WorldWideScience

Sample records for wall tissue characterization

  1. Flow characterization of a wavy-walled bioreactor for cartilage tissue engineering.

    Science.gov (United States)

    Bilgen, Bahar; Sucosky, Philippe; Neitzel, G Paul; Barabino, Gilda A

    2006-12-20

    Cartilage tissue engineering requires the use of bioreactors in order to enhance nutrient transport and to provide sufficient mechanical stimuli to promote extracellular matrix (ECM) synthesis by chondrocytes. The amount and quality of ECM components is a large determinant of the biochemical and mechanical properties of engineered cartilage constructs. Mechanical forces created by the hydrodynamic environment within the bioreactors are known to influence ECM synthesis. The present study characterizes the hydrodynamic environment within a novel wavy-walled bioreactor (WWB) used for the development of tissue-engineered cartilage. The geometry of this bioreactor provides a unique hydrodynamic environment for mammalian cell and tissue culture, and investigation of hydrodynamic effects on tissue growth and function. The flow field within the WWB was characterized using two-dimensional particle-image velocimetry (PIV). The flow in the WWB differed significantly from that in the traditional spinner flask both qualitatively and quantitatively, and was influenced by the positioning of constructs within the bioreactor. Measurements of velocity fields were used to estimate the mean-shear stress, Reynolds stress, and turbulent kinetic energy components in the vicinity of the constructs within the WWB. The mean-shear stress experienced by the tissue-engineered constructs in the WWB calculated using PIV measurements was in the range of 0-0.6 dynes/cm2. Quantification of the shear stress experienced by cartilage constructs, in this case through PIV, is essential for the development of tissue-growth models relating hydrodynamic parameters to tissue properties. Copyright 2006 Wiley Periodicals, Inc.

  2. Alfalfa stem tissues: Cell wall deposition, composition, and degradability

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.

    2002-01-01

    Declining cell wall degradability of alfalfa (Medicago sativa L.) stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, composition, and degradability by rumen microbes resulting from alfalfa stem tissue

  3. Characterization of IgG monoclonal antibody targeted to both tissue cyst and sporocyst walls of Toxoplasma gondii

    Science.gov (United States)

    Toxoplasma gondii infects approximately one third of the human population and animals habiting terrestrial and aquatic environments. Its environmentally resistant oocysts are excreted by felids, and the stage encysted in tissues (tissue cysts), are important in the horizontal transmission of T. gon...

  4. Connective tissue alteration in abdominal wall hernia

    DEFF Research Database (Denmark)

    Henriksen, N A; Yadete, D H; Sørensen, Lars Tue

    2011-01-01

    The aetiology and pathogenesis of abdominal wall hernia formation is complex. Optimal treatment of hernias depends on a full understanding of the pathophysiological mechanisms involved in their formation. The aim of this study was to review the literature on specific collagen alterations...... in abdominal wall hernia formation....

  5. Role of tissue structure on ventricular wall mechanics.

    Science.gov (United States)

    Coppola, Benjamin A; Omens, Jeffrey H

    2008-09-01

    It is well known that systolic wall thickening in the inner half of the left ventricular (LV) wall is of greater magnitude than predicted by myofiber contraction alone. Previous studies have related the deformation of the LV wall to the orientation of the laminar architecture. Using this method, wall thickening can be interpreted as the sum of contributions due to extension, thickening, and shearing of the laminar sheets. We hypothesized that the thickening mechanics of the ventricular wall are determined by the structural organization of the underlying tissue, and may not be influenced by factors such as loading and activation sequence. To test this hypothesis, we calculated finite strains from biplane cineradiography of transmural markers implanted in apical (n = 22) and basal (n = 12) regions of the canine anterior LV free wall. Strains were referred to three-dimensional laminar microstructural axes measured by histology. The results indicate that sheet angle is of opposite sign in the apical and basal regions, but absolute value differs only in the subepicardium. During systole, shearing and extension of the laminae contribute the most to wall thickening, accounting for >90% (transmural average) at both apex and base. These two types of deformation are also most prominent during diastolic inflation. Increasing afterload has no effect on the pattern of systolic wall thickening, nor does reversing transmural activation sequence. The pattern of wall thickening appears to be a function of the orientation of the laminar sheets, which vary regionally and transmurally. Thus, acute interventions do not appear to alter the contributions of the laminae to wall thickening, providing further evidence that the structural architecture of the ventricular wall is the dominant factor for its regional mechanical function.

  6. Photoacoustic characterization of ovarian tissue

    Science.gov (United States)

    Aguirre, Andres; Gamelin, John; Guo, Puyun; Yan, Shikui; Sanders, Mary; Brewer, Molly; Zhu, Quing

    2009-02-01

    Ovarian cancer has the highest mortality of all gynecologic cancers with a five-year survival rate of only 30%. Because current imaging techniques (ultrasound, CT, MRI, PET) are not capable of detecting ovarian cancer early, most diagnoses occur in later stages (III/IV). Thus many women are not correctly diagnosed until the cancer becomes widely metastatic. On the other hand, while the majority of women with a detectable ultrasound abnormality do not harbor a cancer, they all undergo unnecessary oophorectomy. Hence, new imaging techniques that can provide functional and molecular contrasts are needed for improving the specificity of ovarian cancer detection and characterization. One such technique is photoacoustic imaging, which has great potential to reveal early tumor angiogenesis through intrinsic optical absorption contrast from hemoglobin or extrinsic contrast from conjugated agents binding to appropriate molecular receptors. To better understand the cancer disease process of ovarian tissue using photoacoustic imaging, it is necessary to first characterize the properties of normal ovarian tissue. We have imaged ex-vivo ovarian tissue using a 3D co-registered ultrasound and photoacoustic imaging system. The system is capable of volumetric imaging by means of electronic focusing. Detecting and visualizing small features from multiple viewing angles is possible without the need for any mechanical movement. The results show strong optical absorption from vasculature, especially highly vascularized corpora lutea, and low absorption from follicles. We will present correlation of photoacoustic images from animals with histology. Potential application of this technology would be the noninvasive imaging of the ovaries for screening or diagnostic purposes.

  7. Endovascular optical coherence tomography ex vivo: venous wall anatomy and tissue alterations after endovenous therapy

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Oliver A. [Ludwig Maximilians University, Institute for Clinical Radiology, Munich (Germany); Siemens AG Medical Solutions, Forchheim (Germany); Schmedt, Claus-Georg; Steckmeier, Bernd M. [Ludwig Maximilians University, Department of Vascular Surgery and Phlebology, Munich (Germany); Hunger, Kathrin; Reiser, Maximilian; Mueller-Lisse, Ullrich [Ludwig Maximilians University, Institute for Clinical Radiology, Munich (Germany); Hetterich, Holger; Rieber, Johannes [Ludwig Maximilians University, Division of Cardiology, Munich (Germany); Sroka, Ronald [Ludwig Maximilians University, Laser Research Laboratory, LIFE-Center, Munich (Germany); Babaryka, Gregor [Ludwig Maximilians University, Institute of Pathology, Munich (Germany); Siebert, Uwe [Massachusetts General Hospital, Harvard Medical School, Institute for Technology Assessment and Department of Radiology, Boston, MA (United States); University for Health Sciences, Medical Informatics and Technology, Department of Public Health, Medical Decision Making and Health Technology Assessment, Hall/Innsbruck (Austria)

    2007-09-15

    Endovascular optical coherence tomography (OCT) is a new imaging modality providing histology-like information of the venous wall. Radiofrequency ablation (RFA) and laser therapy (ELT) are accepted alternatives to surgery. This study evaluated OCT for qualitative assessment of venous wall anatomy and tissue alterations after RFA and ELT in bovine venous specimens. One hundred and thirty-four venous segments were obtained from ten ex-vivo bovine hind limbs. OCT signal characteristics for different wall layers were assessed in 180/216 (83%) quadrants from 54 normal venous cross-sections. Kappa statistics ({kappa}) were used to calculate intra- and inter-observer agreement. Qualitative changes after RFA (VNUS-Closure) and ELT (diode laser 980 nm, energy densities 15 Joules (J)/cm, 25 J/cm, 35 J/cm) were described in 80 venous cross-sections. Normal veins were characterized by a three-layered appearance. After RFA, loss of three-layered appearance and wall thickening at OCT corresponded with circular destruction of tissue structures at histology. Wall defects after ELT ranged from non-transmural punctiform damage to complete perforation, depending on the energy density applied. Intra- and inter-observer agreement for reading OCT images was very high (0.90 and 0.88, respectively). OCT allows for reproducible evaluation of normal venous wall and alterations after endovenous therapy. OCT could prove to be valuable for optimizing endovenous therapy in vivo. (orig.)

  8. HVI Ballistic Performance Characterization of Non-Parallel Walls

    Science.gov (United States)

    Bohl, William; Miller, Joshua; Christiansen, Eric

    2012-01-01

    The Double-Wall, "Whipple" Shield [1] has been the subject of many hypervelocity impact studies and has proven to be an effective shield system for Micro-Meteoroid and Orbital Debris (MMOD) impacts for spacecraft. The US modules of the International Space Station (ISS), with their "bumper shields" offset from their pressure holding rear walls provide good examples of effective on-orbit use of the double wall shield. The concentric cylinder shield configuration with its large radius of curvature relative to separation distance is easily and effectively represented for testing and analysis as a system of two parallel plates. The parallel plate double wall configuration has been heavily tested and characterized for shield performance for normal and oblique impacts for the ISS and other programs. The double wall shield and principally similar Stuffed Whipple Shield are very common shield types for MMOD protection. However, in some locations with many spacecraft designs, the rear wall cannot be modeled as being parallel or concentric with the outer bumper wall. As represented in Figure 1, there is an included angle between the two walls. And, with a cylindrical outer wall, the effective included angle constantly changes. This complicates assessment of critical spacecraft components located within outer spacecraft walls when using software tools such as NASA's BumperII. In addition, the validity of the risk assessment comes into question when using the standard double wall shield equations, especially since verification testing of every set of double wall included angles is impossible.

  9. Mechanical mutability in connective tissue of starfish body wall.

    Science.gov (United States)

    Motokawa, Tatsuo

    2011-12-01

    Stiffness changes in response to mechanical and chemical stimulation were studied in muscle-free dermal samples from the body wall of the starfish Linckia laevigata. The ultrastructural study showed that the dermis was packed with collagen fibrils between which only a small number of cells were observed. Muscles were found only in the walls of coelomic extensions leading to papulae. Stress-strain tests were performed on isolated dermis containing no muscles. The tangent modulus was 27.5 MPa at 0.04% strain rate in the stress-strain tests. It was increased to 40.7 MPa by mechanical stimulation, which also increased the tensile strength and breaking-strain energy density. Dynamic mechanical tests showed that the increase in stiffness in response to mechanical stimulation was transient. Acetylcholine (10(-6)-10(-3) mol l(-1)) and artificial seawater with an elevated potassium concentration (KASW) stiffened the dermis. Mechanical stimulation caused a 12% mass loss. KASW also caused mass loss, which was inhibited by anesthesia. These results clearly showed that the stiffness changes in the starfish dermis were based on a non-muscular mechanism that was similar to that of other echinoderm connective tissues with mechanical mutability.

  10. Screening and characterization of plant cell walls using carbohydrate microarrays.

    Science.gov (United States)

    Sørensen, Iben; Willats, William G T

    2011-01-01

    Plant cells are surrounded by cell walls built largely from complex carbohydrates. The primary walls of growing plant cells consist of interdependent networks of three polysaccharide classes: cellulose, cross-linking glycans (also known as hemicelluloses), and pectins. Cellulose microfibrils are tethered together by cross-linking glycans, and this assembly forms the major load-bearing component of primary walls, which is infiltrated with pectic polymers. In the secondary walls of woody tissues, pectins are much reduced and walls are reinforced with the phenolic polymer lignin. Plant cell walls are essential for plant life and also have numerous industrial applications, ranging from wood to nutraceuticals. Enhancing our knowledge of cell wall biology and the effective use of cell wall materials is dependent to a large extent on being able to analyse their fine structures. We have developed a suite of techniques based on microarrays probed with monoclonal antibodies with specificity for cell wall components, and here we present practical protocols for this type of analysis.

  11. Electromagnetic approaches to wall characterization, wall mitigation, and antenna design for through-the-wall radar systems

    Science.gov (United States)

    Thajudeen, Christopher

    Through-the-wall imaging (TWI) is a topic of current interest due to its wide range of public safety, law enforcement, and defense applications. Among the various available technologies such as, acoustic, thermal, and optical imaging, which can be employed to sense and image targets of interest, electromagnetic (EM) imaging, in the microwave frequency bands, is the most widely utilized technology and has been at the forefront of research in recent years. The primary objectives for any Through-the-Wall Radar Imaging (TWRI) system are to obtain a layout of the building and/or inner rooms, detect if there are targets of interest including humans or weapons, determine if there are countermeasures being employed to further obscure the contents of a building or room of interest, and finally to classify the detected targets. Unlike conventional radar scenarios, the presence of walls, made of common construction materials such as brick, drywall, plywood, cinder block, and solid concrete, adversely affects the ability of any conventional imaging technique to properly image targets enclosed within building structures as the propagation through the wall can induce shadowing effects on targets of interest which may result in image degradation, errors in target localization, and even complete target masking. For many applications of TWR systems, the wall ringing signals are strong enough to mask the returns from targets not located a sufficient distance behind the wall, beyond the distance of the wall ringing, and thus without proper wall mitigation, target detection becomes extremely difficult. The results presented in this thesis focus on the development of wall parameter estimation, and intra-wall and wall-type characterization techniques for use in both the time and frequency domains as well as analysis of these techniques under various real world scenarios such as reduced system bandwidth scenarios, various wall backing scenarios, the case of inhomogeneous walls, presence

  12. Role of tissue structure on ventricular wall mechanics

    OpenAIRE

    Coppola, Benjamin A.; Omens, Jeffrey H.

    2008-01-01

    It is well known that systolic wall thickening in the inner half of the left ventricular (LV) wall is of greater magnitude than predicted by myofiber contraction alone. Previous studies have related the deformation of the LV wall to the orientation of the laminar architecture. Using this method, wall thickening can be interpreted as the sum of contributions due to extension, thickening, and shearing of the laminar sheets. We hypothesized that the thickening mechanics of the ventricular wall a...

  13. Multiparametric tissue abnormality characterization using manifold regularization

    Science.gov (United States)

    Batmanghelich, Kayhan; Wu, Xiaoying; Zacharaki, Evangelia; Markowitz, Clyde E.; Davatzikos, Christos; Verma, Ragini

    2008-03-01

    Tissue abnormality characterization is a generalized segmentation problem which aims at determining a continuous score that can be assigned to the tissue which characterizes the extent of tissue deterioration, with completely healthy tissue being one end of the spectrum and fully abnormal tissue such as lesions, being on the other end. Our method is based on the assumptions that there is some tissue that is neither fully healthy or nor completely abnormal but lies in between the two in terms of abnormality; and that the voxel-wise score of tissue abnormality lies on a spatially and temporally smooth manifold of abnormality. Unlike in a pure classification problem which associates an independent label with each voxel without considering correlation with neighbors, or an absolute clustering problem which does not consider a priori knowledge of tissue type, we assume that diseased and healthy tissue lie on a manifold that encompasses the healthy tissue and diseased tissue, stretching from one to the other. We propose a semi-supervised method for determining such as abnormality manifold, using multi-parametric features incorporated into a support vector machine framework in combination with manifold regularization. We apply the framework towards the characterization of tissue abnormality to brains of multiple sclerosis patients.

  14. Plant cell wall characterization using scanning probe microscopy techniques

    Science.gov (United States)

    Yarbrough, John M; Himmel, Michael E; Ding, Shi-You

    2009-01-01

    Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy. PMID:19703302

  15. Plant cell wall characterization using scanning probe microscopy techniques

    Directory of Open Access Journals (Sweden)

    Himmel Michael E

    2009-08-01

    Full Text Available Abstract Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy.

  16. Spectroscopic characterization of cardiovascular tissue.

    Science.gov (United States)

    Clarke, R H; Isner, J M; Gauthier, T; Nakagawa, K; Cerio, F; Hanlon, E; Gaffney, E; Rouse, E; DeJesus, S

    1988-01-01

    We present results of a series of laser spectroscopic measurements on in vitro samples of cardiovascular tissue. These include laser Raman scattering, Fourier transform infrared, plasma emission and fluorescence, and electron paramagnetic resonance spectroscopy. The results of these spectroscopic measurements are discussed in terms of their implications for the field of laser angioplasty.

  17. Computational fluid dynamics modeling of momentum transport in rotating wall perfused bioreactor for cartilage tissue engineering.

    Science.gov (United States)

    Cinbiz, Mahmut N; Tığli, R Seda; Beşkardeş, Işil Gerçek; Gümüşderelioğlu, Menemşe; Colak, Uner

    2010-11-01

    In this study, computational fluid dynamics (CFD) analysis of a rotating-wall perfused-vessel (RWPV) bioreactor is performed to characterize the complex hydrodynamic environment for the simulation of cartilage development in RWPV bioreactor in the presence of tissue-engineered cartilage constructs, i.e., cell-chitosan scaffolds. Shear stress exerted on chitosan scaffolds in bioreactor was calculated for different rotational velocities in the range of 33-38 rpm. According to the calculations, the lateral and lower surfaces were exposed to 0.07926-0.11069 dyne/cm(2) and 0.05974-0.08345 dyne/cm(2), respectively, while upper surfaces of constructs were exposed to 0.09196-0.12847 dyne/cm(2). Results validate adequate hydrodynamic environment for scaffolds in RWPV bioreactor for cartilage tissue development which concludes the suitability of operational conditions of RWPV bioreactor. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Expansion of Submucosal Bladder Wall Tissue In Vitro and In Vivo

    OpenAIRE

    Gisela Reinfeldt Engberg; Clara Ibel Chamorro; Agneta Nordenskjöld; Magdalena Fossum

    2016-01-01

    In order to develop autologous tissue engineering of the whole wall in the urinary excretory system, we studied the regenerative capacity of the muscular bladder wall. Smooth muscle cell expansion on minced detrusor muscle in vitro and in vivo with or without urothelial tissue was studied. Porcine minced detrusor muscle and urothelium were cultured in vitro under standard culture conditions for evaluation of the explant technique and in collagen for tissue sectioning and histology. Autografts...

  19. Multispectral tissue characterization for intestinal anastomosis optimization

    Science.gov (United States)

    Cha, Jaepyeong; Shademan, Azad; Le, Hanh N. D.; Decker, Ryan; Kim, Peter C. W.; Kang, Jin U.; Krieger, Axel

    2015-10-01

    Intestinal anastomosis is a surgical procedure that restores bowel continuity after surgical resection to treat intestinal malignancy, inflammation, or obstruction. Despite the routine nature of intestinal anastomosis procedures, the rate of complications is high. Standard visual inspection cannot distinguish the tissue subsurface and small changes in spectral characteristics of the tissue, so existing tissue anastomosis techniques that rely on human vision to guide suturing could lead to problems such as bleeding and leakage from suturing sites. We present a proof-of-concept study using a portable multispectral imaging (MSI) platform for tissue characterization and preoperative surgical planning in intestinal anastomosis. The platform is composed of a fiber ring light-guided MSI system coupled with polarizers and image analysis software. The system is tested on ex vivo porcine intestine tissue, and we demonstrate the feasibility of identifying optimal regions for suture placement.

  20. Tissue localization and partial characterization of pheromone ...

    Indian Academy of Sciences (India)

    Unknown

    trometry, and was found to be 3900 Da, same as that of known H. zea-PBAN. Radiochemical bioassay con- firmed the pheromonotropic effect of the isolated neuropeptide in this insect. [Ajitha V S and Muraleedharan D 2005 Tissue localization and partial characterization of pheromone biosynthesis activating neuropeptide.

  1. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.

    Science.gov (United States)

    Ejofodomi, O'tega A; Zderic, Vesna; Zara, Jason M

    2010-04-01

    Acoustic radiation force-optical coherence elastography (ARF-OCE) systems are novel imaging systems that have the potential to simultaneously quantify and characterize the optical and mechanical properties of in vivo tissues. This article presents the construction of bladder wall phantoms for use in ARF-OCE systems. Mechanical, acoustic, and optical properties are reported and compared to published values for the urinary bladder. The phantom consisted of 0.2000 +/- 0.0089 and 6.0000 +/- 0.2830 microm polystyrene microspheres (Polysciences Inc., Warrington, PA, Catalog Nos. 07304 and 07312), 7.5 +/- 1.5 microm copolymer microspheres composed of acrylonitrile and vinylidene chloride, (Expancel, Duluth, GA, Catalog No. 461 DU 20), and bovine serum albumin within a gelatin matrix. Young's modulus was measured by successive compression of the phantom and obtaining the slope of the resulting force-displacement data. Acoustic measurements were performed using the transmission method. The phantoms were submerged in a water bath and placed between transmitting and receiving 13 mm diameter unfocused transducers operating at a frequency of 3.5 MHz. A MATLAB algorithm to extract the optical scattering coefficient from optical coherence tomography (OCT) images of the phantom was used. The phantoms possess a Young's modulus of 17.12 +/- 2.72 kPa, a mass density of 1.05 +/- 0.02 g/cm3, an acoustic attenuation coefficient of 0.66 +/- 0.08 dB/cm/MHz, a speed of sound of 1591 +/- 8.76 m/s, and an optical scattering coefficient of 1.80 +/- 0.23 mm(-1). Ultrasound and OCT images of the bladder wall phantom are presented. A material that mimics the mechanical, optical, and acoustic properties of healthy bladder wall has been developed. This tissue-mimicking bladder wall phantom was developed as a control tool to investigate the feasibility of using ARF-OCE to detect the mechanical and optical changes that may be indicative of the onset or development of cancer in the urinary bladder

  2. Multiscale Characterization of Engineered Cardiac Tissue Architecture.

    Science.gov (United States)

    Drew, Nancy K; Johnsen, Nicholas E; Core, Jason Q; Grosberg, Anna

    2016-11-01

    In a properly contracting cardiac muscle, many different subcellular structures are organized into an intricate architecture. While it has been observed that this organization is altered in pathological conditions, the relationship between length-scales and architecture has not been properly explored. In this work, we utilize a variety of architecture metrics to quantify organization and consistency of single structures over multiple scales, from subcellular to tissue scale as well as correlation of organization of multiple structures. Specifically, as the best way to characterize cardiac tissues, we chose the orientational and co-orientational order parameters (COOPs). Similarly, neonatal rat ventricular myocytes were selected for their consistent architectural behavior. The engineered cells and tissues were stained for four architectural structures: actin, tubulin, sarcomeric z-lines, and nuclei. We applied the orientational metrics to cardiac cells of various shapes, isotropic cardiac tissues, and anisotropic globally aligned tissues. With these novel tools, we discovered: (1) the relationship between cellular shape and consistency of self-assembly; (2) the length-scales at which unguided tissues self-organize; and (3) the correlation or lack thereof between organization of actin fibrils, sarcomeric z-lines, tubulin fibrils, and nuclei. All of these together elucidate some of the current mysteries in the relationship between force production and architecture, while raising more questions about the effect of guidance cues on self-assembly function. These types of metrics are the future of quantitative tissue engineering in cardiovascular biomechanics.

  3. Cell-wall tension of the inner tissues of the maize coleoptile and its potential contribution to auxin-mediated organ growth.

    Science.gov (United States)

    Hohl, M; Schopfer, P

    1992-10-01

    Plant organs such as maize (Zea mays L.) coleoptiles are characterized by longitudinal tissue tension, i.e. bulk turgor pressure produces unequal amounts of cell-wall tension in the epidermis (essentially the outer epidermal wall) and in the inner tissues. The fractional amount of turgor borne by the epidermal wall of turgid maize coleoptile segments was indirectly estimated by determining the water potential ψ(*) of an external medium which is needed to replace quantitatively the compressive force of the epidermal wall on the inner tissues. The fractional amount of turgor borne by the walls of the inner tissues was estimated from the difference between -ψ(*) and the osmotic pressure of the cell sap (πi) which was assumed to represent the turgor of the fully turgid tissue. In segments incubated in water for 1 h, -ψ(*) was 6.1-6.5 bar at a πi of 6.7 bar. Both -ψ(*) and πi decreased during auxin-induced growth because of water uptake, but did not deviate significantly from each other. It is concluded that the turgor fraction utilized for the elastic extension of the inner tissue walls is less than 1 bar, i.e. less than 15% of bulk turgor, and that more than 85% of bulk turgor is utilized for counteracting the high compressive force of the outer epidermal wall which, in this way, is enabled to mechanically control elongation growth of the organ. This situation is maintained during auxin-induced growth.

  4. Use of tissue expanders in the repair of complex abdominal wall defects.

    Science.gov (United States)

    Clifton, Matthew S; Heiss, Kurt F; Keating, Jane J; Mackay, Greg; Ricketts, Richard R

    2011-02-01

    Closure of abdominal wall defects in children poses a challenge for pediatric surgeons. We describe a technique using tissue expanders placed either intraperitoneally or in the abdominal wall to aid in the reconstruction of a variety of complex abdominal wall defects. The tissue expanders are inserted under general anesthesia. Initial expansion is done in the operating room with attention to peak airway pressure, urine output, and end-tidal carbon dioxide. The expanders are inflated in the outpatient setting via percutaneous access until the calculated inflation volume is achieved. They are then removed; and definitive closure is accomplished using a combination of native tissue flaps, abdominal component separation techniques, biomaterials, and synthetic material. Six children underwent tissue expansion for treatment of abdominal wall defects (omphalocele, n = 3), trauma (n = 1), and thoracopagus twins (n = 1 pair). One to 4 expanders were used per patient, with all having a successful reconstruction of their abdominal walls. Two to 3 operations were required to restore abdominal domain and consisted of expander insertion, removal with reconstruction, and possible revision of the reconstruction. Tissue expanders possess a broad range of applications for abdominal wall reconstruction and can be used in patients of all ages. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Mechanical characterization of human brain tissue.

    Science.gov (United States)

    Budday, S; Sommer, G; Birkl, C; Langkammer, C; Haybaeck, J; Kohnert, J; Bauer, M; Paulsen, F; Steinmann, P; Kuhl, E; Holzapfel, G A

    2017-01-15

    Mechanics are increasingly recognized to play an important role in modulating brain form and function. Computational simulations are a powerful tool to predict the mechanical behavior of the human brain in health and disease. The success of these simulations depends critically on the underlying constitutive model and on the reliable identification of its material parameters. Thus, there is an urgent need to thoroughly characterize the mechanical behavior of brain tissue and to identify mathematical models that capture the tissue response under arbitrary loading conditions. However, most constitutive models have only been calibrated for a single loading mode. Here, we perform a sequence of multiple loading modes on the same human brain specimen - simple shear in two orthogonal directions, compression, and tension - and characterize the loading-mode specific regional and directional behavior. We complement these three individual tests by combined multiaxial compression/tension-shear tests and discuss effects of conditioning and hysteresis. To explore to which extent the macrostructural response is a result of the underlying microstructural architecture, we supplement our biomechanical tests with diffusion tensor imaging and histology. We show that the heterogeneous microstructure leads to a regional but not directional dependence of the mechanical properties. Our experiments confirm that human brain tissue is nonlinear and viscoelastic, with a pronounced compression-tension asymmetry. Using our measurements, we compare the performance of five common constitutive models, neo-Hookean, Mooney-Rivlin, Demiray, Gent, and Ogden, and show that only the isotropic modified one-term Ogden model is capable of representing the hyperelastic behavior under combined shear, compression, and tension loadings: with a shear modulus of 0.4-1.4kPa and a negative nonlinearity parameter it captures the compression-tension asymmetry and the increase in shear stress under superimposed

  6. Towards the mechanical characterization of abdominal wall by inverse analysis.

    Science.gov (United States)

    Simón-Allué, R; Calvo, B; Oberai, A A; Barbone, P E

    2017-02-01

    The aim of this study is to characterize the passive mechanical behaviour of abdominal wall in vivo in an animal model using only external cameras and numerical analysis. The main objective lies in defining a methodology that provides in vivo information of a specific patient without altering mechanical properties. It is demonstrated in the mechanical study of abdomen for hernia purposes. Mechanical tests consisted on pneumoperitoneum tests performed on New Zealand rabbits, where inner pressure was varied from 0mmHg to 12mmHg. Changes in the external abdominal surface were recorded and several points were tracked. Based on their coordinates we reconstructed a 3D finite element model of the abdominal wall, considering an incompressible hyperelastic material model defined by two parameters. The spatial distributions of these parameters (shear modulus and non linear parameter) were calculated by inverse analysis, using two different types of regularization: Total Variation Diminishing (TVD) and Tikhonov (H 1 ). After solving the inverse problem, the distribution of the material parameters were obtained along the abdominal surface. Accuracy of the results was evaluated for the last level of pressure. Results revealed a higher value of the shear modulus in a wide stripe along the craneo-caudal direction, associated with the presence of linea alba in conjunction with fascias and rectus abdominis. Non linear parameter distribution was smoother and the location of higher values varied with the regularization type. Both regularizations proved to yield in an accurate predicted displacement field, but H 1 obtained a smoother material parameter distribution while TVD included some discontinuities. The methodology here presented was able to characterize in vivo the passive non linear mechanical response of the abdominal wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The cell wall-localized atypical β-1,3 glucanase ZERZAUST controls tissue morphogenesis in Arabidopsis thaliana.

    Science.gov (United States)

    Vaddepalli, Prasad; Fulton, Lynette; Wieland, Jennifer; Wassmer, Katrin; Schaeffer, Milena; Ranf, Stefanie; Schneitz, Kay

    2017-06-15

    Orchestration of cellular behavior in plant organogenesis requires integration of intercellular communication and cell wall dynamics. The underlying signaling mechanisms are poorly understood. Tissue morphogenesis in Arabidopsis depends on the receptor-like kinase STRUBBELIG. Mutations in ZERZAUST were previously shown to result in a strubbelig-like mutant phenotype. Here, we report on the molecular identification and functional characterization of ZERZAUST We show that ZERZAUST encodes a putative GPI-anchored β-1,3 glucanase suggested to degrade the cell wall polymer callose. However, a combination of in vitro, cell biological and genetic experiments indicate that ZERZAUST is not involved in the regulation of callose accumulation. Nonetheless, Fourier-transformed infrared-spectroscopy revealed that zerzaust mutants show defects in cell wall composition. Furthermore, the results indicate that ZERZAUST represents a mobile apoplastic protein, and that its carbohydrate-binding module family 43 domain is required for proper subcellular localization and function whereas its GPI anchor is dispensable. Our collective data reveal that the atypical β-1,3 glucanase ZERZAUST acts in a non-cell-autonomous manner and is required for cell wall organization during tissue morphogenesis. © 2017. Published by The Company of Biologists Ltd.

  8. Myocardial Tissue Characterization: Histological and Pathophysiological Correlation.

    Science.gov (United States)

    Treibel, T A; White, S K; Moon, J C

    2014-01-01

    Cardiovascular magnetic resonance imaging (CMR) has become the gold standard not only for cardiac volume and function quantification, but for a key unique strength: non-invasive myocardial tissue characterization. Several different techniques, separately or in combination, can detect and quantify early and established myocardial pathological processes permitting better diagnosis, prognostication and tracking of therapy. The authors will focus on the histological and pathophysiological evidence of these imaging parameters in the characterization of edema, infarction, scar and fibrosis. In addition to laying out the strengths and weaknesses of each modality, the reader will be introduced to rapid developments in T1 and T2 mapping as well as the use of contrast-derived extracellular volume for quantification of diffuse fibrosis.

  9. Conservative Socket Regeneration with Buccal Wall Defect Using Guided Tissue.

    Science.gov (United States)

    Al-Juboori, Mohammed Jasim

    2016-01-01

    Progressive alveolar bone resorption after tooth extraction may lead to surgical and prosthetic-driven difficulties, especially when deciding to use a dental implant to replace the extracted tooth. This case report discusses an irreparable lower left second premolar tooth with a periodontal lesion on the buccal side. A preservative tooth extraction was performed. Then, the socket was grafted with bovine bone, a collagen membrane was placed between the buccal bone and the attached gingiva, covering the bone dehiscence buccally, and the socket without a flap was raised. After a 6-month healing period, there was minimal socket width resorption and a shallow buccal vestibule. The implant was placed with high primary stability and sufficient buccal plate thickness. In conclusion, this guided tissue regeneration technique can minimize alveolar bone resorption in a socket with buccal dehiscence, but technical difficulties and shallowing of the buccal vestibule still exist.

  10. Ultrasound Tissue Characterization of Vulnerable Atherosclerotic Plaque

    Directory of Open Access Journals (Sweden)

    Eugenio Picano

    2015-05-01

    Full Text Available A thrombotic occlusion of the vessel fed by ruptured coronary atherosclerotic plaque may result in unstable angina, myocardial infarction or death, whereas embolization from a plaque in carotid arteries may result in transient ischemic attack or stroke. The atherosclerotic plaque prone to such clinical events is termed high-risk or vulnerable plaque, and its identification in humans before it becomes symptomatic has been elusive to date. Ultrasonic tissue characterization of the atherosclerotic plaque is possible with different techniques—such as vascular, transesophageal, and intravascular ultrasound—on a variety of arterial segments, including carotid, aorta, and coronary districts. The image analysis can be based on visual, video-densitometric or radiofrequency methods and identifies three distinct textural patterns: hypo-echoic (corresponding to lipid- and hemorrhage-rich plaque, iso- or moderately hyper-echoic (fibrotic or fibro-fatty plaque, and markedly hyperechoic with shadowing (calcific plaque. Hypoechoic or dishomogeneous plaques, with spotty microcalcification and large plaque burden, with plaque neovascularization and surface irregularities by contrast-enhanced ultrasound, are more prone to clinical complications than hyperechoic, extensively calcified, homogeneous plaques with limited plaque burden, smooth luminal plaque surface and absence of neovascularization. Plaque ultrasound morphology is important, along with plaque geometry, in determining the atherosclerotic prognostic burden in the individual patient. New quantitative methods beyond backscatter (to include speed of sound, attenuation, strain, temperature, and high order statistics are under development to evaluate vascular tissues. Although not yet ready for widespread clinical use, tissue characterization is listed by the American Society of Echocardiography roadmap to 2020 as one of the most promising fields of application in cardiovascular ultrasound imaging

  11. Characterization of plasma sprayed beryllium ITER first wall mockups

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Vaidya, R.U.; Hollis, K.J. [Los Alamos National Lab., NM (United States). Material Science and Technology Div.

    1998-01-01

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/m{sup 2} without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface. (author)

  12. Characterization of Plasma Sprayed Beryllium ITER First Wall Mockups

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Richard G.; Vaidya, Rajendra U.; Hollis, Kendall J.

    1997-12-31

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/sq m without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface.

  13. Characterization of the Sclerotinia sclerotiorum cell wall proteome.

    Science.gov (United States)

    Liu, Longzhou; Free, Stephen J

    2016-08-01

    We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes. © 2015 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  14. Ultrasonic signal processing and tissue characterization

    Science.gov (United States)

    Mu, Zhiping

    Ultrasound imaging has become one of the most widely used diagnostic tools in medicine. While it has advantages, compared with other modalities, in terms of safety, low-cost, accessibility, portability and capability of real-time imaging, it has limitations. One of the major disadvantages of ultrasound imaging is the relatively low image quality, especially the low signal-to-noise ratio (SNR) and the low spatial resolution. Part of this dissertation is dedicated to the development of digital ultrasound signal and image processing methods to improve ultrasound image quality. Conventional B-mode ultrasound systems display the demodulated signals, i.e., the envelopes, in the images. In this dissertation, I introduce the envelope matched quadrature filtering (EMQF) technique, which is a novel demodulation technique generating optimal performance in envelope detection. In ultrasonography, the echo signals are the results of the convolution of the pulses and the medium responses, and the finite pulse length is a major source of the degradation of the image resolution. Based on the more appropriate complex-valued medium response assumption rather than the real-valued assumption used by many researchers, a nonparametric iterative deconvolution method, the Least Squares method with Point Count regularization (LSPC), is proposed. This method was tested using simulated and experimental data, and has produced excellent results showing significant improvements in resolution. During the past two decades, ultrasound tissue characterization (UTC) has emerged as an active research field and shown potentials of applications in a variety of clinical areas. Particularly interesting to me is a group of methods characterizing the scatterer spatial distribution. For resolvable regular structures, a deconvolution based method is proposed to estimate parameters characterizing such structures, including mean scatterer spacing, and has demonstrated superior performance when compared to

  15. Abdominal wall regenerative medicine for a large defect using tissue engineering: an experimental study.

    Science.gov (United States)

    Suzuhigashi, Masaya; Kaji, Tatsuru; Nakame, Kazuhiko; Mukai, Motoi; Yamada, Waka; Onishi, Shun; Yamada, Koji; Kawano, Takafumi; Takamatsu, Hideo; Ieiri, Satoshi

    2016-10-01

    Treatment for a large abdominal wall defect remains challenging. The aim of this study was to optimize tissue engineering therapy of muscle constructs using a rat model. Experimental abdominal wall defects were created in Wister rats. The animal model was divided into three groups: collagen sponge (CS), hybrid scaffold (HS) and hybrid scaffold containing bone marrow liquid (HSBM). Hybrid scaffolds comprised collagen sponge and poly L-lactide (PLLA) sheets. Abdominal wall defects were covered by three kinds of sheets. Thereafter, the bone marrow liquid was spread onto the sheets. Rats were killed at 4, 8, and 16 weeks. Pathological examinations were performed using hematoxylin-eosin and desmin antibody staining. The CS group showed abdominal hernia, whereas the HS and HSBM groups did not. Vascular formation was confirmed in all groups. Muscle tissue was recognized at the marginal area of the sheet only in the HSBM group. The HS and HSBM groups show a greater intensity than the CS group. Muscle tissue regeneration is solely recognized in the HSBM group. Our experimental data suggest that the triad of scaffold, cell, and growth factor is fundamental for ideal biomaterials. The HSBM may be useful for reconstruction of abdominal wall defects.

  16. Stimulated release of tissue plasminogen activator from artery wall sympathetic nerves: implications for stress-associated wall damage.

    Science.gov (United States)

    Hao, Zhifang; Jiang, Xi; Sharafeih, Roshanak; Shen, Shujing; Hand, Arthur R; Cone, Robert E; O'Rourke, James

    2005-06-01

    Recurrent stress is clinically associated with early onset hypertension and coronary artery disease. A mechanism linking emotion to pathogenic remodeling of the artery wall has not been identified. Stress stimulates acute regulated release of tissue plasminogen activator (t-PA) into the circulation, which is presently attributed to the vascular endothelium. Sympathetic neurons also synthesize t-PA and axonally transport it to the arterial smooth muscle. Unlike release by the endothelium, a stress-stimulated sympathetic discharge would potentially accelerate degradation of the wall matrix by plasmin. To assess whether sympathetic axons are the principal source of acute stress-induced arterial release of t-PA, we compared the output from small densely innervated and large sparsely innervated isolated artery segments before and after sympathetic stimulation, and after ablations. Following phenylephrine infusion densely-innervated microvessels in uveal eyecups were released over 60-fold greater amounts of active t-PA per milligram than the sparsely innervated aorta; and ten-fold more than carotid artery segments. Mesenteric artery release was 4.8-fold greater than release by the carotid artery. In vivo, uveal release of t-PA increased more than three-fold within one minute following superior cervical sympathetic ganglion electrical stimulation, and after phenylephrine, or nicotine infusions of the anterior chamber. Circulating levels of t-PA fell 70% following chemical sympathectomy. We propose that sympathetic nerves are the primary source of stress-induced release of t-PA into and from the densely innervated resistance arteries and arterioles, where dysregulated plasmin-induced proteolysis could damage the wall matrix.

  17. Expansion of Submucosal Bladder Wall Tissue In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Gisela Reinfeldt Engberg

    2016-01-01

    Full Text Available In order to develop autologous tissue engineering of the whole wall in the urinary excretory system, we studied the regenerative capacity of the muscular bladder wall. Smooth muscle cell expansion on minced detrusor muscle in vitro and in vivo with or without urothelial tissue was studied. Porcine minced detrusor muscle and urothelium were cultured in vitro under standard culture conditions for evaluation of the explant technique and in collagen for tissue sectioning and histology. Autografts of minced detrusor muscle with or without minced urothelium were expanded on 3D cylinder moulds by grafting into the subcutaneous fat of the pig abdominal wall. Moulds without autografts were used as controls. Tissue harvesting, mincing, and transplantation were performed as a one-step procedure. Cells from minced detrusor muscle specimens migrated and expanded in vitro on culture plastic and in collagen. In vivo studies with minced detrusor autografts demonstrated expansion and regeneration in all specimens. Minced urothelium autografts showed multilayered transitional urothelium when transplanted alone but not in cotransplantation with detrusor muscle; thus, minced bladder mucosa was not favored by cografting with minced detrusor. No regeneration of smooth muscle or epithelium was seen in controls.

  18. Vessel wall characterization using quantitative MRI: what's in a number?

    Science.gov (United States)

    Coolen, Bram F; Calcagno, Claudia; van Ooij, Pim; Fayad, Zahi A; Strijkers, Gustav J; Nederveen, Aart J

    2018-02-01

    The past decade has witnessed the rapid development of new MRI technology for vessel wall imaging. Today, with advances in MRI hardware and pulse sequences, quantitative MRI of the vessel wall represents a real alternative to conventional qualitative imaging, which is hindered by significant intra- and inter-observer variability. Quantitative MRI can measure several important morphological and functional characteristics of the vessel wall. This review provides a detailed introduction to novel quantitative MRI methods for measuring vessel wall dimensions, plaque composition and permeability, endothelial shear stress and wall stiffness. Together, these methods show the versatility of non-invasive quantitative MRI for probing vascular disease at several stages. These quantitative MRI biomarkers can play an important role in the context of both treatment response monitoring and risk prediction. Given the rapid developments in scan acceleration techniques and novel image reconstruction, we foresee the possibility of integrating the acquisition of multiple quantitative vessel wall parameters within a single scan session.

  19. Multi-walled carbon nanotubes: sampling criteria and aerosol characterization.

    Science.gov (United States)

    Chen, Bean T; Schwegler-Berry, Diane; McKinney, Walter; Stone, Samuel; Cumpston, Jared L; Friend, Sherri; Porter, Dale W; Castranova, Vincent; Frazer, David G

    2012-10-01

    This study intends to develop protocols for sampling and characterizing multi-walled carbon nanotube (MWCNT) aerosols in workplaces or during inhalation studies. Manufactured dry powder containing MWCNT's, combined with soot and metal catalysts, form complex morphologies and diverse shapes. The aerosols, examined in this study, were produced using an acoustical generator. Representative samples were collected from an exposure chamber using filters and a cascade impactor for microscopic and gravimetric analyses. Results from filters showed that a density of 0.008-0.10 particles per µm² filter surface provided adequate samples for particle counting and sizing. Microscopic counting indicated that MWCNT's, resuspended at a concentration of 10 mg/m³, contained 2.7 × 10⁴ particles/cm³. Each particle structure contained an average of 18 nanotubes, resulting in a total of 4.9 × 10⁵ nanotubes/cm³. In addition, fibrous particles within the aerosol had a count median length of 3.04 µm and a width of 100.3 nm, while the isometric particles had a count median diameter of 0.90 µm. A combination of impactor and microscopic measurements established that the mass median aerodynamic diameter of the mixture was 1.5 µm. It was also determined that the mean effective density of well-defined isometric particles was between 0.71 and 0.88 g/cm³, and the mean shape factor of individual nanotubes was between 1.94 and 2.71. The information obtained from this study can be used for designing animal inhalation exposure studies and adopted as guidance for sampling and characterizing MWCNT aerosols in workplaces. The measurement scheme should be relevant for any carbon nanotube aerosol.

  20. Multi-walled carbon nanotubes: sampling criteria and aerosol characterization

    Science.gov (United States)

    Chen, Bean T.; Schwegler-Berry, Diane; McKinney, Walter; Stone, Samuel; Cumpston, Jared L.; Friend, Sherri; Porter, Dale W.; Castranova, Vincent; Frazer, David G.

    2015-01-01

    This study intends to develop protocols for sampling and characterizing multi-walled carbon nanotube (MWCNT) aerosols in workplaces or during inhalation studies. Manufactured dry powder containing MWCNT’s, combined with soot and metal catalysts, form complex morphologies and diverse shapes. The aerosols, examined in this study, were produced using an acoustical generator. Representative samples were collected from an exposure chamber using filters and a cascade impactor for microscopic and gravimetric analyses. Results from filters showed that a density of 0.008–0.10 particles per µm2 filter surface provided adequate samples for particle counting and sizing. Microscopic counting indicated that MWCNT’s, resuspended at a concentration of 10 mg/m3, contained 2.7 × 104 particles/cm3. Each particle structure contained an average of 18 nanotubes, resulting in a total of 4.9 × 105 nanotubes/cm3. In addition, fibrous particles within the aerosol had a count median length of 3.04 µm and a width of 100.3 nm, while the isometric particles had a count median diameter of 0.90 µm. A combination of impactor and microscopic measurements established that the mass median aerodynamic diameter of the mixture was 1.5 µm. It was also determined that the mean effective density of well-defined isometric particles was between 0.71 and 0.88 g/cm3, and the mean shape factor of individual nanotubes was between 1.94 and 2.71. The information obtained from this study can be used for designing animal inhalation exposure studies and adopted as guidance for sampling and characterizing MWCNT aerosols in workplaces. The measurement scheme should be relevant for any carbon nanotube aerosol. PMID:23033994

  1. Expression and characterization of a novel spore wall protein from ...

    African Journals Online (AJOL)

    Microsporidia are obligate intracellular, eukaryotic, spore-forming parasites. The environmentally resistant spores, which harbor a rigid cell wall, are critical for their survival outside their host cells and host-to-host transmission. The spore wall comprises two major layers: the exospore and the endospore. In Nosema ...

  2. Characterizing phenolformaldehyde adhesive cure chemistry within the wood cell wall

    Science.gov (United States)

    Daniel J. Yelle; John Ralph

    2016-01-01

    Adhesive bonding of wood using phenol-formaldehyde remains the industrial standard in wood product bond durability. Not only does this adhesive infiltrate the cell wall, it also is believed to form primary bonds with wood cell wall polymers, particularly guaiacyl lignin. However, the mechanism by which phenol-formaldehyde adhesive intergrally interacts and bonds to...

  3. Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation.

    Science.gov (United States)

    Nilsson, Robert; Bernfur, Katja; Gustavsson, Niklas; Bygdell, Joakim; Wingsle, Gunnar; Larsson, Christer

    2010-02-01

    By exploiting the abundant tissues available from Populus trees, 3-4 m high, we have been able to isolate plasma membranes of high purity from leaves, xylem, and cambium/phloem at a time (4 weeks after bud break) when photosynthesis in the leaves and wood formation in the xylem should have reached a steady state. More than 40% of the 956 proteins identified were found in the plasma membranes of all three tissues and may be classified as "housekeeping" proteins, a typical example being P-type H(+)-ATPases. Among the 213 proteins predicted to be integral membrane proteins, transporters constitute the largest class (41%) followed by receptors (14%) and proteins involved in cell wall and carbohydrate metabolism (8%) and membrane trafficking (8%). ATP-binding cassette transporters (all members of subfamilies B, C, and G) and receptor-like kinases (four subfamilies) were two of the largest protein families found, and the members of these two families showed pronounced tissue distribution. Leaf plasma membranes were characterized by a very high proportion of transporters, constituting almost half of the integral proteins. Proteins involved in cell wall synthesis (such as cellulose and sucrose synthases) and membrane trafficking were most abundant in xylem plasma membranes in agreement with the role of the xylem in wood formation. Twenty-five integral proteins and 83 soluble proteins were exclusively found in xylem plasma membranes, which identifies new candidates associated with cell wall synthesis and wood formation. Among the proteins uniquely found in xylem plasma membranes were most of the enzymes involved in lignin biosynthesis, which suggests that they may exist as a complex linked to the plasma membrane.

  4. Characterization of microRNAs expressed during secondary wall biosynthesis in Acacia mangium.

    Science.gov (United States)

    Ong, Seong Siang; Wickneswari, Ratnam

    2012-01-01

    MicroRNAs (miRNAs) play critical regulatory roles by acting as sequence specific guide during secondary wall formation in woody and non-woody species. Although thousands of plant miRNAs have been sequenced, there is no comprehensive view of miRNA mediated gene regulatory network to provide profound biological insights into the regulation of xylem development. Herein, we report the involvement of six highly conserved amg-miRNA families (amg-miR166, amg-miR172, amg-miR168, amg-miR159, amg-miR394, and amg-miR156) as the potential regulatory sequences of secondary cell wall biosynthesis. Within this highly conserved amg-miRNA family, only amg-miR166 exhibited strong differences in expression between phloem and xylem tissue. The functional characterization of amg-miR166 targets in various tissues revealed three groups of HD-ZIP III: ATHB8, ATHB15, and REVOLUTA which play pivotal roles in xylem development. Although these three groups vary in their functions, -psRNA target analysis indicated that miRNA target sequences of the nine different members of HD-ZIP III are always conserved. We found that precursor structures of amg-miR166 undergo exhaustive sequence variation even within members of the same family. Gene expression analysis showed three key lignin pathway genes: C4H, CAD, and CCoAOMT were upregulated in compression wood where a cascade of miRNAs was downregulated. This study offers a comprehensive analysis on the involvement of highly conserved miRNAs implicated in the secondary wall formation of woody plants.

  5. Mechanical characterization of stomach tissue under uniaxial tensile action.

    Science.gov (United States)

    Jia, Z G; Li, W; Zhou, Z R

    2015-02-26

    In this article, the tensile properties of gastric wall were investigated by using biomechanical test and theoretical analysis. The samples of porcine stomach strips from smaller and greater curvature of the stomach were cut in longitudinal and circumferential direction, respectively. The loading-unloading, stress relaxation, strain creep, tensile fracture tests were performed at mucosa-submucosa, serosa-muscle and intact layer, respectively. Results showed that the biomechanical properties of the porcine stomach depended on the layers, orientations and locations of the gastric wall and presented typical viscoelastic, nonlinear and anisotropic mechanical properties. During loading-unloading test, the stress of serosa-muscle layer in the longitudinal direction was 15-20% more than that in the circumferential direction at 12% stretch ratio, while it could reach about 40% for the intact layer and 50% for the mucosa-submucosa layer. The results of stress relaxation and strain creep showed that the variation degree was obviously faster in the circumferential direction than that in the longitudinal direction, and the ultimate residual values were also different for the different layers, orientations and locations. In the process of fracture test, the serosa-muscle layer fractured firstly followed by the mucosa-submucosa layer when the intact layer was tested, the longitudinal strips firstly began to fracture and the required stress value was about twice as much as that in the circumferential strips. The anisotropy and heterogeneity of mechanical characterization of the porcine stomach were related to its complicated geometry, structure and functions. The results would help us to understand the biomechanics of soft organ tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Characterizing visible and invisible cell wall mutant phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Carpita, Nicholas C.; McCann, Maureen C.

    2015-04-06

    About 10% of a plant's genome is devoted to generating the protein machinery to synthesize, remodel, and deconstruct the cell wall. High-throughput genome sequencing technologies have enabled a reasonably complete inventory of wall-related genes that can be assembled into families of common evolutionary origin. Assigning function to each gene family member has been aided immensely by identification of mutants with visible phenotypes or by chemical and spectroscopic analysis of mutants with ‘invisible’ phenotypes of modified cell wall composition and architecture that do not otherwise affect plant growth or development. This review connects the inference of gene function on the basis of deviation from the wild type in genetic functional analyses to insights provided by modern analytical techniques that have brought us ever closer to elucidating the sequence structures of the major polysaccharide components of the plant cell wall.

  7. General tissue characteristics of the lower urethral and vaginal walls in the domestic rabbit.

    Science.gov (United States)

    Rodríguez-Antolín, Jorge; Xelhuantzi, Nicté; García-Lorenzana, Mario; Cuevas, Estela; Hudson, Robyn; Martínez-Gómez, Margarita

    2009-01-01

    In European rabbits, the distal urethra (DU) opens into the anterior pelvic vagina forming a single canal by which females copulate, give birth, and urinate. We investigated whether the histological characteristics of the DU and the pelvic and perineal vagina are different. The DU and vagina of rabbits (Oryctolagus cuniculus) were cut and stained with hematoxylin-eosin and Masson's trichrome (n = 3). Data were compared by using Friedman's ANOVA for repeated measures. The walls of the DU and vagina are composed of mucosa, submucosa, smooth muscle, and an external layer. Differences in tissue characteristics of the mucosa, orientation of the smooth muscle fibers, components of the external layer (connective tissue, blood vessels, and striated musculature), and thickness of the tissue layers were found among regions. The lack of histological homogeneity along the urethra and vagina possibly reflects differences in the functions of each segment.

  8. Detection of urease in the cell wall and membranes from leaf tissues of bromeliad species.

    Science.gov (United States)

    Aguetoni Cambuí, Camila; Gaspar, Marília; Mercier, Helenice

    2009-05-01

    Urea is an important nitrogen source for some bromeliad species, and in nature it is derived from the excretion of amphibians, which visit or live inside the tank water. Its assimilation is dependent on the hydrolysis by urease (EC: 3.5.1.5), and although this enzyme has been extensively studied to date, little information is available about its cellular location. In higher plants, this enzyme is considered to be present in the cytoplasm. However, there is evidence that urease is secreted by the bromeliad Vriesea gigantea, implying that this enzyme is at least temporarily located in the plasmatic membrane and cell wall. In this article, urease activity was measured in different cell fractions using leaf tissues of two bromeliad species: the tank bromeliad V. gigantea and the terrestrial bromeliad Ananas comosus (L.) Merr. In both species, urease was present in the cell wall and membrane fractions, besides the cytoplasm. Moreover, a considerable difference was observed between the species: while V. gigantea had 40% of the urease activity detected in the membranes and cell wall fractions, less than 20% were found in the same fractions in A. comosus. The high proportion of urease found in cell wall and membranes in V. gigantea was also investigated by cytochemical detection and immunoreaction assay. Both approaches confirmed the enzymatic assay. We suggest this physiological characteristic allows tank bromeliads to survive in a nitrogen-limited environment, utilizing urea rapidly and efficiently and competing successfully for this nitrogen source against microorganisms that live in the tank water.

  9. Tissue penetration of moxifloxacin into human gallbladder wall in patients with biliary tract infections.

    Science.gov (United States)

    Ober, Michael C; Hoppe-Tichy, Torsten; Köninger, Jörg; Schunter, Oliver; Sonntag, Hans-Günther; Weigand, Markus A; Encke, Jens; Gutt, Carsten; Swoboda, Stefanie

    2009-11-01

    Moxifloxacin, the newest fourth-generation fluoroquinolone, has a broad spectrum of antibacterial activity covering both Gram-positive and Gram-negative aerobic and anaerobic bacteria and is therefore very well suited for the treatment of biliary tract infections. The present study aimed to determine the penetration of moxifloxacin into gallbladder tissue to evaluate its antibiotic potential in this indication. Hospitalized patients with acute cholecystitis received a single, 1 h infusion of 400 mg of moxifloxacin before cholecystectomy. Serum and gallbladder wall tissue samples were collected during surgery, and the moxifloxacin concentrations were measured by HPLC. Sixteen patients (eight men and eight women) were included between January 2007 and April 2008. The time between start of infusion and gallbladder removal ranged from 50 min to 21 h 10 min. The serum concentration at the time of cholecystectomy was between 0.39 and 4.37 mg/L, and the tissue concentration between 1.73 and 17.08 mg/kg. The tissue-to-serum concentration ratio ranged from 1.72 to 6.33. The results show that moxifloxacin penetrates well into gallbladder tissue and is therefore a therapeutic option for biliary tract infection. The highest concentrations in serum and gallbladder tissue were measured shortly after the end of a 1 h infusion. As perioperative prophylaxis, moxifloxacin should therefore be administered 30-60 min before the first surgical incision.

  10. Lymphocyte trafficking and HIV infection of human lymphoid tissue in a rotating wall vessel bioreactor

    Science.gov (United States)

    Margolis, L. B.; Fitzgerald, W.; Glushakova, S.; Hatfill, S.; Amichay, N.; Baibakov, B.; Zimmerberg, J.

    1997-01-01

    The pathogenesis of HIV infection involves a complex interplay between both the infected and noninfected cells of human lymphoid tissue, the release of free viral particles, the de novo infection of cells, and the recirculatory trafficking of peripheral blood lymphocytes. To develop an in vitro model for studying these various aspects of HIV pathogenesis we have utilized blocks of surgically excised human tonsils and a rotating wall vessel (RWV) cell culture system. Here we show that (1) fragments of the surgically excised human lymphoid tissue remain viable and retain their gross cytoarchitecture for at least 3 weeks when cultured in the RWV system; (2) such lymphoid tissue gradually shows a loss of both T and B cells to the surrounding growth medium; however, this cellular migration is reversible as demonstrated by repopulation of the tissue by labeled cells from the growth medium; (3) this cellular migration may be partially or completely inhibited by embedding the blocks of lymphoid tissue in either a collagen or agarose gel matrix; these embedded tissue blocks retain most of the basic elements of a normal lymphoid cytoarchitecture; and (4) both embedded and nonembedded RWV-cultured blocks of human lymphoid tissue are capable of productive infection by HIV-1 of at least three various strains of different tropism and phenotype, as shown by an increase in both p24 antigen levels and free virus in the culture medium, and by the demonstration of HIV-1 RNA-positive cells inside the tissue identified by in situ hybridization. It is therefore reasonable to suggest that gel-embedded and nonembedded blocks of human lymphoid tissue, cocultured with a suspension of tonsillar lymphocytes in an RWV culture system, constitute a useful model for simulating normal lymphocyte recirculatory traffic and provide a new tool for testing the various aspects of HIV pathogenesis.

  11. Methods for Determining Cell Wall-Bound Phenolics in Maize Stem Tissues.

    Science.gov (United States)

    Santiago, Rogelio; López-Malvar, Ana; Souto, Carlos; Barros-Ríos, Jaime

    2018-01-26

    We compared two methods with different sample pretreatment, hydrolysis, and separation procedures to extract cell wall-bound phenolics. The samples were pith and rind tissues from six maize inbred lines reportedly containing different levels of cell wall-bound phenolics. In method 1, pretreated samples were extracted with a C18 solid-phase extraction cartridge, and it took 6 days to complete. In method 2, phenolics were extracted from crude samples with ethyl acetate, it took 2 days to complete, and the cost per sample was reduced more than 60%. Both methods extracted more 4-coumarate than ferulate. Overall, method 1 yielded more 4-coumarate, while method 2 yielded more ferulate. The lack of a genotype × method interaction and significant correlations between the results obtained using the two methods indicate that both methods are reliable for use in large-scale plant breeding programs. Method 2, scaled, is proposed for general plant biology research.

  12. Electron Tomography of Cryo-Immobilized Plant Tissue: A Novel Approach to Studying 3D Macromolecular Architecture of Mature Plant Cell Walls In Situ

    Science.gov (United States)

    Sarkar, Purbasha; Bosneaga, Elena; Yap, Edgar G.; Das, Jyotirmoy; Tsai, Wen-Ting; Cabal, Angelo; Neuhaus, Erica; Maji, Dolonchampa; Kumar, Shailabh; Joo, Michael; Yakovlev, Sergey; Csencsits, Roseann; Yu, Zeyun; Bajaj, Chandrajit; Downing, Kenneth H.; Auer, Manfred

    2014-01-01

    Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT) electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼2 nm), and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF), cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin) samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we characterized the

  13. Electron tomography of cryo-immobilized plant tissue: a novel approach to studying 3D macromolecular architecture of mature plant cell walls in situ.

    Directory of Open Access Journals (Sweden)

    Purbasha Sarkar

    Full Text Available Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼ 2 nm, and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF, cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we

  14. Topical application of Mitomycin C in the treatment of granulation tissue after Canal Wall Down mastoidectomy

    Directory of Open Access Journals (Sweden)

    Alireza Karimi-Yazdi

    2013-03-01

    Full Text Available Introduction: Otorrhea and granulation tissue in Canal Wall Down mastoidectomy (CWD is the common problem in cholesteatoma removal and leads to many discomfort for both the patient and the physician. The main objective in CWD is creating the dry cavity, so the topical antibiotic and acetic acid in variable saturations are used for this purpose. In this study we evaluate the effectiveness of topical MMC and chemical cautery by acetic acid.   Materials and Methods: Study population consists of 50 patients with cholesteatoma whom underwent CWD. All patient allocated randomly in two study groups, MMC and acetic acid. After 3 weeks, the first visit is planned, extension of granulation tissue and dryness of cavity are evaluated and topical drugs are used in blind fashion. MMC in 4% and acetic acid in 12.5% saturation are applied. Other visits are completed at next month and 3 months later.   Results: Both methods are effective in treatment of granulation tissue. In each group both treatment were effective too but MMC was more effective than acid acetic in the treatment of granulation tissue after 4 weeks.   Conclusion: Based on our findings, it is clear that topical MMC is very effective in the treatment of granulation tissue and in CWD. It results in dry cavity much better than acetic acid without any complication. 

  15. Wall Turbulence with Designer Properties: Identification, Characterization and Manipulation of Energy Pathways

    Science.gov (United States)

    2016-02-26

    Wall turbulence with designer properties: Identification, characterization & manipulation of energy pathways 5a. CONTRACT NUMBER 5b. GRANT NUMBER... University of Texas) Sheplak, M. ( University of Florida) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S...identification, characterization and manipulation of energy pathways in wall turbulence. The objectives were pursued separately and collaboratively by the

  16. Extensive chest wall tissue loss and its management by vertical rectus abdominis myocutaneous flap

    Directory of Open Access Journals (Sweden)

    Sandip Kanti Basu

    2017-01-01

    Full Text Available Extensive electric burn around the chest in children is rare and this type of injury always poses a great challenge for its management. A 12-year-old male child with extensive electric burn of the chest wall was admitted to hospital. It was a neglected case of 9 days old burn; the young boy was in critical condition having systemic features of toxemia with widespread necrosis of the skin, subcutaneous tissues, and muscles along with exposed bones (ribs and sternum with the risk of impending rupture of pleura through the exposed intercostal spaces. After initial resuscitation, a thorough debridement of all necrotic tissues was done. Thereafter, a superiorly based vertical rectus abdominis myocutaneous flap was harvested to cover the exposed bones and intercostal spaces. The remaining raw areas were skin grafted. The child made an excellent recovery with good outcome.

  17. Ferroelectricity and piezoelectricity in soft biological tissue: Porcine aortic walls revisited

    Science.gov (United States)

    Lenz, Thomas; Hummel, Regina; Katsouras, Ilias; Groen, Wilhelm A.; Nijemeisland, Marlies; Ruemmler, Robert; Schäfer, Michael K. E.; de Leeuw, Dago M.

    2017-09-01

    Recently reported piezoresponse force microscopy (PFM) measurements have proposed that porcine aortic walls are ferroelectric. This finding may have great implications for understanding biophysical properties of cardiovascular diseases such as arteriosclerosis. However, the complex anatomical structure of the aortic wall with different extracellular matrices appears unlikely to be ferroelectric. The reason is that a prerequisite for ferroelectricity, which is the spontaneous switching of the polarization, is a polar crystal structure of the material. Although the PFM measurements were performed locally, the phase-voltage hysteresis loops could be reproduced at different positions on the tissue, suggesting that the whole aorta is ferroelectric. To corroborate this hypothesis, we analyzed entire pieces of porcine aorta globally, both with electrical and electromechanical measurements. We show that there is no hysteresis in the electric displacement as well as in the longitudinal strain as a function of applied electric field and that the strain depends on the electric field squared. By using the experimentally determined quasi-static permittivity and Young's modulus of the fixated aorta, we show that the strain can quantitatively be explained by Maxwell stress and electrostriction, meaning that the aortic wall is neither piezoelectric nor ferroelectric, but behaves as a regular dielectric material.

  18. [Characterization of eosinophils in soft tissue eosinophilic granuloma].

    Science.gov (United States)

    Hirose, Takashi; Watanabe, Kensuke

    2008-06-01

    Soft tissue eosinophilic granuloma assumes the form of a poorly-demarcated painless mass, and is characterized by marked eosinophil infiltration. Although this tumor decreases in size in response to steroid therapy, it grows again after discontinuation of it, and ultimately proves intractable to treatment. We recently attempted to characterize electron-microscopically the eosinophils in the area affected by soft tissue eosinophilic granuloma. Needle biopsy of subauricular masses was carried out before and after steroid treatment. The collected tissue was observed under an electron microscope. Before treatment, more than 90% of the eosinophils constituting the granulation tissue had a broken cell membrane. A number of Charcot-Leyden crystals were noted in the intercellular spaces. Following steroid treatment, more than 90% of eosinophils were intact, and Charcot-Leyden crystals were no longer observed. These findings suggest that destruction of eosinophils within granulation tissue aggravates soft tissue eosinophilic granulom.

  19. Immunohistochemical characterization of human olfactory tissue.

    Science.gov (United States)

    Holbrook, Eric H; Wu, Enming; Curry, William T; Lin, Derrick T; Schwob, James E

    2011-08-01

    The pathophysiology underlying human olfactory disorders is poorly understood because biopsying the olfactory epithelium (OE) can be unrepresentative and extensive immunohistochemical analysis is lacking. Autopsy tissue enriches our grasp of normal and abnormal olfactory immunohistology and guides the sampling of the OE by biopsy. Furthermore, a comparison of the molecular phenotype of olfactory epithelial cells between rodents and humans will improve our ability to correlate human histopathology with olfactory dysfunction. An immunohistochemical analysis of human olfactory tissue using a comprehensive battery of proven antibodies. Human olfactory mucosa obtained from 21 autopsy specimens was analyzed with immunohistochemistry. The position and extent of olfactory mucosa was assayed by staining whole mounts (WMs) with neuronal markers. Sections of the OE were analyzed with an extensive group of antibodies directed against cytoskeletal proteins and transcription factors, as were surgical specimens from an esthesioneuroblastoma. Neuron-rich epithelium is always found inferior to the cribriform plate, even at advanced age, despite the interruptions in the neuroepithelial sheet caused by patchy respiratory metaplasia. The pattern of immunostaining with our antibody panel identifies two distinct types of basal cell progenitors in human OE similar to rodents. The panel also clarifies the complex composition of esthesioneuroblastoma. The extent of human olfactory mucosa at autopsy can easily be delineated as a function of age and neurologic disease. The similarities in human versus rodent OE will enable us to translate knowledge from experimental animals to humans and will extend our understanding of human olfactory pathophysiology. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  20. Myocardial ultrasonic tissue characterization in patients with thyroid dysfunction

    Directory of Open Access Journals (Sweden)

    Schmidt André

    2010-04-01

    Full Text Available Abstract Background Structural myocardial abnormalities have been extensively documented in hypothyroidism. Experimental studies in animal models have also shown involvement of thyroid hormones in gene expression of myocardial collagen. This study was planned to investigate the ability of ultrasonic tissue characterization, as evaluated by integrated backscatter (IBS, to early identify myocardial involvement in thyroid dysfunction. Patients and Methods We studied 15 patients with hyperthyroidism (HYPER, 8 patients with hypothyroidism (HYPO, 14 patients with subclinical hypothyroidism (SCH and 19 normal (N subjects, who had normal LV systolic function. After treatment, 10 HYPER, 6 HYPO, and 8 SCH patients were reevaluated. IBS images were obtained and analyzed in parasternal short axis (papillary muscle level view, at left ventricular (LV posterior wall. The following IBS variables were analyzed: 1 the corrected coefficient (CC of IBS, obtained by dividing IBS intensity by IBS intensity measured in a rubber phantom, using the same equipment adjustments, at the same depth; 2 cardiac cyclic variation (CV of IBS - peak-to-peak difference between maximal and minimal values of IBS during cardiac cycle; 3 cardiac cyclic variation index (CVI of IBS - percentual relationship between the cyclic variation (CV and the mean value of IBS intensity. Results CC of IBS was significantly larger (p Conclusions CC of IBS was able to differentiate cardiac involvement in patients with overt HYPO and HYPER who had normal LV systolic function. These early myocardial structural abnormalities were partially reversed by drug therapy in HYPER group. On the other hand, although mean IBS intensity tended to be slightly larger in patients with SCH as compared to N, this difference was not statistical significant.

  1. In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering.

    NARCIS (Netherlands)

    Sitharaman, B.; Shi, X.; Walboomers, X.F.; Liao, H.; Cuijpers, V.; Wilson, L.J.; Mikos, A.G.; Jansen, J.A.

    2008-01-01

    Scaffolds play a pivotal role in the tissue engineering paradigm by providing temporary structural support, guiding cells to grow, assisting the transport of essential nutrients and waste products, and facilitating the formation of functional tissues and organs. Single-walled carbon nanotubes

  2. QUANTITATIVE INVIVO ASSESSMENT OF THE TISSUE-RESPONSE TO DERMAL SHEEP COLLAGEN IN ABDOMINAL-WALL DEFECTS

    NARCIS (Netherlands)

    HUNT, JA; VANDERLAAN, JS; SCHAKENRAAD, J; WILLIAMS, DF

    We quantified the tissue response, tissue organization and patency of biodegradable patches for the repair of abdominal wall defects. We used dermal sheep collagen, cross-linked with hexamethylenediisocyanate in a model. The collagen patches were implanted either untreated or plasma polymerized with

  3. Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials.

    Science.gov (United States)

    Dalecki, Diane; Mercado, Karla P; Hocking, Denise C

    2016-03-01

    Non-invasive, non-destructive technologies for imaging and quantitatively monitoring the development of artificial tissues are critical for the advancement of tissue engineering. Current standard techniques for evaluating engineered tissues, including histology, biochemical assays and mechanical testing, are destructive approaches. Ultrasound is emerging as a valuable tool for imaging and quantitatively monitoring the properties of engineered tissues and biomaterials longitudinally during fabrication and post-implantation. Ultrasound techniques are rapid, non-invasive, non-destructive and can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, high-frequency quantitative ultrasound techniques can enable volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation. This review provides an overview of ultrasound imaging, quantitative ultrasound techniques, and elastography, with representative examples of applications of these ultrasound-based techniques to the field of tissue engineering.

  4. Radiopharmaceuticals as probes to characterize tumour tissue

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Israt S.; Arshad, Mubarik A.; Nguyen, Quang-De; Aboagye, Eric O. [Imperial College London, Comprehensive Cancer Imaging Centre, London (United Kingdom)

    2015-04-01

    Tumour cells exhibit several properties that allow them to grow and divide. A number of these properties are detectable by nuclear imaging methods. We discuss crucial tumour properties that can be described by current radioprobe technologies, further discuss areas of emerging radioprobe development, and finally articulate need areas that our field should aspire to develop. The review focuses largely on positron emission tomography and draws upon the seminal 'Hallmarks of Cancer' review article by Hanahan and Weinberg in 2011 placing into context the present and future roles of radiotracer imaging in characterizing tumours. (orig.)

  5. Robotic palpation and mechanical property characterization for abnormal tissue localization.

    Science.gov (United States)

    Ahn, Bummo; Kim, Yeongjin; Oh, Cheol Kyu; Kim, Jung

    2012-09-01

    Palpation is an intuitive examination procedure in which the kinesthetic and tactile sensations of the physician are used. Although it has been widely used to detect and localize diseased tissues in many clinical fields, the procedure is subjective and dependent on the experience of the individual physician. Palpation results and biomechanics-based mechanical property characterization are possible solutions that can enable the acquisition of objective and quantitative information on abnormal tissue localization during diagnosis and surgery. This paper presents an integrated approach for robotic palpation combined with biomechanical soft tissue characterization. In particular, we propose a new palpation method that is inspired by the actual finger motions that occur during palpation procedures. To validate the proposed method, robotic palpation experiments on silicone soft tissue phantoms with embedded hard inclusions were performed and the force responses of the phantoms were measured using a robotic palpation system. Furthermore, we carried out a numerical analysis, simulating the experiments and estimating the objective and quantitative properties of the tissues. The results indicate that the proposed approach can differentiate diseased tissue from normal tissue and can characterize the mechanical information of diseased tissue, which means that this method can be applied as a means of abnormality localization to diagnose prostate cancers.

  6. Biomechanical characterization of soft tissue injuries

    Science.gov (United States)

    Winnem, Andreas Meyer; Randeberg, Lise Lyngsnes; Larsen, Eivind L. P.; Lilledahl, Magnus B.; Haaverstad, Rune; Haugen, Olav A.; Skallerud, Bjørn; Svaasand, Lars O.

    2007-02-01

    Determining the cause of an injury and the force behind the impact may be of crucial importance in a court case. For non-penetrating soft tissue injuries there is a lack of information available in the literature. In this study controlled bruises were inflicted on an anesthetized pig by high speed, low-weight paintball projectiles (diameter 17.1 mm, weight 3.15 g). The speed of the object and the impact itself were monitored using a high speed camera. Punch biopsies (5 mm) were collected from the injury sites. A red and purple ring with a diameter of 1.5 cm appeared on the skin within 30 seconds after the paintball impact. The ring was visually fully established after 5-10 minutes. Numerical finite element simulations performed with ABAQUSExplicit showed a build up of shear stresses in the skin where the ring formed. Biopsies demonstrated severe dermal vessel damage in the same area. It is concluded that considerable shear stresses during the impact will create dermal vessel damage and thereby cause a visible bruise. Larger forces are required for compressive stresses to inflict equivalent vascular damage.

  7. wall

    Directory of Open Access Journals (Sweden)

    Irshad Kashif

    2016-01-01

    Full Text Available Maintaining indoor climatic conditions of buildings compatible with the occupant comfort by consuming minimum energy, especially in a tropical climate becomes a challenging problem for researchers. This paper aims to investigate this problem by evaluating the effect of different kind of Photovoltaic Trombe wall system (PV-TW on thermal comfort, energy consumption and CO2 emission. A detailed simulation model of a single room building integrated with PV-TW was modelled using TRNSYS software. Results show that 14-35% PMV index and 26-38% PPD index reduces as system shifted from SPV-TW to DGPV-TW as compared to normal buildings. Thermal comfort indexes (PMV and PPD lie in the recommended range of ASHARE for both DPV-TW and DGPV-TW except for the few months when RH%, solar radiation intensity and ambient temperature were high. Moreover PVTW system significantly reduces energy consumption and CO2 emission of the building and also 2-4.8 °C of temperature differences between indoor and outdoor climate of building was examined.

  8. MINIMALLY INVASIVE SINGLE FLAP APPROACH WITH CONNECTIVE TISSUE WALL FOR PERIODONTAL REGENERATION

    Directory of Open Access Journals (Sweden)

    Kamen Kotsilkov

    2017-09-01

    Full Text Available INTRODUCTION: The destructive periodontal diseases are among the most prevalent in the human population. In some cases, bony defects are formed during the disease progression, thus sustaining deep periodontal pockets. The reconstruction of these defects is usually done with the classical techniques of bone substitutes placement and guided tissue regeneration. The clinical and histological data from the recent years, however, demonstrate the relatively low regenerative potential of these techniques. The contemporary approaches for periodontal regeneration rely on minimally invasive surgical protocols, aimed at complete tissue preservation in order to achieve and maintain primary closure and at stimulating the natural regenerative potential of the periodontal tissues. AIM: This presentation demonstrates the application of a new, minimally invasive, single flap surgical technique for periodontal regeneration in a clinical case with periodontitis and a residual deep intrabony defect. MATERIALS AND METHODS: A 37 years old patient presented with chronic generalised periodontitis. The initial therapy led to good control of the periodontal infection with a single residual deep periodontal pocket medially at 11 due to a deep intrabony defect. A single flap approach with an enamel matrix derivate application and a connective tissue wall technique were performed. The proper primary closure was obtained. RESULT: One month after surgery an initial mineralisation process in the defect was detected. At the third month, a complete clinical healing was observed. The radiographic control showed finished bone mineralisation and periodontal space recreation. CONCLUSION: In the limitation of the presented case, the minimally invasive surgical approach led to complete clinical healing and new bone formation, which could be proof for periodontal regeneration.

  9. Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility

    Directory of Open Access Journals (Sweden)

    Aymerick Eudes

    2016-07-01

    Full Text Available Plant biomass is a large source of fermentable sugars for the synthesis of bioproducts using engineered microbes. These sugars are stored as cell wall polymers, mainly cellulose and hemicellulose, and are embedded with lignin, which makes their enzymatic hydrolysis challenging. One of the strategies to reduce cell wall recalcitrance is the modification of lignin content and composition. Lignin is a phenolic polymer of methylated aromatic alcohols and its synthesis in tissues developing secondary cell walls is a significant sink for the consumption of the methyl donor S-adenosylmethionine (AdoMet. In this study, we demonstrate in Arabidopsis stems that targeted expression of S-adenosylmethionine hydrolase (AdoMetase, E.C. 3.3.1.2 in secondary cell-wall synthesizing tissues reduces the AdoMet pool and impacts lignin content and composition. In particular, both NMR analysis and pyrolysis gas chromatography mass spectrometry of lignin in engineered biomass showed relative enrichment of non-methylated p-hydroxycinnamyl (H units and a reduction of dimethylated syringyl (S units. This indicates a lower degree of methylation compared to that in wild-type lignin. Quantification of cell wall-bound hydroxycinnamates revealed a reduction of ferulate in AdoMetase transgenic lines. Biomass from transgenic lines, in contrast to that in control plants, exhibits an enrichment of glucose content and a reduction in the degree of hemicellulose glucuronoxylan methylation. We also show that these modifications resulted in a reduction of cell wall recalcitrance, because sugar yield generated by enzymatic biomass saccharification was greater than that of wild type plants. Considering that transgenic plants show no important diminution of biomass yields, and that heterologous expression of AdoMetase protein can be spatiotemporally optimized, this novel approach provides a valuable option for the improvement of lignocellulosic biomass feedstock.

  10. Broadband Spectroscopic Thermoacoustic Characterization of Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Daniel R. Bauer

    2015-01-01

    Full Text Available Carbon nanotubes have attracted interest as contrast agents for biomedical imaging because they strongly absorb electromagnetic radiation in the optical and microwave regions. This study applies thermoacoustic (TA imaging and spectroscopy to measure the frequency-dependent absorption profile of single-walled carbon nanotubes (SWNT in the ranges of 2.7–3.1 GHz and 7–9 GHz using two tunable microwave sources. Between 7 and 9 GHz, the peak TA signal for solutions containing semiconducting and metallic SWNTs increased monotonically with a slope of 1.75 AU/GHz (R2=0.95 and 2.8 AU/GHz (R2=0.93, respectively, relative to a water baseline. However, after compensating for the background signal from water, it was revealed that the TA signal from metallic SWNTs increased exponentially within this frequency band. Results suggest that TA imaging and spectroscopy could be a powerful tool for quantifying the absorption properties of SWNTs and optimizing their performance as contrast agents for imaging or heat sources for thermal therapy.

  11. Novel Technique for Online Characterization of Cartilaginous Tissue Properties

    OpenAIRE

    Yuan, Tai-Yi; Huang, Chun-Yuh; Yong Gu, Wei

    2011-01-01

    The goal of tissue engineering is to use substitutes to repair and restore organ function. Bioreactors are an indispensable tool for monitoring and controlling the unique environment for engineered constructs to grow. However, in order to determine the biochemical properties of engineered constructs, samples need to be destroyed. In this study, we developed a novel technique to nondestructively online-characterize the water content and fixed charge density of cartilaginous tissues. A new tech...

  12. Tissue-engineering with muscle fiber fragments improves the strength of a weak abdominal wall in rats

    DEFF Research Database (Denmark)

    Jangö, Hanna; Gräs, Søren; Christensen, Lise

    2017-01-01

    INTRODUCTION AND HYPOTHESIS: Alternative approaches to reinforce the native tissue in patients with pelvic organ prolapse (POP) are needed to improve surgical outcome. Our aims were to develop a weakened abdominal wall in a rat model to mimic the weakened vaginal wall in women with POP and then e...... showed a significantly higher strength than the group with MPEG-PLGA alone (p = 0.034). CONCLUSION: Tissue-engineering with MFFs seeded on a scaffold of biodegradable MPEG-PLGA might be an interesting adjunct to future POP repair....

  13. Preparation and characterization of amphiphilic multi-walled carbon nanotubes

    Science.gov (United States)

    Qiu, Jun; Wang, Guojian; Zhao, Caixia

    2008-04-01

    Multiwalled carbon nanotubes (MWCNTs, average diameter 8 nm) functionalized by N-vinyl pyrrolidone (NVP) were synthesized by radical polymerization and characterized by Fourier transform infrared and Raman spectroscopies, thermogravimetric analysis and transmission electron microscopy. These NVP-MWCNTs exhibit remarkable solubility in water, ethanol and dimethyl formamide. The polyvinyl pyrrolidone can be attached onto the surface of the MWCNTs and the degree of functionalization is affected by NVP content. The functionalization causes possible grafting reaction and solid physical coating between MWCNTs and PVP.

  14. Characterization of Cell Wall Composition of Radish (Raphanus sativus L. var. sativus) and Maturation Related Changes.

    Science.gov (United States)

    Schäfer, Judith; Brett, Anika; Trierweiler, Bernhard; Bunzel, Mirko

    2016-11-16

    Cell wall composition affects the texture of plant-based foods. In addition, the main components of plant cell walls are dietary fiber constituents and are responsible for potential physiological effects that are largely affected by the structural composition of the cell walls. Radish (Raphanus sativus L. var. sativus) is known to develop a woody and firm texture during maturation and ripening, most likely due to changes in the cell wall composition. To describe these changes chemically, radish was cultivated and harvested at different time points, followed by detailed chemical analysis of insoluble fiber polysaccharides and lignin. During maturation, changes in polysaccharide profiles were observed, with a decrease in the portion of neutral pectic side chains and an increase in the xylan portion being predominant. Radish lignin was characterized by unexpectedly high incorporation of p-coumaryl alcohol into the polymer. Maturation dependent increases in lignin contents were accompanied by compositional changes of the lignin polymers with sinapyl alcohol being preferentially incorporated.

  15. Ultrasonic Characterization of Tissues via Backscatter Frequency Dependence

    DEFF Research Database (Denmark)

    Stetson, Paul F.; Sommer, F.G.

    1997-01-01

    Phantom and patient studies were performed to assess the potential of backscatter frequency dependence as a useful parameter for tissue characterization. A commercial phased-array ultrasonic scanner was adapted to allow digitization of the intermediate-frequency ultrasonic data, Studies of agar...

  16. Effects of nitrofurazone on correction of abdominal wall defect treated with polypropylene mesh involved by fibrous tissue.

    Science.gov (United States)

    Yasojima, Edson Yuzur; Ribeiro Júnior, Rubens Fernando Gonçalves; Pessôa, Thyago Cezar Prado; Cavalcante, Lainy Carollyne da Costa; Ramos, Suzana Rodrigues; Serruya, Yuri Aarão Amaral; de Moraes, Mateus Malta

    2015-10-01

    To evaluate the effects of nitrofurazone on the correction of abdominal wall defect treated with polypropylene mesh involved by fibrous tissue in rats. A defect in the abdominal wall was created and corrected with polypropylene mesh in 20 rats. They were randomly distributed into four groups: control, fibrous mesh, nitrofurazone and nitrofurazone dip in the mesh. Euthanasia was performed in 21 post-operative days. The healing process was analyzed regarding the meshes and macroscopic and microscopic aspects. All animals had adhesions. However, no statistically significant difference (p>0.05) when compared between groups. Similarly microscopic analysis, in which there was no statistical significance level for the evaluated parameters such as mono and polymorphonuclear lymphocytes, granuloma, fibrosis, necrosis and collagen proliferation. There was no significant effect on the abdominal wall defect repair with polypropylene mesh surrounded by fibrous tissue when dipped in nitrofurazone 2%.

  17. Characterization of Thin Walled Mo Tubing produced by FBCVD

    Energy Technology Data Exchange (ETDEWEB)

    Beaux, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-21

    The goal of this report is to delineate the results of material characterization performed on Mo tubing produced via the fluidized bed chemical vapor deposition (FBCVD) method. Scanning electron microscopy (SEM) imaging reveals that small randomly oriented grains are achieved in the Mo deposition, but do not persist throughout the entire thickness of the material. Energy dispersive spectroscopy (EDS) reveals the Mo tubes contain residual chlorine and oxygen. EDS measurements on the tube surfaces separated from glass and quartz substrates reveal substrate material adhered to this surface. X-ray diffraction (XRD) revealed the presence of carbon contaminant in the form of Mo2C and oxygen in the form of MoO2. Combustion infrared detection (CID) and inert gas fusion (IGF) performed at Luvak Inc. was used to quantify weight percentages of oxygen and carbon in the tubes produced. Hardness value of the FBCVD Mo was found to be comparable to low carbon arc cast molybdenum.

  18. Osmotic relations of the coelomic fluid and body wall tissues in Arenicola marina subjected to salinity change

    DEFF Research Database (Denmark)

    Weber, Roy E.; Spaargaren, D.H.

    1979-01-01

    nitrogenous organic molecules (ninhydrin-positive substances, NPS) in the body wall tissues and in the coelomic fluid of specimens of Arenicola in response to sudden changes in salinity. The coelomic solutes consist almost entirely of electrolytes and the osmotic contribution of NPS is essentially negligible...

  19. Fabrication and characterization of biological tissue phantoms with embedded nanoparticles

    Science.gov (United States)

    Skaptsov, A. A.; Ustalkov, S. O.; Mohammed, A. H. M.; Savenko, O. A.; Novikova, A. S.; Kozlova, E. A.; Kochubey, V. I.

    2017-11-01

    Phantoms are imitations of biological tissue, which are used for modelling of the light propagation in biological tissues. Carrying out any biophysical experiments requires an indispensable constancy of the initial experiment conditions. The use of solid undegradable phantoms is the basis to obtain reliable reproducible experimental results. The fabrication of biological tissues phantoms containing high absorbance or fluorescence nanoparticles and corresponding to specific mechanical, optical properties is an actual task. This work describes development, fabrication and characterization of such solid tissue phantoms with embedded CdSe/ZnS quantum dots, gold and upconversion nanoparticles. Luminescence of samples with CdSe/ZnS quantum dots and upconversion nanoparticles were recorded. A sample of gold nanorods was analyzed using thermal gravimetric analysis. It can be concluded that the samples are well suited for experiments on laser thermolysis.

  20. Non-linear imaging and characterization of atherosclerotic arterial tissue using combined SHG and FLIM microscopy.

    Science.gov (United States)

    Cicchi, Riccardo; Baria, Enrico; Matthäus, Christian; Lange, Marta; Lattermann, Annika; Brehm, Bernhard R; Popp, Jürgen; Pavone, Francesco Saverio

    2015-04-01

    Atherosclerosis is one of the leading causes of death in the Western World and its characterization is extremely interesting from the diagnostic point of view. Here, we employed combined SHG-FLIM microscopy to characterize arterial tissue with atherosclerosis. The shorter mean fluorescence lifetime measured within plaque depositions (1260 ± 80 ps) with respect to normal arterial wall (1480 ± 100 ps) allowed discriminating collagen from lipids. SHG measurements and image analysis demonstrated that the normal arterial wall has a more anisotropic Aspect Ratio (0.37 ± 0.02) with respect to plaque depositions (0.61 ± 0.02) and that the correlation length can be used for discriminating collagen fibre bundles (2.0 ± 0.6 µm) from cholesterol depositions (4.1 ± 0.6 µm). The presented method has the potential to find place in a clinical setting as well as to be applied in vivo in the near future. Graphic composition of SHG and FLIM images representing normal arterial wall and plaque depositions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A Generalized Gamma Mixture Model for Ultrasonic Tissue Characterization

    Directory of Open Access Journals (Sweden)

    Gonzalo Vegas-Sanchez-Ferrero

    2012-01-01

    Full Text Available Several statistical models have been proposed in the literature to describe the behavior of speckles. Among them, the Nakagami distribution has proven to very accurately characterize the speckle behavior in tissues. However, it fails when describing the heavier tails caused by the impulsive response of a speckle. The Generalized Gamma (GG distribution (which also generalizes the Nakagami distribution was proposed to overcome these limitations. Despite the advantages of the distribution in terms of goodness of fitting, its main drawback is the lack of a closed-form maximum likelihood (ML estimates. Thus, the calculation of its parameters becomes difficult and not attractive. In this work, we propose (1 a simple but robust methodology to estimate the ML parameters of GG distributions and (2 a Generalized Gama Mixture Model (GGMM. These mixture models are of great value in ultrasound imaging when the received signal is characterized by a different nature of tissues. We show that a better speckle characterization is achieved when using GG and GGMM rather than other state-of-the-art distributions and mixture models. Results showed the better performance of the GG distribution in characterizing the speckle of blood and myocardial tissue in ultrasonic images.

  2. Ectopic lignification in the flax lignified bast fiber1 mutant stem is associated with tissue-specific modifications in gene expression and cell wall composition.

    Science.gov (United States)

    Chantreau, Maxime; Portelette, Antoine; Dauwe, Rebecca; Kiyoto, Shingo; Crônier, David; Morreel, Kris; Arribat, Sandrine; Neutelings, Godfrey; Chabi, Malika; Boerjan, Wout; Yoshinaga, Arata; Mesnard, François; Grec, Sebastien; Chabbert, Brigitte; Hawkins, Simon

    2014-11-01

    Histochemical screening of a flax ethyl methanesulfonate population led to the identification of 93 independent M2 mutant families showing ectopic lignification in the secondary cell wall of stem bast fibers. We named this core collection the Linum usitatissimum (flax) lbf mutants for lignified bast fibers and believe that this population represents a novel biological resource for investigating how bast fiber plants regulate lignin biosynthesis. As a proof of concept, we characterized the lbf1 mutant and showed that the lignin content increased by 350% in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Chemical and NMR analyses indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. Liquid chromatography-mass spectrometry profiling showed large modifications in the oligolignol pool of lbf1 inner- and outer-stem tissues that could be related to ectopic lignification. Immunological and chemical analyses revealed that lbf1 mutants also showed changes to other cell wall polymers. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of (1) the cinnamoyl-CoA reductase, cinnamyl alcohol dehydrogenase, and caffeic acid O-methyltransferase monolignol biosynthesis genes, (2) several lignin-associated peroxidase genes, and (3) genes coding for respiratory burst oxidase homolog NADPH-oxidases necessary to increase H2O2 supply. © 2014 American Society of Plant Biologists. All rights reserved.

  3. Ectopic Lignification in the Flax lignified bast fiber1 Mutant Stem Is Associated with Tissue-Specific Modifications in Gene Expression and Cell Wall Composition[C][W

    Science.gov (United States)

    Chantreau, Maxime; Portelette, Antoine; Dauwe, Rebecca; Kiyoto, Shingo; Crônier, David; Morreel, Kris; Arribat, Sandrine; Neutelings, Godfrey; Chabi, Malika; Boerjan, Wout; Yoshinaga, Arata; Mesnard, François; Grec, Sebastien; Chabbert, Brigitte; Hawkins, Simon

    2014-01-01

    Histochemical screening of a flax ethyl methanesulfonate population led to the identification of 93 independent M2 mutant families showing ectopic lignification in the secondary cell wall of stem bast fibers. We named this core collection the Linum usitatissimum (flax) lbf mutants for lignified bast fibers and believe that this population represents a novel biological resource for investigating how bast fiber plants regulate lignin biosynthesis. As a proof of concept, we characterized the lbf1 mutant and showed that the lignin content increased by 350% in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Chemical and NMR analyses indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. Liquid chromatography-mass spectrometry profiling showed large modifications in the oligolignol pool of lbf1 inner- and outer-stem tissues that could be related to ectopic lignification. Immunological and chemical analyses revealed that lbf1 mutants also showed changes to other cell wall polymers. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of (1) the cinnamoyl-CoA reductase, cinnamyl alcohol dehydrogenase, and caffeic acid O-methyltransferase monolignol biosynthesis genes, (2) several lignin-associated peroxidase genes, and (3) genes coding for respiratory burst oxidase homolog NADPH-oxidases necessary to increase H2O2 supply. PMID:25381351

  4. Novel technique for online characterization of cartilaginous tissue properties.

    Science.gov (United States)

    Yuan, Tai-Yi; Huang, Chun-Yuh; Yong Gu, Wei

    2011-09-01

    The goal of tissue engineering is to use substitutes to repair and restore organ function. Bioreactors are an indispensable tool for monitoring and controlling the unique environment for engineered constructs to grow. However, in order to determine the biochemical properties of engineered constructs, samples need to be destroyed. In this study, we developed a novel technique to nondestructively online-characterize the water content and fixed charge density of cartilaginous tissues. A new technique was developed to determine the tissue mechano-electrochemical properties nondestructively. Bovine knee articular cartilage and lumbar annulus fibrosus were used in this study to demonstrate that this technique could be used on different types of tissue. The results show that our newly developed method is capable of precisely predicting the water volume fraction (less than 3% disparity) and fixed charge density (less than 16.7% disparity) within cartilaginous tissues. This novel technique will help to design a new generation of bioreactors which are able to actively determine the essential properties of the engineered constructs, as well as regulate the local environment to achieve the optimal conditions for cultivating constructs.

  5. Characterization of transverse isotropy in compressed tissue-mimicking phantoms.

    Science.gov (United States)

    Urban, Matthew W; Lopera, Manuela; Aristizabal, Sara; Amador, Carolina; Nenadic, Ivan; Kinnick, Randall R; Weston, Alexander D; Qiang, Bo; Zhang, Xiaoming; Greenleaf, James F

    2015-06-01

    Tissues such as skeletal muscle and kidneys have well-defined structure that affects the measurements of mechanical properties. As an approach to characterize the material properties of these tissues, different groups have assumed that they are transversely isotropic (TI) and measure the shear wave velocity as it varies with angle with respect to the structural architecture of the organ. To refine measurements in these organs, it is desirable to have tissue-mimicking phantoms that exhibit similar anisotropic characteristics. Some approaches involve embedding fibers into a material matrix. However, if a homogeneous solid is under compression due to a static stress, an acoustoelastic effect can manifest that makes the measured wave velocities change with the compression stress. We propose to exploit this characteristic to demonstrate that stressed tissue mimicking phantoms can be characterized as a TI material. We tested six phantoms made with different concentrations of gelatin and agar. Stress was applied by the weight of a water container centered on top of a plate on top of the phantom. A linear array transducer and a V-1 Verasonics system were used to induce and measure shear waves in the phantoms. The shear wave motion was measured using a compound plane wave imaging technique. Autocorrelation was applied to the received in-phase/quadrature data. The shear wave velocity, c, was estimated using a Radon transform method. The transducer was mounted on a rotating stage so measurements were made every 10° over a range of 0° to 360°, where the stress is applied along 0° to 180° direction. The shear moduli were estimated. A TI model was fit to the data and the fractional anisotropy was evaluated. This approach can be used to explore many configurations of transverse isotropy with the same phantom, simply by applying stress to the tissue-mimicking phantom.

  6. Characterization of Transverse Isotropy in Compressed Tissue Mimicking Phantoms

    Science.gov (United States)

    Urban, Matthew W.; Lopera, Manuela; Aristizabal, Sara; Amador, Carolina; Nenadic, Ivan; Kinnick, Randall R.; Weston, Alexander D.; Qiang, Bo; Zhang, Xiaoming; Greenleaf, James F.

    2015-01-01

    Tissues such as skeletal muscle and kidneys have well-defined structure that affects the measurements of mechanical properties. As an approach to characterize the material properties of these tissues, different groups have assumed that they are transversely isotropic (TI) and measure the shear wave velocity as it varies with angle with respect to the structural architecture of the organ. To refine measurements in these organs, it is desirable to have tissue mimicking phantoms that exhibit similar anisotropic characteristics. Some approaches involve embedding fibers into a material matrix. However, if a homogeneous solid is under compression due to a static stress, an acoustoelastic effect can manifest which makes the measured wave velocities change with the compression stress. We propose to exploit this characteristic to demonstrate that stressed tissue mimicking phantoms can be characterized as a TI material. We tested six phantoms made with different concentrations of gelatin and agar. Stress was applied by the weight of a water container centered on top of a plate on top of the phantom. A linear array transducer and a V-1 Verasonics system were used to induce and measure shear waves in the phantoms. The shear wave motion was measured using a compound plane wave imaging technique. Autocorrelation was applied to the received in-phase/quadrature data. The shear wave velocity, c, was estimated using a Radon transform method. The transducer was mounted on a rotating stage so measurements were made every 10° over a range of 0–360°, where the stress is applied along 0–180° direction. The shear moduli were estimated. A TI model was fit to the data and the fractional anisotropy was evaluated. This approach can be used to explore many configurations of transverse isotropy with the same phantom, simply by applying stress to the tissue mimicking phantom. PMID:26067038

  7. Mechanically relevant consequences of the composite laminate-like design of the abdominal wall muscles and connective tissues.

    Science.gov (United States)

    Brown, Stephen H M

    2012-05-01

    Together, three abdominal wall muscles (external oblique, internal oblique and transversus abdominis) form a tightly bound muscular sheet that has been likened to a composite-laminate structure. Previous work has demonstrated the ability of force generated by these three muscles to be passed between one another through connective tissue linkages. Muscle fibres in each muscle are obliquely oriented with respect to its neighbouring muscles. It is proposed here is that this unique morphology of the abdominal wall muscles functions, through the application of constraining forces amongst the muscles, to increase force- and stiffness-generating capabilities. This paper presents a mathematical formulation of the stress-strain relationship for a transversely isotropic fibrous composite, and establishes a strengthening and stiffening effect when stress can be transferred between the fibrous layers. Application of empirical mechanical properties to this formulation demonstrates this effect for the abdominal wall muscles and, in greater proportion, for the anterior aponeurosis of the abdominal wall. This has implications for increasing the stiffness and passive load bearing ability of the abdominal wall muscles, and has the potential to modulate the whole muscle force-length and force-velocity relationships during contraction. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Computer-assisted ultrasonic tissue characterization of the heart

    Science.gov (United States)

    Berger, Reinhard; Lieback, Evelin; Hetzer, Roland

    2000-04-01

    In ultrasonic tissue characterization the small reflections originating from the scattering structures inside the tissue are analyzed. To obtain diagnostic performance for tissue characterization by means of analysis of echocardiographic images we use methods of mathematical texture analysis. We investigate whether myocardial changes effect the texture of ultrasonic images and if this could be described using quantitative texture analysis. The texture analysis was computed in a single window of an ultrasound image/sequence covering the inner myocardial septum. Parameters from gray level histogram, co-occurrence matrices, run length statistics and run difference, from power spectrum and fractal dimensions were investigated to provide satisfying and generalizable results for classification of the myocardium. A set of parameters that could discriminate between normal and pathological myocardium were extracted. The results of 142 biopsies were compared with those of texture analysis in echocardiograms of 106 patients suspected having myocarditis. Using the reduced set of parameters the best sensitivity was 89.0% and the specificity was 83.6%. Myocarditis is associated with echocardiographic texture alteration. Texture analysis with methods of digital image processing can reliably identify myocarditis. A suitable solution for a computer-assisted non- invasive support for the diagnosis and detection of myocarditis was found.

  9. Synthesis and characterization of multi-walled carbon nanotubes modified with octadecylamine and polyethylene glycol

    Directory of Open Access Journals (Sweden)

    Mohamed Abdel Salam

    2017-02-01

    Full Text Available Chemical modification of MWCNTs via oxidation followed by side wall functionalization using polyethylene glycol (PEG and octadecylamine (ODA; separately, was studied. Different characterization techniques such as FTIR spectrometry, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, X-ray diffraction (XRD, and solubility in different solvents were performed for the oxidized MWCNTs, MWCNTs–PEG and MWCNTs–ODA. The characterization techniques proved the presence of the functional groups on the MWCNT surface. Thermal gravimetric analysis revealed that nearly 16% (by weight of the MWCNTs were functionalized with PEG and 39% (by weight was functionalized with ODA.

  10. Acoustical characterization of polysaccharide polymers tissue-mimicking materials.

    Science.gov (United States)

    Cuccaro, Rugiada; Musacchio, Chiara; Giuliano Albo, P Alberto; Troia, Adriano; Lago, Simona

    2015-02-01

    Tissue-mimicking phantoms play a crucial role in medical ultrasound research because they can simulate biological soft tissues. In last years, many types of polymeric tissues have been proposed and characterized from an acoustical and a thermal point of view, but, rarely, a deep discussion about the quality of the measurements, in terms of the uncertainty evaluation, has been reported. In this work, considering the necessity to develop laboratory standards for the measurement of ultrasonic exposure and dose quantities, a detailed description of the experimental apparatuses for the sound speed and the attenuation coefficient measurements is given, focusing the attention on the uncertainty evaluation both of the results and analysis algorithms. In particular, this algorithm reveals a novel empirical relation, fixing a limit to the energy content (therefore limits the number of cycles) of the three parts in which the authors have proposed to divide the acoustical signal. Furthermore, the realisation of multi-components phantoms, Agar and Phytagel based tissue-mimicking gels along with others long chain molecules (dextrane or polyvinyl alcohol) and scattering materials (silicon carbide and kieselguhr) are investigated. This paper reports accurate speed of sound and attenuation coefficient measurements. Speed of sound is measured by a pulse-echo technique in far-field condition, using an optical glass buffer rod; while attenuation coefficient is determined by an insertion technique, using demineralized water as reference material. The experimental sound speed results are subjected to an overall estimated relative uncertainty of about 1.5% and the attenuation coefficient uncertainty is less than 2.5%. For the development of laboratory standards, a detailed analysis of the measurement uncertainty is fundamental to make sample properties comparable. The authors believe this study could represent the right direction to make phantoms characterizations referable and traceable

  11. A Computationally-Efficient Numerical Model to Characterize the Noise Behavior of Metal-Framed Walls

    Directory of Open Access Journals (Sweden)

    Arun Arjunan

    2015-08-01

    Full Text Available Architects, designers, and engineers are making great efforts to design acoustically-efficient metal-framed walls, minimizing acoustic bridging. Therefore, efficient simulation models to predict the acoustic insulation complying with ISO 10140 are needed at a design stage. In order to achieve this, a numerical model consisting of two fluid-filled reverberation chambers, partitioned using a metal-framed wall, is to be simulated at one-third-octaves. This produces a large simulation model consisting of several millions of nodes and elements. Therefore, efficient meshing procedures are necessary to obtain better solution times and to effectively utilise computational resources. Such models should also demonstrate effective Fluid-Structure Interaction (FSI along with acoustic-fluid coupling to simulate a realistic scenario. In this contribution, the development of a finite element frequency-dependent mesh model that can characterize the sound insulation of metal-framed walls is presented. Preliminary results on the application of the proposed model to study the geometric contribution of stud frames on the overall acoustic performance of metal-framed walls are also presented. It is considered that the presented numerical model can be used to effectively visualize the noise behaviour of advanced materials and multi-material structures.

  12. Plasma and antenna coupling characterization in ICRF-wall conditioning experiments

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Manash Kumar, E-mail: manashkr@gmail.com [National Institute of Technology Agartala, Jirania, Tripura 799 055 (India); Institut fuer Energieforschung-Plasmaphysik FZ Juelich, Euratom Association, 52425 Juelich (Germany); Lyssoivan, A.; Koch, R.; Wauters, T. [LPP-ERM/KMS, Association Euratom-Belgian State, 1000 Brussels (Belgium); Douai, D. [CEA, IRFM, Association Euratom-CEA, 13108 St Paul lez Durance (France); Bobkov, V. [Max Planck Institute fur Plasma Physik, Euratom Association, 85748 Garching (Germany); Van Eester, D.; Lerche, E.; Ongena, J. [LPP-ERM/KMS, Association Euratom-Belgian State, 1000 Brussels (Belgium); Rohde, V. [Max Planck Institute fur Plasma Physik, Euratom Association, 85748 Garching (Germany); Noterdaeme, J.-M. [Max Planck Institute fur Plasma Physik, Euratom Association, 85748 Garching (Germany); Gent University, EESA Department, B-9000 Gent (Belgium); Graham, M.; Mayoral, M.-L.; Monakhov, I.; Nightingale, M. [CCFE/Euratom Fusion Association, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Plyusnin, V.V. [Instituto de Plasmas e Fusao Nuclear, Associacao EURATOM-IST, Av. Rovisco Pais, Lisbon (Portugal)

    2012-02-15

    Ion Cyclotron Wall Conditioning (ICWC) discharges, in pulsed-mode operation, were carried out in the divertor tokamaks ASDEX Upgrade (AUG) and JET to simulate the scenario of ITER wall conditioning at half-field (AUG) and full-field (JET). ICWC-plasma and antenna coupling characterization results obtained during the Ion Cyclotron Resonance Frequency (ICRF)-Wall Conditioning experiments performed in helium-hydrogen mixture in AUG and helium-deuterium mixtures in JET are presented here. Safe operational regimes for optimum ICWC in ITER could be explored for different magnetic fields. Satisfactory antenna coupling in the Mode Conversion scenario along with reproducible generation of ICRF plasmas and reliable wall conditioning were achieved by coupling RF power from one or two ICRF antennas at two (AUG, JET) different resonant frequencies. These results are in qualitative agreement with the predictions of 1-D TOMCAT code. Present study of ICWC indicates towards the beneficial effect of application of an additional (along with toroidal magnetic field) stationary vertical (B{sub V} Much-Less-Than B{sub T}) magnetic field on antenna coupling and plasma parameters. The results obtained from JET and AUG tokamaks, presented in this paper, emphasizes the proposed phenomenological schemes for further development of ICWC in superconducting tokamaks.

  13. Characterization of Ancient Egyptian Wall Paintings, the Excavations of Cairo University at Saqqara

    Directory of Open Access Journals (Sweden)

    Hussein MAREY MAHMOUD

    2011-09-01

    Full Text Available The present study aims at characterizing some Egyptian wall paintings discovered during the excavations of Cairo University (since 1988 and recently in 2005 at Saqqara area in the south of Cairo. There, a number of tombs dating back to the 19th dynasty (c.1293–1185 BC were discovered. The walls of these tombs are carved with bass and raised reliefs and painted with different colours. The characterization of the wall paintings was done by means of optical microscopy (OM, scanning electron microscopy (backscattered electron mode, BSE equipped with an energy dispersive X-ray detector (EDS, micro XRF spectrometry (µ-XRF, and X-ray diffraction analysis (XRD. The analysis of the examined samples indicated that the blue pigment is Egyptian blue (Cuprorivaite, the green pigment is Egyptian green, the red pigment is red ochre, and the yellow pigment is a blended layer of yellow ochre and orpiment (As2S3. The results will help in providing an image concerning some painting materials used during the new Kingdom in ancient Egypt

  14. Tissue Damage Characterization Using Non-invasive Optical Modalities

    Science.gov (United States)

    Diaz, David

    The ability to determine the degree of cutaneous and subcutaneous tissue damage is essential for proper wound assessment and a significant factor for determining patient treatment and morbidity. Accurate characterization of tissue damage is critical for a number of medical applications including surgical removal of nonviable tissue, severity assessment of subcutaneous ulcers, and depth assessment of visually open wounds. The main objective of this research was to develop a non-invasive method for identifying the extent of tissue damage underneath intact skin that is not apparent upon visual examination. This work investigated the relationship between tissue optical properties, blood flow, and tissue viability by testing the hypotheses that (a) changes in tissue oxygenation and/or microcirculatory blood flow measurable by Diffuse Near Infrared Spectroscopy (DNIRS) and Diffuse Correlation Spectroscopy (DCS) differ between healthy and damaged tissue and (b) the magnitude of those changes differs for different degrees of tissue damage. This was accomplished by developing and validating a procedure for measuring microcirculatory blood flow and tissue oxygenation dynamics at multiple depths (up to 1 centimeter) using non-invasive DCS and DNIRS technologies. Due to the lack of pressure ulcer animal models that are compatible with our optical systems, a proof of concept was conducted in a porcine burn model prior to conducting clinical trials in order to assess the efficacy of the system in-vivo. A reduction in total hemoglobin was observed for superficial (5%) and deep burns (35%) along with a statistically significant difference between the optical properties of superficial and deep burns (p measurements correlated with the extent of tissue injury observed in histological stains. After proof of concept in animals, a human study was conducted and optical data was collected from 20 healthy subjects and 8 patients at risk of developing pressure ulcers. Blood flow index (BFI

  15. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Directory of Open Access Journals (Sweden)

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  16. A High Rate Tension Device for Characterizing Brain Tissue

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1177/1754337112436900

    2013-01-01

    The mechanical characterization of brain tissue at high loading velocities is vital for understanding and modeling Traumatic Brain Injury (TBI). The most severe form of TBI is diffuse axonal injury (DAI) which involves damage to individual nerve cells (neurons). DAI in animals and humans occurs at strains > 10% and strain rates > 10/s. The mechanical properties of brain tissues at these strains and strain rates are of particular significance, as they can be used in finite element human head models to accurately predict brain injuries under different impact conditions. Existing conventional tensile testing machines can only achieve maximum loading velocities of 500 mm/min, whereas the Kolsky bar apparatus is more suitable for strain rates > 100/s. In this study, a custom-designed high rate tension device is developed and calibrated to estimate the mechanical properties of brain tissue in tension at strain rates < 90/s, while maintaining a uniform velocity. The range of strain can also be extended to 100% de...

  17. Characterization of ester- or thioamide-functionalized single-walled carbon nanotube-azithromycin conjugates

    Science.gov (United States)

    Darabi, Hossein Reza; Roozkhosh, Atefeh; Jafar Tehrani, Mohammad; Aghapoor, Kioumars; Sayahi, Hani; Balavar, Yadollah; Mohsenzadeh, Farshid

    2014-01-01

    Functionalization of single-walled carbon nanotubes (SWCNTs) with nitrile groups, followed by further reactions allowed direct attachment of azithromycin and its N-demethyl derivative to the side-walls of SWCNTs for the first time. With these approaches, the cleavable ester or thioamide bonds are formed to connect azithromycin to SWCNTs resulting in azithromycin-SWCNT conjugates. These cleavable bonds are able to control molecular release from nanotube surfaces which are generally applicable to a variety of hybrid materials based on SWCNTs. A non-covalent azithromycin-SWCNT has also been compared with azithromycin-SWCNTs conjugates. Thermogravimetric analysis (TGA), Fourier-transformed infrared (FT-IR), UV-vis, and Raman spectroscopies give hints on the characterization of azithromycin-SWCNT. Both drug release and antimicrobial activity of azithromycin-SWCNT conjugates were also tested.

  18. Identification and genetic characterization of maize cell wall variation for improved biorefinery feedstock characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, Markus [UC Berkeley; Hake, Sarah [USDA Albany

    2013-10-31

    The objectives of this program are to 1) characterize novel maize mutants with altered cell walls for enhanced biorefinery characteristics and 2) find quantitative trait loci (QTLs) related to biorefinery characteristics by taking advantage of the genetic diversity of maize. As a result a novel non-transgenic maize plant (cal1) has been identified, whose stover (leaves and stalk) contain more glucan in their walls leading to a higher saccharification yield, when subjected to a standard enzymatic digestion cocktail. Stacking this trait with altered lignin mutants yielded evene higher saccharification yields. Cal-1 mutants do not show a loss of kernel and or biomass yield when grown in the field . Hence, cal1 biomass provides an excellent feedstock for the biofuel industry.

  19. Characterization of pigments and ligands in a wall painting fragment from Liternum archaeological park (Italy).

    Science.gov (United States)

    Corso, Gaetano; Gelzo, Monica; Chambery, Angela; Severino, Valeria; Di Maro, Antimo; Lomoriello, Filomena Schiano; D'Apolito, Oceania; Dello Russo, Antonio; Gargiulo, Patrizia; Piccioli, Ciro; Arcari, Paolo

    2012-11-01

    Spectroscopic and MS techniques were used to characterize the pigments and the composition of polar and nonpolar binders of a stray wall painting fragment from Liternum (Italy) archaeological excavation. X-ray fluorescence and diffraction analysis of the decorations indicated mainly the presence of calcite, quartz, hematite, cinnabar, and cuprorivaite. Infrared spectroscopy, GC coupled to flame-ionization detector, and MS analysis of the polar and nonpolar components extracted from paint layers from three different color regions revealed the presence of free amino acids, sugars, and fatty acids. Interestingly, LC-MS shotgun analysis of the red painting region showed the presence of αS1-casein of buffalo origin. Compared to our previous results from Pompeii's wall paintings, even though the Liternum painting mixture contained also binders of animal origin, the data strongly suggest that in both cases a tempera painting technique was utilized. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Pectic substances in the cell wall and the intercellular cohesion of potato tuber tissue during cooking

    NARCIS (Netherlands)

    Keijbets, M.J.H.

    1974-01-01

    The influence of ions, starch, buffer strength and pH on solubilization of pectic galacturonan from potato cell wall material during boiling was studied. The ions enhanced β-eliminative degradation of galacturonan, but calcium, copper (II) and iron (II) cations slowed down the solubilization at pH

  1. Wall shear stress characterization of a 3D bluff-body separated flow

    Science.gov (United States)

    Fourrié, Grégoire; Keirsbulck, Laurent; Labraga, Larbi

    2013-10-01

    Efficient flow control strategies aimed at reducing the aerodynamic drag of road vehicles require a detailed knowledge of the reference flow. In this work, the flow around the rear slanted window of a generic car model was experimentally studied through wall shear stress measurements using an electrochemical method. The mean and fluctuating wall shear stress within the wall impact regions of the recirculation bubble and the main longitudinal vortex structures which develop above the rear window are presented. Correlations allow a more detailed characterization of the recirculation phenomenon within the separation bubble. In the model symmetry plane the recirculation structure compares well with simpler 2D configurations; specific lengths, flapping motion and shedding of large-scale vortices are observed, these similarities diminish when leaving the middle plane due to the strong three-dimensionality of the flow. A specific attention is paid to the convection processes occurring within the recirculation: a downstream convection velocity is observed, in accordance with 2D recirculations from the literature, and an upstream convection is highlighted along the entire bubble length which has not been underlined in some previous canonical configurations.

  2. Tissue Engineering for Congenital Anomalies concerning the Bladder and Abdominal Wall.

    NARCIS (Netherlands)

    Roelofs, L.A.J.

    2014-01-01

    Severe congenital anomalies can have a large impact on the lives of patients. With tissue engineering techniques damaged or absent tissue can be regenerated, which can become a treatment option for congenital anomalies. In this thesis treatment possibilities for congenital anomalies concerning the

  3. Physical characterization of hydroxyapatite porous scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, S., E-mail: smsilva@ineb.up.pt [INEB - Instituto de Engenharia Biomedica, Divisao de Biomateriais, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto (Portugal); Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalurgica e Materiais, Porto (Portugal); Rodriguez, M.A.; Pena, P.; De Aza, A.H.; De Aza, S. [Instituto de Ceramica y Vidrio, CSIC, 28049-Cantoblanco, Madrid (Spain); Ferraz, M.P. [INEB - Instituto de Engenharia Biomedica, Divisao de Biomateriais, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto (Portugal); Faculdade de Ciencias da Saude da Universidade Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto (Portugal); Monteiro, F.J. [INEB - Instituto de Engenharia Biomedica, Divisao de Biomateriais, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto (Portugal); Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalurgica e Materiais, Porto (Portugal)

    2009-06-01

    The present study refers to the preparation and characterization of porous hydroxyapatite scaffolds to be used as matrices for bone regeneration or as specific release vehicles. Ceramics are widely used for bone tissue engineering purposes and in this study, hydroxyapatite porous scaffolds were produced using the polymer replication method. Polyurethane sponges were used as templates and impregnated with a ceramic slurry at different ratios, and sintered at 1300 deg. C following a specific thermal cycle. The characteristics of the hydroxyapatite porous scaffolds and respective powder used as starting material, were investigated by using scanning electron microscopy, particle size distribution, X-ray diffraction, Fourier transformed infrared spectroscopy and compressive mechanical testing techniques. It was possible to produce highly porous hydroxyapatite scaffolds presenting micro and macropores and pore interconnectivity.

  4. Three-dimensional ultrasonic Nakagami imaging for tissue characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Po-Hsiang [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan (China); Hsu, Cheng-Wei; Chang, Chien-Cheng [Division of Mechanics, Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan (China); Ho, Ming-Chih [Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan (China); Chen, Yung-Sheng [Department of Electrical Engineering, Yuan Ze University, Chung Li, Taiwan (China); Lin, Jen-Jen [Department of Applied Statistics and Information Science, Ming Chuan University, Taoyuan, Taiwan (China); Chu, Chin-Chou, E-mail: mechang@iam.ntu.edu.t [Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan (China)

    2010-10-07

    The two-dimensional (2D) Nakagami image complements the ultrasound B-scan image when attempting to visualize the scatterer properties of tissues. The resolution of the Nakagami image is lower than that of the B-scan image, since the former is produced by processing the raw envelope data using a 2D sliding window with side lengths typically corresponding to three times the pulse length of the incident ultrasound. This paper proposes using three-dimensional (3D) Nakagami imaging for improving the resolution of the obtained Nakagami image and providing more complete information of scatterers for a better tissue characterization. The 3D Nakagami image is based on a voxel array composed of the Nakagami parameters constructed using a 3D sliding cube to process the 3D backscattered raw data. Experiments on phantoms with different scatterer concentrations were carried out to determine the optimal size of the sliding cube for a stable estimation of the Nakagami parameter. Tissue measurements on rat livers without and with fibrosis formation were further used to explore the practical feasibility of 3D Nakagami imaging. The results indicated that the side length of the cube used to construct the 3D Nakagami image must be at least two times the pulse length, which improved the resolution for each Nakagami image frame in the 3D Nakagami image. The results further demonstrated that the 3D Nakagami image is better than the conventional 2D Nakagami image for complementing the B-scan in detecting spatial variations in the scatterer concentration and classifying normal and fibrotic livers. This study suggests that 3D Nakagami imaging has the potential to become a new 3D quantitative imaging approach.

  5. Breast tissue characterization with high-frequency scanning acoustic microscopy

    Science.gov (United States)

    Kumon, R. E.; Bruno, I.; Heartwell, B.; Maeva, E.

    2004-05-01

    We have performed imaging of breast tissue using scanning acoustic microscopy (SAM) in the range of 25-50 MHz with the goal of accurately and rapidly determining the structure and composition throughout the volume of the samples. In contrast to traditional histological slides, SAM images can be obtained without special preparation, sometimes even without sectioning, but with sufficiently high spatial resolution to give information comparable to surface optical images. As a result, the use of high-frequency SAM at the time of breast lumpectomy to identify disease-free margins has the potential to reduce reoperative rates, patient anxiety, and local recurrence. However, only limited work has been performed to characterize breast tissue in the frequency range above clinical ultrasound devices. The samples are 4-cm2-thick sections (2-3 mm) taken from mastectomies and preserved in formalin. They are placed between two plates and immersed in water during imaging. Attenuation images are acquired by focusing the acoustic beam at the top and bottom of the samples, although better results were obtained for bottom focusing. For purposes of comparison and identification of histological features, acoustical images will be presented along with optical images obtained from the same samples. [Work supported by CIHR.

  6. Characterization of atherosclerotic disease in thoracic aorta: A 3D, multicontrast vessel wall imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Changwu [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China); Department of Radiology, The Second Clinical Medical College, Yangzhou University, Yangzhou (China); Qiao, Huiyu; He, Le [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China); Yuan, Chun [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China); Department of Radiology, University of Washington, Seattle, WA (United States); Chen, Huijun; Zhang, Qiang; Li, Rui [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China); Wang, Wei; Du, Fang [Department of Radiology, The Second Clinical Medical College, Yangzhou University, Yangzhou (China); Li, Cheng, E-mail: cjr.licheng@vip.163.com [Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing (China); Zhao, Xihai, E-mail: xihaizhao@tsinghua.edu.cn [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China)

    2016-11-15

    Purpose: To investigate the characteristics of plaque in the thoracic aorta using three dimensional multicontrast magnetic resonance imaging. Materials and methods: Elderly subjects (≥60 years) were recruited in this study. Thoracic aorta was imaged on a 3.0T MR scanner by acquiring multicontrast sequences. The plaque burden was evaluated by measuring lumen area, wall area, wall thickness, and normalized wall index. The presence or absence of plaque and intraplaque hemorrhage (IPH)/mural thrombus (MT) were identified. The characteristics of atherosclerosis among different thoracic aorta segments (AAO: ascending aorta; AOA: aortic arch, and DOA: descending aorta) were determined. Results: Of 66 recruited subjects (mean age 72.3 ± 6.2 years, 30 males), 55 (83.3%) had plaques in the thoracic aorta. The prevalence of plaque in AAO, AOA, and DAO was 5.4%, 72.7%, and 71.2%, respectively. In addition, 21.2% of subjects were found to have lesions with IPH/MT in the thoracic aorta. The prevalence of IPH/MT in segment of AAO, AOA and DAO was 0%, 13.6%, and 12.1%, respectively. The aortic wall showed the highest NWI in DAO (34.1% ± 4.8%), followed by AOA (31.2% ± 5%), and AAO (26.8% ± 3.3%) (p < 0.001). Conclusion: Three dimensional multicontrast MR imaging is capable of characterizing atherosclerotic plaques in the thoracic aorta. The findings of high prevalence of plaques and the presence of high risk plaques in the thoracic aorta suggest early screening for aortic vulnerable lesions in the elderly.

  7. Laser-induced breakdown spectroscopy for elemental characterization of calcitic alterations on cave walls.

    Science.gov (United States)

    Bassel, Léna; Motto-Ros, Vincent; Trichard, Florian; Pelascini, Frédéric; Ammari, Faten; Chapoulie, Rémy; Ferrier, Catherine; Lacanette, Delphine; Bousquet, Bruno

    2017-01-01

    Cave walls are affected by different kinds of alterations involving preservative issues in the case of ornate caves, in particular regarding the rock art covering the walls. In this context, coralloids correspond to a facies with popcorn-like aspect belonging to the speleothem family, mostly composed of calcium carbonate. The elemental characterization indicates the presence of elements that might be linked to the diagenesis and the expansion of the alterations as demonstrated by prior analyses on stalagmites. In this study, we report the use of laser-induced breakdown spectroscopy (LIBS) to characterize the elemental composition of one coralloid sample with a portable instrument allowing punctual measurements and a laboratory mapping setup delivering elemental images with spatial resolution at the micrometric scale, being particularly attentive to Mg, Sr, and Si identified as elements of interest. The complementarity of both instruments allows the determination of the internal structure of the coralloid. Although a validation based on a reference technique is necessary, LIBS data reveal that the external layer of the coralloid is composed of laminations correlated to variations of the LIBS signal of Si. In addition, an interstitial layer showing high LIBS signals for Fe, Al, and Si is interpreted to be a detrital clay interface between the external and the internal part of the coralloid. These preliminary results sustain a possible formation scenario of the coralloid by migration of the elements from the bedrock.

  8. FISH SKIN ISOLATED COLLAGEN CRYOGELS FOR TISSUE ENGINEERING APPLICATIONS: PURIFICATION, SYNTHESIS AND CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Nimet Bölgen

    2016-09-01

    Full Text Available Tissue engineering aims regenerating damaged tissues by using porous scaffolds, cells and bioactive agents. The scaffolds are produced from a variety of natural and synthetic polymers. Collagen is a natural polymer widely used for scaffold production in the late years because of its being the most important component of the connective tissue and biocompatibility. Cryogelation is a relatively simple technique compared to other scaffold production methods, which enables to produce interconnected porous matrices from the frozen reaction mixtures of polymers or monomeric precursors. Considering these, collagen was isolated in this study from fish skin which is a non-commercial waste material, and scaffolds were produced from this collagen by cryogelation method. By SEM analysis, porous structure of collagen, and by UV-Vis analysis protein structure was proven, and by Zeta potential iso-electrical point of the protein was determined, and,  Amit A, Amit B, Amit I, Amit II and Amit III characteristical peaks were demonstrated by FTIR analysis. The collagen isolation yield was, 14.53% for acid soluble collagen and 2.42% for pepcin soluble collagen. Scaffolds were produced by crosslinking isolated acid soluble collagen with glutaraldehyde at cryogenic conditions. With FTIR analysis, C=N bond belonging to gluteraldehyde reaction with collagen was found to be at 1655 cm-1. It was demonstrated by SEM analysis that collagen and glutaraldeyhde concentration had significant effects on the pore morphology, diameter and wall thickness of the cryogels, which in turned changed the swelling ratio and degradation profiles of the matrices. In this study, synthesis and characterization results of a fish skin isolated collagen cryogel scaffold that may be potentially used in the regeneration of damaged tissues are presented.

  9. Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials

    OpenAIRE

    Dalecki, Diane; Mercado, Karla P.; Hocking, Denise C.

    2015-01-01

    Non-invasive, non-destructive technologies for imaging and quantitatively monitoring the development of artificial tissues are critical for the advancement of tissue engineering. Current standard techniques for evaluating engineered tissues, including histology, biochemical assays and mechanical testing, are destructive approaches. Ultrasound is emerging as a valuable tool for imaging and quantitatively monitoring the properties of engineered tissues and biomaterials longitudinally during fab...

  10. A Case of Hemorrhagic Necrosis of Ectopic Liver Tissue within the Gallbladder Wall.

    LENUS (Irish Health Repository)

    Nagar, Sapna

    2012-02-01

    Ectopic liver tissue is a rare clinical entity that is mostly asymptomatic and found incidentally. In certain situations, however, patients may present with symptoms of abdominal pain secondary to torsion, compression, obstruction of adjacent organs, or rupture secondary to malignant transformation. Herein, we report a case of a 25-year-old female that presented with acute onset of epigastric pain found to have ectopic liver tissue near the gallbladder complicated by acute hemorrhage necessitating operative intervention in the way of laparoscopic excision and cholecystectomy. The patient\\'s postoperative course was uneventful. Gross pathology demonstrated a 1.2 x 2.8 x 4.5 cm firm purple ovoid structure that histologically revealed extensive hemorrhagic necrosis of benign ectopic liver tissue.

  11. Characterization of cytoskeletal and junctional proteins expressed by cells cultured from human arachnoid granulation tissue

    Directory of Open Access Journals (Sweden)

    Mehta Bhavya C

    2005-10-01

    Full Text Available Abstract Background The arachnoid granulations (AGs are projections of the arachnoid membrane into the dural venous sinuses. They function, along with the extracranial lymphatics, to circulate the cerebrospinal fluid (CSF to the systemic venous circulation. Disruption of normal CSF dynamics may result in increased intracranial pressures causing many problems including headaches and visual loss, as in idiopathic intracranial hypertension and hydrocephalus. To study the role of AGs in CSF egress, we have grown cells from human AG tissue in vitro and have characterized their expression of those cytoskeletal and junctional proteins that may function in the regulation of CSF outflow. Methods Human AG tissue was obtained at autopsy, and explanted to cell culture dishes coated with fibronectin. Typically, cells migrated from the explanted tissue after 7–10 days in vitro. Second or third passage cells were seeded onto fibronectin-coated coverslips at confluent densities and grown to confluency for 7–10 days. Arachnoidal cells were tested using immunocytochemical methods for the expression of several common cytoskeletal and junctional proteins. Second and third passage cultures were also labeled with the common endothelial markers CD-31 or VE-cadherin (CD144 and their expression was quantified using flow cytometry analysis. Results Confluent cultures of arachnoidal cells expressed the intermediate filament protein vimentin. Cytokeratin intermediate filaments were expressed variably in a subpopulation of cells. The cultures also expressed the junctional proteins connexin43, desmoplakin 1 and 2, E-cadherin, and zonula occludens-1. Flow cytometry analysis indicated that second and third passage cultures failed to express the endothelial cell markers CD31 or VE-cadherin in significant quantities, thereby showing that these cultures did not consist of endothelial cells from the venous sinus wall. Conclusion To our knowledge, this is the first report of

  12. Characterization of nonlinear elasticity for biological tissue using quantitative optical coherence elastography

    Science.gov (United States)

    Qiu, Yi; Zaki, Farzana R.; Chandra, Namas; Chester, Shawn A.; Liu, Xuan

    2017-02-01

    We developed a quantitative optical coherence elastography (qOCE) system for nonlinear mechanical characterization of biological tissues. The fiber-optic probe of the qOCE system had an integrated Fabry-Perot force sensor. To perform mechanical characterization, the tissue was compressed uniaxially by the fiber-optic probe of the qOCE system. Using the optical coherence tomography (OCT) signal detected by a spectral domain OCT engine, we were able to simultaneously quantify the force exerted to the tissue and the displacement of tissue. The quantification of the force was critical for accurate assessment of the elastic behavior of tissue, because most biological tissues have nonlinear elastic behavior. We performed qOCE characterization on tissue mimicking phantoms and biological tissues. Our results demonstrated the capability of the qOCE system for linear and nonlinear assessment of tissue elasticity.

  13. Dental hard tissue characterization using laser-based ultrasonics

    Science.gov (United States)

    Blodgett, David W.; Massey, Ward L.

    2003-07-01

    Dental health care and research workers require a means of imaging the structures within teeth in vivo. One critical need is the detection of tooth decay in its early stages. If decay can be detected early enough, the process can be monitored and interventional procedures, such as fluoride washes and controlled diet, can be initiated to help re-mineralize the tooth. Currently employed x-ray imaging is limited in its ability to visualize interfaces and incapable of detecting decay at a stage early enough to avoid invasive cavity preparation followed by a restoration. To this end, non-destructive and non-contact in vitro measurements on extracted human molars using laser-based ultrasonics are presented. Broadband ultrasonic waves are excited in the extracted sections by using a pulsed carbon-dioxide (CO2) laser operating in a region of high optical absorption in the dental hard tissues. Optical interferometric detection of the ultrasonic wave surface displacements in accomplished with a path-stabilized Michelson-type interferometer. Results for bulk and surface in-vitro characterization of caries are presented on extracted molars with pre-existing caries.

  14. Torsional Ultrasound Sensor Optimization for Soft Tissue Characterization

    Directory of Open Access Journals (Sweden)

    Juan Melchor

    2017-06-01

    Full Text Available Torsion mechanical waves have the capability to characterize shear stiffness moduli of soft tissue. Under this hypothesis, a computational methodology is proposed to design and optimize a piezoelectrics-based transmitter and receiver to generate and measure the response of torsional ultrasonic waves. The procedure employed is divided into two steps: (i a finite element method (FEM is developed to obtain a transmitted and received waveform as well as a resonance frequency of a previous geometry validated with a semi-analytical simplified model and (ii a probabilistic optimality criteria of the design based on inverse problem from the estimation of robust probability of detection (RPOD to maximize the detection of the pathology defined in terms of changes of shear stiffness. This study collects different options of design in two separated models, in transmission and contact, respectively. The main contribution of this work describes a framework to establish such as forward, inverse and optimization procedures to choose a set of appropriate parameters of a transducer. This methodological framework may be generalizable for other different applications.

  15. Characterization of tabique walls nails of the Alto Douro Wine Region

    Science.gov (United States)

    Cardoso, Rui; Pinto, Jorge; Paiva, Anabela; Lanzinha, João Carlos

    2016-11-01

    Tabique is one of the main Portuguese traditional building techniques which use raw materials as stone, earth andwood. In general, a tabique building component as a wall consist of a wooden structure made up of vertical boards connected to laths by metal nails and covered on both sides by an earth based material. This traditional building technology as an expressive incidence in the Alto Douro Wine Region located in the interior of Northern Portugal, added to the UNESCO's Word Heritage Sites List in December 2001 as an `evolved continuing cultural landscape'. Furthermore, previous research works have shown that the existing tabique construction, in this region, reveals a certain lack of maintenance partially justified by the knowledge loosed on that technique, consequently this construction technique present an advanced stage of deterioration. This aspect associated to the fact that there is still a lack of scientific studies in this field motivated the writing of this paper, the main objectives are to identify and characterize the nails used in the timber connections. The nails samples were collected from tabique walls included in tabique buildings located in LamegoMunicipality, near Douro River, in the Alto Douro Wine Region. This work also intends to give guidelines to the rehabilitation and preservation of this important legacy.

  16. Experimental and numerical characterization of thermal bridges in prefabricated building walls

    Energy Technology Data Exchange (ETDEWEB)

    Zalewski, Laurent; Lassue, Stephane; Boukhalfa, Kamel [Univ Lille Nord de France, F-59000 Lille (France); UArtois, LGCgE, F-62400 Bethune (France); Rousse, Daniel [Department of Mechanical Engineering, Ecole de Technologie Superieure, Montreal (Canada)

    2010-12-15

    This work is a contribution to the characterization of the thermal efficiency of complex walls of buildings with respect to the ever increasing requirements in thermal insulation. The work specifically concerns the quantitative evaluation of heat losses by thermal bridges. The support of the study is the envelope of industrial light construction walls containing a metal framework, an insulating material inserted in between metal trusses, water and vapor barriers, and the internal and external facings. This article presents first the infrared thermography method which is used to visualize the thermal bridges as well as a genuine complementary experimental method allowing for the determination of the quantitative aspects of the heat losses through the envelope. Tangential-gradient heat fluxmeters, which create little disturbance in the measurements, are used in the context of laboratory and in full-scale insitu experiments. Then, the article presents a simple yet accurate prediction with a three-dimensional numerical method that could be used for the design of specific installations and parametric studies. (author)

  17. Purity and Defect Characterization of Single-Wall Carbon Nanotubes Using Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yasumitsu Miyata

    2011-01-01

    Full Text Available We investigated the purity and defects of single-wall carbon nanotubes (SWCNTs produced by various synthetic methods including chemical vapor deposition, arc discharge, and laser ablation. The SWCNT samples were characterized using scanning electron microscopy (SEM, thermogravimetric analysis (TGA, and Raman spectroscopy. Quantitative analysis of SEM images suggested that the G-band Raman intensity serves as an index for the purity. By contrast, the intensity ratio of G-band to D-band (G/D ratio reflects both the purity and the defect density of SWCNTs. The combination of G-band intensity and G/D ratio is useful for a quick, nondestructive evaluation of the purity and defect density of a SWCNT sample.

  18. Synthesis and Characterization of Multi Wall Carbon Nanotubes (MWCNT) Reinforced Sintered Magnesium Matrix Composites

    Science.gov (United States)

    Vijaya Bhaskar, S.; Rajmohan, T.; Palanikumar, K.; Bharath Ganesh Kumar, B.

    2016-04-01

    Metal matrix composites (MMCs) reinforced with ceramic nano particles (less than 100 nm), termed as metal matrix nano composites (MMNCs), can overcome those disadvantages associated with the conventional MMCs. MMCs containing carbon nanotubes are being developed and projected for diverse applications in various fields of engineering like automotive, avionic, electronic and bio-medical sectors. The present investigation deals with the synthesis and characterization of hybrid magnesium matrix reinforced with various different wt% (0-0.45) of multi wall carbon nano tubes (MWCNT) and micro SiC particles prepared through powder metallurgy route. Microstructure and mechanical properties such as micro hardness and density of the composites were examined. Microstructure of MMNCs have been investigated by scanning electron microscope, X-ray diffraction and energy dispersive X-ray spectroscopy (EDS) for better observation of dispersion of reinforcement. The results indicated that the increase in wt% of MWCNT improves the mechanical properties of the composite.

  19. Characterizing the chiral index of a single-walled carbon nanotube.

    Science.gov (United States)

    Zhao, Qiuchen; Zhang, Jin

    2014-11-01

    The properties of single-walled carbon nanotubes (SWCNTs) mainly depend on their geometry. However, there are still formidable difficulties to determine the chirality of SWCNTs accurately. In this review, some efficient methods to characterize the chiral indices of SWCNTs are illuminated. These methods are divided into imaging techniques and spectroscopy techniques. With these methods, diameter, helix angle, and energy states can be measured. Generally speaking, imaging techniques have a higher accuracy and universality, but are time-consuming with regard to the sample preparation and characterization. The spectroscopy techniques are very simple and fast in operation, but these techniques can be applied only to the particular structure of the sample. Here, the principles and operations of each method are introduced, and a comprehensive understanding of each technique, including their advantages and disadvantages, is given. Advanced applications of some methods are also discussed. The aim of this review is to help readers to choose methods with the appropriate accuracy and time complexity and, furthermore, to put forward an idea to find new methods for chirality characterization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Jones-matrix tomography of biological tissues phase anisotropy in the diagnosis of uterus wall prolapse

    Science.gov (United States)

    Trifonyuk, L.; Baranovsky, V.; Dubolazov, O. V.; Ushenko, V. O.; Ushenko, O. G.; Zhytaryuk, V. G.; Prydiy, O. G.; Vanchulyak, O.

    2018-01-01

    The work consists of two parts. In the first part - we mapped a distribution of optical activity and birefringence in polycrystalline networks of biological tissues. The Jones-matrix formalism is used for accessible quantitative description of these types of optical anisotropy. We demonstrate that differentiation of polycrystalline networks of biological tissues can be performed based on the statistical analysis of distribution of rotation angles and phase shifts associated with the optical activity and birefringence, respectively. In the second part we defined - practical operational characteristics, such as sensitivity, specificity and accuracy of Jones-matrix reconstruction of optical anisotropy were identified with the special emphasis on biomedical application, specifically for differentiation of two types of pathology: prolapse and albuminuria.

  1. An inverse finite element method for determining the tissue compressibility of human left ventricular wall during the cardiac cycle.

    Science.gov (United States)

    Hassaballah, Abdallah I; Hassan, Mohsen A; Mardi, Azizi N; Hamdi, Mohd

    2013-01-01

    The determination of the myocardium's tissue properties is important in constructing functional finite element (FE) models of the human heart. To obtain accurate properties especially for functional modeling of a heart, tissue properties have to be determined in vivo. At present, there are only few in vivo methods that can be applied to characterize the internal myocardium tissue mechanics. This work introduced and evaluated an FE inverse method to determine the myocardial tissue compressibility. Specifically, it combined an inverse FE method with the experimentally-measured left ventricular (LV) internal cavity pressure and volume versus time curves. Results indicated that the FE inverse method showed good correlation between LV repolarization and the variations in the myocardium tissue bulk modulus K (K = 1/compressibility), as well as provided an ability to describe in vivo human myocardium material behavior. The myocardium bulk modulus can be effectively used as a diagnostic tool of the heart ejection fraction. The model developed is proved to be robust and efficient. It offers a new perspective and means to the study of living-myocardium tissue properties, as it shows the variation of the bulk modulus throughout the cardiac cycle.

  2. An inverse finite element method for determining the tissue compressibility of human left ventricular wall during the cardiac cycle.

    Directory of Open Access Journals (Sweden)

    Abdallah I Hassaballah

    Full Text Available The determination of the myocardium's tissue properties is important in constructing functional finite element (FE models of the human heart. To obtain accurate properties especially for functional modeling of a heart, tissue properties have to be determined in vivo. At present, there are only few in vivo methods that can be applied to characterize the internal myocardium tissue mechanics. This work introduced and evaluated an FE inverse method to determine the myocardial tissue compressibility. Specifically, it combined an inverse FE method with the experimentally-measured left ventricular (LV internal cavity pressure and volume versus time curves. Results indicated that the FE inverse method showed good correlation between LV repolarization and the variations in the myocardium tissue bulk modulus K (K = 1/compressibility, as well as provided an ability to describe in vivo human myocardium material behavior. The myocardium bulk modulus can be effectively used as a diagnostic tool of the heart ejection fraction. The model developed is proved to be robust and efficient. It offers a new perspective and means to the study of living-myocardium tissue properties, as it shows the variation of the bulk modulus throughout the cardiac cycle.

  3. An Inverse Finite Element Method for Determining the Tissue Compressibility of Human Left Ventricular Wall during the Cardiac Cycle

    Science.gov (United States)

    Hassaballah, Abdallah I.; Hassan, Mohsen A.; Mardi, Azizi N.; Hamdi, Mohd

    2013-01-01

    The determination of the myocardium’s tissue properties is important in constructing functional finite element (FE) models of the human heart. To obtain accurate properties especially for functional modeling of a heart, tissue properties have to be determined in vivo. At present, there are only few in vivo methods that can be applied to characterize the internal myocardium tissue mechanics. This work introduced and evaluated an FE inverse method to determine the myocardial tissue compressibility. Specifically, it combined an inverse FE method with the experimentally-measured left ventricular (LV) internal cavity pressure and volume versus time curves. Results indicated that the FE inverse method showed good correlation between LV repolarization and the variations in the myocardium tissue bulk modulus K (K = 1/compressibility), as well as provided an ability to describe in vivo human myocardium material behavior. The myocardium bulk modulus can be effectively used as a diagnostic tool of the heart ejection fraction. The model developed is proved to be robust and efficient. It offers a new perspective and means to the study of living-myocardium tissue properties, as it shows the variation of the bulk modulus throughout the cardiac cycle. PMID:24367544

  4. Electrospun carboxyl multi-walled carbon nanotubes grafted polyhydroxybutyrate composite nanofibers membrane scaffolds: Preparation, characterization and cytocompatibility.

    Science.gov (United States)

    Zhijiang, Cai; Cong, Zhu; Jie, Guo; Qing, Zhang; Kongyin, Zhao

    2018-01-01

    Electrospun polyhydroxybutyrate (PHB)/carboxyl multi-walled carbon nanotubes grafted polyhydroxybutyrate (CMWCNT-g-PHB) composite nanofibers scaffolds were fabricated by electrospinning technology. The grafted product CMWCNT-g-PHB was prepared by condensation reactions between the carboxyl groups of CMWCNT and hydroxyl groups of PHB molecules and characterized by FTIR, XRD, XPS, TG and TEM measurements. The surface morphology, hydrophilicity and tensile mechanical properties of the electrospun PHB/CMWCNT-g-PHB composite nanofibers membrane scaffolds were investigated. The values of tensile strength, breaking elongation rate, initial modulus and fracture energy of the composite nanofibers scaffolds can reach to 4.64MPa, 255.59%, 88MPa and 109.73kJ/m2, respectively. The biodegradability and cytocompatibility of the electrospun composite nanofibers scaffolds were preliminarily evaluated. The as-prepared electrospun PHB/CMWCNT-g-PHB composite nanofibers scaffolds with the characteristics of large specific area, high porosity, good biodegradability and cytocompatibility as well as sufficient mechanical properties should be more promising in the field of tissue engineering scaffolds and biological medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation.

    Science.gov (United States)

    Rodrigues, Bruno Vm; Leite, Nelly Cs; Cavalcanti, Bruno das Neves; da Silva, Newton S; Marciano, Fernanda R; Corat, Evaldo J; Webster, Thomas J; Lobo, Anderson O

    2016-01-01

    Nanohydroxyapatite (nHAp) is an emergent bioceramic that shows similar chemical and crystallographic properties as the mineral phase present in bone. However, nHAp presents low fracture toughness and tensile strength, limiting its application in bone tissue engineering. Conversely, multi-walled carbon nanotubes (MWCNTs) have been widely used for composite applications due to their excellent mechanical and physicochemical properties, although their hydrophobicity usually impairs some applications. To improve MWCNT wettability, oxygen plasma etching has been applied to promote MWCNT exfoliation and oxidation and to produce graphene oxide (GO) at the end of the tips. Here, we prepared a series of nHAp/MWCNT-GO nanocomposites aimed at producing materials that combine similar bone characteristics (nHAp) with high mechanical strength (MWCNT-GO). After MWCNT production and functionalization to produce MWCNT-GO, ultrasonic irradiation was employed to precipitate nHAp onto the MWCNT-GO scaffolds (at 1-3 wt%). We employed various techniques to characterize the nanocomposites, including transmission electron microscopy (TEM), Raman spectroscopy, thermogravimetry, and gas adsorption (the Brunauer-Emmett-Teller method). We used simulated body fluid to evaluate their bioactivity and human osteoblasts (bone-forming cells) to evaluate cytocompatibility. We also investigated their bactericidal effect against Staphylococcus aureus and Escherichia coli. TEM analysis revealed homogeneous distributions of nHAp crystal grains along the MWCNT-GO surfaces. All nanocomposites were proved to be bioactive, since carbonated nHAp was found after 21 days in simulated body fluid. All nanocomposites showed potential for biomedical applications with no cytotoxicity toward osteoblasts and impressively demonstrated a bactericidal effect without the use of antibiotics. All of the aforementioned properties make these materials very attractive for bone tissue engineering applications, either as a

  6. Threshold Setting for Likelihood Function for Elasticity-Based Tissue Classification of Arterial Walls by Evaluating Variance in Measurement of Radial Strain

    Science.gov (United States)

    Tsuzuki, Kentaro; Hasegawa, Hideyuki; Kanai, Hiroshi; Ichiki, Masataka; Tezuka, Fumiaki

    2008-05-01

    Pathologic changes in arterial walls significantly influence their mechanical properties. We have developed a correlation-based method, the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791], for measurement of the regional elasticity of the arterial wall. Using this method, elasticity distributions of lipids, blood clots, fibrous tissue, and calcified tissue were measured in vitro by experiments on excised arteries (mean±SD: lipids 89±47 kPa, blood clots 131 ±56 kPa, fibrous tissue 1022±1040 kPa, calcified tissue 2267 ±1228 kPa) [H. Kanai et al.: Circulation 107 (2003) 3018; J. Inagaki et al.: Jpn. J. Appl. Phys. 44 (2005) 4593]. It was found that arterial tissues can be classified into soft tissues (lipids and blood clots) and hard tissues (fibrous tissue and calcified tissue) on the basis of their elasticity. However, there are large overlaps between elasticity distributions of lipids and blood clots and those of fibrous tissue and calcified tissue. Thus, it was difficult to differentiate lipids from blood clots and fibrous tissue from calcified tissue by simply thresholding elasticity value. Therefore, we previously proposed a method by classifying the elasticity distribution in each region of interest (ROI) (not a single pixel) in an elasticity image into lipids, blood clots, fibrous tissue, or calcified tissue based on a likelihood function for each tissue [J. Inagaki et al.: Jpn. J. Appl. Phys. 44 (2006) 4732]. In our previous study, the optimum size of an ROI was determined to be 1,500 µm in the arterial radial direction and 1,500 µm in the arterial longitudinal direction [K. Tsuzuki et al.: Ultrasound Med. Biol. 34 (2008) 573]. In this study, the threshold for the likelihood function used in the tissue classification was set by evaluating the variance in the ultrasonic measurement of radial strain. The recognition rate was improved from 50 to 54% by the proposed thresholding.

  7. Characterization of sterol uptake in leaf tissues of sugar beet.

    Science.gov (United States)

    Rossard, Stéphanie; Bonmort, Janine; Guinet, Frédéric; Ponchet, Michel; Roblin, Gabriel

    2003-12-01

    The uptake of cholesterol has been characterized in leaf discs from mature leaves of sugar beet ( Beta vulgaris L.). This transport system exhibited a simple saturable phase with an apparent Michaelis constant ranging from 30 to 190 microM depending on the sample. When present at 10 M excess, other sterols were able to inhibit cholesterol uptake. Moreover, binding assays demonstrated the presence of high-affinity binding sites for cholesterol in purified plasma membrane vesicles. In the range 1-60 microM, cholesterol uptake showed an active component evidenced by action of the protonophore carbonyl cyanide m-chlorophenylhydrazone. Energy was required as shown by the inhibition of uptake induced by respiration inhibitors (NaN(3)), darkness and photosynthesis inhibitors [3-(3,4-dichlorophenyl)-1,1-dimethylurea, methyl viologen]. Moreover, the process was strongly dependent on the experimental temperature. Uptake was optimal at acidic pH (4.0), sensitive to ATPase modulators, inhibited by thiol reagents (N-ethylmaleimide, p-chloromercuribenzenesulfonic acid, Mersalyl) and by the histidyl-group reagent diethyl pyrocarbonate. The addition of cholesterol did not modify H(+) flux from tissues, indicating that H(+)-co-transport was unlikely to be involved. MgATP did not increase the uptake, arguing against involvement of an ABC cassette-type transporter. By contrast, cryptogein, a sterol carrier protein from the Oomycete Phytophtora cryptogea, greatly increased absorption. Taken together, the results reported in this work suggest that plant cells contain a specific plasma membrane transport system for sterols.

  8. Partial characterization of lysyl oxidase from several human tissues.

    OpenAIRE

    Kuivaniemi, H

    1985-01-01

    Lysyl oxidase activity was assayed in urea extracts of a number of human tissues, proving to be highest in skin. Antibodies to human placental lysyl oxidase completely inhibited the activity of crude lysyl oxidase from all the human tissues studied, with no significant differences in the amounts of antiserum required for 50% inhibition. By contrast, marked differences were found in this value between skin tissue samples from different species. The Mr of lysyl oxidase in crude extracts of huma...

  9. Preparation and characterization of bagasse/HDPE composites using multi-walled carbon nanotubes.

    Science.gov (United States)

    Ashori, Alireza; Sheshmani, Shabnam; Farhani, Foad

    2013-01-30

    This article presents the preparation and characterization of bagasse/high density polyethylene (HDPE) composites. The effects of multi-walled carbon nanotubes (MWCNTs), as reinforcing agent, on the mechanical and physical properties were also investigated. In order to increase the interphase adhesion, maleic anhydride grafted polyethylene (MAPE) was added as a coupling agent to all the composites studied. In the sample preparation, MWCNTs and MAPE contents were used as variable factors. The morphology of the specimens was characterized using scanning electron microscopy (SEM) technique. The results of strength measurement indicated that when 1.5 wt% MWCNTs were added, tensile and flexural properties reached their maximum values. At high level of MWCNTs loading (3 or 4 wt%), increased population of MWCNTs lead to agglomeration and stress transfer gets blocked. The addition of MWCNTs filler slightly decreased the impact strength of composites. Both mechanical and physical properties were improved when 4 wt% MAPE was applied. SEM micrographs also showed that the surface roughness improved with increasing MAPE loading from 0 to 4 wt%. The improvement of physicomechanical properties of composites confirmed that MWCNTs have good reinforcement and the optimum synergistic effect of MWCNTs and MAPE was achieved at the combination of 1.5 and 4 wt%, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Characterization of applied tensile stress using domain wall dynamic behavior of grain-oriented electrical steel

    Science.gov (United States)

    Qiu, Fasheng; Ren, Wenwei; Tian, Gui Yun; Gao, Bin

    2017-06-01

    Stress measurement that provides early indication of stress status has become increasingly demanding in the field of Non-destructive testing and evaluation (NDT&E). Bridging the correlation between micro magnetic properties and the applied tensile stress is the first conceptual step to come up with a new method of non-destructive testing. This study investigates the characterization of applied tensile stress with in-situ magnetic domain imaging and their dynamic behaviors by using magneto-optical Kerr effect (MOKE) microscopy assisted with magneto-optical indicator film (MOIF). Threshold magnetic field (TMF) feature to reflect 180 ° domain wall (DW) characteristics behaviors in different grains is proposed for stress detection. It is verified that TMF is a threshold feature with better sensitivity and brings linear correlation for stress characterization in comparison to classical coercive field, remanent magnetization, hysteresis loss and permeability parameters. The results indicate that 180 ° DWs dynamic in the inner grain is highly correlated with stress. The DW dynamics of turn over (TO) tests for different grains is studied to illustrate the repeatability of TMF. Experimental tests of high permeability grain oriented (HGO) electrical steels under stress loading have been conducted to verify this study.

  11. A multi-analytical approach for the characterization of wall painting materials on contemporary buildings

    Science.gov (United States)

    Magrini, Donata; Bracci, Susanna; Cantisani, Emma; Conti, Claudia; Rava, Antonio; Sansonetti, Antonio; Shank, Will; Colombini, MariaPerla

    2017-02-01

    Samples from Keith Haring's wall painting of the Necker Children Hospital in Paris were studied by a multi-analytical protocol. X-ray fluorescence (XRF), powder X-ray diffraction (XRDP), Electron microscope (SEM-EDS), Infrared and Raman spectroscopy (μ-FT-IR and μ-Raman) measurements were performed in order to characterize the materials and to identify the art technique used to produce this contemporary work. Materials from the mural suffered from severe detachments of materials and several fragments were found on the ground beneath. Some of these fragments, which were representative of the whole palette and stratigraphic sequence, were collected and studied. The fragments were sufficiently large to enable non-invasive measurements to be performed in order to characterize the materials. A comparison of the data of the techniques applied revealed that Haring's palette was composed of organic pigments such as Naphtol red, phthalocyanine blue and green and Hansa yellow, in accordance with those used previously by the artist in other painted murals.

  12. Characterizing the lung tissue mechanical properties using a micromechanical model of alveolar sac

    Science.gov (United States)

    Karami, Elham; Seify, Behzad; Moghadas, Hadi; Sabsalinejad, Masoomeh; Lee, Ting-Yim; Samani, Abbas

    2017-03-01

    According to statistics, lung disease is among the leading causes of death worldwide. As such, many research groups are developing powerful tools for understanding, diagnosis and treatment of various lung diseases. Recently, biomechanical modeling has emerged as an effective tool for better understanding of human physiology, disease diagnosis and computer assisted medical intervention. Mechanical properties of lung tissue are important requirements for methods developed for lung disease diagnosis and medical intervention. As such, the main objective of this study is to develop an effective tool for estimating the mechanical properties of normal and pathological lung parenchyma tissue based on its microstructure. For this purpose, a micromechanical model of the lung tissue was developed using finite element (FE) method, and the model was demonstrated to have application in estimating the mechanical properties of lung alveolar wall. The proposed model was developed by assembling truncated octahedron tissue units resembling the alveoli. A compression test was simulated using finite element method on the created geometry and the hyper-elastic parameters of the alveoli wall were calculated using reported alveolar wall stress-strain data and an inverse optimization framework. Preliminary results indicate that the proposed model can be potentially used to reconstruct microstructural images of lung tissue using macro-scale tissue response for normal and different pathological conditions. Such images can be used for effective diagnosis of lung diseases such as Chronic Obstructive Pulmonary Disease (COPD).

  13. Streptococcus thermophilus cell wall-anchored proteinase: release, purification, and biochemical and genetic characterization.

    Science.gov (United States)

    Fernandez-Espla, M D; Garault, P; Monnet, V; Rul, F

    2000-11-01

    Streptococcus thermophilus CNRZ 385 expresses a cell envelope proteinase (PrtS), which is characterized in the present work, both at the biochemical and genetic levels. Since PrtS is resistant to most classical methods of extraction from the cell envelopes, we developed a three-step process based on loosening of the cell wall by cultivation of the cells in the presence of glycine (20 mM), mechanical disruption (with alumina powder), and enzymatic treatment (lysozyme). The pure enzyme is a serine proteinase highly activated by Ca(2+) ions. Its activity was optimal at 37 degrees C and pH 7.5 with acetyl-Ala-Ala-Pro-Phe-paranitroanilide as substrate. The study of the hydrolysis of the chromogenic and casein substrates indicated that PrtS presented an intermediate specificity between the most divergent types of cell envelope proteinases from lactococci, known as the PI and PIII types. This result was confirmed by the sequence determination of the regions involved in substrate specificity, which were a mix between those of PI and PIII types, and also had unique residues. Sequence analysis of the PrtS encoding gene revealed that PrtS is a member of the subtilase family. It is a multidomain protein which is maturated and tightly anchored to the cell wall via a mechanism involving an LPXTG motif. PrtS bears similarities to cell envelope proteinases from pyogenic streptococci (C5a peptidase and cell surface proteinase) and lactic acid bacteria (PrtP, PrtH, and PrtB). The highest homologies were found with streptococcal proteinases which lack, as PrtS, one domain (the B domain) present in cell envelope proteinases from all other lactic acid bacteria.

  14. Tissue characterization using magnetic resonance elastography: preliminary results*

    Science.gov (United States)

    Kruse, S. A.; Smith, J. A.; Lawrence, A. J.; Dresner, M. A.; Manduca, A.; Greenleaf, J. F.; Ehman, R. L.; Kruse, S. A.; Smith, J. A.; Lawrence, A. J.; Dresner, M. A.; Manduca, A.; Greenleaf, J. F.

    2000-06-01

    The well-documented effectiveness of palpation as a diagnostic technique for detecting cancer and other diseases has provided motivation for developing imaging techniques for non-invasively evaluating the mechanical properties of tissue. A recently described approach for elasticity imaging, using propagating acoustic shear waves and phase-contrast MRI, has been called magnetic resonance elastography (MRE). The purpose of this work was to conduct preliminary studies to define methods for using MRE as a tool for addressing the paucity of quantitative tissue mechanical property data in the literature. Fresh animal liver and kidney tissue specimens were evaluated with MRE at multiple shear wave frequencies. The influence of specimen temperature and orientation on measurements of stiffness was studied in skeletal muscle. The results demonstrated that all of the materials tested (liver, kidney, muscle and tissue-simulating gel) exhibit systematic dependence of shear stiffness on shear rate. These data are consistent with a viscoelastic model of tissue mechanical properties, allowing calculation of two independent tissue properties from multiple-frequency MRE data: shear modulus and shear viscosity. The shear stiffness of tissue can be substantially affected by specimen temperature. The results also demonstrated evidence of shear anisotropy in skeletal muscle but not liver tissue. The measured shear stiffness in skeletal muscle was found to depend on both the direction of propagation and polarization of the shear waves.

  15. Hypoxia-inducible factor 1α predicts recurrence in high-grade soft tissue sarcoma of extremities and trunk wall

    DEFF Research Database (Denmark)

    Nyström, Harriet; Jönsson, M; Werner-Hartman, L

    2017-01-01

    BACKGROUND AND AIM: Sarcomas are of mesenchymal origin and typically show abundant tumour stroma and presence of necrosis. In search for novel biomarkers for personalised therapy, we determined the prognostic impact of stromal markers, hypoxia and neovascularity in high-grade soft tissue leiomyos......BACKGROUND AND AIM: Sarcomas are of mesenchymal origin and typically show abundant tumour stroma and presence of necrosis. In search for novel biomarkers for personalised therapy, we determined the prognostic impact of stromal markers, hypoxia and neovascularity in high-grade soft tissue...... leiomyosarcoma and pleomorphic undifferentiated sarcoma. METHOD: We evaluated CD163, colony-stimulating factor (CSF)-1, CD16 and hypoxia-inducible factor 1 (HIF-1)α using immunohistochemical staining and assessed microvessel density using CD31 in 73 high-grade leiomyosarcomas and undifferentiated pleomorphic...... sarcomas of the extremities and the trunk wall. The results were correlated to metastasis-free and overall survival. RESULTS: Expression of HIF-1α was associated with the presence of necrosis and independently predicted shorter metastasis-free survival (HR 3.2, CI 1.4 to 7.0, p=0.004), whereas neither...

  16. Multilayer radial systolic strain can identify subendocardial ischemia: an experimental tissue Doppler imaging study of the porcine left ventricular wall.

    Science.gov (United States)

    Matre, Knut; Moen, Christian Arvei; Fanneløp, Tord; Dahle, Geir Olav; Grong, Ketil

    2007-12-01

    This study investigates whether subendocardial ischemia can be detected by measuring multilayer radial systolic strain from epicardial tissue Doppler imaging. In 10 anesthetized open-chest pigs an extracorporeal shunt from the proximal brachiocephalic to the left anterior descending coronary artery was constricted in steps. Color microsphere injections and short axis Tissue Velocity Imaging (TVI) recordings were performed with open shunt, with a non-significant stenosis, and with 2 steps of shunt flow reduction. With open shunt and no transmural flow gradient, there was a gradient of peak ejection strain with high values subendocardially for both 4 and 2 layer measurements. For 2 layer measurement strain was 56.0+/-10.5% subendocardially and 22.0+/-5.2% subepicardially. A non-significant stenosis, not altering transmural flow distribution, reduced strain to 40.3+/-5.4% in the endocardial half-layer. With reduced shunt flow resulting in subendocardial ischemia, peak ejection strain decreased further, primarily in inner wall layers, and postsystolic strain became evident. At severe stenosis (52.4+/-1.8% shunt flow reduction) strain was reduced to 3.8+/-3.6% in the subendocardium and 0.0+/-2.6% in the subepicardium. Evaluation of myocardial function with multilayer radial systolic strain has a potential for detecting subendocardial ischemia.

  17. Histochemical characterization of human osteochondral tissue: comparison between healthy cartilage, arthrotic tissues, and cartilage defect treated with MACI technique

    Directory of Open Access Journals (Sweden)

    F. Tessarolo

    2011-01-01

    Full Text Available Matrix-induced sutologous chondrocytes implantation (MACI is a promising technique for the treatment of articular cartilage lesions, but long time outcome have to be established. We developed and optimized specific techniques of histochemical staining to characterize healthy and pathologic osteochondral tissue. Seven different staining protocols were applied to assess tissue architecture, cells morphology, proteoglycan content, and collagen fibers distribution. Potentialities of histochemical staining and histomorphology of biopsies from second look arthroscopy will be presented.

  18. Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns.

    Science.gov (United States)

    Leroux, Olivier; Sørensen, Iben; Marcus, Susan E; Viane, Ronnie Ll; Willats, William Gt; Knox, J Paul

    2015-02-18

    While it is kno3wn that complex tissues with specialized functions emerged during land plant evolution, it is not clear how cell wall polymers and their structural variants are associated with specific tissues or cell types. Moreover, due to the economic importance of many flowering plants, ferns have been largely neglected in cell wall comparative studies. To explore fern cell wall diversity sets of monoclonal antibodies directed to matrix glycans of angiosperm cell walls have been used in glycan microarray and in situ analyses with 76 fern species and four species of lycophytes. All major matrix glycans were present as indicated by epitope detection with some variations in abundance. Pectic HG epitopes were of low abundance in lycophytes and the CCRC-M1 fucosylated xyloglucan epitope was largely absent from the Aspleniaceae. The LM15 XXXG epitope was detected widely across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection in ground tissues. Mannan epitopes were found to be associated with the development of mechanical tissues. We provided the first evidence for the presence of MLG in leptosporangiate ferns. The data sets indicate that cell wall diversity in land plants is multifaceted and that matrix glycan epitopes display complex spatio-temporal and phylogenetic distribution patterns that are likely to relate to the evolution of land plant body plans.

  19. Nondestructive mechanical characterization of developing biological tissues using inflation testing.

    Science.gov (United States)

    Oomen, P J A; van Kelle, M A J; Oomens, C W J; Bouten, C V C; Loerakker, S

    2017-10-01

    One of the hallmarks of biological soft tissues is their capacity to grow and remodel in response to changes in their environment. Although it is well-accepted that these processes occur at least partly to maintain a mechanical homeostasis, it remains unclear which mechanical constituent(s) determine(s) mechanical homeostasis. In the current study a nondestructive mechanical test and a two-step inverse analysis method were developed and validated to nondestructively estimate the mechanical properties of biological tissue during tissue culture. Nondestructive mechanical testing was achieved by performing an inflation test on tissues that were cultured inside a bioreactor, while the tissue displacement and thickness were nondestructively measured using ultrasound. The material parameters were estimated by an inverse finite element scheme, which was preceded by an analytical estimation step to rapidly obtain an initial estimate that already approximated the final solution. The efficiency and accuracy of the two-step inverse method was demonstrated on virtual experiments of several material types with known parameters. PDMS samples were used to demonstrate the method's feasibility, where it was shown that the proposed method yielded similar results to tensile testing. Finally, the method was applied to estimate the material properties of tissue-engineered constructs. Via this method, the evolution of mechanical properties during tissue growth and remodeling can now be monitored in a well-controlled system. The outcomes can be used to determine various mechanical constituents and to assess their contribution to mechanical homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns

    DEFF Research Database (Denmark)

    Leroux, Olivier; Sørensen, Iben; Marcus, Susan E.

    2015-01-01

    Background: While it is kno3wn that complex tissues with specialized functions emerged during land plant evolution, it is not clear how cell wall polymers and their structural variants are associated with specific tissues or cell types. Moreover, due to the economic importance of many flowering...... in ground tissues. Mannan epitopes were found to be associated with the development of mechanical tissues. We provided the first evidence for the presence of MLG in leptosporangiate ferns. Conclusions: The data sets indicate that cell wall diversity in land plants is multifaceted and that matrix glycan...... epitopes display complex spatio-temporal and phylogenetic distribution patterns that are likely to relate to the evolution of land plant body plans....

  1. The connective tissue graft wall 
technique to improve root coverage and clinical attachment levels 
in lingual gingival defects.

    Science.gov (United States)

    Zucchelli, Giovanni; Bentivogli, Valentina; Ganz, Sabrina; Bellone, Pietro; Mazzotti, Claudio

    The present case report describes the application of the connective tissue graft wall (CTGW) technique for the treatment of deep lingual gingival recessions associated with probing pockets and bone loss. Two deep lingual gingival recessions affecting the mandibular central incisors associated with severe lingual attachment and bone loss were treated. The surgical technique comprised a connective tissue graft (CTG) placed below a trapezoidal-type coronally advanced flap (CAF) acting as a lingual soft tissue wall of the infrabony defect. One year after the surgery, clinically significant root coverage, an increase in lingual keratinized tissue (KT) height and thickness, and clinical attachment level gain were achieved in both treated teeth. This case report encourages the application of the CTGW technique to improve both root coverage and regenerative parameters in lingual gingival recessions associated with severe attachment and bone loss.

  2. Characterization of the anisotropic mechanical behaviour of colonic tissues: experimental activity and constitutive formulation.

    Science.gov (United States)

    Carniel, E L; Gramigna, V; Fontanella, C G; Frigo, A; Stefanini, C; Rubini, A; Natali, A N

    2014-05-01

    The aim was to investigate the biomechanical behaviour of colonic tissues by a coupled experimental and numerical approach. The wall of the colon is composed of different tissue layers. Within each layer, different fibre families are distributed according to specific spatial orientations, which lead to a strongly anisotropic configuration. Accounting for the complex histology of the tissues, mechanical tests must be planned and designed to evaluate the behaviour of the colonic wall in different directions. Uni-axial tensile tests were performed on tissue specimens from 15 fresh pig colons, accounting for six different loading directions (five specimens for each loading direction). The next step of the investigation was to define an appropriate constitutive framework and develop a procedure for identification of the constitutive parameters. A specific hyperelastic formulation was developed that accounted for the multilayered conformation of the colonic wall and the fibre-reinforced configuration of the tissues. The parameters were identified by inverse analyses of the mechanical tests. The comparison of model results with experimental data, together with the evaluation of satisfaction of material thermomechanics principles, confirmed the reliability of the analysis developed. This work forms the basis for more comprehensive activities that aim to provide computational tools for the interpretation of surgical procedures that involve the gastrointestinal tract, considering the specific biomedical devices adopted. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  3. Characterization of xylan in the early stages of secondary cell wall formation in tobacco bright yellow-2 cells.

    Science.gov (United States)

    Ishii, Tadashi; Matsuoka, Keita; Ono, Hiroshi; Ohnishi-Kameyama, Mayumi; Yaoi, Katsuro; Nakano, Yoshimi; Ohtani, Misato; Demura, Taku; Iwai, Hiroaki; Satoh, Shinobu

    2017-11-15

    The major polysaccharides present in the primary and secondary walls surrounding plant cells have been well characterized. However, our knowledge of the early stages of secondary wall formation is limited. To address this, cell walls were isolated from differentiating xylem vessel elements of tobacco bright yellow-2 (BY-2) cells induced by VASCULAR-RELATED NAC-DOMAIN7 (VND7). The walls of induced VND7-VP16-GR BY-2 cells consisted of cellulose, pectic polysaccharides, hemicelluloses, and lignin, and contained more xylan and cellulose compared with non-transformed BY-2 and uninduced VND7-VP16-GR BY-2 cells. A reducing end sequence of xylan containing rhamnose and galaturonic acid- residues is present in the walls of induced, uninduced, and non-transformed BY-2 cells. Glucuronic acid residues in xylan from walls of induced cells are O-methylated, while those of xylan in non-transformed BY-2 and uninduced cells are not. Our results show that xylan changes in chemical structure and amounts during the early stages of xylem differentiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Study of polarization colors in the connective tissue wall of odontogenic cysts using picrosirius red stain

    Directory of Open Access Journals (Sweden)

    Anusha Shetty

    2015-01-01

    Full Text Available Background: Lesions of odontogenic origin comprise the heterogeneous group ranging from hamartomatous proliferations, cysts to benign and malignant tumors. Interplay between the epithelium and connective tissue can be assumed to play a significant role in the pathogenesis of odontogenic cysts. Aims and Objectives: A study was taken up to show the role of picrosirius red (PSR stain to demonstrate the fibers and also to assess the difference in the nature of the fibers (different color patterns and to find out the role of it, if any in the pathogenesis and biological behavior of the commonly occurring odontogenic cysts. Materials and Methods: Collagen fibers of 30 cases of odontogenic cysts (10 radicular cysts, 10 odontogenic keratocysts (OKC′s, and 10 dentigerous cysts were studied by staining the sections with PSR stain and examining them under bright field and polarizing microscope. Results: Sixty-seven percentage of the thin collagen fibers and 55% of the thick fibers in radicular cyst showed green-yellow birefringence. Fifty-seven percentage of the thin collagen fibers and 15% of the thick fibers in OKC showed green-yellow birefringence. Eighty-two percentage of the thin collagen fibers and 66% of the thick fibers in dentigerous cysts showed green-yellow birefringence. Rest of the fibers showed orange-red birefringence. Statistical analysis with one-way ANOVA was significant with a P < 0.01 only for thick fibers. Moreover, comparison of polarization colors of thick fibers of odontogenic cysts with duration of the lesion gave statistically significant results. Conclusion: The observations in the present study with respect to color profiles of the collagen fibers in the three commonly occurring odontogenic cysts possibly explain the biological behavior of the lesions. The predominant orange-red birefringence in OKC′s in comparison to radicular and dentigerous cysts suggests that OKC′s exhibit well organized and tightly packed fibers. This

  5. Characterization of photoacoustic sources in tissue using time domain measurements

    Science.gov (United States)

    Viator, John Andrew

    Photoacoustic phenomenon in tissue and tissue phantoms is investigated with the particular goal of discrimination of diseased and healthy tissue. Propagation of broadband photoacoustic sources in tissue phantoms is studied with emphasis on attenuation, dispersion, and diffraction. Attenuation of photoacoustic waves induced by a circular laser spot on an absorber/air interface is modeled by the on-axis approximation of the acoustic field of a baffled piston source. Dispersion is studied in a diffraction free situation, where the disk of irradiation was created by a 5 mm laser spot on a 200 cm -1 solution. The genesis of diffraction in an absorbing solution was displayed by showing the merging of a boundary wave with a plane wave from a circular laser spot on an absorbing solution. Depth profiling of absorbing tissue phantoms and stained tissue was shown using a photoacoustic method. Acrylamide gels with layers of different optical absorption and stained elastin biomaterials were irradiated with stress confined laser pulses. The resulting acoustic waves were detected with a lithium niobate wideband acoustic transducer and processed in an algorithm to determine absorption coefficient as a function of depth. Spherical photoacoustic sources were generated in optically clear and turbid tissue phantoms. Propagation time and acoustic pulse duration were used to determine location and size, respectively. The photoacoustic sources were imaged using a multiplicative backprojection scheme. Image sources from acoustic boundaries were detected and dipole sources were detected and imaged. Finally an endoscopic photoacoustic probe was designed, built, and tested for use in determining treatment depth after palliative photodynamic therapy of esophageal cancer. The probe was less than 2.5 mm in diameter and consisted of a side firing 600 mum optical fiber to deliver laser energy and a 890 mum diameter, side viewing piezoelectric detector. The sensitivity of the probe was determined

  6. In-Silico Characterization of Multi Walled Carbon Nanotubes (MWCNTS) to Develop Gas Sensors

    Science.gov (United States)

    Premkumar, P.; Krishnan Namboori, P. K.; Gopakumar, Deepa; Mohandas, V. P.; Radhagayathri, K. U.

    2010-10-01

    This paper reports the computational modeling and simulation of `Multi walled carbon nanotube' (MWCNT) to characterize the adsorption of gases. The computational results were properly evaluated experimentally. CNT is known to undergo electrical breakdown on exposure to gases. This unique property has been used in designing CNT-based gas sensors. The electrical resistance of `large diameter MWCNT' was found to decrease in the presence of air after experiencing electrical breakdown, while `pristine MWCNTs' were not found to be appreciably sensitive. The deformation and the corresponding mechano electric effects of CNT have been well predicted. Composite electric field guided assembly (CEGA) method was used to locate a single MWCNT between electrodes. The electrical characteristics of the deposited MWCNTs were observed using I-V-curves. The large-diameter MWCNT showed better sensitivity as they possess more distorted shells that can create more adsorption sites for oxygen molecules. The oxidation of CNT begins in the defective or distorted region of the tube separated from the electrodes. The removal of complete shells including the contacts with the electrodes is observed as spikes in the I-V Graph plotted from experimental results. This observation can be due to the presence of two barriers for conductivity along the partially burnt or oxidized MWCNT, the Schottky barrier for carrier injection from the electrodes to the nanotubes and the barrier caused due to the hopping process.

  7. Synthesis and Characterization of Hexahapto-Chromium Complexes of Single-Walled Carbon Nanotubes

    KAUST Repository

    Kalinina, Irina

    2016-12-17

    This chapter employs purified pristine single-walled carbon nanotubes (SWNTs) and octadecylaminefunctionalized-SWNTs. These SWNTs are employed for investigate the potential of the SWNT sidewall to function as a hexahapto ligand for chromium (Cr), with in-depth characterization of the products using some of the techniques, such as thermogravimetric analysis (TGA), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS). Purified electric arc (EA)-produced SWNTs (P2-SWNT) and octadecylaminefunctionalized SWNTs were obtained from Carbon Solutions, Inc. The TEM images show the removal of the Cr particles from the outer surface of the SWNT bundles in the SWNT-Cr complexes after decomplexation; Cr attachment to the surface of the as-prepared complexes (η6-SWNT)Cr(CO)3 and (η6-SWNT-CONH(CH2)17CH3)Cr(CO)3 is clearly evident. The positions of the bands in the Raman spectra of SWNTs are sensitive to doping and thus the chapter examines the effect of complexation of the Cr(CO)3 and Cr(η6-benzene) units on the position of the G and 2D bands in the (η6-SWNT)Cr(CO)3 and (η6-SWNT)Cr(η6-benzene) complexes.

  8. Production and characterization of nanocapsules encapsulated linalool by ionic gelation method using chitosan as wall material

    Directory of Open Access Journals (Sweden)

    Zuobing XIAO

    Full Text Available Abstract Linalool has been extensively applied in various fields, such as flavoring agent, perfumes, cosmetics and medical science. However, linalool is unstable, volatile and readily oxidizable. A sensitive substance can be encapsulated in a capsule, so encapsulation technology can solve these problems. In this paper, linalool-loaded nanocapsules (Lin-nanocapsules were prepared via the ionic gelation method and Lin-nanocapsules were characterized. The results of Fourier transformation infrared spectroscopy (FTIR showed that linalool was successfully encapsulated in the wall materials. Scanning electron microscopy (SEM results demonstrated that the shapes of Lin-nanocapsules, with smooth surfaces, were nearly spherical. Lin-nanocapsule average particle size was 352 nm and its polydispersity index (PDI was proved to be 0.214 by the results of dynamic light scattering (DLC. Thermogravimetric results indicated that linalool loading capacity (LC was 15.17%, and encapsulation could decrease linalool release and increase linalool retaining time under the high temperature. Oscillatory shear and steady-state shear measurements of Lin-nanocapsule emulsions were systematically investigated. The results of steady-state shear showed that Lin-nanocapsule emulsion, which was Newtonian only for high shear rate, was non-Newtonian. It was proved by oscillatory shear that when oscillation frequency changed from low to high, Lin-nanocapsules emulsion changed from viscous into elastic.

  9. NASA-JSC Protocol for the Characterization of Single Wall Carbon Nanotube Material Quality

    Science.gov (United States)

    Arepalli, Sivaram; Nikolaev, Pasha; Gorelik, Olga; Hadjiev, Victor; Holmes, William; Devivar, Rodrigo; Files, Bradley; Yowell, Leonard

    2010-01-01

    It is well known that the raw as well as purified single wall carbon nanotube (SWCNT) material always contain certain amount of impurities of varying composition (mostly metal catalyst and non-tubular carbon). Particular purification method also creates defects and/or functional groups in the SWCNT material and therefore affects the its dispersability in solvents (important to subsequent application development). A number of analytical characterization tools have been used successfully in the past years to assess various properties of nanotube materials, but lack of standards makes it difficult to compare these measurements across the board. In this work we report the protocol developed at NASA-JSC which standardizes measurements using TEM, SEM, TGA, Raman and UV-Vis-NIR absorption techniques. Numerical measures are established for parameters such as metal content, homogeneity, thermal stability and dispersability, to allow easy comparison of SWCNT materials. We will also report on the recent progress in quantitative measurement of non-tubular carbon impurities and a possible purity standard for SWCNT materials.

  10. Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy

    Science.gov (United States)

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2008-01-01

    A recently described plant cell wall dissolution system has been modified to use perdeuterated solvents to allow direct in-NMR-tube dissolution and high-resolution solution-state NMR of the whole cell wall without derivatization. Finely ground cell wall material dissolves in a solvent system containing dimethylsulfoxide-d6 and 1-methylimidazole-d6 in a ratio of 4:1 (v/...

  11. Characterization of cell wall components of wheat bran following hydrothermal pretreatment and fractionation

    OpenAIRE

    Merali, Zara; Collins, Samuel R A; Elliston, Adam; Wilson, David R; K?sper, Andres; Waldron, Keith W

    2015-01-01

    Background Pretreatments are a prerequisite for enzymatic hydrolysis of biomass and production of ethanol. They are considered to open up the plant cell wall structure by altering, moving or solubilizing lignin and hydrolyzing a proportion of hemicellulosic moieties. However, there is little information concerning pretreatment-induced changes on wheat bran cell wall polymers and indeed on changes in cell wall phenolic esters in bran or other lignocellulosic biomass. Here, we evaluate polymeri...

  12. Reasons for the lack of benefit of immediate angioplasty during recombinant tissue plasminogen activator therapy for acute myocardial infarction: a regional wall motion analysis

    NARCIS (Netherlands)

    P.W.J.C. Serruys (Patrick); W.R. Rutsch (Wolfgang); M.L. Simoons (Maarten); D.P. de Bono (David); J.G.P. Tijssen (Jan); J. Lubsen (Jacob); M. Verstraete (Marc); A.E.R. Arnold (Alfred)

    1991-01-01

    textabstractRegional ventricular wall motion analysis utilizing three different methods was performed on predischarge left ventriculograms from 291 of 367 patients enrolled in a randomized trial of single chain recombinant tissue-type plasminogen activator (rt-PA), aspirin and heparin with and

  13. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sweta K. [Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee (India); Dinda, Amit K. [Department of Pathology, All India Institute of Medical Sciences, New Delhi (India); Potdar, Pravin D. [Department of Molecular Medicine, Jaslok Hospital and Research Centre, Mumbai (India); Mishra, Narayan C., E-mail: mishrawise@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee (India)

    2013-10-15

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H and E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications. - Highlights: • We successfully fabricated decellularized scaffold from cadaver goat-lung tissue. • Decellularized goat-lung scaffolds were found to be highly porous. • Skin derived MSC shows high cell viability and proliferation over the scaffold. • Phenotype of MSCs was well maintained over the scaffold. • The scaffold shows potential for applications in skin tissue engineering.

  14. Fractional order viscoelasticity in characterization for atrial tissue

    Science.gov (United States)

    Shen, Jing Jin; Li, Cheng Gang; Wu, Hong Tao; Kalantari, Masoud

    2013-05-01

    Atrial tissue due to its solid-like and fluid-like constituents shows highly viscoelastic properties. Up to now, the distribution pattern of muscle fiber in heart is not well established, and it is hard to establish the constitutive model for atrial tissue completely based on the microstructure level. Consider the equivalence between the fractional viscoelasticity and the fractal spring-dashpot model, a generalized fractional order Maxwell model is proposed to model the porcine atrial tissue in the phenomenological sense. This model has a simple expression and intuitively physical meanings. The constitutive parameters in the model are estimated in the complex domain by a genetic algorithm. Final results illustrate the proposed model gets a well agreement with the experimental data.

  15. Identification and characterization of plant cell wall degrading enzymes from three glycoside hydrolase families in the cerambycid beetle Apriona japonica.

    Science.gov (United States)

    Pauchet, Yannick; Kirsch, Roy; Giraud, Sandra; Vogel, Heiko; Heckel, David G

    2014-06-01

    Xylophagous insects have evolved to thrive in a highly challenging environment. For example, wood-boring beetles from the family Cerambycidae feed exclusively on woody tissues, and to efficiently access the nutrients present in this sub-optimal environment, they have to cope with the lignocellulose barrier. Whereas microbes of the insect's gut flora were hypothesized to be responsible for the degradation of lignin, the beetle itself depends heavily on the secretion of a range of enzymes, known as plant cell wall degrading enzymes (PCWDEs), to efficiently digest both hemicellulose and cellulose networks. Here we sequenced the larval gut transcriptome of the Mulberry longhorn beetle, Apriona japonica (Cerambycidae, Lamiinae), in order to investigate the arsenal of putative PCWDEs secreted by this species. We combined our transcriptome with all available sequencing data derived from other cerambycid beetles in order to analyze and get insight into the evolutionary history of the corresponding gene families. Finally, we heterologously expressed and functionally characterized the A. japonica PCWDEs we identified from the transcriptome. Together with a range of endo-β-1,4-glucanases, we describe here for the first time the presence in a species of Cerambycidae of (i) a xylanase member of the subfamily 2 of glycoside hydrolase family 5 (GH5 subfamily 2), as well as (ii) an exopolygalacturonase from family GH28. Our analyses greatly contribute to a better understanding of the digestion physiology of this important group of insects, many of which are major pests of forestry worldwide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Electrically conductive poly-ɛ-caprolactone/polyethylene glycol/multi-wall carbon nanotube nanocomposite scaffolds coated with fibrin glue for myocardial tissue engineering

    Science.gov (United States)

    Mehdikhani, Mehdi; Ghaziof, Sharareh

    2018-01-01

    In this research, poly-ɛ-caprolactone (PCL), polyethylene glycol (PEG), multi-wall carbon nanotubes (MWCNTs), and nanocomposite scaffolds containing 0.5 and 1% (w/w) MWCNTs coated with fibrin glue (FG) were prepared via solvent casting and freeze-drying technique for cardiac tissue engineering. Scanning electron microscopy, transmission electron microscopy, Fourier transform-infrared spectroscopy, and X-ray diffraction were used to characterize the samples. Furthermore, mechanical properties, electrical conductivity, degradation, contact angle, and cytotoxicity of the samples were evaluated. Results showed the uniform distribution of the MWCNTs with some aggregates in the prepared nanocomposite scaffolds. The scaffolds containing 1% (w/w) MWCNTs with and without FG coating illustrated optimum modulus of elasticity, high electrical conductivity, and wettability compared with PCL/PEG and PCL/PEG/0.5%(w/w) MWCNTs' scaffolds. FG coating enhanced electrical conductivity and cell response, and increased wettability of the constructs. The prepared scaffolds were degraded significantly after 60 days of immersion in PBS. Meanwhile, the nanocomposite containing 1% (w/w) MWCNTs with FG coating (S3) showed proper spreading and viability of the myoblasts seeded on it after 1, 4, and 7 days of culture. The scaffold containing 1% (w/w) MWCNTs with FG coating demonstrated optimal properties including acceptable mechanical properties, proper wettability, high electrical conductivity, satisfactory degradation, and excellent myoblasts response to it.

  17. Microcomputed tomography characterization of neovascularization in bone tissue engineering applications.

    NARCIS (Netherlands)

    Young, S.; Kretlow, J.D.; Nguyen, C.; Bashoura, A.G.; Baggett, L.S.; Jansen, J.A.; Wong, M.; Mikos, A.G.

    2008-01-01

    Vasculogenesis and angiogenesis have been studied for decades using numerous in vitro and in vivo systems, fulfilling the need to elucidate the mechanisms involved in these processes and to test potential therapeutic agents that inhibit or promote neovascularization. Bone tissue engineering in

  18. Immunocytochemical characterization of the cell walls of bean cell suspensions during habituation and dehabituation to dichlobenil

    DEFF Research Database (Denmark)

    Garcia-Angulo, P.; Willats, W. G. T.; Encina, A. E.

    2006-01-01

    in habituated cells also diminished with the increasing number of subcultures. Habituated cells also liberated less extensin into the medium. In habituated cells, a decrease in the cell wall arabinogalactan protein (AGP) labelling was observed both in cell walls and in the culture medium. The increase...

  19. Populations of latent Mycobacterium tuberculosis lack a cell wall: Isolation, visualization, and whole-genome characterization

    Directory of Open Access Journals (Sweden)

    Ali Akbar Velayati

    2016-01-01

    Conclusion: Here, we show cell-wall free cells of MTB bacilli in their latent state, and the biological adaptation of these cells was more phenotypic in nature than genomic. These cell-wall free cells represent a good model for understanding the nature of TB latency.

  20. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment

    Science.gov (United States)

    Shishir P. S. Chundawat; Bryon S. Donohoe; Leonardo da Costa Sousa; Thomas Elder; Umesh P. Agarwal; Fachuang Lu; John Ralph; Michael E. Himmel; Venkatesh Balan; Bruce E. Dale

    2011-01-01

    Deconstruction of lignocellulosic plant cell walls to fermentable sugars by thermochemical and/or biological means is impeded by several poorly understood ultrastructural and chemical barriers. A promising thermochemical pretreatment called ammonia fiber expansion (AFEX) overcomes the native recalcitrance of cell walls through subtle morphological and physicochemical...

  1. Human perivascular adipose tissue dysfunction as a cause of vascular disease: Focus on vascular tone and wall remodeling.

    Science.gov (United States)

    Ozen, Gulsev; Daci, Armond; Norel, Xavier; Topal, Gokce

    2015-11-05

    Obesity is one of the major risk factors for the development of cardiovascular diseases. It is characterized by excessive or abnormal accumulation of adipose tissue, including depots which surround the blood vessels named perivascular adipose tissue (PVAT). PVAT plays endocrine and paracrine roles by producing large numbers of metabolically vasoactive adipokines. The present review outlines our current understanding of the beneficial roles of PVAT in vascular tone and remodeling in healthy subjects supported by clinical studies, highlighting different factors or mechanisms that could mediate protective effects of PVAT on vascular function. Most studies in humans show that adiponectin is the best candidate for the advantageous effect of PVAT. However, in pathological conditions especially obesity-related cardiovascular diseases, the beneficial effects of PVAT on vascular functions are impaired and transform into detrimental roles. This change is defined as PVAT dysfunction. In the current review, the contribution of PVAT dysfunction to obesity-related cardiovascular diseases has been discussed with a focus on possible mechanisms including an imbalance between beneficial and detrimental adipokines (commonly described as decreased levels of adiponectin and increased levels of leptin or tumor necrosis factor-alpha (TNFα)), increased quantity of adipose tissue, inflammation, cell proliferation and endothelial dysfunction. Finally, novel pharmacotherapeutic targets for the treatment of cardiovascular and metabolic disorders are addressed. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Characterization of Human Vaginal Mucosa Cells for Autologous In Vitro Cultured Vaginal Tissue Transplantation in Patients with MRKH Syndrome

    Directory of Open Access Journals (Sweden)

    Cristina Nodale

    2014-01-01

    Full Text Available Mayer-Rokitansky-Küster-Hauser (MRKH is a rare syndrome characterized by congenital aplasia of the uterus and vagina. The most common procedure used for surgical reconstruction of the neovagina is the McIndoe vaginoplasty, which consists in creation of a vaginal canal covered with a full-thickness skin graft. Here we characterized the autologous in vitro cultured vaginal tissue proposed as alternative material in our developed modified McIndoe vaginoplasty in order to underlie its importance in autologous total vaginal replacement. To this aim human vaginal mucosa cells (HVMs were isolated from vaginal mucosa of patients affected by MRKH syndrome and characterized with respect to growth kinetics, morphology, PAS staining, and expression of specific epithelial markers by immunofluorescence, Western blot, and qRT-PCR analyses. The presence of specific epithelial markers along with the morphology and the presence of mucified cells demonstrated the epithelial nature of HMVs, important for an efficient epithelialization of the neovagina walls and for creating a functional vaginal cavity. Moreover, these cells presented characteristics of effective proliferation as demonstrated by growth kinetics assay. Therefore, the autologous in vitro cultured vaginal tissue might represent a highly promising and valid material for McIndoe vaginoplasty.

  3. Characterizing the dynamic property of the vortex tail in a gas cyclone by wall pressure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Cuizhi; Sun, Guogang; Dong, Ruiqian; Fu, Shuangcheng [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249 (China)

    2010-08-15

    To explore a determination method for cyclone vortex tail, the wall pressures at different axial and radial positions of a cylinder-on-cone cyclone were measured and analyzed by the Fast Fourier Transform (FFT) and probability density analyses in this paper. The cyclone vortex tail was also visualized by a red ink tracer. The results show that the cyclone wall pressure does not change in the cylindrical section and gradually decreases in the conical section. The magnitudes of wall pressure at different azimuths are almost identical, indicating an axisymmetrical wall pressure radial profile in these parts of the cyclone. Whereas in the lower part of the cone and/or the upper part of dipleg, there is a sudden fall of wall pressure and non-axisymmetrical pressure radial profile. The minimum wall pressure occurs at about 270 azimuth in this region. Underneath in the next part of the dipleg, the wall pressure rapidly rises and returns to axisymmetry. These characteristics indicate that the vortex tail is bended to wall, turns around in this region, and can be used as evidences of the vortex tail. The position determined by the pressure measurement is close to the position of the rotating ring observed in the tracing experiment. It is also found that the frequency of the inner vortex is different from that of the outer vortex. The inner vortex flow fluctuates stronger and faster than its outer partner. At the vortex tail zone, the vortex breaks and the inner vortex fluctuation is involved in the wall pressure signal. Therefore, the position and dynamic property of the vortex tail can be well identified from the wall pressure measurement. The pressure measurement could provide some solid experimental basis for assessing relations of natural vortex length. (author)

  4. Visual Analytics for the Exploration of Tumor Tissue Characterization

    DEFF Research Database (Denmark)

    Raidou, R. G.; Van Der Heide, U. A.; Dinh, C. V.

    2015-01-01

    imaging data, to derive per voxel a number of features, indicative of tissue properties. However, the high dimensionality and complexity of this imaging-derived feature space is prohibiting for easy exploration and analysis - especially when clinical researchers require to associate observations from......, from which it is difficult to obtain the required insight. We propose a visual tool for: (1) easy exploration and visual analysis of the feature space of imaging-derived tissue characteristics and (2) knowledge discovery and hypothesis generation and confirmation, with respect to reference data used...... in clinical research. We employ, as central view, a 2D embedding of the imaging-derived features. Multiple linked interactive views provide functionality for the exploration and analysis of the local structure of the feature space, enabling linking to patient anatomy and clinical reference data. We performed...

  5. Characterizing material properties of cement-stabilized rammed earth to construct sustainable insulated walls

    Directory of Open Access Journals (Sweden)

    Rishi Gupta

    2014-01-01

    Full Text Available Use of local materials can reduce the hauling of construction materials over long distances, thus reducing the greenhouse gas emissions associated with transporting such materials. Use of locally available soils (earth for construction of walls has been used in many parts of the world. Owing to the thermal mass of these walls and the potential to have insulation embedded in the wall section has brought this construction material/technology at the forefront in recent years. However, the mechanical properties of the rammed earth and the parameters required for design of steel reinforced walls are not fully understood. In this paper, the author presents a case study where full-scale walls were constructed using rammed earth to understand the effect of two different types of shear detailing on the structural performance of the walls. The mechanical properties of the material essential for design such as compressive strength of the material including effect of coring on the strength, pull out strength of different rebar diameters, flexural performance and out-of-plane bending on walls was studied. These results are presented in this case study.

  6. Developing High-Frequency Quantitative Ultrasound Techniques to Characterize Three-Dimensional Engineered Tissues

    Science.gov (United States)

    Mercado, Karla Patricia E.

    Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.

  7. Image-based speckle tracking for tissue motion characterization in a deformable cardiovascular phantom

    Science.gov (United States)

    Chan, R.; Manzke, R.; Dalal, S.; Stanton, D.; Chang, P.; Settlemier, S.; Salgo, I.; Tournoux, F.

    2008-03-01

    We present and validate image-based speckle-tracking calipers for quantification of tissue deformation and rotation in dynamic cardiovascular phantom models. Lagrangian strain was computed from the change in distance between caliper regions-of-interest (ROIs) positioned within the wall of a pulsatile phantom and compared with reference measurements derived from cardiac CT imaging. In a torsion phantom, rotational tissue excursion in a 2D plane was estimated and compared with reference values from CT-scan data. Tissue deformation and rotation measurements correlated well with their respective reference measurements. Our algorithm is capable of estimating strain and rotation from distinct tissue regions without requiring explicit cardiac border detection, a step which can be especially challenging in patients with poor acoustic windows.

  8. Characterization of human myoblast cultures for tissue engineering.

    Science.gov (United States)

    Stern-Straeter, Jens; Bran, Gregor; Riedel, Frank; Sauter, Alexander; Hörmann, Karl; Goessler, Ulrich Reinhart

    2008-01-01

    Skeletal muscle tissue engineering, a promising specialty, aims at the reconstruction of skeletal muscle loss. In vitro tissue engineering attempts to achieve this goal by creating differentiated, functional muscle tissue through a process in which stem cells are extracted from the patient, e.g. by muscle biopsies, expanded and differentiated in a controlled environment, and subsequently re-implanted. A prerequisite for this undertaking is the ability to cultivate and differentiate human skeletal muscle cell cultures. Evidently, optimal culture conditions must be investigated for later clinical utilization. We therefore analysed the proliferation of human cells in different environments and evaluated the differentiation potential of different culture media. It was shown that human myoblasts have a higher rate of proliferation in the alamarBlue assay when cultured on gelatin-coated culture flasks rather than polystyrene-coated flasks. We also demonstrated that myoblasts treated with a culture medium with a high concentration of growth factors [growth medium (GM)] showed a higher proliferation compared to cultures treated with a culture medium with lower amounts of growth factors [differentiation medium (DM)]. Differentiation of human myoblast cell cultures treated with GM and DM was analysed until day 16 and myogenesis was verified by expression of MyoD, myogenin, alpha-sarcomeric actin and myosin heavy chain by semi-quantitative RT-PCR. Immunohistochemical staining for desmin, Myf-5 and alpha-sarcomeric actin was performed to verify the myogenic phenotype of extracted satellite cells and to prove the maturation of cells. Cultures treated with DM showed positive staining for alpha-sarcomeric actin. Notably, markers of differentiation were also detected in cultures treated with GM, but there was no formation of myotubes. In the enzymatic assay of creatine phosphokinase, cultures treated with DM showed a higher activity, evidencing a higher degree of differentiation

  9. Topochemical and morphological characterization of wood cell wall treated with the ionic liquid, 1-ethylpyridinium bromide.

    Science.gov (United States)

    Kanbayashi, Toru; Miyafuji, Hisashi

    2015-09-01

    MAIN CONCLUSION : [EtPy][Br] is more reactive toward lignin than toward the PSs in wood cell walls, and [EtPy][Br] treatment results in inhomogenous changes to the cell wall's ultrastructural and chemical components. The effects of the ionic liquid 1-ethylpyridinium bromide ([EtPy][Br]), which prefers to react with lignin rather than cellulose on the wood cell walls of Japanese cedar (Cryptomeria japonica), were investigated from a morphology and topochemistry point of view. The [EtPy][Br] treatment induced cell wall swelling, the elimination of warts, and the formation of countless pores in the tracheids. However, many of the pit membranes and the cellulose crystalline structure remained unchanged. Raman microscopic analyses revealed that chemical changes in the cell walls were different for different layers and that the lignin in the compound middle lamella and the cell corner resists interaction with [EtPy][Br]. Additionally, the interaction of [EtPy][Br] with the wood cell wall is different to that of other types of ionic liquid.

  10. Characterization of resilin-based materials for tissue engineering applications.

    Science.gov (United States)

    Renner, Julie N; Cherry, Kevin M; Su, Renay S-C; Liu, Julie C

    2012-11-12

    Modular proteins have emerged as powerful tools in tissue engineering because both the mechanical and biochemical properties can be precisely controlled through amino acid sequence. Resilin is an attractive candidate for use in modular proteins because it is well-known for having low stiffness, high fatigue lifetime, and high resilience. However, no studies have been conducted to assess resilin's compressive properties, cytocompatibility with clinically relevant cells, or effect on cell spreading. We designed a modular protein containing repeating sequences of a motif derived from Anopheles gambiae and cell-binding domains derived from fibronectin. Rapid cross-linking with tris(hydroxymethyl)phosphine was observed. The hydrogels had a complex modulus of 22 ± 1 kPa and yield strain of 63%. The elastic modulus in compression, or unconfined compressive modulus, was 2.4 ± 0.2 MPa, which is on the same order as human cartilage. A LIVE/DEAD assay demonstrated that human mesenchymal stem cells cultured on the resilin-based protein had a viability of 95% after three days. A cell-spreading assay revealed that the cells interacted with the fibronectin-derived domain in a sequence-specific manner and resulted in a mean cell area ~1.4-fold larger than when cells were seeded on a sequence-scrambled negative control protein. These results demonstrate that our resilin-based biomaterial is a promising biomaterial for cartilage tissue engineering.

  11. Noninvasive temperature monitoring using ultrasound tissue characterization method

    Science.gov (United States)

    Novak, Petr; Pousek, Lubomir; Schreib, Petr; Peschke, Peter; Vrba, Jan; Zuna, Ivan

    2001-05-01

    Microwave thermotherapy (MT) is an oncological treatment. At present the invasive thermometer probes are clinically used for temperature measuring during an MT. Any invasive handling of tumors is of high-risk. A new method of noninvasive monitoring of temperature distribution in tissue has been developed. An MT treatment of the experimentally induced pedicle-tumors of the rat was prepared. It consists of an intelligent regulation loop controlling a high frequency (HF) generator according to the maximal measured temperature in the tissue and a special HF MT applicator. The loop is also equipped with an invasive thermometer (4 invasive probes). During the MT treatment the series of ultrasound B-mode images were obtained. The texture parameters were evaluated form the obtained ultrasound images. These parameters were correlated with the invasively measured temperature during the MT session. For 60 rat samples a strong correlation between the mean gray level in the ROIs in the ultrasound pictures and the invasively measured temperature in the range 37-44 degree(s)C (98.6-111.2 F) was found. The correlation coefficient of the mean gray level and the invasively measured temperature is 0.96+/- 0.05. A system for representation of changes of spatial temperature distribution of the whole tumor during MT will be presented.

  12. Accurately characterized optical tissue phantoms: how, why and when?

    Science.gov (United States)

    Bouchard, Jean-Pierre; Veilleux, Isra"l.; Noiseux, Isabelle; Mermut, Ozzy

    2011-03-01

    Optical tissue phantoms are very important tools for the development of biomedical imaging applications. Optical phantoms are often used as ground truth against which instruments results can be compared. It is therefore important that the optical properties of reference phantoms be measured in a manner that is traceable to the international system of units. SI traceability insures long term consistency of results and will therefore improve the effectiveness of diffuse optics research effort more effective by reducing unwanted variability in the data produced and shared by the community. The ultimate benefit of rigorous SI traceability is the reduction of variability in the data produced by novel diagnostic devices, which will in turn increase the statistical power of clinical trials aiming at validating their clinical usefulness. SI traceability, and therefore uncertainty analysis, is also relevant to traceability aspects mandated by FDA regulations. SI traceability is achieved through a thorough analysis of the measurement principle and its potential error sources. The uncertainty analysis should be ultimately validated by inter-laboratory comparison until a consensus is attained on the best practices for measuring the optical properties of tissue phantoms.

  13. ESR evidence for in vivo formation of free radicals in tissue of mice exposed to single-walled carbon nanotubes.

    Science.gov (United States)

    Shvedova, A A; Kisin, E R; Murray, A R; Mouithys-Mickalad, A; Stadler, K; Mason, R P; Kadiiska, M

    2014-08-01

    Nanomaterials are being utilized in an increasing variety of manufactured goods. Because of their unique physicochemical, electrical, mechanical, and thermal properties, single-walled carbon nanotubes (SWCNTs) have found numerous applications in the electronics, aerospace, chemical, polymer, and pharmaceutical industries. Previously, we have reported that pharyngeal exposure of C57BL/6 mice to SWCNTs caused dose-dependent formation of granulomatous bronchial interstitial pneumonia, fibrosis, oxidative stress, acute inflammatory/cytokine responses, and a decrease in pulmonary function. In the current study, we used electron spin resonance (ESR) to directly assess whether exposure to respirable SWCNTs caused formation of free radicals in the lungs and in two distant organs, the heart and liver. Here we report that exposure to partially purified SWCNTs (HiPco technique, Carbon Nanotechnologies, Inc., Houston, TX, USA) resulted in the augmentation of oxidative stress as evidenced by ESR detection of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone spin-trapped carbon-centered lipid-derived radicals recorded shortly after the treatment. This was accompanied by a significant depletion of antioxidants and elevated biomarkers of inflammation presented by recruitment of inflammatory cells and an increase in proinflammatory cytokines in the lungs, as well as development of multifocal granulomatous pneumonia, interstitial fibrosis, and suppressed pulmonary function. Moreover, pulmonary exposure to SWCNTs also caused the formation of carbon-centered lipid-derived radicals in the heart and liver at later time points (day 7 postexposure). Additionally, SWCNTs induced a significant accumulation of oxidatively modified proteins, increase in lipid peroxidation products, depletion of antioxidants, and inflammatory response in both the heart and the liver. Furthermore, the iron chelator deferoxamine noticeably reduced lung inflammation and oxidative stress, indicating an important role for

  14. Internal Characterization of Denture Base by Using Acrylic Stains and Tissue Paper

    OpenAIRE

    Pattanaik, Seema; Pattanaik, Bikash

    2011-01-01

    Characterization of an artificial denture is required to give the denture a more natural appearance. This article describes the laboratory procedures for internal characterization of denture base in a removable prosthesis using acrylic stains and absorbent tissue paper incorporated in the heat cure polymerizing denture base resin at the stage of packing.

  15. SYNTHESIS AND CHARACTERIZATION OF CARBON AEROGEL NANOCOMPOSITES CONTAINING DOUBLE-WALLED CARBON NANOTUBES

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, M A; Satcher, J H; Baumann, T F

    2008-03-11

    Carbon aerogels (CAs) are novel mesoporous materials with applications such as electrode materials for super capacitors and rechargeable batteries, adsorbents and advanced catalyst supports. To expand the potential application for these unique materials, recent efforts have focused on the design of CA composites with the goal of modifying the structure, conductivity or catalytic activity of the aerogel. Carbon nanotubes (CNTs) possess a number of intrinsic properties that make them promising materials in the design of composite materials. In addition, the large aspect ratios (100-1000) of CNTs means that small additions (less than 1 vol%) of CNTs can produce a composite with novel properties. Therefore, the homogeneous incorporation of CNTs into a CA matrix provides a viable route to new carbon-based composites with enhanced thermal, electrical and mechanical properties. One of the main challenges in preparing CNT composites is achieving a good uniform dispersion of nanotubes throughout the matrix. CAs are typically prepared through the sol-gel polymerization of resorcinol with formaldehyde in aqueous solution to produce organic gels that are supercritically dried and subsequently pyrolyzed in an inert atmosphere. Therefore, a significant issue in fabricating CA-CNT composites is dispersing the CNTs in the aqueous reaction media. Previous work in the design of CACNT composites have addressed this issue by using organic solvents in the sol-gel reaction to facilitate dispersion of the CNTs. To our knowledge, no data has been published involving the preparation of CA composites containing CNTs dispersed in aqueous media. In this report, we describe a new method for the synthesis of monolithic CA-CNT composites that involves the sol-gel polymerization of resorcinol and formaldehyde in an aqueous solution containing a surfactant-stabilized dispersion of double-walled carbon nanotubes (DWNT). One of the advantages of this approach is that it allows one to uniformly

  16. Characterization of Cell Wall Proteins in Saccharomyces cerevisiae Clinical Isolates Elucidates Hsp150p in Virulence.

    Directory of Open Access Journals (Sweden)

    Pang-Hung Hsu

    Full Text Available The budding yeast Saccharomyces cerevisiae has recently been described as an emerging opportunistic fungal pathogen. Fungal cell wall mannoproteins have been demonstrated to be involved in adhesion to inert surfaces and might be engaged in virulence. In this study, we observed four clinical isolates of S. cerevisiae with relatively hydrophobic cell surfaces. Yeast cell wall subproteome was evaluated quantitatively by liquid chromatography/tandem mass spectrometry. We identified totally 25 cell wall proteins (CWPs from log-phase cells, within which 15 CWPs were quantified. The abundance of Scw10p, Pst1p, and Hsp150p/Pir2p were at least 2 folds higher in the clinical isolates than in S288c lab strain. Hsp150p is one of the members in Pir family conserved in pathogenic fungi Candida glabrata and Candida albicans. Overexpression of Hsp150p in lab strain increased cell wall integrity and potentially enhanced the virulence of yeast. Altogether, these results demonstrated that quantitative cell wall subproteome was analyzed in clinical isolates of S. cerevisiae, and several CWPs, especially Hsp150p, were found to be expressed at higher levels which presumably contribute to strain virulence and fungal pathogenicity.

  17. Tissue characterization in cerebral ischemia using multiparameter MRI

    Science.gov (United States)

    Soltanian-Zadeh, Hamid; Hammoud, Rabih; Jacobs, Michael A.; Patel, Suresh C.; Mitsias, Panayiotis D.; Pasnoor, Mamatha; Knight, Robert; Zheng, Zhang G.; Lu, Mei; Chopp, Michael

    2001-05-01

    After pre-processing and segmentation, the proposed method scores tissue regions between 1 and N. Score 1 is assigned to normal white matter and score N to CSF. Lesion zones are assigned a score based on their relative levels of similarities to white matter and CSF. To evaluate the method, 15 rats were imaged by a 7T MRI system at one of the three time points (acute, sub-acute, chronic) after MCA occlusion. Then, they were sacrificed and their brains were sliced and prepared for histological studies. MRI of 2 or 3 slices of each rat brain, using 2 DWI (b equals 400, b equals 800), 1 PDWI, 1 T2WI, and 1 T1WI, was used and an MRI score between 1 and 100 (N equals 100) was found for each region. Segmented regions were mapped onto the histology images and were scored by an experienced pathologist, from 1 to 10. MRI scores were validated using histology scores. To this end, correlation coefficients between the two scores (MRI and histology) were found. The results showed excellent correlations between MRI and histology scores at different time points.

  18. Physico-chemical characterization of collagen scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    B.H. León-Mancilla

    2016-02-01

    Full Text Available The objective was to research the physical and chemical properties of collagen scaffolds (CS obtained from bone matrix Nukbone® subject to a demineralization process using hydrochloric acid. The CS samples were characterized by optical and scanning electron microscopy, elemental chemical analysis, X-ray diffraction, spectroscopy Infrared, thermal analysis, differential scanning calorimetry and nitrogen adsorption. The microanalysis were used to set the macro- and microstructures of CS. They showed that the CS retained the morphology of Nukbone® with interconnected pores and their size between 100 and 500 μm, and it is composed of 20% by weight of HA and the rest is collagen type I. By infrared spectroscopy the functional groups of collagen type I (amide A – 3285, B – 2917, I – 1633, II – 1553 and III – 1239 cm−1 were identified. By thermal analysis it was determined that the phenomenon of denaturation of the collagen type I began in the range of 75–85 °C and burned above 200 °C.

  19. Kinetic and thermodynamic characterization of the interactions between the components of human plasma kinin-forming system and isolated and purified cell wall proteins of Candida albicans.

    Science.gov (United States)

    Seweryn, Karolina; Karkowska-Kuleta, Justyna; Wolak, Natalia; Bochenska, Oliwia; Kedracka-Krok, Sylwia; Kozik, Andrzej; Rapala-Kozik, Maria

    2015-01-01

    Cell wall proteins of Candida albicans, besides their best known role in the adhesion of this fungal pathogen to host's tissues, also bind some soluble proteins, present in body fluids and involved in maintaining the biochemical homeostasis of the human organism. In particular, three plasma factors - high-molecular-mass kininogen (HK), factor XII (FXII) and prekallikrein (PPK) - have been shown to adhere to candidal cells. These proteins are involved in the surface-contact-catalyzed production of bradykinin-related peptides (kinins) that contribute to inflammatory states associated with microbial infections. We recently identified several proteins, associated with the candidal cell walls, and probably involved in the binding of HK. In our present study, a list of potential FXII- and PPK-binding proteins was proposed, using an affinity selection (on agarose-coupled FXII or PPK) from a whole mixture of β-1,3-glucanase-extrated cell wall-associated proteins and the mass-spectrometry protein identification. Five of these fungal proteins, including agglutinin-like sequence protein 3 (Als3), triosephosphate isomerase 1 (Tpi1), enolase 1 (Eno1), phosphoglycerate mutase 1 (Gpm1) and glucose-6-phosphate isomerase 1 (Gpi1), were purified and characterized in terms of affinities to the human contact factors, using the surface plasmon resonance measurements. Except Gpm1 that bound only PPK, and Als3 that exhibited an affinity to HK and FXII, the other isolated proteins interacted with all three contact factors. The determined dissociation constants for the identified protein complexes were of 10(-7) M order, and the association rate constants were in a range of 10(4)-10(5) M(-1)s(-1). The identified fungal pathogen-host protein interactions are potential targets for novel anticandidal therapeutic approaches.

  20. MRI characterization of brown adipose tissue in obese and normal-weight children

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jie; Rigsby, Cynthia K.; Shore, Richard M. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, 225 E. Chicago Ave., Box 9, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Schoeneman, Samantha E. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, 225 E. Chicago Ave., Box 9, Chicago, IL (United States); Zhang, Huiyuan [John H. Stroger, Jr. Hospital of Cook County, Collaborative Research Unit, Chicago, IL (United States); Kwon, Soyang [Ann and Robert H. Lurie Children' s Hospital of Chicago, Stanley Manne Children' s Research Institute, Chicago, IL (United States); Northwestern University, Department of Pediatrics, Feinberg School of Medicine, Chicago, IL (United States); Josefson, Jami L. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Division of Endocrinology, Chicago, IL (United States); Northwestern University, Department of Pediatrics, Feinberg School of Medicine, Chicago, IL (United States)

    2015-10-15

    Brown adipose tissue (BAT) is identified in mammals as an adaptive thermogenic organ for modulation of energy expenditure and heat generation. Human BAT may be primarily composed of brown-in-white (BRITE) adipocytes and stimulation of BRITE may serve as a potential target for obesity interventions. Current imaging studies of BAT detection and characterization have been mainly limited to PET/CT. MRI is an emerging application for BAT characterization in healthy children. To exploit Dixon and diffusion-weighted MRI methods to characterize cervical-supraclavicular BAT/BRITE properties in normal-weight and obese children while accounting for pubertal status. Twenty-eight healthy children (9-15 years old) with a normal or obese body mass index participated. MRI exams were performed to characterize supraclavicular adipose tissues by measuring tissue fat percentage, T2*, tissue water mobility, and microvasculature properties. We used multivariate linear regression models to compare tissue properties between normal-weight and obese groups while accounting for pubertal status. MRI measurements of BAT/BRITE tissues in obese children showed higher fat percentage (P < 0.0001), higher T2* (P < 0.0001), and lower diffusion coefficient (P = 0.015) compared with normal-weight children. Pubertal status was a significant covariate for the T2* measurement, with higher T2* (P = 0.0087) in pubertal children compared to prepubertal children. Perfusion measurements varied by pubertal status. Compared to normal-weight children, obese prepubertal children had lower perfusion fraction (P = 0.003) and pseudo-perfusion coefficient (P = 0.048); however, obese pubertal children had higher perfusion fraction (P = 0.02) and pseudo-perfusion coefficient (P = 0.028). This study utilized chemical-shift Dixon MRI and diffusion-weighted MRI methods to characterize supraclavicular BAT/BRITE tissue properties. The multi-parametric evaluation revealed evidence of morphological differences in brown

  1. Characterization of multiphoton photoacoustic spectroscopy for subsurface brain tissue diagnosis and imaging

    Science.gov (United States)

    Dahal, Sudhir; Cullum, Brian M.

    2016-04-01

    The development and demonstration of a multiphoton photoacoustic imaging technique capable of providing high spatial resolution chemical images of subsurface tissue components as deep as 1.4 cm below the tissue surface is described. By combining multiphoton excitation in the diagnostic window (650 to 1100 nm), with ultrasonic detection of nonradiative relaxation events, it is possible to rapidly reconstruct three-dimensional, chemical specific, images of samples underneath overlying structures as well as chemical species of the same material. Demonstration of this technique for subsurface tissue differentiation is shown, with the ability to distinguish between grade III astrocytoma tissue and adjacent healthy tissue in blind studies. By employing photoacoustic signal detection, the high nonradiative relaxation rates of most biological tissue components (>90%) and the minimal signal attenuation of the resulting ultrasound compensate for excitation efficiency losses associated with two-photon absorption. Furthermore, the two-photon absorption process results in a highly localized excitation volume (ca., 60 μm). Characterization of the probing depth, spatial resolution, and ability to image through overlying structures is also demonstrated in this paper using tissue phantoms with well-characterized optical scattering properties, mimicking those of tissues.

  2. Postoperative intensity-modulated radiation therapy provides favorable local control and low toxicities in patients with soft tissue sarcomas in the extremities and trunk wall

    Directory of Open Access Journals (Sweden)

    Wang JY

    2015-10-01

    Full Text Available Jianyang Wang, Shulian Wang, Yongwen Song, Xinfan Liu, Jing Jin, Weihu Wang, Zihao Yu, Yueping Liu, Yexiong Li Department of Radiation Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China Purpose: To investigate the efficacy and toxicity of postoperative intensity-modulated radiation therapy (IMRT for patients with soft tissue sarcomas (STSs in the extremities and trunk wall. Patients and methods: Eighty patients with localized STSs in the extremities and trunk wall treated with function-conserving surgery and postoperative IMRT were analyzed. The primary locations were in the extremities in 51 patients and in the trunk wall in 29 patients. The margins were positive in nine patients and negative in 71 patients. The median dose of IMRT was 64 Gy. Results: At a median follow-up time of 38 months, eight patients developed local recurrences. The 5-year local control (LC rate was 88.1%. The patients with negative margins exhibited much better LC than did those with positive margins (90% vs 64.8%, P=0.023. Multivariate analysis revealed that positive margin was an independent risk factor for LC. The 5-year distant metastasis-free survival, disease-free survival, and overall survival rates were 75.2%, 72.6%, and 83.6%, respectively. Large tumor size (>5 cm was significantly associated with poor overall survival. Edema and joint stiffness were observed in 17.6% and 9.8% of patients with extremity STSs, respectively. Conclusion: IMRT provides excellent LC and low toxicity for patients with STSs in the extremities and trunk wall. Keywords: soft tissue sarcoma, extremities and trunk wall, intensity-modulated radiation therapy, local control, toxicitiess

  3. Characterization of Multi-layered Tissue Engineered Human Alveolar Bone and Gingival Mucosa.

    Science.gov (United States)

    Almela, Thafar; Al-Sahaf, Sarmad; Bolt, Robert; Brook, Ian; Moharamzadeh, K

    2017-11-01

    Advances in tissue engineering have permitted assembly of multi-layered composite tissue constructs for potential applications in the treatment of combined hard and soft tissue defects and as an alternative in vitro test model to animal experimental systems. The aim of this study was to develop and characterize a novel three-dimensional combined human alveolar bone and gingival mucosal model based on primary cells isolated from the oral tissues. Bone component of the model was engineered by seeding primary human alveolar osteoblasts (HAOBs) into a hydroxyapatite/tricalcium phosphate (HA/TCP) scaffold and culturing in a spinner bioreactor. The engineered bone was then laminated, using an adhesive tissue sealant, with tissue engineered gingival mucosa consisting of air/liquid interface-cultured normal human gingival keratinocytes on oral fibroblast-populated collagen gel scaffold. Histological characterization revealed a structure consisting of established epithelial, connective tissue, and bone layers closely comparable to normal oral tissue architecture. The mucosal component demonstrated a mature epithelium undergoing terminal differentiation similar to that characteristic of native buccal mucosa, as confirmed using cytokeratin 13 (CK13) and cytokeratin 14 (CK14) immunohistochemistry. Ultrastructural analysis confirmed the presence of desmosomes and hemi-desmosomes in the epithelial layer, a continuous basement membrane and newly synthesized collagen in the connective tissue layer. Quantitative PCR (qPCR) assessment of osteogenesis-related gene expression showed a higher expression of genes encoded Collagen I (COL1) and Osteonectin (ON) compared with Osteocalcin (OC), Osteopontin (OPN), and Alkaline phosphatase (ALP). ELISA quantification of COL1, ON, and OC confirmed a pattern of secretion which paralleled the model's gene expression profile. We demonstrate here that replicating the anatomical setting between oral mucosa and the underlying alveolar bone is

  4. Characterization of Flow and Ohm's Law in the Rotating Wall Machine

    Science.gov (United States)

    Hannum, David; Brookhart, M.; Forest, C. B.; Kendrick, R.; Mengin, G.; Paz-Soldan, C.

    2010-11-01

    The rotating wall machine is a linear screw-pinch built to study the role of different electromagnetic boundary conditions on the Resistive Wall Mode (RWM). Its plasma is created by an array of electrostatic washer guns which can be biased to discharge up to 1 kA of current each. Individual flux ropes from the guns shear, merge, and expand into a 20 cm diameter, ˜1 m long plasma column. Langmuir (singletip) and tri-axial B-dot probes move throughout the column to measure radial and axial profiles of key plasma parameters. As the plasma current increases, more H2 fuel is ionized, raising ne to 5 x10^20 m-3 while Te stays at a constant 3 eV. The electron density expands to the wall while the current density (Jz) stays pinched to the central axis. E xB and diamagnetic drifts create radially and axially sheared plasma rotation. Plasma resistivity follows the Spitzer model in the core while exceeding it at the edge. These measurements improve the model used to predict the RWM growth rate.

  5. Characterization of the mechanical properties of resected porcine organ tissue using optical fiber photoelastic polarimetry.

    Science.gov (United States)

    Hudnut, Alexa W; Babaei, Behzad; Liu, Sonya; Larson, Brent K; Mumenthaler, Shannon M; Armani, Andrea M

    2017-10-01

    Characterizing the mechanical behavior of living tissue presents an interesting challenge because the elasticity varies by eight orders of magnitude, from 50Pa to 5GPa. In the present work, a non-destructive optical fiber photoelastic polarimetry system is used to analyze the mechanical properties of resected samples from porcine liver, kidney, and pancreas. Using a quasi-linear viscoelastic fit, the elastic modulus values of the different organ systems are determined. They are in agreement with previous work. In addition, a histological assessment of compressed and uncompressed tissues confirms that the tissue is not damaged during testing.

  6. Properties, characterization, and decay of sticky rice–lime mortars from the Wugang Ming dynasty city wall (China)

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Ya [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 (China); Cultural Relics and Archaeology Institute of Hunan, Changsha 410083 (China); Fu, Xuan; Gu, Haibing [Cultural Relics and Archaeology Institute of Hunan, Changsha 410083 (China); Gao, Feng [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Shaojun, E-mail: liumatthew@csu.edu.cn [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 (China)

    2014-04-01

    Urgent restoration of the Wugang Ming dynasty city wall brings about the need for a study of the formulation and properties of mortars. In the present paper, mortar samples from the Wugang Ming dynasty city wall were characterized in a combination of sheet polarized light optical microscopy, scanning electron microscopy with X-ray energy dispersive spectrometer, thermogravimetric/differential scanning calorimetry, X-ray powder diffraction, Fourier transform infrared spectroscopy, and inductively coupled plasma emission spectroscopy. Results show that mortars are mainly built up from inorganic calcium carbonate based organic–inorganic hybrid material with a small amount of sticky rice, which plays a crucial role in forming dense and compact microstructure of mortars and effectively hindering penetration of water and air into mortars. Analysis of decayed products shows that the detrimental soluble salts originates from ambient environment. - Highlights: • Mortars used in the Wugang city wall are a calcium carbonate-sticky rice hybrid bonding material. • Carbonation processing is extremely slow due to dense and compact microstructure of mortars. • Decying of mortars results from the appearance of soluble salt from ambient environment.

  7. Characterization of cell wall components of wheat bran following hydrothermal pretreatment and fractionation.

    Science.gov (United States)

    Merali, Zara; Collins, Samuel R A; Elliston, Adam; Wilson, David R; Käsper, Andres; Waldron, Keith W

    2015-01-01

    Pretreatments are a prerequisite for enzymatic hydrolysis of biomass and production of ethanol. They are considered to open up the plant cell wall structure by altering, moving or solubilizing lignin and hydrolyzing a proportion of hemicellulosic moieties. However, there is little information concerning pretreatment-induced changes on wheat bran cell wall polymers and indeed on changes in cell wall phenolic esters in bran or other lignocellulosic biomass. Here, we evaluate polymeric changes (chemical and physical) as a result of selected hydrothermal pretreatment conditions on destarched wheat bran using controlled polymer extraction methods. Quantification of cell wall components together with soluble oligosaccharides, the insoluble residues and ease of extractability and fractionation of biomass residues were conducted. Pretreatment solubilized selected arabinoxylans and associated cross-linking ferulic and diferulic acids with a concomitant increase in lignin and cellulosic glucose. The remaining insoluble arabinoxylans were more readily extractable in alkali and showed considerable depolymerization. The degree of arabinose substitution was less in xylans released by higher concentrations of alkali. The recalcitrant biomass which remained after pretreatment and alkali extraction contained mostly cellulosic glucose and Klason lignin. Pretreatment generated small but insignificant amounts of yeast-inhibiting compounds such as furfural and hydroxymethyl furfural. As such, simultaneous saccharification and fermentation of the hydrothermally pretreated bran resulted in increased ethanol yields compared to that of the control (97.5% compared to 63% theoretical). Hydrothermal pretreatment of destarched wheat bran resulted in degradation and depolymerization of the hemicellulosic arabinoxylans together with some breakdown of cellulosic glucose. This was accompanied by a significant reduction in the cross-linking phenolic acids such as ferulic and diferulic acids. The

  8. Modeling, Characterization and Analysis of the dynamic behavior of heat transfers through polyethylene and glass walls of Greenhouses

    Science.gov (United States)

    Bibi-Triki, N.; Bendimerad, S.; Chermiti, A.; Mahdjoub, T.; Draoui, B.; Abène, A.

    The conventional agricultural tunnel greenhouse is highly widespread in Mediterranean countries, despite the shortcomings it presents, specifically the overheating during the day and the intense cooling at night. This can sometimes lead to an internal thermal inversion. The chapel-shaped glass greenhouse is relatively more efficient, but its evolution remains slow because of its investment cost and amortization. The objectives of the agricultural greenhouse are to create a microclimate that is favorable to the requirements and growth of plants from the surrounding climatic conditions and produce cheap off-season fruits, vegetables and flowers which must be highly available all along the year. The agricultural greenhouse is defined by its structural and functional architecture as well as by the optical, thermal and mechanical qualities of its wall and the accompanying technical support. The greenhouse is supposed to be a confined environment where there is an exchange of several components. The main intervening factors are: light, temperature and relative humidity. When protected, the culture heats up more than when in free air because of the wall that acts as a barrier to harmful influences of the wind and the surrounding climatic variations as well as to the reduction in internal air convection. This thermal evolution state depends on the air-tightness degree of the cover and its physical characteristics. It has to be transparent to solar rays, and must as well absorb and reflect infrared rays emitted by the soil. This leads to trapped solar rays, called the "greenhouse effect". In this article, we propose the dynamic modeling of the greenhouse system, the characterization and analysis of the thermal behavior of the wall for both experimental greenhouses, where the first one is made of polyethylene (tunnel greenhouse) and the second of glass (chapel-shaped greenhouse), throughout experimentation and simulation which finally lead to identifying the evolution in the

  9. Development and characterization of a handheld hyperspectral Raman imaging probe system for molecular characterization of tissue on mesoscopic scales.

    Science.gov (United States)

    St-Arnaud, Karl; Aubertin, Kelly; Strupler, Mathias; Madore, Wendy-Julie; Grosset, Andrée-Anne; Petrecca, Kevin; Trudel, Dominique; Leblond, Frédéric

    2018-01-01

    Raman spectroscopy is a promising cancer detection technique for surgical guidance applications. It can provide quantitative information relating to global tissue properties associated with structural, metabolic, immunological, and genetic biochemical phenomena in terms of molecular species including amino acids, lipids, proteins, and nucleic acid (DNA). To date in vivo Raman spectroscopy systems mostly included probes and biopsy needles typically limited to single-point tissue interrogation over a scale between 100 and 500 microns. The development of wider field handheld systems could improve tumor localization for a range of open surgery applications including brain, ovarian, and skin cancers. Here we present a novel Raman spectroscopy implementation using a coherent imaging bundle of fibers to create a probe capable of reconstructing molecular images over mesoscopic fields of view. Detection is performed using linear scanning with a rotation mirror and an imaging spectrometer. Different slits widths were tested at the entrance of the spectrometer to optimize spatial and spectral resolution while preserving sufficient signal-to-noise ratios to detect the principal Raman tissue features. The nonbiological samples, calcite and polytetrafluoroethylene (PTFE), were used to characterize the performance of the system. The new wide-field probe was tested on ex vivo samples of calf brain and swine tissue. Raman spectral content of both tissue types were validated with data from the literature and compared with data acquired with a single-point Raman spectroscopy probe. The single-point probe was used as the gold standard against which the new instrument was benchmarked as it has already been thoroughly validated for biological tissue characterization. We have developed and characterized a practical noncontact handheld Raman imager providing tissue information at a spatial resolution of 115 microns over a field of view >14 mm2 and a spectral resolution of 6 cm-1 over the

  10. Tissue characterization following revascularization of immature dog teeth using different disinfection pastes

    Directory of Open Access Journals (Sweden)

    Claudia Medianeira Londero PAGLIARIN

    Full Text Available Abstract Revascularization of immature teeth with necrotic pulps traditionally involves the use of triple antibiotic paste, which may sometimes lead to undesirable complications. The objective of this study was to assess tissue repair in immature dog teeth with apical periodontitis subjected to revascularization, comparing two different pastes used for root canal disinfection. Apical periodontitis was induced in 30 dog premolars. Teeth were randomly divided into three experimental groups: root canals filled with triple antibiotic paste (n = 10; root canals filled with 1% propolis paste (n = 10; and no medication (n = 10. An additional group (n = 10, no intervention was used as control. After 7 months, the jaws were histologically evaluated for the following variables: newly formed mineralized tissue (present/absent; vital tissue in the canal space (absent/periodontal ligament-like/pulp-like; apical extension of root (present/absent; and severity of inflammatory process (absent/mild/moderate/severe. There were no statistically significant differences among the experimental groups in new mineralized tissue formation and apical root development. The formation of vital tissue in the canal space, in turn, was statistically different between the triple paste and propolis groups: vital tissues were present in all revascularized teeth disinfected with propolis paste (100%, compared to 71% of those disinfected with the triple paste. Severity of inflammatory process was different between the triple paste and no medication groups. The new tissues formed onto canal walls and in the root canal space showed characteristics of cementum and periodontal ligament, respectively. Propolis may have some advantages over the triple paste for the revascularization of immature teeth.

  11. Tissue characterization following revascularization of immature dog teeth using different disinfection pastes.

    Science.gov (United States)

    Pagliarin, Claudia Medianeira Londero; Londero, Clacir de Lourdes Dotto; Felippe, Mara Cristina Santos; Felippe, Wilson Tadeu; Danesi, Cristiane Cademartori; Barletta, Fernando Branco

    2016-08-18

    Revascularization of immature teeth with necrotic pulps traditionally involves the use of triple antibiotic paste, which may sometimes lead to undesirable complications. The objective of this study was to assess tissue repair in immature dog teeth with apical periodontitis subjected to revascularization, comparing two different pastes used for root canal disinfection. Apical periodontitis was induced in 30 dog premolars. Teeth were randomly divided into three experimental groups: root canals filled with triple antibiotic paste (n = 10); root canals filled with 1% propolis paste (n = 10); and no medication (n = 10). An additional group (n = 10, no intervention) was used as control. After 7 months, the jaws were histologically evaluated for the following variables: newly formed mineralized tissue (present/absent); vital tissue in the canal space (absent/periodontal ligament-like/pulp-like); apical extension of root (present/absent); and severity of inflammatory process (absent/mild/moderate/severe). There were no statistically significant differences among the experimental groups in new mineralized tissue formation and apical root development. The formation of vital tissue in the canal space, in turn, was statistically different between the triple paste and propolis groups: vital tissues were present in all revascularized teeth disinfected with propolis paste (100%), compared to 71% of those disinfected with the triple paste. Severity of inflammatory process was different between the triple paste and no medication groups. The new tissues formed onto canal walls and in the root canal space showed characteristics of cementum and periodontal ligament, respectively. Propolis may have some advantages over the triple paste for the revascularization of immature teeth.

  12. Observation and Characterization of Fragile Organometallic Molecules Encapsulated in Single-Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    2014-01-01

    Full Text Available Thermally fragile tris(η5-cyclopentadienylerbium (ErCp3 molecules are encapsulated in single-wall carbon nanotubes (SWCNTs with high yield. We realized the encapsulation of ErCp3 with high filling ratio by using high quality SWCNTs at an optimized temperature under higher vacuum. Structure determination based on high-resolution transmission electron microscope observations together with the image simulations reveals the presence of almost free rotation of each ErCp3 molecule in SWCNTs. The encapsulation is also confirmed by X-ray diffraction. Trivalent character of Er ions (i.e., Er3+ is confirmed by X-ray absorption spectrum.

  13. Characterization of Near Wall Surface Chemistry and Fluid Interaction in Hypersonic Boundary Layers

    Science.gov (United States)

    2009-03-01

    l5Nl60 and 5N’ O titration gases to isolate surface-produced NO from all other possible sources. These experiments independently confirm the surface...For O-atom LIF, a Lambda-Physik ENG 103 XeCl Excimer laser was used to pump a Lambda-Physik FL 3002 dye laser filled with Coumarin 47 laser dye...system once isolated from the pump did slowly rise either from out-gassing of the system walls or from some undiscovered leak. In a separate experiment

  14. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.

    Science.gov (United States)

    Shao, Huifeng; Ke, Xiurong; Liu, An; Sun, Miao; He, Yong; Yang, Xianyan; Fu, Jianzhong; Liu, Yanming; Zhang, Lei; Yang, Guojing; Xu, Sanzhong; Gou, Zhongru

    2017-04-12

    Three-dimensional (3D) printing bioactive ceramics have demonstrated alternative approaches to bone tissue repair, but an optimized materials system for improving the recruitment of host osteogenic cells into the bone defect and enhancing targeted repair of the thin-wall craniomaxillofacial defects remains elusive. Herein we systematically evaluated the role of side-wall pore architecture in the direct-ink-writing bioceramic scaffolds on mechanical properties and osteogenic capacity in rabbit calvarial defects. The pure calcium silicate (CSi) and dilute Mg-doped CSi (CSi-Mg6) scaffolds with different layer thickness and macropore sizes were prepared by varying the layer deposition mode from single-layer printing (SLP) to double-layer printing (DLP) and then by undergoing one-, or two-step sintering. It was found that the dilute Mg doping and/or two-step sintering schedule was especially beneficial for improving the compressive strength (∼25-104 MPa) and flexural strength (∼6-18 MPa) of the Ca-silicate scaffolds. The histological analysis for the calvarial bone specimens in vivo revealed that the SLP scaffolds had a high osteoconduction at the early stage (4 weeks) but the DLP scaffolds displayed a higher osteogenic capacity for a long time stage (8-12 weeks). Although the DLP CSi scaffolds displayed somewhat higher osteogenic capacity at 8 and 12 weeks, the DLP CSi-Mg6 scaffolds with excellent fracture resistance also showed appreciable new bone tissue ingrowth. These findings demonstrate that the side-wall pore architecture in 3D printed bioceramic scaffolds is required to optimize for bone repair in calvarial bone defects, and especially the Mg doping wollastontie is promising for 3D printing thin-wall porous scaffolds for craniomaxillofacial bone defect treatment.

  15. Isolation and characterization of canine perivascular stem/stromal cells for bone tissue engineering

    Science.gov (United States)

    Hardy, Winters R.; Liang, Pei; Meyers, Carolyn A.; Lobo, Sonja; Lagishetty, Venu; Childers, Martin K.; Asatrian, Greg; Ding, Catherine; Yen, Yu-Hsin; Zou, Erin; Ting, Kang; Peault, Bruno; Soo, Chia

    2017-01-01

    For over 15 years, human subcutaneous adipose tissue has been recognized as a rich source of tissue resident mesenchymal stem/stromal cells (MSC). The isolation of perivascular progenitor cells from human adipose tissue by a cell sorting strategy was first published in 2008. Since this time, the interest in using pericytes and related perivascular stem/stromal cell (PSC) populations for tissue engineering has significantly increased. Here, we describe a set of experiments identifying, isolating and characterizing PSC from canine tissue (N = 12 canine adipose tissue samples). Results showed that the same antibodies used for human PSC identification and isolation are cross-reactive with canine tissue (CD45, CD146, CD34). Like their human correlate, canine PSC demonstrate characteristics of MSC including cell surface marker expression, colony forming unit-fibroblast (CFU-F) inclusion, and osteogenic differentiation potential. As well, canine PSC respond to osteoinductive signals in a similar fashion as do human PSC, such as the secreted differentiation factor NEL-Like Molecule-1 (NELL-1). Nevertheless, important differences exist between human and canine PSC, including differences in baseline osteogenic potential. In summary, canine PSC represent a multipotent mesenchymogenic cell source for future translational efforts in tissue engineering. PMID:28489940

  16. Isolation and characterization of canine perivascular stem/stromal cells for bone tissue engineering.

    Directory of Open Access Journals (Sweden)

    Aaron W James

    Full Text Available For over 15 years, human subcutaneous adipose tissue has been recognized as a rich source of tissue resident mesenchymal stem/stromal cells (MSC. The isolation of perivascular progenitor cells from human adipose tissue by a cell sorting strategy was first published in 2008. Since this time, the interest in using pericytes and related perivascular stem/stromal cell (PSC populations for tissue engineering has significantly increased. Here, we describe a set of experiments identifying, isolating and characterizing PSC from canine tissue (N = 12 canine adipose tissue samples. Results showed that the same antibodies used for human PSC identification and isolation are cross-reactive with canine tissue (CD45, CD146, CD34. Like their human correlate, canine PSC demonstrate characteristics of MSC including cell surface marker expression, colony forming unit-fibroblast (CFU-F inclusion, and osteogenic differentiation potential. As well, canine PSC respond to osteoinductive signals in a similar fashion as do human PSC, such as the secreted differentiation factor NEL-Like Molecule-1 (NELL-1. Nevertheless, important differences exist between human and canine PSC, including differences in baseline osteogenic potential. In summary, canine PSC represent a multipotent mesenchymogenic cell source for future translational efforts in tissue engineering.

  17. Characterization of laser-tissue interaction processes by low-boiling emitted substances

    Science.gov (United States)

    Weigmann, Hans-Juergen; Lademann, Juergen; Serfling, Ulrike; Lehnert, W.; Sterry, Wolfram; Meffert, H.

    1996-01-01

    Main point in this study was the investigation of the gaseous and low-boiling substances produced in the laser plume during cw CO2 laser and XeCl laser irradiation of tissue by gas chromatography (GC)/mass spectrometry. The characteristic emitted amounts of chemicals were determined quantitatively using porcine muscular tissue. The produced components were used to determine the character of the chemical reaction conditions inside the interaction zone. It was found that the temperature, and the water content of the tissue are the main parameter determining kind and amount of the emitted substances. The relative intensity of the GC peak of benzene corresponds to a high temperature inside the interaction area while a relative strong methylbutanal peak is connected with a lower temperature which favors Maillard type reaction products. The water content of the tissue determines the extent of oxidation processes during laser tissue interaction. For that reason the moisture in the tissue is the most important parameter to reduce the emission of harmful chemicals in the laser plume. The same methods of investigation are applicable to characterize the interaction of a controlled and an uncontrolled rf electrosurgery device with tissue. The results obtained with model tissue are in agreement with the situation characteristic in laser surgery.

  18. Characterization of structural cell wall polysaccharides in cattail (Typha latifolia): Evaluation as potential biofuel feedstock.

    Science.gov (United States)

    Rebaque, Diego; Martínez-Rubio, Romina; Fornalé, Silvia; García-Angulo, Penélope; Alonso-Simón, Ana; Álvarez, Jesús M; Caparros-Ruiz, David; Acebes, José L; Encina, Antonio

    2017-11-01

    Second generation bioethanol produced from lignocellulosic biomass is attracting attention as an alternative energy source. In this study, a detailed knowledge of the composition and structure of common cattail (Typha latifolia L.) cell wall polysaccharides, obtained from stem or leaves, has been conducted using a wide set of techniques to evaluate this species as a potential bioethanol feedstock. Our results showed that common cattail cellulose content was high for plants in the order Poales and was accompanied by a small amount of cross-linked polysaccharides. A high degree of arabinose-substitution in xylans, a high syringyl/guaiacyl ratio in lignin and a low level of cell wall crystallinity could yield a good performance for lignocellulose saccharification. These results identify common cattail as a promising plant for use as potential bioethanol feedstock. To the best of our knowledge, this is the first in-depth analysis to be conducted of lignocellulosic material from common cattail. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Tissue Equivalent Phantom Design for Characterization of a Coherent Scatter X-ray Imaging System

    Science.gov (United States)

    Albanese, Kathryn Elizabeth

    testing. Our imaging system has been able to define the location and composition of the various materials in the phantom. These phantoms were used to characterize the CACSSI system in terms of beam width and imaging technique. The result of this work showed accurate modeling and characterization of the phantoms through comparison of the tissue-equivalent form factors to those from literature. The physical construction of the phantoms, based on actual patient anatomy, was validated using mammography and computed tomography to visually compare the clinical images to those of actual patient anatomy.

  20. Histological and biomechanical characterization of decellularized porcine pericardium as a potential scaffold for tissue engineering applications.

    Science.gov (United States)

    Mallis, Panagiotis; Michalopoulos, Efstathios; Dimitriou, Constantine; Kostomitsopoulos, Nikolaos; Stavropoulos-Giokas, Catherine

    2017-01-01

    Each year, more than 800,000 vascular and cardiac surgeries are performed therefore, there is a great need for suitable material for bioprosthetic operations. Porcine pericardium is a double-walled sac that covers the heart and can be used in vascular and cardiac thoracic surgery. The aim of the present study was to evaluate the decellularization process and biomechanical properties in porcine pericardial tissue after the decellularization treatment. A detergent based protocol was used for the decellularization of porcine pericardium. Histological analysis and contact cytotoxicity assay were performed. Additionally, biomechanical testing and in vivo biocompatibility by implantation into Wistar Rats were performed. The histological analysis showed the preservation of the extracellular matrix, without any observable cellular remnants. No toxic effects were noticed when contact cytotoxicity assay performed. The decellularized tissues, after implantation in Wistar Rats, remained for up to 12 weeks without being rejected. Finally, the biomechanical testing showed no significant differences between native and decellularized tissues. In this study, the decellularization of the porcine pericardium produced a non toxic scaffold, free of any cellular remnants, thus serving as an alternative material for tissue engineering applications including heart valve and vascular patch development.

  1. Tissue characterization using electrical impedance spectroscopy data: a linear algebra approach.

    Science.gov (United States)

    Laufer, Shlomi; Solomon, Stephen B; Rubinsky, Boris

    2012-06-01

    In this study, we use a new linear algebra manipulation on electrical impedance spectroscopy measurements to provide real-time information regarding the nature of the tissue surrounding the needle in minimal invasive procedures. Using a Comsol Multiphysics three-dimensional model, a phantom based on ex vivo animal tissue and in vivo animal data, we demonstrate how tissue inhomogeneity can be characterized without any previous knowledge of the electrical properties of the different tissues, except that they should not be linearly dependent on a certain frequency range. This method may have applications in needle biopsies, radiation seeds, or minimally invasive surgery and can reduce the number of computer tomography or magnetic resonance imaging images. We conclude by demonstrating how this mathematical approach can be useful in other applications.

  2. Surface characterization of retinal tissues for the enhancement of vitreoretinal surgical methods

    Science.gov (United States)

    Valentin-Rodriguez, Celimar

    Diabetic retinopathy is the most common ophthalmic complication of diabetes and the leading cause of blindness among adults, ages 30 to 70. Surgery to remove scar tissue in the eye is the only corrective treatment once the retina is affected. Visual recovery is often hampered by retinal trauma during surgery and by low patient compliance. Our work in this project aimed to improve vitreoretinal surgical methods from information gathered by sensitive surface analysis of pre-retinal tissues found at the vitreoretinal interface. Atomic force microscopy characterization of human retinal tissues revealed that surgically excised inner limiting membrane (ILM) has a heterogeneous surface and is mainly composed of globular and fibrous structures. ILM tissues also show low adhesion for clean unmodified surfaces as opposed to those with functional groups attractive to those on the ILM surface, due to their charge. Based on these observations, layer-by-layer films with embedded gold nanoparticles with a positive outer charge were designed. These modifications increased the adhesion between surgical instruments and ILM by increasing the roughness and tuning the film surface charge. These films proved to be stable under physiological conditions. Finally, the effect of vital dyes on the topographical characteristics of ILMs was characterized and new imaging modes to further reveal ILM topography were utilized. Roughness and adhesion force data suggest that second generation dyes have no effect on the surface nanostructure of ILMs, but increase adhesion at the tip sample interface. This project clearly illustrates that physicochemical information from tissues can be used to rationally re-design surgical procedures, in this case for tissue removal purposes. This rational design method can be applied to other soft tissue excision procedures as is the case of cataract surgery or laparoscopic removal of endometrial tissue.

  3. Mechanical characterization and morphology of polylactic acid /liquid natural rubber filled with multi walled carbon nanotubes

    Science.gov (United States)

    Ali, Adilah Mat; Ahmad, Sahrim Hj.

    2013-11-01

    In this paper the polymer nanocomposite of multi-walled carbon nanotubes (MWCNTs) nanoparticles was incorporated with polylactic acid (PLA) and liquid natural rubber (LNR) as compatibilizer were prepared via melt blending method. The effect of MWCNTs loading on the tensile and impact properties of nanocomposites was investigated. The result has shown that the sample with 3.5 wt % of MWCNTs exhibited higher tensile strength, Young's modulus and impact strength. The elongation at break decreased with increasing percentage of MWCNTs. The SEM micrographs confirmed the effect of good dispersion of MWCNTs and their interfacial bonding in PLA/LNR composites. The improved dispersion of MWCNTs can be obtained due to altered interparticle interactions, MWCNTs-MWCNTs and MWCNTs-matrix networks are well combined to generate the synergistic effect of the system as shown by SEM micrographs which is improved the properties significantly.

  4. Accurate Characterization of Benign and Cancerous Breast Tissues: Aspecific Patient Studies using Piezoresistive Microcantilevers

    Science.gov (United States)

    PANDYA, HARDIK J.; ROY, RAJARSHI; CHEN, WENJIN; CHEKMAREVA, MARINA A.; FORAN, DAVID J.; DESAI, JAYDEV P.

    2014-01-01

    Breast cancer is the largest detected cancer amongst women in the US. In this work, our team reports on the development of piezoresistive microcantilevers (PMCs) to investigate their potential use in the accurate detection and characterization of benign and diseased breast tissues by performing indentations on the micro-scale tissue specimens. The PMCs used in these experiments have been fabricated using laboratory-made silicon-on-insulator (SOI) substrate, which significantly reduces the fabrication costs. The PMCs are 260 μm long, 35 μm wide and 2 μm thick with resistivity of order 1.316 X 10−3 Ω-cm obtained by using boron diffusion technique. For indenting the tissue, we utilized 8 μm thick cylindrical SU-8 tip. The PMC was calibrated against a known AFM probe. Breast tissue cores from seven different specimens were indented using PMC to identify benign and cancerous tissue cores. Furthermore, field emission scanning electron microscopy (FE-SEM) of benign and cancerous specimens showed marked differences in the tissue morphology, which further validates our observed experimental data with the PMCs. While these patient aspecific feasibility studies clearly demonstrate the ability to discriminate between benign and cancerous breast tissues, further investigation is necessary to perform automated mechano-phenotyping (classification) of breast cancer: from onset to disease progression. PMID:25128621

  5. Characterization of slow-cycling cells in the mouse cochlear lateral wall.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Cochlear spiral ligament fibrocytes (SLFs play essential roles in the physiology of hearing including ion recycling and the generation of endocochlear potential. In adult animals, SLFs can repopulate after damages, yet little is known about the characteristics of proliferating cells that support SLFs' self-renewal. Here we report in detail about the characteristics of cycling cells in the spiral ligament (SL. Fifteen P6 mice and six noise-exposed P28 mice were injected with 5-bromo-2'-deoxyuridine (BrdU for 7 days and we chased BrdU retaining cells for as long as 60 days. Immunohistochemistry revealed that the BrdU positive IB4 (an endotherial marker negative cells expressed an early SLF marker Pou3f4 but negative for cleaved-Caspase 3. Marker studies revealed that type 3 SLFs displayed significantly higher percentage of BrdU+ cells compared to other subtypes. Notably, the cells retained BrdU until P72, demonstrating they were dividing slowly. In the noise-damaged mice, in contrast to the loss of the other types, the number of type 3 SLFs did not altered and the BrdU incorporating- phosphorylated Histone H3 positive type 3 cells were increased from day 1 to 14 after noise exposure. Furthermore, the cells repopulating type 1 area, where the cells diminished profoundly after damage, were positive for the type 3 SLF markers. Collectively, in the latral wall of the cochlea, type 3 SLFs have the stem cell capacity and may contribute to the endogenous regeneration of lateral wall spiral ligament. Manipulating type 3 cells may be employed for potential regenerative therapies.

  6. Characterization of ancient construction materials (mud walls and adobe in the churches at Cisneros, Villada and Boada de Campos (Palencia

    Directory of Open Access Journals (Sweden)

    Sánchez Hernández, R.

    2000-03-01

    Full Text Available The aim of this work is to characterize the ancient building materials (mud wall and adobe of three churches in the province of Palencia. This is the first part of a study which seeks to evaluate how the mud walls of the tower of the church of Cisneros reacted to restoration treatment which consisted of a structural reinforcement made by injecting a highly fluid grout of cement/lime/sand mortar. This treatment implies the introduction of large quantities of water into the fabric. The mud walls of the tower of Cisneros are compositionally and texturally very similar to each other, which indicates that despite their large dimensions, care was taken in the homogeneity of the materials. These mud walls are also very similar to those of the church of Villada. The original raw material is mud with some additives (rubble, ashes, bones, etc. and some remains of lime used as a stabiliser. Although there is a very high proportion of clay, no effervescing clay has been detected. Hence it is deduced that once the mud wall was built, there were no important changes in volume due to variation in the humidity of the fabric. The characteristics of the adobe of the tower of Boada are logically different form those of the mud walls, being made of less sandy, more clayey mud with a high proportion of straw that the mud walls do not have, and without the addition of bricks, bones, etc.

    El objetivo de este trabajo es caracterizar los materiales antiguos de construcción (tapial y adobe de tres iglesias en la provincia de Falencia. El trabajo es la primera parte de un estudio en el que se pretende evaluar el comportamiento de los tapiales de la torre de la iglesia de Cisneros frente al tratamiento de restauración, consistente en un cosido estructural mediante la realización de perforaciones en las que se introduce una barra de acero y donde, posteriormente, se inyecta una lechada muy fluidificada de mortero de cemento/cal/arena. Este tratamiento implica la

  7. Gypsum plasterboard walls: inspection, pathological characterization and statistical survey using an expert system

    Directory of Open Access Journals (Sweden)

    Gaião, C.

    2012-06-01

    Full Text Available This paper presents an expert system to support the inspection and diagnosis of partition walls or wall coverings mounted using the Drywall (DW construction method. This system includes a classification of anomalies in DW and their probable causes. This inspection system was used in a field work that included the observation of 121 DWs. This paper includes a statistical analysis of the anomalies observed during these inspections and their probable causes. The correlation between anomalies and causes in the sample is also thoroughly analyzed. Anomalies are also evaluated for area affected, size, repair urgency and aesthetic value of the affected area. The conclusions of the statistical analysis allowed the creation of an inventory of preventive measures to be implemented in the design, execution and use phases in order to lessen the magnitude or eradicate the occurrence of anomalies in DW. These measures could directly help improve the quality of construction.

    Este trabajo presenta un sistema experto de apoyo a la inspección y diagnóstico de tabiques o revestimientos de yeso laminado. Dicho sistema, que permite la clasificación de las anomalías del yeso laminado y sus causas probables, se empleó en un trabajo de campo en el que se estudiaron 121 elementos construidos con este material. El trabajo incluye el análisis estadístico de las anomalías detectadas durante las inspecciones y sus motivos probables. También se analizó en detalle la correlación entre las anomalías y sus causas, evaluándose aquellas en función de la superficie afectada, la urgencia de las reparaciones y el valor estético de la zona implicada. Las conclusiones del análisis estadístico permitieron la elaboración de un inventario de medidas preventivas que deberían implantarse en las fases de proyecto, ejecución y utilización de estos elementos a fin de erradicar la aparición de anomalías en el yeso laminado o reducir su frecuencia. Dichas

  8. Comparative study of the cell wall composition of broccoli, carrot, and tomato: structural characterization of the extractable pectins and hemicelluloses.

    Science.gov (United States)

    Houben, Ken; Jolie, Ruben P; Fraeye, Ilse; Van Loey, Ann M; Hendrickx, Marc E

    2011-07-01

    This study delivers a comparison of the pectic and hemicellulosic cell wall polysaccharides between the commonly used vegetables broccoli (stem and florets separately), carrot, and tomato. Alcohol-insoluble residues were prepared from the plant sources and sequentially extracted with water, cyclohexane-trans-1,2-diamine tetra-acetic acid, sodium carbonate, and potassium hydroxide solutions, to obtain individual fractions, each containing polysaccharides bound to the cell wall in a specific manner. Structural characterization of the polysaccharide fractions was conducted using colorimetric and chromatographic approaches. Sugar ratios were defined to ameliorate data interpretation. These ratios allowed gaining information concerning polysaccharide structure from sugar composition data. Structural analysis of broccoli revealed organ-specific characteristics: the pectin degree of methoxylation (DM) of stem and florets differed, the sugar composition data inferred differences in polymeric composition. On the other hand, the molar mass (MM) distribution profiles of the polysaccharide fractions were virtually identical for both organs. Carrot root displayed a different MM distribution for the polysaccharides solubilized by potassium hydroxide compared to broccoli and tomato, possibly due to the high contribution of branched pectins to this otherwise hemicellulose-enriched fraction. Tomato fruit showed the pectins with the broadest range in DM, the highest MM, the greatest overall linearity and the lowest extent of branching of rhamnogalacturonan I, pointing to particularly long, linear pectins in tomato compared with the other vegetable organs studied, suggesting possible implications toward functional behavior. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Biodiesel synthesis from cottonseed oil using homogeneous alkali catalyst and using heterogeneous multi walled carbon nanotubes: Characterization and blending studies

    Directory of Open Access Journals (Sweden)

    A. Arun Shankar

    2017-03-01

    Full Text Available The trans-esterification of cottonseed oil using strong alkali catalyst and using multi walled carbon nano tubes as catalyst to produce biodiesel was studied. The interaction effects of various factors such as temperature, amount of alkali used, alcohol to oil ratio and reaction time on yield of biodiesel were studied. The maximum yield of 95% biodiesel was obtained. The biodiesel produced was characterized using FT-IR spectral analysis and GC–MS analysis to ascertain the various functional groups and compounds available in it. The properties of biodiesel using homogeneous alkali catalyst and heterogeneous multi walled carbon nanotubes such as calorific value (36.18 MJ/kg, 33.78 MJ/kg, flash point (160 °C, 156 °C and other properties such as viscosity, cloud point, pour point and density were found to determine the quality of biodiesel produced. The studies were done by blending the biodiesel produced with diesel and properties of blended samples were estimated to ascertain the use of blended samples in internal combustion engines.

  10. Characterization of counter-rotating streamwise vortices in flat rectangular channel with one-sided wavy wall

    KAUST Repository

    Bouremel, Yann

    2016-11-01

    Particle Image Velocimetry (PIV) has been used to characterize the evolution of counter-rotating streamwise vortices in a rectangular channel with one sided wavy surface. The vortices were created by a uniform set of saw-tooth carved over the leading edge of a flat plate at the entrance of a flat rectangular channel with one-sided wavy wall. PIV measurements were taken over the spanwise and streamwise planes at different locations and at Reynolds number of 2500. Two other Reynolds numbers of 2885 and 3333 have also been considered for quantification purpose. Pairs of counter-rotating streamwise vortices have been shown experimentally to be centred along the spanwise direction at the saw-tooth valley where the vorticity ωz=0ωz=0. It has also been found that the vorticity ωzωz of the pairs of counter-rotating vortices decreases along the streamwise direction, and increases with the Reynolds number. Moreover, different quantifications of such counter-rotating vortices have been discussed such as their size, boundary layer, velocity profile and vorticity. The current study shows that the mixing due to the wall shear stress of counter-rotating streamwise vortices as well as their averaged viscous dissipation rate of kinetic energy decrease over flat and adverse pressure gradient surfaces while increasing over favourable pressure gradient surfaces. Finally, it was also demonstrated that the main direction of stretching is orientated at around 45° with the main flow direction.

  11. Preclinical In vivo Imaging for Fat Tissue Identification, Quantification, and Functional Characterization

    Science.gov (United States)

    Marzola, Pasquina; Boschi, Federico; Moneta, Francesco; Sbarbati, Andrea; Zancanaro, Carlo

    2016-01-01

    Localization, differentiation, and quantitative assessment of fat tissues have always collected the interest of researchers. Nowadays, these topics are even more relevant as obesity (the excess of fat tissue) is considered a real pathology requiring in some cases pharmacological and surgical approaches. Several weight loss medications, acting either on the metabolism or on the central nervous system, are currently under preclinical or clinical investigation. Animal models of obesity have been developed and are widely used in pharmaceutical research. The assessment of candidate drugs in animal models requires non-invasive methods for longitudinal assessment of efficacy, the main outcome being the amount of body fat. Fat tissues can be either quantified in the entire animal or localized and measured in selected organs/regions of the body. Fat tissues are characterized by peculiar contrast in several imaging modalities as for example Magnetic Resonance Imaging (MRI) that can distinguish between fat and water protons thank to their different magnetic resonance properties. Since fat tissues have higher carbon/hydrogen content than other soft tissues and bones, they can be easily assessed by Computed Tomography (CT) as well. Interestingly, MRI also discriminates between white and brown adipose tissue (BAT); the latter has long been regarded as a potential target for anti-obesity drugs because of its ability to enhance energy consumption through increased thermogenesis. Positron Emission Tomography (PET) performed with 18F-FDG as glucose analog radiotracer reflects well the metabolic rate in body tissues and consequently is the technique of choice for studies of BAT metabolism. This review will focus on the main, non-invasive imaging techniques (MRI, CT, and PET) that are fundamental for the assessment, quantification and functional characterization of fat deposits in small laboratory animals. The contribution of optical techniques, which are currently regarded with

  12. Preclinical in vivo imaging for fat tissue identification, quantification and functional characterization

    Directory of Open Access Journals (Sweden)

    Pasquina Marzola

    2016-09-01

    Full Text Available Localization, differentiation and quantitative assessment of fat tissues have always collected the interest of researchers. Nowadays, these topics are even more relevant as obesity (the excess of fat tissue is considered a real pathology requiring in some cases pharmacological and surgical approaches. Several weight loss medications, acting either on the metabolism or on the central nervous system, are currently under preclinical or clinical investigation. Animal models of obesity have been developed which are widely used in pharmaceutical research. The assessment of candidate drugs in animal models requires non-invasive methods for longitudinal assessment of efficacy, the main outcome being the amount of body fat. Fat tissues can be either quantified in the entire animal or localized and measured in selected organs/regions of the body. Fat tissues are characterized by peculiar contrast in several imaging modalities as for example Magnetic Resonance Imaging (MRI that can distinguish between fat and water protons thank to their different magnetic resonance properties. Since fat tissues have higher carbon/hydrogen content than other soft tissues and bones, they can be easily assessed by Computed Tomography (CT as well. Interestingly, MRI also discriminates between white and brown adipose tissue; the latter has long been regarded as a potential target for anti-obesity drugs because of its ability to enhance energy consumption through increased thermogenesis. Positron Emission Tomography (PET performed with 18F-FDG as glucose analogue radiotracer reflects well the metabolic rate in body tissues and consequently is the technique of choice for studies of BAT metabolism. This review will focus on the main, non-invasive imaging techniques (MRI, CT and PET that are fundamental for the assessment, quantification and functional characterization of fat deposits in small laboratory animals. The contribution of optical techniques, which are currently regarded

  13. Characterization of ionic liquid pretreated plant cell wall for improved enzymatic digestibility.

    Science.gov (United States)

    Raj, Tirath; Gaur, Ruchi; Lamba, Bhawna Yadav; Singh, Nitu; Gupta, Ravi P; Kumar, Ravindra; Puri, Suresh K; Ramakumar, S S V

    2017-10-04

    An insight into the properties of cell wall of mustard stalk (MS) pretreated by five ionic liquids (ILs) revealed ILs interaction with cellulose, hemicellulose and lignin components. Differential Scanning Calorimetry (DSC) showed increased pore size coupled with increased population of pores evoked by certain ILs in better facilitating enzymatic accessibility. Interestingly, all the five ILs predominantly increased the propensity of two pore sizes formation; 19 and 198 nm, but remarkable difference in the pore volumes of pretreated MS suggested the supremacy of [OAc](-) based ILs, resulting in higher glucose yields. Cellulose I to II transition in pretreated MS was supported by the reduced total crystallinity index (TCI), lateral order index (LOI) values. Strong inverse correlation existed between the said parameters and residual acetyl content with enzymatic hydrolysis (R(2) > 0.8). An inverse relationship between hydrogen bond basicity, LOI and TCI suggested it to be a good indicator of IL pretreatment efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Characterization of bacterial community inhabiting the surfaces of weathered bricks of Nanjing Ming city walls.

    Science.gov (United States)

    Qi-Wang; Ma, Guang-You; He, Lin-Yan; Sheng, Xia-Fang

    2011-01-15

    Nanjing Ming city wall, one of the important historic heritages in China, has greatly suffered weathering. Microbes play an important role in the weathering of historic buildings. However, little is known about the microbial community inhabiting naturally weathered brick minerals and their roles in the mineral weathering. To examine the associations between microorganisms and brick weathering process, we compare the phylogenetic diversity, abundance, community structure, and specific functional groups of bacteria existing in weathered bricks by using a coupled approach involving cultivation-independent analysis of denaturing gradient gel electrophoresis (DGGE) as well as cultivation-based analysis of Si-releasing bacteria. DGGE and sequence analyses show that the bacterial communities were different along a weathering gradient and the abundance of bacterial communities positively and significantly correlates with the extent of brick weathering. Laboratory brick mineral dissolution experiments indicate that bacteria isolated from the surfaces of weathered brick were very effective in enhancing brick dissolution. Phylogenetic analyses show that the weathered bricks were inhabited by specific functional groups of bacteria (Bacillus, Massillia, Brevibacillus, Glacialice, Acinetobacter, Brachysporum, and Achromobacter) that contribute to the brick weathering. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Purification and characterization of a wound-inducible cell wall cationic peroxidase from carrot roots.

    Science.gov (United States)

    Nair, A R; Showalter, A M

    1996-09-04

    We have isolated a novel cell wall, cationic peroxidase (pI > 9.3) from roots of the carrot plant, Daucus carota. The purified isozyme, referred to as CP > 9.3, has a molecular mass of 45 kilodaltons and an Reinheitzahl value of 2.3. Amino-acid composition analysis and N-terminal sequencing have been performed with CP > 9.3. The N-terminal sequence shows no homology to any sequence in the protein and nucleic acid data banks. CP > 9.3 activity is induced by wounding in carrot leaves and petioles; this activity is also present in carrot roots but is unaltered by wounding. Enhanced CP > 9.3 activity is seen at 12 hr post-wounding and continues for at least 60 hr in leaves and petioles. Based on studies using cycloheximide, early activation of CP > 9.3 is not due to de novo protein synthesis, but rather to enzyme activation. Temperature and pH optima for CP > 9.3 using guaiacol as a substrate have been determined to be 32 degrees C and 4.9.

  16. The connective tissue graft wall technique and enamel matrix derivative to improve root coverage and clinical attachment levels in Miller Class IV gingival recession.

    Science.gov (United States)

    Zucchelli, Giovanni; Mazzotti, Claudio; Tirone, Federico; Mele, Monica; Bellone, Pietro; Mounssif, Ilham

    2014-01-01

    The case reports in this article describe a surgical approach for improving root coverage and clinical attachment levels in Miller Class IV gingival recessions. Two gingival recessions affecting maxillary and mandibular lateral incisors associated with severe interdental hard and soft tissue loss were treated. The surgical technique consisted of a connective tissue graft (CTG) that was placed below a coronally advanced envelope flap and acted as a buccal soft tissue wall of the bony defect treated with enamel matrix derivative (EMD). No palatal/lingual flap was elevated. In the first clinical case, 6 months after surgery a ceramic veneer was placed to correct tooth extrusion and improve the overall esthetic appearance. One year after the surgery in both cases, clinically significant root coverage, increase in buccal keratinized tissue height and thickness, improvement in the position of the interdental papilla, and clinical attachment level gain were achieved. The radiographs demonstrate bone fill of the intrabony components of the defects. This report encourages a novel application of CTG plus EMD to improve both root coverage and regenerative parameters in Miller Class IV gingival recessions.

  17. Covalent functionalization of single-walled carbon nanotubes with polytyrosine: Characterization and analytical applications for the sensitive quantification of polyphenols.

    Science.gov (United States)

    Eguílaz, Marcos; Gutiérrez, Alejandro; Gutierrez, Fabiana; González-Domínguez, Jose Miguel; Ansón-Casaos, Alejandro; Hernández-Ferrer, Javier; Ferreyra, Nancy F; Martínez, María T; Rivas, Gustavo

    2016-02-25

    This work reports the synthesis and characterization of single-walled carbon nanotubes (SWCNT) covalently functionalized with polytyrosine (Polytyr); the critical analysis of the experimental conditions to obtain the efficient dispersion of the modified carbon nanotubes; and the analytical performance of glassy carbon electrodes (GCE) modified with the dispersion (GCE/SWCNT-Polytyr) for the highly sensitive quantification of polyphenols. Under the optimal conditions, the calibration plot for the amperometric response of gallic acid (GA) shows a linear range between 5.0 × 10(-7) and 1.7 × 10(-4) M, with a sensitivity of (518 ± 5) m AM(-1) cm(-2), and a detection limit of 8.8 nM. The proposed sensor was successfully used for the determination of total polyphenolic content in tea extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Three-dimensional texture features from intensity and high-order derivative maps for the discrimination between bladder tumors and wall tissues via MRI.

    Science.gov (United States)

    Xu, Xiaopan; Zhang, Xi; Tian, Qiang; Zhang, Guopeng; Liu, Yang; Cui, Guangbin; Meng, Jiang; Wu, Yuxia; Liu, Tianshuai; Yang, Zengyue; Lu, Hongbing

    2017-04-01

    This study aims to determine the three-dimensional (3D) texture features extracted from intensity and high-order derivative maps that could reflect textural differences between bladder tumors and wall tissues, and propose a noninvasive, image-based strategy for bladder tumor differentiation preoperatively. A total of 62 cancerous and 62 wall volumes of interest (VOI) were extracted from T2-weighted MRI datasets of 62 patients with pathologically confirmed bladder cancer. To better reflect heterogeneous distribution of tumor tissues, 3D high-order derivative maps (the gradient and curvature maps) were calculated from each VOI. Then 3D Haralick features based on intensity and high-order derivative maps and Tamura features based on intensity maps were extracted from each VOI. Statistical analysis and recursive feature elimination-based support vector machine classifier (RFE-SVM) was proposed to first select the features with significant differences and then obtain a more predictive and compact feature subset to verify its differentiation performance. From each VOI, a total of 58 texture features were derived. Among them, 37 features showed significant inter-class differences ([Formula: see text]). With 29 optimal features selected by RFE-SVM, the classification results namely the sensitivity, specificity, accuracy and area under the curve (AUC) of the receiver operating characteristics were 0.9032, 0.8548, 0.8790 and 0.9045, respectively. By using synthetic minority oversampling technique to augment the sample number of each group to 200, the sensitivity, specificity, accuracy an AUC value of the feature selection-based classification were improved to 0.8967, 0.8780, 0.8874 and 0.9416, respectively. Our results suggest that 3D texture features derived from intensity and high-order derivative maps can better reflect heterogeneous distribution of cancerous tissues. Texture features optimally selected together with sample augmentation could improve the performance on

  19. Partial structural characterization of pectin cell wall from Argania spinosa leaves

    OpenAIRE

    Hachem, Kadda; Benabdesslem, Yasmina; Ghomari, Samia; Hasnaoui, Okkacha; Kaid-Harche, Meriem

    2016-01-01

    The pectin polysaccharides from leaves of Argania spinosa (L.) Skeels, collected from Stidia area in the west coast of northern Algeria, were investigated by using sequential extractions and the resulting fractions were analysed for monosaccharide composition and chemical structure. Water-soluble pectic (ALS-WSP) and chelating-soluble pectic (ALS-CSP) fractions were obtained, de-esterified and fractionated by anion-exchange chromatography and characterized by sugar analysis combined with meth...

  20. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.

    Science.gov (United States)

    Amador Carrascal, Carolina; Chen, Shigao; Urban, Matthew W; Greenleaf, James F

    2018-01-01

    Ultrasound shear wave elastography is a promising noninvasive, low cost, and clinically viable tool for liver fibrosis staging. Current shear wave imaging technologies on clinical ultrasound scanners ignore shear wave dispersion and use a single group velocity measured over the shear wave bandwidth to estimate tissue elasticity. The center frequency and bandwidth of shear waves induced by acoustic radiation force depend on the ultrasound push beam (push duration, -number, etc.) and the viscoelasticity of the medium, and therefore are different across scanners from different vendors. As a result, scanners from different vendors may give different tissue elasticity measurements within the same patient. Various methods have been proposed to evaluate shear wave dispersion to better estimate tissue viscoelasticity. A rheological model such as the Kelvin-Voigt model is typically fitted to the shear wave dispersion to solve for the elasticity and viscosity of tissue. However, these rheological models impose strong assumptions about frequency dependence of elasticity and viscosity. Here, we propose a new method called Acoustic Radiation Force Induced Creep-Recovery (ARFICR) capable of quantifying rheological model-independent measurements of elasticity and viscosity for more robust tissue health assessment. In ARFICR, the creep-recovery time signal at the focus of the push beam is used to calculate the relative elasticity and viscosity (scaled by an unknown constant) over a wide frequency range. Shear waves generated during the ARFICR measurement are also detected and used to calculate the shear wave velocity at its center frequency, which is then used to calibrate the relative elasticity and viscosity to absolute elasticity and viscosity. In this paper, finite-element method simulations and experiments in tissue mimicking phantoms are used to validate and characterize the extent of viscoelastic quantification of ARFICR. The results suggest that ARFICR can measure tissue

  1. Multi-scale mechanical characterization of scaffolds for heart valve tissue engineering.

    Science.gov (United States)

    Argento, G; Simonet, M; Oomens, C W J; Baaijens, F P T

    2012-11-15

    Electrospinning is a promising technology to produce scaffolds for cardiovascular tissue engineering. Each electrospun scaffold is characterized by a complex micro-scale structure that is responsible for its macroscopic mechanical behavior. In this study, we focus on the development and the validation of a computational micro-scale model that takes into account the structural features of the electrospun material, and is suitable for studying the multi-scale scaffold mechanics. We show that the computational tool developed is able to describe and predict the mechanical behavior of electrospun scaffolds characterized by different microstructures. Moreover, we explore the global mechanical properties of valve-shaped scaffolds with different microstructural features, and compare the deformation of these scaffolds when submitted to diastolic pressures with a tissue engineered and a native valve. It is shown that a pronounced degree of anisotropy is necessary to reproduce the deformation patterns observed in the native heart valve. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Whole genome characterization of non-tissue culture adapted HRSV strains in severely infected children

    Directory of Open Access Journals (Sweden)

    Kumaria Rajni

    2011-07-01

    Full Text Available Abstract Background Human respiratory syncytial virus (HRSV is the most important virus causing lower respiratory infection in young children. The complete genetic characterization of RSV clinical strains is a prerequisite for understanding HRSV infection in the clinical context. Current information about the genetic structure of the HRSV genome has largely been obtained using tissue culture adapted viruses. During tissue culture adaptation genetic changes can be introduced into the virus genome, which may obscure subtle variations in the genetic structure of different RSV strains. Methods In this study we describe a novel Sanger sequencing strategy which allowed the complete genetic characterisation of 14 clinical HRSV strains. The viruses were sequenced directly in the nasal washes of severely hospitalized children, and without prior passage of the viruses in tissue culture. Results The analysis of nucleotide sequences suggested that vRNA length is a variable factor among primary strains, while the phylogenetic analysis suggests selective pressure for change. The G gene showed the greatest sequence variation (2-6.4%, while small hydrophobic protein and matrix genes were completely conserved across all clinical strains studied. A number of sequence changes in the F, L, M2-1 and M2-2 genes were observed that have not been described in laboratory isolates. The gene junction regions showed more sequence variability, and in particular the intergenic regions showed a highest level of sequence variation. Although the clinical strains grew slower than the HRSVA2 virus isolate in tissue culture, the HRSVA2 isolate and clinical strains formed similar virus structures such as virus filaments and inclusion bodies in infected cells; supporting the clinical relevance of these virus structures. Conclusion This is the first report to describe the complete genetic characterization of HRSV clinical strains that have been sequenced directly from clinical

  3. X-ray scattering for the characterization of lyophilized breast tissue samples

    Science.gov (United States)

    Elshemey, Wael M.; Mohamed, Fayrouz S.; Khater, Ibrahim M.

    2013-09-01

    This work investigates the possibility of characterizing breast cancer by measuring the X-ray scattering profiles of lyophilized excised breast tissue samples. Since X-ray scattering from water-rich tissue is dominated by scattering from water, the removal of water by lyophilization would enhance the characterization process. In the present study, X-ray scattering profiles of 22 normal, 22 malignant and 10 benign breast tissue samples are measured. The cut-offs of scatter diagrams, sensitivity, specificity and diagnostic accuracy of three characterization parameters (full width at half maximum (FWHM) for the peak at 1.1 nm-1, area under curve (AUC), and ratio of 1st to 2nd scattering peak intensities (I1/I2%)) are calculated and compared to the data from non-lyophilized samples. Results show increased sensitivity (up to 100%) of the present data on lyophilized breast tissue samples compared to previously reported data for non-lyophilized samples while the specificity (up to 95.4%), diagnostic accuracy (up to 95.4%) and receiver operating characteristic (ROC) curve values (up to 0.9979) for both sets of data are comparable. The present study shows significant differences between normal samples and each of malignant and benign samples. Only subtle differences exist between malignant and benign lyophilized breast tissue samples where FWHM=0.7±0.1 and 0.8±0.3, AUC=1.3±0.2 and 1.4±0.2 and I1/I2%=44.9±11.0 and 52.4±7.6 for malignant and benign samples respectively.

  4. Extraction and characterization of candidate bioactive compounds in different tissues from salmon (Salmo salar)

    DEFF Research Database (Denmark)

    Falkenberg, Susan Skanderup; Mikalsen, S. O.; Joensen, H.

    2014-01-01

    not contain standard unmodified amino acids, indicating peptides with modified amino acids or other kinds of molecules.Industrial relevance. Bioprospecting in fish tissue traditionally regarded as waste can lead to detection of novel natural bioactive compounds including peptides, which could have nutritional...... in several fractions from different tissues but most pronounced in gills. One family was defined according to content of a specific amino acid sequence (PW). Three families were defined by the m/z value of the smallest compound reported in each family (219, 434 and 403). The three latter families did......, pharmaceutical or other functional value and be used in health and functional foods, thus increasing the value adding of secondary marine products. A number of naturally occurring antimicrobial peptides have been characterized from fish skin and gills, such as piscidins, but these and other fish tissues may...

  5. Extraction and characterization of naturally occurring bioactive peptides from different tissues from Salmon (Salmo salar)

    DEFF Research Database (Denmark)

    Falkenberg, Susan Skanderup; Nielsen, Henrik Hauch

    2011-01-01

    of secondary marine products. Only few naturally occurring bioactive peptides have been characterized such as the antimicrobial polypeptide piscidines from gills. It is therefore hypothesized, that fish tissue also contains numerous other peptides with other bioactive properties. The approach in this project...... number of bio-components such as bioactive peptides for this purpose. Tissue and proteins from e.g. fish gills, skin and viscera could be a new source of peptides that could have a nutritional and pharmaceutical value, and be used in health and functional foods and thereby increasing the value adding...... is therefore to extract and identify naturally occurring bioactive peptides from different tissues from salmon. A number of aqueous extracts were made from gills, skin and belly flap. In order to preserve the bioactivity of the peptides mild extraction procedures as acidic, basic and aqueous solutions were...

  6. Early detection of doxorubicin myocardial injury by ultrasonic tissue characterization in an experimental animal model

    OpenAIRE

    Romano Minna Moreira; Pazin-Filho Antônio; O’Connel João; Simões Marcus; Schmidt André; Campos Érica C; Rossi Marcos; Maciel Benedito

    2012-01-01

    Abstract In the clinical setting, the early detection of myocardial injury induced by doxorubicin (DXR) is still considered a challenge. To assess whether ultrasonic tissue characterization (UTC) can identify early DXR-related myocardial lesions and their correlation with collagen myocardial percentages, we studied 60 rats at basal status and prospectively after 2mg/Kg/week DXR endovenous infusion. Echocardiographic examinations were conducted at baseline and at 8,10,12,14 and 16 mg/Kg DXR cu...

  7. Diagnostic performance of ultrasonic tissue characterization for subendocardial ischaemia in patients with hypertrophic cardiomyopathy.

    Science.gov (United States)

    Kawasaki, Tatsuya; Yamano, Michiyo; Sakai, Chieko; Harimoto, Kuniyasu; Miki, Shigeyuki; Kamitani, Tadaaki; Sugihara, Hiroki

    2013-08-01

    Hypertrophic cardiomyopathy (HCM) patients often develop left--ventricular subendocardial ischaemia, a cause of chest symptoms, despite normal epicardial coronary arteries. The aim of this study was to examine whether ultrasonic tissue characterization or late gadolinium enhancement on cardiac magnetic resonance imaging can detect subendocardial ischaemia in patients with HCM. Subendocardial ischaemia was quantified on exercise Tc-99m tetrofosmin myocardial scintigraphy in 29 non-obstructive HCM patients with asymmetric septal hypertrophy. Ultrasonic tissue characterization using cyclic variation of integrated backscatter (CV-IB) and late gadolinium enhancement on cardiac magnetic resonance imaging were analysed separately in the right halves and the left halves of the ventricular septum in relation to subendocardial ischaemia. Subendocardial ischaemia was identified in 17 (59%) patients. The ratio of CV-IB in the right-to-left halves of the ventricular septum was significantly higher in patients with subendocardial ischaemia (1.19 ± 0.10) than those without (0.84 ± 0.10, P = 0.04). The optimal cutoff for the detection of subendocardial ischaemia was the ratio of CV-IB >1.0, with a sensitivity of 80%, specificity of 71%, and accuracy of 76%. On the other hand, late gadolinium enhancement was not associated with subendocardial ischaemia in our cohort. Ultrasonic tissue characterization using CV-IB separately in the right and left halves of the ventricular septum, but not late gadolinium enhancement on magnetic resonance imaging, provided useful information in detecting subendocardial ischaemia in patients with HCM. Ultrasonic tissue characterization may be useful in selecting patients who will benefit from medications to relieve chest symptoms.

  8. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.

    Science.gov (United States)

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Seshadri, Suresh

    2014-07-01

    Pathological changes of the body have been observed to change the mechanical properties of soft tissue types which can be imaged by ultrasound elastography. Though initial clinical results using ultrasound elastography in detection of tumors are promising, quantification of signal to noise ratio, resolution and strain image patterns are the best achieved under a controlled study using phantoms with similar biomechanical properties of normal and abnormal tissues. The purpose of this work is to characterize the biomechanical properties of agar based tissue mimicking phantoms by varying the agar concentration from 1.7 to 6.6% by weight and identify the optimum property to be used in classification of cancerous tissues. We performed quasi-static uniaxial compression test under a strain rate of 0.5mm/min up to 15% strain and measured Young's modulus of phantom samples which are from 50kPa to 450kPa. Phantoms show nonlinear stress-strain characteristics at finite strain which were characterized using hyperelastic parameters by fitting Neo-Hookean, Mooney Rivlin, Ogden and Veronda Westmann models. We also investigated viscoelastic parameters of the samples by conducting oscillatory shear rheometry at various precompression levels (2-5%). Loss modulus values are always less than storage modulus which represents the behavior of soft tissues. The increase in agar concentration increases the shear modulus of the samples as well as decreases the linear viscoelastic region. The results suggest that dynamic shear modul are more promising than linear and nonlinear elastic modul in differentiation of various classes of abnormal tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.

    Science.gov (United States)

    Then, C; Stassen, B; Depta, K; Silber, G

    2017-07-01

    Mechanical characterization of human superficial facial tissue has important applications in biomedical science, computer assisted forensics, graphics, and consumer goods development. Specifically, the latter may include facial hair removal devices. Predictive accuracy of numerical models and their ability to elucidate biomechanically relevant questions depends on the acquisition of experimental data and mechanical tissue behavior representation. Anisotropic viscoelastic behavioral characterization of human facial tissue, deformed in vivo with finite strain, however, is sparse. Employing an experimental-numerical approach, a procedure is presented to evaluate multidirectional tensile properties of superficial tissue layers of the face in vivo. Specifically, in addition to stress relaxation, displacement-controlled multi-step ramp-and-hold protocols were performed to separate elastic from inelastic properties. For numerical representation, an anisotropic hyperelastic material model in conjunction with a time domain linear viscoelasticity formulation with Prony series was employed. Model parameters were inversely derived, employing finite element models, using multi-criteria optimization. The methodology provides insight into mechanical superficial facial tissue properties. Experimental data shows pronounced anisotropy, especially with large strain. The stress relaxation rate does not depend on the loading direction, but is strain-dependent. Preconditioning eliminates equilibrium hysteresis effects and leads to stress-strain repeatability. In the preconditioned state tissue stiffness and hysteresis insensitivity to strain rate in the applied range is evident. The employed material model fits the nonlinear anisotropic elastic results and the viscoelasticity model reasonably reproduces time-dependent results. Inversely deduced maximum anisotropic long-term shear modulus of linear elasticity is G∞,max(aniso)=2.43kPa and instantaneous initial shear modulus at an

  10. TU-CD-207-01: Characterization of Breast Tissue Composition Using Spectral Mammography

    Energy Technology Data Exchange (ETDEWEB)

    Ding, H; Cho, H; Kumar, N; Sennung, D; Ng, A Lam; Molloi, S [Department of radiological scicens, University of California, Irvine, CA (United States)

    2015-06-15

    Purpose: To investigate the feasibility of characterizing the chemical composition of breast tissue, in terms of water and lipid, by using spectral mammography in simulation and postmortem studies. Methods: Analytical simulations were performed to obtain low- and high-energy signals of breast tissue based on previously reported water, lipid, and protein contents. Dual-energy decomposition was used to characterize the simulated breast tissue into water and lipid basis materials and the measured water density was compared to the known value. In experimental studies, postmortem breasts were imaged with a spectral mammography system based on a scanning multi-slit Si strip photon-counting detector. Low- and high-energy images were acquired simultaneously from a single exposure by sorting the recorded photons into the corresponding energy bins. Dual-energy material decomposition of the low- and high-energy images yielded individual pixel measurements of breast tissue composition in terms of water and lipid thicknesses. After imaging, each postmortem breast was chemically decomposed into water, lipid and protein. The water density calculated from chemical analysis was used as the reference gold standard. Correlation of the water density measurements between spectral mammography and chemical analysis was analyzed using linear regression. Results: Both simulation and postmortem studies showed good linear correlation between the decomposed water thickness using spectral mammography and chemical analysis. The slope of the linear fitting function in the simulation and postmortem studies were 1.15 and 1.21, respectively. Conclusion: The results indicate that breast tissue composition, in terms of water and lipid, can be accurately measured using spectral mammography. Quantitative breast tissue composition can potentially be used to stratify patients according to their breast cancer risk.

  11. Autofluorescence spectroscopy for multimodal tissues characterization in colitis-associated cancer murine model

    Science.gov (United States)

    Dorez, Hugo; Sablong, Raphaël.; Canaple, Laurence; Saint-Jalmes, Hervé; Gaillard, Sophie; Moussata, Driffa; Beuf, Olivier

    2015-07-01

    The purpose of this research project is to assess mice colon wall, using three optical modalities (conventional endoscopy, confocal endomicroscopy and optical spectroscopy) and endoluminal MRI. The study is done in the context of inflammatory bowel disease and colorectal cancer that represent 13% of new cases of cancer, every year in western countries. An optical spectroscopic bench (autofluorescence and reflectance) was developed with a flexible fiber probe. This latter has been combined with a mini multi-purpose rigid endoscope and a confocal endomicroscope. The optical modalities were first used in vivo on SWISS mice. Then, a specific optical a phantom (containing two layers of distinct fluorophores) was developed in order to evaluate our two-channel spectroscopic probe as a basic depth-sensitive measurement tool. The preliminary results show the feasibility to combine such modalities in the same in vivo protocol. Conventional endoscopy is useful to depict inflammation along colon wall. Confocal endomicroscopy provides high-contrasted images of microvascularization. Measured optical spectra both depend on biochemical tissue content and layered structure of the medium. The light collected from one channel is not similar to the other, in terms of intensity and spectroscopic profile as the interaction with the medium observed volume is different. A comparative analysis of the spectra based on our in vitro model exhibits a strong correlation between simple index extracted from spectral data and two main phantom characteristics (fluorophore concentrations and superficial layer thickness). This work suggests that this technique could contribute to assess tissues alterations through autofluorescence spectroscopic measurement under endoscopy.

  12. Adipose-Derived Mesenchymal Stromal/Stem Cells: Tissue Localization, Characterization, and Heterogeneity

    Directory of Open Access Journals (Sweden)

    Patrick C. Baer

    2012-01-01

    Full Text Available Adipose tissue as a stem cell source is ubiquitously available and has several advantages compared to other sources. It is easily accessible in large quantities with minimal invasive harvesting procedure, and isolation of adipose-derived mesenchymal stromal/stem cells (ASCs yields a high amount of stem cells, which is essential for stem-cell-based therapies and tissue engineering. Several studies have provided evidence that ASCs in situ reside in a perivascular niche, whereas the exact localization of ASCs in native adipose tissue is still under debate. ASCs are isolated by their capacity to adhere to plastic. Nevertheless, recent isolation and culture techniques lack standardization. Cultured cells are characterized by their expression of characteristic markers and their capacity to differentiate into cells from meso-, ecto-, and entodermal lineages. ASCs possess a high plasticity and differentiate into various cell types, including adipocytes, osteoblasts, chondrocytes, myocytes, hepatocytes, neural cells, and endothelial and epithelial cells. Nevertheless, recent studies suggest that ASCs are a heterogeneous mixture of cells containing subpopulations of stem and more committed progenitor cells. This paper summarizes and discusses the current knowledge of the tissue localization of ASCs in situ, their characterization and heterogeneity in vitro, and the lack of standardization in isolation and culture methods.

  13. Structural and biochemical characterization of engineered tissue using FTIR spectroscopic imaging: melanoma progression as an example

    Science.gov (United States)

    Bhargava, Rohit; Kong, Rong

    2008-02-01

    Engineered tissue represents a convenient path to providing models for imaging and disease progression. The use of these models or phantoms is becoming increasingly prevalent. While structural characterization of these systems is well-documented, a combination of biochemical and structural knowledge is often helpful. Fourier transform infrared (FTIR) spectroscopic imaging is a rapidly emerging technique that combines the molecular selectivity of spectroscopy with the spatial specificity of optical microscopy. Here, we report on the application of FTIR spectroscopic for analysis of a melanoma model in engineered skin. We first characterize the biochemical properties, consistency and spectral changes in different layers of growing skin. Results provide simple indices for monitoring tissue consistency and reproducibility as a function of time. Second, we introduce malignant melanocytes to simulate tumor formation and growth. Both cellular changes associated with tumor formation and growth can be observed. FTIR images indicate holistic chemical changes during the tumor growth, allowing for the development of automated pathology protocols. FTIR imaging being non-destructive, further, samples remain entirely compatible with downstream tissue processing or staining. We specifically examined the correlation of structural changes, molecular content and reproducibility of the model systems. The development of analysis, integrating spectroscopy, imaging and computation will allow for quality control and standardization of both the structural and biochemical properties of tissue phantoms.

  14. Assembly and characterization of a nonlinear optical microscopy for in vivo and ex vivo tissue imaging

    Science.gov (United States)

    Pratavieira, S.; Buzzá, H. H.; Jorge, A. E.; Grecco, C.; Pires, L.; Cosci, A.; Bagnato, V. S.; Kurachi, C.

    2014-02-01

    The purpose of this study is the assembly and characterization of a custom-made non-linear microscope. The microscope allows the adjustment for in vitro, in vivo and ex vivo imaging of biological samples. Two galvanometer mirrors conjugated by two spherical mirrors are used for the lateral scan and for the axial scan a piezoeletric stage is utilized. The excitation is done using a tunable femtosecond Ti: Sapphire laser. The light is focused in tissue by an objective lens 20X, water immersion, numerical aperture of 1.0, and working distance of 2.0 mm. The detection system is composed by a cut off filter that eliminates laser light back reflections and diverse dichroic filters can be chosen to split the emitted signal for the two photomultiplier detector. The calibration and resolution of the microscope was done using a stage micrometer with 10 μm divisions and fluorescent particle slide, respectively. Fluorescence and second harmonic generation images were performed using epithelial and hepatic tissue, the images have a sub-cellular spatial resolution. Further characterization and differentiation of tissue layers can be obtained by performing axial scanning. By means of the microscope it is possible to have a three dimensional reconstruction of tissues with sub-cellular resolution.

  15. Follow-up after initial surgical treatment of soft tissue sarcomas in the extremities and trunk wall

    DEFF Research Database (Denmark)

    Hovgaard, Thea Bechmann; Nymark, Tine; Skov, Ole

    2017-01-01

    Background/objectives: Evaluation of our surveillance program for soft tissue sarcomas (STS) and borderline tumors (BT) for identification of local recurrence and lung metastases the first 2 years postoperatively. Methods: We retrospectively assessed the medical files of all patients (n = 232...

  16. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    Directory of Open Access Journals (Sweden)

    Andreia Michelle Smith-Moritz

    2015-08-01

    Full Text Available The CELLULOSE SYNTHASE-LIKE F6 (CslF6 gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG, a cell wall polysaccharide that is hypothesized to be a tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of three day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell was of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.

  17. IDENTIFICATION AND CHARACTERIZATION OF THERMOBIFIDA FUSCA GENES INVOLVED IN PLANT CELL WALL DEGRADATION.

    Energy Technology Data Exchange (ETDEWEB)

    David B. Wilson

    2006-01-23

    Micro-array experiments identified a number of Thermobifida fusca genes which were upregulated by growth on cellulose or plant biomass. Five of these genes were cloned, overexpressed in E. coli and the expressed proteins were purified and characterized. These were a xyloglucanase,a 1-3,beta glucanase, a family 18 hydrolase and twocellulose binding proteins that contained no catalytic domains. The catalyic domain of the family 74 endoxyloglucanase with a C-terminal, cellulose binding module was crystalized and its 3-dimensional structure was determined by X-ray crystallography.

  18. Characterization of in vitro healthy and pathological human liver tissue periodicity using backscattered ultrasound signals.

    Science.gov (United States)

    Machado, Christiano Bittencourt; Pereira, Wagner Coelho de Albuquerque; Meziri, Mahmoud; Laugier, Pascal

    2006-05-01

    This work studied the periodicity of in vitro healthy and pathologic liver tissue, using backscattered ultrasound (US) signals. It utilized the mean scatterer spacing (MSS) as a parameter of tissue characterization, estimated by three methods: the spectral autocorrelation (SAC), the singular spectrum analysis (SSA) and the quadratic transformation method (SIMON). The liver samples were classified in terms of tissue status using the METAVIR scoring system. Twenty tissue samples were classified in four groups: F0, F1, F3 and F4 (five samples for each). The Kolmogorov-Smirnov test (applied on group pairs) resulted as nonsignificant (p > 0.05) for two pairs only: F1/F3 (for SSA) and F3/F4 (for SAC). A discriminant analysis was applied using as parameters the MSS mean (MSS) and standard deviation (sigmaMSS), the estimates histogram mode (mMSS), and the speed of US (mc(foie)) in the medium, to evaluate the degree of discrimination among healthy and pathologic tissues. The better accuracy (Ac) with SAC (80%) was with parameter group (MSS, sigmaMSS, mc(foie)), achieving a sensitivity (Ss) of 92.3% and a specificity (Sp) of 57.1%. For SSA, the group with all four parameters showed an Ac of 75%, an Ss of 78.6% and an Sp of 66.70%. SIMON obtained the best Ac of all (85%) with group (MSS, mMSS, mc(foie)), an Ss of 100%, but with an Sp of 50%.

  19. Histological characterization of periprosthetic tissue responses for metal-on-metal hip replacement

    Science.gov (United States)

    Phillips, Eual A.; Klein, Gregg R.; Cates, Harold E.; Kurtz, Steven M.; Steinbeck, Marla J.

    2014-01-01

    The histology of periprosthetic tissue from metal-on-metal (MOM) hip devices has been characterized by a variety of methods. The purpose of this study was to compare and evaluate the suitability of two previously developed aseptic lymphocyte-dominated vasculitis-associated lesions (ALVAL) scoring systems for periprosthetic hip tissue responses retrieved from MOM THR systems revised for loosening. Two ALVAL scoring systems (Campbell and Oxford) were used to perform histological analysis of soft tissues from seventeen failed MOM THRs. The predominant reactions for this patient cohort were macrophage infiltration and necrosis, with less than half of the patients (41%) showing a significant lymphocytic response or a high ALVAL reaction (6%). Other morphological changes which varied among patients included hemosiderin accumulation, cartilage formation and heterotopic ossification. Both scoring systems correlated with macrophage and lymphocyte responses and with each other, however given the diversity and variability of the current responses the Oxford-ALVAL system was more suitable for scoring tissues from MOM THR patients revised for loosening. It is important that standardized methods to score MOM tissue responses be used consistently so multiple study results can be compared to one another and a consensus can be generated. PMID:24941402

  20. Transgene silencing of sucrose synthase in alfalfa (Medicago sativa L.) stem vascular tissue suggests a role for invertase in cell wall cellulose synthesis.

    Science.gov (United States)

    Samac, Deborah A; Bucciarelli, Bruna; Miller, Susan S; Yang, S Samuel; O'Rourke, Jamie A; Shin, Sanghyun; Vance, Carroll P

    2015-12-01

    Alfalfa (Medicago sativa L.) is a widely adapted perennial forage crop that has high biomass production potential. Enhanced cellulose content in alfalfa stems would increase the value of the crop as a bioenergy feedstock. We examined if increased expression of sucrose synthase (SUS; EC 2.4.1.13) would increase cellulose in stem cell walls. Alfalfa plants were transformed with a truncated alfalfa phosphoenolpyruvate carboxylase gene promoter (PEPC7-P4) fused to an alfalfa nodule-enhanced SUS cDNA (MsSUS1) or the β-glucuronidase (GUS) gene. Strong GUS expression was detected in xylem and phloem indicating that the PEPC7-P4 promoter was active in stem vascular tissue. In contrast to expectations, MsSUS1 transcript accumulation was reduced 75-90 % in alfalfa plants containing the PEPC7-P4::MsSUS1 transgene compared to controls. Enzyme assays indicated that SUS activity in stems of selected down-regulated transformants was reduced by greater than 95 % compared to the controls. Although SUS activity was detected in xylem and phloem of control plants by in situ enzyme assays, plants with the PEPC7-P4::MsSUS1 transgene lacked detectable SUS activity in post-elongation stem (PES) internodes and had very low SUS activity in elongating stem (ES) internodes. Loss of SUS protein in PES internodes of down-regulated lines was confirmed by immunoblots. Down-regulation of SUS expression and activity in stem tissue resulted in no obvious phenotype or significant change in cell wall sugar composition. However, alkaline/neutral (A/N) invertase activity increased in SUS down-regulated lines and high levels of acid invertase activity were observed. In situ enzyme assays of stem tissue showed localization of neutral invertase in vascular tissues of ES and PES internodes. These results suggest that invertases play a primary role in providing glucose for cellulose biosynthesis or compensate for the loss of SUS1 activity in stem vascular tissue.

  1. Ex Vivo Characterization of Canine Liver Tissue Viscoelasticity Following High Intensity Focused Ultrasound (HIFU) Ablation

    Science.gov (United States)

    Shahmirzadi, Danial; Hou, Gary Y.; Chen, Jiangang; Konofagou, Elisa E.

    2014-01-01

    Elasticity imaging has shown great promise in detecting High Intensity Focused Ultrasound (HIFU) lesions based on their distinct biomechanical properties. However, quantitative mechanical properties of the tissue and the optimal intensity for obtaining the best contrast parameters remain scarce. In this study, fresh canine livers were ablated using combinations of ISPTA intensities of 5.55, 7.16 and 9.07 kW/cm2 and time durations of 10 and 30 s ex vivo; leading to six groups of ablated tissues. Biopsy samples were then interrogated using dynamic shear mechanical testing within the range of 0.1-10 Hz to characterize the post-ablation tissue viscoelastic properties. All mechanical parameters were found to be frequency dependent. Compared to the unablated cases, all six groups of ablated tissues showed statistically-significant higher complex shear modulus and shear viscosity. However, among the ablated groups, both complex shear modulus and shear viscosity were found to monotonically increase in groups 1-4 (5.55 kW/cm2 for 10 s, 7.16 kW/cm2 for 10 s, 9.07 kW/cm2 & 10 s, and 5.55 kW/cm2 & 30 s, respectively), but decrease in groups 5 and 6 (7.16 kW/cm2 for 30 s, and 9.07 kW/cm2 for 30 s, respectively). For groups 5 and 6, the temperature was expected to exceed the boiling point, and therefore, the decreased stiffening could be due to the compromised integrity of the tissue microstructure. Future studies are needed to estimate the tissue mechanical properties in vivo and perform real-time monitoring of tissue alterations during ablation. PMID:24315395

  2. Accurate tissue characterization in low-dose CT imaging with pure iterative reconstruction.

    Science.gov (United States)

    Murphy, Kevin P; McLaughlin, Patrick D; Twomey, Maria; Chan, Vincent E; Moloney, Fiachra; Fung, Adrian J; Chan, Faimee E; Kao, Tafline; O'Neill, Siobhan B; Watson, Benjamin; O'Connor, Owen J; Maher, Michael M

    2017-04-01

    We assess the ability of low-dose hybrid iterative reconstruction (IR) and 'pure' model-based IR (MBIR) images to maintain accurate Hounsfield unit (HU)-determined tissue characterization. Standard-protocol (SP) and low-dose modified-protocol (MP) CTs were contemporaneously acquired in 34 Crohn's disease patients referred for CT. SP image reconstruction was via the manufacturer's recommendations (60% FBP, filtered back projection; 40% ASiR, Adaptive Statistical iterative Reconstruction; SP-ASiR40). MP data sets underwent four reconstructions (100% FBP; 40% ASiR; 70% ASiR; MBIR). Three observers measured tissue volumes using HU thresholds for fat, soft tissue and bone/contrast on each data set. Analysis was via SPSS. Inter-observer agreement was strong for 1530 datapoints (rs > 0.9). MP-MBIR tissue volume measurement was superior to other MP reconstructions and closely correlated with the reference SP-ASiR40 images for all tissue types. MP-MBIR superiority was most marked for fat volume calculation - close SP-ASiR40 and MP-MBIR Bland-Altman plot correlation was seen with the lowest average difference (336 cm(3) ) when compared with other MP reconstructions. Hounsfield unit-determined tissue volume calculations from MP-MBIR images resulted in values comparable to SP-ASiR40 calculations and values that are superior to MP-ASiR images. Accuracy of estimation of volume of tissues (e.g. fat) using segmentation software on low-dose CT images appears optimal when reconstructed with pure IR. © 2016 The Royal Australian and New Zealand College of Radiologists.

  3. Partial structural characterization of pectin cell wall from Argania spinosa leaves.

    Science.gov (United States)

    Hachem, Kadda; Benabdesslem, Yasmina; Ghomari, Samia; Hasnaoui, Okkacha; Kaid-Harche, Meriem

    2016-02-01

    The pectin polysaccharides from leaves of Argania spinosa (L.) Skeels, collected from Stidia area in the west coast of northern Algeria, were investigated by using sequential extractions and the resulting fractions were analysed for monosaccharide composition and chemical structure. Water-soluble pectic (ALS-WSP) and chelating-soluble pectic (ALS-CSP) fractions were obtained, de-esterified and fractionated by anion-exchange chromatography and characterized by sugar analysis combined with methylation analysis and (1)H and (13)C NMR spectroscopy. The data reveal the presence of altering homogalacturonan (HG) and rhamnogalacturonan I (RG-I) in both pectin fraction. The rhamnogalacturonan I (RG-I) are consisted of a disaccharide repeating unit [→ α-D-GalpA-1,2-α-L-Rhap-1,4 →] backbone, with side chains contained highly branched α-(1 → 5)-linked arabinan and short linear β-(1 → 4)-linked galactan, attached to O-4 of the rhamnosyl residues.

  4. Norway spruce (Picea abies) laccases: characterization of a laccase in a lignin-forming tissue culture.

    Science.gov (United States)

    Koutaniemi, Sanna; Malmberg, Heli A; Simola, Liisa K; Teeri, Teemu H; Kärkönen, Anna

    2015-04-01

    Secondarily thickened cell walls of water-conducting vessels and tracheids and support-giving sclerenchyma cells contain lignin that makes the cell walls water impermeable and strong. To what extent laccases and peroxidases contribute to lignin biosynthesis in muro is under active evaluation. We performed an in silico study of Norway spruce (Picea abies (L.) Karst.) laccases utilizing available genomic data. As many as 292 laccase encoding sequences (genes, gene fragments, and pseudogenes) were detected in the spruce genome. Out of the 112 genes annotated as laccases, 79 are expressed at some level. We isolated five full-length laccase cDNAs from developing xylem and an extracellular lignin-forming cell culture of spruce. In addition, we purified and biochemically characterized one culture medium laccase from the lignin-forming cell culture. This laccase has an acidic pH optimum (pH 3.8-4.2) for coniferyl alcohol oxidation. It has a high affinity to coniferyl alcohol with an apparent Km value of 3.5 μM; however, the laccase has a lower catalytic efficiency (V(max)/K(m)) for coniferyl alcohol oxidation compared with some purified culture medium peroxidases. The properties are discussed in the context of the information already known about laccases/coniferyl alcohol oxidases of coniferous plants. © 2015 Institute of Botany, Chinese Academy of Sciences.

  5. Quantification and characterization of cell wall polysaccharides released by non-Saccharomyces yeast strains during alcoholic fermentation.

    Science.gov (United States)

    Giovani, Giovanna; Rosi, Iolanda; Bertuccioli, Mario

    2012-11-15

    In order to improve knowledge about the oenological characteristics of non-Saccharomyces yeast strains, and to reconsider their contribution to wine quality, we studied the release of polysaccharides by 13 non-Saccharomyces strains of different species (three wine yeasts, six grape yeasts, and three spoilage yeasts) during alcoholic fermentation in synthetic must. Three Saccharomyces cerevisiae strains were included for comparison. All of the non-Saccharomyces strains released polysaccharides into fermentation medium; the amount released depended on the yeast species, the number of cells formed and their physiological conditions. Normalizing the quantity of macromolecules released to the cell biomass revealed that most non-Saccharomyces strains produced a greater quantity of polysaccharides compared to S. cerevisiae strains after 7 and 14days of fermentation. This capacity was particularly expressed in the studied wine spoilage yeasts (Saccharomycodes ludwigii, Zygosaccharomyces bailii, and Brettanomyces bruxellensis). Chemical characterization of exocellular polysaccharides produced by non-Saccharomyces yeasts revealed them to essentially be mannoproteins with high mannose contents, ranging from 93% for S'codes. ludwigii to 73-74% for Pichia anomala and Starmerella bombicola. Protein contents varied from 9% for P. anomala to 29% for Z. bailii. These compositions were very similar to those of the S. cerevisiae strains, and to the chemical composition of the cell wall mannoproteins of different yeast species. The presence of galactose, in addition to mannose and glucose, in the exocellular polysaccharides released by Schizosaccharomyces pombe, confirmed the parietal nature of the polysaccharides released by non-Saccharomyces yeasts; only this species has a galactomannan located in the outer layer of the cell wall. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. The Scandinavian Sarcoma Group Central Register: 6,000 patients after 25 years of monitoring of referral and treatment of extremity and trunk wall soft-tissue sarcoma.

    Science.gov (United States)

    Trovik, Clement; Bauer, Henrik C F; Styring, Emelie; Sundby Hall, Kirsten; Vult Von Steyern, Fredrik; Eriksson, Sigvard; Johansson, Ingela; Sampo, Mika; Laitinen, Minna; Kalén, Anders; Jónsson, Halldór; Jebsen, Nina; Eriksson, Mikael; Tukiainen, Erkki; Wall, Najme; Zaikova, Olga; Sigurðsson, Helgi; Lehtinen, Tuula; Bjerkehagen, Bodil; Skorpil, Mikael; Egil Eide, Geir; Johansson, Elisabeth; Alvegard, Thor A

    2017-06-01

    Purpose - We wanted to examine the potential of the Scandinavian Sarcoma Group (SSG) Central Register, and evaluate referral and treatment practice for soft-tissue sarcomas in the extremities and trunk wall (STS) in the Nordic countries. Background - Based on incidence rates from the literature, 8,150 (7,000-9,300) cases of STS of the extremity and trunk wall should have been diagnosed in Norway, Finland, Iceland, and Sweden from 1987 through 2011. The SSG Register has 6,027 cases registered from this period, with 5,837 having complete registration of key variables. 10 centers have been reporting to the Register. The 5 centers that consistently report treat approximately 90% of the cases in their respective regions. The remaining centers have reported all the patients who were treated during certain time periods, but not for the entire 25-year period. Results - 59% of patients were referred to a sarcoma center untouched, i.e. before any attempt at open biopsy. There was an improvement from 52% during the first 5 years to 70% during the last 5 years. 50% had wide or better margins at surgery. Wide margins are now achieved less often than 20 years ago, in parallel with an increase in the use of radiotherapy. For the centers that consistently report, 97% of surviving patients are followed for more than 4 years. Metastasis-free survival (MFS) increased from 67% to 73% during the 25-year period. Interpretation - The Register is considered to be representative of extremity and trunk wall sarcoma disease in the population of Scandinavia, treated at the reporting centers. There were no clinically significant differences in treatment results at these centers.

  7. The Scandinavian Sarcoma Group Central Register: 6,000 patients after 25 years of monitoring of referral and treatment of extremity and trunk wall soft-tissue sarcoma

    Science.gov (United States)

    Trovik, Clement; Bauer, Henrik C F; Styring, Emelie; Sundby Hall, Kirsten; Vult Von Steyern, Fredrik; Eriksson, Sigvard; Johansson, Ingela; Sampo, Mika; Laitinen, Minna; Kalén, Anders; Jónsson, Halldór; Jebsen, Nina; Eriksson, Mikael; Tukiainen, Erkki; Wall, Najme; Zaikova, Olga; Sigurðsson, Helgi; Lehtinen, Tuula; Bjerkehagen, Bodil; Skorpil, Mikael; Egil Eide, Geir; Johansson, Elisabeth; Alvegard, Thor A

    2017-01-01

    Purpose We wanted to examine the potential of the Scandinavian Sarcoma Group (SSG) Central Register, and evaluate referral and treatment practice for soft-tissue sarcomas in the extremities and trunk wall (STS) in the Nordic countries. Background Based on incidence rates from the literature, 8,150 (7,000–9,300) cases of STS of the extremity and trunk wall should have been diagnosed in Norway, Finland, Iceland, and Sweden from 1987 through 2011. The SSG Register has 6,027 cases registered from this period, with 5,837 having complete registration of key variables. 10 centers have been reporting to the Register. The 5 centers that consistently report treat approximately 90% of the cases in their respective regions. The remaining centers have reported all the patients who were treated during certain time periods, but not for the entire 25-year period. Results 59% of patients were referred to a sarcoma center untouched, i.e. before any attempt at open biopsy. There was an improvement from 52% during the first 5 years to 70% during the last 5 years. 50% had wide or better margins at surgery. Wide margins are now achieved less often than 20 years ago, in parallel with an increase in the use of radiotherapy. For the centers that consistently report, 97% of surviving patients are followed for more than 4 years. Metastasis-free survival (MFS) increased from 67% to 73% during the 25-year period. Interpretation The Register is considered to be representative of extremity and trunk wall sarcoma disease in the population of Scandinavia, treated at the reporting centers. There were no clinically significant differences in treatment results at these centers. PMID:28266233

  8. Partial structural characterization of pectin cell wall from Argania spinosa leaves

    Directory of Open Access Journals (Sweden)

    Kadda Hachem

    2016-02-01

    Full Text Available The pectin polysaccharides from leaves of Argania spinosa (L. Skeels, collected from Stidia area in the west coast of northern Algeria, were investigated by using sequential extractions and the resulting fractions were analysed for monosaccharide composition and chemical structure. Water-soluble pectic (ALS-WSP and chelating-soluble pectic (ALS-CSP fractions were obtained, de-esterified and fractionated by anion-exchange chromatography and characterized by sugar analysis combined with methylation analysis and 1H and 13C NMR spectroscopy. The data reveal the presence of altering homogalacturonan (HG and rhamnogalacturonan I (RG-I in both pectin fraction. The rhamnogalacturonan I (RG-I are consisted of a disaccharide repeating unit [→ α-D-GalpA-1,2-α-L-Rhap-1,4 →] backbone, with side chains contained highly branched α-(1 → 5-linked arabinan and short linear β-(1 → 4-linked galactan, attached to O-4 of the rhamnosyl residues.

  9. In situ ultrahigh-resolution optical coherence tomography characterization of eye bank corneal tissue processed for lamellar keratoplasty.

    Science.gov (United States)

    Brown, Jamin S; Wang, Danling; Li, Xiaoli; Baluyot, Florence; Iliakis, Bernie; Lindquist, Thomas D; Shirakawa, Rika; Shen, Tueng T; Li, Xingde

    2008-08-01

    To use optical coherence tomography (OCT) as a noninvasive tool to perform in situ characterization of eye bank corneal tissue processed for lamellar keratoplasty. A custom-built ultrahigh-resolution OCT (UHR-OCT) was used to characterize donor corneal tissue that had been processed for lamellar keratoplasty. Twenty-seven donor corneas were analyzed. Four donor corneas were used as controls, whereas the rest were processed into donor corneal buttons for lamellar transplantation by using hand dissection, a microkeratome, or a femtosecond laser. UHR-OCT was also used to noninvasively characterize and monitor the viable corneal tissue immersed in storage medium over 3 weeks. The UHR-OCT captured high-resolution images of the donor corneal tissue in situ. This noninvasive technique showed the changes in donor corneal tissue morphology with time while in storage medium. The characteristics of the lamellar corneal tissue with each processing modality were clearly visible by UHR-OCT. The in situ characterization of the femtosecond laser-cut corneal tissue was noted to have more interface debris than shown by routine histology. The effects of the femtosecond laser microcavitation bubbles on the corneal tissue were well visualized at the edges of the lamellar flap while in storage medium. The results of our feasibility study show that UHR-OCT can provide superb, in situ microstructural characterization of eye bank corneal tissue noninvasively. The UHR-OCT interface findings and corneal endothelial disc thickness uniformity analysis are valuable information that may be used to optimize the modalities and parameters for lamellar tissue processing. The UHR-OCT is a powerful approach that will allow us to further evaluate the tissue response to different processing techniques for posterior lamellar keratoplasty. It may also provide information that can be used to correlate with postoperative clinical outcomes. UHR-OCT has the potential to become a routine part of tissue

  10. Role of space provision in regeneration of localized two-wall intrabony defects using periosteal pedicle graft as an autogenous guided tissue membrane.

    Science.gov (United States)

    Singhal, Rameshwari; Nandlal; Kumar, Akhilesh; Rastogi, Pavitra

    2013-03-01

    Marginal pedicle periosteum (MPP) has been used as a rigid membrane in guided tissue regeneration (GTR) for osseous defects. The present study aims to study the effect of space provision by an alloplastic graft material in bone defect area (BDA) reduction of 2-wall defects. Twenty interproximal intrabony 2-wall defects in healthy non-smoking patients with chronic periodontitis were randomly divided in control (group 1, periosteum alone) and experimental (group 2, periosteum with alloplastic graft material) groups. Measurements of probing depth (PD), clinical attachment level (CAL), and radiographic BDA were done at the baseline and 6-month postoperative evaluations. The 6-month postoperative assessment showed clinical and radiographic improvements with PD reduction, CAL gain, and changes in BDA in both groups, which was statistically significant compared with baseline (P <0.05). However, BDA reduction was statistically greater in group 2 (48.88% ± 18.61%) compared with group 1 (14.08% ± 12.97%) at the 6-month follow-up (P = 0.009). Within the limitations of this study, it can be concluded that space provision by an alloplastic graft material increases the regenerative potential of MPP as a GTR membrane and results in increased defect fill.

  11. Automatic classification of scar tissue in late gadolinium enhancement cardiac MRI for the assessment of left-atrial wall injury after radiofrequency ablation.

    Science.gov (United States)

    Perry, Daniel; Morris, Alan; Burgon, Nathan; McGann, Christopher; Macleod, Robert; Cates, Joshua

    2012-02-23

    Radiofrequency ablation is a promising procedure for treating atrial fibrillation (AF) that relies on accurate lesion delivery in the left atrial (LA) wall for success. Late Gadolinium Enhancement MRI (LGE MRI) at three months post-ablation has proven effective for noninvasive assessment of the location and extent of scar formation, which are important factors for predicting patient outcome and planning of redo ablation procedures. We have developed an algorithm for automatic classification in LGE MRI of scar tissue in the LA wall and have evaluated accuracy and consistency compared to manual scar classifications by expert observers. Our approach clusters voxels based on normalized intensity and was chosen through a systematic comparison of the performance of multivariate clustering on many combinations of image texture. Algorithm performance was determined by overlap with ground truth, using multiple overlap measures, and the accuracy of the estimation of the total amount of scar in the LA. Ground truth was determined using the STAPLE algorithm, which produces a probabilistic estimate of the true scar classification from multiple expert manual segmentations. Evaluation of the ground truth data set was based on both inter- and intra-observer agreement, with variation among expert classifiers indicating the difficulty of scar classification for a given a dataset. Our proposed automatic scar classification algorithm performs well for both scar localization and estimation of scar volume: for ground truth datasets considered easy, variability from the ground truth was low; for those considered difficult, variability from ground truth was on par with the variability across experts.

  12. Ultrasonic tissue characterization of vulnerable carotid plaque: correlation between videodensitometric method and histological examination

    Directory of Open Access Journals (Sweden)

    Cherri Jesualdo

    2006-08-01

    Full Text Available Abstract Background To establish the correlation between quantitative analysis based on B-mode ultrasound images of vulnerable carotid plaque and histological examination of the surgically removed plaque, on the basis of a videodensitometric digital texture characterization. Methods Twenty-five patients (18 males, mean age 67 ± 6.9 years admitted for carotid endarterectomy for extracranial high-grade internal carotid artery stenosis (≥ 70% luminal narrowing underwent to quantitative ultrasonic tissue characterization of carotid plaque before surgery. A computer software (Carotid Plaque Analysis Software was developed to perform the videodensitometric analysis. The patients were divided into 2 groups according to symptomatology (group I, 15 symptomatic patients; and group II, 10 patients asymptomatic. Tissue specimens were analysed for lipid, fibromuscular tissue and calcium. Results The first order statistic parameter mean gray level was able to distinguish the groups I and II (p = 0.04. The second order parameter energy also was able to distinguish the groups (p = 0,02. A histological correlation showed a tendency of mean gray level to have progressively greater values from specimens with 75% of fibrosis. Conclusion Videodensitometric computer analysis of scan images may be used to identify vulnerable and potentially unstable lipid-rich carotid plaques, which are less echogenic in density than stable or asymptomatic, more densely fibrotic plaques.

  13. Dispersion of multi-wall carbon nanotubes in polyhistidine: Characterization and analytical applications

    Energy Technology Data Exchange (ETDEWEB)

    Dalmasso, Pablo R. [INFIQC, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Pedano, Maria L., E-mail: mlpedano@fcq.unc.edu.ar [INFIQC, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Rivas, Gustavo A., E-mail: grivas@mail.fcq.unc.edu.ar [INFIQC, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Polyhistidine (Polyhis) is an efficient dispersing agent of MWCNT. Black-Right-Pointing-Pointer MWCNT/Polyhis ratio and sonication time are critical variables when dispersing MWCNT. Black-Right-Pointing-Pointer MWCNT-Polyhis deposited at GCE largely catalyzes the oxidation of ascorbic acid. Black-Right-Pointing-Pointer GCE/MWCNT-Polyhis allows the selective and sensitive quantification of UA and Do. - Abstract: We report for the first time the use of polyhistidine (Polyhis) to efficiently disperse multiwall carbon nanotubes (MWCNTs). The optimum dispersion MWCNT-Polyhis was obtained by sonicating for 30 min 1.0 mg mL{sup -1} MWCNTs in 0.25 mg mL{sup -1} Polyhis solution prepared in 75:25 (v/v) ethanol/0.200 M acetate buffer solution pH 5.00. The dispersion was characterized by scanning electron microscopy, and by cyclic voltammetry and amperometry using ascorbic acid as redox marker. The modification of glassy carbon electrodes with MWCNT-Polyhis produces a drastic decrease in the overvoltage for the oxidation of ascorbic acid (580 mV) at variance with the response observed at glassy carbon electrodes modified just with Polyhis, where the charge transfer is more difficult due to the blocking effect of the polymer. The reproducibility for the sensitivities obtained after 10 successive calibration plots using the same surface was 6.3%. The MWCNT-modified glassy carbon electrode demonstrated to be highly stable since after 45 days storage at room temperature the response was 94.0% of the original. The glassy carbon electrode modified with MWCNT-Polyhis dispersion was successfully used to quantify dopamine or uric acid at nanomolar levels, even in the presence of large excess of ascorbic acid. Determinations of uric acid in human blood serum samples demonstrated a very good correlation with the value reported by Wienner laboratory.

  14. Structural characterization of pectic hairy regions isolated from apple cell walls = Structuurkenmerken van vertakte pectine fragmenten afkomstig van de celwanden van appel

    NARCIS (Netherlands)

    Schols, H.

    1995-01-01

    Cell wall pectic substances have a great influence on the production and quality aspects of apple juice. Apple juices were characterized by their polysaccharide content and composition. A pectic fraction, retained by ultrafiltration of a liquefaction juice, was isolated and termed MHR

  15. Qualitative and quantitative analysis of anthraquinone derivatives in rhizomes of tissue culture-raised Rheum emodi Wall. plants.

    Science.gov (United States)

    Malik, Sonia; Sharma, Nandini; Sharma, Upendra K; Singh, Narendra P; Bhushan, Shashi; Sharma, Madhu; Sinha, Arun K; Ahuja, Paramvir S

    2010-06-15

    This paper presents quantification of five anthraquinone derivatives (emodin glycoside, chrysophanol glycoside, emodin, chrysophanol and physcion) in rhizomes of hardened micro-propagated Rheum emodi plants using high-performance liquid chromatography (HPLC). Aseptic shoot cultures were raised using rhizome buds. Shoot multiplication occurred in both agar gelled and liquid Murashige and Skoog (MS) medium supplemented with 10.0 microM 6-benzylaminopurine (BAP) and 5.0 microM indole-3-butyric acid (IBA). Rooted plantlets obtained on plant growth regulator (PGR)-free medium were transferred to soil with 92% survival. HPLC analysis revealed the presence of five anthraquinone derivatives: emodin glycoside, chrysophanol glycoside, emodin, chrysophanol and physcion in rhizomes of tissue culture-raised plants. Only emodin glycoside (1) and chrysophanol glycoside (2) were present in 6-month-old hardened tissue cultured plants. In addition, the other three derivatives (emodin (3), chrysophanol (4) and physcion (5)) were also detected after 9 months. Copyright 2010 Elsevier GmbH. All rights reserved.

  16. Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Tokitani, M., E-mail: tokitani.masayuki@LHD.nifs.ac.jp [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, M. [Shimane University, Matsue, Shimane 690-8504 (Japan); Masuzaki, S. [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Fujii, Y. [Shimane University, Matsue, Shimane 690-8504 (Japan); Sakamoto, R. [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Oya, Y. [Shizuoka University, Shizuoka 422-8529 (Japan); Hatano, Y. [University of Toyama, Toyama 930-8555 (Japan); Otsuka, T. [Kindai University, Higashi-Osaka, Osaka, 577-8502 (Japan); Oyaidzu, M.; Kurotaki, H.; Suzuki, T.; Hamaguchi, D.; Isobe, K.; Asakura, N. [National Institute for Quantum and Radiological Science and Technology (QST), Rokkasho Aomori 039-3212 (Japan); Widdowson, A. [EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Rubel, M. [Royal Institute of Technology (KTH), 100 44 Stockholm (Sweden)

    2017-03-15

    Highlights: • Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall were studied. • The stratified mixed-material deposition layer composed by W, C, O, Mo and Be with the thickness of ∼1.5 μm was formed on the apron of Tile 1. • The study revealed the micro- and nano-scale modification of the inner tile surface of the JET ILW. - Abstract: Micro-/nano-characterization of the surface structures on the divertor tiles used in the first campaign (2011–2012) of the JET tokamak with the ITER-like wall (JET ILW) were studied. The analyzed tiles were a single poloidal section of the tile numbers of 1, 3 and 4, i.e., upper, vertical and horizontal targets, respectively. A sample from the apron of Tile 1 was deposition-dominated. Stratified mixed-material layers composed of Be, W, Ni, O and C were deposited on the original W-coating. Their total thickness was ∼1.5 μm. By means of transmission electron microscopy, nano-size bubble-like structures with a size of more than 100 nm were identified in that layer. They could be related to deuterium retention in the layer dominated by Be. The surface microstructure of the sample from Tile 4 also showed deposition: a stratified mixed-material layer with the total thickness of 200–300 nm. The electron diffraction pattern obtained with transmission electron microscope indicated Be was included in the layer. No bubble-like structures have been identified. The surface of Tile 3, originally coated by Mo, was identified as the erosion zone. This is consistent with the fact that the strike point was often located on that tile during the plasma operation. The study revealed the micro- and nano-scale modification of the inner tile surface of the JET ILW. In particular, a complex mixed-material deposition layer could affect hydrogen isotope retention and dust formation.

  17. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features.

    Science.gov (United States)

    Yu, Guoqin; Gail, Mitchell H; Consonni, Dario; Carugno, Michele; Humphrys, Michael; Pesatori, Angela C; Caporaso, Neil E; Goedert, James J; Ravel, Jacques; Landi, Maria Teresa

    2016-07-28

    The human lung tissue microbiota remains largely uncharacterized, although a number of studies based on airway samples suggest the existence of a viable human lung microbiota. Here we characterized the taxonomic and derived functional profiles of lung microbiota in 165 non-malignant lung tissue samples from cancer patients. We show that the lung microbiota is distinct from the microbial communities in oral, nasal, stool, skin, and vagina, with Proteobacteria as the dominant phylum (60 %). Microbiota taxonomic alpha diversity increases with environmental exposures, such as air particulates, residence in low to high population density areas, and pack-years of tobacco smoking and decreases in subjects with history of chronic bronchitis. Genus Thermus is more abundant in tissue from advanced stage (IIIB, IV) patients, while Legionella is higher in patients who develop metastases. Moreover, the non-malignant lung tissues have higher microbiota alpha diversity than the paired tumors. Our results provide insights into the human lung microbiota composition and function and their link to human lifestyle and clinical outcomes. Studies among subjects without lung cancer are needed to confirm our findings.

  18. Development and characterization of a full-thickness acellular porcine cornea matrix for tissue engineering.

    Science.gov (United States)

    Du, Liqun; Wu, Xinyi

    2011-07-01

    Our aim was to produce a natural, acellular matrix from porcine cornea for use as a scaffold in developing a tissue-engineered cornea replacement. Full-thickness, intact porcine corneas were decellularized by immersion in 0.5% (wt/vol) sodium dodecyl sulfate. The resulting acellular matrices were then characterized and examined specifically for completeness of the decellularization process. Histological analyses of decellularized corneal stromas showed that complete cell and α-Gal removal was achieved, while the major structural proteins including collagen type I and IV, laminin, and fibronectin were retained. DAPI staining did not detect any residual DNA within the matrix, and the DNA contents, which reflect the presence of cellular materials, were significantly diminished in the decellularized cornea. The collagen content of the decellularized cornea was well maintained compared with native tissues. Uniaxial tensile testing indicated that decellularization did not significantly compromise the ultimate tensile strength of the tissue (P > 0.05). In vitro cytotoxicity assays using rabbit corneal fibroblast cultures excluded the presence of soluble toxins in the biomaterial. In vivo implantation to rabbit interlamellar stromal pockets showed good biocompability. In summary, a full-thickness natural acellular matrix retaining the major structural components and strength of the cornea has been successfully developed. The matrix is biocompatible with cornea-derived cells and has potential for use in corneal transplantation and tissue-engineering applications. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. [Effect of maggot therapy on minimally necrotic tissues: characterization of larval enzymatic excretion/secretion].

    Science.gov (United States)

    Téllez, Germán Alberto; Acero, Mónica Alejandra; Pineda, Luz Adriana; Castaño, Jhon Carlos

    2012-09-01

    Chronic leg ulcers are a burden for the health system and impact quality of life. The infections, the necrotic tissue and the difficult treatment affects the prognosis and healing time. Maggot therapy is presented as an acceptable alternative for the debridement and treatment of this pathology. The larval therapy was assessed on chronic leg ulcers with little necrotic tissue. Larval excretion and secretion (E/S) was characterized with respect to hemolymph (HL) enzymatic content. Materials and methods. Three patients with chronic leg ulcers and low necrotic tissue were treated with larval therapy and were assessed with the PUSH (pressure ulcer scale for healing) and Wound Bed Score. E/S and HL content was evaluated by SDS PAGE and zymogram. The clinical aspect of the wounds showed improvement, and the scores demonstrated an average decrease of 2.3 for the PUSH and an average increase of 2.7 for the Wound Bed Score. A wide diversity of enzymatic activity in the E/S was demonstrated with major activity belonging to serine protease family. Maggot therapy proved an effective treatment in cases with minimal tissue necrosis and can be considered a viable treatment option.

  20. Seeing Through the Surface: Non-invasive Characterization of Biomaterial-Tissue Interactions Using Photoacoustic Microscopy.

    Science.gov (United States)

    Zhang, Yu Shrike; Wang, Lihong V; Xia, Younan

    2016-03-01

    At the intersection of life sciences, materials science, engineering, and medicine, regenerative medicine stands out as a rapidly progressing field that aims at retaining, restoring, or augmenting tissue/organ functions to promote the human welfare. While the field has witnessed tremendous advancements over the past few decades, it still faces many challenges. For example, it has been difficult to visualize, monitor, and assess the functions of the engineered tissue/organ constructs, particularly when three-dimensional scaffolds are involved. Conventional approaches based on histology are invasive and therefore only convey end-point assays. The development of volumetric imaging techniques such as confocal and ultrasonic imaging has enabled direct observation of intact constructs without the need of sectioning. However, the capability of these techniques is often limited in terms of penetration depth and contrast. In comparison, the recently developed photoacoustic microscopy (PAM) has allowed us to address these issues by integrating optical and ultrasonic imaging to greatly reduce the effect of tissue scattering of photons with one-way ultrasound detection while retaining the high optical absorption contrast. PAM has been successfully applied to a number of studies, such as observation of cell distribution, monitoring of vascularization, and interrogation of biomaterial degradation. In this review article, we highlight recent progress in non-invasive and volumetric characterization of biomaterial-tissue interactions using PAM. We also discuss challenges ahead and envision future directions.

  1. Ectopic Thyroid Tissue in the Mediastinum Characterized by Histology and Functional Imaging with I-123 SPECT/CT

    Directory of Open Access Journals (Sweden)

    Jed Hummel

    2017-01-01

    Full Text Available Ectopic thyroid tissue is a rare entity and when discovered it is typically along the pathway of embryologic migration of the thyroid. We present a case of incidental finding of ectopic thyroid tissue within mediastinum in a 61-year-old female patient with a history of total thyroidectomy for thyroiditis and nodules. The patient presented to emergency room with cough and right chest pain and underwent a chest computed tomographic angiogram (CTA to exclude pulmonary embolism as part of chest pain workup. One right paratracheal mediastinal soft tissue nodule was visualized on the images of CTA. This right paratracheal soft tissue mass was found to be ectopic benign thyroid tissue by histological analysis of the biopsied tissue samples. The function of this ectopic thyroid tissue was characterized by I-123 radioiodine uptake and single photon emission computed tomography/computed tomography (SPECT/CT imaging. This case illustrates that ectopic thyroid tissue should be included for differential diagnosis of a hyperdense soft tissue mass located within mediastinum. I-123 SPECT/CT is useful for guiding tissue biopsy of ectopic thyroid tissue distant from orthotopic thyroid gland and functional and anatomic characterization of mediastinal ectopic thyroid tissue for surgical resection when it is medically necessary.

  2. Broadband spectroscopy for characterization of tissue-like phantom optical properties

    Science.gov (United States)

    Shahin, Ali; Bachir, Wesam

    2017-12-01

    Optical phantoms are widely used for evaluating the performance of biomedical optical modalities, and hence, absorbing and scattering materials are required for the construction of optical phantoms. Towards that aim, new readily available and inexpensive black Ink (Parker) as a simulating absorber as well as Intralipid 20% as a simulating scatterer are thoroughly investigated. Broadband Transmittance and Diffuse reflectance spectroscopic measurements were performed in the visible range 400 - 700 nm. Optical properties of the phantom materials are determined. Analytical expressions for absorption and scattering coefficient related to the concentrations and wavelength of the Parker ink and Intralipid are also presented and discussed. The results show nonlinear trend in the absorption coefficient of Parker ink over the examined visible spectral range. Furthermore, Intralipid scattering coefficient variation across the mentioned spectral range shows a tissue-like scattering trend. The findings demonstrate the capability of the broadband transmission and diffuse reflectance for characterizing tissue-like phantom materials in the examined spectral range.

  3. Automated fiber tracking and tissue characterization of the anterior cruciate ligament with optical coherence tomography

    Science.gov (United States)

    Balasubramanian, Priya S.; Guo, Jiaqi; Yao, Xinwen; Qu, Dovina; Lu, Helen H.; Hendon, Christine P.

    2017-02-01

    The directionality of collagen fibers across the anterior cruciate ligament (ACL) as well as the insertion of this key ligament into bone are important for understanding the mechanical integrity and functionality of this complex tissue. Quantitative analysis of three-dimensional fiber directionality is of particular interest due to the physiological, mechanical, and biological heterogeneity inherent across the ACL-to-bone junction, the behavior of the ligament under mechanical stress, and the usefulness of this information in designing tissue engineered grafts. We have developed an algorithm to characterize Optical Coherence Tomography (OCT) image volumes of the ACL. We present an automated algorithm for measuring ligamentous fiber angles, and extracting attenuation and backscattering coefficients of ligament, interface, and bone regions within mature and immature bovine ACL insertion samples. Future directions include translating this algorithm for real time processing to allow three-dimensional volumetric analysis within dynamically moving samples.

  4. Characterization of mechanical properties of hydroxyapatite-silicon-multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application.

    Science.gov (United States)

    Khalili, Vida; Khalil-Allafi, Jafar; Sengstock, Christina; Motemani, Yahya; Paulsen, Alexander; Frenzel, Jan; Eggeler, Gunther; Köller, Manfred

    2016-06-01

    Release of Ni(1+) ions from NiTi alloy into tissue environment, biological response on the surface of NiTi and the allergic reaction of atopic people towards Ni are challengeable issues for biomedical application. In this study, composite coatings of hydroxyapatite-silicon multi walled carbon nano-tubes with 20wt% Silicon and 1wt% multi walled carbon nano-tubes of HA were deposited on a NiTi substrate using electrophoretic methods. The SEM images of coated samples exhibit a continuous and compact morphology for hydroxyapatite-silicon and hydroxyapatite-silicon-multi walled carbon nano-tubes coatings. Nano-indentation analysis on different locations of coatings represents the highest elastic modulus (45.8GPa) for HA-Si-MWCNTs which is between the elastic modulus of NiTi substrate (66.5GPa) and bone tissue (≈30GPa). This results in decrease of stress gradient on coating-substrate-bone interfaces during performance. The results of nano-scratch analysis show the highest critical distance of delamination (2.5mm) and normal load before failure (837mN) as well as highest critical contact pressure for hydroxyapatite-silicon-multi walled carbon nano-tubes coating. The cell culture results show that human mesenchymal stem cells are able to adhere and proliferate on the pure hydroxyapatite and composite coatings. The presence of both silicon and multi walled carbon nano-tubes (CS3) in the hydroxyapatite coating induce more adherence of viable human mesenchymal stem cells in contrast to the HA coated samples with only silicon (CS2). These results make hydroxyapatite-silicon-multi walled carbon nano-tubes a promising composite coating for future bone implant application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Characterization of Diaphanous-related formin FMNL2 in human tissues

    Directory of Open Access Journals (Sweden)

    Kampf Caroline

    2010-07-01

    Full Text Available Abstract Background Diaphanous-related formins govern actin-based processes involved in many cellular functions, such as cell movement and invasion. Possible connections to developmental processes and cellular changes associated with malignant phenotype make them interesting study targets. In spite of this, very little is known of the tissue distribution and cellular location of any mammalian formin. Here we have carried out a comprehensive analysis of the formin family member formin -like 2 (FMNL2 in human tissues. Results An FMNL2 antibody was raised and characterized. The affinity-purified FMNL2 antibody was validated by Western blotting, Northern blotting, a peptide competition assay and siRNA experiments. Bioinformatics-based mRNA profiling indicated that FMNL2 is widely expressed in human tissues. The highest mRNA levels were seen in central and peripheral nervous systems. Immunohistochemical analysis of 26 different human tissues showed that FMNL2 is widely expressed, in agreement with the mRNA profile. The widest expression was detected in the central nervous system, since both neurons and glial cells expressed FMNL2. Strong expression was also seen in many epithelia. However, the expression in different cell types was not ubiquitous. Many mesenchymal cell types showed weak immunoreactivity and cells lacking expression were seen in many tissues. The subcellular location of FMNL2 was cytoplasmic, and in some tissues a strong perinuclear dot was detected. In cultured cells FMNL2 showed mostly a cytoplasmic localization with perinuclear accumulation consistent with the Golgi apparatus. Furthermore, FMNL2 co-localized with F-actin to the tips of cellular protrusions in WM164 human melanoma cells. This finding is in line with FMNL2's proposed function in the formation of actin filaments in cellular protrusions, during amoeboid cellular migration. Conclusion FMNL2 is expressed in multiple human tissues, not only in the central nervous system

  6. Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Serra, I.R.; Fradique, R.; Vallejo, M.C.S.; Correia, T.R.; Miguel, S.P.; Correia, I.J., E-mail: icorreia@ubi.pt

    2015-10-01

    Recently, bone tissue engineering emerged as a viable therapeutic alternative, comprising bone implants and new personalized scaffolds to be used in bone replacement and regeneration. In this study, biocompatible scaffolds were produced by freeze-drying, using different formulations (chitosan, chitosan/gelatin, chitosan/β-TCP and chitosan/gelatin/β-TCP) to be used as temporary templates during bone tissue regeneration. Sample characterization was performed through attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray diffraction and energy dispersive spectroscopy analysis. Mechanical characterization and porosity analysis were performed through uniaxial compression test and liquid displacement method, respectively. In vitro studies were also done to evaluate the biomineralization activity and the cytotoxic profile of the scaffolds. Scanning electron and confocal microscopy analysis were used to study cell adhesion and proliferation at the scaffold surface and within their structure. Moreover, the antibacterial activity of the scaffolds was also evaluated through the agar diffusion method. Overall, the results obtained revealed that the produced scaffolds are bioactive and biocompatible, allow cell internalization and show antimicrobial activity against Staphylococcus aureus. Such, make these 3D structures as potential candidates for being used on the bone tissue regeneration, since they promote cell adhesion and proliferation and also prevent biofilm development at their surfaces, which is usually the main cause of implant failure. - Highlights: • Production of 3D scaffolds composed by chitosan/gelatin/β-TCP by freeze-drying for bone regeneration • Physicochemical characterization of the bone substitutes by SEM, FTIR, XRD and EDS • Evaluation of the cytotoxic profile and antibacterial activity of the 3D structures through in vitro assays.

  7. Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Pan Bifeng; Cui Daxiang; Xu Ping; Feng Gao; Huang Tuo; Li Qing; He Rong [Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai 200240 (China); Ozkan, Cengiz [Mechanical Engineering Department, University of California Riverside, 900 University Avenue-Riverside, CA 92521 (United States); Ozkan, Mihri [Electrical Engineering Department, University of California Riverside, 900 University Avenue, Riverside, CA 92521 (United States); Chu, Bingfeng [Department of Stomatology, General Hospital of PLA, 28 Fuxing Road, Beijing100853 (China); Hu Guohan [Department of Neurosurgery of Changzheng Hospital, 415 Fengyang Road, Second Military Medical University, Shanghai 20003 (China)], E-mail: dxcui@sjtu.edu.cn, E-mail: huguohan6504@sina.com

    2009-03-25

    With the aim of improving the amount and delivery efficiency of genes taken by carbon nanotubes into human cancer cells, different generations of polyamidoamine dendrimer modified multi-walled carbon nanotubes (dMNTs) were fabricated, and characterized by high-resolution transmission electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis, revealing the presence of dendrimer capped on the surface of carbon nanotubes. The dMNTs fully conjugated with FITC-labeled antisense c-myc oligonucleotides (asODN), those resultant asODN-dMNTs composites were incubated with human breast cancer cell line MCF-7 cells and MDA-MB-435 cells, and liver cancer cell line HepG2 cells, and confirmed to enter into tumor cells within 15 min by laser confocal microscopy. These composites inhibited the cell growth in time- and dose-dependent means, and down-regulated the expression of the c-myc gene and C-Myc protein. Compared with the composites of CNT-NH{sub 2}-asODN and dendrimer-asODN, no. 5 generation of dendrimer-modified MNT-asODN composites exhibit maximal transfection efficiencies and inhibition effects on tumor cells. The intracellular gene transport and uptake via dMNTs should be generic for the mammalian cell lines. The dMNTs have potentials in applications such as gene or drug delivery for cancer therapy and molecular imaging.

  8. Synthesis, characterization and cytotoxicity of surface amino-functionalized water-dispersible multi-walled carbon nanotubes

    Science.gov (United States)

    Vuković, Goran; Marinković, Aleksandar; Obradović, Maja; Radmilović, Velimir; Čolić, Miodrag; Aleksić, Radoslav; Uskoković, Petar S.

    2009-06-01

    Surface functionalization of multi-walled carbon nanotubes (MWCNTs), with amino groups via chemical modification of carboxyl groups introduced on the nanotube surface, using O-(7-azabenzotriazol-1-yl)- N, N, N', N'-tetramethyluronium hexafluorophosphate (N-HATU) and N, N-diisopropylethylamine (DIEA) is reported. The N-HATU coupling agent provides faster reaction rate and the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. The amines, 1,6-hexanediamine (HDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and 1,4-phenylenediamine (PDA) were used. The resulting materials were characterized with different techniques such as FTIR, XRD, elemental analysis, TGA, TEM, UV-vis spectroscopy and cyclic voltammetry. MWCNTs functionalized with PDA posses the best dispersibility and electron transfer properties in comparison to the others amines. Functionalized MWCNTs, at the concentrations between 1 and 50 μg ml -1, were not cytotoxic for the fibroblast L929 cell line. However, the concentrations of MWCNTs higher of 10 μg ml -1 reduced cell growth and this effect correlated positively with the degree of their uptake by L929 cells.

  9. Synthesis, characterization and cytotoxicity of surface amino-functionalized water-dispersible multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, Goran; Marinkovic, Aleksandar [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Obradovic, Maja [Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, 11001 Belgrade (Serbia); Radmilovic, Velimir [National Centre for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Colic, Miodrag [Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11002 Belgrade (Serbia); Aleksic, Radoslav [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Uskokovic, Petar S., E-mail: puskokovic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia)

    2009-06-30

    Surface functionalization of multi-walled carbon nanotubes (MWCNTs), with amino groups via chemical modification of carboxyl groups introduced on the nanotube surface, using O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (N-HATU) and N,N-diisopropylethylamine (DIEA) is reported. The N-HATU coupling agent provides faster reaction rate and the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. The amines, 1,6-hexanediamine (HDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and 1,4-phenylenediamine (PDA) were used. The resulting materials were characterized with different techniques such as FTIR, XRD, elemental analysis, TGA, TEM, UV-vis spectroscopy and cyclic voltammetry. MWCNTs functionalized with PDA posses the best dispersibility and electron transfer properties in comparison to the others amines. Functionalized MWCNTs, at the concentrations between 1 and 50 {mu}g ml{sup -1}, were not cytotoxic for the fibroblast L929 cell line. However, the concentrations of MWCNTs higher of 10 {mu}g ml{sup -1} reduced cell growth and this effect correlated positively with the degree of their uptake by L929 cells.

  10. Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall.).

    Science.gov (United States)

    Haldar, Koyel Mallick; Haldar, Basudeb; Chandra, Goutam

    2013-04-01

    Highly stable nanoparticles of metallic silver with average dimension of 26.6 nm were synthesized by a simple, cost-effective, reproducible and previously unexploited biogenic source viz. dried green fruits of Drypetes roxburghii (Wall.) (common name putranjiva). The as-synthesized silver nanoparticles (Ag NP) were characterized by their characteristic surface plasmon resonance absorption spectra, X-ray diffraction analysis, energy dispersive X-ray analysis and selected area electron diffraction study. The morphology of the particles was determined by high-resolution transmission electron microscopy. Fourier transform infrared analysis focuses some light on the chemical framework that stabilizes the nanoparticles. The analyses of the phytochemicals present in the fruit extract of the plant were also performed following standard protocol. Mosquito larvicidal bioassay with the Ag NPs was carried out with two mosquitoes, namely Anopheles stephensi Liston and Culex quinquefasciatus Say. The results show impressive mortality rate even at too low concentration of nanoparticle. Toxicity test on non-target organism shows no harmful effect during the study period.

  11. Characterization of the homogeneous tissue mixture approximation in breast imaging dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Sechopoulos, Ioannis; Bliznakova, Kristina; Qin Xulei; Fei Baowei; Feng, Steve Si Jia [Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University School of Medicine, 1701 Upper Gate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Department of Medical Physics, University of Patras School of Health Sciences, 26500 Rio-Patras (Greece); Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Upper Gate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Upper Gate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 and Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322 (United States)

    2012-08-15

    estimated using the true heterogeneous glandular tissue distribution (Wilcoxon Signed Rank Test p= 0.00046). For dedicated breast CT, the overestimation of normalized glandular dose was, on average, 8% (49 kVp spectrum, p= 0.00045) and 4% (80 kVp spectrum, p= 0.000089). Only two cases in mammography and two cases in dedicated breast CT with a tube voltage of 49 kVp resulted in lower dose estimates for the homogeneous tissue approximation compared to the heterogeneous tissue distribution. Conclusions: The normalized glandular dose based on the homogeneous tissue mixture approximation results in a significant overestimation of dose to the imaged breast. This overestimation impacts the use of dose estimates in absolute terms, such as for risk estimates, and may impact some comparative studies, such as when modalities or techniques with different x-ray energies are used. The error introduced by the homogeneous tissue mixture approximation in higher energy x-ray modalities, such as dedicated breast CT, although statistically significant, may not be of clinical concern. Further work is required to better characterize this overestimation and potentially develop new metrics or correction factors to better estimate the true glandular dose to breasts undergoing imaging with ionizing radiation.

  12. Thyroid tissue constituents characterization and application to in vivo studies by broadband (600-1200 nm) diffuse optical spectroscopy

    Science.gov (United States)

    Konugolu Venkata Sekar, Sanathana; Farina, Andrea; dalla Mora, Alberto; Taroni, Paola; Lindner, Claus; Mora, Mireia; Farzam, Parisa; Pagliazzi, Marco; Squarcia, Mattia; Halperin, Irene; Hanzu, Felicia A.; Dehghani, Hamid; Durduran, Turgut; Pifferi, Antonio

    2017-07-01

    We present the first broadband (600-1100 nm) diffuse optical characterization of thyroglobulin and tyrosine, which are thyroid-specific tissue constituents. In-vivo measurements at the thyroid region enabled their quantification for functional and diagnostic applications.

  13. Characterization of changes in plasma and tissue oxylipin levels in LPS and CLP induced murine sepsis.

    Science.gov (United States)

    Willenberg, Ina; Rund, Katharina; Rong, Song; Shushakova, Nelli; Gueler, Faikah; Schebb, Nils Helge

    2016-02-01

    The present study aimed to comprehensively investigate the changes in oxylipins during murine sepsis induced by lipopolysaccharide (LPS) or cecal ligation and puncture (CLP). Twenty-four hours after induction of sepsis in male C57BL/6 mice by LPS or CLP, plasma and liver, lung, kidney and heart tissues were sampled. Oxylipin levels in plasma and tissue were quantified by means of LC-MS. Moreover, clinical chemistry parameters were determined in plasma and interleukin levels (MCP-1 and IL-6) were determined in kidney and liver. Elevation of liver function plasma parameters at 24 h revealed that both models were successful in the induction of sepsis. LPS induced sepsis resulted in a dramatic increase of plasma PGE2 (2,100% change in comparison to control) and other cyclooxygenase metabolites, whereas this effect was less pronounced in CLP induced sepsis (97% increase of PGE2). Plasma epoxy-fatty acids (FAs) and hydroxy-FAs and most of the dihydroxy-FAs were elevated in both models of sepsis. Changes of tissue oxylipin concentrations were organ dependent. Only few changes were detected in the lung and liver tissue, epoxy-FAs were elevated in the kidney. In the heart tissue a trend towards lower levels of hydroxy-FAs and epoxy-FAs was observed. Both murine models of sepsis are characterized by changes of oxylipins formed in all branches of the arachidonic acid (AA) cascade. The more pronounced effects in the LPS model make this model more suitable for the investigation of the AA cascade and its pharmacological modulation in sepsis.

  14. On the characterization of the heterogeneous mechanical response of human brain tissue.

    Science.gov (United States)

    Forte, Antonio E; Gentleman, Stephen M; Dini, Daniele

    2017-06-01

    The mechanical characterization of brain tissue is a complex task that scientists have tried to accomplish for over 50 years. The results in the literature often differ by orders of magnitude because of the lack of a standard testing protocol. Different testing conditions (including humidity, temperature, strain rate), the methodology adopted, and the variety of the species analysed are all potential sources of discrepancies in the measurements. In this work, we present a rigorous experimental investigation on the mechanical properties of human brain, covering both grey and white matter. The influence of testing conditions is also shown and thoroughly discussed. The material characterization performed is finally adopted to provide inputs to a mathematical formulation suitable for numerical simulations of brain deformation during surgical procedures.

  15. Novel applications of ultrasound technology to visualize and characterize myofascial trigger points and surrounding soft tissue.

    Science.gov (United States)

    Sikdar, Siddhartha; Shah, Jay P; Gebreab, Tadesse; Yen, Ru-Huey; Gilliams, Elizabeth; Danoff, Jerome; Gerber, Lynn H

    2009-11-01

    To apply ultrasound (US) imaging techniques to better describe the characteristics of myofascial trigger points (MTrPs) and the immediately adjacent soft tissue. Four sites in each patient were labeled based on physical examination as active myofascial trigger points (A-MTrPs; spontaneously painful), latent myofascial trigger points (L-MTrPs; nonpainful), or normal myofascial tissue. US examination was performed on each subject by a team blinded to the physical findings. A 12 approximately 5MHz US transducer was used. Vibration sonoelastography (VSE) was performed by color Doppler variance imaging while simultaneously inducing vibrations (approximately 92Hz) with a handheld massage vibrator. Each site was assigned a tissue imaging score as follows: 0, uniform echogenicity and stiffness; 1, focal hypoechoic region with stiff nodule; 2, multiple hypoechoic regions with stiff nodules. Blood flow in the neighborhood of MTrPs was assessed using Doppler imaging. Each site was assigned a blood flow waveform score as follows: 0, normal arterial flow in muscle; 1, elevated diastolic flow; 2, high-resistance flow waveform with retrograde diastolic flow. Biomedical research center. Subjects (N=9) meeting Travell and Simons' criteria for MTrPs in a taut band in the upper trapezius. Not applicable. MTrPs were evaluated by (1) physical examination, (2) pressure algometry, and (3) three types of US imaging including gray-scale (2-dimensional [2D] US), VSE, and Doppler. MTrPs appeared as focal, hypoechoic regions on 2D US, indicating local changes in tissue echogenicity, and as focal regions of reduced vibration amplitude on VSE, indicating a localized, stiff nodule. MTrPs were elliptical, with a size of .16+/-.11 cm(2). There were no significant differences in size between A-MTrPs and L-MTrPs. Sites containing MTrPs were more likely to have a higher tissue imaging score compared with normal myofascial tissue (Ptrigger points). US enables visualization and some characterization of

  16. Quantitative Techniques for Assessing and Controlling the Dispersion and Biological Effects of Multi-walled Carbon Nanotubes in Mammalian Tissue Culture Cells

    Science.gov (United States)

    Wang, Xiang; Xia, Tian; Ntim, Susana Addo; Ji, Zhaoxia; George, Saji; Meng, Huan; Zhang, Haiyuan; Castranova, Vincent; Mitra, Somenath; Nel, André E.

    2014-01-01

    In vivo studies have demonstrated that the state of dispersion of carbon nanotubes (CNT) plays an important role in generating adverse pulmonary effects. However, little has been done to develop reproducible and quantifiable dispersion techniques to conduct mechanistic studies in vitro. This study was to evaluate the dispersion of multi-walled carbon nanotubes (MWCNT) in tissue culture media, with particular emphasis on understanding the forces that govern agglomeration and how to modify these forces. Quantitative techniques such as hydrophobicity index, suspension stability index, attachment efficiency and dynamic light scattering were used to assess the effects of agglomeration and dispersion of as-prepared (AP), purified (PD) or carboxylated (COOH) MWCNT on bronchial epithelial and fibroblast cell lines. We found that hydrophobicity is the major factor determining AP- and PD-MWCNT agglomeration in tissue culture media but that the ionic strength is the main factor determining COOH-MWCNT suspendability. Bovine serum albumin (BSA) was an effective dispersant for MWCNT, providing steric and electrosteric hindrance that are capable of overcoming hydrophobic attachment and the electrostatic screening of double layer formation in ionic media. Thus, BSA was capable of stabilizing all tube versions. Dipalmitoylphosphatidylcholine (DPPC) provided additional stability for AP-MWCNT in epithelial growth medium (BEGM). While dispersion state did not affect cytotoxicity, improved dispersion of AP- and PD-MWCNT increased TGF-β1 production in epithelial cells and fibroblast proliferation. In summary, we demonstrate how quantitative techniques can be used to assess the agglomeration state of MWCNT when conducting mechanistic studies on the effects of dispersion on tissue culture cells. PMID:21067152

  17. Optically characterizing vascular tissue constructs made with soluble versus homogenized collagen

    Science.gov (United States)

    Levitz, David; Hinds, Monica T.; Tran, Noi T.; Hanson, Stephen R.; Jacques, Steven L.

    2008-02-01

    The ability of optical imaging techniques such as optical coherence tomography (OCT) to non-destructively characterize tissue-engineered constructs has generated enormous interest recently. We are testing the hypothesis that OCT data can be used to characterize the cellularity of collagen-based vascular constructs made from 2 types of collagen scaffold matrix: soluble collagen and homogenized collagen. Smooth muscle cells were seeded in these 2 scaffold matrices at a seeding density of 1×10 6 cells/ml. The disk-shaped constructs were allowed to remodel and compact in the incubator for 96 hours. OCT imaging of the constructs occurred at 24 hour intervals. From the OCT data, the attenuation and reflectivity were evaluated by fitting the data to a theoretical model that relates the tissue optical properties (scattering coefficient and anisotropy factor) and imaging conditions to the OCT signal. The fitted optical properties were compared to the construct volume. Representative H&E histological sections of the constructs were used to assess cell proliferation. Our data showed that the optical properties of the solubilized constructs changed over time while those of the homogenized constructs did not, in agreement with the histology and compaction observations.

  18. Small-window parametric imaging based on information entropy for ultrasound tissue characterization

    Science.gov (United States)

    Tsui, Po-Hsiang; Chen, Chin-Kuo; Kuo, Wen-Hung; Chang, King-Jen; Fang, Jui; Ma, Hsiang-Yang; Chou, Dean

    2017-01-01

    Constructing ultrasound statistical parametric images by using a sliding window is a widely adopted strategy for characterizing tissues. Deficiency in spatial resolution, the appearance of boundary artifacts, and the prerequisite data distribution limit the practicability of statistical parametric imaging. In this study, small-window entropy parametric imaging was proposed to overcome the above problems. Simulations and measurements of phantoms were executed to acquire backscattered radiofrequency (RF) signals, which were processed to explore the feasibility of small-window entropy imaging in detecting scatterer properties. To validate the ability of entropy imaging in tissue characterization, measurements of benign and malignant breast tumors were conducted (n = 63) to compare performances of conventional statistical parametric (based on Nakagami distribution) and entropy imaging by the receiver operating characteristic (ROC) curve analysis. The simulation and phantom results revealed that entropy images constructed using a small sliding window (side length = 1 pulse length) adequately describe changes in scatterer properties. The area under the ROC for using small-window entropy imaging to classify tumors was 0.89, which was higher than 0.79 obtained using statistical parametric imaging. In particular, boundary artifacts were largely suppressed in the proposed imaging technique. Entropy enables using a small window for implementing ultrasound parametric imaging. PMID:28106118

  19. Mapping and characterization of iron compounds in Alzheimer's tissue

    Energy Technology Data Exchange (ETDEWEB)

    Collingwood, Joanna; Dobson, Jon [Keele

    2008-06-16

    Understanding the management of iron in the brain is of great importance in the study of neurodegeneration, where regional iron overload is frequently evident. A variety of approaches have been employed, from quantifying iron in various anatomical structures, to identifying genetic risk factors related to iron metabolism, and exploring chelation approaches to tackle iron overload in neurodegenerative disease. However, the ease with which iron can change valence state ensures that it is present in vivo in a wide variety of forms, both soluble and insoluble. Here, we review recent developments in approaches to locate and identify iron compounds in neurodegenerative tissue. In addition to complementary techniques that allow us to quantify and identify iron compounds using magnetometry, extraction, and electron microscopy, we are utilizing a powerful combined mapping/characterization approach with synchrotron X-rays. This has enabled the location and characterization of iron accumulations containing magnetite and ferritin in human Alzheimer's disease (AD) brain tissue sections in situ at micron-resolution. It is hoped that such approaches will contribute to our understanding of the role of unusual iron accumulations in disease pathogenesis, and optimise the potential to use brain iron as a clinical biomarker for early detection and diagnosis.

  20. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: A review.

    Science.gov (United States)

    Mitić, Žarko; Stolić, Aleksandra; Stojanović, Sanja; Najman, Stevo; Ignjatović, Nenad; Nikolić, Goran; Trajanović, Miroslav

    2017-10-01

    A review of recent advances in instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue is presented in this paper. In recent years, biomaterials attracted great attention primarily because of the wide range of biomedical applications. This paper focuses on the practical aspects of instrumental methods and techniques that were most often applied (X-ray methods, vibrational spectroscopy (IR and Raman), magnetic-resonance spectroscopy (NMR and ESR), mass spectrometry (MS), atomic absorption spectrometry (AAS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES), thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM)) in the structural investigation and physicochemical characterization of biomaterials and bone tissue. The application of some other physicochemical methods was also discussed. Hands-on information is provided about these valuable research tools, emphasizing practical aspects such as typical measurement conditions, their limitations and advantages, interpretation of results and practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Seismic fragility of RC shear walls in nuclear power plant Part 1: Characterization of uncertainty in concrete constitutive model

    Energy Technology Data Exchange (ETDEWEB)

    Syed, Sammiuddin [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 426 Mann Hall, Campus Box 7908, Raleigh, NC 27695-7908 (United States); Gupta, Abhinav, E-mail: agupta1@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 413 Mann Hall, Campus Box 7908, Raleigh, NC 27695-7908 (United States)

    2015-12-15

    Highlights: • A framework is proposed for seismic fragility assessment of Reinforced Concrete structures. • Experimentally validated finite element models are used to conduct nonlinear simulations. • Critical parameters in concrete constitutive model are identified to conduct nonlinear simulations. • Uncertainties in model parameters of concrete damage plasticity model is characterized. • Closed form expressions are used to compute the damage variables and plasticity. - Abstract: This two part manuscript proposes a framework for seismic fragility assessment of reinforced concrete structures in nuclear energy facilities. The novelty of the proposed approach lies in the characterization of uncertainties in the parameters of the material constitutive model. Concrete constitutive models that comprehensively address different damage states such as tensile cracking, compression failure, stiffness degradation, and recovery of degraded stiffness due to closing of previously formed cracks under dynamic loading are generally defined in terms of a large number of variables to characterize the plasticity and damage at material level. Over the past several years, many different studies have been presented on evaluation of fragility for reinforced concrete structures using nonlinear time history simulations. However, almost all of these studies do not consider uncertainties in the parameters of a comprehensive constitutive model. Part-I of this two-part manuscript presents a study that is used to identify uncertainties associated with the critical parameters in nonlinear concrete damage plasticity model proposed by Lubliner et al. (1989. Int. J. Solids Struct., 25(3), 299) and later modified by Lee and Fenves (1998a. J. Eng. Mech., ASCE, 124(8), 892) and Lee and Fenves (1998b. Earthquake Eng. Struct. Dyn., 27(9), 937) for the purpose of seismic fragility assessment. The limitations in implementation of the damage plasticity model within a finite element framework and

  2. In-situ Characterization and Mapping of Iron Compounds in Alzheimer's Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Collingwood, J F; Mikhaylova, A; Davidson, M; Batich, C; Streit, W J; Terry, J; Dobson, J [IIT; (Keele); (Florida)

    2008-06-16

    There is a well-established link between iron overload in the brain and pathology associated with neurodegeneration in a variety of disorders such as Alzheimer's (AD), Parkinson's (PD) and Huntington's (HD) diseases. This association was first discovered in AD by Goodman in 1953, where, in addition to abnormally high concentrations of iron in autopsy brain tissue, iron has also been shown to accumulate at sites of brain pathology such as senile plaques. However, since this discovery, progress in understanding the origin, role and nature of iron compounds associated with neurodegeneration has been slow. Here we report, for the first time, the location and characterization of iron compounds in human AD brain tissue sections. Iron fluorescence was mapped over a frontal-lobe tissue section from an Alzheimer's patient, and anomalous iron concentrations were identified using synchrotron X-ray absorption techniques at 5 {micro}m spatial resolution. Concentrations of ferritin and magnetite, a magnetic iron oxide potentially indicating disrupted brain-iron metabolism, were evident. These results demonstrate a practical means of correlating iron compounds and disease pathology in-situ and have clear implications for disease pathogenesis and potential therapies.

  3. Characterization of adenoviral transduction profile in prostate cancer cells and normal prostate tissue.

    Science.gov (United States)

    Ai, Jianzhong; Tai, Phillip W L; Lu, Yi; Li, Jia; Ma, Hong; Su, Qin; Wei, Qiang; Li, Hong; Gao, Guangping

    2017-09-01

    Prostate diseases are common in males worldwide with high morbidity. Gene therapy is an attractive therapeutic strategy for prostate diseases, however, it is currently underdeveloped. As well known, adeno virus (Ad) is the most widely used gene therapy vector. The aims of this study are to explore transduction efficiency of Ad in prostate cancer cells and normal prostate tissue, thus further providing guidance for future prostate pathophysiological studies and therapeutic development of prostate diseases. We produced Ad expressing enhanced green fluorescence protein (EGFP), and characterized the transduction efficiency of Ad in both human and mouse prostate cancer cell lines in vitro, as well as prostate tumor xenograft, and wild-type mouse prostate tissue in vivo. Ad transduction efficiency was determined by EGFP fluorescence using microscopy and flow cytometry. Cell type-specific transduction was examined by immunofluorescence staining of cell markers. Our data showed that Ad efficiently transduced human and mouse prostate cancer cells in vitro in a dose dependent manner. Following intratumoral and intraprostate injection, Ad could efficiently transduce prostate tumor xenograft and the major prostatic cell types in vivo, respectively. Our findings suggest that Ad can efficiently transduce prostate tumor cells in vitro as well as xenograft and normal prostate tissue in vivo, and further indicate that Ad could be a potentially powerful toolbox for future gene therapy of prostate diseases. © 2017 Wiley Periodicals, Inc.

  4. Preparation and Characterization of Montmorillonite/Polycaprolactone Composite Scaffold Containing Strontium for Bone Tissue Engineering Studies

    Directory of Open Access Journals (Sweden)

    Aysel Koc Demir

    2016-11-01

    Full Text Available Montmorillonite (MMT has attracted much attention due to its intrinsic ability to incorporate cations. In this study, we developed scaffold combining strontium-modified MMT and polycaprolactone (SrMMT-PCL to further utilise the osteoconductive properties of strontium. For this purpose, MMT was modified with strontium, and then blended with polycaprolactone (PCL in specific ratios by using particulate leaching technique to obtain bone tissue-like biocomposite scaffold. The macrostructure and morphology were characterized by X-ray diffraction (XRD, fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA and scanning electron microscopy (SEM. The release of Sr2+ from scaffolds into cell culture medium was determined by inductive coupled plasma optical emission spectrometer (ICP-OES. The pore size distrubition of scaffolds was determined by mercury intrusion porosimetry. The mechanical properties were also evaluated. The results of FTIR and XRD confirmed intercalation of PCL into MMT layers. TGA studies concluded that the MMT in PCL promoted the thermal degradation of the matrix. ICP results showed that Sr2+ was released from composite scaffolds. The majority of pore volume seems to be occupied by pores around 250-350 mm. SEM observations demonstrated the macroporous structure of the MMT-PCL sponges obtained by using the particulate leaching method. As a result, gained data suggests that obtained tissue-engineered scaffold has the potential to serve as a suitable templete for bone tissue engineering applications.

  5. Real-Time Electrical Bioimpedance Characterization of Neointimal Tissue for Stent Applications

    Directory of Open Access Journals (Sweden)

    David Rivas-Marchena

    2017-07-01

    Full Text Available To follow up the restenosis in arteries stented during an angioplasty is an important current clinical problem. A new approach to monitor the growth of neointimal tissue inside the stent is proposed on the basis of electrical impedance spectroscopy (EIS sensors and the oscillation-based test (OBT circuit technique. A mathematical model was developed to analytically describe the histological composition of the neointima, employing its conductivity and permittivity data. The bioimpedance model was validated against a finite element analysis (FEA using COMSOL Multiphysics software. A satisfactory correlation between the analytical model and FEA simulation was achieved in most cases, detecting some deviations introduced by the thin “double layer” that separates the neointima and the blood. It is hereby shown how to apply conformal transformations to obtain bioimpedance electrical models for stack-layered tissues over coplanar electrodes. Particularly, this can be applied to characterize the neointima in real-time. This technique is either suitable as a main mechanism for restenosis follow-up or it can be combined with proposed intelligent stents for blood pressure measurements to auto-calibrate the sensibility loss caused by the adherence of the tissue on the micro-electro-mechanical sensors (MEMSs.

  6. Real-Time Electrical Bioimpedance Characterization of Neointimal Tissue for Stent Applications

    Science.gov (United States)

    Olmo, Alberto; Miguel, José A.; Martínez, Mar; Huertas, Gloria

    2017-01-01

    To follow up the restenosis in arteries stented during an angioplasty is an important current clinical problem. A new approach to monitor the growth of neointimal tissue inside the stent is proposed on the basis of electrical impedance spectroscopy (EIS) sensors and the oscillation-based test (OBT) circuit technique. A mathematical model was developed to analytically describe the histological composition of the neointima, employing its conductivity and permittivity data. The bioimpedance model was validated against a finite element analysis (FEA) using COMSOL Multiphysics software. A satisfactory correlation between the analytical model and FEA simulation was achieved in most cases, detecting some deviations introduced by the thin “double layer” that separates the neointima and the blood. It is hereby shown how to apply conformal transformations to obtain bioimpedance electrical models for stack-layered tissues over coplanar electrodes. Particularly, this can be applied to characterize the neointima in real-time. This technique is either suitable as a main mechanism for restenosis follow-up or it can be combined with proposed intelligent stents for blood pressure measurements to auto-calibrate the sensibility loss caused by the adherence of the tissue on the micro-electro-mechanical sensors (MEMSs). PMID:28788093

  7. Characterization of the Embryogenic Tissue of the Norway Spruce Including a Transition Layer between the Tissue and the Culture Medium by Magnetic Resonance Imaging

    Science.gov (United States)

    Kořínek, R.; Mikulka, J.; Hřib, J.; Hudec, J.; Havel, L.; Bartušek, K.

    2017-02-01

    The paper describes the visualization of the cells (ESEs) and mucilage (ECMSN) in an embryogenic tissue via magnetic resonance imaging (MRI) relaxometry measurement combined with the subsequent multi-parametric segmentation. The computed relaxometry maps T1 and T2 show a thin layer (transition layer) between the culture medium and the embryogenic tissue. The ESEs, mucilage, and transition layer differ in their relaxation times T1 and T2; thus, these times can be used to characterize the individual parts within the embryogenic tissue. The observed mean values of the relaxation times T1 and T2 of the ESEs, mucilage, and transition layer are as follows: 1469 ± 324 and 53 ± 10 ms, 1784 ± 124 and 74 ± 8 ms, 929 ± 164 and 32 ± 4.7 ms, respectively. The multi-parametric segmentation exploiting the T1 and T2 relaxation times as a classifier shows the distribution of the ESEs and mucilage within the embryogenic tissue. The discussed T1 and T2 indicators can be utilized to characterize both the growth-related changes in an embryogenic tissue and the effect of biotic/abiotic stresses, thus potentially becoming a distinctive indicator of the state of any examined embryogenic tissue.

  8. Mechanical Characterization and Shape Optimization of Fascicle-Like 3D Skeletal Muscle Tissues Contracted with Electrical and Optical Stimuli.

    Science.gov (United States)

    Neal, Devin; Sakar, Mahmut Selman; Bashir, Rashid; Chan, Vincent; Asada, Haruhiko Harry

    2015-06-01

    In this study, we present a quantitative approach to construct effective 3D muscle tissues through shape optimization and load impedance matching with electrical and optical stimulation. We have constructed long, thin, fascicle-like skeletal muscle tissue and optimized its form factor through mechanical characterization. A new apparatus was designed and built, which allowed us to measure force-displacement characteristics with diverse load stiffnesses. We have found that (1) there is an optimal form factor that maximizes the muscle stress, (2) the energy transmitted to the load can be maximized with matched load stiffness, and (3) optical stimulation using channelrhodopsin2 in the muscle tissue can generate a twitch force as large as its electrical counterpart for well-developed muscle tissue. Using our tissue construct method, we found that an optimal initial diameter of 500 μm outperformed tissues using 250 μm by more than 60% and tissues using 760 μm by 105%. Using optimal load stiffness, our tissues have generated 12 pJ of energy per twitch at a peak generated stress of 1.28 kPa. Additionally, the difference in optically stimulated twitch performance versus electrically stimulated is a function of how well the overall tissue performs, with average or better performing strips having less than 10% difference. The unique mechanical characterization method used is generalizable to diverse load conditions and will be used to match load impedance to muscle tissue impedance for a wide variety of applications.

  9. Diffuse Optical Characterization of the Healthy Human Thyroid Tissue and Two Pathological Case Studies.

    Directory of Open Access Journals (Sweden)

    Claus Lindner

    Full Text Available The in vivo optical and hemodynamic properties of the healthy (n = 22 and pathological (n = 2 human thyroid tissue were measured non-invasively using a custom time-resolved spectroscopy (TRS and diffuse correlation spectroscopy (DCS system. Medical ultrasound was used to guide the placement of the hand-held hybrid optical probe. TRS measured the absorption and reduced scattering coefficients (μa, μs' at three wavelengths (690, 785 and 830 nm to derive total hemoglobin concentration (THC and oxygen saturation (StO2. DCS measured the microvascular blood flow index (BFI. Their dependencies on physiological and clinical parameters and positions along the thyroid were investigated and compared to the surrounding sternocleidomastoid muscle. The THC in the thyroid ranged from 131.9 μM to 144.8 μM, showing a 25-44% increase compared to the surrounding sternocleidomastoid muscle tissue. The blood flow was significantly higher in the thyroid (BFIthyroid = 16.0 × 10-9 cm2/s compared to the muscle (BFImuscle = 7.8 × 10-9 cm2/s, while StO2 showed a small (StO2, muscle = 63.8% to StO2, thyroid = 68.4%, yet significant difference. Two case studies with thyroid nodules underwent the same measurement protocol prior to thyroidectomy. Their THC and BFI reached values around 226.5 μM and 62.8 × 10-9 cm2/s respectively showing a clear contrast to the nodule-free thyroid tissue as well as the general population. The initial characterization of the healthy and pathologic human thyroid tissue lays the ground work for the future investigation on the use of diffuse optics in thyroid cancer screening.

  10. Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Honglin [School of Materials Science and Engineering, Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Xiong, Guangyao [School of Mechanical and Electrical Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013 (China); Hu, Da [School of Materials Science and Engineering, Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Ren, Kaijing [Department of Joint Surgery, Tianjin Hospital, Tianjin 300211 (China); Yao, Fanglian; Zhu, Yong [School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Gao, Chuan [School of Materials Science and Engineering, Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Wan, Yizao, E-mail: yzwantju@126.com [School of Materials Science and Engineering, Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2013-12-16

    Introduction of active groups on the surface of bacterial cellulose (BC) nanofibers is one of the promising routes of tailoring the performance of BC scaffolds for tissue engineering. This paper reported the introduction of aldehyde groups to BC nanofibers by 2,2,6,6-tetramethylpyperidine-1-oxy radical (TEMPO)-mediated oxidation and evaluation of the potential of the TEMPO-oxidized BC as tissue engineering scaffolds. Periodate oxidation was also conducted for comparison. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses were carried out to determine the existence of aldehyde groups on BC nanofibers and the crystallinity. In addition, properties relevant to scaffold applications such as morphology, fiber diameter, mechanical properties, and in vitro degradation were characterized. The results indicated that periodate oxidation could introduce free aldehyde to BC nanofibers and the free aldehyde groups on the TEMPO-oxidized BC tended to transfer to acetal groups. It was also found that the advantageous 3D structure of BC scaffolds remained unchanged and that no significant changes in morphology, fiber diameter, tensile structure and in vitro degradation were found after TEMPO-mediated oxidation while significant differences were observed upon periodate oxidation. The present study revealed that TEMPO-oxidation could impart BC scaffolds with new functions while did not degrade their intrinsic advantages. - Highlights: • TEMPO-mediated oxidation on BC scaffold for tissue engineering use was conducted. • TEMPO-mediated oxidation did not degrade the intrinsic advantages of BC scaffold. • TEMPO-mediated oxidation could impart BC scaffold with new functional groups. • Feasibility of TEMPO-oxidized BC as tissue engineering scaffold was confirmed.

  11. Characterization and phylogenetic analysis of lectin gene cDNA isolated from sea cucumber ( Apostichopus japonicus) body wall

    Science.gov (United States)

    Xue, Zhuang; Li, Hui; Liu, Yang; Zhou, Wei; Sun, Jing; Wang, Xiuli

    2017-12-01

    As a `living fossil' of species origin and `rich treasure' of food and nutrition development, sea cucumber has received a lot of attentions from researchers. The cDNA library construction and EST sequencing of blood had been conducted previously in our lab. The bioinformatic analysis provided a gene fragment which is highly homologous with the genes of lectin family, named AjL ( Apostichopus japonicus lectin). To characterize and determine the phylogeny of AjL genes in early evolution, we isolated a full-length cDNA of lectin gene from the body wall of A. japonicus. The open reading frame of this gene contained 489 bp and encoded a 163 amino acids secretory protein being homologous to lectins of mammals and aquatic organisms. The deduced protein included a lectin-like domain. SDS-PAGE analysis showed that AjL migrated as a specific band (about 36.09 kDa under reducing), and agglutinated against rabbit red blood cells. AjL was similar to chain A of CEL-IV in space structure. We predicted that AjL may play the same role of CEL-IV. Our results suggested that more than one lectin gene functioned in sea cucumber and most of other species, which was fused by uncertain sequences during the evolution and encoded different proteins with diverse functions. Our findings provided the insights into the function and characteristics of lectin genes invertebrates. The results will also be helpful for the identification and structural, functional, and evolutionary analyses of lectin genes.

  12. Characterization of atherosclerotic plaque of carotid arteries with histopathological correlation: Vascular wall MR imaging vs. color Doppler ultrasonography (US)

    National Research Council Canada - National Science Library

    Watanabe, Yuji; Nagayama, Masako; Suga, Tsuyoshi; Yoshida, Kazumichi; Yamagata, Sen; Okumura, Akira; Amoh, Yoshiki; Nakashita, Satoru; Van Cauteren, Marc; Dodo, Yoshihiro

    2008-01-01

    To investigate whether the vessel wall MRI of carotid arteries would differentiate at-risk soft plaque from solid fibrous plaque by identifying liquid components more accurately than color Doppler ultrasonography (US...

  13. Local tissue reaction after injection of contrast media on gastric wall of mouse: experimental study for application of contrast media to computed tomography lymphography.

    Science.gov (United States)

    Hwang, Sun-Hwi; Kim, Hyung-Ho; Park, Do Joong; Jee, Ye-Seob; Lee, Kyoung Ho; Kim, Young Hoon; Lee, Hye Seung; Lee, Hyuk-Joon; Yang, Han-Kwang

    2012-02-01

    Computed tomography (CT) lymphography is a simple technique of sentinel node navigation but tissue reaction after injection of contrast media has not been reported yet. NINETY MICE USED IN THIS STUDY WERE DIVIDED INTO THREE GROUPS: lipiodol, iopamidol, and normal saline. The test compounds were given by submucosal injection to the gastric wall of anesthetized mice. The specimens were subjected to histopathological examination. The mean grades of acute inflammatory response after iopamidol and lipiodol injection were significantly higher than control group. However, there was no significant difference between iopamidol and lipiodol injection. The mean grade of chronic inflammatory response and fibrosis showed no differences between groups. The presence or absence of fibrinoid necrosis and mesothelial hyperplasia showed no statistical differences at each time point between groups. The foam cell, which is similar to human signet ring cell carcinoma, were not identified in normal saline and iopamidol group, but were detected by postoperative day 7 in lipiodol group. We conclude that iopamidol and lipiodol when used as a contrast media of CT lymphography is an available material for preoperative sentinel node navigation surgery for gastric cancer with an acceptable incidence of pathological alterations in a mouse model. Our results are potentially useful to clinical (human) application.

  14. Physicochemical characterization and tissue distribution of esterases in two salamandridae species (Mertensiella luschani and Salamandra salamandra).

    Science.gov (United States)

    Tzannetatou-Polymeni, R; Haritos, A A

    1989-01-01

    1. Tissue- and species-specificity of the electrophoretic patterns of the multiple molecular forms of esterases were observed in the urodele amphibians Mertensiella luschani luschani, M.l. helverseni and Salamandra salamandra. All esterases--distributed into two electrophoretic mobility areas in gonads, muscles and brain and into four areas in liver, stomach and intestine--were characterized as carboxylesterases. 2. M. l. luschani and S. salamandra liver esterases were electrofocused into nine and eleven major bands with pIs ranging from 4.60 to 5.65 and from 4.40 to 6.20, respectively. 3. Two size groups of esterases were observed in liver extracts of the above three subspecies by Sephadex G-200 gel filtration. The mean values of their apparent molecular weights were 70,000 and 230,000 respectively.

  15. Parametric methods for characterizing myocardial tissue by magnetic resonance imaging (part 2): T2 mapping.

    Science.gov (United States)

    Perea Palazón, R J; Solé Arqués, M; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Ortiz Pérez, J T

    2015-01-01

    Cardiac magnetic resonance imaging is considered the reference technique for characterizing myocardial tissue; for example, T2-weighted sequences make it possible to evaluate areas of edema or myocardial inflammation. However, traditional sequences have many limitations and provide only qualitative information. Moreover, traditional sequences depend on the reference to remote myocardium or skeletal muscle, which limits their ability to detect and quantify diffuse myocardial damage. Recently developed magnetic resonance myocardial mapping techniques enable quantitative assessment of parameters indicative of edema. These techniques have proven better than traditional sequences both in acute cardiomyopathy and in acute ischemic heart disease. This article synthesizes current developments in T2 mapping as well as their clinical applications and limitations. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  16. Parametric techniques for characterizing myocardial tissue by magnetic resonance imaging (part 1): T1 mapping.

    Science.gov (United States)

    Perea Palazón, R J; Ortiz Pérez, J T; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Solé Arqués, M

    2016-01-01

    The development of myocardial fibrosis is a common process in the appearance of ventricular dysfunction in many heart diseases. Magnetic resonance imaging makes it possible to accurately evaluate the structure and function of the heart, and its role in the macroscopic characterization of myocardial fibrosis by late enhancement techniques has been widely validated clinically. Recent studies have demonstrated that T1-mapping techniques can quantify diffuse myocardial fibrosis and the expansion of the myocardial extracellular space in absolute terms. However, further studies are necessary to validate the usefulness of this technique in the early detection of tissue remodeling at a time when implementing early treatment would improve a patient's prognosis. This article reviews the state of the art for T1 mapping of the myocardium, its clinical applications, and its limitations. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  17. Synthesis and Characterization of Nanodiamond Reinforced Chitosan for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yu Sun

    2016-09-01

    Full Text Available Multifunctional tissue scaffold material nanodiamond (ND/chitosan (CS composites with different diamond concentrations from 1 wt % to 5 wt % were synthesized through a solution casting method. The microstructure and mechanical properties of the composites were characterized using scanning electron microscopy (SEM, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, and nanoindentation. Compared with pristine CS, the addition of ND resulted in a significant improvement of mechanical properties, including a 239%, 276%, 321%, 333%, and 343% increase in Young’s modulus and a 68%, 96%, 114%, 118%, and 127% increase in hardness when the ND amount was 1 wt %, 2 wt %, 3 wt %, 4 wt %, and 5 wt %, respectively. The strong interaction between ND surface groups and the chitosan matrix plays an important role in improving mechanical properties.

  18. Development and Characterization of Tissue Equivalent Proportional Counter for Radiation Monitoring in International Space Station

    Directory of Open Access Journals (Sweden)

    Uk-Won Nam

    2013-06-01

    Full Text Available Tissue equivalent proportional counter (TEPC can measure the Linear Energy Transfer (LET spectrum and calculate the equivalent dose for the complicated radiation field in space. In this paper, we developed and characterized a TEPC for radiation monitoring in International Space Station (ISS. The prototype TEPC which can simulate a 2 μm of the site diameter for micro-dosimetry has been tested with a standard alpha source (241Am, 5.5 MeV. Also, the calibration of the TEPC was performed by the 252Cf neutron standard source in Korea Research Institute of Standards and Science (KRISS. The determined calibration factor was kf = 3.59×10-7 mSv/R.

  19. Multispectral texture characterization: application to computer aided diagnosis on prostatic tissue images

    Science.gov (United States)

    Khelifi, Riad; Adel, Mouloud; Bourennane, Salah

    2012-12-01

    Various approaches have been proposed in the literature for texture characterization of images. Some of them are based on statistical properties, others on fractal measures and some more on multi-resolution analysis. Basically, these approaches have been applied on mono-band images. However, most of them have been extended by including the additional information between spectral bands to deal with multi-band texture images. In this article, we investigate the problem of texture characterization for multi-band images. Therefore, we aim to add spectral information to classical texture analysis methods that only treat gray-level spatial variations. To achieve this goal, we propose a spatial and spectral gray level dependence method (SSGLDM) in order to extend the concept of gray level co-occurrence matrix (GLCM) by assuming the presence of texture joint information between spectral bands. Thus, we propose new multi-dimensional functions for estimating the second-order joint conditional probability density of spectral vectors. Theses functions can be represented in structure form which can help us to compute the occurrences while keeping the corresponding components of spectral vectors. In addition, new texture features measurements related to (SSGLDM) which define the multi-spectral image properties are proposed. Extensive experiments have been carried out on 624 textured multi-spectral images for use in prostate cancer diagnosis and quantitative results showed the efficiency of this method compared to the GLCM. The results indicate a significant improvement in terms of global accuracy rate. Thus, the proposed approach can provide clinically useful information for discriminating pathological tissue from healthy tissue.

  20. Biomechanical and cellular segmental characterization of human meniscus: building the basis for Tissue Engineering therapies.

    Science.gov (United States)

    Pereira, H; Caridade, S G; Frias, A M; Silva-Correia, J; Pereira, D R; Cengiz, I F; Mano, J F; Oliveira, J M; Espregueira-Mendes, J; Reis, R L

    2014-09-01

    To overcome current limitations of Tissue Engineering (TE) strategies, deeper comprehension on meniscus biology is required. This study aims to combine biomechanical segmental analysis of fresh human meniscus tissues and its correlation with architectural and cellular characterization. Morphologically intact menisci, from 44 live donors were studied after division into three radial segments. Dynamic mechanical analysis (DMA) was performed at physiological-like conditions. Micro-computed tomography (CT) analysis of freeze-dried samples assessed micro-structure. Flow cytometry, histology and histomorphometry were used for cellular study and quantification. Anterior segments present significantly higher damping properties. Mid body fresh medial meniscus presents higher values of E' compared to lateral. Cyclic loads influence the viscoelastic behavior of menisci. By increasing the frequency leads to an increase in stiffness. Conversely, with increasing frequencies, the capacity to dissipate energy and damping properties initially decrease and then rise again. Age and gender directly correlate with higher E' and tan δ. Micro-CT analysis revealed that mean porosity was 55.5 (21.2-89.8)% and 64.7 (47.7-81.8)% for freeze-dried lateral and medial meniscus, respectively. Predominant cells are positive for CD44, CD73, CD90 and CD105, and lack CD31, CD34 and CD45 (present in smaller populations). Histomorphometry revealed that cellularity decreases from vascular zone 1 to zone 3. Anterior segments of lateral and medial meniscus have inferior cellularity as compared to mid body and posterior ones. Menisci are not uniform structures. Anterior segments have lower cellularity and higher damping. Cyclic loads influence viscoelastic characteristics. Future TE therapies should consider segmental architecture, cellularity and biomechanics of fresh tissue. Copyright © 2014. Published by Elsevier Ltd.

  1. Characterization and standardization of tissue-simulating protoporphyrin IX optical phantoms.

    Science.gov (United States)

    Marois, Mikael; Bravo, Jaime; Davis, Scott C; Kanick, Stephen Chad

    2016-03-01

    Optical devices for measuring protoporphryin IX (PpIX) fluorescence in tissue are routinely validated by measurements in optical phantoms. Yet there exists limited data to form a consensus on the recipe for phantoms that both mimic the optical properties found in tissue and yield a reliable and stable relationship between PpIX concentration and the fluorescence remission intensity. This study characterizes the influence of multiple phantom components on PpIX fluorescence emission intensity, using Intralipid as the scattering source, bovine whole blood as the background absorber, and Tween as a surfactant to prevent PpIX aggregation. Optical measurements showed a linear proportionality (r > 0.99) between fluorescence intensity and PpIX concentration (0.1 to 10 μg/mL) over a range of Intralipid (1 to 2%) and whole blood (0.5 to 3%) for phantoms containing low surfactant (≤ 0.1%), with fluorescence intensities and scattering and absorption properties stable for 5 h after mixing. The role of surfactant in PpIX phantoms was found to be complex, as aggregation was evident in aqueous nonturbid phantoms with no surfactant (0% Tween), and avoided in phantoms containing Intralipid as the scattering source with no additional or low amounts of added surfactant (≤ 0.1% Tween). Conversely, phantoms containing higher surfactant content (>0.1% Tween) and whole blood showed interactions that distorted the fluorescence emissions.

  2. Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues

    Science.gov (United States)

    Wood, Michael F. G.; Ghosh, Nirmalya; Wallenburg, Marika A.; Li, Shu-Hong; Weisel, Richard D.; Wilson, Brian C.; Li, Ren-Ke; Vitkin, I. Alex

    2010-07-01

    Myocardial infarction leads to structural remodeling of the myocardium, in particular to the loss of cardiomyocytes due to necrosis and an increase in collagen with scar formation. Stem cell regenerative treatments have been shown to alter this remodeling process, resulting in improved cardiac function. As healthy myocardial tissue is highly fibrous and anisotropic, it exhibits optical linear birefringence due to the different refractive indices parallel and perpendicular to the fibers. Accordingly, changes in myocardial structure associated with infarction and treatment-induced remodeling will alter the anisotropy exhibited by the tissue. Polarization-based linear birefringence is measured on the myocardium of adult rat hearts after myocardial infarction and compared with hearts that had received mesenchymal stem cell treatment. Both point measurement and imaging data show a decrease in birefringence in the region of infarction, with a partial rebound back toward the healthy values following regenerative treatment with stem cells. These results demonstrate the ability of optical polarimetry to characterize the micro-organizational state of the myocardium via its measured anisotropy, and the potential of this approach for monitoring regenerative treatments of myocardial infarction.

  3. Characterization of human papillomavirus type 154 and tissue tropism of gammapapillomaviruses.

    Science.gov (United States)

    Ure, Agustín Enrique; Forslund, Ola

    2014-01-01

    The novel human papillomavirus type 154 (HPV154) was characterized from a wart on the crena ani of a three-year-old boy. It was previously designated as the putative HPV type FADI3 by sequencing of a subgenomic FAP amplicon. We obtained the complete genome by combined methods including rolling circle amplification (RCA), genome walking through an adapted method for detection of integrated papillomavirus sequences by ligation-mediated PCR (DIPS-PCR), long-range PCR, and finally by cloning of four overlapping amplicons. Phylogenetically, the HPV154 genome clustered together with members of the proposed species Gammapapillomavirus 11, and demonstrated the highest identity in L1 to HPV136 (68.6%). The HPV154 was detected in 3% (2/62) of forehead skin swabs from healthy children. In addition, the different detection sites of 62 gammapapillomaviruses were summarized in order to analyze their tissue tropism. Several of these HPV types have been detected from multiple sources such as skin, oral, nasal, and genital sites, suggesting that the gammapapillomaviruses are generalists with a broader tissue tropism than previously appreciated. The study expands current knowledge concerning genetic diversity and tropism among HPV types in the rapidly growing gammapapillomavirus genus.

  4. PIXE characterization of tissues surrounding metallic prostheses coated with biological glasses

    Energy Technology Data Exchange (ETDEWEB)

    Barbotteau, Y. E-mail: yves.barbotteau@qse.tohoku.ac.jp; Irigaray, J.L.; Moretto, Ph

    2004-01-01

    Biological glasses can be used as coatings for metallic prostheses in order to prevent corrosion. According to their composition, these glasses have different properties. We studied, in vivo, two glasses referred to as BVA and BVH. They are used as coatings of Ti6Al4V metallic implant. BVA glass disappears after 3 months of implantation and is replaced by bone. Prostheses initially coated by this glass have a larger osseous contact perimeter compared to the uncoated prostheses. This ensures a better anchoring of the implant and limits the micro-motions which cause wear debris. BVH glass keeps a constant composition during implantation and it is used like a layer which isolates metal implant from biological environment. In order to characterize the bony environment surrounding implants, we have used PIXE and RBS methods. This paper shows results of the behavior of bony tissue under micro-beam, the quality tests of new bone which replaces the BVA glass coating and the evaluation of corrosion effects. Titanium release in bony tissues begins when the metal surface of the prosthesis is exposed to biological fluids. After a few months of implantation, the titanium contamination is stabilized and remains localized within the first tens of micrometers of surrounding bone.

  5. Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering.

    Science.gov (United States)

    Ao, Chenghong; Niu, Yan; Zhang, Ximu; He, Xu; Zhang, Wei; Lu, Canhui

    2017-04-01

    Nanofibrous scaffolds from cotton cellulose and nano-hydroxyapatite (nano-HA) were electrospun for bone tissue engineering. The solution properties of cellulose/nano-HA spinning dopes and their associated electrospinnability were characterized. Morphological, thermal and mechanical properties of the electrospun cellulose/nano-HA nanocomposite nanofibers (ECHNN) were measured and the biocompatibility of ECHNN with human dental follicle cells (HDFCs) was evaluated. Scanning electron microscope (SEM) images indicated that the average diameter of ECHNN increased with a higher nano-HA loading and the fiber diameter distributions were well within the range of natural ECM (extra cellular matrix) fibers (50-500nm). The ECHNN exhibited extraordinary mechanical properties with a tensile strength and a Young's modulus up to 70.6MPa and 3.12GPa respectively. Moreover, it was discovered that the thermostability of the ECHNN could be enhanced with the incorporation of nano-HA. Cell culture experiments demonstrated that the ECHNN scaffolds were quite biocompatible for HDFCs attachment and proliferation, suggesting their great potentials as scaffold materials in bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Fabrication and mechanical characterization of a polyvinyl alcohol sponge for tissue engineering applications.

    Science.gov (United States)

    Karimi, A; Navidbakhsh, M; Faghihi, S

    2014-05-01

    Polyvinyl alcohol (PVA) sponges are widely used for clinical applications, including ophthalmic surgical treatments, wound healing and tissue engineering. There is, however, a lack of sufficient data on the mechanical properties of PVA sponges. In this study, a biomechanical method is used to characterize the elastic modulus, maximum stress and strain as well as the swelling ratio of a fabricated PVA sponge (P-sponge) and it is compared with two commercially available PVA sponges (CENEFOM and EYETEC). The results indicate that the elastic modulus of the P-sponge is 5.32% and 13.45% lower than that of the CENEFOM and EYETEC sponges, while it bears 4.11% more and 10.37% less stress compared to the CENEFOM and EYETEC sponges, respectively. The P-sponge shows a maximum strain of 32% more than the EYETEC sponge as well as a 26.78% higher swelling ratio, which is a significantly higher absorbency compared to the CENEFOM. It is believed that the results of this study would help for a better understanding of the extension, rupture and swelling mechanism of PVA sponges, which could lead to crucial improvement in the design and application of PVA-based materials in ophthalmic and plastic surgeries as well as wound healing and tissue engineering.

  7. Manufacture and characterization of breast tissue phantoms for emulating benign lesions

    Science.gov (United States)

    Villamarín, J. A.; Rojas, M. A.; Potosi, O. M.; Narváez-Semanate, J. L.; Gaviria, C.

    2017-11-01

    Phantoms elaboration has turned a very important field of study during the last decades due to its applications in medicine. These objects are capable of emulating or mimicking acoustically biological tissues in which parameters like speed of sound (SOS) and attenuation are successfully attained. However, these materials are expensive depending on their characteristics (USD 460.00 - 6000.00) and is difficult to have precise measurements because of their composition. This paper presents the elaboration and characterization of low cost ( USD $25.00) breast phantoms which emulate histological normality and pathological conditions in order to support algorithm calibration procedures in imaging diagnosis. Quantitative ultrasound (QUS) was applied to estimate SOS and attenuation values for breast tissue (background) and benign lesions (fibroadenoma and cysts). Results showed values of the SOS and attenuation for the background between 1410 - 1450 m/s and 0.40 - 0.55 dB/cm at 1 MHz sampling frequency, respectively. On the other hand, the SOS obtained for the lesions ranges from 1350 to 1700 m/s and attenuation values between 0.50 - 1.80 dB/cm at 1 MHz. Finally, the fabricated phantoms allowed for obtaining ultrasonograms comparable with real ones whose acoustic parameters are in agree with those reported in the literature.

  8. Detection, isolation, and preliminary characterization of bacteria contaminating plant tissue cultures

    Directory of Open Access Journals (Sweden)

    Monika Kałużna

    2014-01-01

    Full Text Available In order to limit the contamination problem in plant tissue cultures experiments on selection of media suitable for detection and isolation of bacteria contaminating plant tissue explants, and preliminary characterization of isolates were made. In the first experiment aiming at detection of bacteria in plant explants four strains representing genera most often occurring at our survey of plant tissue cultures, and earlier isolated and identified (Bacillus, Methylobacterium, Pseudomonas and Xanthomonas were streaked on five bacteriological media (NA, King B, K, R2A and 523 and on the medium used for plant culture initiation – ½ MS with milk albumin (IM. All strains grew on all media but on K and IM at the slowest rate and on 523 medium at the fastest. The IM medium proved to be useful for immediate bacteria detection at the initial stage of culture. In the second experiment, aiming at characterization of isolates on the basis of colony growth and morphology 14 strains (Agrobacterium, Bacillus, Curtobacterium, Flavobacterium, Lactobacillus, Methylobacterium – 2 strains Mycobacterium, Paenibacillus, Plantibacterium, Pseudomonas, Stenotrophomonas, Xanthomonas, and species Serratia marcescens were streaked on five microbiological media: KB, NBY, YDC, YNA and YPGA. All strains grew on all those media but at different rates. The only exception was the strain of Lactobacillus spp., which did not grow on King B medium. This medium allowed the detection of such characteristic traits as fluorescence (Pseudomonas and secretion of inclusions (Stenotrophomonas. The third experiment was focussed on assessment of the sensitivity of detection of specific bacteria in pure cultures and in plant tis- sue cultures using standard PCR and BIO-PCR techniques with genus specific primers and 2 methods of DNA isolation. Results showed that the use of Genomic Mini kit enabled an increase of the sensitivity by 100 times as compared to extraction of DNA by boiling

  9. Characterization of tissue tropism determinants of adeno-associated virus type 1.

    Science.gov (United States)

    Hauck, Bernd; Xiao, Weidong

    2003-02-01

    Muscle is an attractive target for gene delivery because of its mass and because vectors can be delivered in a noninvasive fashion. Adeno-associated virus (AAV) has been shown to be effective for muscle-targeted gene transfer. Recent progress in characterization of AAV serotype 1 (AAV1) and AAV6 demonstrated that these two AAV serotypes are far more efficient in transducing muscle than is the traditionally used AAV2. Since all cis elements are identical in these vectors, the potential determinants for their differences in transducing muscle appear to be located within the AAV capsid proteins. In the present study, a series of AAV capsid mutants were generated to identify the major regions affecting AAV transduction efficiency in muscle. Replacement of amino acids 350 to 736 of AAV2 VP1 with the corresponding amino acids from VP1 of AAV1 resulted in a hybrid vector that behaved very similarly to AAV1 in vitro and in vivo in muscle. Characterization of additional mutants carrying smaller regions of the AAV1 VP1 amino acid sequence in the AAV2 capsid protein suggested that amino acids 350 to 430 of VP1 function as a major tissue tropism determinant. Further analysis showed that the heparin binding domain and the major antigenic determinants in the AAV capsid region were not necessary for the efficiency of AAV1 transduction of muscle.

  10. Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy.

    Science.gov (United States)

    Dass, Sairia; Suttie, Joseph J; Piechnik, Stefan K; Ferreira, Vanessa M; Holloway, Cameron J; Banerjee, Rajarshi; Mahmod, Masliza; Cochlin, Lowri; Karamitsos, Theodoros D; Robson, Matthew D; Watkins, Hugh; Neubauer, Stefan

    2012-11-01

    Noncontrast magnetic resonance T1 mapping reflects a composite of both intra- and extracellular signal. We hypothesized that noncontrast T1 mapping can characterize the myocardium beyond that achieved by the well-established late gadolinium enhancement (LGE) technique (which detects focal fibrosis) in both hypertrophic (HCM) and dilated (DCM) cardiomyopathy, by detecting both diffuse and focal fibrosis. Subjects underwent Cardiovascular Magnetic Resonance imaging at 3T (28 HCM, 18 DCM, and 12 normals). Matching short-axis slices were acquired for cine, T1 mapping, and LGE imaging (0.1 mmol/kg). Circumferential strain was measured in the midventricular slice, and (31)P magnetic resonance spectroscopy was acquired for the septum of the midventricular slice. Mean T1 relaxation time was increased in HCM and DCM (HCM 1209±28 ms, DCM 1225±42 ms, normal 1178±13 ms, PT1 and LGE (r=0.32, PT1 values were higher in segments with LGE than in those without (HCM with LGE 1228±41 ms versus no LGE 1192±79 ms, PT1 values were significantly higher than normal (PT1 values correlated with disease severity, being increased as wall thickness increased in HCM; conversely, in DCM, T1 values were highest in the thinnest myocardial segments. T1 values also correlated significantly with circumferential strain (r=0.42, PT1 values and phosphocreatine/adenosine triphosphate ratios (r=-0.59, PT1 mapping detects underlying disease processes beyond those assessed by LGE in relatively low-risk individuals.

  11. Flying PIV measurements in a 4-valve IC engine water analogue to characterize the near-wall flow evolution

    OpenAIRE

    Koehler, M.; Hess, D.; Bruecker, C.

    2015-01-01

    For a deeper understanding of the highly unsteady near-wall boundary layer flows in internal combustion (IC) engines, PIV-based flow field measurements close to the inner cylinder and piston walls within transparent engines are required. The herein described flying PIV method in combination with a scanning light-sheet provides time-resolved PIV measurements in a transparent IC engine water analogue in a radial plane 1.5 mm apart from the planar piston crown while the piston is moving. The lig...

  12. Characterization of the Capsule Surrounding Smooth and Textured Tissue Expanders and Correlation with Contracture

    Directory of Open Access Journals (Sweden)

    Erika Kuriyama, MD

    2017-07-01

    Full Text Available Background:. Capsular contracture is a common complication after breast augmentation surgery. This study pathologically evaluated the soft-tissue response to surface modifications in both smooth and textured tissue expander prostheses. Methods:. Smooth tissue expanders and textured tissue expanders in 5 cases each were used for breast reconstruction after mastectomy. Histological samples were harvested from the capsules when the tissue expanders were replaced by silicone implants. Collagen orientation and cellular responses were assessed histologically. Capsular contracture was evaluated using the Baker classification 6 months and 2 years after the removal of the tissue expander. Results:. The capsules surrounding the smooth tissue expanders tended to produce more contracture than those surrounding the textured tissue expanders. The collagen architecture of the capsules of the smooth tissue expanders showed random orientation with fragmentation. Conversely, the capsules of the textured tissue expanders showed parallel orientation with collagen bundles of almost normal structure. Significantly more fibrils of elastin and myofibroblasts were found in the capsules surrounding the smooth tissue than in those surrounding the textured ones. Conclusions:. The collagen fibers surrounding the smooth tissue expanders could be cracked during expansion, which may lead to scarring and contracture. Conversely, the collagen orientation surrounding the textured tissue expanders was excellent. Moreover, the increase in elastic fibers and myofibroblasts in the capsules surrounding the smooth tissue expanders may be associated with in vivo contraction patterns. Therefore, the surface type of tissue expanders affects capsular contraction after replacement with definitive implants.

  13. Visualization of tissue velocity data from cardiac wall motion measurements with myocardial fiber tracking: principles and implications for cardiac fiber structures.

    Science.gov (United States)

    Jung, Bernd André; Kreher, Björn W; Markl, Michael; Hennig, Jürgen

    2006-04-01

    The spatial arrangement of myocardial fiber structure affects the mechanical and electrical properties of the heart. Therefore, information on the structure and dynamics of the orientation of the muscle fibers in the human heart might provide significant insight into principles of the mechanics of normal ventricular contraction and electrical propagation and may subsequently aid pre- and postsurgical evaluation of patients. Fiber orientation is inherently linked to cardiac wall motion, which can be measured with phase contrast magnetic resonance imaging (MRI), also termed tissue phase mapping (TPM). This study provides initial results of the visualization of velocity data with fiber tracking algorithms and discusses implications for the fiber orientations. In order to generate datasets with sufficient volume coverage and resolution TPM measurements with three-dimensional (3D) velocity encoding were executed during breath-hold periods and free breathing. Subsequent postprocessing evaluation with a tracking algorithm for acceleration fields derived from the velocity data was performed. Myocardial acceleration tracking illustrated the dynamics of fiber structure during four different phases of left ventricular performance, that include isovolumetric contraction (IVC), mid-systole, isovolumetric relaxation (IVR), and mid-diastole. Exact reconstruction of the myocardial fiber structure from velocity data requires mathematical modeling of spatiotemporal evolution of the velocity fields. 'Acceleration fibers' were reconstructed at these four phases during the cardiac cycle, and these findings may become (a) surrogate parameters in the normal ventricle, (b) baseline markers for subsequent clinical studies of abnormal hearts with altered architecture, and (c) may help to explain and illustrate functional features of cardiac performance in structural models like the helical ventricular myocardial band.

  14. Early detection of doxorubicin myocardial injury by ultrasonic tissue characterization in an experimental animal model

    Directory of Open Access Journals (Sweden)

    Romano Minna Moreira

    2012-10-01

    Full Text Available Abstract In the clinical setting, the early detection of myocardial injury induced by doxorubicin (DXR is still considered a challenge. To assess whether ultrasonic tissue characterization (UTC can identify early DXR-related myocardial lesions and their correlation with collagen myocardial percentages, we studied 60 rats at basal status and prospectively after 2mg/Kg/week DXR endovenous infusion. Echocardiographic examinations were conducted at baseline and at 8,10,12,14 and 16 mg/Kg DXR cumulative dose. The left ventricle ejection fraction (LVEF, shortening fraction (SF, and the UTC indices: corrected coefficient of integrated backscatter (IBS (tissue IBS intensity/ phantom IBS intensity (CC-IBS and the cyclic variation magnitude of this intensity curve (MCV were measured. The variation of each parameter of study through DXR dose was expressed by the average and standard error at specific DXR dosages and those at baseline. The collagen percent (% was calculated in six control group animals and 24 DXR group animals. CC-IBS increased (1.29±0.27 x 1.1±0.26-basal; p=0.005 and MCV decreased (9.1± 2.8 x 11.02±2.6-basal; p=0.006 from 8 mg/Kg to 16mg/Kg DXR. LVEF presented only a slight but significant decrease (80.4±6.9% x 85.3±6.9%-basal, p=0.005 from 8 mg/Kg to 16 mg/Kg DXR. CC-IBS was 72.2% sensitive and 83.3% specific to detect collagen deposition of 4.24%(AUC=0.76. LVEF was not accurate to detect initial collagen deposition (AUC=0.54. In conclusion: UTC was able to early identify the DXR myocardial lesion when compared to LVEF, showing good accuracy to detect the initial collagen deposition in this experimental animal model.

  15. Early detection of doxorubicin myocardial injury by ultrasonic tissue characterization in an experimental animal model.

    Science.gov (United States)

    Romano, Minna Moreira Dias; Pazin-Filho, Antônio; O'Connel, João Lucas; Simões, Marcus Vinícius; Schmidt, André; Campos, Érica C; Rossi, Marcos; Maciel, Benedito Carlos

    2012-10-10

    In the clinical setting, the early detection of myocardial injury induced by doxorubicin (DXR) is still considered a challenge. To assess whether ultrasonic tissue characterization (UTC) can identify early DXR-related myocardial lesions and their correlation with collagen myocardial percentages, we studied 60 rats at basal status and prospectively after 2 mg/Kg/week DXR endovenous infusion. Echocardiographic examinations were conducted at baseline and at 8, 10, 12, 14 and 16 mg/Kg DXR cumulative dose. The left ventricle ejection fraction (LVEF), shortening fraction (SF), and the UTC indices: corrected coefficient of integrated backscatter (IBS) (tissue IBS intensity/ phantom IBS intensity) (CC-IBS) and the cyclic variation magnitude of this intensity curve (MCV) were measured. The variation of each parameter of study through DXR dose was expressed by the average and standard error at specific DXR dosages and those at baseline. The collagen percent (%) was calculated in six control group animals and 24 DXR group animals. CC-IBS increased (1.29±0.27 x 1.1±0.26-basal; p=0.005) and MCV decreased (9.1± 2.8 x 11.02±2.6-basal; p=0.006) from 8 mg/Kg to 16 mg/Kg DXR. LVEF presented only a slight but significant decrease (80.4±6.9% x 85.3±6.9%-basal, p=0.005) from 8 mg/Kg to 16 mg/Kg DXR. CC-IBS was 72.2% sensitive and 83.3% specific to detect collagen deposition of 4.24% (AUC=0.76). LVEF was not accurate to detect initial collagen deposition (AUC=0.54). UTC was able to early identify the DXR myocardial lesion when compared to LVEF, showing good accuracy to detect the initial collagen deposition in this experimental animal model.

  16. Characterization and comparison of the tissue-related modules in human and mouse.

    Directory of Open Access Journals (Sweden)

    Ruolin Yang

    Full Text Available BACKGROUND: Due to the advances of high throughput technology and data-collection approaches, we are now in an unprecedented position to understand the evolution of organisms. Great efforts have characterized many individual genes responsible for the interspecies divergence, yet little is known about the genome-wide divergence at a higher level. Modules, serving as the building blocks and operational units of biological systems, provide more information than individual genes. Hence, the comparative analysis between species at the module level would shed more light on the mechanisms underlying the evolution of organisms than the traditional comparative genomics approaches. RESULTS: We systematically identified the tissue-related modules using the iterative signature algorithm (ISA, and we detected 52 and 65 modules in the human and mouse genomes, respectively. The gene expression patterns indicate that all of these predicted modules have a high possibility of serving as real biological modules. In addition, we defined a novel quantity, "total constraint intensity," a proxy of multiple constraints (of co-regulated genes and tissues where the co-regulation occurs on the evolution of genes in module context. We demonstrate that the evolutionary rate of a gene is negatively correlated with its total constraint intensity. Furthermore, there are modules coding the same essential biological processes, while their gene contents have diverged extensively between human and mouse. CONCLUSIONS: Our results suggest that unlike the composition of module, which exhibits a great difference between human and mouse, the functional organization of the corresponding modules may evolve in a more conservative manner. Most importantly, our findings imply that similar biological processes can be carried out by different sets of genes from human and mouse, therefore, the functional data of individual genes from mouse may not apply to human in certain occasions.

  17. Characterization of alpha-ketobutyrate metabolism in rat tissues: effects of dietary protein and fasting.

    Science.gov (United States)

    Steele, R D; Weber, H; Patterson, J I

    1984-04-01

    The oxidative decarboxylation of alpha-ketobutyrate was studied in rat tissue preparations. Decarboxylation was confined to the mitochondrial fraction and required coenzyme A, NAD, TPP and FAD for optimal activity in solubilized preparations. The pH optimum for this reaction in liver was 7.8, somewhat higher than that reported for other alpha-keto acid dehydrogenases. An apparent Km of 0.63 mM for alpha-ketobutyrate was determined for the rat liver system. Competition by other alpha-keto acids at 10 mM concentrations inhibited enzyme activity up to 75%. Tissue distribution of alpha-ketobutyrate dehydrogenase activity relative to liver activity was (in percent): liver, 100; heart, 127; brain, 63; kidney, 57; skeletal muscle, 38; and small intestine, 7. Total liver alpha-ketobutyrate dehydrogenase was decreased by 40% after a 24-hour fast. Similar results were found for kidney and heart activity. alpha-Aminobutyrate-pyruvate aminotransferase activity in liver or kidney was not affected by fasting; however, it was induced in liver by 50% after feeding a 40% casein diet for 10 days compared to rats fed a 20% casein diet. Increasing the dietary casein content from 6 through 40% of the diet resulted in about a fivefold increase in liver alpha-ketobutyrate dehydrogenase activity. The substantial extrahepatic capacity for alpha-ketobutyrate metabolism makes it unlikely that a loss of liver function results in an inability to metabolize alpha-ketobutyrate. Whether alpha-ketobutyrate is decarboxylated by a specific enzyme or by an already characterized complex such as pyruvate dehydrogenase or the branched-chain keto acid dehydrogenase remains to be established.

  18. Synthesis and characterization of CaO-loaded electrospun matrices for bone tissue engineering.

    Science.gov (United States)

    Münchow, Eliseu A; Pankajakshan, Divya; Albuquerque, Maria T P; Kamocki, Krzysztof; Piva, Evandro; Gregory, Richard L; Bottino, Marco C

    2016-11-01

    This study aims to synthesize and characterize biodegradable polymer-based matrices loaded with CaO nanoparticles for osteomyelitis treatment and bone tissue engineering. Poly(ε-caprolactone) (PCL) and PCL/gelatin (1:1, w/w) solutions containing CaO nanoparticles were electrospun into fibrous matrices. Scanning (SEM) and transmission (TEM) electron microscopy, Fourier transformed infrared (FTIR), energy dispersive X-ray spectroscopy (EDS), contact angle (CA), tensile testing, and antibacterial activity (agar diffusion assay) against Staphylococcus aureus were performed. Osteoprecursor cell (MC3T3-E1) response (i.e., viability and alkaline phosphatase expression/ALP) and infiltration into the matrices were evaluated. CaO nanoparticles were successfully incorporated into the fibers, with the median fiber diameter decreasing after CaO incorporation. The CA decreased with the addition of CaO, and the presence of gelatin made the matrix very hydrophilic (CA = 0°). Increasing CaO concentrations progressively reduced the mechanical properties (p ≤ 0.030). CaO-loaded matrices did not display consistent antibacterial activity. MC3T3-E1 cell viability demonstrated the highest levels for CaO-loaded matrices containing gelatin after 7 days in culture. An increased ALP expression was consistently seen for PCL/CaO matrices when compared to PCL and gelatin-containing counterparts. Despite inconsistent antibacterial activity, CaO nanoparticles can be effectively loaded into PCL or PCL/gelatin fibers without negatively affecting the overall performance of the matrices. More importantly, CaO incorporation enhanced cell viability as well as differentiation capacity, as demonstrated by an increased ALP expression. CaO-loaded electrospun matrices show potential for applications in bone tissue engineering.

  19. Preparation and characterization of functionalized single walled carbon nanotubes (fSWCNT)/ Hydroxyapatite (HAp)-Nylon hybridized composite biomaterial to study the mechanical properties

    Science.gov (United States)

    Khanal, Suraj; Leventouri, Theodora; Mahfuz, Hassan; Rondinone, Adam

    2014-03-01

    Synthetic hydroxyapatite (HAp) bears poor mechanical properties that limit its applicability in orthopedics. We study the possibility of overcoming such limitations by incorporating functionalized single walled carbon nanotubes (fSWCNT) in a biocompatible/bioactive nano-composite. We present results from synthesis and characterization of samples prepared under different processing parameters. Ultra sonication method was to disperse functionalized single walled carbon nanotubes (fSWCNT) in HAp followed by a simple hot assorting method to incorporate with polymerized ɛ-caprolactam. The fracture toughness of the composite materials was tested in compliance with the ASTM D-5045 standard. We have found that while the fracture toughness strongly depends on the processing parameters, a value comparable to the one for cortical bone is achieved. Mechanical properties, electron microscopy and crystal structure properties of the composite materials will be discussed.

  20. Polar and non-polar organic binder characterization in Pompeian wall paintings: comparison to a simulated painting mimicking an "a secco" technique.

    Science.gov (United States)

    Corso, Gaetano; Gelzo, Monica; Sanges, Carmen; Chambery, Angela; Di Maro, Antimo; Severino, Valeria; Dello Russo, Antonio; Piccioli, Ciro; Arcari, Paolo

    2012-03-01

    The use of Fourier transform infrared spectromicroscopy and mass spectrometry (MS) allowed us to characterize the composition of polar and non-polar binders present in sporadic wall paint fragments taken from Pompeii's archaeological excavation. The analyses of the polar and non-polar binder components extracted from paint powder layer showed the presence of amino acids, sugars, and fatty acids but the absence of proteinaceous material. These results are consistent with a water tempera painting mixture composed of pigments, flours, gums, and oils and are in agreement with those obtained from a simulated wall paint sample made for mimicking an ancient "a secco" technique. Notably, for the first time, we report the capability to discriminate by tandem MS the presence of free amino acids in the paint layer.

  1. Development and characterization of a tissue equivalent plastic scintillator based dosimetry system.

    Science.gov (United States)

    Petric, M P; Robar, J L; Clark, B G

    2006-01-01

    High precision techniques in radiation therapy, such as intensity modulated radiation therapy, offer the potential for improved target coverage and increased normal tissue sparing compared with conformal radiotherapy. The complex fluence maps used in many of these techniques, however, often lead to more challenging quality assurance with dose verification being labor-intensive and time consuming. A prototype dose verification system has been developed using a tissue equivalent plastic scintillator that provides easy-to-acquire, rapid, digital dose measurements in a plane perpendicular to the beam. The system consists of a water-filled Lucite phantom with a scintillator screen built into the top surface. The phantom contains a silver coated plastic mirror to reflect scintillation light towards a viewing window where it is captured using a charge coupled device camera and a personal computer. Optical photon spread is removed using a microlouvre optical collimator and by deconvolving a glare kernel from the raw images. A characterization of the system was performed that included measurements of linear output response, dose rate dependence, spatial linearity, effective pixel size, signal uniformity and both short- and long-term reproducibility. The average pixel intensity for static, regular shaped fields between 3 cm X 3 cm and 12 cm x 12 cm imaged with the system was found to be linear in the dose delivered with linear regression analysis yielding a correlation coefficient r2 > 0.99. Effective pixel size was determined to be 0.53 mm/pixel. The system was found to have a signal uniformity of 5.6% and a long-term reproducibility/stability of 1.7% over a 6 month period. The system's ability to verify a dynamic treatment field was evaluated using 60 degrees dynamic wedged fields and comparing the results to two-dimensional film dosimetry. Results indicate agreement with two-dimensional film dosimetry distributions within 8% inside the field edges. With further

  2. Human breast adipose tissue: characterization of factors that change during tumor progression in human breast cancer.

    Science.gov (United States)

    Fletcher, Sabrina Johanna; Sacca, Paula Alejandra; Pistone-Creydt, Mercedes; Coló, Federico Andrés; Serra, María Florencia; Santino, Flavia Eliana; Sasso, Corina Verónica; Lopez-Fontana, Constanza Matilde; Carón, Rubén Walter; Calvo, Juan Carlos; Pistone-Creydt, Virginia

    2017-02-07

    Adipose microenvironment is involved in signaling pathways that influence breast cancer. We aim to characterize factors that are modified: 1) in tumor and non tumor human breast epithelial cell lines when incubated with conditioned media (CMs) from human breast cancer adipose tissue explants (hATT) or normal breast adipose tissue explants (hATN); 2) in hATN-CMs vs hATT-CMs; 3) in the tumor associated adipocytes vs. non tumor associated adipocytes. We used hATN or hATT- CMs on tumor and non-tumor breast cancer cell lines. We evaluated changes in versican, CD44, ADAMTS1 and Adipo R1 expression on cell lines or in the different CMs. In addition we evaluated changes in the morphology and expression of these factors in slices of the different adipose tissues. The statistical significance between different experimental conditions was evaluated by one-way ANOVA. Tukey's post-hoc tests were performed within each individual treatment. hATT-CMs increase versican, CD44, ADAMTS1 and Adipo R1 expression in breast cancer epithelial cells. Furthermore, hATT-CMs present higher levels of versican expression compared to hATN-CMs. In addition, we observed a loss of effect in cellular migration when we pre-incubated hATT-CMs with chondroitinase ABC, which cleaves GAGs chains bound to the versican core protein, thus losing the ability to bind to CD44. Adipocytes associated with the invasive front are reduced in size compared to adipocytes that are farther away. Also, hATT adipocytes express significantly higher amounts of versican, CD44 and Adipo R1, and significantly lower amounts of adiponectin and perilipin, unlike hATN adipocytes. We conclude that hATT secrete a different set of proteins compared to hATN. Furthermore, versican, a proteoglycan that is overexpressed in hATT-CMs compared to hATN-CMs, might be involved in the tumorogenic behavior observed in both cell lines employed. In addition, we may conclude that adipocytes from the tumor microenvironment show a less differentiated

  3. Rapid Characterization of Molecular Chemistry, Nutrient Make-Up and Microlocation of Internal Seed Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Yu,P.; Block, H.; Niu, Z.; Doiron, K.

    2007-01-01

    Wheat differs from corn in biodegradation kinetics and fermentation characteristics. Wheat exhibits a relatively high rate (23% h{sup 01}) and extent (78% DM) of biodegradation, which can lead to metabolic problems such as acidosis and bloat in ruminants. The objective of this study was to rapidly characterize the molecular chemistry of the internal structure of wheat (cv. AC Barrie) and reveal both its structural chemical make-up and nutrient component matrix by analyzing the intensity and spatial distribution of molecular functional groups within the intact seed using advanced synchrotron-powered Fourier transform infrared (FTIR) microspectroscopy. The experiment was performed at the U2B station of the National Synchrotron Light Source at Brookhaven National Laboratory, New York, USA. The wheat tissue was imaged systematically from the pericarp, seed coat, aleurone layer and endosperm under the peaks at {approx}1732 (carbonyl C{double_bond}O ester), 1515 (aromatic compound of lignin), 1650 (amide I), 1025 (non-structural CHO), 1550 (amide II), 1246 (cellulosic material), 1160, 1150, 1080, 930, 860 (all CHO), 3350 (OH and NH stretching), 2928 (CH{sub 2} stretching band) and 2885 cm{sup -1} (CH{sub 3} stretching band). Hierarchical cluster analysis and principal component analysis were applied to analyze the molecular FTIR spectra obtained from the different inherent structures within the intact wheat tissues. The results showed that, with synchrotron-powered FTIR microspectroscopy, images of the molecular chemistry of wheat could be generated at an ultra-spatial resolution. The features of aromatic lignin, structural and non-structural carbohydrates, as well as nutrient make-up and interactions in the seeds, could be revealed. Both principal component analysis and hierarchical cluster analysis methods are conclusive in showing that they can discriminate and classify the different inherent structures within the seed tissue. The wheat exhibited distinguishable

  4. Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Syta, Olga; Rozum, Karol; Choińska, Marta [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Zielińska, Dobrochna [Institute of Archaeology, University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw (Poland); Żukowska, Grażyna Zofia [Chemical Faculty, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Kijowska, Agnieszka [National Museum in Warsaw, Aleje Jerozolimskie 3, 00-495 Warsaw (Poland); Wagner, Barbara, E-mail: barbog@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

    2014-11-01

    Analytical procedure for the comprehensive chemical characterization of samples from medieval Nubian wall-paintings by means of portable X-ray fluorescence (pXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and Raman spectroscopy (RS) was proposed in this work. The procedure was used for elemental and molecular investigations of samples from archeological excavations in Nubia (modern southern Egypt and northern Sudan). Numerous remains of churches with painted decorations dated back to the 7th–14th century were excavated in the region of medieval kingdoms of Nubia but many aspects of this art and its technology are still unknown. Samples from the selected archeological sites (Faras, Old Dongola and Banganarti) were analyzed in the form of transfers (n = 26), small fragments collected during the excavations (n = 35) and cross sections (n = 15). XRF was used to collect data about elemental composition, LA-ICPMS allowed mapping of selected elements, while RS was used to get the molecular information about the samples. The preliminary results indicated the usefulness of the proposed analytical procedure for distinguishing the substances, from both the surface and sub-surface domains of the wall-paintings. The possibility to identify raw materials from the wall-paintings will be used in the further systematic, archeometric studies devoted to the detailed comparison of various historic Nubian centers. - Highlights: • The analytical procedure for examination of unique wall paintings was proposed. • Identification of pigments and supporting layers of wall-paintings was obtained. • Heterogeneous samples were mapped with the use of LA-ICPMS. • Anatase in the sub-surface regions of samples was detected by Raman spectroscopy.

  5. LINEAR INFRASTRUCTURES THAT CHARACTERIZE A PAST LAND MANAGEMENT: THE MONTAGNOLA SENESE DRY STONE WALLS. A METHODOLOGICAL APPROACH OF ANALYSIS

    Directory of Open Access Journals (Sweden)

    Emanuele Vazzano

    2012-06-01

    Full Text Available The aim of this paper is to highlight the development of a methodology for studying linear infrastructures such as dry stone walls, characteristic of an earlier land management in the Siena countryside. The study area on which this methodology was tested is located in the Site of Community Importance (SCI “Montagnola Senese”. It was chosen as an example of a historical form of agricultural and forest land management, partly related to the key presence of the above mentioned artifacts. This methodology was based on the analysis of a historical cadastre and the concurrent construction and updating of a L.I.S. (Land Information System processed in a GIS environment. In order to compare 1825 data about land use, land ownership and parcel boundaries of the current walls were surveyed during fieldwork through GPS handheld equipment. The results show quite a good correspondence between wall lines and cadastral parcel boundary lines, mostly in the woodland. The analysis of the study area brings out that the walls were designed to carry out different functions such as property boundary, to enclose fields and defend them from the entrance of livestock grazing in the woodland, and subdivide a same land property in different management portions both as cultivated fields and as woodland.

  6. Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices

    NARCIS (Netherlands)

    Philipps, V.; Malaquias, A.; Hakola, A.; Karhunen, J.; Maddaluno, G.; Almaviva, S.; Caneve, L.; Colao, F.; Fortuna, E.; Gasior, P.; Kubkowska, M.; Czarnecka, A.; Laan, M.; Lissovski, A.; Paris, P.; van der Meiden, H. J.; Petersson, P.; Rubel, M.; Huber, A.; Zlobinski, M.; Schweer, B.; Gierse, N.; Xiao, Q.; Sergienko, G.

    2013-01-01

    Analysis and understanding of wall erosion, material transport and fuel retention are among the most important tasks for ITER and future devices, since these questions determine largely the lifetime and availability of the fusion reactor. These data are also of extreme value to improve the

  7. The use of relative inverse thermal admittance for the characterization and optimization of fin-wall assemblies

    Directory of Open Access Journals (Sweden)

    Luna-Abad Juan P.

    2017-01-01

    Full Text Available The concept of relative inverse thermal admittance applied to the convective fin-wall assembly optimization of longitudinal rectangular fins under 2-D heat conduction is presented in this work. Since heat transfer at the fin tip is taken into account, it is not always possible to optimize the above cited geometry. This is relevant in optimization processes and because of this has been displayed in several graphs. Here, different values for convective conditions at the fin and wall surfaces are used and the influence of the hw/hf ratio in optimum geometry is determined. The fin effectiveness is used as the fundamental parameter to prove that the fin is fulfilling the objective of increasing heat dissipation. Once the optimum thickness has been obtained, the Biot number is easily calculated and the fin effectiveness for an isolated fin and the fin-wall assembly can be determined graphically. The optimization process is carried out through a set of universal graphs in which the range of parameters covers most of the practical cases a designer will find. The concept of relative inverse thermal admittance is applied in a general form and emerges as an easy used tool for optimizing fin-wall assemblies.

  8. Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kanimozhi, K. [Department of Chemistry, Auxilium College, Vellore 632 006 (India); Khaleel Basha, S. [Department of Biochemistry, C. Abdul Hakeem College, Melvisharam 632 509 (India); Sugantha Kumari, V., E-mail: sheenasahana04@gmail.com [Department of Chemistry, Auxilium College, Vellore 632 006 (India)

    2016-04-01

    Biomimetic porous scaffold chitosan/poly(vinyl alcohol) CS/PVA containing various amounts of methylcellulose (MC) (25%, 50% and 75%) incorporated in CS/PVA blend was successfully produced by a freeze drying method in the present study. The composite porous scaffold membranes were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), swelling degree, porosity, degradation of films in Hank's solution and the mechanical properties. Besides these characterizations, the antibacterial activity of the prepared scaffolds was tested, toward the bacterial species Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). FTIR, XRD and DSC demonstrated that there was strong intermolecular hydrogen bonding between the molecules of CS/PVA and MC. The crystalline microstructure of the scaffold membranes was not well developed. SEM images showed that the morphology and diameter of the scaffolds were mainly affected by the weight ratio of MC. By increasing the MC content in the hybrid scaffolds, their swelling capacity and porosity increased. The mechanical properties of these scaffolds in dry and swollen state were greatly improved with high swelling ratio. The elasticity of films was also significantly improved by the incorporation of MC, and the scaffolds could also bear a relative high tensile strength. These findings suggested that the developed scaffold possess the prerequisites and can be used as a scaffold for tissue engineering. - Highlights: • The porous scaffolds of CS/PVA containing different MC contents were fabricated. • Addition of MC improved the compatibility between CS and PVA. • The mechanical properties of these scaffolds were greatly improved with high swelling ratio. • Biocompatibility test showed that the different MC content scaffolds had no cytotoxicity.

  9. Characterization of the mouse pancreatic islet proteome and comparative analysis with other mouse tissues

    Energy Technology Data Exchange (ETDEWEB)

    Petyuk, Vladislav A.; Qian, Weijun; Hinault, Charlotte; Gritsenko, Marina A.; Singhal, Mudita; Monroe, Matthew E.; Camp, David G.; Kulkarni, Rohit N.; Smith, Richard D.

    2008-08-01

    The pancreatic islets of Langerhans and insulin-producing beta cells in particular play a central role in the maintenance of glucose homeostasis and the islet dysfunction is associated with the pathogenesis of both type 1 and type 2 diabetes mellitus. To contribute to the understanding of the biology of the pancreatic islets we applied proteomic techniques based on liquid chromatography coupled with mass spectrometry. Here as an initial step we present the first comprehensive proteomic characterization of pancreas islets of the mouse, the commonly used animal model for diabetes research. Two-dimensional SCX LC/RP LC-MS/MS has been applied to characterize of the mouse islet proteome, resulting in the confident identification of 17,350 different tryptic peptides covering 2,612 proteins with at least two unique peptide identifications per protein. The dataset also allowed identification of a number of post-translational modifications including several modifications relevant to oxidative stress and phosphorylation. While many of the identified phosphorylation sites corroborates with previous known sites, the oxidative modifications observed on cysteinyl residues potentially reveal novel information related to the role of oxidation stress in islet functions. Comparative analysis of the islet proteome database with 15 available proteomic datasets from other mouse tissues and cells revealed a set of 68 proteins uniquely detected only in the pancreatic islets. Besides proteins with known functions, like islet secreted peptide hormones, this unique set contains a number of proteins with yet unknown functions. The resulting peptide and protein database will be available at ncrr.pnl.gov web site of the NCRR proteomic center (ncrr.pnl.gov).

  10. Cuttlefish bone scaffold for tissue engineering: a novel hydrothermal transformation, chemical-physical, and biological characterization.

    Science.gov (United States)

    Battistella, Elisa; Mele, Silvia; Foltran, Ismaela; Lesci, Isidoro Giorgio; Roveri, Norberto; Sabatino, Piera; Rimondini, Lia

    2012-09-27

    Natural resources are receiving growing interest because of their possible conversion from a cheap and easily available material into a biomedical product. Cuttlefish bone from Sepia Officinalis was investigated in order to obtain an hydroxyapatite porous scaffold using hydrothermal transformation. Complete conversion of the previous calcium carbonate (aragonite) phase into a calcium phosphate (hydroxyapatite) phase was performed with an hydrothermal transformation at 200 °C (~ 15 atm), for four hours, with an aqueous solution of KH2PO4 in order to set the molar ratio Ca/P = 10/6 in a reactor (Parr 4382). The complete conversion was then analyzed by TGA, ATR-FTIR, x-ray diffraction, and SEM. Moreover, the material was biologically investigated with MC3T3-E1 in static cultures, using both osteogenic and maintenance media. The expression of osteogenic markers as ALP and osteocalcin and the cell proliferation were investigated. Cuttlefish bone has been successfully transformed from calcium carbonate into calcium phosphate. Biological characterization revealed that osteogenic markers are expressed using both osteogenic and maintenance conditions. Cell proliferation is influenced by the static culture condition used for this three-dimensional scaffold. The new scaffold composed by hydroxyapatite and derived for a natural source presents good biocompatibility and can be used for further investigations using dynamic cultures in order to improve cell proliferation and differentiation for bone tissue engineering.

  11. Genomic organization, tissue distribution and functional characterization of the rat Pate gene cluster.

    Directory of Open Access Journals (Sweden)

    Angireddy Rajesh

    Full Text Available The cysteine rich prostate and testis expressed (Pate proteins identified till date are thought to resemble the three fingered protein/urokinase-type plasminogen activator receptor proteins. In this study, for the first time, we report the identification, cloning and characterization of rat Pate gene cluster and also determine the expression pattern. The rat Pate genes are clustered on chromosome 8 and their predicted proteins retained the ten cysteine signature characteristic to TFP/Ly-6 protein family. PATE and PATE-F three dimensional protein structure was found to be similar to that of the toxin bucandin. Though Pate gene expression is thought to be prostate and testis specific, we observed that rat Pate genes are also expressed in seminal vesicle and epididymis and in tissues beyond the male reproductive tract. In the developing rats (20-60 day old, expression of Pate genes seem to be androgen dependent in the epididymis and testis. In the adult rat, androgen ablation resulted in down regulation of the majority of Pate genes in the epididymides. PATE and PATE-F proteins were found to be expressed abundantly in the male reproductive tract of rats and on the sperm. Recombinant PATE protein exhibited potent antibacterial activity, whereas PATE-F did not exhibit any antibacterial activity. Pate expression was induced in the epididymides when challenged with LPS. Based on our results, we conclude that rat PATE proteins may contribute to the reproductive and defense functions.

  12. Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering.

    Science.gov (United States)

    Keskin, Zalike; Sendemir Urkmez, Aylin; Hames, E Esin

    2017-06-01

    As it is known that bacterial cellulose (BC) is a biocompatible and natural biopolymer due to which it has a large set of biomedical applications. But still it lacks some desired properties, which limits its uses in many other applications. Therefore, the properties of BC need to be boosted up to an acceptable level. Here in this study for the first time, a new natural nanocomposite was produced by the incorporating keratin (isolated from human hair) to the BC (produced by Acetobacter xylinum) to enhance dermal fibroblast cells' attachment. Two different approaches were used in BC based nanocomposite production: in situ and post modifications. BC/keratin nanocomposites were characterized using SEM, FTIR, EDX, XRD, DSC and XPS analyses. Both production methods have yielded successful results for production of BC based nanocomposite-containing keratin. In vitro cell culture experiments performed with human skin keratinocytes and human skin fibroblast cells indicate the potential of the novel BC/keratin nanocomposites for use in skin tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Preparation and characterization of a novel tobramycin-containing antibacterial collagen film for corneal tissue engineering.

    Science.gov (United States)

    Liu, Yang; Ren, Li; Long, Kai; Wang, Lin; Wang, Yingjun

    2014-01-01

    Corneal disease is a major cause of blindness and keratoplasty is an effective treatment method. However, clinical treatment is limited due to a severe shortage of high-quality allogeneic corneal tissues and the bacterial infection after corneal transplantation. In this study, we develop a novel artificial and antibacterial collagen film (called Col-Tob) for corneal repair. In the Col-Tob film, the tobramycin, which is an aminoglycoside antibiotic to treat various types of bacterial infections, was cross-linked by 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide and N-hydroxysuccinimide onto the collagen. Physical properties, antibacterial property and biocompatibility of the films were characterized. The results indicate that the film is basically transparent and has appropriate mechanical properties. Cell experiments show that human corneal epithelial cells could adhere to and proliferate well on the film. Most importantly, the film exhibits excellent antibacterial effect in vitro. Lamellar keratoplasty shows that the Col-Tob film can be sutured in rabbit eyes and are epithelialized completely in 15 ± 5 days, and their transparency is restored quickly in the first month. Corneal rejection reaction, neovascularization and keratoconus are not observed within 3 months. This film, which can be prepared in large quantities and at low cost,should have potential application in corneal repair. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Characterization of Anomalous Diffusion in Porous Biological Tissues Using Fractional Order Derivatives and Entropy.

    Science.gov (United States)

    Magin, Richard L; Ingo, Carson; Colon-Perez, Luis; Triplett, William; Mareci, Thomas H

    2013-09-15

    In this high-resolution magnetic resonance imaging (MRI) study at 17.6 Tesla of a fixed rat brain, we used the continuous time random walk theory (CTRW) for Brownian motion to characterize anomalous diffusion. The complex mesoporus structure of biological tissues (membranes, organelles, and cells) perturbs the motion of the random walker (water molecules in proton MRI) introducing halts between steps (waiting times) and restrictions on step sizes (jump lengths). When such waiting times and jump lengths are scaled with probability distributions that follow simple inverse power laws (t(-(1+α)), |x|(-(1+β))) non-Gaussian motion gives rise to sub- and super- diffusion. In the CTRW approach, the Fourier transform yields a solution to the generalized diffusion equation that can be expressed by the Mittag-Leffler function (MLF), Eα (- Dα, β|q|(β)Δ(α)). We interrogated both white and gray matter regions in a 1 mm slice of a fixed rat brain (190 μm in plane resolution) with diffusion weighted MRI experiments using b-values up to 25,000 s/mm(2), by independently varying q and Δ. When fitting these data to our model, the fractional order parameters, α and β, and the entropy measure, [Formula: see text], were found to provide excellent contrast between white and gray matter and to give results that were sensitive to the type of diffusion experiment performed.

  15. Partial Purification and Characterization of RNase P from Arabidopsis Thaliana Tissue

    National Research Council Canada - National Science Library

    2000-01-01

    ...) molecules to give mature 5, ends has been isolated from Arabidopsis thaliana tissue. The RNase P activity was isolated by ammonium sulfate precipitation of a tissue homogenate and further purified by anion exchange chromatography...

  16. Asymmetric PDLLA membranes containing Bioglass(R) for guided tissue regeneration: characterization and in vitro biological behavior

    NARCIS (Netherlands)

    Leal, A.I.; Caridade, S.G.; Ma, J.; Yu, N.; Gomes, M.E.R.; Reis, R.L.; Jansen, J.A.; Walboomers, X.F.; Mano, J.F.

    2013-01-01

    OBJECTIVE: In the treatment of periodontal defects, composite membranes might be applied to protect the injured area and simultaneously stimulate tissue regeneration. This work describes the development and characterization of poly(d,l-lactic acid)/Bioglass(R) (PDLLA/BG) composite membranes with

  17. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia

    NARCIS (Netherlands)

    Kroening, Sven; Neubauer, Emily; Wullich, Bernd; Aten, Jan; Goppelt-Struebe, Margarete

    2010-01-01

    Kroening S, Neubauer E, Wullich B, Aten J, Goppelt-Struebe M. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia. Am J Physiol Renal Physiol 298:F796-F806, 2010. First published December 23, 2009;

  18. DESIGN, DEVELOPMENT AND CHARACTERIZATION OF NOVEL BIOMATERIALS FOR PERIODONTAL TISSUE ENGINEERING

    OpenAIRE

    Iviglia, Giorgio

    2016-01-01

    Periodontium is a complex system of different tissues, such as connective tissue, cartilage and bone, which work together to sustain the tooth. Gingivitis and periodontitis are devastating diseases that could affect the structure and function of the periodontal tissue. When the gingivitis are not treated and controlled with a correct oral hygiene, they could evolve in periodontitis, which could seriously damage the tissue surrounding the tooth and lead tooth loss. The main objective of period...

  19. Genome-Wide Epigenetic Characterization of Tissues from Three Germ Layers Isolated from Sheep Fetuses

    OpenAIRE

    Emanuele Capra; Paola Toschi; Marcello Del Corvo; Barbara Lazzari; Scapolo, Pier A.; Pasqualino Loi; Williams, John L; Alessandra Stella; Paolo Ajmone-Marsan

    2017-01-01

    DNA methylation of regulatory and growth-related genes contributes to fetal programming which is important for maintaining the correct development of three germ layers of the embryo that develope into different tissues and organs, and which persists into adult life. In this study, a preliminary epigenetic screen was performed to define genomic regions that are involved in fetal epigenome remodeling. Embryonic ectodermic tissues (origin of nervous tissue), mesenchymal tissues (origin of connec...

  20. Synthesis and characterization of polyglycerols dendrimers for applications in tissue engineering biological

    Energy Technology Data Exchange (ETDEWEB)

    Passos, E.D.; Queiroz, A.A.A. de [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)

    2014-07-01

    Full text: Introduction: Over the last twenty years is the growing development in the manufacture of synthetic scaffold in tissue engineering applications. These new materials are based on polyglycerol dendrimers (PGLD's). PGLD's are highly functional polymers with hydroxymethyl side groups, fulfill all structural prerequisites to replace poly(ethylene glycol)s in medical applications. Furthermore, since these materials are based on naturally occurring compounds that degrades over time in the body and can be safely excreted. The objective of this work was the synthesis, physicochemical, biological characterization of HPGL's with potential use as scaffolds in tissue engineering. HPGL's with oligomeric cores, of diglycerol triglycerol and tetraglycerol was used. Theoretical and Experimental Simulation Details: The synthesis of PGLD procedures involves the etherification of glycerol through anionic polymerization of glycidol. The PGLD's were characterized by chromatographic techniques (SEC and HPLC), spectroscopic (FTIR, 1H-NMR and 13C - NMR) electrochemical (zeta potential) and thermal analysis (DSC and TGA) techniques. The structure- activity relationships (SAR's) of compound prototype and its analogs were studied to determine the generation number (G) of the molecule responsible for the biological activity on the adhesion and cell proliferation process. A detailed study of the structure of PGLD's of G=0-4 was performed using the Hyperchem 7. 5 and Gromacs 4 software packages. The biocompatibility studies were studied by scanning electron microscopy (SEM) and fluorescence microscopy (EPF) technique after PGLD (G=0-4) blood contact. The overall electro-negativity/total charge density, dipole moment, frontier orbital's (HOMO - LUMO) and electrostatic potential maps (EPM) were calculated. The most stable form of the resulting compounds was determined by estimating the hydration energy and energy conformation. Results and

  1. Elemental Characterization of Single-Wall Carbon Nanotube Certified Reference Material by Neutron and Prompt gamma Activation Analysis

    Czech Academy of Sciences Publication Activity Database

    Kučera, Jan; Bennett, J. W.; Oflaz, R.; Paul, R. L.; De Nadai Fernandes, E. A.; Kubešová, Marie; Bacchi, M. A.; Stopic, A. J.; Sturgeon, R. E.; Grinberg, P.

    2015-01-01

    Roč. 87, č. 7 (2015), s. 3699-3705 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : Neutron Activation Analyses * nanotechnology * Carbon nanotubes * Chemical activation * Single-walled carbon nanotubes (SWCN) Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.886, year: 2015

  2. Multi-Detector CT Findings of Palpable Chest Wall Masses in Children: A Pictorial Essay

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Ho; Kim, Young Tong [Dept. of Radiology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan (Korea, Republic of); Hong, Hyun Sook [Dept. of Radiology, Soonchunhyang University College of Medicine, Bucheon Hospital, Bucheon (Korea, Republic of)

    2013-03-15

    A wide variety of diseases manifest as palpable chest wall masses in children. These include normal variation, congenital anomalies, trauma, infection, axillary lymphadenopathies, soft tissue tumors and bone tumors. Given that most of these diseases are associated with chest wall deformity, diagnosis is difficult by physical examination or ultrasonography alone. However, multi-detector CT with three dimensional reconstruction is useful in the characterization and differential diagnosis of palpable chest wall lesions. In this article, we review the spectrum of palpable chest wall diseases and illustrate their multi-detector CT presentation.

  3. Genome-Wide Epigenetic Characterization of Tissues from Three Germ Layers Isolated from Sheep Fetuses

    Directory of Open Access Journals (Sweden)

    Emanuele Capra

    2017-09-01

    Full Text Available DNA methylation of regulatory and growth-related genes contributes to fetal programming which is important for maintaining the correct development of three germ layers of the embryo that develope into different tissues and organs, and which persists into adult life. In this study, a preliminary epigenetic screen was performed to define genomic regions that are involved in fetal epigenome remodeling. Embryonic ectodermic tissues (origin of nervous tissue, mesenchymal tissues (origin of connective and muscular tissues, and foregut endoderm tissues (origin of epithelial tissue, from day 28 sheep fetuses were collected and the distribution of methylated CpGs was analyzed using whole-genome bisulfite sequencing. Patterns of methylation among the three tissues showed a high level of conservation of hypo-methylated CpG islands CGIs, and a consistent level of methylation in regulatory genetic elements. Analysis of tissue specific differentially methylated regions, revealed that 20% of the total CGIs differed between tissues. A proportion of the methylome was remodeled in gene bodies, 5′ UTRs and 3′ UTRs (7, 11, and 11%, respectively. Genes with overlapping differentially methylated regions in gene bodies and CGIs showed a significant enrichment for tissue morphogenesis and development pathways. The data presented here provides a “reference” for the epigenetic status of genes potentially involved in the maintenance and regulation of fetal developmental during early life, a period expected to be particularly prone to epigenetic alterations induced by environmental and nutritional stressors.

  4. Genome-Wide Epigenetic Characterization of Tissues from Three Germ Layers Isolated from Sheep Fetuses.

    Science.gov (United States)

    Capra, Emanuele; Toschi, Paola; Del Corvo, Marcello; Lazzari, Barbara; Scapolo, Pier A; Loi, Pasqualino; Williams, John L; Stella, Alessandra; Ajmone-Marsan, Paolo

    2017-01-01

    DNA methylation of regulatory and growth-related genes contributes to fetal programming which is important for maintaining the correct development of three germ layers of the embryo that develope into different tissues and organs, and which persists into adult life. In this study, a preliminary epigenetic screen was performed to define genomic regions that are involved in fetal epigenome remodeling. Embryonic ectodermic tissues (origin of nervous tissue), mesenchymal tissues (origin of connective and muscular tissues), and foregut endoderm tissues (origin of epithelial tissue), from day 28 sheep fetuses were collected and the distribution of methylated CpGs was analyzed using whole-genome bisulfite sequencing. Patterns of methylation among the three tissues showed a high level of conservation of hypo-methylated CpG islands CGIs, and a consistent level of methylation in regulatory genetic elements. Analysis of tissue specific differentially methylated regions, revealed that 20% of the total CGIs differed between tissues. A proportion of the methylome was remodeled in gene bodies, 5' UTRs and 3' UTRs (7, 11, and 11%, respectively). Genes with overlapping differentially methylated regions in gene bodies and CGIs showed a significant enrichment for tissue morphogenesis and development pathways. The data presented here provides a "reference" for the epigenetic status of genes potentially involved in the maintenance and regulation of fetal developmental during early life, a period expected to be particularly prone to epigenetic alterations induced by environmental and nutritional stressors.

  5. Characterization of non-calcareous 'thin' red clay from south-eastern Brazil: applicability in wall tile manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, S.J.G.; Holanda, J.N.F., E-mail: sidnei_rjsousa@yahoo.com.br, E-mail: holanda@uenf.br [Grupo de Materiais Ceramicos - LAMAV-CCT, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ (Brazil)

    2012-04-15

    In this work the use of 'thin' red clay from south-eastern Brazil (Campos dos Goytacazes, RJ) as raw material for the manufacture of wall tile was investigated. A wide range of characterization techniques was employed, including X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), grain-size analysis, and thermogravimetric analysis. The wall tile body was prepared by the dry process. The tile pieces were uniaxially pressed and fired between 1080 - 1180 deg C using a fast-firing cycle. The following technological properties were determined: linear shrinkage, water absorption, apparent density, and flexural strength. The development of the microstructure was followed by SEM and XRD analyses. It was found that the 'thin' red clay is kaolinitic type containing a substantial amount of quartz. The results also showed that the 'thin' red clay could be used in the manufacture of wall tiles, as they present properties compatible with those specified for class BIII of ISO 13006 standard. (author)

  6. Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy

    Science.gov (United States)

    Syta, Olga; Rozum, Karol; Choińska, Marta; Zielińska, Dobrochna; Żukowska, Grażyna Zofia; Kijowska, Agnieszka; Wagner, Barbara

    2014-11-01

    Analytical procedure for the comprehensive chemical characterization of samples from medieval Nubian wall-paintings by means of portable X-ray fluorescence (pXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and Raman spectroscopy (RS) was proposed in this work. The procedure was used for elemental and molecular investigations of samples from archeological excavations in Nubia (modern southern Egypt and northern Sudan). Numerous remains of churches with painted decorations dated back to the 7th-14th century were excavated in the region of medieval kingdoms of Nubia but many aspects of this art and its technology are still unknown. Samples from the selected archeological sites (Faras, Old Dongola and Banganarti) were analyzed in the form of transfers (n = 26), small fragments collected during the excavations (n = 35) and cross sections (n = 15). XRF was used to collect data about elemental composition, LA-ICPMS allowed mapping of selected elements, while RS was used to get the molecular information about the samples. The preliminary results indicated the usefulness of the proposed analytical procedure for distinguishing the substances, from both the surface and sub-surface domains of the wall-paintings. The possibility to identify raw materials from the wall-paintings will be used in the further systematic, archeometric studies devoted to the detailed comparison of various historic Nubian centers.

  7. Insoluble (1 → 3), (1 → 4)-β-Dglucan is a component of cell walls in brown algae (Phaeophyceae) and is masked by alginates in tissues

    DEFF Research Database (Denmark)

    Salmeán, Armando A.; Duffieux, Delphine; Harholt, Jesper

    2017-01-01

    Brown algae are photosynthetic multicellular marine organisms. They belong to the phylum of Stramenopiles, which are not closely related to land plants and green algae. Brown algae share common evolutionary features with other photosynthetic and multicellular organisms, including a carbohydrate......-rich cell-wall. Brown algal cell walls are composed predominantly of the polyanionic polysaccharides alginates and fucose-containing sulfated polysaccharides. These polymers are prevalent over neutral and crystalline components, which are believed to be mostly, if not exclusively, cellulose. In an attempt...... to better understand brown algal cell walls, we performed an extensive glycan array analysis of a wide range of brown algal species. Here we provide the first demonstration that mixed-linkage (1 → 3), (1 → 4)-β-d-glucan (MLG) is common in brown algal cell walls. Ultra-Performance Liquid Chromatography...

  8. Functional and morphological parameters with tissue characterization of cardiovascular magnetic imaging in clinically verified ''infarct-like myocarditis''

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Johannes [Paracelsus Medical Univ., General Hospital Nuremberg (Germany). Dept. of Cardiology and Radiology; Rogg, H.J.; Pauschinger, M.; Fessele, K. [Paracelsus Medical Univ., General Hospital Nuremberg (Germany). Dept. of Cardiology; Bareiter, T.; Baer, I. [Paracelsus Medical Univ., General Hospital Nuremberg (Germany). Dept. of Cardiology and Neuroradiology; Loose, R. [Paracelsus Medical Univ., General Hospital Nuremberg (Germany). Dept. of Radiology

    2016-04-15

    Cardiac magnetic resonance (CMR) has increasingly proved to be a valuable diagnostic tool for evaluating patients with suspected myocarditis. The objective of this study was to evaluate the diagnostic value of functional and morphological parameters including tissue characterization in patients with ''infarct-like myocarditis''. 43 patients with clinically verified cases of ''infarct-like myocarditis'' (median time to MRI scanning after admission for acute symptoms 3 days) and 35 control patients matched by age and sex were included in this retrospective case control study. In this study we used a 1.5 T MRI scanner conducting steady-state-free-precession sequences, T2-weighted imaging, T1-weighted imaging before and after contrast administration and late gadolinium enhancement sequences. According to the recommendations for CMR diagnosis of myocarditis (Lake Louise consensus criteria), a scan was positive for acute myocarditis if 2 of 3 CMR criteria were present. 30 % of the patients with ''infarct-like myocarditis'' had a reduced left ventricular ejection fraction, 11 % had an increased LV end-diastolic volume index and 35 % had an increased LV mass index. The sensitivity of wall motion abnormalities was 63 % with a regional distribution in 49 %. In 47 % of cases regional wall motion abnormalities were present in the lateral left ventricular segments. Pericardial effusions were discovered in 65 % of cases with a circular appearance in 21 % and focal manifestation in 44 %. The diagnostic sensitivity, specificity, and accuracy of CMR in patients with ''infarct-like myocarditis'' were 67 %, 100 % and 82 %, respectively. The LGE alone was the most sensitive test parameter with 86 %, providing a specificity of 100 % and accuracy of 92 %. Our study results can be applied to the subgroup of patients with ''infarct-like myocarditis'', where we found that LGE alone was the

  9. Biexponential characterization of prostate tissue water diffusion decay curves over an extended b-factor range.

    Science.gov (United States)

    Mulkern, Robert V; Barnes, Agnieszka Szot; Haker, Steven J; Hung, Yin P; Rybicki, Frank J; Maier, Stephan E; Tempany, Clare M C

    2006-06-01

    Detailed measurements of water diffusion within the prostate over an extended b-factor range were performed to assess whether the standard assumption of monoexponential signal decay is appropriate in this organ. From nine men undergoing prostate MR staging examinations at 1.5 T, a single 10-mm-thick axial slice was scanned with a line scan diffusion imaging sequence in which 14 equally spaced b factors from 5 to 3,500 s/mm(2) were sampled along three orthogonal diffusion sensitization directions in 6 min. Due to the combination of long scan time and limited volume coverage associated with the multi-b-factor, multidirectional sampling, the slice was chosen online from the available T2-weighted axial images with the specific goal of enabling the sampling of presumed noncancerous regions of interest (ROIs) within the central gland (CG) and peripheral zone (PZ). Histology from prescan biopsy (n=9) and postsurgical resection (n=4) was subsequently employed to help confirm that the ROIs sampled were noncancerous. The CG ROIs were characterized from the T2-weighted images as primarily mixtures of glandular and stromal benign prostatic hyperplasia, which is prevalent in this population. The water signal decays with b factor from all ROIs were clearly non-monoexponential and better served with bi- vs. monoexponential fits, as tested using chi(2)-based F test analyses. Fits to biexponential decay functions yielded intersubject fast diffusion component fractions in the order of 0.73+/-0.08 for both CG and PZ ROIs, fast diffusion coefficients of 2.68+/-0.39 and 2.52+/-0.38 microm(2)/ms and slow diffusion coefficients of 0.44+/-0.16 and 0.23+/-0.16 um(2)/ms for CG and PZ ROIs, respectively. The difference between the slow diffusion coefficients within CG and PZ was statistically significant as assessed with a Mann-Whitney nonparametric test (P<.05). We conclude that a monoexponential model for water diffusion decay in prostate tissue is inadequate when a large range of b

  10. Extreme Learning Machine Framework for Risk Stratification of Fatty Liver Disease Using Ultrasound Tissue Characterization.

    Science.gov (United States)

    Kuppili, Venkatanareshbabu; Biswas, Mainak; Sreekumar, Aswini; Suri, Harman S; Saba, Luca; Edla, Damodar Reddy; Marinhoe, Rui Tato; Sanches, J Miguel; Suri, Jasjit S

    2017-08-23

    Fatty Liver Disease (FLD) is caused by the deposition of fat in liver cells and leads to deadly diseases such as liver cancer. Several FLD detection and characterization systems using machine learning (ML) based on Support Vector Machines (SVM) have been applied. These ML systems utilize large number of ultrasonic grayscale features, pooling strategy for selecting the best features and several combinations of training/testing. As result, they are computationally intensive, slow and do not guarantee high performance due to mismatch between grayscale features and classifier type. This study proposes a reliable and fast Extreme Learning Machine (ELM)-based tissue characterization system (a class of Symtosis) for risk stratification of ultrasound liver images. ELM is used to train single layer feed forward neural network (SLFFNN). The input-to-hidden layer weights are randomly generated reducing computational cost. The only weights to be trained are hidden-to-output layer which is done in a single pass (without any iteration) making ELM faster than conventional ML methods. Adapting four types of K-fold cross-validation (K = 2, 3, 5 and 10) protocols on three kinds of data sizes: S0-original, S4-four splits, S8-sixty four splits (a total of 12 cases) and 46 types of grayscale features, we stratify the FLD US images using ELM and benchmark against SVM. Using the US liver database of 63 patients (27 normal/36 abnormal), our results demonstrate superior performance of ELM compared to SVM, for all cross-validation protocols (K2, K3, K5 and K10) and all types of US data sets (S0, S4, and S8) in terms of sensitivity, specificity, accuracy and area under the curve (AUC). Using the K10 cross-validation protocol on S8 data set, ELM showed an accuracy of 96.75% compared to 89.01% for SVM, and correspondingly, the AUC: 0.97 and 0.91, respectively. Further experiments also showed the mean reliability of 99% for ELM classifier, along with the mean speed improvement of 40% using

  11. Characterization of p75{sup +} ectomesenchymal stem cells from rat embryonic facial process tissue

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing; Zhang, Li; Liu, Rui; Xing, Yongjun; Zhou, Xia [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042 (China); Nie, Xin, E-mail: dr.xinnie@gmail.com [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042 (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Ectomesenchymal stem cells (EMSCs) were found to migrate to rat facial processes at E11.5. Black-Right-Pointing-Pointer We successfully sorted p75NTR positive EMSCs (p75{sup +} EMSCs). Black-Right-Pointing-Pointer p75{sup +} EMSCs up to nine passages showed relative stable proliferative activity. Black-Right-Pointing-Pointer We examined the in vitro multilineage potential of p75{sup +} EMSCs. Black-Right-Pointing-Pointer p75{sup +}EMSCs provide an in vitro model for tooth morphogenesis. -- Abstract: Several populations of stem cells, including those from the dental pulp and periodontal ligament, have been isolated from different parts of the tooth and periodontium. The characteristics of such stem cells have been reported as well. However, as a common progenitor of these cells, ectomesenchymal stem cells (EMSCs), derived from the cranial neural crest have yet to be fully characterized. The aim of this study was to better understand the characteristics of EMSCs isolated from rat embryonic facial processes. Immunohistochemical staining showed that EMSCs had migrated to rat facial processes at E11.5, while the absence of epithelial invagination or tooth-like epithelium suggested that any epithelial-mesenchymal interactions were limited at this stage. The p75 neurotrophin receptor (p75NTR), a typical neural crest marker, was used to select p75NTR-positive EMSCs (p75{sup +} EMSCs), which were found to show a homogeneous fibroblast-like morphology and little change in the growth curve, proliferation capacity, and cell phenotype during cell passage. They also displayed the capacity to differentiate into diverse cell types under chemically defined conditions in vitro. p75{sup +} EMSCs proved to be homogeneous, stable in vitro and potentially capable of multiple lineages, suggesting their potential for application in dental or orofacial tissue engineering.

  12. Development and characterization of novel electrically conductive PANI-PGS composites for cardiac tissue engineering applications.

    Science.gov (United States)

    Qazi, Taimoor H; Rai, Ranjana; Dippold, Dirk; Roether, Judith E; Schubert, Dirk W; Rosellini, Elisabetta; Barbani, Niccoletta; Boccaccini, Aldo R

    2014-06-01

    Cardiovascular diseases, especially myocardial infarction, are the leading cause of morbidity and mortality in the world, also resulting in huge economic burdens on national economies. A cardiac patch strategy aims at regenerating an infarcted heart by providing healthy functional cells to the injured region via a carrier substrate, and providing mechanical support, thereby preventing deleterious ventricular remodeling. In the present work, polyaniline (PANI) was doped with camphorsulfonic acid and blended with poly(glycerol-sebacate) at ratios of 10, 20 and 30vol.% PANI content to produce electrically conductive composite cardiac patches via the solvent casting method. The composites were characterized in terms of their electrical, mechanical and physicochemical properties. The in vitro biodegradability of the composites was also evaluated. Electrical conductivity increased from 0Scm(-1) for pure PGS to 0.018Scm(-1) for 30vol.% PANI-PGS samples. Moreover, the conductivities were preserved for at least 100h post fabrication. Tensile tests revealed an improvement in the elastic modulus, tensile strength and elasticity with increasing PANI content. The degradation products caused a local drop in pH, which was higher in all composite samples compared with pure PGS, hinting at a buffering effect due to the presence of PANI. Finally, the cytocompatibility of the composites was confirmed when C2C12 cells attached and proliferated on samples with varying PANI content. Furthermore, leaching of acid dopants from the developed composites did not have any deleterious effect on the viability of C2C12 cells. Taken together, these results confirm the potential of PANI-PGS composites for use as substrates to modulate cellular behavior via electrical stimulation, and as biocompatible scaffolds for cardiac tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Preparation and characterization of gelatin–hydroxyapatite composite microspheres for hard tissue repair

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Shao Ching [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan (China); Department of Minimally Invasive Skull Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, 1650 Taiwan Boulevard, Sect. 4, Taichung, Taiwan (China); Department of Neurosurgery, ChangHua Hospital, Ministry of Health and Welfare, 80 Chung Cheng Road, Sect. 2 Chiu Kuan Village, Changhua 500, Taiwan (China); Wang, Ming-Jia; Pai, Nai-Su [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan (China); Yen, Shiow-Kang, E-mail: skyen@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan (China)

    2015-12-01

    Gelatin–hydroxyapatite composite microspheres composed of 21% gelatin (G) and 79% hydroxyapatite (HA) with uniform morphology and controllable size were synthesized from a mixed solution of Ca(NO{sub 3}){sub 2}, NH{sub 4}H{sub 2}PO{sub 4} and gelatin by a wet-chemical method. Material analyses such as X-ray diffraction (XRD), scanning/transmission electron microscopy examination (SEM/TEM) and inductively coupled plasma-mass spectroscopy (ICP-MS) were used to characterize G–HA microspheres by analyzing their crystalline phase, microstructure, morphology and composition. HA crystals precipitate along G fibers to form nano-rods with diameters of 6–10 nm and tangle into porous microspheres after blending. The cell culture indicates that G–HA composite microspheres without any toxicity could enhance the proliferation and differentiation of osteoblast-like cells. In a rat calvarial defect model, G–HA bioactive scaffolds were compared with fibrin glue (F) and Osteoset® Bone Graft Substitute (OS) for their capacity of regenerating bone. Four weeks post-implantation, new bone, mineralization, and expanded blood vessel area were found in G–HA scaffolds, indicating greater osteoconductivity and bioactivity than F and OS. - Highlights: • G–HA composite microspheres were prepared by hydroxyapatite and gelatin. • In vitro tests indicated that the G–HA microspheres were biocompatible and bioactive. • In in vitro tests, G–HA microspheres could be applied in hard tissue engineering. • G–HA had healed the bone defect and provides a high proportion of surface area to open space.

  14. Methodology based on genetic heuristics for in-vivo characterizing the patient-specific biomechanical behavior of the breast tissues.

    Science.gov (United States)

    Lago, M A; Rúperez, M J; Martínez-Martínez, F; Martínez-Sanchis, S; Bakic, P R; Monserrat, C

    2015-11-30

    This paper presents a novel methodology to in-vivo estimate the elastic constants of a constitutive model proposed to characterize the mechanical behavior of the breast tissues. An iterative search algorithm based on genetic heuristics was constructed to in-vivo estimate these parameters using only medical images, thus avoiding invasive measurements of the mechanical response of the breast tissues. For the first time, a combination of overlap and distance coefficients were used for the evaluation of the similarity between a deformed MRI of the breast and a simulation of that deformation. The methodology was validated using breast software phantoms for virtual clinical trials, compressed to mimic MRI-guided biopsies. The biomechanical model chosen to characterize the breast tissues was an anisotropic neo-Hookean hyperelastic model. Results from this analysis showed that the algorithm is able to find the elastic constants of the constitutive equations of the proposed model with a mean relative error of about 10%. Furthermore, the overlap between the reference deformation and the simulated deformation was of around 95% showing the good performance of the proposed methodology. This methodology can be easily extended to characterize the real biomechanical behavior of the breast tissues, which means a great novelty in the field of the simulation of the breast behavior for applications such as surgical planing, surgical guidance or cancer diagnosis. This reveals the impact and relevance of the presented work.

  15. Isolation and Characterization of Human Dental Pulp Stem Cells from Cryopreserved Pulp Tissues Obtained from Teeth with Irreversible Pulpitis.

    Science.gov (United States)

    Malekfar, Azin; Valli, Kusum S; Kanafi, Mohammad Mahboob; Bhonde, Ramesh R

    2016-01-01

    Human dental pulp stem cells (DPSCs) are becoming an attractive target for therapeutic purposes because of their neural crest origin and propensity. Although DPSCs can be successfully cryopreserved, there are hardly any reports on cryopreservation of dental pulp tissues obtained from teeth diagnosed with symptomatic irreversible pulpitis during endodontic treatment and isolation and characterization of DPSCs from such cryopreserved pulp. The aim of this study was to cryopreserve the said pulp tissues to propagate and characterize isolated DPSCs. A medium consisting of 90% fetal bovine serum and 10% dimethyl sulfoxide was used for cryopreservation of pulp tissues. DPSCs were isolated from fresh and cryopreserved pulp tissues using an enzymatic method. Cell viability and proliferation were determined using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. DPSC migration and interaction were analyzed with the wound healing assay. Mesenchymal characteristics of DPSCs were verified by flow cytometric analysis of cell surface CD markers. The osteogenic and adipogenic potential of DPSCs was shown by von Kossa and oil red O staining methods, respectively, and the polymerase chain reaction method. We found no significant difference in CD marker expression and osteogenic and adipogenic differentiation potential of DPSCs obtained from fresh and cryopreserved dental pulp tissue. Our study shows that dental pulp can be successfully cryopreserved without losing normal characteristics and differentiation potential of their DPSCs, thus making them suitable for dental banking and future therapeutic purposes. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Effect of polymer type on characterization and filtration performances of multi-walled carbon nanotubes (MWCNT)-COOH-based polymeric mixed matrix membranes.

    Science.gov (United States)

    Sengur-Tasdemir, Reyhan; Mokkapati, Venkata R S S; Koseoglu-Imer, Derya Y; Koyuncu, Ismail

    2017-05-17

    Multi-walled carbon nanotubes (MWCNTs) can be used for the fabrication of mixed matrix polymeric membranes that can enhance filtration perfomances of the membranes by modifying membrane surface properties. In this study, detailed characterization and filtration performances of MWCNTs functionalized with COOH group, blended into polymeric flat-sheet membranes were investigated using different polymer types. Morphological characterization was carried out using atomic force microscopy, scanning electron microscopy and contact angle measurements. For filtration performance tests, protein, dextran, E. coli suspension, Xanthan Gum and real activated sludge solutions were used. Experimental data and analyses revealed that Polyethersulfone (PES) + MWCNT-COOH mixed matrix membranes have superior performance abilities compared to other tested membranes.

  17. Bio-Optics Based Sensation Imaging for Breast Tumor Detection Using Tissue Characterization

    OpenAIRE

    Jong-Ha Lee; Yoon Nyun Kim; Hee-Jun Park

    2015-01-01

    The tissue inclusion parameter estimation method is proposed to measure the stiffness as well as geometric parameters. The estimation is performed based on the tactile data obtained at the surface of the tissue using an optical tactile sensation imaging system (TSIS). A forward algorithm is designed to comprehensively predict the tactile data based on the mechanical properties of tissue inclusion using finite element modeling (FEM). This forward information is used to develop an invers...

  18. Histologic characterization of regenerated tissues in canal space after the revitalization/revascularization procedure of immature dog teeth with apical periodontitis.

    Science.gov (United States)

    Wang, Xiaojing; Thibodeau, Blayne; Trope, Martin; Lin, Louis M; Huang, George T-J

    2010-01-01

    Recently, it has been shown that it is possible to treat an immature tooth with an infected pulp space and apical periodontitis in such a way as to heal and promote the ingrown of new vital tissue into the pulp space. However, the type of new-grown tissue is unclear. Based on the samples of a previously reported study, we further investigated histologically the types of tissues that had grown into the canal space. The canal dentinal walls were thickened by the apposition of newly generated cementum-like tissue termed herein "intracanal cementum (IC)." One case showed partial survival of pulp tissue juxtaposed with fibrous connective tissue that formed IC on canal dentin walls. The IC may also form a bridge at the apex, in the apical third or midthird of the canal. The root length in many cases was increased by the growth of cementum. The generation of apical cementum or IC may occur despite the presence of inflammatory infiltration at the apex or in the canal. These cementum or cementum-like tissues were similar to cellular cementum. Bone or bone-like tissue was observed in the canal space in many cases and is termed intracanal bone (IB). Connective tissue similar to periodontal ligament was also present in the canal space surrounding the IC and/or IB. Our findings explained in part why many clinical cases of immature teeth with apical periodontitis or abscess may gain root thickness and apical length after conservative treatment with the revitalization procedure.

  19. Characterization of handpieces to control tissue ablation with pulsed CO2 laser

    Science.gov (United States)

    Verdaasdonck, Rudolf M.; van Swol, Christiaan F. P.; Coates, Judith

    1995-05-01

    Focusing handpieces used for CO2 beam delivery allow large variation of the power density in the spot depending on the distance to the tissue and hence the effect on the tissue. In contrast to the cw CO2 laser, the pulsed CO2 laser vaporized tissue water instantly (: equals ablation threshold), leaving a charless crater in the tissue surface. Only if the fluence is below or near threshold, the tissue effects are comparable with the cw laser. The threshold and tissue effects were studied for focusing (f equals 119 mm) and collimating (3 mm) handpieces coupled to an ultrapulsed CO2 laser. Using a special thermal imaging setup based on Schlieren techniques, the ablation threshold was determined depending on spotsize and pulse energy (1-200 mJ). In the focus of the handpiece, the threshold was already exceeded at 1 mJ, creating holes that were larger than the theoretical expected spotsize. The ablation threshold (J/cm2) increased for larger spotsizes. Below threshold, there is heating of the tissue resulting in coagulation. Above threshold, the exploding water vapor consumed thermal energy suppressing heating of the surrounding tissue. The gaussian shape of the collimated beam results in relatively more thermal effects. Focusing handpieces provide a wide range in power density and thus require experience from the surgeon. Collimated handpieces might be more easy to handle but offer less flexibility in tissue effect and a larger thermal zone.

  20. Experimental Characterization of Near-Infrared Laser Energy Absorption, Scattering, and Transmittance in Biological Tissue

    National Research Council Canada - National Science Library

    Laffitte, John; Roelant, David; Denton, Michael L; Thomas, Robert J

    2007-01-01

    .... Tissue samples varied in thickness from millimeters to microns. Readings from three IR detectors were used to calculate the diffuse reflectance, diffuse transmittance, and collimated transmittance...

  1. γ-Fe{sub 2}O{sub 3} magnetic nanoparticle functionalized with carboxylated multi walled carbon nanotube: Synthesis, characterization, analytical and biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Kılınç, Ersin, E-mail: kilincersin@gmail.com

    2016-03-01

    In recent years, magnetic nanoparticles attained special interest in nanobiotechnology and nanomedicine due to their uniqe properties and biocompatibilities. From this perspective, hybride nanostructure composed from γ-Fe{sub 2}O{sub 3} magnetic nanoparticle and carboxylated multi walled carbon nanotube was synthesized and characterized by FT-IR, VSM, SEM, HR-TEM and ICP-OES. Microscopy images showed that magnetic nanoparticles were nearly spherical structure that arranged on the axis of carboxylated MWCNT. Particle size was found lower than 10 nm. VSM results showed that the obtained magnetic nanoparticles presented superparamagnetic properties at room temperature. The magnetic saturation value was determined as 35.2 emu/g. It was used for the adsorption and controlled release of harmane, a potent tremor-producing neurotoxin. Maximum adsorption capacity was calculated as 151.5 mg/g from Langmuir isotherm. Concentration of harmane was determined by HPLC with fluorescence detection. The antimicrobial activity of synthesized magnetic nanoparticle was investigated against gram-negative and gram-positive bacteria. However, no activity was observed. - Highlights: • A nanomaterial from gamma iron oxide and multi walled carbon nanotube was synthesized. • It was characterized and microstructure was investigated. • No antimicrobial activity was observed. • Adsorption and release of harmane on its were examined.

  2. Characterization of Brown Adipose-Like Tissue in Trauma-Induced Heterotopic Ossification in Humans.

    Science.gov (United States)

    Salisbury, Elizabeth A; Dickerson, Austin R; Davis, Thomas A; Forsberg, Jonathan A; Davis, Alan R; Olmsted-Davis, Elizabeth A

    2017-09-01

    Heterotopic ossification (HO), the abnormal formation of bone within soft tissues, is a major complication after severe trauma or amputation. Transient brown adipocytes have been shown to be a critical regulator of this process in a mouse model of HO. In this study, we evaluated the presence of brown fat within human HO lesions. Most of the excised tissue samples displayed histological characteristics of bone, fibroproliferative cells, blood vessels, and adipose tissue. Immunohistochemical analysis revealed extensive expression of uncoupling protein 1 (UCP1), a definitive marker of brown adipocytes, within HO-containing tissues but not normal tissues. As seen in the brown adipocytes observed during HO in the mouse, these UCP1 + cells also expressed the peroxisome proliferator-activated receptor γ coactivator 1α. However, further characterization showed these cells, like their mouse counterparts, did not express PR domain containing protein 16, a key factor present in brown adipocytes found in depots. Nor did they express factors present in beige adipocytes. These results identify a population of UCP1 + cells within human tissue undergoing HO that do not entirely resemble either classic brown or beige adipocytes, but rather a specialized form of brown adipocyte-like cells, which have a unique function. These cells may offer a new target to prevent this unwanted bone. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Ex vivo viscoelastic characterization of head and neck tissue abnormalities using ultrasound-stimulated vibro-acoustography (USVA)

    Science.gov (United States)

    Maccabi, Ashkan; Garritano, James; Arshi, Armin; Saddik, George; Tajudeen, Bobby A.; St. John, Maie; Grundfest, Warren S.; Taylor, Zachary D.

    2014-03-01

    In the absence of an imaging technique that offers a highly dynamic range detection of malignant tissue intra-operatively, surgeons are often forced to excise excess healthy tissue to ensure clear margins of resection. Techniques that are currently used in the detection of tumor regions include palpation, optical coherence tomography (OCT) elastography, dye injections, and conventional ultrasound to pinpoint the affected area. However, these methods suffer from limitations such as minimal specificity, low contrast, and limited depth of penetration. Lack of specificity and low contrast result in the production of vague disease margins and fail to provide a reliable guidance tool for surgeons. The proposed work presents an alternative diagnostic technique, ultrasound-stimulated vibro-acoustography (USVA), which may potentially provide surgeons with detailed intra-operative imagery characterized by enhanced structural boundaries and well-defined borders based on the viscoelastic properties of tissues. We demonstrate selective imaging using ex vivo tissue samples of head and neck squamous cell carcinoma (HNSCC) with the presence of both malignant and normal areas. Spatially resolved maps of varying acoustic properties were generated and show good contrast between the areas of interest. While the results are promising, determining the precision and sensitivity of the USVA imaging system in identifying boundary regions as well as intensities of ex vivo tissue targets may provide additional information to non-invasively assess confined regions of diseased tissues from healthy areas.

  4. The Characterization of Novel Tissue Microbiota Using an Optimized 16S Metagenomic Sequencing Pipeline.

    Science.gov (United States)

    Lluch, Jérôme; Servant, Florence; Païssé, Sandrine; Valle, Carine; Valière, Sophie; Kuchly, Claire; Vilchez, Gaëlle; Donnadieu, Cécile; Courtney, Michael; Burcelin, Rémy; Amar, Jacques; Bouchez, Olivier; Lelouvier, Benjamin

    2015-01-01

    Substantial progress in high-throughput metagenomic sequencing methodologies has enabled the characterisation of bacteria from various origins (for example gut and skin). However, the recently-discovered bacterial microbiota present within animal internal tissues has remained unexplored due to technical difficulties associated with these challenging samples. We have optimized a specific 16S rDNA-targeted metagenomics sequencing (16S metabarcoding) pipeline based on the Illumina MiSeq technology for the analysis of bacterial DNA in human and animal tissues. This was successfully achieved in various mouse tissues despite the high abundance of eukaryotic DNA and PCR inhibitors in these samples. We extensively tested this pipeline on mock communities, negative controls, positive controls and tissues and demonstrated the presence of novel tissue specific bacterial DNA profiles in a variety of organs (including brain, muscle, adipose tissue, liver and heart). The high throughput and excellent reproducibility of the method ensured exhaustive and precise coverage of the 16S rDNA bacterial variants present in mouse tissues. This optimized 16S metagenomic sequencing pipeline will allow the scientific community to catalogue the bacterial DNA profiles of different tissues and will provide a database to analyse host/bacterial interactions in relation to homeostasis and disease.

  5. The Characterization of Novel Tissue Microbiota Using an Optimized 16S Metagenomic Sequencing Pipeline.

    Directory of Open Access Journals (Sweden)

    Jérôme Lluch

    Full Text Available Substantial progress in high-throughput metagenomic sequencing methodologies has enabled the characterisation of bacteria from various origins (for example gut and skin. However, the recently-discovered bacterial microbiota present within animal internal tissues has remained unexplored due to technical difficulties associated with these challenging samples.We have optimized a specific 16S rDNA-targeted metagenomics sequencing (16S metabarcoding pipeline based on the Illumina MiSeq technology for the analysis of bacterial DNA in human and animal tissues. This was successfully achieved in various mouse tissues despite the high abundance of eukaryotic DNA and PCR inhibitors in these samples. We extensively tested this pipeline on mock communities, negative controls, positive controls and tissues and demonstrated the presence of novel tissue specific bacterial DNA profiles in a variety of organs (including brain, muscle, adipose tissue, liver and heart.The high throughput and excellent reproducibility of the method ensured exhaustive and precise coverage of the 16S rDNA bacterial variants present in mouse tissues. This optimized 16S metagenomic sequencing pipeline will allow the scientific community to catalogue the bacterial DNA profiles of different tissues and will provide a database to analyse host/bacterial interactions in relation to homeostasis and disease.

  6. Fabrication and characterization of polycaprolactone and tricalcium phosphate composites for tissue engineering applications

    Directory of Open Access Journals (Sweden)

    Shu-Hsien Huang

    2017-03-01

    Conclusion: PCL/TCP is biocompatible with hBMSCs. It not only promotes proliferation of hBMSCs but also helps to differentiate reparative hard tissue. We suggest 50% (weight PCL-containing β-TCP biocomposites as the best choice for hard tissue repair applications.

  7. Ex vivo Characterization of Blast Wave Impact and Spinal Cord Tissue Deformation

    Science.gov (United States)

    Chen, Jun; Gao, Jian; Connell, Sean; Shi, Riyi

    2010-11-01

    Primary blast injury on central nervous system is responsible for many of the war related casualties and mortalities. An ex vivo model system is developed to introduce a blast wave, generated from a shock tube, directly to spinal cord tissue sample. A high-speed shadowgraph system is utilized to visualize the development of the blast wave and its interaction with tissue sample. Surface deformation of the tissue sample is also measured for the analysis of internal stress and possible injury occurred within the tissue sample. Understanding the temporal development of the blast-tissue interaction provides valuable input for modeling blast-induced neurotrauma. Tracking the sample surface deformation as a function of time provides realistic boundary conditions for numerical simulation of injury process.

  8. Effect of alpha lipoic acid co-administration on structural and immunohistochemical changes in subcutaneous tissue of anterior abdominal wall of adult male albino rat in response to polypropylene mesh implantation.

    Science.gov (United States)

    Mazroa, Shireen A; Asker, Samar A; Asker, Waleed; Abd Ellatif, Mohamed

    2015-06-01

    Polypropylene mesh is commonly used in the treatment of abdominal hernia. Different approaches were addressed to improve their tissue integration and consequently reduce long-term complications. This study aimed to investigate the effect of alpha-lipoic acid (ALA) co-administration on structural and immunohistochemical (IHC) changes in the subcutaneous tissues of the anterior abdominal wall of the adult rat in response to polypropylene mesh implantation. Forty adult male albino rats were divided into: group I (control), group II (receiving ALA), group III (polypropylene mesh implantation) and group IV (mesh implantation + ALA co-administration). After 4 weeks, subcutaneous tissue samples were prepared for light microscopy and IHC study of CD34 as a marker for angiogenesis. In groups I and II rats, positive CD34 expression was demonstrated by IHC reaction, localized to endothelial cells lining small blood vessels. Group III showed an excess inflammatory reaction, deposition of both regular and irregularly arranged collagen fibres around mesh pores and few elastic fibres. CD34-positive was detected not only in cells lining small blood vessels but also in other cells scattered in the connective tissue indicating angiogenesis. In group IV, ALA co-administration resulted in less inflammatory reaction, regular collagen deposition, enhanced elastic fibres synthesis and a significant increase in CD34-positive cells and small blood vessels reflecting improved angiogenesis. ALA co-administration with polypropylene mesh implantation controlled the inflammatory reaction, helped regular collagen deposition, enhanced elastic fibres synthesis and improved angiogenesis in the subcutaneous tissue of anterior abdominal wall of adult albino rats, suggesting a possible role of ALA in optimizing mesh integration in subcutaneous tissue. © 2015 The Authors. International Journal of Experimental Pathology © 2015 International Journal of Experimental Pathology.

  9. Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application.

    Science.gov (United States)

    Masoudi Rad, Maryam; Nouri Khorasani, Saied; Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Foroughi, Mohammad Reza; Kharaziha, Mahshid; Saadatkish, Niloufar; Ramakrishna, Seeram

    2017-11-01

    Membranes used in dentistry act as a barrier to prevent invasion of intruder cells to defected area and obtains spaces that are to be subsequently filled with new bone and provide required bone volume for implant therapy when there is insufficient volume of healthy bone at implant site. In this study a two-layered bioactive membrane were fabricated by electrospinning whereas one layer provides guided bone regeneration (GBR) and fabricated using poly glycerol sebacate (PGS)/polycaprolactone (PCL) and Beta tri-calcium phosphate (β-TCP) (5, 10 and 15%) and another one containing PCL/PGS and chitosan acts as guided tissue regeneration (GTR). The morphology, chemical, physical and mechanical characterizations of the membranes were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), tensile testing, then biodegradability and bioactivity properties were evaluated. In vitro cell culture study was also carried out to investigate proliferation and mineralization of cells on different membranes. Transmission electron microscope (TEM) and SEM results indicated agglomeration of β-TCP nanoparticles in the structure of nanofibers containing 15% β-TCP. Moreover by addition of β-TCP from 5% to 15%, contact angle decreased due to hydrophilicity of nanoparticles and bioactivity was found to increase. Mechanical properties of the membrane increased by incorporation of 5% and 10% of β-TCP in the structure of nanofibers, while addition of 15% of β-TCP was found to deteriorate mechanical properties of nanofibers. Although the presence of 5% and 10% of nanoparticles in the nanofibers increased proliferation of cells on GBR layer, cell proliferation was observed to decrease by addition of 15% β-TCP in the structure of nanofibers which is likely due to agglomeration of nanoparticles in the nanofiber structure. Our overall results revealed PCL/PGS containing 10% β-TCP could be selected as the optimum GBR membrane

  10. GRAPE: a pathway template method to characterize tissue-specific functionality from gene expression profiles.

    Science.gov (United States)

    Klein, Michael I; Stern, David F; Zhao, Hongyu

    2017-06-26

    Personalizing treatment regimes based on gene expression profiles of individual tumors will facilitate management of cancer. Although many methods have been developed to identify pathways perturbed in tumors, the results are often not generalizable across independent datasets due to the presence of platform/batch effects. There is a need to develop methods that are robust to platform/batch effects and able to identify perturbed pathways in individual samples. We present Gene-Ranking Analysis of Pathway Expression (GRAPE) as a novel method to identify abnormal pathways in individual samples that is robust to platform/batch effects in gene expression profiles generated by multiple platforms. GRAPE first defines a template consisting of an ordered set of pathway genes to characterize the normative state of a pathway based on the relative rankings of gene expression levels across a set of reference samples. This template can be used to assess whether a sample conforms to or deviates from the typical behavior of the reference samples for this pathway. We demonstrate that GRAPE performs well versus existing methods in classifying tissue types within a single dataset, and that GRAPE achieves superior robustness and generalizability across different datasets. A powerful feature of GRAPE is the ability to represent individual gene expression profiles as a vector of pathways scores. We present applications to the analyses of breast cancer subtypes and different colonic diseases. We perform survival analysis of several TCGA subtypes and find that GRAPE pathway scores perform well in comparison to other methods. GRAPE templates offer a novel approach for summarizing the behavior of gene-sets across a collection of gene expression profiles. These templates offer superior robustness across distinct experimental batches compared to existing methods. GRAPE pathway scores enable identification of abnormal gene-set behavior in individual samples using a non-competitive approach that

  11. Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope.

    Science.gov (United States)

    Dong, Yang; Qi, Ji; He, Honghui; He, Chao; Liu, Shaoxiong; Wu, Jian; Elson, Daniel S; Ma, Hui

    2017-08-01

    Polarization imaging has been recognized as a potentially powerful technique for probing the microstructural information and optical properties of complex biological specimens. Recently, we have reported a Mueller matrix microscope by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission-light microscope, and applied it to differentiate human liver and cervical cancerous tissues with fibrosis. In this paper, we apply the Mueller matrix microscope for quantitative detection of human breast ductal carcinoma samples at different stages. The Mueller matrix polar decomposition and transformation parameters of the breast ductal tissues in different regions and at different stages are calculated and analyzed. For more quantitative comparisons, several widely-used image texture feature parameters are also calculated to characterize the difference in the polarimetric images. The experimental results indicate that the Mueller matrix microscope and the polarization parameters can facilitate the quantitative detection of breast ductal carcinoma tissues at different stages.

  12. Fabrication and design of bioactive agent coated, highly-aligned electrospun matrices for nerve tissue engineering: Preparation, characterization and application

    Science.gov (United States)

    Lee, Sang Jin; Heo, Min; Lee, Donghyun; Heo, Dong Nyoung; Lim, Ho-Nam; Kwon, Il Keun

    2017-12-01

    In this study, we designed highly-aligned thermoplastic polycarbonate urethane (PCU) fibrous scaffolds coated with bioactive compounds, such as Poly-L-Lysine (PLL) and Poly-L-Ornithine (PLO), to enhance cellular adhesion and directivity. These products were characterized by scanning electron microscope (SEM) analysis which demonstrated that highly aligned fiber strands were formed without beads when coated onto a mandrel rotating at 1800 rpm. During in vitro cell test, PLO-coated, aligned PCU scaffolds were found to have significantly higher proliferation rates than PLL coated and bare PCU scaffolds. Interestingly, dental pulp stem cells (DPSCs) were observed to stretch along the longitudinal axis parallel to the cell direction on highly aligned scaffolds. These results clearly confirm that our strategy may suggest a useful paradigm by inducing neural tissue repair as a means to remodeling and healing of tissue for restorative procedures in neural tissue engineering.

  13. Simultaneous characterization of pancreatic stellate cells and other pancreatic components within three-dimensional tissue environment during chronic pancreatitis

    Science.gov (United States)

    Hu, Wenyan; Fu, Ling

    2013-05-01

    Pancreatic stellate cells (PSCs) and other pancreatic components that play a critical role in exocrine pancreatic diseases are generally identified separately by conventional studies, which provide indirect links between these components. Here, nonlinear optical microscopy was evaluated for simultaneous characterization of these components within a three-dimensional (3-D) tissue environment, primarily based on multichannel detection of intrinsic optical emissions and cell morphology. Fresh rat pancreatic tissues harvested at 1 day, 7 days, and 28 days after induction of chronic pancreatitis were imaged, respectively. PSCs, inflammatory cells, blood vessels, and collagen fibers were identified simultaneously. The PSCs at day 1 of chronic pancreatitis showed significant enlargement compared with those in normal pancreas (ppancreatic components coincidently within 3-D pancreatic tissues. It is a prospect for intravital observation of dynamic events under natural physiological conditions, and might help uncover the key mechanisms of exocrine pancreatic diseases, leading to more effective treatments.

  14. Characterization and assessment of hyperelastic and elastic properties of decellularized human adipose tissues.

    Science.gov (United States)

    Omidi, Ehsan; Fuetterer, Lydia; Reza Mousavi, Seyed; Armstrong, Ryan C; Flynn, Lauren E; Samani, Abbas

    2014-11-28

    Decellularized adipose tissue (DAT) has shown potential as a regenerative scaffold for plastic and reconstructive surgery to augment or replace damaged or missing adipose tissue (e.g. following lumpectomy or mastectomy). The mechanical properties of soft tissue substitutes are of paramount importance in restoring the natural shape and appearance of the affected tissues, and mechanical mismatching can lead to unpredictable scar tissue formation and poor implant integration. The goal of this work was to assess the linear elastic and hyperelastic properties of decellularized human adipose tissue and compare them to those of normal breast adipose tissue. To assess the influence of the adipose depot source on the mechanical properties of the resultant decellularized scaffolds, we performed indentation tests on DAT samples sourced from adipose tissue isolated from the breast, subcutaneous abdominal region, omentum, pericardial depot and thymic remnant, and their corresponding force-displacement data were acquired. Elastic and hyperelastic parameters were estimated using inverse finite element algorithms. Subsequently, a simulation was conducted in which the estimated hyperelastic parameters were tested in a real human breast model under gravity loading in order to assess the suitability of the scaffolds for implantation. Results of these tests showed that in the human breast, the DAT would show similar deformability to that of native normal tissue. Using the measured hyperelastic parameters, we were able to assess whether DAT derived from different depots exhibited different intrinsic nonlinearities. Results showed that DAT sourced from varying regions of the body exhibited little intrinsic nonlinearity, with no statistically significant differences between the groups. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments.

    Science.gov (United States)

    Chundawat, Shishir P S; Vismeh, Ramin; Sharma, Lekh N; Humpula, James F; da Costa Sousa, Leonardo; Chambliss, C Kevin; Jones, A Daniel; Balan, Venkatesh; Dale, Bruce E

    2010-11-01

    Decomposition products formed/released during ammonia fiber expansion (AFEX) and dilute acid (DA) pretreatment of corn stover (CS) were quantified using robust mass spectrometry based analytical platforms. Ammonolytic cleavage of cell wall ester linkages during AFEX resulted in the formation of acetamide (25mg/g AFEX CS) and various phenolic amides (15mg/g AFEX CS) that are effective nutrients for downstream fermentation. After ammonolysis, Maillard reactions with carbonyl-containing intermediates represent the second largest sink for ammonia during AFEX. On the other hand, several carboxylic acids were formed (e.g. 35mg acetic acid/g DA CS) during DA pretreatment. Formation of furans was 36-fold lower for AFEX compared to DA treatment; while carboxylic acids (e.g. lactic and succinic acids) yield was 100-1000-fold lower during AFEX compared to previous reports using sodium hydroxide as pretreatment reagent. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Characterization of multi-walled carbon nanotube electrodes functionalized by electropolymerized tris(pyrrole-ether bipyridine) ruthenium (II)

    Energy Technology Data Exchange (ETDEWEB)

    Le Goff, Alan; Holzinger, Michael [Departement de Chimie Moleculaire UMR-5250, ICMG FR-2607, CNRS Universite Joseph Fourier, BP-53, 38041 Grenoble (France); Cosnier, Serge, E-mail: Serge.Cosnier@ujf-grenoble.f [Departement de Chimie Moleculaire UMR-5250, ICMG FR-2607, CNRS Universite Joseph Fourier, BP-53, 38041 Grenoble (France)

    2011-04-01

    We synthesized new electropolymerizable [Ru(bpy){sub n}L{sub m}](PF{sub 6}){sub 2} (L = 4,4 bis(3-pyrrol-1-ylpropyloxy)bipyridyl) derivatives. The introduction of electron donating ether groups in the bipyridine ligand induced a negative shift of the Ru(III)/(II) redox couple. The electrochemical behavior of complex Ru1 (n = 2, m = 1) and complex Ru2 (n = 0, m = 3) were compared using platinum and Multi-Walled Carbon Nanotube (MWCNT) electrode. Higher polymerization yields and surface concentrations were obtained at MWCNT electrodes. Furthermore, MWCNT electrodes increase polymer permeability and decrease the charge trapping phenomenon involved in the oxidation and reduction of the polypyrrolic skeleton of the Ru(II) functionalized polymers.

  17. Cellulose aerogels decorated with multi-walled carbon nanotubes: preparation, characterization, and application for electromagnetic interference shielding

    Directory of Open Access Journals (Sweden)

    Jian LI,Caichao WAN

    2015-12-01

    Full Text Available Electromagnetic wave pollution has attracted extensive attention because of its ability to affect the operation of electronic machinery and endanger human health. In this work, the environmentally-friendly hybrid aerogels consisting of cellulose and multi-walled carbon nanotubes (MWCNTs were fabricated. The aerogels have a low bulk density of 58.17 mg·cm-3. The incorporation of MWCNTs leads to an improvement in the thermal stability. In addition, the aerogels show a high electromagnetic interference (EMI SEtotal value of 19.4 dB. Meanwhile, the absorption-dominant shielding mechanism helps a lot to reduce secondary radiation, which is beneficial to develop novel eco-friendly EMI shielding materials.

  18. The use of combined synchrotron radiation micro FT-IR and XRD for the characterization of Romanesque wall paintings

    Energy Technology Data Exchange (ETDEWEB)

    Salvado, N.; Buti, S. [Universitat Politecnica de Catalunya, Dpt. d' Enginyeria Quimica, EPSEVG, Vilanova i la Geltru, Barcelona (Spain); Pantos, E.; Bahrami, F. [CCLRC, Daresbury Laboratory, Warrington (United Kingdom); Labrador, A. [LLS, BM16-ESRF, BP 220, Grenoble Cedex (France); Pradell, T. [Universitat Politecnica de Catalunya, Dpt. Fisica i Enginyeria Nuclear, ESAB, Castelldefels, Barcelona (Spain)

    2008-01-15

    The high analytical sensitivity and high spatial resolution of synchrotron radiation-based techniques, in particular SR-XRD and SR-FT-IR, allows the identification of complex micrometric mixtures of compounds that constitute the different layers of ancient paintings. The reliability of the measurements even with an extremely small amount of sampled material is very high, and this is particularly important when analyzing art works. Furthermore, the micro size (10 x 10{mu}m for FT-IR and 30 to 50 {mu}m squared spot size for XRD) of the beam enables one to obtain detailed compositional profiles from the different chromatic and preparation layers. The sensitivity of the techniques is high enough for the determination of minor and trace compounds, such as reaction and weathering compounds. We report here the identification of pigments in the Romanesque wall paintings found in situ in the church of Saint Eulalia of Unha place in the Aran valley (central Pyrenees). During the first centuries of the second millennium numerous religious buildings were built in Western Europe in the Romanesque style. In particular, a great number of churches were built in the Pyrenees, most of which were decorated with wall paintings. Although only a few of these paintings have survived, they represent one of the most important collections of Romanesque art, both for their quantity and quality. A full identification of the pigments, binder, supports, and reaction and weathering compounds has been obtained. The results obtained, in particular aerinite as a pigment, indicate a clear connection between the paintings found in this Occitanian church and the Catalan Romanesque paintings from the south bound of the Pyrenees. (orig.)

  19. A rate-jump method for characterization of soft tissues using nanoindentation techniques

    KAUST Repository

    Tang, Bin

    2012-01-01

    The biomechanical properties of soft tissues play an important role in their normal physiological and physical function, and may possibly relate to certain diseases. The advent of nanomechanical testing techniques, such as atomic force microscopy (AFM), nano-indentation and optical tweezers, enables the nano/micro-mechanical properties of soft tissues to be investigated, but in spite of the fact that biological tissues are highly viscoelastic, traditional elastic contact theory has been routinely used to analyze experimental data. In this article, a novel rate-jump protocol for treating viscoelasticity in nanomechanical data analysis is described. © 2012 The Royal Society of Chemistry.

  20. [Sarcolemma tissue of prepubertal concealed penis: pathological characterization and clinical implication].

    Science.gov (United States)

    Chen, Hai-Tao; Yang, Xing-Hai

    2013-03-01

    To evaluate the histopathological characteristics and clinical implication of sarcolemma tissue in prepubertal concealed penis. After measurement of the penile length, 10 prepubertal children with congenital concealed penis underwent modified Devine's operation (treatment group), and another 10 normal prepubertal children received circumcision (control group). The anatomic features of the penile sarcolemma tissue was observed intraoperatively, and its fibrosis was evaluated by Masson trichrome staining. The penile length of the treatment group was significantly shorter than that of the control group preoperatively ([1.49 +/- 0.17 ] cm vs [4.26 +/- 0.23 ] cm, P penis, and the key to its management is drastic removal of all the fibrous sarcolemma tissue.

  1. Mechanical characterization and non-linear elastic modeling of poly(glycerol sebacate) for soft tissue engineering.

    Science.gov (United States)

    Mitsak, Anna G; Dunn, Andrew M; Hollister, Scott J

    2012-07-01

    Scaffold tissue engineering strategies for repairing and replacing soft tissue aim to improve reconstructive and corrective surgical techniques whose limitations include suboptimal mechanical properties, fibrous capsule formation and volume loss due to graft resorption. An effective tissue engineering strategy requires a scaffolding material with low elastic modulus that behaves similarly to soft tissue, which has been characterized as a nonlinear elastic material. The material must also have the ability to be manufactured into specifically designed architectures. Poly(glycerol sebacate) (PGS) is a thermoset elastomer that meets these criteria. We hypothesize that the mechanical properties of PGS can be modulated through curing condition and architecture to produce materials with a range of stiffnesses. To evaluate this hypothesis, we manufactured PGS constructs cured under various conditions and having one of two architectures (solid or porous). Specimens were then tensile tested according to ASTM standards and the data were modeled using a nonlinear elastic Neo-Hookean model. Architecture and testing conditions, including elongation rate and wet versus dry conditions, affected the mechanical properties. Increasing curing time and temperature led to increased tangent modulus and decreased maximum strain for solid constructs. Porous constructs had lower nonlinear elastic properties, as did constructs of both architectures tested under simulated physiological conditions (wetted at 37 °C). Both solid and porous PGS specimens could be modeled well with the Neo-Hookean model. Future studies include comparing PGS properties to other biological tissue types and designing and characterizing PGS scaffolds for regenerating these tissues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Hao-Yang [National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou (China); Department of Mechanical Engineering, University of Wisconsin–Madison, WI (United States); Salick, Max R. [Department of Engineering Physics, University of Wisconsin–Madison, WI (United States); Jing, Xin [National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou (China); Department of Mechanical Engineering, University of Wisconsin–Madison, WI (United States); Jacques, Brianna R. [Department of Biology, University of Wisconsin–River Falls, WI (United States); Crone, Wendy C. [Department of Engineering Physics, University of Wisconsin–Madison, WI (United States); Peng, Xiang-Fang, E-mail: pmxfpeng@scut.edu.cn [National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou (China); Turng, Lih-Sheng, E-mail: turng@engr.wisc.edu [Department of Mechanical Engineering, University of Wisconsin–Madison, WI (United States)

    2013-12-01

    Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold's microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. - Highlights: • Microcellular injection molding was used to fabricate tissue engineering scaffolds. • TPU/PLA tissue engineering scaffolds with tunable properties were fabricated. • Multiple test methods were used to characterize the scaffolds. • The biocompatibility of the scaffolds was confirmed by fibroblast cell culture. • Scaffolds produced have the potential to be used in multiple tissue applications.

  3. Label-free biomolecular characterization of human breast cancer tissue with stimulated Raman scattering (SRS) spectral imaging (Conference Presentation)

    Science.gov (United States)

    Lu, Fa-Ke F.; Calligaris, David; Suo, Yuanzhen; Santagata, Sandro; Golby, Alexandra J.; Xie, X. Sunney; Mallory, Melissa A.; Golshan, Mehra; Dillon, Deborah A.; Agar, Nathalie Y. R.

    2017-02-01

    Stimulated Raman scattering (SRS) microscopy has been used for rapid label-free imaging of various biomolecules and drugs in living cells and tissues (Science, doi:10.1126/science.aaa8870). Our recent work has demonstrated that lipid and protein mapping of cancer tissue renders pathology-like images, providing essential histopathological information with subcellular resolution of the entire specimen (Cancer Research, doi: 10.1158/0008-5472.CAN-16-027). We have also established the first SRS imaging Atlas of human brain tumors (Harvard Dataverse, doi: (doi:10.7910/DVN/EZW4EK). SRS imaging of tissue could provide invaluable information for cancer diagnosis and surgical guidance in two aspects: rapid surgical pathology and quantitative biomolecular characterization. In this work, we present the use of SRS microscopy for characterization of a few essential biomolecules in breast cancer. Human breast cancer tissue specimens at the tumor core, tumor margin and normal area (5 cm away from the tumor) from surgical cases will be imaged with SRS at multiple Raman shifts, including the peaks for lipid, protein, blood (absorption), collagen, microcalcification (calcium phosphates and calcium oxalate) and carotenoids. Most of these Raman shifts have relatively strong Raman cross sections, which ensures high-quality and fast imaging. This proof-of-principle study is sought to demonstrate the feasibility and potential of SRS imaging for ambient diagnosis and surgical guidance of breast cancer.

  4. Characterization of the angular memory effect of scattered light in biological tissues.

    Science.gov (United States)

    Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-05-18

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ∼1 mm thick tissue layers.

  5. Experimental Characterization of Near-Infrared Laser Energy Absorption, Scattering, and Transmittance in Biological Tissue

    Science.gov (United States)

    2007-03-01

    upon incident radiation is absorption. Absorption is the process in which radiant energy is absorbed or taken up by a substance. General absorption...absorption. During absorption, the attenuation of the beam results in a transfer of energy to the tissue which is sometimes detected as heat, fluorescence ...water and tissue chromophores that include certain cellular pigments . The natural chromophores present include the biological pigments — specifically

  6. Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure

    OpenAIRE

    Sandberg, Dustin C.; Battista, Lorna J.; Arnold, A. Elizabeth

    2014-01-01

    Most studies of endophytic symbionts have focused on terrestrial plants, neglecting the ecologically and economically important plants present in aquatic ecosystems. We evaluated the diversity, composition, host- and tissue affiliations, and geographic structure of fungal endophytes associated with common aquatic plants in northern Arizona, USA. Endophytes were isolated in culture from roots and photosynthetic tissues during two growing seasons. A total of 226 isolates representing 60 putativ...

  7. Mechanical Characterization of a Bi-functional Tetronic Hydrogel Adhesive for Soft Tissues

    Science.gov (United States)

    Sanders, Lindsey; Stone, Roland; Webb, C. Kenneth; Mefford, O. Thompson; Nagatomi, Jiro

    2014-01-01

    Although a number of tissue adhesives and sealants for surgical use are currently available, attaining a useful balance in high strength, high compliance, and low swelling has proven difficult. Recent studies have demonstrated that a 4-arm poly(propylene oxide)-poly(ethylene oxide) (PPO-PEO) block copolymer, Tetronic, can be chemically modified to form a hydrogel tissue adhesive21–23. Building on the success of these studies, the present study explored bi-functionalization of Tetronic with acrylates for chemical crosslinking of the hydrogel and N-hydroxysuccinimide (NHS) for reaction with tissue amines. The adhesive bond strengths of various uni- and bi-functional Tetronic blends (T1107 ACR: T1107 ACR/NHS) determined by lap shear testing ranged between 8 and 74 kPa, with the 75:25 (T1107 ACR: T1107 ACR/NHS) blend displaying the highest value. These results indicated that addition of NHS led to improvement of tissue bond strength over acrylation alone Furthermore, ex vivo pressure tests using the rat bladder demonstrated that the bi-functional Tetronic adhesive exhibited high compliance and maintained pressures under hundreds of filling and emptying cycles. Together, the results of the present study provided evidence that the bi-functional Tetronic adhesive with a proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for soft tissue such as the bladder. PMID:25111445

  8. A FSI-based structural approach for micromechanical characterization of adipose tissue

    Science.gov (United States)

    Seyfi, Behzad; Sabzalinejad, Masoumeh; Haddad, Seyed M. H.; Fatouraee, Nasser; Samani, Abbas

    2017-03-01

    This paper presents a novel computational method for micromechanical modeling of adipose tissue. The model can be regarded as the first step for developing an inversion based framework that uses adipose stiffness data obtained from elastography to determine its microstructural alterations. Such information can be used as biomarkers for diseases associated with adipose tissue microstructure alteration (e.g. adipose tissue fibrosis and inflammation in obesity). In contrast to previous studies, the presented model follows a multiphase structure which accounts for both solid and fluid components as well as their mechanical interaction. In the model, the lipid droplets and extracellular matrix were considered as the fluid and solid phase, respectively. As such, the fluid-structure interaction (FSI) problem was solved using finite element method. In order to gain insight into how microstructural characteristics influence the macro scale mechanical properties of the adipose tissue, a compression mechanical test was simulated using the FSI model and its results were fitted to corresponding experimental data. The simulation procedure was performed for adipocytes in healthy conditions while the stiffness of extracellular matrix in normal adipose tissue was found by varying it systematically within an optimization process until the simulation response agreed with experimental data. Results obtained in this study are encouraging and show the capability of the proposed model to capture adipose tissue macroscale mechanical behavior based on its microstructure under health and different pathological conditions.

  9. Elasticity Signal and Image Processing Sensor and Algorithms for Tissue Characterization

    Directory of Open Access Journals (Sweden)

    Jong-Ha LEE

    2014-01-01

    Full Text Available The tissue inclusion parameter estimation method is proposed to measure the stiffness as well as geometric parameters. The estimation is performed based on the elasticity image obtained at the surface of the tissue using an optical based elasticity imaging sensor. A forward algorithm is designed to comprehensively predict the elasticity image based on the mechanical properties of tissue inclusion using finite element modeling. This forward information is used to develop an inversion algorithm that will be used to extract the size, depth, and Young's modulus of a tissue inclusion from the elasticity image. We utilize the artificial neural network (ANN for inversion algorithm. The proposed estimation method was validated by the realistic tissue phantom with stiff inclusions. The experimental results showed that the proposed estimation method can measure the size, depth, and Young's modulus of a tissue inclusion with 0.58 %, 1.12 %, and 0.51 % relative errors, respectively. A small-scale of breast cancer patient experiments is also presented. The obtained results prove that the proposed method has potential to become a screening and diagnostic method for breast tumor.

  10. Bio-Optics Based Sensation Imaging for Breast Tumor Detection Using Tissue Characterization

    Directory of Open Access Journals (Sweden)

    Jong-Ha Lee

    2015-03-01

    Full Text Available The tissue inclusion parameter estimation method is proposed to measure the stiffness as well as geometric parameters. The estimation is performed based on the tactile data obtained at the surface of the tissue using an optical tactile sensation imaging system (TSIS. A forward algorithm is designed to comprehensively predict the tactile data based on the mechanical properties of tissue inclusion using finite element modeling (FEM. This forward information is used to develop an inversion algorithm that will be used to extract the size, depth, and Young's modulus of a tissue inclusion from the tactile data. We utilize the artificial neural network (ANN for the inversion algorithm. The proposed estimation method was validated by a realistic tissue phantom with stiff inclusions. The experimental results showed that the proposed estimation method can measure the size, depth, and Young's modulus of a tissue inclusion with 0.58%, 3.82%, and 2.51% relative errors, respectively. The obtained results prove that the proposed method has potential to become a useful screening and diagnostic method for breast cancer.

  11. Bio-optics based sensation imaging for breast tumor detection using tissue characterization.

    Science.gov (United States)

    Lee, Jong-Ha; Kim, Yoon Nyun; Park, Hee-Jun

    2015-03-16

    The tissue inclusion parameter estimation method is proposed to measure the stiffness as well as geometric parameters. The estimation is performed based on the tactile data obtained at the surface of the tissue using an optical tactile sensation imaging system (TSIS). A forward algorithm is designed to comprehensively predict the tactile data based on the mechanical properties of tissue inclusion using finite element modeling (FEM). This forward information is used to develop an inversion algorithm that will be used to extract the size, depth, and Young's modulus of a tissue inclusion from the tactile data. We utilize the artificial neural network (ANN) for the inversion algorithm. The proposed estimation method was validated by a realistic tissue phantom with stiff inclusions. The experimental results showed that the proposed estimation method can measure the size, depth, and Young's modulus of a tissue inclusion with 0.58%, 3.82%, and 2.51% relative errors, respectively. The obtained results prove that the proposed method has potential to become a useful screening and diagnostic method for breast cancer.

  12. Bimodal spectroscopy for in vivo characterization of hypertrophic skin tissue: pre-clinical experimentation, spectral data selection and classification

    Science.gov (United States)

    Liu, Honghui; Gisquet, Héloïse; Guillemin, F.; Blondel, Walter C. P. M.

    2011-07-01

    Objective: The objective of this study was two folds: firstly, we would like to investigate the efficiency of bimodal spectroscopic technique in characterization of hypertrophic scarring tissue deliberately created on a preclinical model (rabbit's ear); on the other hand, we evaluate the inhibition effect of an anti-inflammatory medication (tacrolimus) on hypertrophic formation in scar by using our bimodal spectroscopic system. Study design: This study was conducted on 20 New Zealand Rabbits receiving hypertrophic scarring treatment on their ears. Fluorescence and Diffuse Reflectance spectra were collected from each scar, amongst which some had received tacrolimus treatment. Features were extracted from corrected spectral data and analyzed to classify the scarring tissues into hypertrophic or non-hypertrophic. Diagnostic algorithms were developed with the use of k-NN classifier and validated by comparing to histological classification result with Leave-one- out cross validation. Results and discussion: The accuracy of our bimodal spectroscopy method for detecting hypertrophic scarring scar tissue was good (sensibility: 90.84%, specificity: 94.44%). The features used for classification were mainly extracted from the spectra exited at 360, 410 and 420 nm. This indicates that the difference between the spectra acquired from hypertrophic and non-hypertrophic tissue may be due to the different intensity distribution of several fluorophores (collagen,elastin and NADH) excited in this range, or to the change in proportion of tissue layers (epidermis and dermis) explored by the CEFS in use.

  13. Preparation and characterization of novel functionalized multiwalled carbon nanotubes/chitosan/β-Glycerophosphate scaffolds for bone tissue engineering.

    Science.gov (United States)

    Gholizadeh, Shayan; Moztarzadeh, Fathollah; Haghighipour, Nooshin; Ghazizadeh, Leila; Baghbani, Fatemeh; Shokrgozar, Mohammad Ali; Allahyari, Zahra

    2017-04-01

    A major limitation in current tissue engineering scaffolds is that some of the most important characteristics of the intended tissue are ignored. As piezoelectricity and high mechanical strength are two of the most important characteristics of the bone tissue, carbon nanotubes are getting a lot of attention as a bone tissue scaffold component in recent years. In the present study, composite scaffolds comprised of functionalized Multiwalled Carbon Nanotubes (f-MWCNT), medium molecular weight chitosan and β-Glycerophosphate were fabricated and characterized. Biodegradability and mechanical tests indicate that while increasing f-MWCNT content can improve electrical conductivity and mechanical properties, there are some limitations for these increases, such as a decrease in mechanical properties and biodegradability in 1w/v% content of f-MWCNTs. Also, MTT cytotoxicity assay was conducted for the scaffolds and no significant cytotoxicity was observed. Increasing f-MWCNT content led to higher alkaline Phosphatase activity. The overall results show that composites with f-MWCNT content between 0.1w/v% and 0.5w/v% are the most suitable for bone tissue engineering application. Additionally, Preliminary cell electrical tests proved the efficiency of the prepared scaffolds for cell electrical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Synthesis and Characterization of Boron Nitride and Molybdenum Nitride Multi-Walled Nanotubes Using Liquid Plasma Arc Discharge

    Science.gov (United States)

    Holliday, Roger; Falvo, Mike; Washburn, Sean; Superfine, Rich

    2001-11-01

    We will present results on synthesis of Boron Nitride and Molybdenum Nitride nanotubes using the liquid nitrogen plasma-arc discharge method previously reported for carbon nanotubes synthesis[1]. We created a 60-100A/20-40V arc across electrodes of Hafnium Boride and Molybdenum Sulfide in a liquid nitrogen atmosphere. Nanotube geometry, nano-structure and composition characterization using TEM and EDAX will be presented. Progress in electronic and mechanical characterization as well as our incorporation of these nanotubes in to novel NEMS devices will be discussed. [1] M. Ishigami, J. Cummings, A. Zettl, S. Chen. Chemical Physical Letters 319 (2000) 457-459.

  15. Optimization and comprehensive characterization of a faithful tissue culture model of the benign and malignant human prostate.

    Science.gov (United States)

    Maund, Sophia Lisette; Nolley, Rosalie; Peehl, Donna Mae

    2014-02-01

    Few preclinical models accurately depict normal human prostate tissue or primary prostate cancer (PCa). In vitro systems typically lack complex cellular interactions among structured prostatic epithelia and a stromal microenvironment, and genetic and molecular fidelity are concerns in both in vitro and in vivo models. 'Tissue slice cultures' (TSCs) provide realistic preclinical models of diverse tissues and organs, but have not been fully developed or widely utilized for prostate studies. Problems encountered include degeneration of differentiated secretory cells, basal cell hyperplasia, and poor survival of PCa. Here, we optimized, characterized, and applied a TSC model of primary human PCa and benign prostate tissue that overcomes many deficiencies of current in vitro models. Tissue cores from fresh prostatectomy specimens were precision-cut at 300 μm and incubated in a rotary culture apparatus. The ability of varied culture conditions to faithfully maintain benign and cancer cell and tissue structure and function over time was evaluated by immunohistological and biochemical assays. After optimization of the culture system, molecular and cellular responses to androgen ablation and to piperlongumine (PL), purported to specifically reduce androgen signaling in PCa, were investigated. Optimized culture conditions successfully maintained the structural and functional fidelity of both benign and PCa TSCs for 5 days. TSCs exhibited androgen dependence, appropriately undergoing ductal degeneration, reduced proliferation, and decreased prostate-specific antigen expression upon androgen ablation. Further, TSCs revealed cancer-specific reduction of androgen receptor and increased apoptosis upon treatment with PL, validating data from cell lines. We demonstrate a TSC model that authentically recapitulates the structural, cellular, and genetic characteristics of the benign and malignant human prostate, androgen dependence of the native tissue, and cancer-specific response

  16. Technological Characterization of Wall Paintings from the A Mithraic Tomb Dated to 4th-5th Century AD, Gargaresc, Libya

    Science.gov (United States)

    Abd El Salam, S.; Maniatis, Y.

    2009-04-01

    The excavations of Gargaresc started in 1965 and were one of the most important archaeological sites in Tripoli because it includes a period of about 500 years starting from the 1stc. AD was and continuing until the 5th century AD. The Mithraic tomb is one of the most important outlying monuments of Oea, 200 yards south of the western end of Gargaresc oasis, on the left of the Tripoli-Zuara road between kilometers 5 & 6. The tomb is cut in an outcrop of soft sandstone. The wall paintings found were symbolic to the religion of that period; which contained a mixture of older religions and Christian, and presented the interaction between the artistic and religious elements of that time. Several optical, chemical and mineralogical methods were applied to identify the materials, composition and technology of the plasters and mortars, as well as, the pigments used in the tomb. These are: -OP: Optical microscopy was used as the initial examination of polished cross-sections to identify the structure and microstratigraphy of the plasters and mortars as well as the painted layers. -MCT: Micro-chemical tests were used to identify the type of the plasters and mortars- calcium aluminium silicate and water-soluble salt to identify sulphates, chlorides, carbonates, nitrites and nitrates. -SM: Standard methods for chemical analysis to identify the quantitative and qualitative nature of the plasters and mortars and their mixture. -SEM & EDS: Analytical Scanning electron microscope with energy dispersive x-ray analysis system to examine the micrmorphology and determine the chemical composition of the plasters, pigments and the inclusions. -XRD: X-ray powder diffraction to identify the mineralogical composition of the plasters, mortars and pigments. On the bases of all the data obtained, it was possible to establish the nature of the plasters, mortars and their binder. The examination and analysis gave a full picture about the materials and the approximate ratio of amount of

  17. Mechanical characterization of a bifunctional Tetronic hydrogel adhesive for soft tissues.

    Science.gov (United States)

    Sanders, Lindsey; Stone, Roland; Webb, Kenneth; Mefford, Thompson; Nagatomi, Jiro

    2015-03-01

    Although a number of tissue adhesives and sealants for surgical use are currently available, attaining a useful balance in high strength, high compliance, and low swelling has proven difficult. Recent studies have demonstrated that a four-arm poly(propylene oxide)-poly(ethylene oxide) block copolymer, Tetronic, can be chemically modified to form a hydrogel tissue adhesive (Cho et al., Acta Biomater 2012;8:2223-2232; Barrett et al., Adv Health Mater 2012;1-11; Balakrishnan, Evaluating mechanical performance of hydrogel-based adhesives for soft tissue applications. Clemson University, All Theses, Paper 1574: Tiger Prints; 2013). Building on the success of these studies, this study explored bifunctionalization of Tetronic with acrylates for chemical crosslinking of the hydrogel and N-hydroxysuccinimide (NHS) for reaction with tissue amines. The adhesive bond strengths of various uni and bifunctional Tetronic blends (T1107 ACR: T1107 ACR/NHS) determined by lap shear testing ranged between 8 and 74 kPa, with the 75:25 (T1107 ACR: T1107 ACR/NHS) blend displaying the highest value. These results indicated that addition of NHS led to improvement of tissue bond strength over acrylation alone. Furthermore, ex vivo pressure tests using the rat bladder demonstrated that the bifunctional Tetronic adhesive exhibited high compliance and maintained pressures under hundreds of filling and emptying cycles. Together, the results of this study provided evidence that the bifunctional Tetronic adhesive with a proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for soft tissue such as the bladder. © 2014 Wiley Periodicals, Inc.

  18. Mechanical Characterization of Tissue-Engineered Cartilage Using Microscopic Magnetic Resonance Elastography

    Science.gov (United States)

    Yin, Ziying; Schmid, Thomas M.; Yasar, Temel K.; Liu, Yifei; Royston, Thomas J.

    2014-01-01

    Knowledge of mechanical properties of tissue-engineered cartilage is essential for the optimization of cartilage tissue engineering strategies. Microscopic magnetic resonance elastography (μMRE) is a recently developed MR-based technique that can nondestructively visualize shear wave motion. From the observed wave pattern in MR phase images the tissue mechanical properties (e.g., shear modulus or stiffness) can be extracted. For quantification of the dynamic shear properties of small and stiff tissue-engineered cartilage, μMRE needs to be performed at frequencies in the kilohertz range. However, at frequencies greater than 1 kHz shear waves are rapidly attenuated in soft tissues. In this study μMRE, with geometric focusing, was used to overcome the rapid wave attenuation at high frequencies, enabling the measurement of the shear modulus of tissue-engineered cartilage. This methodology was first tested at a frequency of 5 kHz using a model system composed of alginate beads embedded in agarose, and then applied to evaluate extracellular matrix development in a chondrocyte pellet over a 3-week culture period. The shear stiffness in the pellet was found to increase over time (from 6.4 to 16.4 kPa), and the increase was correlated with both the proteoglycan content and the collagen content of the chondrocyte pellets (R2=0.776 and 0.724, respectively). Our study demonstrates that μMRE when performed with geometric focusing can be used to calculate and map the shear properties within tissue-engineered cartilage during its development. PMID:24266395

  19. Characterization of storage cell wall polysaccharides from Brazilian legume seeds and the formation of aqueous two-phase systems.

    Science.gov (United States)

    Franco, T T; Rodrigues, N R; Serra, G E; Panegassi, V R; Buckeridge, M S

    1996-05-17

    Cell wall storage polysaccharides from Brazilian legume seeds of Dimorphandra mollis, Schizolobium parahybum (galactomannans), Copaifera langsdorffii, Hymenaea courbaril (xyloglucans) and the galactan from cotyledons of the Mediterranean species Lupinus angustifolius were extracted and their apparent molecular masses were determined by high-performance size exclusion chromatography analysis. They were, to a large degree, polydisperse, showing molecular masses that varied from 100,000 to 2,000,000. Polyethylene glycol (PEG, 1500, 4000, 6000 and 8000), sodium citrate and dextran (73,000, 60,000-90,000, 505,000 and 2,000,000) were used for investigating phase formation with the seed polysaccharides. Galactomannans and xyloglucans demonstrated phase formation with sodium citrate concentrations lower than 30%, as well as dextrans and polyethylene glycol, and formed gels in the presence of high concentrations of sodium citrate (above 30%). Galactan did not promote phase formation with any of the reagents used. On the basis of the results obtained, the possibility of using legume seed polysaccharides for the partitioning and purification of polysaccharide enzymes in aqueous two-phase systems is suggested.

  20. Electrochemical Characterization of O2 Plasma Functionalized Multi-Walled Carbon Nanotube Electrode for Legionella pneumophila DNA Sensor

    Science.gov (United States)

    Park, Eun Jin; Lee, Jun-Yong; Hyup Kim, Jun; Kug Kim, Sun; Lee, Cheol Jin; Min, Nam Ki

    2010-08-01

    An electrochemical DNA sensor for Legionella pneumophila detection was constructed using O2 plasma functionalized multi-walled carbon nanotube (MWCNT) film as a working electrode (WE). The cyclic voltammetry (CV) results revealed that the electrocatalytic activity of plasma functionalized MWCNT (pf-MWCNT) significantly changed depending on O2 plasma treatment time due to some oxygen containing functional groups on the pf-MWCNT surface. Scanning electron microscope (SEM) images and X-ray photoelectron spectroscopy (XPS) spectra were also presented the changes of their surface morphologies and oxygen composition before and after plasma treatment. From a comparison study, it was found that the pf-MWCNT WEs had higher electrocatalytic activity and more capability of probe DNA immobilization: therefore, electrochemical signal changes by probe DNA immobilization and hybridization on pf-MWCNT WEs were larger than on Au WEs. The pf-MWCNT based DNA sensor was able to detect a concentration range of 10 pM-100 nM of target DNA to detect L. pneumophila.

  1. Micromechanical characterization of single-walled carbon nanotube reinforced ethylidene norbornene nanocomposites for self-healing applications

    Science.gov (United States)

    Aïssa, B.; Haddad, E.; Jamroz, W.; Hassani, S.; Farahani, R. D.; Merle, P. G.; Therriault, D.

    2012-10-01

    We report on the fabrication of self-healing nanocomposite materials, consisting of single-walled carbon nanotube (SWCNT) reinforced 5-ethylidene-2-norbornene (5E2N) healing agent—reacted with ruthenium Grubbs catalyst—by means of ultrasonication, followed by a three-roll mixing mill process. The kinetics of the 5E2N ring opening metathesis polymerization (ROMP) was studied as a function of the reaction temperature and the SWCNT loads. Our results demonstrated that the ROMP reaction was still effective in a large temperature domain ( - 15-45 °C), occurring at very short time scales (less than 1 min at 40 °C). On the other hand, the micro-indentation analysis performed on the SWCNT/5E2N nanocomposite material after its ROMP polymerization showed a clear increase in both the hardness and the Young modulus—up to nine times higher than that of the virgin polymer—when SWCNT loads range only from 0.1 to 2 wt%. The approach demonstrated here opens new prospects for using carbon nanotube and healing agent nanocomposite materials for self-repair functionality, especially in a space environment.

  2. Nanoencapsulation of chia seed oil with chia mucilage (Salvia hispanica L.) as wall material: Characterization and stability evaluation.

    Science.gov (United States)

    de Campo, Camila; Dos Santos, Priscilla Pereira; Costa, Tania Maria Haas; Paese, Karina; Guterres, Silvia Stanisçuaski; Rios, Alessandro de Oliveira; Flôres, Simone Hickmann

    2017-11-01

    In this study, chia seed oil was nanoencapsulated utilizing chia seed mucilage (CSM) as wall material. The viscosity, encapsulation efficiency, loading capacity, transmission electron microscopy, FT-IR spectroscopy and thermal properties of chia seed oil nanoparticles (CSO-NP) were performed after preparation. Particle size, zeta potential, span value, and pH of CSO-NP and oxidation stability of nanoencapsulated and unencapsulated oil were evaluated during 28days of storage at accelerated conditions (40°C). The CSO-NP showed spherical shape, an average size of 205±4.24nm and zeta potential of -11.58±1.87mV. The encapsulation efficiency (82.8%), loading capacity (35.38%) and FT-IR spectroscopy demonstrated the interaction between oil and mucilage. Furthermore, CSO-NP were thermally stable at temperatures up 300°C and nanoencapsulated oil showed higher stability against oxidation than unencapsulated oil. The results suggest that chia seed mucilage represents a promising alternative to substitute synthetic polymers in nanoencapsulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Characterization of a novel cell wall binding domain-containing Staphylococcus aureus endolysin LysSA97.

    Science.gov (United States)

    Chang, Yoonjee; Ryu, Sangryeol

    2017-01-01

    Endolysin from Staphylococcus aureus phage SA97 (LysSA97) was cloned and investigated. LysSA97 specifically lyse the staphylococcal strains and effectively disrupted staphylococcal biofilms. Bioinformatic analysis of LysSA97 revealed a novel putative cell wall binding domain (CBD) as well as two enzymatically active domains (EADs) containing cysteine, histidine-dependent amidohydrolases/peptidases (CHAP, PF05257) and N-acetylmuramoyl-L-alanine amidase (Amidase-3, PF01520) domains. Comparison of 98 endolysin genes of S. aureus phages deposited in GenBank showed that they can be classified into six groups based on their domain composition. Interestingly, approximately 80.61 % of the staphylococcal endolysins have a src-homology 3 (SH3, PF08460) domain as CBD, but the remaining 19.39 %, including LysSA97, has a putative C-terminal CBD with no homology to the known CBD. The fusion protein containing green fluorescent protein and the putative CBD of LysSA97 showed a specific binding spectrum against staphylococcal cells comparable to SH3 domain (PF08460), suggesting that the C-terminal domain of LysSA97 is a novel CBD of staphylococcal endolysins.

  4. Improved intracranial lesion characterization by tissue segmentation based on a 3D feature map.

    Science.gov (United States)

    Vinitski, S; Gonzalez, C; Mohamed, F; Iwanaga, T; Knobler, R L; Khalili, K; Mack, J

    1997-03-01

    Our aim was to develop an accurate multispectral tissue segmentation method based on 3D feature maps. We utilized proton density (PD), T2-weighted fast spin-echo (FSE), and T1-weighted spin-echo images as inputs for segmentation. Phantom constructs, cadaver brains, an animal brain tumor model and both normal human brains and those from patients with either multiple sclerosis (MS) or primary brain tumors were analyzed with this technique. Initially, misregistration, RF inhomogeneity and image noise problems were addressed. Next, a qualified observer identified samples representing the tissues of interest. Finally, k-nearest neighbor algorithm (k-NN) was utilized to create a stack of color-coded segmented images. The inclusion of T1 based images, as a third input, produced significant improvement in the delineation of tissues. In MS, our 3D technique was found to be far superior to that based on any combination of 2D feature maps (P lesions within the same MS plaque, representing different stages of the disease process. Further, we obtained the regional distribution of MS lesion burden and followed its changes over time. Neuropsychological aberrations were the clinical counterpart of the structural changes detected in segmentation. We could also delineate the margins of benign brain tumors. In malignant tumors, up to four abnormal tissues were identified: 1) a solid tumor core, 2) a cystic component, 3) edema in the white matter, and 4) areas of necrosis and hemorrhage. Subsequent neurosurgical exploration confirmed the distribution of tissues as predicted by this analysis.

  5. Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells.

    Directory of Open Access Journals (Sweden)

    Keith A Russell

    Full Text Available Mesenchymal stromal cells (MSC hold promise for both cell replacement and immune modulation strategies owing to their progenitor and non-progenitor functions, respectively. Characterization of MSC from different sources is an important and necessary step before clinical use of these cells is widely adopted. Little is known about the biology and function of canine MSC compared to their mouse or human counterparts. This knowledge-gap impedes development of canine evidence-based MSC technologies.We hypothesized that canine adipose tissue (AT and bone marrow (BM MSC (derived from the same dogs will have similar differentiation and immune modulatory profiles. Our objectives were to evaluate progenitor and non-progenitor functions as well as other characteristics of AT- and BM-MSC including 1 proliferation rate, 2 cell surface marker expression, 3 DNA methylation levels, 4 potential for trilineage differentiation towards osteogenic, adipogenic, and chondrogenic cell fates, and 5 immunomodulatory potency in vitro.1 AT-MSC proliferated at more than double the rate of BM-MSC (population doubling times in days for passage (P 2, AT: 1.69, BM: 3.81; P3, AT: 1.80, BM: 4.06; P4, AT: 2.37, BM: 5.34; P5, AT: 3.20, BM: 7.21. 2 Canine MSC, regardless of source, strongly expressed cell surface markers MHC I, CD29, CD44, and CD90, and were negative for MHC II and CD45. They also showed moderate expression of CD8 and CD73 and mild expression of CD14. Minor differences were found in expression of CD4 and CD34. 3 Global DNA methylation levels were significantly lower in BM-MSC compared to AT-MSC. 4 Little difference was found between AT- and BM-MSC in their potential for adipogenesis and osteogenesis. Chondrogenesis was poor to absent for both sources in spite of adding varying levels of bone-morphogenic protein to our standard transforming growth factor (TGF-β3-based induction medium. 5 Immunomodulatory capacity was equal regardless of cell source when tested in

  6. Characterization of Layer-by-layer Self-assembled Multi-walled Carbon Nanotube Film Sensor and Its Ethanol Gas-sensing Properties

    Directory of Open Access Journals (Sweden)

    Bokai Xia

    2013-03-01

    Full Text Available Multi-wall carbon nanotubes (MWNTs film-based sensor on the substrate of printed circuit board (PCB with interdigital electrodes (IDE were fabricated using layer-by-layer self-assembly, and the electrical properties of MWNTs film sensor were investigated through establishing models involved with number of self-assembled layers and IDE finger gap, and also its ethanol gas-sensing properties with varying gas concentration are characterized at room temperature. Through comparing with the thermal evaporation method, the experiment results shown that the layer-by-layer self-assembled MWNTs film sensor have a faster response and more sensitive resistance change when exposed to ethanol gas, indicated a prospective application for ethanol gas detection with high performance and low-cost.

  7. Localization and structural analysis of a conserved pyruvylated epitope in Bacillus anthracis secondary cell wall polysaccharides and characterization of the galactose-deficient wall polysaccharide from avirulent B. anthracis CDC 684.

    Science.gov (United States)

    Forsberg, L Scott; Abshire, Teresa G; Friedlander, Arthur; Quinn, Conrad P; Kannenberg, Elmar L; Carlson, Russell W

    2012-08-01

    Bacillus anthracis CDC 684 is a naturally occurring, avirulent variant and close relative of the highly pathogenic B. anthracis Vollum. Bacillus anthracis CDC 684 contains both virulence plasmids, pXO1 and pXO2, yet is non-pathogenic in animal models, prompting closer scrutiny of the molecular basis of attenuation. We structurally characterized the secondary cell wall polysaccharide (SCWP) of B. anthracis CDC 684 (Ba684) using chemical and NMR spectroscopy analysis. The SCWP consists of a HexNAc trisaccharide backbone having identical structure as that of B. anthracis Pasteur, Sterne and Ames, →4)-β-d-ManpNAc-(1 → 4)-β-d-GlcpNAc-(1 → 6)-α-d-GlcpNAc-(1→. Remarkably, although the backbone is fully polymerized, the SCWP is the devoid of all galactosyl side residues, a feature which normally comprises 50% of the glycosyl residues on the highly galactosylated SCWPs from pathogenic strains. This observation highlights the role of defective wall assembly in virulence and indicates that polymerization occurs independently of galactose side residue attachment. Of particular interest, the polymerized Ba684 backbone retains the substoichiometric pyruvate acetal, O-acetate and amino group modifications found on SCWPs from normal B. anthracis strains, and immunofluorescence analysis confirms that SCWP expression coincides with the ability to bind the surface layer homology (SLH) domain containing S-layer protein extractable antigen-1. Pyruvate was previously demonstrated as part of a conserved epitope, mediating SLH-domain protein attachment to the underlying peptidoglycan layer. We find that a single repeating unit, located at the distal (non-reducing) end of the Ba684 SCWP, is structurally modified and that this modification is present in identical manner in the SCWPs of normal B. anthracis strains. These polysaccharides terminate in the sequence: (S)-4,6-O-(1-carboxyethylidene)-β-d-ManpNAc-(1 → 4)-[3-O-acetyl]-β-d-GlcpNAc-(1 → 6)-α-d-GlcpNH(2)-(1→.

  8. Characterizing autofluorescence generated from endogenous porphyrins in cancerous tissue of human colon: case studies

    Science.gov (United States)

    Liu, Lina; Lin, Lisheng; Li, Weihua; Yang, Changshun; Huang, Zheng; Xie, Shusen; Li, Buhong

    2013-03-01

    The aim of this case study was to explore the relationship between porphyrins and colon adenocarcinoma, and to examine the potential of porphyrin-induced fluorescence for the diagnosis of colon cancer. Further studies were carried on 8 cases ex vivo colon adenocarcinoma samples which exceptionally exhibited 635 nm fluorescence emission under 405 nm excitation. The time-resolved fluorescence spectra at 635 nm emission under 405 nm excitation were also measured and two-exponential decay fitting was performed to determine the fluorescence lifetime at 635 nm emission. Significant difference was observed between the spectra of normal and cancer tissues, which included an emission peak at 635 nm under the excitation wavelengths of 405 nm. There was also a significant difference between the fluorescence lifetimes of 635 nm emission of the normal tissue and cancer tissue (Pcolon cancers of certain patient populations.

  9. A method to obtain reference images for evaluation of ultrasonic tissue characterization techniques

    DEFF Research Database (Denmark)

    Jensen, M.S.; Wilhjelm, Jens E.; Sahl, B.

    2002-01-01

    compound ultrasound images of tissue and fiducial markers were recorded each 0.5 mm. Guided by the fiducial markers, the agar block was subsequently cut into slices 2.5 mm thick, photographed and finally analyzed histologically identifying these tissues: collagen rich, collagen poor, micro vessels...... and muscle fibres. Due to: (1) the cutting procedure, (2) the finite size of the ultrasound beam and (3) the spatial variation in propagation velocity, the macroscopic photographs did not align completely with the ultrasound images. Likewise, the histological image is a geometrically distorted version...... of the macroscopic photograph, due to the histological preparation process. The histological information was "mapped back" into the format of the ultrasound images the following way: On the macroscopic images, outlines were drawn manually which defined the border of the tissue. These outlines were superimposed...

  10. Establishment and molecular characterization of mesenchymal stem cell lines derived from human visceral & subcutaneous adipose tissues.

    Science.gov (United States)

    Potdar, Pd; Sutar, Jp

    2010-01-01

    Mesenchymal stem cells (MSCs), are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, myocytes and adipocytes. We utilized adipose tissue as our primary source, since it is a rich source of MSCs as well as it can be harvested using a minimally invasive surgical procedure. Both visceral and subcutaneous adipose tissue (VSAT, SCAT respectively) samples were cultured using growth medium without using any substratum for their attachment. We observed growth of mesenchymal like cells within 15 days of culturing. In spite of the absence of any substratum, the cells adhered to the bottom of the petri dish, and spread out within 2 hours. Presently VSAT cells have reached at passage 10 whereas; SCAT cells have reached at passage 14. Morphologically MSCs obtained from visceral adipose tissue were larger in shape than subcutaneous adipose tissue. We checked these cells for presence or absence of specific stem cell molecular markers. We found that VSAT and SCAT cells confirmed their MSC phenotype by expression of specific MSC markers CD 105 and CD 13 and absence of CD34 and CD 45 markers which are specific for haematopoietic stem cells. These cells also expressed SOX2 gene confirming their ability of self-renewal as well as expressed OCT4, LIF and NANOG for their properties for pluripotency & plasticity. Overall, it was shown that adipose tissue is a good source of mesenchymal stem cells. It was also shown that MSCs, isolated from adipose tissue are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, cardiomyocytes, adipocytes and liver cells which may open a new era for cell based regenerative therapies for bone, cardiac and liver disorders.

  11. Establishment and Molecular Characterization of Mesenchymal Stem Cell Lines Derived From Human Visceral & Subcutaneous Adipose Tissues

    Directory of Open Access Journals (Sweden)

    Jyoti Prakash Sutar

    2010-01-01

    Full Text Available Mesenchymal stem cells (MSCs, are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, myocytes and adipocytes. We utilized adipose tissue as our primary source, since it is a rich source of MSCs as well as it can be harvested using a minimally invasive surgical procedure. Both visceral and subcutaneous adipose tissue (VSAT, SCAT respectively samples were cultured using growth medium without using any substratum for their attachment. We observed growth of mesenchymal like cells within 15 days of culturing. In spite of the absence of any substratum, the cells adhered to the bottom of the petri dish, and spread out within 2 hours. Presently VSAT cells have reached at passage 10 whereas; SCAT cells have reached at passage 14. Morphologically MSCs obtained from visceral adipose tissue were larger in shape than subcutaneous adipose tissue. We checked these cells for presence or absence of specific stem cell molecular markers. We found that VSAT and SCAT cells confirmed their MSC phenotype by expression of specific MSC markers CD 105 and CD13 and absence of CD34 and CD 45 markers which are specific for haematopoietic stem cells. These cells also expressed SOX2 gene confirming their ability of self-renewal as well as expressed OCT4, LIF and NANOG for their properties for pluripotency & plasticity. Overall, it was shown that adipose tissue is a good source of mesenchymal stem cells. It was also shown that MSCs, isolated from adipose tissue are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, cardiomyocytes, adipocytes and liver cells which may open a new era for cell based regenerative therapies for bone, cardiac and liver disorders.

  12. Superthin Abdominal Wall Glove-Like Flap Combined With Vacuum-Assisted Closure Therapy for Soft Tissue Reconstruction in Severely Burned Hands or With Infection.

    Science.gov (United States)

    Wang, Fei; Liu, Sheng; Qiu, Le; Ma, Ben; Wang, Jian; Wang, Yong-Jie; Peszel, April; Chen, Xu-Lin

    2015-12-01

    Severe burn and infection to hands always involves the deep structures, such as tendons, joints, and bones. These wounds cannot be closed immediately and therefore creates a high risk for complication. We presented 9 cases with deep dermal burns to the dorsal of the hand (6 electrical burns and 3 thermal crush injuries) with wound infections in 2 cases. The vacuum-assisted closure system was used continuously until the flap reconstruction was performed. A random pattern and superthin abdominal wall skin flap-like glove was designed. The flap was transferred to the defected portion of the dorsum of the hand and resected from the abdominal wall about 3 weeks later. The flaps in 8 of the patients treated by this technique survived completely and partial necrosis of the distal flap occurred in 1 patient. The defect resolved after operative treatment and the function of the hands and fingers were successfully salvaged. All patients resulted in having a satisfactory aesthetic outcome with no or minor discomfort at the abdominal donor area. Integration of the vacuum-assisted closure system and the superthin abdominal wall glove-like flap reconstruction appeared to be successful and should be considered in patients with severely burned hands.

  13. Chemical Genetic Analysis and Functional Characterization of Staphylococcal Wall Teichoic Acid 2-Epimerases Reveals Unconventional Antibiotic Drug Targets.

    Directory of Open Access Journals (Sweden)

    Paul A Mann

    2016-05-01

    Full Text Available Here we describe a chemical biology strategy performed in Staphylococcus aureus and Staphylococcus epidermidis to identify MnaA, a 2-epimerase that we demonstrate interconverts UDP-GlcNAc and UDP-ManNAc to modulate substrate levels of TarO and TarA wall teichoic acid (WTA biosynthesis enzymes. Genetic inactivation of mnaA results in complete loss of WTA and dramatic in vitro β-lactam hypersensitivity in methicillin-resistant S. aureus (MRSA and S. epidermidis (MRSE. Likewise, the β-lactam antibiotic imipenem exhibits restored bactericidal activity against mnaA mutants in vitro and concomitant efficacy against 2-epimerase defective strains in a mouse thigh model of MRSA and MRSE infection. Interestingly, whereas MnaA serves as the sole 2-epimerase required for WTA biosynthesis in S. epidermidis, MnaA and Cap5P provide compensatory WTA functional roles in S. aureus. We also demonstrate that MnaA and other enzymes of WTA biosynthesis are required for biofilm formation in MRSA and MRSE. We further determine the 1.9Å crystal structure of S. aureus MnaA and identify critical residues for enzymatic dimerization, stability, and substrate binding. Finally, the natural product antibiotic tunicamycin is shown to physically bind MnaA and Cap5P and inhibit 2-epimerase activity, demonstrating that it inhibits a previously unanticipated step in WTA biosynthesis. In summary, MnaA serves as a new Staphylococcal antibiotic target with cognate inhibitors predicted to possess dual therapeutic benefit: as combination agents to restore β-lactam efficacy against MRSA and MRSE and as non-bioactive prophylactic agents to prevent Staphylococcal biofilm formation.

  14. Cell wall polysaccharides released during the alcoholic fermentation by Schizosaccharomyces pombe and S. japonicus: quantification and characterization

    Science.gov (United States)

    Domizio, P.; Liu, Y.; Bisson, L.F.; Barile, D.

    2016-01-01

    The present work demonstrates that yeasts belonging to the Schizosaccharomyces genus release a high quantity of polysaccharides of cell wall origin starting from the onset of the alcoholic fermentation. By the end of the alcoholic fermentation, all of the Schizosaccharomyces yeast strains released a quantity of polysaccharides approximately 3-7 times higher than that released by a commercial Saccharomyces cerevisiae yeast strain under the same fermentative conditions of synthetic juice. A higher content of polysaccharide was found in media fermented by Schizosaccharomyces japonicus with respect to that of Schizosaccharomyces pombe. Some of the strains evaluated were also able to produce high levels of pyruvic acid, which has been shown to be an important compound for color stability of wine. The presence of strains with different malic acid consumption patterns along with high polysaccharide release would enable production of naturally modified wines with enhanced mouth feel and reduced acidity. The chemical analysis of the released polysaccharides demonstrated divergence between the two yeast species S. pombe and S. japonicus. A different mannose/galactose ratio and a different percentage of proteins was observed on the polysaccharides released by S. pombe as compared to S. japonicus. Analysis of the proteins released in the media revealed the presence of a glycoprotein with a molecular size around 32-33 kDa only for the species S. japonicus. Mass spectrometry analysis of carbohydrate moieties showed similar proportions among the N-glycan chains released in the media by both yeast species but differences between the two species were also observed. These observations suggest a possible role of rapid MALDI-TOF screening of N-glycans compositional fingerprint as a taxonomic tool for this genus. Polysaccharides release in the media, in particular galactomannoproteins in significant amounts, could make these yeasts particularly interesting also for the industrial

  15. Cell wall polysaccharides released during the alcoholic fermentation by Schizosaccharomyces pombe and S. japonicus: quantification and characterization.

    Science.gov (United States)

    Domizio, P; Liu, Y; Bisson, L F; Barile, D

    2017-02-01

    The present work demonstrates that yeasts belonging to the Schizosaccharomyces genus release a high quantity of polysaccharides of cell wall origin starting from the onset of the alcoholic fermentation. By the end of the alcoholic fermentation, all of the Schizosaccharomyces yeast strains released a quantity of polysaccharides approximately 3-7 times higher than that released by a commercial Saccharomyces cerevisiae yeast strain under the same fermentative conditions of synthetic juice. A higher content of polysaccharide was found in media fermented by Schizosaccharomyces japonicus with respect to that of Schizosaccharomyces pombe. Some of the strains evaluated were also able to produce high levels of pyruvic acid, which has been shown to be an important compound for color stability of wine. The presence of strains with different malic acid consumption patterns along with high polysaccharide release would enable production of naturally modified wines with enhanced mouth feel and reduced acidity. The chemical analysis of the released polysaccharides demonstrated divergence between the two yeast species S. pombe and S. japonicus. A different mannose/galactose ratio and a different percentage of proteins was observed on the polysaccharides released by S. pombe as compared to S. japonicus. Analysis of the proteins released in the media revealed the presence of a glycoprotein with a molecular size around 32-33 kDa only for the species S. japonicus. Mass spectrometry analysis of carbohydrate moieties showed similar proportions among the N-glycan chains released in the media by both yeast species but differences between the two species were also observed. These observations suggest a possible role of rapid MALDI-TOF screening of N-glycans compositional fingerprint as a taxonomic tool for this genus. Polysaccharides release in the media, in particular galactomannoproteins in significant amounts, could make these yeasts particularly interesting also for the industrial

  16. Chemical Genetic Analysis and Functional Characterization of Staphylococcal Wall Teichoic Acid 2-Epimerases Reveals Unconventional Antibiotic Drug Targets

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Paul A.; Müller, Anna; Wolff, Kerstin A.; Fischmann, Thierry; Wang, Hao; Reed, Patricia; Hou, Yan; Li, Wenjin; Müller, Christa E.; Xiao, Jianying; Murgolo, Nicholas; Sher, Xinwei; Mayhood, Todd; Sheth, Payal R.; Mirza, Asra; Labroli, Marc; Xiao, Li; McCoy, Mark; Gill, Charles J.; Pinho, Mariana G.; Schneider, Tanja; Roemer, Terry (Merck); (Bonn); (FCT/UNL)

    2016-05-04

    Here we describe a chemical biology strategy performed in Staphylococcus aureus and Staphylococcus epidermidis to identify MnaA, a 2-epimerase that we demonstrate interconverts UDP-GlcNAc and UDP-ManNAc to modulate substrate levels of TarO and TarA wall teichoic acid (WTA) biosynthesis enzymes. Genetic inactivation of mnaA results in complete loss of WTA and dramatic in vitro β-lactam hypersensitivity in methicillin-resistant S. aureus (MRSA) and S. epidermidis (MRSE). Likewise, the β-lactam antibiotic imipenem exhibits restored bactericidal activity against mnaA mutants in vitro and concomitant efficacy against 2-epimerase defective strains in a mouse thigh model of MRSA and MRSE infection. Interestingly, whereas MnaA serves as the sole 2-epimerase required for WTA biosynthesis in S. epidermidis, MnaA and Cap5P provide compensatory WTA functional roles in S. aureus. We also demonstrate that MnaA and other enzymes of WTA biosynthesis are required for biofilm formation in MRSA and MRSE. We further determine the 1.9Å crystal structure of S. aureus MnaA and identify critical residues for enzymatic dimerization, stability, and substrate binding. Finally, the natural product antibiotic tunicamycin is shown to physically bind MnaA and Cap5P and inhibit 2-epimerase activity, demonstrating that it inhibits a previously unanticipated step in WTA biosynthesis. In summary, MnaA serves as a new Staphylococcal antibiotic target with cognate inhibitors predicted to possess dual therapeutic benefit: as combination agents to restore β-lactam efficacy against MRSA and MRSE and as non-bioactive prophylactic agents to prevent Staphylococcal biofilm formation.

  17. Mechanical characterization and validation of poly (methyl methacrylate)/multi walled carbon nanotube composite for the polycentric knee joint.

    Science.gov (United States)

    Arun, S; Kanagaraj, S

    2015-10-01

    Trans femoral amputation is one of the most uncomfortable surgeries in patient׳s life, where the prosthesis consisting of a socket, knee joint, pylon and foot is used to do the walking activities. The artificial prosthetic knee joint imitates the functions of human knee to achieve the flexion-extension for the above knee amputee. The objective of present work is to develop a light weight composite material for the knee joint to reduce the metabolic cost of an amputee. Hence, an attempt was made to study the mechanical properties of multi walled carbon nanotubes (MWCNT) reinforced Poly (methyl methacrylate) (PMMA) prepared through melt mixing technique and optimize the concentration of reinforcement. The PMMA nanocomposites were prepared by reinforcing 0, 0.1, 0.2, 0.25, 0.3 and 0.4 wt% of MWCNT using injection moulding machine via twin screw extruder. It is observed that the tensile and flexural strength of PMMA, which were studied as per ASTM D638 and D790, respectively, were increased by 32.9% and 26.3% till 0.25 wt% reinforcement of MWCNT. The experimental results of strength and modulus were compared with theoretical prediction, where a good correlation was noted. It is concluded that the mechanical properties of PMMA were found to be increased to maximum at 0.25 wt% reinforcement of MWCNT, where the Pukanszky model and modified Halpin-Tsai model are suggested to predict the strength and modulus, respectively, of the PMMA/MWCNT composite, which can be opted as a suitable materiel for the development of polycentric knee joint. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Isolation and characterization of a novel wall-associated kinase gene TaWAK5 in wheat (Triticum aestivum

    Directory of Open Access Journals (Sweden)

    Kun Yang

    2014-10-01

    Full Text Available Wall-associated kinases (WAKs play an important role in plant defense and development. Considerable progress has been made in understanding WAK genes in Arabidopsis thaliana. However, much less is known about these genes in common wheat. Here, we isolated a novel wheat WAK gene TaWAK5 from sharp eyespot disease-resistant wheat line CI12633, based on a differentially-expressed sequence identified by microarray analysis. The transcript abundance of TaWAK5 was rapidly increased following inoculation with the pathogen Rhizoctonia cerealis. TaWAK5 in resistant wheat lines was induced to higher levels than in susceptible lines at 7 days post inoculation with R. cerealis. The expression of TaWAK5 was also induced by treatments with exogenous salicylic acid, abscisic acid, and methyl jasmonate. The deduced TaWAK5 protein contained a signal peptide, two epidermal growth factor (EGF-like repeats, a transmembrane domain, and a serine/threonine protein kinase catalytic domain. Subcellular localization analyses in onion epidermal cells indicated that the TaWAK5 protein was localized to the plasma membrane. Virus-induced gene silencing of TaWAK5 in CI12633 plants showed that the silencing of TaWAK5 did not obviously impair wheat resistance to R. cerealis, suggesting that TaWAK5 may be not the major gene in wheat defense response to R. cerealis, or that it is functionally redundant with other genes. This study paves the way for further research into WAK functions in wheat stress physiology.

  19. Applying Broadband Dielectric Spectroscopy (BDS) for the Biophysical Characterization of Mammalian Tissues under a Variety of Cellular Stresses.

    Science.gov (United States)

    Souli, Maria P; Klonos, Panagiotis; Fragopoulou, Adamantia F; Mavragani, Ifigeneia V; Pateras, Ioannis S; Kostomitsopoulos, Nikolaos; Margaritis, Lukas H; Zoumpoulis, Pavlos; Kaklamanis, Loukas; Kletsas, Dimitris; Gorgoulis, Vassilis G; Kyritsis, Apostolos; Pissis, Polycarpos; Georgakilas, Alexandros G

    2017-04-15

    The dielectric properties of biological tissues can contribute non-invasively to a better characterization and understanding of the structural properties and physiology of living organisms. The question we asked, is whether these induced changes are effected by an endogenous or exogenous cellular stress, and can they be detected non-invasively in the form of a dielectric response, e.g., an AC conductivity switch in the broadband frequency spectrum. This study constitutes the first methodological approach for the detection of environmental stress-induced damage in mammalian tissues by the means of broadband dielectric spectroscopy (BDS) at the frequencies of 1-10⁶ Hz. Firstly, we used non-ionizing (NIR) and ionizing radiation (IR) as a typical environmental stress. Specifically, rats were exposed to either digital enhanced cordless telecommunication (DECT) radio frequency electromagnetic radiation or to γ-radiation, respectively. The other type of stress, characterized usually by high genomic instability, was the pathophysiological state of human cancer (lung and prostate). Analyzing the results of isothermal dielectric measurements provided information on the tissues' water fraction. In most cases, our methodology proved sufficient in detecting structural changes, especially in the case of IR and malignancy. Useful specific dielectric response patterns are detected and correlated with each type of stress. Our results point towards the development of a dielectric-based methodology for better understanding and, in a relatively invasive way, the biological and structural changes effected by radiation and developing lung or prostate cancer often associated with genomic instability.

  20. Myocardial tissue characterization in hypertrophic cardiomyopathy. Comparison between Gd-DTPA enhanced MR signal intensity ratio and myocardial biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Tsukihashi, Hironori; Shimada, Toshio; Ishibashi, Yutaka [Shimane Medical Univ., Izumo (Japan)] [and others

    1995-09-01

    The aim of this study is to demonstrate whether Gd-DTPA enhanced magnetic resonance imaging (Gd-EMRI) can be used to evaluate myocardial tissue characterization. We performed Gd-EMRI in 20 patients with hypertrophic cardiomyopathy (HCM) and 6 normal controls. Ventricular myocardial biopsy was performed in 7 patients. Gd-EMRI was obtained every 10 minutes from 5 to 50 minutes after intravenous Gd-DTPA (0.1 mmol/kg) injection. Signal intensity (SI) in hypertrophic region of myocardium was measured from LV short axis image. We standardized the data according to following equations. IR (intensity ratio) =SI (myocardium) /SI (skeletal muscle). SIR=IR (in time course) /IR (before Gd-DTPA injection). SIR in HCM was delayed in time course compared with that in normal controls. Interstitial fibrosis was prominent when SIR (peak) minus SIR (40min. after) /SIR (peak) was small. The delayed decay of IR in HCM was closely related to the grade of interstitial fibrosis rather than the edema of interstitial tissue or the myocardial cell diameter. We conclude that the decay analysis with Gd-EMRI is useful to evaluate myocardial tissue characterization closely related to myocardial fibrosis in comparison with cardiac histology. (author).

  1. Characterization and tissue distribution of Lhx9 and Lhx9α in ...

    Indian Academy of Sciences (India)

    ... 399 and 330 amino acids, respectively. The Lhx9 gene was detected primarily in liver, ovary and heart with moderate expression in brain, pituitary, intestine and spleen, and low expression in the remaining examined tissues, while Lhx9 α expression was high in heart, pituitary and liver, and low in spleen and stomach.

  2. Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Tomas [Department of Physics, Lund Institute of Technology, Box 118, SE-221 00 Lund (Sweden); Swartling, Johannes [Department of Physics, Lund Institute of Technology, Box 118, SE-221 00 Lund (Sweden); Taroni, Paola [Politecnico di Milano, Piazza Leonardo da Vinci 32, I-210 33 Milan (Italy); Torricelli, Alessandro [Politecnico di Milano, Piazza Leonardo da Vinci 32, I-210 33 Milan (Italy); Lindblom, Pia [Department of Surgery, Lund University Hospital, SE-221 85 Lund (Sweden); Ingvar, Christian [Department of Surgery, Lund University Hospital, SE-221 85 Lund (Sweden); Andersson-Engels, Stefan [Department of Physics, Lund Institute of Technology, Box 118, SE-221 00 Lund (Sweden)

    2005-06-07

    In recent years, extensive efforts have been made in developing near-infrared optical techniques to be used in detection and diagnosis of breast cancer. Variations in optical properties of normal breast tissue set limits to the performance of such techniques and must therefore be thoroughly examined. In this paper, we present intra- and intersubject as well as contralateral variations of optical and physiological properties in breast tissue as measured by using four-wavelength time-resolved spectroscopy (at 660, 786, 916 and 974 nm). In total, 36 volunteers were examined at five regions at each breast. Optical properties (absorption, {mu}{sub a}, and reduced scattering, {mu}'{sub s}) are derived by employing diffusion theory. The use of four wavelengths enables determination of main tissue chromophores (haemoglobin, water and lipids) as well as haemoglobin oxygenation. Variations in all evaluated properties seen over the entire breast are approximately twice those for small-scale heterogeneity (millimetre scale). Intrasubject variations in optical properties are almost in all cases below 20% for {mu}'{sub s}, and 40% for {mu}{sub a}. Overall variations in water, lipid and haemoglobin concentrations are all in the order of 20%. Oxygenation is the least variable of the quantities evaluated, overall intrasubject variations being 6% on average. Extracted physiological properties confirm differences between pre- and post-menopausal breast tissue. Results do not indicate systematic differences between left and right breast000.

  3. Non-Invasive Characterization of Brain Tissue Electrical Properties with MRI

    NARCIS (Netherlands)

    Mandija, Stefano

    2017-01-01

    The study of the electrical properties (EPs) of tissues, i.e. conductivity and permittivity, is of fundamental importance to understand the biophysical interactions and the effects of electromagnetic fields on our body, such as those produced by MRI scanners or by Transcranial Magnetic Stimulators

  4. Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure.

    Science.gov (United States)

    Sandberg, Dustin C; Battista, Lorna J; Arnold, A Elizabeth

    2014-05-01

    Most studies of endophytic symbionts have focused on terrestrial plants, neglecting the ecologically and economically important plants present in aquatic ecosystems. We evaluated the diversity, composition, host and tissue affiliations, and geographic structure of fungal endophytes associated with common aquatic plants in lentic waters in northern Arizona, USA. Endophytes were isolated in culture from roots and photosynthetic tissues during two growing seasons. A total of 226 isolates representing 60 putative species was recovered from 9,600 plant tissue segments. Although isolation frequency was low, endophytes were phylogenetically diverse and species-rich. Comparisons among the most thoroughly sampled species and reservoirs revealed that isolation frequency and diversity did not differ significantly between collection periods, among species, among reservoirs, or as a function of depth. However, community structure differed significantly among reservoirs and tissue types. Phylogenetic analyses of a focal genus (Penicillium) corroborated estimates of species boundaries and informed community analyses, highlighting clade- and genotype-level affiliations of aquatic endophytes with both sediment- and waterborne fungi, and endophytes of proximate terrestrial plants. Together these analyses provide a first quantitative examination of endophytic associations in roots and foliage of aquatic plants and can be used to optimize survey strategies for efficiently capturing fungal biodiversity at local and regional scales.

  5. Combination of Selective Immunoassays and Mass Spectrometry to Characterize Preproghrelin-Derived Peptides in Mouse Tissues

    Directory of Open Access Journals (Sweden)

    Virginie Tolle

    2017-04-01

    Full Text Available Preproghrelin is a prohormone producing several preproghrelin-derived peptides with structural and functional heterogeneity: acyl ghrelin (AG, desacyl ghrelin (DAG, and obestatin. The absence of selective and reliable assays to measure these peptides simultaneously in biological samples has been a limitation to assess their real proportions in tissues and plasma in physiological and pathological conditions. We aimed at reliably measure the ratio between the different preproghrelin-derived peptides in murine tissues using selective immunoassays combined with a highly sensitive mass spectrometry method. AG-, DAG-, and obestatin-immunopositive fractions from the gastrointestinal tract of adult wild-type and ghrelin-deficient mice were processed for analysis by mass spectrometry (MS with a Triple Quadrupole mass spectrometer. We found that DAG was predominant in mouse plasma, however it only represented 50% of total ghrelin (AG+DAG production in the stomach and duodenum. Obestatin plasma levels accounted for about 30% of all circulating preproghrelin-derived peptides, however, it represented <1% of total preproghrelin-derived peptides production (AG+DAG+Obestatin in the stomach. Assays were validated in ghrelin-deficient mice since neither ghrelin nor obestatin immunoreactivities were detected in their stomach, duodenum nor plasma. MS analyses confirmed that obestatin-immunoreactivity in stomach corresponded to the C-terminal amidated form of the peptide but not to des(1–10-obestatin, nor to obestatin-Gly. In conclusion, specificity of ghrelin and obestatin immunoreactivities in gastrointestinal tissues using selective immunoassays was validated by MS. Obestatin was less abundant than AG or DAG in these tissues. Whether this is due to inefficient processing rate of preproghrelin into mature obestatin in gastrointestinal mouse tissues remains elusive.

  6. Rockfall source characterization at high rock walls in complex geological settings by photogrammetry, structural analysis and DFN techniques

    Science.gov (United States)

    Agliardi, Federico; Riva, Federico; Galletti, Laura; Zanchi, Andrea; Crosta, Giovanni B.

    2016-04-01

    Rockfall quantitative risk analysis in areas impended by high, subvertical cliffs remains a challenge, due to the difficult definition of potential rockfall sources, event magnitude scenarios and related probabilities. For this reasons, rockfall analyses traditionally focus on modelling the runout component of rockfall processes, whereas rock-fall source identification, mapping and characterization (block size distribution and susceptibility) are over-simplified in most practical applications, especially when structurally complex rock masses are involved. We integrated field and remote survey and rock mass modelling techniques to characterize rock masses and detect rockfall source in complex geo-structural settings. We focused on a test site located at Valmadrera, near Lecco (Southern Alps, Italy), where cliffs up to 600 m high impend on a narrow strip of Lake Como shore. The massive carbonates forming the cliff (Dolomia Principale Fm), normally characterized by brittle structural associations due to their high strength and stiffness, are here involved in an ENE-trending, S-verging kilometre-scale syncline. Brittle mechanisms associated to folding strongly controlled the nature of discontinuities (bedding slip, strike-slip faults, tensile fractures) and their attributes (spacing and size), as well as the spatial variability of bedding attitude and fracture intensity, with individual block sizes up to 15 m3. We carried out a high-resolution terrestrial photogrammetric survey from distances ranging from 1500 m (11 camera stations from the opposite lake shore, 265 pictures) to 150 m (28 camera stations along N-S directed boat routes, 200 pictures), using RTK GNSS measurements for camera station geo-referencing. Data processing by Structure-from-Motion techniques resulted in detailed long-range (1500 m) and medium-range (150 to 800 m) point clouds covering the entire slope with maximum surface point densities exceeding 50 pts/m2. Point clouds allowed a detailed

  7. Synthesis, Characterization and Application of Poly (Styrene-4- Vinyl Pyridine) Membranes Assembled With Single-Wall Carbon Nanotubes

    KAUST Repository

    He, Haoze

    2011-06-01

    Poly(styrene‐4‐vinylpyridine) (PS‐P4VP) isoporous membranes were prepared and their properties were evaluated in this research. The solution was prepared by dissolving PS‐P4VP polymer with necessary additives into a 1:1:1 1,4‐dioxane – N,N‐dimethyl formamide – tetrahydrofuran (DOX‐DMF‐THF, DDT) solvent. Then 0.5‐1.0 mL of the primary solution was cast onto the non‐woven substrate membrane on a glass slide, evaporated for 15‐20 sec and immersed into de‐ionized water for more than 30 min for the solidification of isoporous structure and for the formation of the primary films, which could be post‐processed in different ways for different tests. The membrane surface presents a well‐ordered, hexagonal self‐assembly structure, which is fit for aqueous and gaseous filtration. The pore size of the isoporous surface is 30~40 nm. The pore size is also sensitive to [H+] in the solution and a typical pair of S‐shape pH‐correlation curves with significant hysteresis was found. Four techniques were tried to improve the properties of the membranes in this research: 1) 1,4‐diiodobutane was introduced to chemically change the structure as a cross‐linking agent. 2) single‐wall carbon nanotube (SWCNT) was linked to the membranes in order to strengthen the stability and rigidity and to reduce the hysteresis. 3) Homo‐poly(4‐vinylpyridine) (homo‐P4VP) was added and inserted into the PS‐P4VP micelles to affect the pore size and surface structure. 4) Copper acetate (Cu(Ac)2) was used as substitute of dioxane to prepare the Cu(Ac)2‐DMF‐THF (CDT) mixed solvent, for a better SWCNT dispersion. All the possible improvements were judged by the atomic force microscopy (AFM) images, water and gas flux tests and pH‐correlation curves. The introduction of SWCNT was the most important innovation in this research and is promising in future applications.

  8. The characterization of neural tissue ablation rate and corresponding heat affected zone of a 2 micron Tm3+ doped fiber laser(Conference Presentation)

    Science.gov (United States)

    Marques, Andrew J.; Jivraj, Jamil; Reyes, Robnier; Ramjist, Joel; Gu, Xijia J.; Yang, Victor X. D.

    2017-02-01

    Tissue removal using electrocautery is standard practice in neurosurgery since tissue can be cut and cauterized simultaneously. Thermally mediated tissue ablation using lasers can potentially possess the same benefits but with increased precision. However, given the critical nature of the spine, brain, and nerves, the effects of direct photo-thermal interaction on neural tissue needs to be known, yielding not only high precision of tissue removal but also increased control of peripheral heat damage. The proposed use of lasers as a neurosurgical tool requires that a common ground is found between ablation rates and resulting peripheral heat damage. Most surgical laser systems rely on the conversion of light energy into heat resulting in both desirable and undesirable thermal damage to the targeted tissue. Classifying the distribution of thermal energy in neural tissue, and thus characterizing the extent of undesirable thermal damage, can prove to be exceptionally challenging considering its highly inhomogenous composition when compared to other tissues such as muscle and bone. Here we present the characterization of neural tissue ablation rate and heat affected zone of a 1.94 micron thulium doped fiber laser for neural tissue ablation. In-Vivo ablation of porcine cerebral cortex is performed. Ablation volumes are studied in association with laser parameters. Histological samples are taken and examined to characterize the extent of peripheral heat damage.

  9. Tissue structure characterization of biotissue phantom by use of the speckle-correlometric technique

    Science.gov (United States)

    Isaeva, A. A.; Isaeva, E. A.; Zimnyakov, D. A.; Pantyukov, A. V.; Agapova, Y. V.; Macheyev, M. A.

    2017-03-01

    Speckle correlometry gives the possibilities to visualize tissue scattering structure analyzing the correlation characteristics of speckle-modulated images. In this work, the inhomogeneous multiple scattering medium with the "dynamic" long inclusions was investigated like a blood vessels in living tissue. The scattering media is 0.28% weight fraction of gelatin dissolved in water and 1 gram per liter (gL-1) and 100 mg per liter (gL-1) of TiO2 for optical scattering. The movement of fluid (distilled water) in the cylindrical hole with given radius simulate a blood motion in the vessel. It was shown the possibility to determinate the depth location of dynamic inhomogeneities inside a scattering medium.

  10. Mueller matrix polarimetry for characterizing microstructural variation of nude mouse skin during tissue optical clearing.

    Science.gov (United States)

    Chen, Dongsheng; Zeng, Nan; Xie, Qiaolin; He, Honghui; Tuchin, Valery V; Ma, Hui

    2017-08-01

    We investigate the polarization features corresponding to changes in the microstructure of nude mouse skin during immersion in a glycerol solution. By comparing the Mueller matrix imaging experiments and Monte Carlo simulations, we examine in detail how the Mueller matrix elements vary with the immersion time. The results indicate that the polarization features represented by Mueller matrix elements m22&m33&m44 and the absolute values of m34&m43 are sensitive to the immersion time. To gain a deeper insight on how the microstructures of the skin vary during the tissue optical clearing (TOC), we set up a sphere-cylinder birefringence model (SCBM) of the skin and carry on simulations corresponding to different TOC mechanisms. The good agreement between the experimental and simulated results confirm that Mueller matrix imaging combined with Monte Carlo simulation is potentially a powerful tool for revealing microscopic features of biological tissues.

  11. Characterization and Bioactivity Evaluation of (Polyetheretherketone/Polyglycolicacid-Hydroyapatite Scaffolds for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Cijun Shuai

    2016-11-01

    Full Text Available Bioactivity and biocompatibility are crucial for tissue engineering scaffolds. In this study, hydroxyapatite (HAP was incorporated into polyetheretherketone/polyglycolicacid (PEEK/PGA hybrid to improve its biological properties, and the composite scaffolds were developed via selective laser sintering (SLS. The effects of HAP on physical and chemical properties of the composite scaffolds were investigated. The results demonstrated that HAP particles were distributed evenly in PEEK/PGA matrix when its content was no more than 10 wt %. Furthermore, the apatite-forming ability became better with increasing HAP content after immersing in simulated body fluid (SBF. Meanwhile, the composite scaffolds presented a greater degree of cell attachment and proliferation than PEEK/PGA scaffolds. These results highlighted the potential of (PEEK/PGA-HAP scaffolds for tissue regeneration.

  12. Isolation, culture, characterization and cryopreservation of stem cells derived from amniotic mesenchymal layer and umbilical cord tissue of bovine fetuses

    Directory of Open Access Journals (Sweden)

    Loreta L. Campos

    Full Text Available ABSTRACT: Stem cells are undifferentiated cells with a high proliferation potential. These cells can be characterized by their in vivo ability to self-renew and to differentiate into specialized cell lines. The most used stem cell types, in both human and veterinary fields, are the mesenchymal stem cells (MSC derived from bone marrow and adipose tissue. Nowadays, there is a great interest in using stem cells derived from fetal tissues, such as amniotic membrane (AM and umbilical cord tissue (UCT, which can be obtained non-invasively at delivery time. Due to the scarcity of studies in bovine species, the aim of this study was to isolate, characterize, differentiate and cryopreserve MSC derived from the mesenchymal layer of amniotic membrane (AM, for the first time, and umbilical cord tissue (UCT of dairy cow neonates after assisted delivery (AD and from fetus at initial third of pregnancy (IT obtained in slaughterhouse. Cells were isolated by enzymatic digestion of the tissue fragments with 0.1% collagenase solution. Six samples of AM and UCT at delivery time and six samples of AM and UCT at first trimester of pregnancy were subjected to morphology evaluation, imunophenotype characterization, in vitro osteogenic, adipogenic and chondrogenic differentiation and viability analysis after cryopreservation. All samples showed adherence to plastic and fibroblast-like morphology. Immunocytochemistry revealed expression of CD 44, NANOG and OCT-4 and lack of expression of MHC II in MSC from all samples. Flow cytometry demonstrated that cells from all samples expressed CD 44, did not or low expressed CD 34 (AM: IT-0.3%a, AD-3.4%b; UCT: 0.4%, 1.4% and MHC II (AM: IT-1.05%a, AD-9.7%b; UCT: IT-0.7%a, AD-5.7%b. They were also capable of trilineage mesenchymal differentiation and showed 80% viability after cryopreservation. According to the results, bovine AM and UCT-derived cells, either obtained at delivery time or from slaughterhouse, are a painless and non

  13. The Characterization of Novel Tissue Microbiota Using an Optimized 16S Metagenomic Sequencing Pipeline

    OpenAIRE

    Lluch, J?r?me; Servant, Florence; Pa?ss?, Sandrine; Valle, Carine; Vali?re, Sophie; Kuchly, Claire; Vilchez, Ga?lle; Donnadieu, C?cile; Courtney, Michael; Burcelin, R?my; Amar, Jacques; Bouchez, Olivier; Lelouvier, Benjamin

    2015-01-01

    Background Substantial progress in high-throughput metagenomic sequencing methodologies has enabled the characterisation of bacteria from various origins (for example gut and skin). However, the recently-discovered bacterial microbiota present within animal internal tissues has remained unexplored due to technical difficulties associated with these challenging samples. Results We have optimized a specific 16S rDNA-targeted metagenomics sequencing (16S metabarcoding) pipeline based on the Illu...

  14. Biochemical and molecular characterization of thyroid tissue by micro-Raman spectroscopy and gene expression analysis

    Science.gov (United States)

    Neto, Lázaro P. M.; Martin, Aírton A.; Soto, Claudio A. T.; Santos, André B. O.; Mello, Evandro S.; Pereira, Marina A.; Cernea, Cláudio R.; Brandão, Lenine G.; Canevari, Renata A.

    2016-02-01

    Thyroid carcinomas represent the main endocrine malignancy and their diagnosis may produce inconclusive results. Raman spectroscopy and gene expression analysis have shown excellent results on the differentiation of carcinomas. This study aimed to improve the discrimination between different thyroid pathologies combining of both analyses. A total of 35 thyroid tissues samples including normal tissue (n=10), goiter (n=10), papillary (n=10) and follicular carcinomas (n=5) were analyzed. Confocal Raman spectra was obtain by using a Rivers Diagnostic System, 785 nm laser excitation and CCD detector. The data was processed by the software Labspec5 and Origin 8.5 and analyzed by Minitab® program. The gene expression analysis was performed by qRT-PCR technique for TG, TPO, PDGFB, SERPINA1, LGALS3 and TFF3 genes and statistically analyzed by Mann-Whitney test. The confocal Raman spectroscopy allowed a maximum discrimination of 91.1% between normal and tumor tissues, 84.8% between benign and malignant pathologies and 84.6% among carcinomas analyzed. Significant differences was observed for TG, LGALS3, SERPINA1 and TFF3 genes between benign lesions and carcinomas, and SERPINA1 and TFF3 genes between papillary and follicular carcinomas. Principal component analysis was performed using PC1 and PC2 in the papillary carcinoma samples that showed over gene expression when compared with normal sample, where 90% of discrimination was observed at the Amide 1 (1655 cm-1), and at the tyrosine spectra region (856 cm-1). The discrimination of tissues thyroid carried out by confocal Raman spectroscopy and gene expression analysis indicate that these techniques are promising tools to be used in the diagnosis of thyroid lesions.

  15. Three-Dimensional Characterization of Tissue-Engineered Constructs by Contrast-Enhanced Nanofocus Computed Tomography

    OpenAIRE

    Papantoniou, Ioannis; Sonnaert, Maarten; Geris, Liesbet; Luyten, Frank P.; Schrooten, Jan; Kerckhofs, Greet

    2014-01-01

    To successfully implement tissue-engineered (TE) constructs as part of a clinical therapy, it is necessary to develop quality control tools that will ensure accurate and consistent TE construct release specifications. Hence, advanced methods to monitor TE construct properties need to be further developed. In this study, we showed proof of concept for contrast-enhanced nanofocus computed tomography (CE-nano-CT) as a whole-construct imaging technique with a noninvasive potential that enables th...

  16. Preparation and Characterization of Nanofibrous Polymer Scaffolds for Cartilage Tissue Engineering

    OpenAIRE

    Markowski, Jarosław; Magiera, Anna; Lesiak, Marta; Aleksander L Sieron; Pilch, Jan; Blazewicz, Stanislaw

    2015-01-01

    Polymer substrates obtained from poly(lactic acid) (PLA) nanofibres modified with carbon nanotubes (CNTs) and gelatin (GEL) for cartilage tissue engineering are studied. The work presents the results of physical, mechanical, and biological assessment. The hybrid structure of PLA and gelatine nanofibres, carbon nanotubes- (CNTs-) modified PLA nanofibres, and pure PLA-based nanofibres was manufactured in the form of fibrous membranes. The fibrous samples with different microstructures were obta...

  17. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    of “ambiguous walls” as a more “critical” approach to design [1]. The concept of ambiguous walls refers to the diffuse status a lumious and possibly responsive wall will have. Instead of confining it can open up. Instead of having a static appearance, it becomes a context over time. Instead of being hard...... and flat, “ambiguous walls” combine softness, tectonics and three-dimensionality. The paper considers a selection of luminious surfaces and reflects on the extent of their ambiguous qualities. Initial ideas for new directions for the wall will be essayed through the discussion....

  18. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications

    Science.gov (United States)

    Guan, Jianjun; Fujimoto, Kazuro L.; Sacks, Michael S.; Wagner, William R.

    2010-01-01

    In the engineering of soft tissues, scaffolds with high elastance and strength coupled with controllable biodegradable properties are necessary. To fulfill such design criteria we have previously synthesized two kinds of biodegradable polyurethaneureas, namely poly(ester urethane)urea (PEUU) and poly(ether ester urethane)urea (PEEUU) from polycaprolactone, polycaprolactone-b-polyethylene glycol-b-polycaprolactone, 1,4-diisocyanatobutane and putrescine. PEUU and PEEUU were further fabricated into scaffolds by thermally induced phase separation using dimethyl sulfoxide (DMSO) as a solvent. The effect of polymer solution concentration, quenching temperature and polymer type on pore morphology and porosity was investigated. Scaffolds were obtained with open and interconnected pores having sizes ranging from several μm to more than 150 μm and porosities of 80–97%. By changing the polymer solution concentration or quenching temperature, scaffolds with random or oriented tubular pores could be obtained. The PEUU scaffolds were flexible with breaking strains of 214% and higher, and tensile strengths of approximately 1.0 MPa, whereas the PEEUU scaffolds generally had lower strengths and breaking strains. Scaffold degradation in aqueous buffer was related to the porosity and polymer hydrophilicity. Smooth muscle cells were filtration seeded in the scaffolds and it was shown that both scaffolds supported cell adhesion and growth, with smooth muscle cells growing more extensively in the PEEUU scaffold. These biodegradable and flexible scaffolds demonstrate potential for future application as cell scaffolds in cardiovascular tissue engineering or other soft tissue applications. PMID:15626443

  19. Clinical and histological characterization of hair coat and glandular tissue of Chinese crested dogs.

    Science.gov (United States)

    Wiener, Dominique J; Gurtner, Corinne; Panakova, Lucia; Mausberg, Theresa-Bernadette; Müller, Eliane J; Drögemüller, Cord; Leeb, Tosso; Welle, Monika M

    2013-04-01

    Two varieties exist in the Chinese crested dog breed, namely hairless Chinese crested dogs presenting with hypotrichosis and dentition abnormalities, and the coated powderpuffs. Hairless Chinese crested dogs are obligate heterozygotes for a FOXI3 mutation, and this phenotype is classified as a form of canine ectodermal dysplasia. We provide a detailed histological description of hair follicles and their density for the three subphenotypes (true hairless, semi-coated and powderpuffs) of Chinese crested dogs. Apocrine and exocrine glands of the skin and other tissues were compared with findings reported from dogs with X-linked ectodermal dysplasia. Skin biopsies were collected from 22 Chinese crested dogs. Additionally, the glands of the skin and other tissues were examined from another two dogs available for postmortem examination. Skin biopsies and tissues were processed, stained and evaluated in a blinded fashion. Hair follicular anomalies decreased with increasing number of hairs in the different phenotypes. The FOXI3 mutants had only simple primary hair follicles, whereas the nonmutant powderpuffs had compound follicles identical to other dog breeds. All Chinese crested dogs had an anagen-dominated hair cycle. Furthermore, apocrine glands in the skin and respiratory mucous glands of the mutant Chinese crested dogs were present and normal. We have identified striking histopathological differences between the three subphenotypes of Chinese crested dogs. We clearly demonstrated distinct differences between the canine ectodermal dysplasia in Chinese crested dogs and dogs with X-linked ectodermal dysplasia. © 2013 The Authors. Veterinary Dermatology © 2013 ESVD and ACVD.

  20. Characterizing microstructural changes of skeletal muscle tissues using spectral transformed Mueller matrix polarization parameters

    Science.gov (United States)

    He, Chao; He, Honghui; Chang, Jintao; Ma, Hui

    2016-03-01

    Polarization imaging techniques are recognized as potentially powerful tools to detect the structural changes of biological tissues. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information, therefore can be applied in biomedical studies. In this paper, we adopt the polarization reflectance spectral imaging to analyze the microstructural changes of hydrolyzing skeletal muscle tissues. We measure the Mueller matrix, which is a comprehensive description of the polarization properties, of the bovine skeletal muscle samples in different periods of time, and analyze its behavior using the multispectral Mueller matrix transformation (MMT) technique. The experimental results show that for bovine skeletal muscle tissues, the backscattered spectral MMT parameters have different values and variation features at different stages. We can also find the experimental results indicate that the stages of hydrolysis for bovine skeletal muscle samples can be judged by the spectral MMT parameters. The results presented in this work show that combining with the spectral technique, the MMT parameters have the potential to be used as tools for meat quality detection and monitoring.

  1. Mesenchymal Stem/Stromal Cells from Discarded Neonatal Sternal Tissue: In Vitro Characterization and Angiogenic Properties

    Directory of Open Access Journals (Sweden)

    Shuyun Wang

    2016-01-01

    Full Text Available Autologous and nonautologous bone marrow mesenchymal stem/stromal cells (MSCs are being evaluated as proangiogenic agents for ischemic and vascular disease in adults but not in children. A significant number of newborns and infants with critical congenital heart disease who undergo cardiac surgery already have or are at risk of developing conditions related to inadequate tissue perfusion. During neonatal cardiac surgery, a small amount of sternal tissue is usually discarded. Here we demonstrate that MSCs can be isolated from human neonatal sternal tissue using a nonenzymatic explant culture method. Neonatal sternal bone MSCs (sbMSCs were clonogenic, had a surface marker expression profile that was characteristic of bone marrow MSCs, were multipotent, and expressed pluripotency-related genes at low levels. Neonatal sbMSCs also demonstrated in vitro proangiogenic properties. Sternal bone MSCs cooperated with human umbilical vein endothelial cells (HUVECs to form 3D networks and tubes in vitro. Conditioned media from sbMSCs cultured in hypoxia also promoted HUVEC survival and migration. Given the neonatal source, ease of isolation, and proangiogenic properties, sbMSCs may have relevance to therapeutic applications.

  2. Molecular characterization and hormonal regulation of tissue inhibitor of metalloproteinase 1 in goat ovarian granulosa cells.

    Science.gov (United States)

    Peng, J Y; Han, P; Xin, H Y; Ji, S Y; Gao, K X; An, X P; Cao, B Y

    2015-07-01

    Tissue inhibitor of metalloproteinase 1 (TIMP1) belongs to a group of endogenous inhibitors that control the activity of matrix metalloproteinases and other metalloproteinases. TIMP1 is ubiquitously expressed and implicated in many physiological and pathologic processes. In this study, the full-length complementary DNA of goat (Capra hircus) Timp1 was cloned from adult goat ovary for the first time to better understand the regulatory role of TIMP1. The putative TIMP1 protein shared a high amino acid sequence identity with other species. Real-time polymerase chain reaction results showed that Timp1 was widely expressed in adult goat tissues, and messenger RNA expression was higher in the ovary than in other tissues; meanwhile, increasing expression of Timp1 was also discovered during the process of follicle growth and corpus luteum. We then investigated Timp1 expression patterns in different types of ovarian follicular cells from goats. In small or large antral follicles, Timp1 expression was higher (P 12-myristate 13-acetate, or phorbol 12-myristate 13-acetate + forskolin could also stimulate Timp1 messenger RNA expression. The effects of human chorionic gonadotropin were reduced (P 15 Elsevier Inc. All rights reserved.

  3. Polyphasic approach to characterize heterotrophic bacteria of biofilms and patina on walls of the Suburban Bath of the Herculaneum's archaeological excavations in Italy

    Science.gov (United States)

    Ventorino, V.; Pepe, O.; Sannino, L.; Blaiotta, G.; Palomba, S.

    2012-04-01

    plates were purified in the same growth medium by streaking and differentiated by assessing their morphological (phase-contrast microscopy) and biochemical characteristics (Gram-stains KOH-lysis and catalase activity). Cultural-based method allow us to identify by 16S and 26S rRNA partial sequence analysis, heterotrophic bacteria belonging to different genera as Bacillus, Pseudomonas, Aeromonas and Microbacterium. By using this approach, Bacillus-related species (B. benzoevorans, B. megaterium and B. pumilis and B. megaterium/B. simplex group) as well as Aeromonas sobria/Aeromonas salmonicida/Aeromonas hydrophila group, Pseudomonas plecoglossicida and Microbacterium esteraromaticum were isolated in different sample points analysed. DGGE analysis of PCR amplified V3 region of rDNA from DNA directly recovered from samples of biofilms and patina, enabled identification of bacterial species not found using culturable technology, as those closest related to Aeromonas, Paenibacillus, Brevibacterium, Exiguobacterium, Microbacterium, Brevibacterium, Stenothophomonas and Streptomyces. Combination of culture-dependent and independent methods provide a better characterization of heterotrophic microbiota that colonize the surface of ancient decorated walls and can contribute to understand the potential of biodeterioration activity by heterotrophic microorganisms.

  4. Measurement and characterization of superoxide generation from xanthine dehydrogenase: a redox-regulated pathway of radical generation in ischemic tissues.

    Science.gov (United States)

    Lee, Masaichi-Chang-Il; Velayutham, Murugesan; Komatsu, Tomoko; Hille, Russ; Zweier, Jay L

    2014-10-21

    The enzyme xanthine oxidoreductase (XOR) is an important source of oxygen free radicals and related postischemic injury. Xanthine dehydrogenase (XDH), the major form of XOR in tissues, can be converted to xanthine oxidase (XO) by oxidation of sulfhydryl residues or by proteolysis. The conversion of XDH to XO has been assumed to be required for radical generation and tissue injury. It is also possible that XDH could generate significant quantities of superoxide, •O₂⁻, for cellular signaling or injury; however, this possibility and its potential ramifications have not been previously considered. To unambiguously determine if XDH can be a significant source of •O₂⁻, experiments were performed to measure and characterize •O²⁻ generation using XDH from chicken liver that is locked in the dehydrogenase conformation. Electron paramagnetic resonance spin trapping experiments with 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide demonstrated that XDH in the presence of xanthine produces significant amounts of •O₂⁻. NAD⁺ and NADH inhibited the generation of •O₂⁻ from XDH in a dose-dependent manner, with NAD⁺ exhibiting stronger inhibition than NADH at low physiological concentrations. Decreased amounts of NAD⁺ and NADH, which occur during and following tissue ischemia, enhanced the generation of •O₂⁻ from XDH in the presence of xanthine. It was observed that XDH-mediated oxygen radical generation markedly depressed Ca²⁺-ATPase activity of isolated sarcoplasmic reticulum vesicles from cardiac muscle, and this was modulated by NAD⁺ and NADH. Thus, XDH can be an important redox-regulated source of •O₂⁻ generation in ischemic tissue, and conversion to XO is not required to activate radical formation and subsequent tissue injury.

  5. Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, modeling, and potentiometric titrations.

    Science.gov (United States)

    Ojeda, Jesús J; Romero-Gonzalez, María E; Bachmann, Robert T; Edyvean, Robert G J; Banwart, Steven A

    2008-04-15

    Aquabacterium commune, a predominant member of European drinking water biofilms, was chosen as a model bacterium to study the role of functional groups on the cell surface that control the changes in the chemical cell surface properties in aqueous electrolyte solutions at different pH values. Cell surface properties of A. commune were examined by potentiometric titrations, modeling, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. By combining FTIR data at different pH values and potentiometric titration data with thermodynamic model optimization, the presence, concentration, and changes of organic functional groups on the cell surface (e.g., carboxyl, phosphoryl, and amine groups) were inferred. The pH of zero proton charge, pH(zpc) = 3.7, found from titrations of A. commune at different electrolyte concentrations and resulting from equilibrium speciation calculations suggests that the net surface charge is negative at drinking water pH in the absence of other charge determining ions. In situ FTIR was used to describe and monitor chemical interactions between bacteria and liquid solutions at different pH in real time. XPS analysis was performed to quantify the elemental surface composition, to assess the local chemical environment of carbon and oxygen at the cell wall, and to calculate the overall concentrations of polysaccharides, peptides, and hydrocarbon compounds of the cell surface. Thermodynamic parameters for proton adsorption are compared with parameters for other gram-negative bacteria. This work shows how the combination of potentiometric titrations, modeling, XPS, and FTIR spectroscopy allows a more comprehensive characterization of bacterial cell surfaces and cell wall reactivity as the initial step to understand the fundamental mechanisms involved in bacterial adhesion to solid surfaces and transport in aqueous systems.

  6. Comparative Analysis of the Proteins with Tandem Repeats from 8 Microsporidia and Characterization of a Novel Endospore Wall Protein Colocalizing with Polar Tube from Nosema bombycis.

    Science.gov (United States)

    Wang, Ying; Geng, Huixia; Dang, Xiaoqun; Xiang, Heng; Li, Tian; Pan, Guoqing; Zhou, Zeyang

    2017-09-01

    As a common feature of eukaryotic proteins, tandem amino acid repeat has been studied extensively in both animal and plant proteins. Here, a comparative analysis focusing on the proteins having tandem repeats was conducted in eight microsporidia, including four mammal-infecting microsporidia (Encephalitozoon cuniculi, Encephalitozoon intestinalis, Encephalitozoon hellem and Encephalitozoon bieneusi) and four insect-infecting microsporidia (Nosema apis, Nosema ceranae, Vavraia culicis and Nosema bombycis). We found that the proteins with tandem repeats were abundant in these species. The quantity of these proteins in insect-infecting microsporidia was larger than that of mammal-infecting microsporidia. Additionally, the hydrophilic residues were overrepresented in the tandem repeats of these eight microsporidian proteins and the amino acids residues in these tandem repeat sequences tend to be encoded by GC-rich codons. The tandem repeat position within proteins of insect-infecting microsporidia was randomly distributed, whereas the tandem repeats within proteins of mammal-infecting microsporidia rarely tend to be present in the N terminal regions, when compared with those present in the C terminal and middle regions. Finally, a hypothetical protein EOB14572 possessing four tandem repeats was successfully characterized as a novel endospore wall protein, which colocalized with polar tube of N. bombycis. Our study provided useful insight for the study of the proteins with tandem repeats in N. bombycis, but also further enriched the spore wall components of this obligate unicellular eukaryotic parasite. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.

  7. Combined Raman spectroscopy and optical coherence tomography device for tissue characterization

    NARCIS (Netherlands)

    Patil, Chetan A.; Bosschaart, Nienke; Bosschaart, Nienke; Keller, Matthew D.; van Leeuwen, Ton; Mahadevan-Jansen, Anita

    2008-01-01

    coherence tomography (OCT) along a common optical axis. The device enhances application of both RS and OCT by precisely guiding RS acquisition with OCT images while also compensating for the lack of molecular specificity in OCT with the biochemical specificity of RS. We characterize the system

  8. Feasibility of using a hand-held device to characterize tendon tissue biomechanics.

    Directory of Open Access Journals (Sweden)

    Sahand Sohirad

    Full Text Available To examine the feasibility of using the MyotonPRO digital palpation device in measuring the transverse stiffness of tendon tissue.Experimental study.The MyotonPRO was used to measure the stiffness and related properties of ballistics gel in comparison with an external materials testing system (PCB electronics. The device was then used to measure the same properties of avian Achilles tendons before and after the removal of the overlying skin and subcutaneous tissue. Next, the test-retest reliability of the Achilles and patellar tendons was determined in humans. Finally, the stiffness of the Achilles tendon was measured before and after competitive running races of varying distances (10, 21 and 42 km, total number of athletes analyzed = 66.The MyotonPRO demonstrated a high degree of consistency when testing ballistics gel with known viscoelastic properties. The presence of skin overlying the avian Achilles tendon had a statistically significant impact on stiffness (p<0.01 although this impact was of very small absolute magnitude (with skin; 728 Nm ±17 Nm, without skin; Nm 704 Nm ±7 Nm. In healthy adults of normal body mass index (BMI, the reliability of stiffness values was excellent both for the patellar tendon (ICC, 0.96 and the Achilles tendon (ICC,0.96. In the the field study, men had stiffer tendons than women (p<0.05, and the stiffness of the Achilles tendon tended to increase following running (p = 0.052.The MyotonPRO can reliably determine the transverse mechanical properties of tendon tissue. The measured values are influenced by the presence of overlying skin, however this does not appear to compromise the ability of the device to record physiologically and clinically relevant measurements.

  9. Characterizing cytotoxic and estrogenic activity of Arctic char tissue extracts in primary Arctic char hepatocytes.

    Science.gov (United States)

    Petersen, Karina; Hultman, Maria T; Bytingsvik, Jenny; Harju, Mikael; Evenset, Anita; Tollefsen, Knut Erik

    2017-01-01

    Contaminants from various anthropogenic activities are detected in the Arctic due to long-range atmospheric transport, ocean currents, and living organisms such as migrating fish or seabirds. Although levels of persistent organic pollutants (POPs) in Arctic fish are generally low, local hot spots of contamination were found in freshwater systems such as Lake Ellasjøen at Bjørnøya (Bear Island, Norway). Higher concentrations of organic halogenated compounds (OHC), and higher levels of cytochrome P450 and DNA-double strand breaks were reported in Arctic char (Salvelinus alpinus) from this lake compared to fish from other lakes on Bjørnøya. Although several of the measured contaminants are potential endocrine disrupters, few studies have investigated potential endocrine disruptive effects of the contaminant cocktail in this fish population. The aim of this study was to compare acutely toxic and estrogenic potency of the cocktail of pollutants as evidenced by cytotoxic and/or estrogenic effects in vitro using extracts of Arctic char livers from contaminated Lake Ellasjøen with those from less contaminated Lake Laksvatn at Bjørnøya. This was performed by in situ sampling and contaminant extraction from liver tissue, followed by chemical analysis and in vitro testing of the following contaminated tissue extracts: F1-nonpolar OHC, F2-polar pesticides and metabolites of OHC, and F3-polar OHC. Contaminant levels were highest in extracts from Ellasjøen fish. The F2 and F3 extracts from Lake Laksvatn and Lake Ellasjøen fish reduced in vitro cell viability at a concentration ratio of 0.03-1 relative to tissue concentration in Arctic char. Only the F3 liver extract from Ellasjøen fish increased in vitro vitellogenin protein expression. Although compounds such as estrogenic OH-PCBs were quantified in Ellasjøen F3 extracts, it remains to be determined which compounds were inducing estrogenic effects.

  10. Design of Bioimpedance Spectroscopy Instrument With Compensation Techniques for Soft Tissue Characterization.

    Science.gov (United States)

    Dodde, Robert E; Kruger, Grant H; Shih, Albert J

    2015-06-01

    Bioimpedance spectroscopy (BIS) has shown significant potential in many areas of medicine to provide new physiologic markers. Several acute and chronic diseases are accompanied by changes in intra- and extracellular fluid within various areas of the human body. The estimation of fluid in various body compartments is therefore a simple and convenient method to monitor certain disease states. In this work, the design and evaluation of a BIS instrument are presented and three key areas of the development process investigated facilitating the BIS measurement of tissue hydration state. First, the benefit of incorporating DC-stabilizing circuitry to the standard modified Howland current pump (MHCP) is investigated to minimize the effect of DC offsets limiting the dynamic range of the system. Second, the influence of the distance between the bioimpedance probe and a high impedance material is investigated using finite element analysis (FEA). Third, an analytic compensation technique is presented to minimize the influence of parasitic capacitance. Finally, the overall experimental setup is evaluated through ex vivo BIS measurements of porcine spleen tissue and compared to published results. The DC-stabilizing circuit demonstrated its ability to maintain DC offsets at less than 650 μV through 100 kHz while maintaining an output impedance of 1 MΩ from 100 Hz to 100 kHz. The proximity of a bioimpedance probe to a high impedance material such as acrylic was shown to increase measured impedance readings by a factor of 4x as the ratio of the distance between the sensing electrodes to the distance between the bioimpedance probe and acrylic reached 1:3. The average parasitic capacitance for the circuit presented was found to be 712 ± 128 pF, and the analytic compensation method was shown to be able to minimize this effect on the BIS measurements. Measurements of porcine spleen tissue showed close correlation with experimental results reported in published articles. This

  11. Rapid profiling and structural characterization of bioactive compounds and their distribution in different parts of Berberis petiolaris Wall. ex G. Don applying hyphenated mass spectrometric techniques.

    Science.gov (United States)

    Singh, A; Bajpai, V; Srivastava, M; Arya, K R; Kumar, B

    2014-10-15

    Berberis petiolaris Wall. is a lesser known medicinal plant, belonging to the family Berberidaceae. The genus Berberis is known for many biological activities such as anti-microbial, anti-inflammatory and anti-diarrheal, etc. There are not many reports of the isolation of components from Berberis petiolaris. This study aims to seek identification, characterization and quantification of components. A method was developed for rapid screening of phytochemicals using high-pressure liquid chromatography hyphenated with quadrupole time-of-flight mass spectrometry (HPLC/ESI-QTOF-MS/MS). Suitable collision-induced dissociation mass spectrometry (CID-MS/MS) methods were developed for structural investigation of alkaloids, flavanoids and other classes of compounds using nine reference standards for authentication. Multiple reaction monitoring (MRM) methods were developed for quantitative study of five constituents using triple quadrupole-linear ion trap mass spectrometry (UPLC/QqLIT-MS/MS). On the basis of HPLC retention behavior and fragmentation pathways obtained by high-resolution MS and MS/MS, 32 compounds were identified and characterized in different parts of Berberis petiolaris. Quantitative studies of chlorogenic acid, magnoflorine, jatrorrhizine, palmatine and berberine were also completed successfully. Rapid and accurate HPLC/ESI-QTOF-MS/MS and UPLC/ESI-QqLIT-MS/MS methods were established for identification, characterization and quantification of phytochemicals in the ethanolic extract of Berberis petiolaris. These methods, therefore, can be used for studies on phytochemical variation in different parts of the plant. Principle components analysis (PCA) may be used for plant part discrimination. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Expression of very low density lipoprotein receptor in the vascular wall. Analysis of human tissues by in situ hybridization and immunohistochemistry

    DEFF Research Database (Denmark)

    Multhaupt, H A; Gåfvels, M E; Kariko, K

    1996-01-01

    for the uptake and transport of triglyceride-rich lipoproteins, and perhaps facilitate the development of atherosclerosis in hypertriglyceridemic individuals, we used in situ hybridization and immunohistochemistry to determine whether VLDL receptor mRNA and protein was expressed in human vascular tissue. We...

  13. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor

    Science.gov (United States)

    Sikavitsas, Vassilios I.; Bancroft, Gregory N.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    The aim of this study is to investigate the effect of the cell culture conditions of three-dimensional polymer scaffolds seeded with rat marrow stromal cells (MSCs) cultured in different bioreactors concerning the ability of these cells to proliferate, differentiate towards the osteoblastic lineage, and generate mineralized extracellular matrix. MSCs harvested from male Sprague-Dawley rats were culture expanded, seeded on three-dimensional porous 75:25 poly(D,L-lactic-co-glycolic acid) biodegradable scaffolds, and cultured for 21 days under static conditions or in two model bioreactors (a spinner flask and a rotating wall vessel) that enhance mixing of the media and provide better nutrient transport to the seeded cells. The spinner flask culture demonstrated a 60% enhanced proliferation at the end of the first week when compared to static culture. On day 14, all cell/polymer constructs exhibited their maximum alkaline phosphatase activity (AP). Cell/polymer constructs cultured in the spinner flask had 2.4 times higher AP activity than constructs cultured under static conditions on day 14. The total osteocalcin (OC) secretion in the spinner flask culture was 3.5 times higher than the static culture, with a peak OC secretion occurring on day 18. No considerable AP activity and OC secretion were detected in the rotating wall vessel culture throughout the 21-day culture period. The spinner flask culture had the highest calcium content at day 14. On day 21, the calcium deposition in the spinner flask culture was 6.6 times higher than the static cultured constructs and over 30 times higher than the rotating wall vessel culture. Histological sections showed concentration of cells and mineralization at the exterior of the foams at day 21. This phenomenon may arise from the potential existence of nutrient concentration gradients at the interior of the scaffolds. The better mixing provided in the spinner flask, external to the outer surface of the scaffolds, may explain the

  14. Functional characterization on invertebrate and vertebrate tissues of tachykinin peptides from octopus venom