). After intravenous administration, DC-PNM specifically targeted the bladder cancer PDXs, but very little to the lung cancer xenografts in the same mice (p < 0.001). DC-PNM loaded with PTX overcame cisplatin resistance, and improved the median survival from 55 d with free PTX to 69.5 d (p = 0.03) of mice carrying PDXs. In conclusion, DC-PNM remained stable in the SDS solution, specifically targeted the bladder cancer xenografts in vivo, and improved the anti-cancer efficacy of PTX.

  19. Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes.

    Science.gov (United States)

    Lacey, Steven D; Wan, Jiayu; von Wald Cresce, Arthur; Russell, Selena M; Dai, Jiaqi; Bao, Wenzhong; Xu, Kang; Hu, Liangbing

    2015-02-11

    A microscale battery comprised of mechanically exfoliated molybdenum disulfide (MoS2) flakes with copper connections and a sodium metal reference was created and investigated as an intercalation model using in situ atomic force microscopy in a dry room environment. While an ethylene carbonate-based electrolyte with a low vapor pressure allowed topographical observations in an open cell configuration, the planar microbattery was used to conduct in situ measurements to understand the structural changes and the concomitant solid electrolyte interphase (SEI) formation at the nanoscale. Topographical observations demonstrated permanent wrinkling behavior of MoS2 electrodes upon sodiation at 0.4 V. SEI formation occurred quickly on both flake edges and planes at voltages before sodium intercalation. Force spectroscopy measurements provided quantitative data on the SEI thickness for MoS2 electrodes in sodium-ion batteries for the first time.

  20. Influence of core-finishing intervals on tensile strength of cast posts-and-cores luted with zinc phosphate cement

    Directory of Open Access Journals (Sweden)

    Michele Andrea Lopes Iglesias

    2012-08-01

    Full Text Available The core finishing of cast posts-and-cores after luting is routine in dental practice. However, the effects of the vibrations produced by the rotary cutting instruments over the luting cements are not well-documented. This study evaluated the influence of the time intervals that elapsed between the cementation and the core-finishing procedures on the tensile strength of cast posts-and-cores luted with zinc phosphate cement. Forty-eight bovine incisor roots were selected, endodontically treated, and divided into four groups (n = 12: GA, control (without finishing; GB, GC, and GD, subjected to finishing at 20 minutes, 60 minutes, and 24 hours after cementation, respectively. Root canals were molded, and the resin patterns were cast in copper-aluminum alloy. Cast posts-and-cores were luted with zinc phosphate cement, and the core-finishing procedures were applied according to the groups. The tensile tests were performed at a crosshead speed of 0.5 mm/min for all groups, 24 hours after the core-finishing procedures. The data were subjected to one-way analysis of variance (ANOVA and Tukey's test (α = 0.05. No significant differences were observed in the tensile strengths between the control and experimental groups, regardless of the time interval that elapsed between the luting and finishing steps. Within the limitations of the present study, it was demonstrated that the core-finishing procedures and time intervals that elapsed after luting did not appear to affect the retention of cast posts-and-cores when zinc phosphate cement was used.

  1. In situ aquifer bioremediation of organics including cyanide and carbon disulfide

    International Nuclear Information System (INIS)

    Abou-Rizk, J.A.M.; Leavitt, M.E.; Graves, D.A.

    1995-01-01

    Low levels (< 1 mg/L) of acetone, cyanide, phenol, naphthalene, 2-methylnaphthalene, and carbon disulfide from an inactive industrial landfill were found above background levels in a shallow aquifer at an eastern coastal site. In situ biodegradation was evaluated for treatment of these contaminants. Two soil samples and three groundwater samples were taken from the site for a laboratory bioassessment and a biotreatability test. The positive results of the bioassessment suggested moving forward with biotreatability testing. Biotreatability test results indicated suitable site conditions for bioremediation and that all the contaminants of concern at the site could be biodegraded to nondetect or very low levels (< 50 microg/L) with oxygen only; i.e., addition of nutrients was not required. Pilot-scale testing was undertaken on site to provide information for full-scale design, including oxygen requirements and air injection well spacing. This report describes the approach, the results, and their impact on the full-scale remediation system

  2. Chemical vapor deposition based tungsten disulfide (WS2) thin film transistor

    KAUST Repository

    Hussain, Aftab M.

    2013-04-01

    Tungsten disulfide (WS2) is a layered transition metal dichalcogenide with a reported band gap of 1.8 eV in bulk and 1.32-1.4 eV in its thin film form. 2D atomic layers of metal dichalcogenides have shown changes in conductivity with applied electric field. This makes them an interesting option for channel material in field effect transistors (FETs). Therefore, we show a highly manufacturable chemical vapor deposition (CVD) based simple process to grow WS2 directly on silicon oxide in a furnace and then its transistor action with back gated device with room temperature field effect mobility of 0.1003 cm2/V-s using the Schottky barrier contact model. We also show the semiconducting behavior of this WS2 thin film which is more promising than thermally unstable organic materials for thin film transistor application. Our direct growth method on silicon oxide also holds interesting opportunities for macro-electronics applications. © 2013 IEEE.

  3. Study of disulfide reduction and alkyl chloroformate derivatization of plasma sulfur amino acids using gas chromatography–mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Švagera, Z.; Hanzlíková, D.; Šimek, Petr; Hušek, Petr

    2012-01-01

    Roč. 402, č. 9 (2012), s. 2953-2963 ISSN 1618-2642 R&D Projects: GA MZd NS9755; GA ČR GAP206/10/2401; GA ČR GA203/09/2014 Institutional research plan: CEZ:AV0Z50070508 Keywords : plasma amino acids * disulfide-reducing agents * trichloroacetic acid deproteinization Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.659, year: 2012 http://www.springerlink.com/content/781wln3085q3v21r/

  4. Identification of intra- and intermolecular disulfide bridges in the multidrug resistance transporter ABCG2

    DEFF Research Database (Denmark)

    Henriksen, Ulla Birk; Fog, Jacob U; Litman, Thomas

    2005-01-01

    cysteines predicted to be on the extracellular face of ABCG2. Upon mutation of Cys-592 or Cys-608 to alanine (C592A and C608A), ABCG2 migrated as a dimer in SDS-PAGE under non-reducing conditions; however, mutation of Cys-603 to Ala (C603A) caused the transporter to migrate as a single monomeric band....... Despite this change, C603A displayed efficient membrane targeting and preserved transport function. Because the transporter migrated as a dimer in SDS-PAGE, when only Cys-603 was present (C592A-C608A), the data suggest that Cys-603 forms a symmetrical intermolecular disulfide bridge in the ABCG2 homodimer...

  5. An investigation of core liquid level depression in small break loss-of-coolant accidents

    International Nuclear Information System (INIS)

    Schultz, R.R.; Watkins, J.C.; Motley, F.E.; Stumpf, H.; Chen, Y.S.

    1991-08-01

    Core liquid level depression can result in partial core dryout and heatup early in a small break loss-of-coolant accident (SBLOCA) transient. Such behavior occurs when steam, trapped in the upper regions of the reactor primary system (between the loop seal and the core inventory), moves coolant out of the core region and uncovers the rod upper elevations. The net result is core liquid level depression. Core liquid level depression and subsequent core heatups are investigated using subscale data from the ROSA-IV Program's 1/48-scale Large Scale Test Facility (LSTF) and the 1/1705-scale Semiscale facility. Both facilities are Westinghouse-type, four-loop, pressurized water reactor simulators. The depression phenomena and factors which influence the minimum core level are described and illustrated using examples from the data. Analyses of the subject experiments, conducted using the TRAC-PF1/MOD1 (Version 12.7) thermal-hydraulic code, are also described and summarized. Finally, the response of a typical Westinghouse four-loop plant (RESAR-3S) was calculated to qualitatively study coal liquid level depression in a full-scale system. 31 refs., 37 figs., 6 tabs

  6. Urea- Hydrogen Peroxide (UHP Oxidation of Thiols to the Corresponding Disulfides Promoted by Maleic Anhydride as Mediator

    Directory of Open Access Journals (Sweden)

    M. H. Habibi

    2005-10-01

    Full Text Available Urea-hydrogen peroxide (UHP was used in the presence of maleic anhydride as mediator in a simple and convenient method for the oxidation in high yield of some thiols to the corresponding disulfides. Peroxymaleic acid formed in situ from the reaction of UHP with maleic anhydride has a key role in this oxidation. Performance of the reaction in various solvents showed that methanol was the solvent of choice at 0 oC. The products were isolated by simple filtration on silica gel.

  7. Formative Evaluation of the Behavior Change Components within a Colorado Weatherization Assistance Program

    Science.gov (United States)

    Sandoval, Perla K.

    A formative evaluation of behavior change elements of an ongoing Weatherization Assistance Program (WAP) offered by the Energy Resource Center (E.R.C.) in Denver, CO was conducted. The WAP as administered by the E.R.C. in Colorado saves residents an average 15% of energy consumption (E.R.C., 2015). However, research suggests that adding behavioral components to WAPs could increase energy savings to 21-26% (Gregory, 1992; APPRAISE, 2002). The goal of this evaluation is to provide recommendations to E.R.C. for program changes using Community Based Social Marketing (CBSM) and Theory of Planned Behavior. The CBSM Step 1- Step 3 is the focus of this formative evaluation. This program evaluation has four components: 1) review of written materials, 2) interviews with staff, 3) surveys mailed to E.R.C. clients and 4) in-home observations conducted with E.R.C. clients. Results of this formative evaluation has 3 sections of behaviors recommended for future intervention high priority, mid priority, and low priority recommendations based on CBSM penetration, probability, and impact factors. Behaviors that are listed as high priority for E.R.C. Behavioral intervention are cold water washing, hang drying, setting back thermostats, and window coverings. Overall increase in staff engagement is also recommended to be pursued. Each staff level is also given recommendations on how to engage in behavior change interventions.

  8. Aggregation of bovine serum albumin upon cleavage of its disulfide bonds, studied by the time-resolved small-angle X-ray scattering technique with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Tatzuo; Inoko, Yoji; Hiragi, Yuzuru; Kataoka, Mikio; Amemiya, Yoshiyuki; Izumi, Yoshinobu; Tagawa, Hiroyuki; Muroga, Yoshio

    1985-11-01

    A rapid mixing system of the stopped-flow type, used with small-angle X-ray scattering equipment using synchrotron radiation, is described. The process of aggregation of bovine serum albumin was traced with a time interval of 50s, initiated upon cleavage of its disulfide bonds by reduction with dithiothreitol. The results indicate that a 218-fold molar excess of dithiothreitol over the number of moles of disulfide bonds in bovine serum albumin is sufficient to initiate the reaction immediately after mixing, which reaches equilibrium in about 15 min. On the other hand, half this amount is not sufficient to initiate the reaction, so that the reaction is delayed by about 150s. Such a single-shot time-resolved experiment showed that experiments with a time interval of 100 ms are possible with repeated multi-shot runs. 26 refs.; 8 figs.

  9. Aggregation of bovine serum albumin upon cleavage of its disulfide bonds, studied by the time-resolved small-angle X-ray scattering technique with synchrotron radiation

    International Nuclear Information System (INIS)

    Ueki, Tatzuo; Inoko, Yoji; Izumi, Yoshinobu; Tagawa, Hiroyuki; Muroga, Yoshio

    1985-01-01

    A rapid mixing system of the stopped-flow type, used with small-angle X-ray scattering equipment using synchrotron radiation, is described. The process of aggregation of bovine serum albumin was traced with a time interval of 50 s, initiated upon cleavage of its disulfide bonds by reduction with dithiothreitol. The results indicate that a 218-fold molar excess of dithiothreitol over the number of moles of disulfide bonds in bovine serum albumin is sufficient to initiate the reaction immediately after mixing, which reaches equilibrium in about 15 min. On the other hand, half this amount is not sufficient to initiate the reaction, so that the reaction is delayed by about 150 s. Such a single-shot time-resolved experiment showed that experiments with a time interval of 100 ms are possible with repeated multi-shot runs. (Auth.)

  10. Monitoring device for the power distribution within a nuclear reactor core

    International Nuclear Information System (INIS)

    Tanzawa, Tomio; Kumanomido, Hironori; Toyoshi, Isamu.

    1986-01-01

    Purpose: To provide a monitoring device for the power distribution in the reactor core that calculates the power distribution based on the measurement by instruments disposed within the reactor core of BWR type reactors. Constitution: The power distribution monitoring device in a reactor core comprises a signal correcting device, a signal normalizing device and a power distribution calculating device, in which the power distribution calculating device is constituted with an average power calculating device for four fuel assemblies and an average power calculating device for fuel assemblies. Gamma-ray signals corrected by the signal correcting device and signals from neutron detectors are inputted to the signal normalizing device, both of which are calibrated to determine the axial gamma-ray signal distribution in the central water gap region with the four fuel assemblies being as the unit. The average power from the four fuel assemblies are inputted to the fuel assembly average power calculating device to allocate to each of the fuel assembly average power thereby attaining the purpose. Further, thermal restriction values are calculated thereby enabling to secure the fuel integrity. (Kamimura, M.)

  11. Study on HANARO core conversion using U-Mo fuel

    International Nuclear Information System (INIS)

    Lee, K.H.; Lee, C.S.; Seo, C.G.; Park, S.J.; Kim, H.; Kim, C.K.

    2002-01-01

    Two types of fuel rods with different fuel meat diameter and uranium density are considered for HANARO core conversion with high density U-Mo fuel. Arranging standard fuels of 5.0 g U/cc and 6.35 mm in diameter at the inner ring of an assembly and reduced fuels of 4.3 g U/cc and 5.49 mm in diameter at the outer ring of an assembly flattens the assembly power distribution and avoids the increase of linear heat generation rate due to using higher uranium density and less number of fuel rods. The maximum linear heat generation rate is similar with the current reference core and four fuel sites at the outer core in the reflector tank is converted to the irradiation sites to suit more demand on fuel tests and radioisotope production at outer core sites. This new core has 32% longer fuel cycle than the current reference core. (author)

  12. Identifying the node spreading influence with largest k-core values

    International Nuclear Information System (INIS)

    Lin, Jian-Hong; Guo, Qiang; Dong, Wen-Zhao; Tang, Li-Ying; Liu, Jian-Guo

    2014-01-01

    Identifying the nodes with largest spreading influence of complex networks is one of the most promising domains. By taking into account the neighbors' k-core values, we present an improved neighbors' k-core (INK) method which is the sum of the neighbors' k-core values with a tunable parameter α to evaluate the node spreading influence with largest k-core values. Comparing with the Susceptible–Infected–Recovered (SIR) results for four real networks, the INK method could identify the node spreading influence with largest k-core values more accurately than the ones generated by the degree k, closeness C, betweenness B and coreness centrality method. - Highlights: • We present an improved neighbors' k-core (INK) method to evaluate the node spreading influence with largest k-core values. • The INK method could identify the node spreading influence with largest k-core values more accurately. • Kendall's tau τ of INK method with α=1 are highly identical to rank the node influence

  13. Preparation and Characterization of WS2@SiO2 and WS2@PANI Core-Shell Nanocomposites

    Directory of Open Access Journals (Sweden)

    Hagit Sade

    2018-03-01

    Full Text Available Two tungsten disulfide (WS2-based core-shell nanocomposites were fabricated using readily available reagents and simple procedures. The surface was pre-treated with a surfactant couple in a layer-by-layer approach, enabling good dispersion of the WS2 nanostructures in aqueous media and providing a template for the polymerization of a silica (SiO2 shell. After a Stöber-like reaction, a conformal silica coating was achieved. Inspired by the resulting nanocomposite, a second one was prepared by reacting the surfactant-modified WS2 nanostructures with aniline and an oxidizing agent in an aqueous medium. Here too, a conformal coating of polyaniline (PANI was obtained, giving a WS2@PANI nanocomposite. Both nanocomposites were analyzed by electron microscopy, energy dispersive X-ray spectroscopy (EDS and FTIR, verifying the core-shell structure and the character of shells. The silica shell was amorphous and mesoporous and the surface area of the composite increases with shell thickness. Polyaniline shells slightly differ in their morphologies dependent on the acid used in the polymerization process and are amorphous like the silica shell. Electron paramagnetic resonance (EPR spectroscopy of the WS2@PANI nanocomposite showed variation between bulk PANI and the PANI shell. These two nanocomposites have great potential to expand the use of transition metals dichalcogenides (TMDCs for new applications in different fields.

  14. Continuous exposure to low-frequency noise and carbon disulfide: Combined effects on hearing.

    Science.gov (United States)

    Venet, Thomas; Carreres-Pons, Maria; Chalansonnet, Monique; Thomas, Aurélie; Merlen, Lise; Nunge, Hervé; Bonfanti, Elodie; Cosnier, Frédéric; Llorens, Jordi; Campo, Pierre

    2017-09-01

    Carbon disulfide (CS 2 ) is used in industry; it has been shown to have neurotoxic effects, causing central and distal axonopathies.However, it is not considered cochleotoxic as it does not affect hair cells in the organ of Corti, and the only auditory effects reported in the literature were confined to the low-frequency region. No reports on the effects of combined exposure to low-frequency noise and CS 2 have been published to date. This article focuses on the effects on rat hearing of combined exposure to noise with increasing concentrations of CS 2 (0, 63,250, and 500ppm, 6h per day, 5 days per week, for 4 weeks). The noise used was a low-frequency noise ranging from 0.5 to 2kHz at an intensity of 106dB SPL. Auditory function was tested using distortion product oto-acoustic emissions, which mainly reflects the cochlear performances. Exposure to noise alone caused an auditory deficit in a frequency area ranging from 3.6 to 6 kHz. The damaged area was approximately one octave (6kHz) above the highest frequency of the exposure noise (2.8kHz); it was a little wider than expected based on the noise spectrum.Consequently, since maximum hearing sensitivity is located around 8kHz in rats, low-frequency noise exposure can affect the cochlear regions detecting mid-range frequencies. Co-exposure to CS 2 (250-ppm and over) and noise increased the extent of the damaged frequency window since a significant auditory deficit was measured at 9.6kHz in these conditions.Moreover, the significance at 9.6kHz increased with the solvent concentrations. Histological data showed that neither hair cells nor ganglion cells were damaged by CS 2 . This discrepancy between functional and histological data is discussed. Like most aromatic solvents, carbon disulfide should be considered as a key parameter in hearing conservation régulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Mutational analysis of Kex2 recognition sites and a disulfide bond in tannase from Aspergillus oryzae.

    Science.gov (United States)

    Koseki, Takuya; Otsuka, Motohiro; Mizuno, Toshiyuki; Shiono, Yoshihito

    2017-01-22

    Aspergillus oryzae tannase (AoTanA), which contains two Kex2 recognition sites at positions Arg311 and Arg316, consists of two subunits that are generated by the cleavage of tannase gene product by the Kex2 protease. Based on the crystal structure of feruloyl esterase from Aspergillus oryzae (AoFaeB), which has been classified as a member of the fungal tannase family, the catalytic triad residues of AoTanA are predicted to be Ser195, Asp455, and His501, with the serine and histidine residues brought together by a disulfide bond of the neighboring cysteines, Cys194 and Cys502. In this study, we investigated the functional role of the Kex2 recognition sites and disulfide bond between the neighboring cysteines in AoTanA. We constructed a double variant (R311A/R316A), a seven amino-acid deletion variant of region Lys310-Arg316 (ΔKR), and two single variants (C194A and C502A). While the R311A/R316A variant exhibited the two bands similar to wild type by SDS-PAGE after treatment with endoglycosidase H, the ΔKR variant exhibited only one band. R311A/R316A variation had no effect on tannase activity and stability. Meanwhile, the ΔKR variant exhibited higher activity compared to the wild-type. The activities of the C194A and C502A variants decreased considerably (<0.24% of the wild-type) toward methyl gallate. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Synthesis of tetramethylthiuram disulfide ({sup 35}S); Synthese du disulfure de tetramethylthiurame ({sup 35}S)

    Energy Technology Data Exchange (ETDEWEB)

    Bentov, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Tetramethylthiuram disulfide ({sup 35}S) has been prepared by exchange between elementary sulfur ({sup 35}S) and sodium N-dithiocarbamate followed by an oxidation with potassium ferricyanide. The method allows to obtain rapidly a pure product with relatively high activity. The radioactive exchange is 82 per cent. (author) [French] Le disurfure de tetramethylthiurame ({sup 35}S) a ete prepare par echange entre le soufre elementaire ({sup 35}S) et le N-dimethyldithiocarbamate de soude suivi d'une oxydation par le ferricyanure de potasse. La methode permet d'obtenir rapidement un produit pur avec une activite relativement haute. L'echange radioactif effectue est de 82 pour cent. (auteur)

  17. Catalytic mechanism of Sep-tRNA:Cys-tRNA synthase: sulfur transfer is mediated by disulfide and persulfide.

    Science.gov (United States)

    Liu, Yuchen; Dos Santos, Patricia C; Zhu, Xiang; Orlando, Ron; Dean, Dennis R; Söll, Dieter; Yuan, Jing

    2012-02-17

    Sep-tRNA:Cys-tRNA synthase (SepCysS) catalyzes the sulfhydrylation of tRNA-bound O-phosphoserine (Sep) to form cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) in methanogens that lack the canonical cysteinyl-tRNA synthetase (CysRS). A crystal structure of the Archaeoglobus fulgidus SepCysS apoenzyme provides information on the binding of the pyridoxal phosphate cofactor as well as on amino acid residues that may be involved in substrate binding. However, the mechanism of sulfur transfer to form cysteine was not known. Using an in vivo Escherichia coli complementation assay, we showed that all three highly conserved Cys residues in SepCysS (Cys(64), Cys(67), and Cys(272) in the Methanocaldococcus jannaschii enzyme) are essential for the sulfhydrylation reaction in vivo. Biochemical and mass spectrometric analysis demonstrated that Cys(64) and Cys(67) form a disulfide linkage and carry a sulfane sulfur in a portion of the enzyme. These results suggest that a persulfide group (containing a sulfane sulfur) is the proximal sulfur donor for cysteine biosynthesis. The presence of Cys(272) increased the amount of sulfane sulfur in SepCysS by 3-fold, suggesting that this Cys residue facilitates the generation of the persulfide group. Based upon these findings, we propose for SepCysS a sulfur relay mechanism that recruits both disulfide and persulfide intermediates.

  18. Variation in the Subcellular Localization and Protein Folding Activity among Arabidopsis thaliana Homologs of Protein Disulfide Isomerase

    Directory of Open Access Journals (Sweden)

    Christen Y. L. Yuen

    2013-10-01

    Full Text Available Protein disulfide isomerases (PDIs catalyze the formation, breakage, and rearrangement of disulfide bonds to properly fold nascent polypeptides within the endoplasmic reticulum (ER. Classical animal and yeast PDIs possess two catalytic thioredoxin-like domains (a, a′ and two non-catalytic domains (b, b′, in the order a-b-b′-a′. The model plant, Arabidopsis thaliana, encodes 12 PDI-like proteins, six of which possess the classical PDI domain arrangement (AtPDI1 through AtPDI6. Three additional AtPDIs (AtPDI9, AtPDI10, AtPDI11 possess two thioredoxin domains, but without intervening b-b′ domains. C-terminal green fluorescent protein (GFP fusions to each of the nine dual-thioredoxin PDI homologs localized predominantly to the ER lumen when transiently expressed in protoplasts. Additionally, expression of AtPDI9:GFP-KDEL and AtPDI10: GFP-KDDL was associated with the formation of ER bodies. AtPDI9, AtPDI10, and AtPDI11 mediated the oxidative folding of alkaline phosphatase when heterologously expressed in the Escherichia coli protein folding mutant, dsbA−. However, only three classical AtPDIs (AtPDI2, AtPDI5, AtPDI6 functionally complemented dsbA−. Interestingly, chemical inducers of the ER unfolded protein response were previously shown to upregulate most of the AtPDIs that complemented dsbA−. The results indicate that Arabidopsis PDIs differ in their localization and protein folding activities to fulfill distinct molecular functions in the ER.

  19. Determination of glutathione and glutathione disulfide in biological samples: an in-depth review.

    Science.gov (United States)

    Monostori, Péter; Wittmann, Gyula; Karg, Eszter; Túri, Sándor

    2009-10-15

    Glutathione (GSH) is a thiol-containing tripeptide, which plays central roles in the defence against oxidative damage and in signaling pathways. Upon oxidation, GSH is transformed to glutathione disulfide (GSSG). The concentrations of GSH and GSSG and their molar ratio are indicators of cell functionality and oxidative stress. Assessment of redox homeostasis in various clinical states and medical applications for restoration of the glutathione status are of growing importance. This review is intended to provide a state-of-the-art overview of issues relating to sample pretreatment and choices for the separation and detection of GSH and GSSG. High-performance liquid chromatography, capillary electrophoresis and gas chromatography (as techniques with a separation step) with photometric, fluorimetric, electrochemical and mass spectrometric detection are discussed, stress being laid on novel approaches.

  20. Prospects for future uranium savings through LWRs with high performance cores

    International Nuclear Information System (INIS)

    Mochida, T.; Yamamoto, T.; Sasaki, M.; Matsuura, H.; Ueji, M.; Murata, T.; Kanda, K.; Oka, Y.; Kondo, S.

    1995-01-01

    Since 1986, Nuclear Power Engineering Cooperation (NUPEC) has been studying four types of LWR high performance core concepts (i.e., the uranium saving core I (USC-I), the uranium saving core II (USC-II), the high moderation core (HMC) and the low moderation core (LMC)), which aim at improvement of uranium and plutonium utilization. After the evaluation of fundamental core performance and uranium and plutonium material balance for each reactor, potential uranium savings with different reactor strategies are evaluated for the Japanese scenario with assumption of the growth of future nuclear power plant generation, annual reprocessing capacity and schedules for the introduction of high performance core. At 2030, about 3-6% savings in uranium demand are expected by USC-I or USC-II strategy, while about 14% savings by HMC strategy and about 8% by LMC strategy. (author)

  1. Tradeoff of sodium void worth and burnup reactivity swing: Impacts on balance safety position in metallic-fueled cores

    International Nuclear Information System (INIS)

    Wigeland, R.A.; Turski, R.B.; Pizzica, P.A.

    1994-01-01

    A study has been conducted to investigate the effect of a lower sodium void worth on the consequences of severe accidents in metallic-fueled sodium-cooled reactors. Four 900 MWth designs were used for the study, where all of the reactor cores were designed based on the metallic fuel of the Integral Fast Reactor (IFR) concept. The four core designs each have different sodium void worth, in the range of -3$ to 5$. The purpose of the investigation was to determine the differences in severe accident response for the four core designs, in order to estimate the improvement in overall safety that could be achieved from a reduction in the sodium void worth for reactor cores which use a metallic fuel form

  2. Effect of sunn hemp (Crotalaria juncea L.) cutting date and planting density on weed suppression in Georgia, USA.

    Science.gov (United States)

    Morris, J Bradley; Chase, Carlene; Treadwell, Danielle; Koenig, Rosie; Cho, Alyssa; Morales-Payan, Jose Pable; Murphy, Tim; Antonious, George F

    2015-01-01

    A field study was conducted in 2008 and 2009 at the USDA, ARS, Plant Genetic Resources Conservation Unit in Griffin, GA, to investigate weed suppression by sunn hemp (Crotalaria juncea L). The objectives were to (1) evaluate the effects of apical meristem removal (AMR) at three dates [5, 6, and 7 wks after planting (WAP) on May 14, 2008 and May 21, 2009] and (2) assess the impact of seeding rates (11, 28, and 45 kg ha(-1)) on weed biomass reduction. Weed species were identified at 4, 8, and 12 wks after sunn hemp planting. Sunn hemp cutting date had no significant effect on weed suppression in 2008 but significant differences for grass weeds at 4, 8, and 12 WAP and for yellow nutsedge at 8 and 12 WAP did occur when compared to the control in 2009. In comparison to the sunn hemp-free control plot in 2009, all three seeding rates had reduced grass weed dry weights at 4, 8, and 12 WAP. The total mass of yellow nutsedge when grown with sunn hemp was reduced compared to the total mass of yellow nutsedge grown in the weedy check for all seeding rates at 8 and 12 WAP. Lower grass weed biomass was observed by 12 WAP for cutting dates and seeding rates during 2008 and 2009. Sunn hemp cutting date and seeding rate reduced branch numbers in both years. The reduction in sunn hemp seeding rates revealed a decrease in weed populations.

  3. Towards an ICF Core Set for chronic musculoskeletal conditions: commonalities across ICF Core Sets for osteoarthritis, rheumatoid arthritis, osteoporosis, low back pain and chronic widespread pain.

    Science.gov (United States)

    Schwarzkopf, S R; Ewert, T; Dreinhöfer, K E; Cieza, A; Stucki, G

    2008-11-01

    The objective of the study was to identify commonalities among the International Classification of Functioning, Disability and Health (ICF) Core Sets of osteoarthritis (OA), osteoporosis (OP), low back pain (LBP), rheumatoid arthritis (RA) and chronic widespread pain (CWP). The aim is to identify relevant categories for the development of a tentative ICF Core Set for musculoskeletal and pain conditions. The ICF categories common to the five musculoskeletal and pain conditions in the Brief and Comprehensive ICF Core Sets were identified in three steps. In a first step, the commonalities across the Brief and Comprehensive ICF Core Sets for these conditions were examined. In a second and third step, we analysed the increase in commonalities when iteratively excluding one or two of the five conditions. In the first step, 29 common categories out of the total number of 120 categories were identified across the Comprehensive ICF Core Sets of all musculoskeletal and pain conditions, primarily in the component activities and participation. In the second and third step, we found that the exclusion of CWP across the Comprehensive ICF Core Sets increased the commonalities of the remaining four musculoskeletal conditions in a maximum of ten additional categories. The Brief ICF Core Sets of all musculoskeletal and pain conditions contain four common categories out of a total number of 62 categories. The iterative exclusion of a singular condition did not significantly increase the commonalities in the remaining. Based on our analysis, it seems possible to develop a tentative Comprehensive ICF Core Set across a number of musculoskeletal conditions including LBP, OA, OP and RA. However, the profile of functioning in people with CWP differs considerably and should not be further considered for a common ICF Core Set.

  4. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics.

    Science.gov (United States)

    Cheng, Rui; Jiang, Shan; Chen, Yu; Liu, Yuan; Weiss, Nathan; Cheng, Hung-Chieh; Wu, Hao; Huang, Yu; Duan, Xiangfeng

    2014-10-08

    Two-dimensional layered materials, such as molybdenum disulfide, are emerging as an exciting material system for future electronics due to their unique electronic properties and atomically thin geometry. Here we report a systematic investigation of MoS2 transistors with optimized contact and device geometry, to achieve self-aligned devices with performance including an intrinsic gain over 30, an intrinsic cut-off frequency fT up to 42 GHz and a maximum oscillation frequency fMAX up to 50 GHz, exceeding the reported values for MoS2 transistors to date (fT~0.9 GHz, fMAX~1 GHz). Our results show that logic inverters or radio frequency amplifiers can be formed by integrating multiple MoS2 transistors on quartz or flexible substrates with voltage gain in the gigahertz regime. This study demonstrates the potential of two-dimensional layered semiconductors for high-speed flexible electronics.

  5. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics

    Science.gov (United States)

    Cheng, Rui; Jiang, Shan; Chen, Yu; Liu, Yuan; Weiss, Nathan; Cheng, Hung-Chieh; Wu, Hao; Huang, Yu; Duan, Xiangfeng

    2014-01-01

    Two-dimensional layered materials, such as molybdenum disulfide, are emerging as an exciting material system for future electronics due to their unique electronic properties and atomically thin geometry. Here we report a systematic investigation of MoS2 transistors with optimized contact and device geometry, to achieve self-aligned devices with performance including an intrinsic gain over 30, an intrinsic cut-off frequency fT up to 42 GHz and a maximum oscillation frequency fMAX up to 50 GHz, exceeding the reported values for MoS2 transistors to date (fT ~ 0.9 GHz, fMAX ~ 1 GHz). Our results show that logic inverters or radio frequency amplifiers can be formed by integrating multiple MoS2 transistors on quartz or flexible substrates with voltage gain in the gigahertz regime. This study demonstrates the potential of two-dimensional layered semiconductors for high-speed flexible electronics. PMID:25295573

  6. Adjustment of cast metal post/cores modeled with different acrylic resins

    OpenAIRE

    Gusmão, João Milton Rocha; Pereira, Renato Piai; Alves, Guilhermino Oliveira; Pithon, Matheus Melo; Moreira, David Costa

    2016-01-01

    Aim: Evaluate the performance of four commercially available chemically-activated acrylic resins (CAARs) by measuring the level of displacement of the cores following casting. Materials and Methods: Two devices were constructed to model the cores based on a natural tooth. Forty post/cores were modeled, 10 in each of the following CAARs: Duralay (Reliance Dental, Illinois, USA), Pattern Resin (GC, Tokyo, Japan), Dencrilay (Dencril, Sao Paulo, Brazil), and Jet (Clássico, Sao Paulo, Brazil). Two...

  7. Three-dimensional discrete element method simulation of core disking

    Science.gov (United States)

    Wu, Shunchuan; Wu, Haoyan; Kemeny, John

    2018-04-01

    The phenomenon of core disking is commonly seen in deep drilling of highly stressed regions in the Earth's crust. Given its close relationship with the in situ stress state, the presence and features of core disking can be used to interpret the stresses when traditional in situ stress measuring techniques are not available. The core disking process was simulated in this paper using the three-dimensional discrete element method software PFC3D (particle flow code). In particular, PFC3D is used to examine the evolution of fracture initiation, propagation and coalescence associated with core disking under various stress states. In this paper, four unresolved problems concerning core disking are investigated with a series of numerical simulations. These simulations also provide some verification of existing results by other researchers: (1) Core disking occurs when the maximum principal stress is about 6.5 times the tensile strength. (2) For most stress situations, core disking occurs from the outer surface, except for the thrust faulting stress regime, where the fractures were found to initiate from the inner part. (3) The anisotropy of the two horizontal principal stresses has an effect on the core disking morphology. (4) The thickness of core disk has a positive relationship with radial stress and a negative relationship with axial stresses.

  8. Intermodal parametric gain of degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2013-01-01

    Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process.......Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process....

  9. Synthesis and Characterization of Cleavable Core-Cross-Linked Micelles Based on Amphiphilic Block Copolypeptoids as Smart Drug Carriers.

    Science.gov (United States)

    Li, Ang; Zhang, Donghui

    2016-03-14

    Amphiphilic block copolypeptoids consisting of a hydrophilic poly(N-ethyl glycine) segment and a hydrophobic poly[(N-propargyl glycine)-r-(N-decyl glycine)] random copolymer segment [PNEG-b-P(NPgG-r-NDG), EPgD] have been synthesized by sequential primary amine-initiated ring-opening polymerization (ROP) of the corresponding N-alkyl N-carboxyanhydride monomers. The block copolypeptoids form micelles in water and the micellar core can be cross-linked with a disulfide-containing diazide cross-linker by copper-mediated alkyne-azide cycloaddition (CuAAC) in aqueous solution. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical micelles with uniform size for both the core-cross-linked micelles (CCLMs) and non-cross-linked micelles (NCLMs) precursors for selective block copolypeptoid polymers. The CCLMs exhibited increased dimensional stability relative to the NCLMs in DMF, a nonselective solvent for the core and corona segments. Micellar dissociation of CCLMs can be induced upon addition of a reducing agent (e.g., dithiothreitol) in dilute aqueous solutions, as verified by a combination of fluorescence spectroscopy, size exclusion chromatography (SEC), and (1)H NMR spectroscopic measurement. Doxorubicin (DOX), an anticancer drug, can be loaded into the hydrophobic core of CCLMs with a maximal 23% drug loading capacity (DLC) and 37% drug loading efficiency (DLE). In vitro DOX release from the CCLMs can be triggered by DTT (10 mM), in contrast to significantly reduced DOX release in the absence of DTT, attesting to the reductively responsive characteristic of the CCLMs. While the CCLMs exhibited minimal cytotoxicity toward HepG2 cancer cells, DOX-loaded CCLMs inhibited the proliferation of the HepG2 cancer cells in a concentration and time dependent manner, suggesting the controlled release of DOX from the DOX-loaded CCLMS in the cellular environment.

  10. Influence of liposome forms of the rhenium compounds and cis-platin on thiol-disulfide coefficient in the rats’ blood

    Directory of Open Access Journals (Sweden)

    I. V. Klenina

    2007-12-01

    Full Text Available Thiol-disulfide coefficient (TDC and its different modifications in model in vivo were studied. Introduction of the liposome forms of cluster rhenium compounds with organic ligands (CROL leads to both TDC increasing and to the constancy of the TDC. Thus, CROLs aren’t toxic agents and some compounds could mobilize organisms’ thiol defence system. Liposome form of cis-platin leads to the TDC decreasing. Important CROL capacities for its future medical treatment practice were shown.

  11. Core principles of evolutionary medicine: A Delphi study.

    Science.gov (United States)

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further.

  12. Tackling obesity in areas of high social deprivation: clinical effectiveness and cost-effectiveness of a task-based weight management group programme - a randomised controlled trial and economic evaluation.

    Science.gov (United States)

    McRobbie, Hayden; Hajek, Peter; Peerbux, Sarrah; Kahan, Brennan C; Eldridge, Sandra; Trépel, Dominic; Parrott, Steve; Griffiths, Chris; Snuggs, Sarah; Myers Smith, Katie

    2016-10-01

    An increasing number of people require help to manage their weight. The NHS recommends weight loss advice by general practitioners and/or a referral to a practice nurse. Although this is helpful for some, more effective approaches that can be disseminated economically on a large scale are needed. To assess whether or not a task-based weight management programme [Weight Action Programme (WAP)] has better long-term effects than a 'best practice' intervention provided in primary care by practice nurses. Randomised controlled trial with cost-effectiveness analysis. General practices in east London, UK. Three hundred and thirty adults with a body mass index (BMI) of ≥ 30 kg/m 2 or a BMI of ≥ 28 kg/m 2 plus comorbidities were recruited from local general practices and via media publicity. Those who had a BMI of > 45 kg/m 2 , had lost > 5% of their body weight in the previous 6 months, were currently pregnant or taking psychiatric medications were excluded. Participants were randomised (2 : 1) to the WAP or nurse arms. The WAP intervention was delivered in eight weekly group sessions that combined dietary and physical activity, advice and self-monitoring in a group-oriented intervention. The initial course was followed by 10 monthly group maintenance sessions open to all participants in this study arm. The practice nurse intervention (best usual care) consisted of four one-to-one sessions delivered over 8 weeks, and included standard advice on diet and physical activity based on NHS 'Change4Life' materials and motivational support. The primary outcome measure was weight change at 12 months. Secondary outcome measures included change in BMI, waist circumference and blood pressure, and proportion of participants losing at least 5% and 10% of baseline body weight. Staff collecting measurements at the 6- and 12-month follow-ups were blinded to treatment allocation. The primary outcome measure was analysed according to the intention-to-treat principle

  13. Nuclear reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, R F

    1974-07-11

    The core of the fast neutron reactor consisting, among other components, of fuel elements enriched in plutonium is divided into modules. Each module contains a bundle of four or six elongated components (fuel elements and control rods). In the arrangement with four components, one is kept rigid while the other three are elastically yielding inclined towards the center and lean against the rigid component. In the modules with six pieces, each component is elastically yielding inclined towards a central cavity. In this way, they form a circular arc. A control rod may be placed in the cavity. In order to counteract a relative lateral movement, the outer surfaces of the components which have hexagonal cross-sections have interlocking bearing cushions. The bearing cushions consist of keyway-type ribs or grooves with the wedges or ribs gripping in the grooves of the neighbouring components. In addition, the ribs have oblique entering surfaces.

  14. A core curriculum for clinical fellowship training in pathology informatics

    Directory of Open Access Journals (Sweden)

    David S McClintock

    2012-01-01

    Full Text Available Background: In 2007, our healthcare system established a clinical fellowship program in Pathology Informatics. In 2010 a core didactic course was implemented to supplement the fellowship research and operational rotations. In 2011, the course was enhanced by a formal, structured core curriculum and reading list. We present and discuss our rationale and development process for the Core Curriculum and the role it plays in our Pathology Informatics Fellowship Training Program. Materials and Methods: The Core Curriculum for Pathology Informatics was developed, and is maintained, through the combined efforts of our Pathology Informatics Fellows and Faculty. The curriculum was created with a three-tiered structure, consisting of divisions, topics, and subtopics. Primary (required and suggested readings were selected for each subtopic in the curriculum and incorporated into a curated reading list, which is reviewed and maintained on a regular basis. Results: Our Core Curriculum is composed of four major divisions, 22 topics, and 92 subtopics that cover the wide breadth of Pathology Informatics. The four major divisions include: (1 Information Fundamentals, (2 Information Systems, (3 Workflow and Process, and (4 Governance and Management. A detailed, comprehensive reading list for the curriculum is presented in the Appendix to the manuscript and contains 570 total readings (current as of March 2012. Discussion: The adoption of a formal, core curriculum in a Pathology Informatics fellowship has significant impacts on both fellowship training and the general field of Pathology Informatics itself. For a fellowship, a core curriculum defines a basic, common scope of knowledge that the fellowship expects all of its graduates will know, while at the same time enhancing and broadening the traditional fellowship experience of research and operational rotations. For the field of Pathology Informatics itself, a core curriculum defines to the outside world

  15. Thermal stability and electrical conductivity in polyethers-molybdenum disulfide nanocomposites

    International Nuclear Information System (INIS)

    Mirabal, N.; Aguirre, P.; Santa Ana, M.A.; Benavente, E.; Gonzalez, Guillermo

    2003-01-01

    The intercalation of poly(ethylene oxide) (PEO), into molybdenum disulfide, like that of other electron pair donors, leads to mixed ionic-electronic conductors. At room temperature, intercalates show electrical and lithium-ion conductivities better than MoS 2 and bulk PEO composites, respectively. However, these products are known to be sensitive to temperature; indeed, in the range 80-100 deg. C an irreversible decrease of the electrical conductivity is observed. In order to investigate these features, the thermal behavior of a series of polyethers of different molecular weights (poly(ethylene glycol) (Mw 3400) and PEO with Mw in the range 10 4 -4x10 6 , pure and intercalated in MoS 2 , (Li x (MoS 2 )(polyether) y with x∼0.1 and y=1.1-1.5), was comparatively analyzed. Furthermore, the effect of thermal treatment of the sample on the electrical conductivity was studied for one of the intercalated products. Results indicate that irreversible changes, detected by both loss of weight and a significant conductivity lowering, are occurring in the range from about 100 deg. C to a temperature near to the decomposition point of the organic phase at about 350 deg. C

  16. Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide.

    Science.gov (United States)

    Sun, Xiaoli; Wang, Zhiguo; Fu, Y Q

    2015-12-22

    Monolayer Molybdenum Disulfide (MoS2) is a promising anode material for lithium ion batteries because of its high capacities. In this work, first principle calculations based on spin density functional theory were performed to investigate adsorption and diffusion of lithium on monolayer MoS2 with defects, such as single- and few-atom vacancies, antisite, and grain boundary. The values of adsorption energies on the monolayer MoS2 with the defects were increased compared to those on the pristine MoS2. The presence of defects causes that the Li is strongly bound to the monolayer MoS2 with adsorption energies in the range between 2.81 and 3.80 eV. The donation of Li 2s electron to the defects causes an enhancement of adsorption of Li on the monolayer MoS2. At the same time, the presence of defects does not apparently affect the diffusion of Li, and the energy barriers are in the range of 0.25-0.42 eV. The presence of the defects can enhance the energy storage capacity, suggesting that the monolayer MoS2 with defects is a suitable anode material for the Li-ion batteries.

  17. Study on core design for reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Okubo, Tsutomu

    2002-01-01

    The Reduced-Moderation Water Reactor (RMWR) is a water-cooled reactor with the harder neutron spectrum comparing with the LWR, resulting from low neutron moderation due to reduced water volume fraction. Based on the difference from the spectrum from the LWR, the conversion from U-238 to Pu-239 is promoted and the new cores preferable to effective utilization of uranium resource can be possible Design study of the RMWR core started in 1997 and new four core concepts (three BWR cores and one PWR core) are recently evaluated in terms of control rod worths, plutonium multiple recycle, high burnup and void coefficient. Comparative evaluations show needed incorporation of control rod programming and simplified PUREX process as well as development of new fuel cans for high burnup of 100 GW-d/t. Final choice of design specifications will be made at the next step aiming at realization of the RMWR. (T. Tanaka)

  18. Study on core design for reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    The Reduced-Moderation Water Reactor (RMWR) is a water-cooled reactor with the harder neutron spectrum comparing with the LWR, resulting from low neutron moderation due to reduced water volume fraction. Based on the difference from the spectrum from the LWR, the conversion from U-238 to Pu-239 is promoted and the new cores preferable to effective utilization of uranium resource can be possible Design study of the RMWR core started in 1997 and new four core concepts (three BWR cores and one PWR core) are recently evaluated in terms of control rod worths, plutonium multiple recycle, high burnup and void coefficient. Comparative evaluations show needed incorporation of control rod programming and simplified PUREX process as well as development of new fuel cans for high burnup of 100 GW-d/t. Final choice of design specifications will be made at the next step aiming at realization of the RMWR. (T. Tanaka)

  19. Identifying functions for ex-core neutron noise analysis

    International Nuclear Information System (INIS)

    Avila, J.M.; Oliveira, J.C.

    1987-01-01

    A method of performing the phase analysis of signals arising from neutron detectors placed in the periphery of a pressurized water reactor is proposed. It consists in the definition of several identifying functions, based on the phases of cross power spectral densities corresponding to four ex-core neutron detectors. Each of these functions enhances the appearance of different sources of noise. The method, applied to the ex-core neutron fluctuation analysis of a French PWR, proved to be very useful as it allows quick recognition of various patterns in the power spectral densities. (orig.) [de

  20. Identifying Core Mobile Learning Faculty Competencies Based Integrated Approach: A Delphi Study

    Science.gov (United States)

    Elbarbary, Rafik Said

    2015-01-01

    This study is based on the integrated approach as a concept framework to identify, categorize, and rank a key component of mobile learning core competencies for Egyptian faculty members in higher education. The field investigation framework used four rounds Delphi technique to determine the importance rate of each component of core competencies…

  1. Preliminary considerations on the startup phase for the ASTRID core

    International Nuclear Information System (INIS)

    Mignot, G.

    2015-01-01

    This paper presents preliminary considerations on the startup phase for the ASTRID core, as well as an overview of the different steps before reaching the optimised equilibrium core. The start-up phase is assumed to cover the period between loading the dummy core into the reactor (for commissioning tests) and achieving the optimised equilibrium core. Four main stages are considered: a first stage of start-up tests before fuel core loading, a second stage related to zero power and power ramp-up tests, a third stage corresponding to the transition from the first core to the equilibrium contractual core, and the last stage to reach the optimised performance for the equilibrium core. In the two last stages, a sub-assembly surveillance plan based on post-irradiation examinations is taken into account. As this work is in its preliminary stages, the first scenarios shown for the start-up phase must not be considered as the ASTRID reference scenarios. The scenarios strongly depend on the assumptions considered in the analysis, whereas those discussed in this paper aim at outlining the content and the duration of the starting phases for the ASTRID core, which will be useful in subsequently assessing the core sub-assembly fabrication needs. Assumptions for the start-up phase will be updated in accordance with progress on the ASTRID core design development and core qualification programme. (author)

  2. The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene

    International Nuclear Information System (INIS)

    Shitsukawa, N.; Ikari, C.; Shimada, S.; Kitagawa, S.; Sakamoto, K.; Saito, H.; Ryuto, H.; Fukunishi, N.; Abe, T.; Takumi, S.; Nasuda, S.; Murai, K.

    2007-01-01

    The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase (mvp), was induced by nitrogen ion-beam treatment and was identified by its inability to transit from the vegetative to reproductive phase. In our previous study, we showed that WAP1 (wheat APETALA1) is a key gene in the regulatory pathway that controls phase transition from vegetative to reproductive growth in common wheat. WAP1 is an ortholog of the VRN1 gene that is responsible for vernalization insensitivity in einkorn wheat. The mvp mutation resulted from deletion of the VRN1 coding and promoter regions, demonstrating that WAP1/VRN1 is an indispensable gene for phase transition in wheat. Expression analysis of flowering-related genes in mvp plants indicated that wheat GIGANTIA (GI), CONSTANS (CO) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) genes either act upstream of or in a different pathway to WAP1/VRN1

  3. Process Development for Reactive-Ion Etching of Molybdenum Disulfide (MoS2) Utilizing a Poly(methyl methacrylate) (PMMA) Etch Mask

    Science.gov (United States)

    2017-10-01

    Nichols, Matthew L Chin, Sina Najmaei, Eugene Zakar, and Madan Dubey Sensors and Electron Devices Directorate, ARL Approved for public...EBL; Vistec EBPG5000+) with an exposure dose of 850 μC/cm2 and development in 25 mL of isopropyl alcohol (IPA): 10 mL methyl isobutyl ketone for...deposition EBL electron beam lithography IPA isopropyl alcohol MoS2 molybdenum disulfide O2 oxygen PMMA poly(methyl methacrylate) RIE reactive

  4. Core strength training for patients with chronic low back pain.

    Science.gov (United States)

    Chang, Wen-Dien; Lin, Hung-Yu; Lai, Ping-Tung

    2015-03-01

    [Purpose] Through core strength training, patients with chronic low back pain can strengthen their deep trunk muscles. However, independent training remains challenging, despite the existence of numerous core strength training strategies. Currently, no standardized system has been established analyzing and comparing the results of core strength training and typical resistance training. Therefore, we conducted a systematic review of the results of previous studies to explore the effectiveness of various core strength training strategies for patients with chronic low back pain. [Methods] We searched for relevant studies using electronic databases. Subsequently, we evaluated their quality by analyzing the reported data. [Results] We compared four methods of evaluating core strength training: trunk balance, stabilization, segmental stabilization, and motor control exercises. According to the results of various scales and evaluation instruments, core strength training is more effective than typical resistance training for alleviating chronic low back pain. [Conclusion] All of the core strength training strategies examined in this study assist in the alleviation of chronic low back pain; however, we recommend focusing on training the deep trunk muscles to alleviate chronic low back pain.

  5. Ionic properties of non-aqueous liquid and PVDF-based gel electrolytes containing a cesium thiolate/disulfide redox couple

    International Nuclear Information System (INIS)

    Renard, Ingrid; Li Hongmei; Marsan, Benoit

    2003-01-01

    Liquid electrolytes containing a cesium thiolate/disulfide redox couple, prepared from 5-mercapto-1-methyltetrazole cesium salt (CsT) and di-5-(1-methyltetrazole)disulfide (T 2 ) dissolved in several aprotic solvents and solvent mixtures, have been studied using various techniques. FTIR spectroscopy reveals that relatively strong interactions occur between the reduced species T - and DMSO or DMF while Cs + ions are very weakly coordinated to the S=O or C=O bond. It is shown that the electrolyte consisting of 1.55 mol kg -1 CsT in the solvent mixture DMSO/DMF (40/60%) exhibits the highest conductivity (1.1x10 -2 and 2.3x10 -2 S cm -1 at 23 and 80 deg. C, respectively), and that the presence of the oxidized species T 2 does not affect significantly its electrical properties up to a CsT:T 2 molar ratio of 5:1. Conductivity values as a function of salt concentration are discussed in terms of the effective number of charge carriers, taking into account the level of ionic association, and of the ionic mobility. Optically transparent gel electrolytes have been prepared by incorporation of the optimal liquid electrolyte into various amounts of poly(vinylidene fluoride) (PVDF). It is shown that ionic mobility is not much affected by the polymer concentration, suggesting that migration of ions occurs mainly through the solvent mixture surrounded by the PVDF matrix

  6. Effect of pharmaceutical potential endocrine disruptor compounds on protein disulfide isomerase reductase activity using di-eosin-oxidized-glutathione.

    Directory of Open Access Journals (Sweden)

    Danièle Klett

    Full Text Available BACKGROUND: Protein Disulfide Isomerase (PDI in the endoplasmic reticulum of all cells catalyzes the rearrangement of disulfide bridges during folding of membrane and secreted proteins. As PDI is also known to bind various molecules including hormones such as estradiol and thyroxin, we considered the hypothesis that adverse effects of endocrine-disrupter compounds (EDC could be mediated through their interaction with PDI leading to defects in membrane or secreted proteins. METHODOLOGY/PRINCIPAL FINDINGS: Taking advantage of the recent description of the fluorescence self quenched substrate di-eosin-oxidized-glutathione (DiE-GSSG, we determined kinetically the effects of various potential pharmaceutical EDCs on the in-vitro reductase activity of bovine liver PDI by measuring the fluorescence of the reaction product (E-GSH. Our data show that estrogens (ethynylestradiol and bisphenol-A as well as indomethacin exert an inhibition whereas medroxyprogesteroneacetate and nortestosterone exert a potentiation of bovine PDI reductase activity. CONCLUSIONS: The present data indicate that the tested EDCs could not only affect endocrine target cells through nuclear receptors as previously shown, but could also affect these and all other cells by positively or negatively affecting PDI activity. The substrate DiE-GSSG has been demonstrated to be a convenient substrate to measure PDI reductase activity in the presence of various potential EDCs. It will certainly be usefull for the screening of potential effect of all kinds of chemicals on PDI reductase activity.

  7. Early Spring Phytoplankton Dynamics in the Western Antarctic Peninsula

    Science.gov (United States)

    Arrigo, Kevin R.; van Dijken, Gert L.; Alderkamp, Anne-Carlijn; Erickson, Zachary K.; Lewis, Kate M.; Lowry, Kate E.; Joy-Warren, Hannah L.; Middag, Rob; Nash-Arrigo, Janice E.; Selz, Virginia; van de Poll, Willem

    2017-12-01

    The Palmer Long-Term Ecological Research program has sampled waters of the western Antarctic Peninsula (wAP) annually each summer since 1990. However, information about the wAP prior to the peak of the phytoplankton bloom in January is sparse. Here we present results from a spring process cruise that sampled the wAP in the early stages of phytoplankton bloom development in 2014. Sea ice concentrations were high on the shelf relative to nonshelf waters, especially toward the south. Macronutrients were high and nonlimiting to phytoplankton growth in both shelf and nonshelf waters, while dissolved iron concentrations were high only on the shelf. Phytoplankton were in good physiological condition throughout the wAP, although biomass on the shelf was uniformly low, presumably because of heavy sea ice cover. In contrast, an early stage phytoplankton bloom was observed beneath variable sea ice cover just seaward of the shelf break. Chlorophyll a concentrations in the bloom reached 2 mg m-3 within a 100-150 km band between the SBACC and SACCF. The location of the bloom appeared to be controlled by a balance between enhanced vertical mixing at the position of the two fronts and increased stratification due to melting sea ice between them. Unlike summer, when diatoms overwhelmingly dominate the phytoplankton population of the wAP, the haptophyte Phaeocystis antarctica dominated in spring, although diatoms were common. These results suggest that factors controlling phytoplankton abundance and composition change seasonally and may differentially affect phytoplankton populations as environmental conditions within the wAP region continue to change.

  8. Enhanced Core Noise Modeling for Turbofan Engines

    Science.gov (United States)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2011-01-01

    This report describes work performed by MTC Technologies (MTCT) for NASA Glenn Research Center (GRC) under Contract NAS3-00178, Task Order No. 15. MTCT previously developed a first-generation empirical model that correlates the core/combustion noise of four GE engines, the CF6, CF34, CFM56, and GE90 for General Electric (GE) under Contract No. 200-1X-14W53048, in support of GRC Contract NAS3-01135. MTCT has demonstrated in earlier noise modeling efforts that the improvement of predictive modeling is greatly enhanced by an iterative approach, so in support of NASA's Quiet Aircraft Technology Project, GRC sponsored this effort to improve the model. Since the noise data available for correlation are total engine noise spectra, it is total engine noise that must be predicted. Since the scope of this effort was not sufficient to explore fan and turbine noise, the most meaningful comparisons must be restricted to frequencies below the blade passage frequency. Below the blade passage frequency and at relatively high power settings jet noise is expected to be the dominant source, and comparisons are shown that demonstrate the accuracy of the jet noise model recently developed by MTCT for NASA under Contract NAS3-00178, Task Order No. 10. At lower power settings the core noise became most apparent, and these data corrected for the contribution of jet noise were then used to establish the characteristics of core noise. There is clearly more than one spectral range where core noise is evident, so the spectral approach developed by von Glahn and Krejsa in 1982 wherein four spectral regions overlap, was used in the GE effort. Further analysis indicates that the two higher frequency components, which are often somewhat masked by turbomachinery noise, can be treated as one component, and it is on that basis that the current model is formulated. The frequency scaling relationships are improved and are now based on combustor and core nozzle geometries. In conjunction with the Task

  9. Core Hunter 3: flexible core subset selection.

    Science.gov (United States)

    De Beukelaer, Herman; Davenport, Guy F; Fack, Veerle

    2018-05-31

    Core collections provide genebank curators and plant breeders a way to reduce size of their collections and populations, while minimizing impact on genetic diversity and allele frequency. Many methods have been proposed to generate core collections, often using distance metrics to quantify the similarity of two accessions, based on genetic marker data or phenotypic traits. Core Hunter is a multi-purpose core subset selection tool that uses local search algorithms to generate subsets relying on one or more metrics, including several distance metrics and allelic richness. In version 3 of Core Hunter (CH3) we have incorporated two new, improved methods for summarizing distances to quantify diversity or representativeness of the core collection. A comparison of CH3 and Core Hunter 2 (CH2) showed that these new metrics can be effectively optimized with less complex algorithms, as compared to those used in CH2. CH3 is more effective at maximizing the improved diversity metric than CH2, still ensures a high average and minimum distance, and is faster for large datasets. Using CH3, a simple stochastic hill-climber is able to find highly diverse core collections, and the more advanced parallel tempering algorithm further increases the quality of the core and further reduces variability across independent samples. We also evaluate the ability of CH3 to simultaneously maximize diversity, and either representativeness or allelic richness, and compare the results with those of the GDOpt and SimEli methods. CH3 can sample equally representative cores as GDOpt, which was specifically designed for this purpose, and is able to construct cores that are simultaneously more diverse, and either are more representative or have higher allelic richness, than those obtained by SimEli. In version 3, Core Hunter has been updated to include two new core subset selection metrics that construct cores for representativeness or diversity, with improved performance. It combines and outperforms the

  10. Odor composition analysis and odor indicator selection during sewage sludge composting

    Science.gov (United States)

    Zhu, Yan-li; Zheng, Guo-di; Gao, Ding; Chen, Tong-bin; Wu, Fang-kun; Niu, Ming-jie; Zou, Ke-hua

    2016-01-01

    ABSTRACT On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography–mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Implications: Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index

  11. Odor composition analysis and odor indicator selection during sewage sludge composting.

    Science.gov (United States)

    Zhu, Yan-Li; Zheng, Guo-di; Gao, Ding; Chen, Tong-Bin; Wu, Fang-Kun; Niu, Ming-Jie; Zou, Ke-Hua

    2016-09-01

    On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography-mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index system to odor evaluation

  12. Efficient assembly of recombinant major histocompatibility complex class I molecules with preformed disulfide bonds

    DEFF Research Database (Denmark)

    Ostergaard Pedersen, L; Nissen, Mogens Holst; Hansen, N J

    2001-01-01

    The expression of major histocompatibility class I (MHC-I) crucially depends upon the binding of appropriate peptides. MHC-I from natural sources are therefore always preoccupied with peptides complicating their purification and analysis. Here, we present an efficient solution to this problem....... Recombinant MHC-I heavy chains were produced in Escherichia coli and subsequently purified under denaturing conditions. In contrast to common practice, the molecules were not reduced during the purification. The oxidized MHC-I heavy chain isoforms were highly active with respect to peptide binding....... This suggests that de novo folding of denatured MHC-I molecules proceed efficiently if directed by preformed disulfide bond(s). Importantly, these molecules express serological epitopes and stain specific T cells; and they bind peptides specifically. Several denatured MHC-I heavy chains were analyzed and shown...

  13. Broad-spectrum enhanced absorption of graphene-molybdenum disulfide photovoltaic cells in metal-mirror microcavity

    Science.gov (United States)

    Jiang-Tao, Liu; Yun-Kai, Cao; Hong, Tong; Dai-Qiang, Wang; Zhen-Hua, Wu

    2018-04-01

    The optical absorption of graphene-molybdenum disulfide photovoltaic cells (GM-PVc) in wedge-shaped metal-mirror microcavities (w-MMCs) combined with a spectrum-splitting structure was studied. Results showed that the combination of spectrum-splitting structure and w-MMC can enable the light absorption of GM-PVcs to reach about 65% in the broad spectrum. The influence of processing errors on the absorption of GM-PVcs in w-MMCs was 3-14 times lower than that of GM-PVcs in wedge photonic crystal microcavities. The light absorption of GM-PVcs reached 60% in the broad spectrum, even with the processing errors. The proposed structure is easy to implement and may have potentially important applications in the development of ultra-thin and high-efficiency solar cells and optoelectronic devices.

  14. MA-core loaded untuned RF compression cavity for HIRFL-CSR

    International Nuclear Information System (INIS)

    Mei Lirong; Xu Zhe; Yuan Youjin; Jin Peng; Bian Zhibin; Zhao Hongwei; Xia Jiawen

    2012-01-01

    To meet the requirements of high energy density physics and plasma physics research at HIRFL-CSR the goal of achieving a higher accelerating gap voltage was proposed. Therefore, a magnetic alloy (MA)-core loaded radio frequency (RF) cavity that can provide a higher accelerating gap voltage compared to standard ferrite loaded cavities has been studied at IMP. In order to select the proper magnetic alloy material to load the RF compression cavity, measurements of four different kinds of sample MA-cores have been carried out. By testing the small cores, the core composition was selected to obtain the desired performance. According to the theoretical calculation and simulation, which show reasonable consistency for the MA-core loaded cavity, the desired performance can be achieved. Finally about 1000 kW power will be needed to meet the requirements of 50 kV accelerating gap voltage by calculation.

  15. Preliminary Uncertainty Analysis for SMART Digital Core Protection and Monitoring System

    International Nuclear Information System (INIS)

    Koo, Bon Seung; In, Wang Kee; Hwang, Dae Hyun

    2012-01-01

    The Korea Atomic Energy Research Institute (KAERI) developed on-line digital core protection and monitoring systems, called SCOPS and SCOMS as a part of SMART plant protection and monitoring system. SCOPS simplified the protection system by directly connecting the four RSPT signals to each core protection channel and eliminated the control element assembly calculator (CEAC) hardware. SCOMS adopted DPCM3D method in synthesizing core power distribution instead of Fourier expansion method being used in conventional PWRs. The DPCM3D method produces a synthetic 3-D power distribution by coupling a neutronics code and measured in-core detector signals. The overall uncertainty analysis methodology which is used statistically combining uncertainty components of SMART core protection and monitoring system was developed. In this paper, preliminary overall uncertainty factors for SCOPS/SCOMS of SMART initial core were evaluated by applying newly developed uncertainty analysis method

  16. Effect of oil palm sludge on cowpea nodulation and weed control in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... weed control in the humid forest zone of Nigeria ... tropics, where rainfall is scanty and soils are sandy with ... Impact of oil palm sludge on 3 cultivars of cowpea length or roots at 6 and 8 WAP in wet and dry season. 6 WAP.

  17. Calculations and selection of a TRIGA core for the Nuclear Reactor IAN-R1

    International Nuclear Information System (INIS)

    Castiblanco, L.A.; Sarta, J.A.

    1997-01-01

    The Reactor Group used the code WIMS reduced to five groups of energy, together with the code CITATION, and evaluated four configurations for a core, according to the grid actually installed. The four configurations were taken from the two proposals presented to the Instituto de Ciencias Nucleares y Energias Alternativas by General Atomics Company. In this paper, the Authors selected the best configuration according to the performance of flux distribution and excess reactivity, for a TRIGA core to be installed in the Nuclear Reactor IAN-R1

  18. Quantum transport model for zigzag molybdenum disulfide nanoribbon structures : A full quantum framework

    International Nuclear Information System (INIS)

    Chen, Chun-Nan; Shyu, Feng-Lin; Chung, Hsien-Ching; Lin, Chiun-Yan; Wu, Jhao-Ying

    2016-01-01

    Mainly based on non-equilibrium Green’s function technique in combination with the three-band model, a full atomistic-scale and full quantum method for solving quantum transport problems of a zigzag-edge molybdenum disulfide nanoribbon (zMoSNR) structure is proposed here. For transport calculations, the relational expressions of a zMoSNR crystalline solid and its whole device structure are derived in detail and in its integrity. By adopting the complex-band structure method, the boundary treatment of this open boundary system within the non-equilibrium Green’s function framework is so straightforward and quite sophisticated. The transmission function, conductance, and density of states of zMoSNR devices are calculated using the proposed method. The important findings in zMoSNR devices such as conductance quantization, van Hove singularities in the density of states, and contact interaction on channel are presented and explored in detail.

  19. Quantum transport model for zigzag molybdenum disulfide nanoribbon structures : A full quantum framework

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Nan, E-mail: quantum@mail.tku.edu.tw, E-mail: ccn1114@kimo.com [Quantum Engineering Laboratory, Department of Physics, Tamkang University, Tamsui, New Taipei 25137, Taiwan (China); Shyu, Feng-Lin [Department of Physics, R.O.C. Military Academy, Kaohsiung 830, Taiwan (China); Chung, Hsien-Ching; Lin, Chiun-Yan [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Wu, Jhao-Ying [Center of General Studies, National Kaohsiung Marine University, Kaohsiung 811, Taiwan (China)

    2016-08-15

    Mainly based on non-equilibrium Green’s function technique in combination with the three-band model, a full atomistic-scale and full quantum method for solving quantum transport problems of a zigzag-edge molybdenum disulfide nanoribbon (zMoSNR) structure is proposed here. For transport calculations, the relational expressions of a zMoSNR crystalline solid and its whole device structure are derived in detail and in its integrity. By adopting the complex-band structure method, the boundary treatment of this open boundary system within the non-equilibrium Green’s function framework is so straightforward and quite sophisticated. The transmission function, conductance, and density of states of zMoSNR devices are calculated using the proposed method. The important findings in zMoSNR devices such as conductance quantization, van Hove singularities in the density of states, and contact interaction on channel are presented and explored in detail.

  20. Alkali metal and alkali metal hydroxide intercalates of the layered transition metal disulfides

    International Nuclear Information System (INIS)

    Kanzaki, Y.; Konuma, M.; Matsumoto, O.

    1981-01-01

    The intercalation reaction of some layered transition metal disulfides with alkali metals, alkali metal hydroxides, and tetraalkylammonium hydroxides were investigated. The alkali metal intercalates were prepared in the respective metal-hexamethylphosphoric triamide solutions in vaccuo, and the hydroxide intercalates in aqueous hydroxide solutions. According to the intercalation reaction, the c-lattice parameter was increased, and the increase indicated the expansion of the interlayer distance. In the case of alkali metal intercalates, the expansion of the interlayer distance increased continuously, corresponding to the atomic radius of the alkali metal. On the other hand, the hydroxide intercalates showed discrete expansion corresponding to the effective ionic radius of the intercalated cation. All intercalates of TaS 2 amd NbS 2 were superconductors. The expansion of the interlayer distance tended to increase the superconducting transition temperature in the intercalates of TaS 2 and vice versa in those of NbS 2 . (orig.)