WorldWideScience

Sample records for wall surface characterization

  1. Characterization of Near Wall Surface Chemistry and Fluid Interaction in Hypersonic Boundary Layers

    Science.gov (United States)

    2009-03-01

    l5Nl60 and 5N’ O titration gases to isolate surface-produced NO from all other possible sources. These experiments independently confirm the surface...For O-atom LIF, a Lambda-Physik ENG 103 XeCl Excimer laser was used to pump a Lambda-Physik FL 3002 dye laser filled with Coumarin 47 laser dye...system once isolated from the pump did slowly rise either from out-gassing of the system walls or from some undiscovered leak. In a separate experiment

  2. Characterization of bacterial community inhabiting the surfaces of weathered bricks of Nanjing Ming city walls.

    Science.gov (United States)

    Qi-Wang; Ma, Guang-You; He, Lin-Yan; Sheng, Xia-Fang

    2011-01-15

    Nanjing Ming city wall, one of the important historic heritages in China, has greatly suffered weathering. Microbes play an important role in the weathering of historic buildings. However, little is known about the microbial community inhabiting naturally weathered brick minerals and their roles in the mineral weathering. To examine the associations between microorganisms and brick weathering process, we compare the phylogenetic diversity, abundance, community structure, and specific functional groups of bacteria existing in weathered bricks by using a coupled approach involving cultivation-independent analysis of denaturing gradient gel electrophoresis (DGGE) as well as cultivation-based analysis of Si-releasing bacteria. DGGE and sequence analyses show that the bacterial communities were different along a weathering gradient and the abundance of bacterial communities positively and significantly correlates with the extent of brick weathering. Laboratory brick mineral dissolution experiments indicate that bacteria isolated from the surfaces of weathered brick were very effective in enhancing brick dissolution. Phylogenetic analyses show that the weathered bricks were inhabited by specific functional groups of bacteria (Bacillus, Massillia, Brevibacillus, Glacialice, Acinetobacter, Brachysporum, and Achromobacter) that contribute to the brick weathering. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Tokitani, M., E-mail: tokitani.masayuki@LHD.nifs.ac.jp [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, M. [Shimane University, Matsue, Shimane 690-8504 (Japan); Masuzaki, S. [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Fujii, Y. [Shimane University, Matsue, Shimane 690-8504 (Japan); Sakamoto, R. [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Oya, Y. [Shizuoka University, Shizuoka 422-8529 (Japan); Hatano, Y. [University of Toyama, Toyama 930-8555 (Japan); Otsuka, T. [Kindai University, Higashi-Osaka, Osaka, 577-8502 (Japan); Oyaidzu, M.; Kurotaki, H.; Suzuki, T.; Hamaguchi, D.; Isobe, K.; Asakura, N. [National Institute for Quantum and Radiological Science and Technology (QST), Rokkasho Aomori 039-3212 (Japan); Widdowson, A. [EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Rubel, M. [Royal Institute of Technology (KTH), 100 44 Stockholm (Sweden)

    2017-03-15

    Highlights: • Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall were studied. • The stratified mixed-material deposition layer composed by W, C, O, Mo and Be with the thickness of ∼1.5 μm was formed on the apron of Tile 1. • The study revealed the micro- and nano-scale modification of the inner tile surface of the JET ILW. - Abstract: Micro-/nano-characterization of the surface structures on the divertor tiles used in the first campaign (2011–2012) of the JET tokamak with the ITER-like wall (JET ILW) were studied. The analyzed tiles were a single poloidal section of the tile numbers of 1, 3 and 4, i.e., upper, vertical and horizontal targets, respectively. A sample from the apron of Tile 1 was deposition-dominated. Stratified mixed-material layers composed of Be, W, Ni, O and C were deposited on the original W-coating. Their total thickness was ∼1.5 μm. By means of transmission electron microscopy, nano-size bubble-like structures with a size of more than 100 nm were identified in that layer. They could be related to deuterium retention in the layer dominated by Be. The surface microstructure of the sample from Tile 4 also showed deposition: a stratified mixed-material layer with the total thickness of 200–300 nm. The electron diffraction pattern obtained with transmission electron microscope indicated Be was included in the layer. No bubble-like structures have been identified. The surface of Tile 3, originally coated by Mo, was identified as the erosion zone. This is consistent with the fact that the strike point was often located on that tile during the plasma operation. The study revealed the micro- and nano-scale modification of the inner tile surface of the JET ILW. In particular, a complex mixed-material deposition layer could affect hydrogen isotope retention and dust formation.

  4. Synthesis, characterization and cytotoxicity of surface amino-functionalized water-dispersible multi-walled carbon nanotubes

    Science.gov (United States)

    Vuković, Goran; Marinković, Aleksandar; Obradović, Maja; Radmilović, Velimir; Čolić, Miodrag; Aleksić, Radoslav; Uskoković, Petar S.

    2009-06-01

    Surface functionalization of multi-walled carbon nanotubes (MWCNTs), with amino groups via chemical modification of carboxyl groups introduced on the nanotube surface, using O-(7-azabenzotriazol-1-yl)- N, N, N', N'-tetramethyluronium hexafluorophosphate (N-HATU) and N, N-diisopropylethylamine (DIEA) is reported. The N-HATU coupling agent provides faster reaction rate and the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. The amines, 1,6-hexanediamine (HDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and 1,4-phenylenediamine (PDA) were used. The resulting materials were characterized with different techniques such as FTIR, XRD, elemental analysis, TGA, TEM, UV-vis spectroscopy and cyclic voltammetry. MWCNTs functionalized with PDA posses the best dispersibility and electron transfer properties in comparison to the others amines. Functionalized MWCNTs, at the concentrations between 1 and 50 μg ml -1, were not cytotoxic for the fibroblast L929 cell line. However, the concentrations of MWCNTs higher of 10 μg ml -1 reduced cell growth and this effect correlated positively with the degree of their uptake by L929 cells.

  5. Synthesis, characterization and cytotoxicity of surface amino-functionalized water-dispersible multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, Goran; Marinkovic, Aleksandar [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Obradovic, Maja [Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, 11001 Belgrade (Serbia); Radmilovic, Velimir [National Centre for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Colic, Miodrag [Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11002 Belgrade (Serbia); Aleksic, Radoslav [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Uskokovic, Petar S., E-mail: puskokovic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia)

    2009-06-30

    Surface functionalization of multi-walled carbon nanotubes (MWCNTs), with amino groups via chemical modification of carboxyl groups introduced on the nanotube surface, using O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (N-HATU) and N,N-diisopropylethylamine (DIEA) is reported. The N-HATU coupling agent provides faster reaction rate and the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. The amines, 1,6-hexanediamine (HDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and 1,4-phenylenediamine (PDA) were used. The resulting materials were characterized with different techniques such as FTIR, XRD, elemental analysis, TGA, TEM, UV-vis spectroscopy and cyclic voltammetry. MWCNTs functionalized with PDA posses the best dispersibility and electron transfer properties in comparison to the others amines. Functionalized MWCNTs, at the concentrations between 1 and 50 {mu}g ml{sup -1}, were not cytotoxic for the fibroblast L929 cell line. However, the concentrations of MWCNTs higher of 10 {mu}g ml{sup -1} reduced cell growth and this effect correlated positively with the degree of their uptake by L929 cells.

  6. Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, modeling, and potentiometric titrations.

    Science.gov (United States)

    Ojeda, Jesús J; Romero-Gonzalez, María E; Bachmann, Robert T; Edyvean, Robert G J; Banwart, Steven A

    2008-04-15

    Aquabacterium commune, a predominant member of European drinking water biofilms, was chosen as a model bacterium to study the role of functional groups on the cell surface that control the changes in the chemical cell surface properties in aqueous electrolyte solutions at different pH values. Cell surface properties of A. commune were examined by potentiometric titrations, modeling, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. By combining FTIR data at different pH values and potentiometric titration data with thermodynamic model optimization, the presence, concentration, and changes of organic functional groups on the cell surface (e.g., carboxyl, phosphoryl, and amine groups) were inferred. The pH of zero proton charge, pH(zpc) = 3.7, found from titrations of A. commune at different electrolyte concentrations and resulting from equilibrium speciation calculations suggests that the net surface charge is negative at drinking water pH in the absence of other charge determining ions. In situ FTIR was used to describe and monitor chemical interactions between bacteria and liquid solutions at different pH in real time. XPS analysis was performed to quantify the elemental surface composition, to assess the local chemical environment of carbon and oxygen at the cell wall, and to calculate the overall concentrations of polysaccharides, peptides, and hydrocarbon compounds of the cell surface. Thermodynamic parameters for proton adsorption are compared with parameters for other gram-negative bacteria. This work shows how the combination of potentiometric titrations, modeling, XPS, and FTIR spectroscopy allows a more comprehensive characterization of bacterial cell surfaces and cell wall reactivity as the initial step to understand the fundamental mechanisms involved in bacterial adhesion to solid surfaces and transport in aqueous systems.

  7. Characterization of solid surfaces

    National Research Council Canada - National Science Library

    Kane, Philip F; Larrabee, Graydon B

    1974-01-01

    .... A comprehensive review of surface analysis, this important volume surveys both principles and techniques of surface characterization, describes instrumentation, and suggests the course of future research...

  8. Electromagnetic approaches to wall characterization, wall mitigation, and antenna design for through-the-wall radar systems

    Science.gov (United States)

    Thajudeen, Christopher

    of ground reflections, and situations where they may be applied to the estimation of the parameters associated with an interior wall. It is demonstrated through extensive computer simulations and laboratory experiments that, by proper exploitation of the electromagnetic characteristics of walls, one can efficiently extract the constitutive parameters associated with unknown wall(s) as well as to characterize and image the intra-wall region. Additionally, it is possible, to a large extent, to remove the negative wall effects, such as shadowing and incorrect target localization, as well as to enhance the imaging and classification of targets behind walls. In addition to the discussion of post processing the radar data to account for wall effects, the design of antenna elements used for transmit (Tx) and receive (Rx) operations in TWR radars is also discussed but limited to antennas for mobile, handheld, or UAV TWR systems which impose design requirements such as low profiles, wide operational bands, and in most cases lend themselves to fabrication using surface printing techniques. A new class of wideband antennas, formed though the use of printed metallic paths in the form of Peano and Hilbert space-filling curves (SFC) to provide top-loading properties that miniaturize monopole antenna elements, has been developed for applications in conformal and/or low profile antennas systems, such as mobile platforms for TWRI and communication systems. Additionally, boresight gain enhancements of a stair-like antenna geometry, through the addition of parasitic self-similar patches and gate like ground plane structures, are presented.

  9. Functional Characterization and Localization of a Bacillus subtilis Sortase and Its Substrate and Use of This Sortase System To Covalently Anchor a Heterologous Protein to the B. subtilis Cell Wall for Surface Display

    Science.gov (United States)

    Liew, Pei Xiong; Wang, Christopher L. C.

    2012-01-01

    Sortases catalyze the covalent anchoring of proteins to the cell surface on Gram-positive bacteria. Bioinformatic analysis suggests the presence of structural genes encoding sortases and their substrates in the Bacillus subtilis genome. In this study, a β-lactamase reporter was fused to the cell wall anchoring domain from a putative sortase substrate, YhcR. Covalent anchoring of this fusion protein to the cell wall was confirmed by using the eight-protease-deficient B. subtilis strain WB800 as the host. Inactivation of yhcS abolished the cell wall anchoring reaction. The amounts of fusion protein anchored to the cell wall were proportional to the levels of YhcS. These data demonstrate that YhcS and YhcR are the sortase and sortase substrate, respectively, in B. subtilis. Furthermore, yhcS is not essential for the survival of B. subtilis under the cultivation condition tested. YhcR fusions were distributed helically in the lateral cell wall. Interestingly, when viewed with an epifluorescence microscope, YhcS also appeared to form short helical arcs. This is the first report to illustrate such distribution of sortases in a rod-shaped bacterium. Models for the spatial distribution of both the sortase and its substrate are discussed. The amount of the reporters displayed on the surface was unambiguously quantified via a unique strategy. Under optimal conditions with the overproduction of YhcS, 47,300 YhcR fusions could be displayed per cell. Displayed reporters were biologically functional and surface accessible. Characterization of the sortase-substrate system allowed the successful development of a YhcR-based covalent surface display system. This system may have various biotechnological applications. PMID:22020651

  10. Experimental Assessment of Mechanical Night Ventilation on Inner Wall Surfaces

    DEFF Research Database (Denmark)

    Wenhui, Ji; Heiselberg, Per Kvols; Wang, Houhua

    2016-01-01

    The cooling potential of night ventilation largely depends on the heat exchange at the internal room surfaces. During night time, increased heat transfer on a vertical wall is expected due to cool supply air that flows along the internal wall surface from the top of the wall. This paper presents ...

  11. Towards the mechanical characterization of abdominal wall by inverse analysis.

    Science.gov (United States)

    Simón-Allué, R; Calvo, B; Oberai, A A; Barbone, P E

    2017-02-01

    The aim of this study is to characterize the passive mechanical behaviour of abdominal wall in vivo in an animal model using only external cameras and numerical analysis. The main objective lies in defining a methodology that provides in vivo information of a specific patient without altering mechanical properties. It is demonstrated in the mechanical study of abdomen for hernia purposes. Mechanical tests consisted on pneumoperitoneum tests performed on New Zealand rabbits, where inner pressure was varied from 0mmHg to 12mmHg. Changes in the external abdominal surface were recorded and several points were tracked. Based on their coordinates we reconstructed a 3D finite element model of the abdominal wall, considering an incompressible hyperelastic material model defined by two parameters. The spatial distributions of these parameters (shear modulus and non linear parameter) were calculated by inverse analysis, using two different types of regularization: Total Variation Diminishing (TVD) and Tikhonov (H 1 ). After solving the inverse problem, the distribution of the material parameters were obtained along the abdominal surface. Accuracy of the results was evaluated for the last level of pressure. Results revealed a higher value of the shear modulus in a wide stripe along the craneo-caudal direction, associated with the presence of linea alba in conjunction with fascias and rectus abdominis. Non linear parameter distribution was smoother and the location of higher values varied with the regularization type. Both regularizations proved to yield in an accurate predicted displacement field, but H 1 obtained a smoother material parameter distribution while TVD included some discontinuities. The methodology here presented was able to characterize in vivo the passive non linear mechanical response of the abdominal wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. HVI Ballistic Performance Characterization of Non-Parallel Walls

    Science.gov (United States)

    Bohl, William; Miller, Joshua; Christiansen, Eric

    2012-01-01

    The Double-Wall, "Whipple" Shield [1] has been the subject of many hypervelocity impact studies and has proven to be an effective shield system for Micro-Meteoroid and Orbital Debris (MMOD) impacts for spacecraft. The US modules of the International Space Station (ISS), with their "bumper shields" offset from their pressure holding rear walls provide good examples of effective on-orbit use of the double wall shield. The concentric cylinder shield configuration with its large radius of curvature relative to separation distance is easily and effectively represented for testing and analysis as a system of two parallel plates. The parallel plate double wall configuration has been heavily tested and characterized for shield performance for normal and oblique impacts for the ISS and other programs. The double wall shield and principally similar Stuffed Whipple Shield are very common shield types for MMOD protection. However, in some locations with many spacecraft designs, the rear wall cannot be modeled as being parallel or concentric with the outer bumper wall. As represented in Figure 1, there is an included angle between the two walls. And, with a cylindrical outer wall, the effective included angle constantly changes. This complicates assessment of critical spacecraft components located within outer spacecraft walls when using software tools such as NASA's BumperII. In addition, the validity of the risk assessment comes into question when using the standard double wall shield equations, especially since verification testing of every set of double wall included angles is impossible.

  13. Determination of surface stress anisotropy from domain wall fluctuations

    NARCIS (Netherlands)

    Zandvliet, Henricus J.W.; Poelsema, Bene

    1999-01-01

    The thermally induced meandering of domain walls between (2×1) and c(4×2) regions on Ge(001) is analyzed with a scanning tunneling microscope in order to extract the anisotropy of the surface stress tensor. On small length scales the domain walls exhibit random walker behavior, whereas on larger

  14. Plant cell wall characterization using scanning probe microscopy techniques

    Science.gov (United States)

    Yarbrough, John M; Himmel, Michael E; Ding, Shi-You

    2009-01-01

    Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy. PMID:19703302

  15. Plant cell wall characterization using scanning probe microscopy techniques

    Directory of Open Access Journals (Sweden)

    Himmel Michael E

    2009-08-01

    Full Text Available Abstract Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy.

  16. Chapter 8:Surface Characterization

    Science.gov (United States)

    Mandla A. Tshabalala; Joseph Jakes; Mark R. VanLandingham; Shaoxia Wang; Jouko. Peltonen

    2013-01-01

    Surface properties of wood play an important role when wood is used or processed into different commodities such as siding, joinery, textiles, paper, sorption media, or wood composites. Thus, for example, the quality and durability of a wood coating are determined by the surface properties of the wood and the coating. The same is true for wood composites where the...

  17. A rapid live-cell ELISA for characterizing antibodies against cell surface antigens of Chlamydomonas reinhardtii and its use in isolating algae from natural environments with related cell wall components.

    Science.gov (United States)

    Jiang, Wenzhi; Cossey, Sarah; Rosenberg, Julian N; Oyler, George A; Olson, Bradley J S C; Weeks, Donald P

    2014-09-25

    Cell walls are essential for most bacteria, archaea, fungi, algae and land plants to provide shape, structural integrity and protection from numerous biotic and abiotic environmental factors. In the case of eukaryotic algae, relatively little is known of the composition, structure or mechanisms of assembly of cell walls in individual species or between species and how these differences enable algae to inhabit a great diversity of environments. In this paper we describe the use of camelid antibody fragments (VHHs) and a streamlined ELISA assay as powerful new tools for obtaining mono-specific reagents for detecting individual algal cell wall components and for isolating algae that share a particular cell surface component. To develop new microalgal bioprospecting tools to aid in the search of environmental samples for algae that share similar cell wall and cell surface components, we have produced single-chain camelid antibodies raised against cell surface components of the single-cell alga, Chlamydomonas reinhardtii. We have cloned the variable-region domains (VHHs) from the camelid heavy-chain-only antibodies and overproduced tagged versions of these monoclonal-like antibodies in E. coli. Using these VHHs, we have developed an accurate, facile, low cost ELISA that uses live cells as a source of antigens in their native conformation and that requires less than 90 minutes to perform. This ELISA technique was demonstrated to be as accurate as standard ELISAs that employ proteins from cell lysates and that generally require >24 hours to complete. Among the cloned VHHs, VHH B11, exhibited the highest affinity (EC50 algae sharing cell surface components with C. reinhardtii in water samples from natural environments. In addition, mCherry-tagged VHH B11 was used along with fluorescence activated cell sorting (FACS) to select individual axenic isolates of presumed wild relatives of C. reinhardtii and other Chlorphyceae from the same environmental samples. Camelid antibody

  18. Multi-walled carbon nanotubes: sampling criteria and aerosol characterization.

    Science.gov (United States)

    Chen, Bean T; Schwegler-Berry, Diane; McKinney, Walter; Stone, Samuel; Cumpston, Jared L; Friend, Sherri; Porter, Dale W; Castranova, Vincent; Frazer, David G

    2012-10-01

    This study intends to develop protocols for sampling and characterizing multi-walled carbon nanotube (MWCNT) aerosols in workplaces or during inhalation studies. Manufactured dry powder containing MWCNT's, combined with soot and metal catalysts, form complex morphologies and diverse shapes. The aerosols, examined in this study, were produced using an acoustical generator. Representative samples were collected from an exposure chamber using filters and a cascade impactor for microscopic and gravimetric analyses. Results from filters showed that a density of 0.008-0.10 particles per µm² filter surface provided adequate samples for particle counting and sizing. Microscopic counting indicated that MWCNT's, resuspended at a concentration of 10 mg/m³, contained 2.7 × 10⁴ particles/cm³. Each particle structure contained an average of 18 nanotubes, resulting in a total of 4.9 × 10⁵ nanotubes/cm³. In addition, fibrous particles within the aerosol had a count median length of 3.04 µm and a width of 100.3 nm, while the isometric particles had a count median diameter of 0.90 µm. A combination of impactor and microscopic measurements established that the mass median aerodynamic diameter of the mixture was 1.5 µm. It was also determined that the mean effective density of well-defined isometric particles was between 0.71 and 0.88 g/cm³, and the mean shape factor of individual nanotubes was between 1.94 and 2.71. The information obtained from this study can be used for designing animal inhalation exposure studies and adopted as guidance for sampling and characterizing MWCNT aerosols in workplaces. The measurement scheme should be relevant for any carbon nanotube aerosol.

  19. Multi-walled carbon nanotubes: sampling criteria and aerosol characterization

    Science.gov (United States)

    Chen, Bean T.; Schwegler-Berry, Diane; McKinney, Walter; Stone, Samuel; Cumpston, Jared L.; Friend, Sherri; Porter, Dale W.; Castranova, Vincent; Frazer, David G.

    2015-01-01

    This study intends to develop protocols for sampling and characterizing multi-walled carbon nanotube (MWCNT) aerosols in workplaces or during inhalation studies. Manufactured dry powder containing MWCNT’s, combined with soot and metal catalysts, form complex morphologies and diverse shapes. The aerosols, examined in this study, were produced using an acoustical generator. Representative samples were collected from an exposure chamber using filters and a cascade impactor for microscopic and gravimetric analyses. Results from filters showed that a density of 0.008–0.10 particles per µm2 filter surface provided adequate samples for particle counting and sizing. Microscopic counting indicated that MWCNT’s, resuspended at a concentration of 10 mg/m3, contained 2.7 × 104 particles/cm3. Each particle structure contained an average of 18 nanotubes, resulting in a total of 4.9 × 105 nanotubes/cm3. In addition, fibrous particles within the aerosol had a count median length of 3.04 µm and a width of 100.3 nm, while the isometric particles had a count median diameter of 0.90 µm. A combination of impactor and microscopic measurements established that the mass median aerodynamic diameter of the mixture was 1.5 µm. It was also determined that the mean effective density of well-defined isometric particles was between 0.71 and 0.88 g/cm3, and the mean shape factor of individual nanotubes was between 1.94 and 2.71. The information obtained from this study can be used for designing animal inhalation exposure studies and adopted as guidance for sampling and characterizing MWCNT aerosols in workplaces. The measurement scheme should be relevant for any carbon nanotube aerosol. PMID:23033994

  20. Virtual walls based on oil-repellent surfaces for low-surface-tension liquids.

    Science.gov (United States)

    Almeida, Riberet; Kwon, Jae Wan

    2013-01-29

    Manipulating and controlling water-based aqueous solutions with the use of virtual walls is relatively simple compared to that of nonaqueous low-surface-tension liquids, which pose greater challenges to microfluidic devices. This letter reports a novel technique to form a virtual wall for various low-surface-tension liquids. A microfluidic channel with virtual walls has been made to guide low-surface-tension liquids by using a specially designed oil-repellent surface. Unlike generic superoleophobic surfaces, our oil-repellent surface exhibited strong repellency to the lateral flow of low-surface-tension liquids such as hexadecane and dodecane. A plasma-assisted surface micromachining process has been utilized to form the oil-repellent surface. The use of combined features of re-entrant geometries on the surface played an important role in promoting its repellence to the lateral flow of low-surface-tension liquids. We have successfully demonstrated how low-surface-tension liquids can be well confined by the virtual walls.

  1. Automatic analysis of image of surface structure of cell wall-deficient EVC.

    Science.gov (United States)

    Li, S; Hu, K; Cai, N; Su, W; Xiong, H; Lou, Z; Lin, T; Hu, Y

    2001-01-01

    Some computer applications for cell characterization in medicine and biology, such as analysis of surface structure of cell wall-deficient EVC (El Tor Vibrio of Cholera), operate with cell samples taken from very small areas of interest. In order to perform texture characterization in such an application, only a few texture operators can be employed: the operators should be insensitive to noise and image distortion and be reliable in order to estimate texture quality from images. Therefore, we introduce wavelet theory and mathematical morphology to analyse the cellular surface micro-area image obtained by SEM (Scanning Electron Microscope). In order to describe the quality of surface structure of cell wall-deficient EVC, we propose a fully automatic computerized method. The image analysis process is carried out in two steps. In the first, we decompose the given image by dyadic wavelet transform and form an image approximation with higher resolution, by doing so, we perform edge detection of given images efficiently. In the second, we introduce many operations of mathematical morphology to obtain morphological quantitative parameters of surface structure of cell wall-deficient EVC. The obtained results prove that the method can eliminate noise, detect the edge and extract the feature parameters validly. In this work, we have built automatic analytic software named "EVC.CELL".

  2. Surface Characterization of New Biomaterials

    Science.gov (United States)

    Minciuna, M. G.; Vizureanu, P.; Abdullah, M. M. B.; Achitei, D. C.; Istrate, B.; Cimpoesu, R.; Focsaneanu, S. C.

    2017-06-01

    This paper presents the characterization of new alloys CoCrMoSi6, CoCrMoSi7, CoCrMoSi10, in terms of hardness determinations, fractographic analysis and surface analysis. The original version of the alloy was obtained by casting process in a vacuum arc furnace. Experimental results obtained from this study confirms that by increasing content of silicon, the mechanical properties are superior and the positive results obtained at surface studies favoring the formation of compounds, that lead to the reduction of alloying grade for α solid solution and the plasticity of the alloys.

  3. Grasping Claws of Bionic Climbing Robot for Rough Wall Surface: Modeling and Analysis

    Directory of Open Access Journals (Sweden)

    Quansheng Jiang

    2017-12-01

    Full Text Available Aiming at the inspection of rough stone and concrete wall surfaces, a grasping module of cross-arranged claw is designed. It can attach onto rough wall surfaces by hooking or grasping walls. First, based on the interaction mechanism of hooks and rough wall surfaces, the hook structures in claw tips are developed. Then, the size of the hook tip is calculated and the failure mode is analyzed. The effectiveness and reliability of the mechanism are verified through simulation and finite element analysis. Afterwards, the prototype of the grasping module of claw is established to carry out grasping experiment on vibrating walls. Finally, the experimental results demonstrate that the proposed cross-arranged claw is able to stably grasp static wall surfaces and perform well in grasping vibrating walls, with certain anti-rollover capability. This research lays a foundation for future researches on wall climbing robots with vibrating rough wall surfaces.

  4. Higher dimensional curved domain walls on Kähler surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, Fiki T., E-mail: ftakbar@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Gunara, Bobby E., E-mail: bobby@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Radjabaycolle, Flinn C. [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Departement of Physics, Faculty of Mathematics and Natural Sciences, Cendrawasih University, Jl. Kampwolker Kampus Uncen Baru Waena-Jayapura 99351 (Indonesia); Wijaya, Rio N. [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia)

    2017-03-15

    In this paper we study some aspects of curved BPS-like domain walls in higher dimensional gravity theory coupled to scalars where the scalars span a complex Kähler surface with scalar potential turned on. Assuming that a fake superpotential has a special form which depends on Kähler potential and a holomorphic function, we prove that BPS-like equations have a local unique solution. Then, we analyze the vacuum structure of the theory including their stability using dynamical system and their existence in ultraviolet-infrared regions using renormalization group flow.

  5. Surface tension driven shaping of adhesive microfluidic channel walls

    DEFF Research Database (Denmark)

    Janting, Jakob; Storm, Elisabeth K.; Geschke, Oliver

    2005-01-01

    The feasibility of making microfluidic channels with different wall geometries using adjacent lines of dispensed adhesive between substrates has been studied. Important parameters for the geometry have been identified to be: surface tension (adhesive / substrates), adhesive viscosity / thixotropy......, line height and distance, and temperature. Focus of the work has been on predicting the equilibrium geometries with FEM simulations using as input measured adhesive wetting angles, different adhesive line distances and height. The studied substrates are glass microscope slides, PEEK and PMMA....... The studied adhesives are DYMAX 9-20318-F, 3070, 9001 version 3.5, and Sylgard 184 PDMS....

  6. Identification and characterization of the surface proteins of Clostridium difficile

    Energy Technology Data Exchange (ETDEWEB)

    Dailey, D.C.

    1988-01-01

    Several clostridial proteins were detected on the clostridial cell surface by sensitive radioiodination techniques. Two major proteins and six minor proteins comprised the radioiodinated proteins on the clostridial cell surface. Cellular fractionation of surface radiolabeled C. difficile determined that the radioiodinated proteins were found in the cell wall fraction of C. difficile and surprisingly were also present in the clostridial membrane. Furthermore, an interesting phenomenon of disulfide-crosslinking of the cell surface proteins of C. difficile was observed. Disulfide-linked protein complexes were found in both the membrane and cell wall fractions. In addition, the cell surface proteins of C. difficile were found to be released into the culture medium. In attempts to further characterize the clostridial proteins recombinant DNA techniques were employed. In addition, the role of the clostridial cell surface proteins in the interactions of C. difficile with human PMNs was also investigated.

  7. Synthesis and characterization of multi-walled carbon nanotubes modified with octadecylamine and polyethylene glycol

    Directory of Open Access Journals (Sweden)

    Mohamed Abdel Salam

    2017-02-01

    Full Text Available Chemical modification of MWCNTs via oxidation followed by side wall functionalization using polyethylene glycol (PEG and octadecylamine (ODA; separately, was studied. Different characterization techniques such as FTIR spectrometry, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, X-ray diffraction (XRD, and solubility in different solvents were performed for the oxidized MWCNTs, MWCNTs–PEG and MWCNTs–ODA. The characterization techniques proved the presence of the functional groups on the MWCNT surface. Thermal gravimetric analysis revealed that nearly 16% (by weight of the MWCNTs were functionalized with PEG and 39% (by weight was functionalized with ODA.

  8. Standard surface grinder for precision machining of thin-wall tubing

    Science.gov (United States)

    Jones, A.; Kotora, J., Jr.; Rein, J.; Smith, S. V.; Strack, D.; Stuckey, D.

    1967-01-01

    Standard surface grinder performs precision machining of thin-wall stainless steel tubing by electrical discharge grinding. A related adaptation, a traveling wire electrode fixture, is used for machining slots in thin-walled tubing.

  9. Characterization of plasma sprayed beryllium ITER first wall mockups

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Vaidya, R.U.; Hollis, K.J. [Los Alamos National Lab., NM (United States). Material Science and Technology Div.

    1998-01-01

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/m{sup 2} without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface. (author)

  10. Characterization of Plasma Sprayed Beryllium ITER First Wall Mockups

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Richard G.; Vaidya, Rajendra U.; Hollis, Kendall J.

    1997-12-31

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/sq m without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface.

  11. Near-Surface Boundary Layer Turbulence Along a Horizontally-Moving, Surface-Piercing Vertical Wall

    CERN Document Server

    Washuta, Nathan; Duncan, James H

    2016-01-01

    The complex interaction between turbulence and the free surface in boundary layer shear flow created by a vertical surface-piercing wall is considered. A laboratory-scale device was built that utilizes a surface-piercing stainless steel belt that travels in a loop around two vertical rollers, with one length of the belt between the rollers acting as a horizontally-moving flat wall. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally-evolving boundary layer analogous to the spatially-evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface profiles are measured with a cinematic laser-induced fluorescence system and sub-surface velocity fields are recorded using a high-speed planar particle image velocimetry system. It is found that the belt initially travels through the water without creating any significant waves, before the free surface bursts with activity close to the belt surface. These free surface ripples travel away...

  12. Characterization of the Sclerotinia sclerotiorum cell wall proteome.

    Science.gov (United States)

    Liu, Longzhou; Free, Stephen J

    2016-08-01

    We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes. © 2015 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  13. Characterization of ester- or thioamide-functionalized single-walled carbon nanotube-azithromycin conjugates

    Science.gov (United States)

    Darabi, Hossein Reza; Roozkhosh, Atefeh; Jafar Tehrani, Mohammad; Aghapoor, Kioumars; Sayahi, Hani; Balavar, Yadollah; Mohsenzadeh, Farshid

    2014-01-01

    Functionalization of single-walled carbon nanotubes (SWCNTs) with nitrile groups, followed by further reactions allowed direct attachment of azithromycin and its N-demethyl derivative to the side-walls of SWCNTs for the first time. With these approaches, the cleavable ester or thioamide bonds are formed to connect azithromycin to SWCNTs resulting in azithromycin-SWCNT conjugates. These cleavable bonds are able to control molecular release from nanotube surfaces which are generally applicable to a variety of hybrid materials based on SWCNTs. A non-covalent azithromycin-SWCNT has also been compared with azithromycin-SWCNTs conjugates. Thermogravimetric analysis (TGA), Fourier-transformed infrared (FT-IR), UV-vis, and Raman spectroscopies give hints on the characterization of azithromycin-SWCNT. Both drug release and antimicrobial activity of azithromycin-SWCNT conjugates were also tested.

  14. SURFACE CONSOLIDATION OF WALL PAINTINGS USING LIME NANO-SUSPENSIONS

    Directory of Open Access Journals (Sweden)

    Jan Vojtěchovský

    2017-05-01

    Full Text Available Within the field of the conservation of historical and cultural monuments, lime nanosuspensions are still a relatively new and unexplored material. This study examines their effect on the consolidation of architectural surfaces and, consequently, on wall paintings. Previous experiments showed that considerably deteriorated materials may not be adequately strengthened using only lime nano-suspensions. Therefore, the effects of their admixtures and gradual applications with silicic acid esters were examined. For verification, a simulation of a deteriorated lime-based paint layer was created on panels of plaster. The results of the consolidation were subsequently studied using objective (peeling test, water absorption capacity test, measuring colour changes using a mobile spectrophotometer and subjective methods (comparison of visual changes to a set standard and by testing cohesion using a cotton swab. The microstructure of a consolidated paint layer was studied with a scanning electron microscopy. Tests proved that with either individual lime-alcoholic suspensions or with successive applications and mixtures of silicic acid esters it is feasible to achieve good consolidation results, whilst the alkoxysilane content of the agent indisputably increases the consolidating effect of these materials.

  15. Vessel wall characterization using quantitative MRI: what's in a number?

    Science.gov (United States)

    Coolen, Bram F; Calcagno, Claudia; van Ooij, Pim; Fayad, Zahi A; Strijkers, Gustav J; Nederveen, Aart J

    2018-02-01

    The past decade has witnessed the rapid development of new MRI technology for vessel wall imaging. Today, with advances in MRI hardware and pulse sequences, quantitative MRI of the vessel wall represents a real alternative to conventional qualitative imaging, which is hindered by significant intra- and inter-observer variability. Quantitative MRI can measure several important morphological and functional characteristics of the vessel wall. This review provides a detailed introduction to novel quantitative MRI methods for measuring vessel wall dimensions, plaque composition and permeability, endothelial shear stress and wall stiffness. Together, these methods show the versatility of non-invasive quantitative MRI for probing vascular disease at several stages. These quantitative MRI biomarkers can play an important role in the context of both treatment response monitoring and risk prediction. Given the rapid developments in scan acceleration techniques and novel image reconstruction, we foresee the possibility of integrating the acquisition of multiple quantitative vessel wall parameters within a single scan session.

  16. Screening and characterization of plant cell walls using carbohydrate microarrays.

    Science.gov (United States)

    Sørensen, Iben; Willats, William G T

    2011-01-01

    Plant cells are surrounded by cell walls built largely from complex carbohydrates. The primary walls of growing plant cells consist of interdependent networks of three polysaccharide classes: cellulose, cross-linking glycans (also known as hemicelluloses), and pectins. Cellulose microfibrils are tethered together by cross-linking glycans, and this assembly forms the major load-bearing component of primary walls, which is infiltrated with pectic polymers. In the secondary walls of woody tissues, pectins are much reduced and walls are reinforced with the phenolic polymer lignin. Plant cell walls are essential for plant life and also have numerous industrial applications, ranging from wood to nutraceuticals. Enhancing our knowledge of cell wall biology and the effective use of cell wall materials is dependent to a large extent on being able to analyse their fine structures. We have developed a suite of techniques based on microarrays probed with monoclonal antibodies with specificity for cell wall components, and here we present practical protocols for this type of analysis.

  17. Preparation and characterization of amphiphilic multi-walled carbon nanotubes

    Science.gov (United States)

    Qiu, Jun; Wang, Guojian; Zhao, Caixia

    2008-04-01

    Multiwalled carbon nanotubes (MWCNTs, average diameter 8 nm) functionalized by N-vinyl pyrrolidone (NVP) were synthesized by radical polymerization and characterized by Fourier transform infrared and Raman spectroscopies, thermogravimetric analysis and transmission electron microscopy. These NVP-MWCNTs exhibit remarkable solubility in water, ethanol and dimethyl formamide. The polyvinyl pyrrolidone can be attached onto the surface of the MWCNTs and the degree of functionalization is affected by NVP content. The functionalization causes possible grafting reaction and solid physical coating between MWCNTs and PVP.

  18. Expression and characterization of a novel spore wall protein from ...

    African Journals Online (AJOL)

    Microsporidia are obligate intracellular, eukaryotic, spore-forming parasites. The environmentally resistant spores, which harbor a rigid cell wall, are critical for their survival outside their host cells and host-to-host transmission. The spore wall comprises two major layers: the exospore and the endospore. In Nosema ...

  19. Characterizing phenolformaldehyde adhesive cure chemistry within the wood cell wall

    Science.gov (United States)

    Daniel J. Yelle; John Ralph

    2016-01-01

    Adhesive bonding of wood using phenol-formaldehyde remains the industrial standard in wood product bond durability. Not only does this adhesive infiltrate the cell wall, it also is believed to form primary bonds with wood cell wall polymers, particularly guaiacyl lignin. However, the mechanism by which phenol-formaldehyde adhesive intergrally interacts and bonds to...

  20. Formation of transition metal cluster adducts on the surface of single-walled carbon nanotubes: HRTEM studies

    KAUST Repository

    Kalinina, Irina V.

    2014-01-01

    We report the formation of chromium clusters on the outer walls of single-walled carbon nanotubes (SWNTs). The clusters were obtained by reacting purified SWNTs with chromium hexacarbonyl in dibutyl ether at 100°C. The functionalized SWNTs were characterized by thermogravimetic analysis, XPS, and high-resolution TEM. The curvature of the SWNTs and the high mobility of the chromium moieties on graphitic surfaces allow the growth of the metal clusters and we propose a mechanism for their formation. © 2014 Taylor and Francis Group, LLC.

  1. Penetrative Internal Oxidation from Alloy 690 Surfaces and Stress Corrosion Crack Walls during Exposure to PWR Primary Water

    Science.gov (United States)

    Olszta, Matthew J.; Schreiber, Daniel K.; Thomas, Larry E.; Bruemmer, Stephen M.

    Analytical electron microscopy and three-dimensional atom probe tomography (ATP) examinations of surface and near-surface oxidation have been performed on Ni-30%Cr alloy 690 materials after exposure to high-temperature, simulated PWR primary water. The oxidation nanostructures have been characterized at crack walls after stress-corrosion crack growth tests and at polished surfaces of unstressed specimens for the same alloys. Localized oxidation was discovered for both crack walls and surfaces as continuous filaments (typically dislocations were oxidized in non-deformed materials, while the oxidation path appeared to be along more complex dislocation substructures in heavily deformed materials. This paper will highlight the use of high resolution scanning and transmission electron microscopy in combination with APT to better elucidate the microstructure and microchemistry of the filamentary oxidation.

  2. Influence of surface anisotropy on domain wall dynamics in magnetic nanotube

    Science.gov (United States)

    Usov, N. A.; Serebryakova, O. N.

    2017-11-01

    It is shown that surface domain structure arises in magnetic nanotube with uniaxial anisotropy if surface anisotropy constant is negative and sufficiently high in absolute value. The surface magnetic anisotropy affects also the structure and dynamics of a head-to-head domain wall propagating along the nanotube axis in applied magnetic field. The hopping mode is observed for stationary movement of a head-to-head domain wall. The average speed of the domain wall in the hopping mode is found to be several times less than the stationary velocity of the wall in the absence of surface anisotropy. This effect is important for various applications where fast propagation of the domain wall along the sample is essential.

  3. Characterizing visible and invisible cell wall mutant phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Carpita, Nicholas C.; McCann, Maureen C.

    2015-04-06

    About 10% of a plant's genome is devoted to generating the protein machinery to synthesize, remodel, and deconstruct the cell wall. High-throughput genome sequencing technologies have enabled a reasonably complete inventory of wall-related genes that can be assembled into families of common evolutionary origin. Assigning function to each gene family member has been aided immensely by identification of mutants with visible phenotypes or by chemical and spectroscopic analysis of mutants with ‘invisible’ phenotypes of modified cell wall composition and architecture that do not otherwise affect plant growth or development. This review connects the inference of gene function on the basis of deviation from the wild type in genetic functional analyses to insights provided by modern analytical techniques that have brought us ever closer to elucidating the sequence structures of the major polysaccharide components of the plant cell wall.

  4. Characterization of Thin Walled Mo Tubing produced by FBCVD

    Energy Technology Data Exchange (ETDEWEB)

    Beaux, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-21

    The goal of this report is to delineate the results of material characterization performed on Mo tubing produced via the fluidized bed chemical vapor deposition (FBCVD) method. Scanning electron microscopy (SEM) imaging reveals that small randomly oriented grains are achieved in the Mo deposition, but do not persist throughout the entire thickness of the material. Energy dispersive spectroscopy (EDS) reveals the Mo tubes contain residual chlorine and oxygen. EDS measurements on the tube surfaces separated from glass and quartz substrates reveal substrate material adhered to this surface. X-ray diffraction (XRD) revealed the presence of carbon contaminant in the form of Mo2C and oxygen in the form of MoO2. Combustion infrared detection (CID) and inert gas fusion (IGF) performed at Luvak Inc. was used to quantify weight percentages of oxygen and carbon in the tubes produced. Hardness value of the FBCVD Mo was found to be comparable to low carbon arc cast molybdenum.

  5. Radioactive Ions for Surface Characterization

    CERN Multimedia

    2002-01-01

    The collaboration has completed a set of pilot experiments with the aim to develop techniques for using radioactive nuclei in surface physics. The first result was a method for thermal deposition of isolated atoms (Cd, In, Rb) on clean metallic surfaces. \\\\ \\\\ Then the diffusion history of deposited Cd and In atoms on two model surfaces, Mo(110) and Pd(111), was followed through the electric field gradients (efg) acting at the probe nuclei as measured with the Perturbed Angular Correlation technique. For Mo(110) a rather simple history of the adatoms was inferred from the experiments: Atoms initially landing at terrace sites diffuse from there to ledges and then to kinks, defects always present at real surfaces. The next stage is desorption from the surface. For Pd a scenario that goes still further was found. Following the kink stage the adatoms get incorporated into ledges and finally into the top surface layer. For all these five sites the efg's could be measured.\\\\ \\\\ In preparation for a further series o...

  6. Optical Characterization of Nanostructured Surfaces

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft

    Micro- and nanostructured surfaces are interesting due to the unique properties they add to the bulk material. One example is structural colors, where the interaction between surface structures and visible light produce bright color effects without the use of paints or dyes. Several research grou...... instrument, and a small study of the implications if the sample surface is covered with an interface layer, e.g. a thin liquid film. For roughness evaluation on hard-to-reach surfaces, the thesis includes a study of surface replication using the thermosetting polymer PDMS....... are investigating the manufacturing of these structures using established high-volume polymer fabrication methods, such as injection molding and roll-to-roll manufacturing. These methods are interesting as they can ease the industrial uptake of nanopatterning technology. However, for a successful industrial...... regions can be analyzed independently. With color scatterometry, a single exposure with the camera is sufficient to evaluate the grating profile for thousands of individual regions spanning a millimeter-sized area. The accuracy of color scatterometry is evaluated on injection molded polymer line gratings...

  7. Characterization of Surfaces Designed for Biomedical Applications

    OpenAIRE

    Kristensen, Emma

    2006-01-01

    In order to develop blood biocompatible materials a heparin surface and a phosphorylcholine (PC) functionalized polymer surface were characterized using photoelectron spectroscopy (PES). The formation of the heparin surface was studied by quartz crystal microbalance with dissipation monitoring (QCM-D). This heparin surface consists of heparin conjugates deposited on a conditioning layer, applied once or twice. The PC functionalized polymer, poly(trimethylene carbonate), was linked to a silico...

  8. Enhanced biocompatibility of multi-walled carbon nanotubes by surface modification: Future perspectives for drug delivery system

    Science.gov (United States)

    Anandhi, C. M. S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin

    2017-05-01

    Surface modification of multi-walled carbon nanotubes (MWCNTs) was carried out by introducing mixture of concentrated sulphuric acid and nitric acid by ultrasonication process. The pristine and surface modified MWCNTs were characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR), Raman spectroscopy and Scanning electron microscopy (SEM) techniques. FT-IR spectra revealed that the presence of carboxylic acid functional groups on the surface of MWCNTs. The integrated intensity ratio of pristine and surface modified MWCNTs was calculated by Raman spectroscopic analysis. XRD patterns examines the crystallinity of the surface modified MWCNTs. SEM analysis investigates the change in morphology of the surface modified MWCNTs compared with that of pristine, which is due to the attachment of the carboxylic acid functional groups. Surface modified MWCNTs acts as precursors for further functionalization with various biomolecules, which improves the biocompatibility and initiates the implementation of MWCNTs in the field of nanomedicine and targeted drug delivery.

  9. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    Science.gov (United States)

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  10. Wall Turbulence with Designer Properties: Identification, Characterization and Manipulation of Energy Pathways

    Science.gov (United States)

    2016-02-26

    Wall turbulence with designer properties: Identification, characterization & manipulation of energy pathways 5a. CONTRACT NUMBER 5b. GRANT NUMBER... University of Texas) Sheplak, M. ( University of Florida) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S...identification, characterization and manipulation of energy pathways in wall turbulence. The objectives were pursued separately and collaboratively by the

  11. Control of surface potential at polar domain walls in a nonpolar oxide

    Science.gov (United States)

    Nataf, G. F.; Guennou, M.; Kreisel, J.; Hicher, P.; Haumont, R.; Aktas, O.; Salje, E. K. H.; Tortech, L.; Mathieu, C.; Martinotti, D.; Barrett, N.

    2017-12-01

    Ferroic domain walls could play an important role in microelectronics, given their nanometric size and often distinct functional properties. Until now, devices and device concepts were mostly based on mobile domain walls in ferromagnetic and ferroelectric materials. A less explored path is to make use of polar domain walls in nonpolar ferroelastic materials. Indeed, while the polar character of ferroelastic domain walls has been demonstrated, polarization control has been elusive. Here, we report evidence for the electrostatic signature of the domain-wall polarization in nonpolar calcium titanate (CaTi O3 ). Macroscopic mechanical resonances excited by an ac electric field are observed as a signature of a piezoelectric response caused by polar walls. On the microscopic scale, the polarization in domain walls modifies the local surface potential of the sample. Through imaging of surface potential variations, we show that the potential at the domain wall can be controlled by electron injection. This could enable devices based on nondestructive information readout of surface potential.

  12. Integrated biomechanical and topographical surface characterization (IBTSC)

    Energy Technology Data Exchange (ETDEWEB)

    Löberg, Johanna, E-mail: Johanna.Loberg@dentsply.com [Dentsply Implants, Box 14, SE-431 21 Mölndal (Sweden); Mattisson, Ingela [Dentsply Implants, Box 14, SE-431 21 Mölndal (Sweden); Ahlberg, Elisabet [Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg (Sweden)

    2014-01-30

    In an attempt to reduce the need for animal studies in dental implant applications, a new model has been developed which combines well-known surface characterization methods with theoretical biomechanical calculations. The model has been named integrated biomechanical and topographical surface characterization (IBTSC), and gives a comprehensive description of the surface topography and the ability of the surface to induce retention strength with bone. IBTSC comprises determination of 3D-surface roughness parameters by using 3D-scanning electron microscopy (3D-SEM) and atomic force microscopy (AFM), and calculation of the ability of different surface topographies to induce retention strength in bone by using the local model. Inherent in this integrated approach is the use of a length scale analysis, which makes it possible to separate different size levels of surface features. The IBTSC concept is tested on surfaces with different level of hierarchy, induced by mechanical as well as chemical treatment. Sequential treatment with oxalic and hydrofluoric acid results in precipitated nano-sized features that increase the surface roughness and the surface slope on the sub-micro and nano levels. This surface shows the highest calculated shear strength using the local model. The validity, robustness and applicability of the IBTSC concept are demonstrated and discussed.

  13. A sound idea: Manipulating domain walls in magnetic nanowires using surface acoustic waves

    Science.gov (United States)

    Dean, J.; Bryan, M. T.; Cooper, J. D.; Virbule, A.; Cunningham, J. E.; Hayward, T. J.

    2015-10-01

    We propose a method of pinning and propagating domain walls in artificial multiferroic nanowires using electrically induced surface acoustic waves. Using finite-element micromagnetic simulations and 1D semi-analytical modelling, we demonstrate how a pair of interdigitated acoustic transducers can remotely induce an array of attractive domain wall pinning sites by forming a standing stress/strain wave along a nanowire's length. Shifts in the frequencies of the surface acoustic waves allow multiple domain walls to be synchronously transported at speeds up to 50 ms-1. Our study lays the foundation for energy-efficient domain wall devices that exploit the low propagation losses of surface acoustic waves to precisely manipulate large numbers of data bits.

  14. Surface characterization of carbohydrate microarrays.

    Science.gov (United States)

    Scurr, David J; Horlacher, Tim; Oberli, Matthias A; Werz, Daniel B; Kroeck, Lenz; Bufali, Simone; Seeberger, Peter H; Shard, Alexander G; Alexander, Morgan R

    2010-11-16

    Carbohydrate microarrays are essential tools to determine the biological function of glycans. Here, we analyze a glycan array by time-of-flight secondary ion mass spectrometry (ToF-SIMS) to gain a better understanding of the physicochemical properties of the individual spots and to improve carbohydrate microarray quality. The carbohydrate microarray is prepared by piezo printing of thiol-terminated sugars onto a maleimide functionalized glass slide. The hyperspectral ToF-SIMS imaging data are analyzed by multivariate curve resolution (MCR) to discern secondary ions from regions of the array containing saccharide, linker, salts from the printing buffer, and the background linker chemistry. Analysis of secondary ions from the linker common to all of the sugar molecules employed reveals a relatively uniform distribution of the sugars within the spots formed from solutions with saccharide concentration of 0.4 mM and less, whereas a doughnut shape is often formed at higher-concentration solutions. A detailed analysis of individual spots reveals that in the larger spots the phosphate buffered saline (PBS) salts are heterogeneously distributed, apparently resulting in saccharide concentrated at the rim of the spots. A model of spot formation from the evaporating sessile drop is proposed to explain these observations. Saccharide spot diameters increase with saccharide concentration due to a reduction in surface tension of the saccharide solution compared to PBS. The multivariate analytical partial least squares (PLS) technique identifies ions from the sugars that in the complex ToF-SIMS spectra correlate with the binding of galectin proteins.

  15. Contact angle and droplet heat transfer during evaporation on structured and smooth surfaces of heated wall

    Science.gov (United States)

    Misyura, S. Y.

    2017-08-01

    Water evaporation in a wide range of droplet diameters and wall temperatures on the structured and smooth surfaces were studied experimentally. Linear dependence of evaporation rate (dV/dt) on a droplet radius varies when the volume is greater than 40-60 μl. The static contact angles on the structured surface vary with a droplet diameter for high wall superheating. Dependence of the contact angle on diameter for the corrugated surface is defined by a change in both potential energy barrier U and three-phase contact line tension τcl. This energy barrier for the structured wall changes with an increase in the initial droplet diameter and becomes constant for the large droplets. For high wall superheating, the power in the law of evaporation increases from 1 to 1.45 with an increase in the initial droplet diameter. Depending on the droplet radius, number of droplets and heater length, four different characters of evaporation are realized. Complete droplet evaporation time on structured surface is less than smooth wall. Heat transfer coefficient is greater for structured wall than smooth one. When simulating droplet evaporation and heat transfer, it is necessary to take into account free convection of air and vapor.

  16. Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients

    CERN Document Server

    Popescu, M N; Dietrich, S

    2016-01-01

    Chemically active colloids move by creating gradients in the composition of the surrounding solution and by exploiting the differences in their interactions with the various molecular species in solution. If such particles move near boundaries, e.g., the walls of the container confining the suspension, gradients in the composition of the solution are also created along the wall. This give rise to chemi-osmosis (via the interactions of the wall with the molecular species forming the solution), which drives flows coupling back to the colloid and thus influences its motility. Employing an approximate "point-particle" analysis, we show analytically that -- owing to this kind of induced active response (chemi-osmosis) of the wall -- such chemically active colloids can align with, and follow, gradients in the surface chemistry of the wall. In this sense, these artificial "swimmers" exhibit a primitive form of thigmotaxis with the meaning of sensing the proximity of a (not necessarily discontinuous) physical change ...

  17. wall

    Directory of Open Access Journals (Sweden)

    Irshad Kashif

    2016-01-01

    Full Text Available Maintaining indoor climatic conditions of buildings compatible with the occupant comfort by consuming minimum energy, especially in a tropical climate becomes a challenging problem for researchers. This paper aims to investigate this problem by evaluating the effect of different kind of Photovoltaic Trombe wall system (PV-TW on thermal comfort, energy consumption and CO2 emission. A detailed simulation model of a single room building integrated with PV-TW was modelled using TRNSYS software. Results show that 14-35% PMV index and 26-38% PPD index reduces as system shifted from SPV-TW to DGPV-TW as compared to normal buildings. Thermal comfort indexes (PMV and PPD lie in the recommended range of ASHARE for both DPV-TW and DGPV-TW except for the few months when RH%, solar radiation intensity and ambient temperature were high. Moreover PVTW system significantly reduces energy consumption and CO2 emission of the building and also 2-4.8 °C of temperature differences between indoor and outdoor climate of building was examined.

  18. Characterization of multifunctional surfaces during fabrication

    DEFF Research Database (Denmark)

    Godi, Alessandro; Friis, Kasper Storgaard; De Chiffre, Leonardo

    2011-01-01

    of the cusps to obtain a well defined bearing area. It is studied how the surface topography varies with the number of polishing passes. Hard-turned specimens with different feed rates are polished changing stone, spindle speed and pulse frequency. The profiles are filtered with the robust Gaussian regression...... filters according to ISO 16610-31 and analyzed according to ISO 13565. It is depicted how existing standards are not sufficient to fully characterize this kind of surfaces....

  19. Thermal characteristics of thermobrachytherapy surface applicators for treating chest wall recurrence

    Science.gov (United States)

    Arunachalam, K.; Maccarini, P. F.; Craciunescu, O. I.; Schlorff, J. L.; Stauffer, P. R.

    2010-04-01

    The aim of this study was to investigate temperature and thermal dose distributions of thermobrachytherapy surface applicators (TBSAs) developed for concurrent or sequential high dose rate (HDR) brachytherapy and microwave hyperthermia treatment of chest wall recurrence and other superficial diseases. A steady-state thermodynamics model coupled with the fluid dynamics of a water bolus and electromagnetic radiation of the hyperthermia applicator is used to characterize the temperature distributions achievable with TBSAs in an elliptical phantom model of the human torso. Power deposited by 915 MHz conformal microwave array (CMA) applicators is used to assess the specific absorption rate (SAR) distributions of rectangular (500 cm2) and L-shaped (875 cm2) TBSAs. The SAR distribution in tissue and fluid flow distribution inside the dual-input dual-output (DIDO) water bolus are coupled to solve the steady-state temperature and thermal dose distributions of the rectangular TBSA (R-TBSA) for superficial tumor targets extending 10-15 mm beneath the skin surface. Thermal simulations are carried out for a range of bolus inlet temperature (Tb = 38-43 °C), water flow rate (Qb = 2-4 L min-1) and tumor blood perfusion (ωb = 2-5 kg m-3 s-1) to characterize their influence on thermal dosimetry. Steady-state SAR patterns of the R- and L-TBSA demonstrate the ability to produce conformal and localized power deposition inside the tumor target sparing surrounding normal tissues and nearby critical organs. Acceptably low variation in tissue surface cooling and surface temperature homogeneity was observed for the new DIDO bolus at a 2 L min-1 water flow rate. Temperature depth profiles and thermal dose volume histograms indicate bolus inlet temperature (Tb) to be the most influential factor on thermal dosimetry. A 42 °C water bolus was observed to be the optimal choice for superficial tumors extending 10-15 mm from the surface even under significant blood perfusion. Lower bolus

  20. Surface science tools for nanomaterials characterization

    CERN Document Server

    2015-01-01

    Fourth volume of a 40volume series on nano science and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Surface Science Tools for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  1. Preparation and characterization of bagasse/HDPE composites using multi-walled carbon nanotubes.

    Science.gov (United States)

    Ashori, Alireza; Sheshmani, Shabnam; Farhani, Foad

    2013-01-30

    This article presents the preparation and characterization of bagasse/high density polyethylene (HDPE) composites. The effects of multi-walled carbon nanotubes (MWCNTs), as reinforcing agent, on the mechanical and physical properties were also investigated. In order to increase the interphase adhesion, maleic anhydride grafted polyethylene (MAPE) was added as a coupling agent to all the composites studied. In the sample preparation, MWCNTs and MAPE contents were used as variable factors. The morphology of the specimens was characterized using scanning electron microscopy (SEM) technique. The results of strength measurement indicated that when 1.5 wt% MWCNTs were added, tensile and flexural properties reached their maximum values. At high level of MWCNTs loading (3 or 4 wt%), increased population of MWCNTs lead to agglomeration and stress transfer gets blocked. The addition of MWCNTs filler slightly decreased the impact strength of composites. Both mechanical and physical properties were improved when 4 wt% MAPE was applied. SEM micrographs also showed that the surface roughness improved with increasing MAPE loading from 0 to 4 wt%. The improvement of physicomechanical properties of composites confirmed that MWCNTs have good reinforcement and the optimum synergistic effect of MWCNTs and MAPE was achieved at the combination of 1.5 and 4 wt%, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Broadband Spectroscopic Thermoacoustic Characterization of Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Daniel R. Bauer

    2015-01-01

    Full Text Available Carbon nanotubes have attracted interest as contrast agents for biomedical imaging because they strongly absorb electromagnetic radiation in the optical and microwave regions. This study applies thermoacoustic (TA imaging and spectroscopy to measure the frequency-dependent absorption profile of single-walled carbon nanotubes (SWNT in the ranges of 2.7–3.1 GHz and 7–9 GHz using two tunable microwave sources. Between 7 and 9 GHz, the peak TA signal for solutions containing semiconducting and metallic SWNTs increased monotonically with a slope of 1.75 AU/GHz (R2=0.95 and 2.8 AU/GHz (R2=0.93, respectively, relative to a water baseline. However, after compensating for the background signal from water, it was revealed that the TA signal from metallic SWNTs increased exponentially within this frequency band. Results suggest that TA imaging and spectroscopy could be a powerful tool for quantifying the absorption properties of SWNTs and optimizing their performance as contrast agents for imaging or heat sources for thermal therapy.

  3. Preparation of Nano Tourmaline Surface Treatment Agent and Its Application on Functional Wall fabrics

    Directory of Open Access Journals (Sweden)

    Lan Fangxing

    2016-01-01

    Full Text Available In this paper, a kind of surface treatment agent and its application on the functional wall fabrics that can produce negative ion was reported. This surface treatment agent was prepared by using nano tourmaline powder dispersion with water as solvent produced by sand milling. The parameters of sand milling process, as well as powder diameter and its distribution, and the negative ion releasing behavior of the functional wall fabrics were discussed. The results showed that nano tourmaline had good dispersity stability with the number average diameter (d50 achieved 190nm and the polydispersity index reached to 0.220. The treated wall fabrics showed good performance in high adsorption with nano powder and high negative ions releasing ability. The negative ions releasing amount changes depending on the different surface treatment process of tourmaline dispersion and three-proofing agent. This facility technics could be widely used as industrial application.

  4. Synthesis and Characterization of Hexahapto-Chromium Complexes of Single-Walled Carbon Nanotubes

    KAUST Repository

    Kalinina, Irina

    2016-12-17

    This chapter employs purified pristine single-walled carbon nanotubes (SWNTs) and octadecylaminefunctionalized-SWNTs. These SWNTs are employed for investigate the potential of the SWNT sidewall to function as a hexahapto ligand for chromium (Cr), with in-depth characterization of the products using some of the techniques, such as thermogravimetric analysis (TGA), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS). Purified electric arc (EA)-produced SWNTs (P2-SWNT) and octadecylaminefunctionalized SWNTs were obtained from Carbon Solutions, Inc. The TEM images show the removal of the Cr particles from the outer surface of the SWNT bundles in the SWNT-Cr complexes after decomplexation; Cr attachment to the surface of the as-prepared complexes (η6-SWNT)Cr(CO)3 and (η6-SWNT-CONH(CH2)17CH3)Cr(CO)3 is clearly evident. The positions of the bands in the Raman spectra of SWNTs are sensitive to doping and thus the chapter examines the effect of complexation of the Cr(CO)3 and Cr(η6-benzene) units on the position of the G and 2D bands in the (η6-SWNT)Cr(CO)3 and (η6-SWNT)Cr(η6-benzene) complexes.

  5. Critical surface roughness for wall bounded flow of viscous fluids in an electric submersible pump

    Science.gov (United States)

    Deshmukh, Dhairyasheel; Siddique, Md Hamid; Kenyery, Frank; Samad, Abdus

    2017-11-01

    Surface roughness plays a vital role in the performance of an electric submersible pump (ESP). A 3-D numerical analysis has been carried out to find the roughness effect on ESP. The performance of pump for steady wall bounded turbulent flows is evaluated at different roughness values and compared with smooth surface considering a non-dimensional roughness factor K. The k- ω SST turbulence model with fine mesh at near wall region captures the rough wall effects accurately. Computational results are validated with experimental results of water (1 cP), at a design speed (3000 RPM). Maximum head is observed for a hydraulically smooth surface (K=0). When roughness factor is increased, the head decreases till critical roughness factor (K=0.1) due to frictional loss. Further increase in roughness factor (K>0.1) increases the head due to near wall turbulence. The performance of ESP is analyzed for turbulent kinetic energy and eddy viscosity at different roughness values. The wall disturbance over the rough surface affects the pressure distribution and velocity field. The roughness effect is predominant for high viscosity oil (43cP) as compared to water. Moreover, the study at off-design conditions showed that Reynolds number influences the overall roughness effect.

  6. Adhesion to bovine dentin: Surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ruse, N.D.; Smith, D.C. (Centre for Biomaterials, Faculty of Dentistry, University of Toronto, Ontario (Canada))

    1991-06-01

    x-ray photo-electron spectroscopy (xPS) and secondary ion mass spectrometry (SIMS) were used to characterize the dentin surface, to determine the effects of different pre-conditioning procedures on the elemental composition of the dentin surface, and to investigate the interaction between dentin and a dentin bonding agent (ScotchBond) by studying the changes in the elemental composition of dentin as a result of the interaction. Scanning electron microscopy (SEM) was used to characterize sample surface morphology, which was then correlated with surface elemental composition. The results showed that: (a) the elemental composition of the smear layer was similar to that of the underlying dentin; (b) cleaning with hydrogen-peroxide did not produce any modification in the elemental composition of the dentin surface; and (c) acid-etching led to an almost complete demineralization of the dentin, leaving behind an organic-rich surface. The results suggest that bonding systems that use acid-etching as a pre-conditioning procedure should be based on agents able to interact with the organic components of dentin, since bonding agents that rely on a chelation-to-calcium reaction are unlikely to be successful. The investigation of the interaction between the bonding agent and dentin led to a postulated adhesive-bonding reaction mechanism and suggested a partially cohesive failure in the bonding agent during fracturing of a dentin-bonding-agent-bonded assembly.

  7. Scattered surface charge density: A tool for surface characterization

    KAUST Repository

    Naydenov, Borislav

    2011-11-28

    We demonstrate the use of nonlocal scanning tunneling spectroscopic measurements to characterize the local structure of adspecies in their states where they are significantly less perturbed by the probe, which is accomplished by mapping the amplitude and phase of the scattered surface charge density. As an example, we study single-H-atom adsorption on the n-type Si(100)-(4 × 2) surface, and demonstrate the existence of two different configurations that are distinguishable using the nonlocal approach and successfully corroborated by density functional theory. © 2011 American Physical Society.

  8. Streptococcus thermophilus cell wall-anchored proteinase: release, purification, and biochemical and genetic characterization.

    Science.gov (United States)

    Fernandez-Espla, M D; Garault, P; Monnet, V; Rul, F

    2000-11-01

    Streptococcus thermophilus CNRZ 385 expresses a cell envelope proteinase (PrtS), which is characterized in the present work, both at the biochemical and genetic levels. Since PrtS is resistant to most classical methods of extraction from the cell envelopes, we developed a three-step process based on loosening of the cell wall by cultivation of the cells in the presence of glycine (20 mM), mechanical disruption (with alumina powder), and enzymatic treatment (lysozyme). The pure enzyme is a serine proteinase highly activated by Ca(2+) ions. Its activity was optimal at 37 degrees C and pH 7.5 with acetyl-Ala-Ala-Pro-Phe-paranitroanilide as substrate. The study of the hydrolysis of the chromogenic and casein substrates indicated that PrtS presented an intermediate specificity between the most divergent types of cell envelope proteinases from lactococci, known as the PI and PIII types. This result was confirmed by the sequence determination of the regions involved in substrate specificity, which were a mix between those of PI and PIII types, and also had unique residues. Sequence analysis of the PrtS encoding gene revealed that PrtS is a member of the subtilase family. It is a multidomain protein which is maturated and tightly anchored to the cell wall via a mechanism involving an LPXTG motif. PrtS bears similarities to cell envelope proteinases from pyogenic streptococci (C5a peptidase and cell surface proteinase) and lactic acid bacteria (PrtP, PrtH, and PrtB). The highest homologies were found with streptococcal proteinases which lack, as PrtS, one domain (the B domain) present in cell envelope proteinases from all other lactic acid bacteria.

  9. Characterization of Cell Wall Composition of Radish (Raphanus sativus L. var. sativus) and Maturation Related Changes.

    Science.gov (United States)

    Schäfer, Judith; Brett, Anika; Trierweiler, Bernhard; Bunzel, Mirko

    2016-11-16

    Cell wall composition affects the texture of plant-based foods. In addition, the main components of plant cell walls are dietary fiber constituents and are responsible for potential physiological effects that are largely affected by the structural composition of the cell walls. Radish (Raphanus sativus L. var. sativus) is known to develop a woody and firm texture during maturation and ripening, most likely due to changes in the cell wall composition. To describe these changes chemically, radish was cultivated and harvested at different time points, followed by detailed chemical analysis of insoluble fiber polysaccharides and lignin. During maturation, changes in polysaccharide profiles were observed, with a decrease in the portion of neutral pectic side chains and an increase in the xylan portion being predominant. Radish lignin was characterized by unexpectedly high incorporation of p-coumaryl alcohol into the polymer. Maturation dependent increases in lignin contents were accompanied by compositional changes of the lignin polymers with sinapyl alcohol being preferentially incorporated.

  10. Computational characterization of ordered nanostructured surfaces

    Science.gov (United States)

    Mohieddin Abukhdeir, Nasser

    2016-08-01

    A vital and challenging task for materials researchers is to determine relationships between material characteristics and desired properties. While the measurement and assessment of material properties can be complex, quantitatively characterizing their structure is frequently a more challenging task. This issue is magnified for materials researchers in the areas of nanoscience and nanotechnology, where material structure is further complicated by phenomena such as self-assembly, collective behavior, and measurement uncertainty. Recent progress has been made in this area for both self-assembled and nanostructured surfaces due to increasing accessibility of imaging techniques at the nanoscale. In this context, recent advances in nanomaterial surface structure characterization are reviewed including the development of new theory and image processing methods.

  11. Numerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater

    Directory of Open Access Journals (Sweden)

    mitra javan

    2013-12-01

    Full Text Available Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard  turbulence closure model. This study aims to explore the ability of a time splitting method on a non-staggered grid in curvilinear coordinates for simulation of two-dimensional (2D plane turbulent wall jets with finite tailwater depth. In the developed model, the kinematic free-surface boundary condition is solved simultaneously with the momentum and continuity equations, so that the water surface elevation can be obtained along with the velocity and pressure fields as part of the solution. 2D simulations are carried out for plane turbulent wall jets free surface in shallow tailwater. The comparison undertaken between numerical results and experimental measurements show that the numerical model can capture the velocity field and the drop in the water surface elevation at the gate with reasonable accuracy.

  12. Cell Wall-anchored Proteins of Enterococcus faecium: Exploring a Novel Surface

    NARCIS (Netherlands)

    Hendrickx, A.P.A.|info:eu-repo/dai/nl/304820741

    2009-01-01

    The past 4 years my research focussed on the identification, expression and function of surface-exposed LPXTG proteins and filamentous structures (also called pili or fimbriae) at the Enterococcus faecium cell wall. E. faecium is a commensal organism of the mammalian gastrointestinal tract, but the

  13. Heart wall myofibers are arranged in minimal surfaces to optimize organ function.

    Science.gov (United States)

    Savadjiev, Peter; Strijkers, Gustav J; Bakermans, Adrianus J; Piuze, Emmanuel; Zucker, Steven W; Siddiqi, Kaleem

    2012-06-12

    Heart wall myofibers wind as helices around the ventricles, strengthening them in a manner analogous to the reinforcement of concrete cylindrical columns by spiral steel cables [Richart FE, et al. (1929) Univ of Illinois, Eng Exp Stn Bull 190]. A multitude of such fibers, arranged smoothly and regularly, contract and relax as an integrated functional unit as the heart beats. To orchestrate this motion, fiber tangling must be avoided and pumping should be efficient. Current models of myofiber orientation across the heart wall suggest groupings into sheets or bands, but the precise geometry of bundles of myofibers is unknown. Here we show that this arrangement takes the form of a special minimal surface, the generalized helicoid [Blair DE, Vanstone JR (1978) Minimal Submanifolds and Geodesics 13-16], closing the gap between individual myofibers and their collective wall structure. The model holds across species, with a smooth variation in its three curvature parameters within the myocardial wall providing tight fits to diffusion magnetic resonance images from the rat, the dog, and the human. Mathematically it explains how myofibers are bundled in the heart wall while economizing fiber length and optimizing ventricular ejection volume as they contract. The generalized helicoid provides a unique foundation for analyzing the fibrous composite of the heart wall and should therefore find applications in heart tissue engineering and in the study of heart muscle diseases.

  14. Characterization of surface hydrophobicity of engineered nanoparticles.

    Science.gov (United States)

    Xiao, Yao; Wiesner, Mark R

    2012-05-15

    The surface chemistry of nanoparticles, including their hydrophobicity, is a key determinant of their fate, transport and toxicity. Engineered NPs often have surface coatings that control the surface chemistry of NPs and may dominate the effects of the nanoparticle core. Suitable characterization methods for surface hydrophobicity at the nano-scale are needed. Three types of methods, surface adsorption, affinity coefficient and contact angle, were investigated in this study with seven carbon and metal based NPs with and without coatings. The adsorption of hydrophobic molecules, Rose Bengal dye and naphthalene, on NPs was used as one measure of hydrophobicity and was compared with the relative affinity of NPs for octanol or water phases, analogous to the determination of octanol-water partition coefficients for organic molecules. The sessile drop method was adapted for measuring contact angle of a thin film of NPs. Results for these three methods were qualitatively in agreement. Aqueous-nC(60) and tetrahydrofuran-nC(60) were observed to be more hydrophobic than nano-Ag coated with polyvinylpyrrolidone or gum arabic, followed by nano-Ag or nano-Au with citrate-functionalized surfaces. Fullerol was shown to be the least hydrophobic of seven NPs tested. The advantages and limitations of each method were also discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Production and characterization of nanocapsules encapsulated linalool by ionic gelation method using chitosan as wall material

    Directory of Open Access Journals (Sweden)

    Zuobing XIAO

    Full Text Available Abstract Linalool has been extensively applied in various fields, such as flavoring agent, perfumes, cosmetics and medical science. However, linalool is unstable, volatile and readily oxidizable. A sensitive substance can be encapsulated in a capsule, so encapsulation technology can solve these problems. In this paper, linalool-loaded nanocapsules (Lin-nanocapsules were prepared via the ionic gelation method and Lin-nanocapsules were characterized. The results of Fourier transformation infrared spectroscopy (FTIR showed that linalool was successfully encapsulated in the wall materials. Scanning electron microscopy (SEM results demonstrated that the shapes of Lin-nanocapsules, with smooth surfaces, were nearly spherical. Lin-nanocapsule average particle size was 352 nm and its polydispersity index (PDI was proved to be 0.214 by the results of dynamic light scattering (DLC. Thermogravimetric results indicated that linalool loading capacity (LC was 15.17%, and encapsulation could decrease linalool release and increase linalool retaining time under the high temperature. Oscillatory shear and steady-state shear measurements of Lin-nanocapsule emulsions were systematically investigated. The results of steady-state shear showed that Lin-nanocapsule emulsion, which was Newtonian only for high shear rate, was non-Newtonian. It was proved by oscillatory shear that when oscillation frequency changed from low to high, Lin-nanocapsules emulsion changed from viscous into elastic.

  16. Surface free energy characterization of powders

    Science.gov (United States)

    Yildirim, Ismail

    2001-12-01

    Microcalorimetric measurements and contact angle measurements were conducted to study the surface chemistry of powdered minerals. The contact angle measurements were conducted on both flat and powdered talc samples, and the results were used to determine the surface free energy components using Van Oss-Chaudhury-Good (OCG) equation. It was found that the surface hydrophobicity of talc increases with decreasing particle size. At the same time, both the Lifshitz-van der Waals (gammasLW) and the Lewis acid-base (gammas AB) components (and, hence, the total surface free energy (gammas)) decrease with decreasing particle size. Heats of immersion measurements were conducted using a flow microcalorimeter on a number of powdered talc samples. The results were then used to calculate the contact angles using a rigorous thermodynamic relation. The measured heat of immersion values in water and calculated contact angles showed that the surface hydrophobicity of talc samples increase with decreasing particle size, which agrees with the direct contact angle measurements. The microcalorimetric and direct contact angle measurements showed that acid-base interactions play a crucial role in the interaction between talc and liquid. Using the Van Oss-Chaudhury-Good's surface free energy components model, various talc powders were characterized in terms of their acidic and basic properties. It was found that the magnitude of the Lewis electron donor, gamma s-, and the Lewis electron acceptor, gamma s+, components of surface free energy is directly related to the particle size. The heats of adsorption of butanol on various talc samples from n-heptane solution were also determined using a flow microcalorimeter. It was found that the total surface free energy (gammas) at the basal plane surface of talc is much lower than the total surface free energy at the edge surface. Furthermore, the effects of the surface free energies of solids during separation from each other by flotation and

  17. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Leonard C. [State Univ. of New York (SUNY), Stony Brook, NY (United States); Ishida, Takanobu [State Univ. of New York (SUNY), Stony Brook, NY (United States)

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between -0.24 and +1.25 VSCE while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-ρ-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  18. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, L.C.; Ishida, Takanobu.

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  19. Characterization of Cell Wall Proteins in Saccharomyces cerevisiae Clinical Isolates Elucidates Hsp150p in Virulence.

    Directory of Open Access Journals (Sweden)

    Pang-Hung Hsu

    Full Text Available The budding yeast Saccharomyces cerevisiae has recently been described as an emerging opportunistic fungal pathogen. Fungal cell wall mannoproteins have been demonstrated to be involved in adhesion to inert surfaces and might be engaged in virulence. In this study, we observed four clinical isolates of S. cerevisiae with relatively hydrophobic cell surfaces. Yeast cell wall subproteome was evaluated quantitatively by liquid chromatography/tandem mass spectrometry. We identified totally 25 cell wall proteins (CWPs from log-phase cells, within which 15 CWPs were quantified. The abundance of Scw10p, Pst1p, and Hsp150p/Pir2p were at least 2 folds higher in the clinical isolates than in S288c lab strain. Hsp150p is one of the members in Pir family conserved in pathogenic fungi Candida glabrata and Candida albicans. Overexpression of Hsp150p in lab strain increased cell wall integrity and potentially enhanced the virulence of yeast. Altogether, these results demonstrated that quantitative cell wall subproteome was analyzed in clinical isolates of S. cerevisiae, and several CWPs, especially Hsp150p, were found to be expressed at higher levels which presumably contribute to strain virulence and fungal pathogenicity.

  20. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Salinas-Torres, David [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Huerta, Francisco [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1. E-03801 Alcoy (Spain); Montilla, Francisco, E-mail: francisco.montilla@ua.e [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Morallon, Emilia [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain)

    2011-02-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong {pi}-{pi} interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  1. Surface Characterization of Mechanochemically Modified Exfoliated Halloysite Nanoscrolls.

    Science.gov (United States)

    Zsirka, Balázs; Táborosi, Attila; Szabó, Péter; Szilágyi, Róbert K; Horváth, Erzsébet; Juzsakova, Tatjána; Fertig, Dávid; Kristóf, János

    2017-04-11

    Surface modifications fundamentally influence the morphology of kaolinite nanostructures as a function of crystallinity and the presence of contaminants. Besides morphology, the catalytic properties of 1:1-type exfoliated aluminosilicates are also influenced by the presence of defect sites that can be generated in a controlled manner by mechanochemical activation. In this work, we investigated exfoliated halloysite nanoparticles with a quasi-homogeneous, scroll-type secondary structure toward developing structural/functional relationships for composition, atomic structure, and morphology. The surface properties of thin-walled nanoscrolls were studied as a function of mechanochemical activation expressed by the duration of dry-grinding. The surface characterizations were carried out using N2, NH3, and CO2 adsorption measurements. The effects of grinding on the nanohalloysite structure were followed using thermoanalytical thermogravimetric/derivative thermogravimetric (TG/DTG) and infrared spectroscopic [Fourier transform infrared/attenuated total reflection (FTIR/ATR)] techniques. Grinding results in partial dehydroxylation with similar changes as those observed for heat treatment above 300 °C. Mechanochemical activation shows a decrease in the dehydroxylation mass loss and the DTG peak temperature, a decrease in the specific surface area and the number of mesopores, an increase in the surface acidity, blue shift of surface hydroxide bands, and a decrease in the intensity of FTIR/ATR bands as a function of the grinding time. The experimental observations were used to guide atomic-scale structural and energetic simulations using realistic molecular cluster models for a nanohalloysite particle. A full potential energy surface description was developed for the mechanochemical activation and/or heating toward nanometahalloysite formation that aids the interpretation of experimental results. The calculated differences upon dehydroxylation show a remarkable agreement

  2. Study on critical places for maximum temperature rise on unexposed surface of curtain wall test specimens

    Directory of Open Access Journals (Sweden)

    Sulik Paweł

    2016-01-01

    Full Text Available The paper discusses the main issues related to the fire resistance of glazed curtain walls including the tests methodology and way of classification of this type of building elements. Moreover, the paper presents an attempt to determine the weak points of aluminium glazed curtain wall test specimens regarding to the maximum temperature rise measurements, based on the fire resistance tests performed in recent years by Fire Research Department of Building Research Institute. The paper analyse the results of temperature rise on unexposed surface of 17 aluminium glazed curtain wall specimens tested for internal fire exposure in accordance with EN 1364-3:2006 [3] and EN 1364-3:2014 [4], which achieved the fire resistance class of min. EI 15.

  3. Global characterization of surface soil moisture drydowns

    Science.gov (United States)

    McColl, Kaighin A.; Wang, Wei; Peng, Bin; Akbar, Ruzbeh; Short Gianotti, Daniel J.; Lu, Hui; Pan, Ming; Entekhabi, Dara

    2017-04-01

    Loss terms in the land water budget (including drainage, runoff, and evapotranspiration) are encoded in the shape of soil moisture "drydowns": the soil moisture time series directly following a precipitation event, during which the infiltration input is zero. The rate at which drydowns occur—here characterized by the exponential decay time scale τ—is directly related to the shape of the loss function and is a key characteristic of global weather and climate models. In this study, we use 1 year of surface soil moisture observations from NASA's Soil Moisture Active Passive mission to characterize τ globally. Consistent with physical reasoning, the observations show that τ is lower in regions with sandier soils, and in regions that are more arid. To our knowledge, these are the first global estimates of τ—based on observations alone—at scales relevant to weather and climate models.

  4. Bacillus anthracis Sortase A (SrtA) Anchors LPXTG Motif-Containing Surface Proteins to the Cell Wall Envelope

    OpenAIRE

    Gaspar, Andrew H.; Marraffini, Luciano A.; Glass, Elizabeth M.; DeBord, Kristin L.; Ton-That, Hung; Schneewind, Olaf

    2005-01-01

    Cell wall-anchored surface proteins of gram-positive pathogens play important roles during the establishment of many infectious diseases, but the contributions of surface proteins to the pathogenesis of anthrax have not yet been revealed. Cell wall anchoring in Staphylococcus aureus occurs by a transpeptidation mechanism requiring surface proteins with C-terminal sorting signals as well as sortase enzymes. The genome sequence of Bacillus anthracis encodes three sortase genes and eleven surfac...

  5. Multimodal optical measurement in vitro of surface deformations and wall thickness of the pressurized aortic arch

    Science.gov (United States)

    Genovese, Katia; Humphrey, Jay D.

    2015-04-01

    Computational modeling of arterial mechanics continues to progress, even to the point of allowing the study of complex regions such as the aortic arch. Nevertheless, most prior studies assign homogeneous and isotropic material properties and constant wall thickness even when implementing patient-specific luminal geometries obtained from medical imaging. These assumptions are not due to computational limitations, but rather to the lack of spatially dense sets of experimental data that describe regional variations in mechanical properties and wall thickness in such complex arterial regions. In this work, we addressed technical challenges associated with in vitro measurement of overall geometry, full-field surface deformations, and regional wall thickness of the porcine aortic arch in its native anatomical configuration. Specifically, we combined two digital image correlation-based approaches, standard and panoramic, to track surface geometry and finite deformations during pressurization, with a 360-deg fringe projection system to contour the outer and inner geometry. The latter provided, for the first time, information on heterogeneous distributions of wall thickness of the arch and associated branches in the unloaded state. Results showed that mechanical responses vary significantly with orientation and location (e.g., less extensible in the circumferential direction and with increasing distance from the heart) and that the arch exhibits a nearly linear increase in pressure-induced strain up to 40%, consistent with other findings on proximal porcine aortas. Thickness measurements revealed strong regional differences, thus emphasizing the need to include nonuniform thicknesses in theoretical and computational studies of complex arterial geometries.

  6. The wall as witness-surface or, the Reichstag graffiti and paradoxes of writing over history

    Directory of Open Access Journals (Sweden)

    Ella Chmielewska

    2008-06-01

    Full Text Available Wall writing occupies a conflicted position in the urban space and in the public discourse as a political act and as an aesthetic phenomenon. Ever more present in the contemporary visual and conceptual vocabulary, it is increasingly deployed by the world of high art and politics, commerce and academia. Torn off the wall, taken as a photogenic empty sign, its potent meanings abstracted from its material surface, wall writing becomes a powerful rhetorical tool. Paris graffiti of‘68, NewYork subway art of the 70s and the pre-89 writing on the Berlin wall combine into an amalgam of aesthetic protest, graphically raw and resolutely awkward idiom that transforms an image of writing into a potent new text. The messiness of its lines, the untamed styles and the rebellious attitude towards the material surface all conspire to create the graffiti’s myth of freedom and unrestrained individual expression, further extended to associations with democratic ambitions. Supported by the popularity of hip-hop culture and the contemporary urban cool, graffiti becomes a handy implement to evoke the individual voice, endorse place identity or authenticity.

  7. Characterization of counter-rotating streamwise vortices in flat rectangular channel with one-sided wavy wall

    KAUST Repository

    Bouremel, Yann

    2016-11-01

    Particle Image Velocimetry (PIV) has been used to characterize the evolution of counter-rotating streamwise vortices in a rectangular channel with one sided wavy surface. The vortices were created by a uniform set of saw-tooth carved over the leading edge of a flat plate at the entrance of a flat rectangular channel with one-sided wavy wall. PIV measurements were taken over the spanwise and streamwise planes at different locations and at Reynolds number of 2500. Two other Reynolds numbers of 2885 and 3333 have also been considered for quantification purpose. Pairs of counter-rotating streamwise vortices have been shown experimentally to be centred along the spanwise direction at the saw-tooth valley where the vorticity ωz=0ωz=0. It has also been found that the vorticity ωzωz of the pairs of counter-rotating vortices decreases along the streamwise direction, and increases with the Reynolds number. Moreover, different quantifications of such counter-rotating vortices have been discussed such as their size, boundary layer, velocity profile and vorticity. The current study shows that the mixing due to the wall shear stress of counter-rotating streamwise vortices as well as their averaged viscous dissipation rate of kinetic energy decrease over flat and adverse pressure gradient surfaces while increasing over favourable pressure gradient surfaces. Finally, it was also demonstrated that the main direction of stretching is orientated at around 45° with the main flow direction.

  8. Comparison analysis of wooden house thermal comfort in tropical coast and mountainous by using wall surface temperature difference

    Science.gov (United States)

    Hendriani, Adinda Septi; Hermawan, Retyanto, Banar

    2017-09-01

    Passive thermal comfort can be analyzed through several ways including through analyzing thermal of building envelope. The wall is one of building envelope that affect the performance of the thermal buildings. Quantitative research aims to analyze the thermal comfort of the wooden house in the tropical coastal and mountains by using the surface temperature of the walls of the building. Data retrieval was done by measurement of the surface temperature of the outer and inner side of the wall using infrared thermometers at 5 am, 12 pm, 5 pm and 8 pm. The wall is measured the wall which bordering the spaces outside and exposed to the sun light. The measurement was done at 10 wooden house in a tropical coastal and 10 wooden house in tropical mountains. The surface temperature average of the outside wall of a tropical coastal house by 27.1°C, while the inner side wall has a surface temperature by 26.2°C. The difference between the average temperature of the outer surface and its inner surface by 0.9°C (lowering temperature). Tropical mountain residences have an average temperature of the outer side wall by 18.0°C and the average temperature inner side wall by 18.8°C. The difference between the average temperature of the outer surface and inner surface by 0.8 °C (raise the temperature). The nature of the wood is a storage temperature of the radiation so adjusting the temperature of the radiation that exist on a specific area. It can be concluded that the timber wall is more suitable for residential houses in the tropical coast than tropical mountains based on the difference in surface temperature.

  9. Fluid mechanics of friction-reducing riblet wall surfaces; Zur Stroemungsmechanik wandreibungsvermindernder riblet-Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Bruse, M.

    1999-10-01

    The author investigated the reduction of turbulent wall friction by riblets in flow direction. Compared with a smooth, unstructured surface, riblet surfaces can reduce the turbulent wall friction by up to 10%. Apart from a theoretical description of the mechanism of wall friction reduction, the experimental optimisation of the riblet geometry and flow rate measurements to support the theory are described as well. Technical applications of riblet surfaces are discussed. A special, oil-filled flow tunnel was constructed for the investigations. The tunnel and its high-accuracy shear strain meter are described, as is the hot film measuring system for flow rate measurement. [Deutsch] Diese Arbeit befasst sich umfassend mit der turbulenten Wandreibungsverminderung durch feine, in Stroemungsrichtung ausgerichtete Rippen. So strukturierte Oberflaechen werden als riblet-Oberflaechen oder technische Haihaut bezeichnet. Letzteres, da auf den Schuppen schneller Haie ebenfalls feine Rippen zu finden sind. Mit riblet-Oberflaechen kann die turbulente Wandreibung um bis zu 10% im Vergleich zu einer glatten unstrukturierten Oberflaeche vermindert werden. Neben einer theoretischen Beschreibung des Mechanismus der Wandreibungsverminderung werden die experimentelle Optimierung der Rippengeometrie und Geschwindigkeitsmessungen zur Untermauerung der Theorie beschrieben. Der technische Einsatz von riblet-Oberflaechen wird ebenfalls diskutiert. Fuer die Untersuchungen wurde ein spezieller Stroemungskanal aufgebaut, der mit Oel befuellt ist. Der Kanal und seine sehr genaue Schubspannungswaage, wie auch die eingesetzte Heissfilm-Messtechnik zur Geschwindigkeitsmessung, werden ausfuehrlich beschrieben. (orig.)

  10. Surface characterization of graphene based materials

    Science.gov (United States)

    Pisarek, M.; Holdynski, M.; Krawczyk, M.; Nowakowski, R.; Roguska, A.; Malolepszy, A.; Stobinski, L.; Jablonski, A.

    2016-12-01

    In the present study, two kind of samples were used: (i) a monolayer graphene film with a thickness of 0.345 nm deposited by the CVD method on Cu foil, (ii) graphene flakes obtained by modified Hummers method and followed by reduction of graphene oxide. The inelastic mean free path (IMFP), characterizing electron transport in graphene/Cu sample and reduced graphene oxide material, which determines the sampling depth of XPS and AES were evaluated from relative Elastic Peak Electron Spectroscopy (EPES) measurements with the Au standard in the energy range 0.5-2 keV. The measured IMFPs were compared with IMFPs resulting from experimental optical data published in the literature for the graphite sample. The EPES IMFP values at 0.5 and 1.5 keV was practically identical to that calculated from optical data for graphite (less than 4% deviation). For energies 1 and 2 keV, the EPES IMFPs for rGO were deviated up to 14% from IMFPs calculated using the optical data by Tanuma et al. [1]. Before EPES measurements all samples were characterized by various techniques like: FE-SEM, AFM, XPS, AES and REELS to visualize the surface morphology/topography and identify the chemical composition.

  11. Surface characterization of graphene based materials

    Energy Technology Data Exchange (ETDEWEB)

    Pisarek, M., E-mail: mpisarek@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Holdynski, M.; Krawczyk, M.; Nowakowski, R.; Roguska, A. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Malolepszy, A. [Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-065 Warsaw (Poland); Stobinski, L. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-065 Warsaw (Poland); Jablonski, A. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2016-12-01

    Highlights: • Two kind of samples: commercial graphene on Cu substrate and rGO flakes. • EPES applied to measure the IMFPs in graphene based materials. • Characterization by various techniques like: FE-SEM, AFM, XPS, AES and REELS. • EPES IMFPs for rGO deviated up to 14% from IMFPs calculated using the optical data. - Abstract: In the present study, two kind of samples were used: (i) a monolayer graphene film with a thickness of 0.345 nm deposited by the CVD method on Cu foil, (ii) graphene flakes obtained by modified Hummers method and followed by reduction of graphene oxide. The inelastic mean free path (IMFP), characterizing electron transport in graphene/Cu sample and reduced graphene oxide material, which determines the sampling depth of XPS and AES were evaluated from relative Elastic Peak Electron Spectroscopy (EPES) measurements with the Au standard in the energy range 0.5–2 keV. The measured IMFPs were compared with IMFPs resulting from experimental optical data published in the literature for the graphite sample. The EPES IMFP values at 0.5 and 1.5 keV was practically identical to that calculated from optical data for graphite (less than 4% deviation). For energies 1 and 2 keV, the EPES IMFPs for rGO were deviated up to 14% from IMFPs calculated using the optical data by Tanuma et al. [1]. Before EPES measurements all samples were characterized by various techniques like: FE-SEM, AFM, XPS, AES and REELS to visualize the surface morphology/topography and identify the chemical composition.

  12. Thermal characterization of nanoporous 'black silicon' surfaces

    Science.gov (United States)

    Nichols, Logan; Duan, Wenqi; Toor, Fatima

    2016-09-01

    In this work we characterize the thermal conductivity properties of nanoprous `black silicon' (bSi). We fabricate the nanoporous bSi using the metal assisted chemical etching (MACE) process utilizing silver (Ag) metal as the etch catalyst. The MACE process steps include (i) electroless deposition of Ag nanoparticles on the Si surface using silver nitrate (AgNO3) and hydrofluoric acid (HF), and (ii) a wet etch in a solution of HF and hydrogen peroxide (H2O2). The resulting porosity of bSi is dependent on the ratio of the concentration of HF to (HF + H2O2); the ratio is denoted as rho (ρ). We find that as etch time of bSi increases the thermal conductivity of Si increases as well. We also analyze the absorption of the bSi samples by measuring the transmission and reflection using IR spectroscopy. This study enables improved understanding of nanoporous bSi surfaces and how they affect the solar cell performance due to the porous structures' thermal properties.

  13. A Computationally-Efficient Numerical Model to Characterize the Noise Behavior of Metal-Framed Walls

    Directory of Open Access Journals (Sweden)

    Arun Arjunan

    2015-08-01

    Full Text Available Architects, designers, and engineers are making great efforts to design acoustically-efficient metal-framed walls, minimizing acoustic bridging. Therefore, efficient simulation models to predict the acoustic insulation complying with ISO 10140 are needed at a design stage. In order to achieve this, a numerical model consisting of two fluid-filled reverberation chambers, partitioned using a metal-framed wall, is to be simulated at one-third-octaves. This produces a large simulation model consisting of several millions of nodes and elements. Therefore, efficient meshing procedures are necessary to obtain better solution times and to effectively utilise computational resources. Such models should also demonstrate effective Fluid-Structure Interaction (FSI along with acoustic-fluid coupling to simulate a realistic scenario. In this contribution, the development of a finite element frequency-dependent mesh model that can characterize the sound insulation of metal-framed walls is presented. Preliminary results on the application of the proposed model to study the geometric contribution of stud frames on the overall acoustic performance of metal-framed walls are also presented. It is considered that the presented numerical model can be used to effectively visualize the noise behaviour of advanced materials and multi-material structures.

  14. Plasma and antenna coupling characterization in ICRF-wall conditioning experiments

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Manash Kumar, E-mail: manashkr@gmail.com [National Institute of Technology Agartala, Jirania, Tripura 799 055 (India); Institut fuer Energieforschung-Plasmaphysik FZ Juelich, Euratom Association, 52425 Juelich (Germany); Lyssoivan, A.; Koch, R.; Wauters, T. [LPP-ERM/KMS, Association Euratom-Belgian State, 1000 Brussels (Belgium); Douai, D. [CEA, IRFM, Association Euratom-CEA, 13108 St Paul lez Durance (France); Bobkov, V. [Max Planck Institute fur Plasma Physik, Euratom Association, 85748 Garching (Germany); Van Eester, D.; Lerche, E.; Ongena, J. [LPP-ERM/KMS, Association Euratom-Belgian State, 1000 Brussels (Belgium); Rohde, V. [Max Planck Institute fur Plasma Physik, Euratom Association, 85748 Garching (Germany); Noterdaeme, J.-M. [Max Planck Institute fur Plasma Physik, Euratom Association, 85748 Garching (Germany); Gent University, EESA Department, B-9000 Gent (Belgium); Graham, M.; Mayoral, M.-L.; Monakhov, I.; Nightingale, M. [CCFE/Euratom Fusion Association, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Plyusnin, V.V. [Instituto de Plasmas e Fusao Nuclear, Associacao EURATOM-IST, Av. Rovisco Pais, Lisbon (Portugal)

    2012-02-15

    Ion Cyclotron Wall Conditioning (ICWC) discharges, in pulsed-mode operation, were carried out in the divertor tokamaks ASDEX Upgrade (AUG) and JET to simulate the scenario of ITER wall conditioning at half-field (AUG) and full-field (JET). ICWC-plasma and antenna coupling characterization results obtained during the Ion Cyclotron Resonance Frequency (ICRF)-Wall Conditioning experiments performed in helium-hydrogen mixture in AUG and helium-deuterium mixtures in JET are presented here. Safe operational regimes for optimum ICWC in ITER could be explored for different magnetic fields. Satisfactory antenna coupling in the Mode Conversion scenario along with reproducible generation of ICRF plasmas and reliable wall conditioning were achieved by coupling RF power from one or two ICRF antennas at two (AUG, JET) different resonant frequencies. These results are in qualitative agreement with the predictions of 1-D TOMCAT code. Present study of ICWC indicates towards the beneficial effect of application of an additional (along with toroidal magnetic field) stationary vertical (B{sub V} Much-Less-Than B{sub T}) magnetic field on antenna coupling and plasma parameters. The results obtained from JET and AUG tokamaks, presented in this paper, emphasizes the proposed phenomenological schemes for further development of ICWC in superconducting tokamaks.

  15. Characterization of Ancient Egyptian Wall Paintings, the Excavations of Cairo University at Saqqara

    Directory of Open Access Journals (Sweden)

    Hussein MAREY MAHMOUD

    2011-09-01

    Full Text Available The present study aims at characterizing some Egyptian wall paintings discovered during the excavations of Cairo University (since 1988 and recently in 2005 at Saqqara area in the south of Cairo. There, a number of tombs dating back to the 19th dynasty (c.1293–1185 BC were discovered. The walls of these tombs are carved with bass and raised reliefs and painted with different colours. The characterization of the wall paintings was done by means of optical microscopy (OM, scanning electron microscopy (backscattered electron mode, BSE equipped with an energy dispersive X-ray detector (EDS, micro XRF spectrometry (µ-XRF, and X-ray diffraction analysis (XRD. The analysis of the examined samples indicated that the blue pigment is Egyptian blue (Cuprorivaite, the green pigment is Egyptian green, the red pigment is red ochre, and the yellow pigment is a blended layer of yellow ochre and orpiment (As2S3. The results will help in providing an image concerning some painting materials used during the new Kingdom in ancient Egypt

  16. Identification and genetic characterization of maize cell wall variation for improved biorefinery feedstock characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, Markus [UC Berkeley; Hake, Sarah [USDA Albany

    2013-10-31

    The objectives of this program are to 1) characterize novel maize mutants with altered cell walls for enhanced biorefinery characteristics and 2) find quantitative trait loci (QTLs) related to biorefinery characteristics by taking advantage of the genetic diversity of maize. As a result a novel non-transgenic maize plant (cal1) has been identified, whose stover (leaves and stalk) contain more glucan in their walls leading to a higher saccharification yield, when subjected to a standard enzymatic digestion cocktail. Stacking this trait with altered lignin mutants yielded evene higher saccharification yields. Cal-1 mutants do not show a loss of kernel and or biomass yield when grown in the field . Hence, cal1 biomass provides an excellent feedstock for the biofuel industry.

  17. Characterization of pigments and ligands in a wall painting fragment from Liternum archaeological park (Italy).

    Science.gov (United States)

    Corso, Gaetano; Gelzo, Monica; Chambery, Angela; Severino, Valeria; Di Maro, Antimo; Lomoriello, Filomena Schiano; D'Apolito, Oceania; Dello Russo, Antonio; Gargiulo, Patrizia; Piccioli, Ciro; Arcari, Paolo

    2012-11-01

    Spectroscopic and MS techniques were used to characterize the pigments and the composition of polar and nonpolar binders of a stray wall painting fragment from Liternum (Italy) archaeological excavation. X-ray fluorescence and diffraction analysis of the decorations indicated mainly the presence of calcite, quartz, hematite, cinnabar, and cuprorivaite. Infrared spectroscopy, GC coupled to flame-ionization detector, and MS analysis of the polar and nonpolar components extracted from paint layers from three different color regions revealed the presence of free amino acids, sugars, and fatty acids. Interestingly, LC-MS shotgun analysis of the red painting region showed the presence of αS1-casein of buffalo origin. Compared to our previous results from Pompeii's wall paintings, even though the Liternum painting mixture contained also binders of animal origin, the data strongly suggest that in both cases a tempera painting technique was utilized. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The Application of Marker Based Segmentation for Surface Texture Characterization

    Directory of Open Access Journals (Sweden)

    Che Pin Nuraini binti

    2016-01-01

    Full Text Available Structured surfaces have been increasingly used in industry for a variety of applications, including improving the tribological properties of the surfaces. Surface metrology plays an important role in this discipline since with the help of surface metrology technology, surface texture can be measured, visualize and quantified. Traditional surface texture parameters, such as roughness and waviness, cannot be related to the function for structured surfaces due to the less statistical description and little information. Therefore, a new approaches based on characterizing the structured surface is introduces where this paper focus on type of edges grain surface. To identify features, it is a must to detect the location of the edges and segmented the features based on the detected edges. Hence characterization of surface texture segmentation based on the edges detection is developing using Marker Based segmentation and it is prove that this method is possible to be used in order to characterize the structured surface.

  19. Characterization and robust filtering of multifunctional surfaces using ISO standards

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Godi, Alessandro; De Chiffre, Leonardo

    2011-01-01

    to the multi-process production method involved. A series of MUFU surfaces were characterized by using the ISO 13565 standard for stratified surfaces and it is shown that the standard in some cases is inadequate for the characterization of a MUFU surface. To improve the filtering of MUFU surfaces, the robust...... Gaussian regression filtering technique described in ISO 16610-31 is analyzed and discussed. By slight modifications it is shown how the robust Gaussian regression filter can be applied to remove the form and find a suitable reference surface for further characterization of the MUFU surfaces...

  20. Control of neuronal network organization by chemical surface functionalization of multi-walled carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jie; Bibari, Olivier; Marchand, Gilles; Benabid, Alim-Louis; Sauter-Starace, Fabien [CEA, LETI-Minatec, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Appaix, Florence; De Waard, Michel, E-mail: fabien.sauter@cea.fr, E-mail: michel.dewaard@ujf-grenoble.fr [Inserm U836, Grenoble Institute of Neuroscience, Site Sante la Tronche, Batiment Edmond J Safra, Chemin Fortune Ferrini, BP170, 38042 Grenoble Cedex 09 (France)

    2011-05-13

    Carbon nanotube substrates are promising candidates for biological applications and devices. Interfacing of these carbon nanotubes with neurons can be controlled by chemical modifications. In this study, we investigated how chemical surface functionalization of multi-walled carbon nanotube arrays (MWNT-A) influences neuronal adhesion and network organization. Functionalization of MWNT-A dramatically modifies the length of neurite fascicles, cluster inter-connection success rate, and the percentage of neurites that escape from the clusters. We propose that chemical functionalization represents a method of choice for developing applications in which neuronal patterning on MWNT-A substrates is required.

  1. Effect of Surface Modification on the Hansen Solubility Parameters of Single-Walled Carbon Nanotubes

    DEFF Research Database (Denmark)

    Ma, Jing; Larsen, Mikael

    2013-01-01

    In this work, seven types of surface-modified single-walled carbon nanotubes (SWNTs) were studied by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy to investigate the functional groups and extent of functionalization. Hansen solubility parameters were determined based on observations...... of the sedimentation and swollen states of the SWNTs in solvents after ultrasonication, and the results were compared with the hydrodynamic sizes of the SWNTs evaluated by the dynamic light scattering method. We found that the solubility of SWNTs is related to their functional groups and degree of functionalization...

  2. Optimization of sulfate removal from wastewater using magnetic multi-walled carbon nanotubes by response surface methodology.

    Science.gov (United States)

    Alimohammadi, Vahid; Sedighi, Mehdi; Jabbari, Ehsan

    2017-11-01

    This paper reports a facile method for removal of sulfate from wastewater by magnetic multi-walled carbon nanotubes (MMWCNTs). Multi-walled carbon nanotubes and MMWCNTs were characterized by X-ray diffraction, Raman, transmission electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The results of the analysis indicated that MMWCNTs were synthesized successfully. The MMWCNTs can be easily manipulated in a magnetic field for the desired separation, leading to the removal of sulfate from wastewater. Response surface methodology (RSM) coupled with central composite design was applied to evaluate the effects of D/C (adsorbent dosage per initial concentration of pollutant (mgadsorbent/(mg/l)initial)) and pH on sulfate removal (%). Using RSM methodology, a quadratic polynomial equation was obtained, for removal of sulfate, by multiple regression analysis. The optimum combination for maximum sulfate removal of 93.28% was pH = 5.96 and D/C = 24.35. The experimental data were evaluated by the Langmuir and Freundlich adsorption models. The adsorption capacity of sulfate in the studied concentration range was 56.94 (mg/g). It was found out that the MMWCNTs could be considered as a promising adsorbent for the removal of sulfate from wastewater.

  3. Wall shear stress characterization of a 3D bluff-body separated flow

    Science.gov (United States)

    Fourrié, Grégoire; Keirsbulck, Laurent; Labraga, Larbi

    2013-10-01

    Efficient flow control strategies aimed at reducing the aerodynamic drag of road vehicles require a detailed knowledge of the reference flow. In this work, the flow around the rear slanted window of a generic car model was experimentally studied through wall shear stress measurements using an electrochemical method. The mean and fluctuating wall shear stress within the wall impact regions of the recirculation bubble and the main longitudinal vortex structures which develop above the rear window are presented. Correlations allow a more detailed characterization of the recirculation phenomenon within the separation bubble. In the model symmetry plane the recirculation structure compares well with simpler 2D configurations; specific lengths, flapping motion and shedding of large-scale vortices are observed, these similarities diminish when leaving the middle plane due to the strong three-dimensionality of the flow. A specific attention is paid to the convection processes occurring within the recirculation: a downstream convection velocity is observed, in accordance with 2D recirculations from the literature, and an upstream convection is highlighted along the entire bubble length which has not been underlined in some previous canonical configurations.

  4. Characterization of atherosclerotic disease in thoracic aorta: A 3D, multicontrast vessel wall imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Changwu [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China); Department of Radiology, The Second Clinical Medical College, Yangzhou University, Yangzhou (China); Qiao, Huiyu; He, Le [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China); Yuan, Chun [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China); Department of Radiology, University of Washington, Seattle, WA (United States); Chen, Huijun; Zhang, Qiang; Li, Rui [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China); Wang, Wei; Du, Fang [Department of Radiology, The Second Clinical Medical College, Yangzhou University, Yangzhou (China); Li, Cheng, E-mail: cjr.licheng@vip.163.com [Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing (China); Zhao, Xihai, E-mail: xihaizhao@tsinghua.edu.cn [Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing (China)

    2016-11-15

    Purpose: To investigate the characteristics of plaque in the thoracic aorta using three dimensional multicontrast magnetic resonance imaging. Materials and methods: Elderly subjects (≥60 years) were recruited in this study. Thoracic aorta was imaged on a 3.0T MR scanner by acquiring multicontrast sequences. The plaque burden was evaluated by measuring lumen area, wall area, wall thickness, and normalized wall index. The presence or absence of plaque and intraplaque hemorrhage (IPH)/mural thrombus (MT) were identified. The characteristics of atherosclerosis among different thoracic aorta segments (AAO: ascending aorta; AOA: aortic arch, and DOA: descending aorta) were determined. Results: Of 66 recruited subjects (mean age 72.3 ± 6.2 years, 30 males), 55 (83.3%) had plaques in the thoracic aorta. The prevalence of plaque in AAO, AOA, and DAO was 5.4%, 72.7%, and 71.2%, respectively. In addition, 21.2% of subjects were found to have lesions with IPH/MT in the thoracic aorta. The prevalence of IPH/MT in segment of AAO, AOA and DAO was 0%, 13.6%, and 12.1%, respectively. The aortic wall showed the highest NWI in DAO (34.1% ± 4.8%), followed by AOA (31.2% ± 5%), and AAO (26.8% ± 3.3%) (p < 0.001). Conclusion: Three dimensional multicontrast MR imaging is capable of characterizing atherosclerotic plaques in the thoracic aorta. The findings of high prevalence of plaques and the presence of high risk plaques in the thoracic aorta suggest early screening for aortic vulnerable lesions in the elderly.

  5. β-(1,3)-Glucan Unmasking in Some Candida albicans Mutants Correlates with Increases in Cell Wall Surface Roughness and Decreases in Cell Wall Elasticity.

    Science.gov (United States)

    Hasim, Sahar; Allison, David P; Retterer, Scott T; Hopke, Alex; Wheeler, Robert T; Doktycz, Mitchel J; Reynolds, Todd B

    2017-01-01

    Candida albicans is among the most common human fungal pathogens, causing a broad range of infections, including life-threatening systemic infections. The cell wall of C. albicans is the interface between the fungus and the innate immune system. The cell wall is composed of an outer layer enriched in mannosylated glycoproteins (mannan) and an inner layer enriched in β-(1,3)-glucan and chitin. Detection of C. albicans by Dectin-1, a C-type signaling lectin specific for β-(1,3)-glucan, is important for the innate immune system to recognize systemic fungal infections. Increased exposure of β-(1,3)-glucan to the immune system occurs when the mannan layer is altered or removed in a process called unmasking. Nanoscale changes to the cell wall during unmasking were explored in live cells with atomic force microscopy (AFM). Two mutants, the cho1Δ/Δ and kre5Δ/Δ mutants, were selected as representatives that exhibit modest and strong unmasking, respectively. Comparisons of the cho1Δ/Δ and kre5Δ/Δ mutants to the wild type reveal morphological changes in their cell walls that correlate with decreases in cell wall elasticity. In addition, AFM tips functionalized with Dectin-1 revealed that the forces of binding of Dectin-1 to all of the strains were similar, but the frequency of binding was highest for the kre5Δ/Δ mutant, decreased for the cho1Δ/Δ mutant, and rare for the wild type. These data show that nanoscale changes in surface topology are correlated with increased Dectin-1 adhesion and decreased cell wall elasticity. AFM, using tips functionalized with immunologically relevant molecules, can map epitopes of the cell wall and increase our understanding of pathogen recognition by the immune system. Copyright © 2016 American Society for Microbiology.

  6. β-(1,3)-Glucan Unmasking in Some Candida albicans Mutants Correlates with Increases in Cell Wall Surface Roughness and Decreases in Cell Wall Elasticity

    Science.gov (United States)

    Hasim, Sahar; Allison, David P.; Retterer, Scott T.; Hopke, Alex; Wheeler, Robert T.; Doktycz, Mitchel J.

    2016-01-01

    ABSTRACT Candida albicans is among the most common human fungal pathogens, causing a broad range of infections, including life-threatening systemic infections. The cell wall of C. albicans is the interface between the fungus and the innate immune system. The cell wall is composed of an outer layer enriched in mannosylated glycoproteins (mannan) and an inner layer enriched in β-(1,3)-glucan and chitin. Detection of C. albicans by Dectin-1, a C-type signaling lectin specific for β-(1,3)-glucan, is important for the innate immune system to recognize systemic fungal infections. Increased exposure of β-(1,3)-glucan to the immune system occurs when the mannan layer is altered or removed in a process called unmasking. Nanoscale changes to the cell wall during unmasking were explored in live cells with atomic force microscopy (AFM). Two mutants, the cho1Δ/Δ and kre5Δ/Δ mutants, were selected as representatives that exhibit modest and strong unmasking, respectively. Comparisons of the cho1Δ/Δ and kre5Δ/Δ mutants to the wild type reveal morphological changes in their cell walls that correlate with decreases in cell wall elasticity. In addition, AFM tips functionalized with Dectin-1 revealed that the forces of binding of Dectin-1 to all of the strains were similar, but the frequency of binding was highest for the kre5Δ/Δ mutant, decreased for the cho1Δ/Δ mutant, and rare for the wild type. These data show that nanoscale changes in surface topology are correlated with increased Dectin-1 adhesion and decreased cell wall elasticity. AFM, using tips functionalized with immunologically relevant molecules, can map epitopes of the cell wall and increase our understanding of pathogen recognition by the immune system. PMID:27849179

  7. Surface tailored single walled carbon nanotubes as catalyst support for direct methanol fuel cell

    Science.gov (United States)

    Kireeti, Kota V. M. K.; Jha, Neetu

    2017-10-01

    A strategy for tuning the surface property of Single Walled Carbon Nanotubes (SWNTs) for enhanced methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) along with methanol tolerance is presented. The surface functionality is tailored using controlled acid and base treatment. Acid treatment leads to the attachment of carboxylic carbon (CC) fragments to SWNT making it hydrophilic (P3-SWNT). Base treatment of P3-SWNT with 0.05 M NaOH reduces the CCs and makes it hydrophobic (P33-SWNT). Pt catalyst supported on the P3-SWNT possesses enhanced MOR whereas that supported on P33-SWNT not only enhances ORR kinetics but also possess good tolerance towards methanol oxidation as verified by the electrochemical technique.

  8. Investigation of thermal effect on exterior wall surface of building material at urban city area

    Energy Technology Data Exchange (ETDEWEB)

    Md Din, Mohd Fadhil; Dzinun, Hazlini; Ponraj, M.; Chelliapan, Shreeshivadasan; Noor, Zainura Zainun [Institute of Environmental Water Resources and Management (IPASA), Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Remaz, Dilshah [Faculty of Built Environment, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Iwao, Kenzo [Nagoya Institute of Technology, Nagoya (Japan)

    2012-07-01

    This paper describes the investigation of heat impact on the vertical surfaces of buildings based on their thermal behavior. The study was performed based on four building materials that is commonly used in Malaysia; brick, concrete, granite and white concrete tiles. The thermal performances on the building materials were investigated using a surface temperature sensor, data logging system and infrared thermography. Results showed that the brick had the capability to absorb and store heat greater than other materials during the investigation period. The normalized heat (total heat/solar radiation) of the brick was 0.093 and produces high heat (51% compared to granite), confirming a substantial amount of heat being released into the atmosphere through radiation and convection. The most sensitive material that absorbs and stores heat was in the following order: brick > concrete > granite > white concrete tiles. It was concluded that the type of exterior wall material used in buildings had significant impact to the environment.

  9. Laser-induced breakdown spectroscopy for elemental characterization of calcitic alterations on cave walls.

    Science.gov (United States)

    Bassel, Léna; Motto-Ros, Vincent; Trichard, Florian; Pelascini, Frédéric; Ammari, Faten; Chapoulie, Rémy; Ferrier, Catherine; Lacanette, Delphine; Bousquet, Bruno

    2017-01-01

    Cave walls are affected by different kinds of alterations involving preservative issues in the case of ornate caves, in particular regarding the rock art covering the walls. In this context, coralloids correspond to a facies with popcorn-like aspect belonging to the speleothem family, mostly composed of calcium carbonate. The elemental characterization indicates the presence of elements that might be linked to the diagenesis and the expansion of the alterations as demonstrated by prior analyses on stalagmites. In this study, we report the use of laser-induced breakdown spectroscopy (LIBS) to characterize the elemental composition of one coralloid sample with a portable instrument allowing punctual measurements and a laboratory mapping setup delivering elemental images with spatial resolution at the micrometric scale, being particularly attentive to Mg, Sr, and Si identified as elements of interest. The complementarity of both instruments allows the determination of the internal structure of the coralloid. Although a validation based on a reference technique is necessary, LIBS data reveal that the external layer of the coralloid is composed of laminations correlated to variations of the LIBS signal of Si. In addition, an interstitial layer showing high LIBS signals for Fe, Al, and Si is interpreted to be a detrital clay interface between the external and the internal part of the coralloid. These preliminary results sustain a possible formation scenario of the coralloid by migration of the elements from the bedrock.

  10. Molecular dynamics for lateral surface adhesion and peeling behavior of single-walled carbon nanotubes on gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pei-Hsing, E-mail: phh@mail.npust.edu.tw [Department of Mechanical Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Adhesion and peeling behaviors of SWCNTs are investigated by detailed, fully atomistic MD simulations. Black-Right-Pointing-Pointer Adhesion energy of SWCNTs are discussed. Black-Right-Pointing-Pointer Dynamical behaviors of SWCNTs in low temperature adhesion are analyzed. Black-Right-Pointing-Pointer Adhesion strengths of SWCNTs obtained from MD simulations are compared with the predictions of Hamaker theory and JKR model. - Abstract: Functional gecko-inspired adhesives have attracted a lot of research attention in the last decade. In this work, the lateral surface adhesion and normal peeling-off behavior of single-walled carbon nanotubes (SWCNTs) on gold substrates are investigated by performing detailed, fully atomistic molecular dynamics (MD) simulations. The effects of the diameter and adhered length of CNTs on the adhesive properties were systematically examined. The simulation results indicate that adhesion energies between the SWCNTs and the Au surface varied from 220 to 320 mJ m{sup -2} over the reported chirality range. The adhesion forces on the lateral surface and the tip of the nanotubes obtained from MD simulations agree very well with the predictions of Hamaker theory and Johnson-Kendall-Roberts (JKR) model. The analyses of covalent bonds indicate that the SWCNTs exhibited excellent flexibility and extensibility when adhering at low temperatures ({approx}100 K). This mechanism substantially increases adhesion time compared to that obtained at higher temperatures (300-700 K), which makes SWCNTs promising for biomimetic adhesives in ultra-low temperature surroundings.

  11. Effect of surface functionalizations of multi-walled carbon nanotubes on neoplastic transformation potential in primary human lung epithelial cells.

    Science.gov (United States)

    Stueckle, Todd A; Davidson, Donna C; Derk, Ray; Wang, Peng; Friend, Sherri; Schwegler-Berry, Diane; Zheng, Peng; Wu, Nianqiang; Castranova, Vince; Rojanasakul, Yon; Wang, Liying

    2017-06-01

    Functionalized multi-walled carbon nanotube (fMWCNT) development has been intensified to improve their surface activity for numerous applications, and potentially reduce toxic effects. Although MWCNT exposures are associated with lung tumorigenesis in vivo, adverse responses associated with exposure to different fMWCNTs in human lung epithelium are presently unknown. This study hypothesized that different plasma-coating functional groups determine MWCNT neoplastic transformation potential. Using our established model, human primary small airway epithelial cells (pSAECs) were continuously exposed for 8 and 12 weeks at 0.06 μg/cm(2) to three-month aged as-prepared-(pMWCNT), carboxylated-(MW-COOH), and aminated-MWCNTs (MW-NHx). Ultrafine carbon black (UFCB) and crocidolite asbestos (ASB) served as particle controls. fMWCNTs were characterized during storage, and exposed cells were assessed for several established cancer cell hallmarks. Characterization analyses conducted at 0 and 2 months of aging detected a loss of surface functional groups over time due to atmospheric oxidation, with MW-NHx possessing less oxygen and greater lung surfactant binding affinity. Following 8 weeks of exposure, all fMWCNT-exposed cells exhibited significant increased proliferation compared to controls at 7 d post-treatment, while UFCB- and ASB-exposed cells did not differ significantly from controls. UFCB, pMWCNT, and MW-COOH exposure stimulated significant transient invasion behavior. Conversely, aged MW-NHx-exposed cells displayed moderate increases in soft agar colony formation and morphological transformation potential, while UFCB cells showed a minimal effect compared to all other treatments. In summary, surface properties of aged fMWCNTs can impact cell transformation events in vitro following continuous, occupationally relevant exposures.

  12. Semiconductor Surface Characterization by Scanning Probe Microscopies

    Science.gov (United States)

    2001-01-01

    potentiometry (STP)8 and ballistic electron emission microscopy (BEEM)9 which allow mapping of lateral surface potential and local subsurface Schottky...A.P.Fein. "Tunneling Spectroscopy of the Si(1 1 1)2xl Surface", Surf.Sci. 181, 295- 306, 1987. 8. P.Muralt, D.W.Pohl, "Scanning tunneling potentiometry

  13. Egypt satellite images for land surface characterization

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    Satellite images provide information on the land surface properties. From optical remote sensing images in the blue, green, red and near-infrared part of the electromagnetic spectrum it is possible to identify a large number of surface features. The report briefly describes different satellite im...... images used for mapping the vegetation cover types and other land cover types in Egypt. The mapping ranges from 1 km resolution to 30 m resolution. The aim is to provide satellite image mapping with land surface characteristics relevant for roughness mapping.......Satellite images provide information on the land surface properties. From optical remote sensing images in the blue, green, red and near-infrared part of the electromagnetic spectrum it is possible to identify a large number of surface features. The report briefly describes different satellite...

  14. The characteristics of turbulent surface flow in planar channel with imposed wall blowing

    Science.gov (United States)

    Na, Y.; Lee, C.

    2011-10-01

    A recent study for cold flow development in an idealized hybrid rocket motor showed that energy spectra of streamwise velocity in the vicinity of the wall exhibited a peculiar local peak at a certain frequency. It is believed that the occurrence of this particular frequency, or time scale, is a direct consequence of flow modification resulting from the interaction of the main oxidizer flow with wall blowing during the process of regression. If external disturbances resulting from white noise or modified injector geometry are imposed on this hybrid system, a sudden amplification of flow instability may be realized in the form of violent oscillation. In this study, a Large Eddy Simulation (LES) technique was used to investigate the response of the flow in the vicinity of the propellant surface to the external forcing applied to the flow field. Results showed that both concentrated and distributed momentum forcings used in the present study did not lead to a sudden growth of instability or disastrous oscillation. However, the pressure field is thought to be more sensitive to the external forcing and exhibits relatively larger oscillations.

  15. Characterization of microRNAs expressed during secondary wall biosynthesis in Acacia mangium.

    Science.gov (United States)

    Ong, Seong Siang; Wickneswari, Ratnam

    2012-01-01

    MicroRNAs (miRNAs) play critical regulatory roles by acting as sequence specific guide during secondary wall formation in woody and non-woody species. Although thousands of plant miRNAs have been sequenced, there is no comprehensive view of miRNA mediated gene regulatory network to provide profound biological insights into the regulation of xylem development. Herein, we report the involvement of six highly conserved amg-miRNA families (amg-miR166, amg-miR172, amg-miR168, amg-miR159, amg-miR394, and amg-miR156) as the potential regulatory sequences of secondary cell wall biosynthesis. Within this highly conserved amg-miRNA family, only amg-miR166 exhibited strong differences in expression between phloem and xylem tissue. The functional characterization of amg-miR166 targets in various tissues revealed three groups of HD-ZIP III: ATHB8, ATHB15, and REVOLUTA which play pivotal roles in xylem development. Although these three groups vary in their functions, -psRNA target analysis indicated that miRNA target sequences of the nine different members of HD-ZIP III are always conserved. We found that precursor structures of amg-miR166 undergo exhaustive sequence variation even within members of the same family. Gene expression analysis showed three key lignin pathway genes: C4H, CAD, and CCoAOMT were upregulated in compression wood where a cascade of miRNAs was downregulated. This study offers a comprehensive analysis on the involvement of highly conserved miRNAs implicated in the secondary wall formation of woody plants.

  16. The laboratory investigation of surface envelope solitons: reflection from a vertical wall and collisions of solitons

    Science.gov (United States)

    Slunyaev, Alexey; Klein, Marco; Clauss, Günther F.

    2016-04-01

    Envelope soliton solutions are key elements governing the nonlinear wave dynamics within a simplified theory for unidirectional weakly modulated weakly nonlinear wave groups on the water surface. Within integrable models the solitons preserve their structure in collisions with other waves; they do not disperse and can carry energy infinitively long. Steep and short soliton-like wave groups have been shown to exist in laboratory tests [1] and, even earlier, in numerical simulations [2, 3]. Thus, long-living wave groups may play important role in the dynamics of intense sea waves and wave-structure interactions. The solitary wave groups may change the wave statistics and can be taken into account when developing approaches for the deterministic forecasting of dangerous waves, including so-called rogue waves. An experimental campaign has been conducted in the wave basin of the Technical University of Berlin on simulations of intense solitary wave groups. The first successful experimental observation of intense envelope solitons took place in this facility [1]. The new experiments aimed at following main goals: 1) to reproduce intense envelope solitons with different carrier wave lengths; 2) to estimate the rate of envelope soliton dissipation; 3) to consider the reflection of envelope solitons on a vertical wall; 4) to consider head-on collisions of envelope solitons, and 5) to consider overtaking interactions of envelope solitons. Up to 9 wave gauges were used in each experimental run, which enabled registration of the surface movement at different distances from the wavemaker, at different locations across the wave flume and near the wall. Besides surface displacements, the group envelope shapes were directly recorded, with use of phase shifts applied to the modulated waves generated by the wavemaker. [1] A. Slunyaev, G.F. Clauss, M. Klein, M. Onorato, Simulations and experiments of short intense envelope solitons of surface water waves. Phys. Fluids 25, 067105

  17. Impact of structural design criteria on first wall surface heat flux limit

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S. [Argonne National Lab., IL (United States)

    1998-09-01

    The irradiation environment experienced by the in-vessel components of fusion reactors presents structural design challenges not envisioned in the development of existing structural design criteria such as the ASME Code or RCC-MR. From the standpoint of design criteria, the most significant issues stem from the irradiation-induced changes in material properties, specifically the reduction of ductility, strain hardening capability, and fracture toughness with neutron irradiation. Recently, Draft 7 of the ITER structural design criteria (ISDC), which provide new rules for guarding against such problems, was released for trial use by the ITER designers. The new rules, which were derived from a simple model based on the concept of elastic follow up factor, provide primary and secondary stress limits as functions of uniform elongation and ductility. The implication of these rules on the allowable surface heat flux on typical first walls made of type 316 stainless steel and vanadium alloys are discussed.

  18. Single-Walled Carbon Nanotube Surface Control of Complement Recognition and Activation

    DEFF Research Database (Denmark)

    Andersen, Alina Joukainen; Robinson, Joshua T.; Dai, Hongjie

    2013-01-01

    Carbon nanotubes (CNTs) are receiving considerable attention in site-specific drug and nucleic acid delivery, photodynamic therapy, and photoacoustic molecular imaging. Despite these advances, nanotubes may activate the complement system (an integral part of innate immunity), which can induce...... clinically significant anaphylaxis. We demonstrate that single-walled CNTs coated with human serum albumin activate the complement system through C1q-mediated classical and the alternative pathways. Surface coating with methoxypoly(ethylene glycol)-based amphiphiles, which confers solubility and prolongs...... circulation profiles of CNTs, activates the complement system differently, depending on the amphiphile structure. CNTs with linear poly(ethylene glycol) amphiphiles trigger the lectin pathway of the complement through both l-ficolin and mannan-binding lectin recognition. The lectin pathway activation, however...

  19. A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface

    KAUST Repository

    Han, Yu

    2009-04-06

    Ordered porous materials with unique pore structures and pore sizes in the mesoporous range (2-50nm) have many applications in catalysis, separation and drug delivery. Extensive research has resulted in mesoporous materials with one-dimensional, cage-like and bi-continuous pore structures. Three families of bi-continuous mesoporous materials have been made, with two interwoven but unconnected channels, corresponding to the liquid crystal phases used as templates. Here we report a three-dimensional hexagonal mesoporous silica, IBN-9, with a tri-continuous pore structure that is synthesized using a specially designed cationic surfactant template. IBN-9 consists of three identical continuous interpenetrating channels, which are separated by a silica wall that follows a hexagonal minimal surface. Such a tri-continuous mesostructure was predicted mathematically, but until now has not been observed in real materials. © 2009 Macmillan Publishers Limited. All rights reserved.

  20. Characterization of tabique walls nails of the Alto Douro Wine Region

    Science.gov (United States)

    Cardoso, Rui; Pinto, Jorge; Paiva, Anabela; Lanzinha, João Carlos

    2016-11-01

    Tabique is one of the main Portuguese traditional building techniques which use raw materials as stone, earth andwood. In general, a tabique building component as a wall consist of a wooden structure made up of vertical boards connected to laths by metal nails and covered on both sides by an earth based material. This traditional building technology as an expressive incidence in the Alto Douro Wine Region located in the interior of Northern Portugal, added to the UNESCO's Word Heritage Sites List in December 2001 as an `evolved continuing cultural landscape'. Furthermore, previous research works have shown that the existing tabique construction, in this region, reveals a certain lack of maintenance partially justified by the knowledge loosed on that technique, consequently this construction technique present an advanced stage of deterioration. This aspect associated to the fact that there is still a lack of scientific studies in this field motivated the writing of this paper, the main objectives are to identify and characterize the nails used in the timber connections. The nails samples were collected from tabique walls included in tabique buildings located in LamegoMunicipality, near Douro River, in the Alto Douro Wine Region. This work also intends to give guidelines to the rehabilitation and preservation of this important legacy.

  1. Experimental and numerical characterization of thermal bridges in prefabricated building walls

    Energy Technology Data Exchange (ETDEWEB)

    Zalewski, Laurent; Lassue, Stephane; Boukhalfa, Kamel [Univ Lille Nord de France, F-59000 Lille (France); UArtois, LGCgE, F-62400 Bethune (France); Rousse, Daniel [Department of Mechanical Engineering, Ecole de Technologie Superieure, Montreal (Canada)

    2010-12-15

    This work is a contribution to the characterization of the thermal efficiency of complex walls of buildings with respect to the ever increasing requirements in thermal insulation. The work specifically concerns the quantitative evaluation of heat losses by thermal bridges. The support of the study is the envelope of industrial light construction walls containing a metal framework, an insulating material inserted in between metal trusses, water and vapor barriers, and the internal and external facings. This article presents first the infrared thermography method which is used to visualize the thermal bridges as well as a genuine complementary experimental method allowing for the determination of the quantitative aspects of the heat losses through the envelope. Tangential-gradient heat fluxmeters, which create little disturbance in the measurements, are used in the context of laboratory and in full-scale insitu experiments. Then, the article presents a simple yet accurate prediction with a three-dimensional numerical method that could be used for the design of specific installations and parametric studies. (author)

  2. The surface modifications of multi-walled carbon nanotubes for multi-walled carbon nanotube/poly(ether ether ketone) composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zongshuang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Research Center of Advanced Material Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Qiu, Li [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Yang, Yongzhen, E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Research Center of Advanced Material Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Chen, Yongkang, E-mail: y.k.chen@herts.ac.uk [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); University of Hertfordshire, School of Engineering and Technology, Hatfield, Hertfordshire AL10 9AB (United Kingdom); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-10-30

    Graphical abstract: Multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites incorporating surface modified multi-walled carbon nanotubes (MWCNTs) as fillers were fabricated in a solution blending method in order to explore the dynamic mechanical and tribological properties of MWCNT/PEEK composites systematically. It is evident that surface modifications of MWCNTs have a significant impact on dispersibility of MWCNTs in PEEK, dynamic mechanical and tribological properties of MWCNT/PEEK composites. Typically, a clear effect of surface modifications of MWCNTs on tribological properties of MWCNT/PEEK composites was observed. A significant reduction in frictional coefficient of MWCNT/PEEK composites with the MWCNTs modified with ethanolamine has been achieved and the self-lubricating film on their worn surfaces was also observed. - Highlights: • The dispersibility of surface modified MWCNTs in PEEK has been studied. • MWCNTs modified with ethanolamine have showed a good dispersion in PEEK. • Surface modifications of MWCNTs have a significant impact on both dynamic mechanical and tribological properties of MWCNT/PEEK composites. - Abstract: The effects of surface modifications of multi-walled carbon nanotubes (MWCNTs) on the morphology, dynamic mechanical and tribological properties of multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites have been investigated. MWCNTs were treated with mixed acids to obtain acid-functionalized MWCNTs. Then the acid-functionalized MWCNTs were modified with ethanolamine (named e-MWCNTs). The MWCNT/PEEK composites were prepared by a solution-blending method. A more homogeneous distribution of e-MWCNTs within the composites was found with scanning electron microscopy. Dynamic mechanical analysis demonstrated a clear increase in the storage modulus of e-MWCNT/PEEK composites because of the improved interfacial adhesion strength between e-MWCNTs and PEEK. Furthermore, the presence of e

  3. Monitoring the accumulated water soluble airborne compounds deposited on surfaces of showcases and walls in museums, archives and historical buildings

    DEFF Research Database (Denmark)

    Skytte, Lilian; Rasmussen, Kaare Lund; Svensmark, Bo

    2017-01-01

    to implement by curators and conservators, who can the send the flush water to specialized laboratories. Brief summary: A new methodology capable of monitoring the accumulated airborne deposits on surfaces in showcases and historic buildings is presented and tested. The method is cheap and is easy to implement...... themselves. This might make the compounds seem absent from analyses of indoor air samples. Context and purpose of the study: A new method of detecting water soluble pollutants without taking samples from the interior walls or from the CH objects themselves has been developed. The method involves sampling...... the pollutants accumulated on a surface near the CH object, e.g. a nearby wall or an interior glass surface of a showcase. The samples were obtained by gently flushing the surface with deionised water to collect the ions readily removed from the surface. The method was tested on a variety of surfaces. Results...

  4. Uptake of gaseous formaldehyde onto soil surfaces: a coated-wall flow tube study

    Science.gov (United States)

    Li, Guo; Su, Hang; Li, Xin; Meusel, Hannah; Kuhn, Uwe; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2015-04-01

    Gaseous formaldehyde (HCHO) is an important intermediate molecule and source of HO2 radicals. However, discrepancies exist between model simulated and observed HCHO concentrations, suggesting missing sources or sinks in the HCHO budget. Multiphase processes on the surface of soil and airborne soil-derived particles have been suggested as an important mechanism for the production/removal of atmospheric trace gases and aerosols. In this work, the uptake of gaseous HCHO on soil surfaces were investigated through coated-wall flow tube experiments with HCHO concentration ranging from 10 to 40 ppbv. The results show that the adsorption of HCHO occurred on soil surfaces, and the uptake coefficient dropped gradually (i.e., by a factor of 5 after 1 hour) as the reactive surface sites were consumed. The HCHO uptake coefficient was found to be affected by the relative humidity (RH), decreasing from (2.4 ± 0.5) × 10-4 at 0% RH to (3.0 ± 0.08) × 10-5 at 70% RH, due to competition of water molecule absorption on the soil surface. A release of HCHO from reacted soil was also detected by applying zero air, suggesting the nature of reversible physical absorption and the existence of an equilibrium at the soil-gas interface. It implies that soil could be either a source or a sink for HCHO, depending on the ambient HCHO concentration. We also develop a Matlab program to calculate the uptake coefficient under laminar flow conditions based on the Cooney-Kim-Davis method.

  5. Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Syta, Olga; Rozum, Karol; Choińska, Marta [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Zielińska, Dobrochna [Institute of Archaeology, University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw (Poland); Żukowska, Grażyna Zofia [Chemical Faculty, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Kijowska, Agnieszka [National Museum in Warsaw, Aleje Jerozolimskie 3, 00-495 Warsaw (Poland); Wagner, Barbara, E-mail: barbog@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

    2014-11-01

    Analytical procedure for the comprehensive chemical characterization of samples from medieval Nubian wall-paintings by means of portable X-ray fluorescence (pXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and Raman spectroscopy (RS) was proposed in this work. The procedure was used for elemental and molecular investigations of samples from archeological excavations in Nubia (modern southern Egypt and northern Sudan). Numerous remains of churches with painted decorations dated back to the 7th–14th century were excavated in the region of medieval kingdoms of Nubia but many aspects of this art and its technology are still unknown. Samples from the selected archeological sites (Faras, Old Dongola and Banganarti) were analyzed in the form of transfers (n = 26), small fragments collected during the excavations (n = 35) and cross sections (n = 15). XRF was used to collect data about elemental composition, LA-ICPMS allowed mapping of selected elements, while RS was used to get the molecular information about the samples. The preliminary results indicated the usefulness of the proposed analytical procedure for distinguishing the substances, from both the surface and sub-surface domains of the wall-paintings. The possibility to identify raw materials from the wall-paintings will be used in the further systematic, archeometric studies devoted to the detailed comparison of various historic Nubian centers. - Highlights: • The analytical procedure for examination of unique wall paintings was proposed. • Identification of pigments and supporting layers of wall-paintings was obtained. • Heterogeneous samples were mapped with the use of LA-ICPMS. • Anatase in the sub-surface regions of samples was detected by Raman spectroscopy.

  6. Purity and Defect Characterization of Single-Wall Carbon Nanotubes Using Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yasumitsu Miyata

    2011-01-01

    Full Text Available We investigated the purity and defects of single-wall carbon nanotubes (SWCNTs produced by various synthetic methods including chemical vapor deposition, arc discharge, and laser ablation. The SWCNT samples were characterized using scanning electron microscopy (SEM, thermogravimetric analysis (TGA, and Raman spectroscopy. Quantitative analysis of SEM images suggested that the G-band Raman intensity serves as an index for the purity. By contrast, the intensity ratio of G-band to D-band (G/D ratio reflects both the purity and the defect density of SWCNTs. The combination of G-band intensity and G/D ratio is useful for a quick, nondestructive evaluation of the purity and defect density of a SWCNT sample.

  7. Synthesis and Characterization of Multi Wall Carbon Nanotubes (MWCNT) Reinforced Sintered Magnesium Matrix Composites

    Science.gov (United States)

    Vijaya Bhaskar, S.; Rajmohan, T.; Palanikumar, K.; Bharath Ganesh Kumar, B.

    2016-04-01

    Metal matrix composites (MMCs) reinforced with ceramic nano particles (less than 100 nm), termed as metal matrix nano composites (MMNCs), can overcome those disadvantages associated with the conventional MMCs. MMCs containing carbon nanotubes are being developed and projected for diverse applications in various fields of engineering like automotive, avionic, electronic and bio-medical sectors. The present investigation deals with the synthesis and characterization of hybrid magnesium matrix reinforced with various different wt% (0-0.45) of multi wall carbon nano tubes (MWCNT) and micro SiC particles prepared through powder metallurgy route. Microstructure and mechanical properties such as micro hardness and density of the composites were examined. Microstructure of MMNCs have been investigated by scanning electron microscope, X-ray diffraction and energy dispersive X-ray spectroscopy (EDS) for better observation of dispersion of reinforcement. The results indicated that the increase in wt% of MWCNT improves the mechanical properties of the composite.

  8. Characterizing the chiral index of a single-walled carbon nanotube.

    Science.gov (United States)

    Zhao, Qiuchen; Zhang, Jin

    2014-11-01

    The properties of single-walled carbon nanotubes (SWCNTs) mainly depend on their geometry. However, there are still formidable difficulties to determine the chirality of SWCNTs accurately. In this review, some efficient methods to characterize the chiral indices of SWCNTs are illuminated. These methods are divided into imaging techniques and spectroscopy techniques. With these methods, diameter, helix angle, and energy states can be measured. Generally speaking, imaging techniques have a higher accuracy and universality, but are time-consuming with regard to the sample preparation and characterization. The spectroscopy techniques are very simple and fast in operation, but these techniques can be applied only to the particular structure of the sample. Here, the principles and operations of each method are introduced, and a comprehensive understanding of each technique, including their advantages and disadvantages, is given. Advanced applications of some methods are also discussed. The aim of this review is to help readers to choose methods with the appropriate accuracy and time complexity and, furthermore, to put forward an idea to find new methods for chirality characterization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Evaluating the role of ivy (Hedera helix) in moderating wall surface microclimates and contributing to the bioprotection of historic buildings

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, Troy; Viles, Heather [Oxford University, School of Geography, South Parks Road, Oxford OX1 3QY (United Kingdom); Cathersides, Alan [English Heritage, Conservation Department, Kemble Drive, Swindon SN2 2GZ (United Kingdom)

    2011-02-15

    The role of ivy (Hedera helix L.) on building walls is much debated, with arguments being put forward for it playing a biodeteriorative role (for example through ivy rootlets exploiting cracks and holes) as well as suggestions that it might provide some bioprotection (for example by the ivy canopy protecting the walls from other agents of deterioration such as frost). We have carried out a year-long study of the influence that ivy canopies play on wall surface microclimates at five sites across a range of climatic settings within England, using iButtons to monitor temperature and relative humidity fluctuations at the wall surface on ivy-covered and exposed walls. Hourly data illustrates a general mediating effect of ivy canopies on both temperature and relative humidity regimes. The ivy reduces extremes of temperature and relative humidity, with the most clearcut differences for temperature. Across all five sites the average daily maximum temperature was 36% higher and the average daily minimum temperature 15% lower on exposed vs ivy-covered surfaces. Differences in the exposure level of studied walls (i.e. whether they are shaded or not by trees or other walls) influenced the degree of microclimatic alteration provided by the ivy canopy. Other important factors influencing the strength of the ivy impact on microclimate were found to be thickness of the canopy and aspect of the wall. A detailed analysis of one site, Byland in North Yorkshire, illustrates the seasonal differences in impact of ivy on microclimates, with insulation against freezing being the dominant effect in January, and the removal of high temperature 'spikes' the dominant effect in July. The observed moderating role of ivy canopies on wall surface microclimates will reduce the likelihood of frost and salt deterioration to the building materials, thus contributing to their conservation. Further research needs to be done on other potentially deteriorative roles of ivy before an overall

  10. Surface characterization of lignocellulosics for composite manufacture

    Science.gov (United States)

    Iyer, Ananth V.

    The objectives of this research were to form moisture resistant wheat strawboards, either by altering the straw surface characteristics or by changing the chemistry of the polymeric 4, 4' diphenylmethane diisocyanate (PMDI)-based matrix and interface. Part I compared the surface characteristics of wheat, barley, oat, rice, kenaf, hemp and softwood particles. All cereal straws had two surfaces: epidermis and brittle-pith unlike one heterogeneous type observed for bast fibers and softwood particles. The epidermis of cereal straws was not wet by water or aqueous binders, whereas the pith surface allowed the penetration of water, but was not readily wetted by aqueous binders. Between the different surface treatments evaluated for wheat straw in Part II, NaOH selectively peeled-off the epidermis and pith layers. The treated straw particles were formable into strawboards using aqueous phenol-formaldehyde, urea-formaldehyde, and duroplastic acrylic acid binders with good internal bond strength (IBS) and adequate water resistance. In Part III it was shown that, decreasing straw particle sizes and bleaching worsened the mechanical properties of strawboards, but the moisture absorption properties of bleached strawboards were lower than the unbleached ones. Layering of straw particles in strawboards did not seem to affect their mechanical or moisture absorption properties. Part IV showed that the pith surface of wheat straw was fractured on curing with PMDI, providing hollow microcrevices for water accumulation. Furthermore, the cured PMDI formed a network polyurea/polyuretonimine/polycarbodiimide/polyisocyanurate polymer on straw surfaces whose properties dictated the properties of strawboards. Among the different mono-, bi-, and tri-functional alcohols, amines and carboxylic acids evaluated in Part V as H-donor substitutes to moisture for reaction with PMDI on straw surfaces, ethylene glycol, resorcinol, glycerin and citric acid provided IBS values greater than the ANSI

  11. High-speed PIV measurements of the near-wall flow field over hairy surfaces

    Science.gov (United States)

    Winzen, Andrea; Klaas, Michael; Schröder, Wolfgang

    2013-03-01

    The geometry of the barn owl wing, that is, the planform, the camber line, and the thickness distribution, differs significantly from the wing geometry of other bird species of comparable weight and size. Moreover, the owl wing possesses special features like a velvet-like surface, fringes on the trailing edge, and a serrated leading edge. The influence on the flow field of one of the specific adaptations of the owl wing, namely the velvet-like surface structure on the suction side, was analyzed via high-speed particle-image velocimetry. Measurements were performed in a Reynolds number range of 40,000 ≤ Re c ≤ 120,000 based on the chord length and angles of attack of 0° ≤ α ≤ 6°. As a reference, a clean wing model which possesses the geometry of a natural owl wing with its distinct nose region and large thickness in conjunction with a small chordwise position of the maximum thickness was measured. A separation bubble on the suction side of the wing was found to be the dominant flow feature. The results were compared with measurements performed with the same model geometry covered with two artificial surface structures that resemble the surface of the natural wing to investigate the influence of these surfaces on the flow field. The first artificial textile, referred to as velvet 1, was selected to imitate the filament length, density, and thus the softness of the natural surface. Velvet 2, the second artificial texture, possesses longer, softer filaments and a preferred filament direction. A strong influence of the surface structures on the flow field was found for both velvet structures. The velvet seems to force the transition process in the wall-bounded shear layer at higher Reynolds numbers by redistributing the turbulent kinetic energy and thus enables the flow to reattach earlier. This leads to a stabilization and in some cases even to a reduction of the size of the separation bubble on the suction side of the wing.

  12. Use of surface plasmon resonance to investigate lateral wall deposition kinetics and properties of polydopamine films.

    Science.gov (United States)

    Li, Hui; Cui, Dafu; Cai, Haoyuan; Zhang, Lulu; Chen, Xing; Sun, Jianhai; Chao, Yapeng

    2013-03-15

    Dopamine (DA) is a particularly important neurotransmitter. Polydopamine (pDA) films have been demonstrated to be important materials for the immobilization of biomolecules onto almost any type of solid substrate. In this study, a surface plasmon resonance (SPR)-based sensor system with the sensor chip surface parallel to the direction of gravity was used to investigate the lateral wall deposition kinetics and properties of pDA films. The deposition kinetics of pDA Films are limited by the oxidation process. The pDA film could not be removed from the sensor chip completely by a strongly alkaline solution, indicating that the pDA film was heterogeneous in the direction of deposition. The pDA film formed near the interior of the solution was less stable than the film formed near the gold-solution interface. Adsorption of proteins on pDA film was studied compared with that on bare gold and dextran sensor chip. The reduction of Au(111) cations by the pDA film, forming a layer of gold particles, was monitored using SPR. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Simulation of surface cracks measurement in first walls by laser spot array thermography

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Cuixiang; Qiu, Jinxin; Liu, Haocheng; Chen, Zhenmao, E-mail: chenzm@mail.xjtu.edu.cn

    2016-11-01

    The inspection of surface cracks in first walls (FW) is very important to ensure the safe operation of the fusion reactors. In this paper, a new laser excited thermography technique with using laser spot array source is proposed for the surface cracks imaging and evaluation in the FW with an intuitive and non-contact measurement method. Instead of imaging a crack by scanning a single laser spot and superimposing the local discontinuity images with the present laser excited thermography methods, it can inspect a relatively large area at one measurement. It does not only simplify the measurement system and data processing procedure, but also provide a faster measurement for FW. In order to investigate the feasibility of this method, a numerical code based on finite element method (FEM) is developed to simulate the heat flow and the effect of the crack geometry on the thermal wave fields. An imaging method based on the gradient of the thermal images is proposed for crack measurement with the laser spot array thermography method.

  14. Single-walled carbon nanotube surface control of complement recognition and activation.

    Science.gov (United States)

    Andersen, Alina J; Robinson, Joshua T; Dai, Hongjie; Hunter, A Christy; Andresen, Thomas L; Moghimi, S Moein

    2013-02-26

    Carbon nanotubes (CNTs) are receiving considerable attention in site-specific drug and nucleic acid delivery, photodynamic therapy, and photoacoustic molecular imaging. Despite these advances, nanotubes may activate the complement system (an integral part of innate immunity), which can induce clinically significant anaphylaxis. We demonstrate that single-walled CNTs coated with human serum albumin activate the complement system through C1q-mediated classical and the alternative pathways. Surface coating with methoxypoly(ethylene glycol)-based amphiphiles, which confers solubility and prolongs circulation profiles of CNTs, activates the complement system differently, depending on the amphiphile structure. CNTs with linear poly(ethylene glycol) amphiphiles trigger the lectin pathway of the complement through both L-ficolin and mannan-binding lectin recognition. The lectin pathway activation, however, did not trigger the amplification loop of the alternative pathway. An amphiphile with branched poly(ethylene glycol) architecture also activated the lectin pathway but only through L-ficolin recognition. Importantly, this mode of activation neither generated anaphylatoxins nor induced triggering of the effector arm of the complement system. These observations provide a major step toward nanomaterial surface modification with polymers that have the properties to significantly improve innate immunocompatibility by limiting the formation of complement C3 and C5 convertases.

  15. Computational Fluid Dynamics Modeling of Steam Condensation on Nuclear Containment Wall Surfaces Based on Semiempirical Generalized Correlations

    Directory of Open Access Journals (Sweden)

    Pavan K. Sharma

    2012-01-01

    Full Text Available In water-cooled nuclear power reactors, significant quantities of steam and hydrogen could be produced within the primary containment following the postulated design basis accidents (DBA or beyond design basis accidents (BDBA. For accurate calculation of the temperature/pressure rise and hydrogen transport calculation in nuclear reactor containment due to such scenarios, wall condensation heat transfer coefficient (HTC is used. In the present work, the adaptation of a commercial CFD code with the implementation of models for steam condensation on wall surfaces in presence of noncondensable gases is explained. Steam condensation has been modeled using the empirical average HTC, which was originally developed to be used for “lumped-parameter” (volume-averaged modeling of steam condensation in the presence of noncondensable gases. The present paper suggests a generalized HTC based on curve fitting of most of the reported semiempirical condensation models, which are valid for specific wall conditions. The present methodology has been validated against limited reported experimental data from the COPAIN experimental facility. This is the first step towards the CFD-based generalized analysis procedure for condensation modeling applicable for containment wall surfaces that is being evolved further for specific wall surfaces within the multicompartment containment atmosphere.

  16. Characterizing Optical Properties of Disturbed Surface Signatures

    Science.gov (United States)

    2013-01-01

    thermal properties. These properties include the particle size distribution and shapes of the grains that compose the soil as well as the roughness...of the surface to include the number and shape of rock shards and soil aggregates. Sometimes there are changes in the larger scale topography, the...location, also had significant clasts of schist and other metamorphic rocks, which added mica grains to the soil. There was little organic plant

  17. Characterization of applied tensile stress using domain wall dynamic behavior of grain-oriented electrical steel

    Science.gov (United States)

    Qiu, Fasheng; Ren, Wenwei; Tian, Gui Yun; Gao, Bin

    2017-06-01

    Stress measurement that provides early indication of stress status has become increasingly demanding in the field of Non-destructive testing and evaluation (NDT&E). Bridging the correlation between micro magnetic properties and the applied tensile stress is the first conceptual step to come up with a new method of non-destructive testing. This study investigates the characterization of applied tensile stress with in-situ magnetic domain imaging and their dynamic behaviors by using magneto-optical Kerr effect (MOKE) microscopy assisted with magneto-optical indicator film (MOIF). Threshold magnetic field (TMF) feature to reflect 180 ° domain wall (DW) characteristics behaviors in different grains is proposed for stress detection. It is verified that TMF is a threshold feature with better sensitivity and brings linear correlation for stress characterization in comparison to classical coercive field, remanent magnetization, hysteresis loss and permeability parameters. The results indicate that 180 ° DWs dynamic in the inner grain is highly correlated with stress. The DW dynamics of turn over (TO) tests for different grains is studied to illustrate the repeatability of TMF. Experimental tests of high permeability grain oriented (HGO) electrical steels under stress loading have been conducted to verify this study.

  18. A multi-analytical approach for the characterization of wall painting materials on contemporary buildings

    Science.gov (United States)

    Magrini, Donata; Bracci, Susanna; Cantisani, Emma; Conti, Claudia; Rava, Antonio; Sansonetti, Antonio; Shank, Will; Colombini, MariaPerla

    2017-02-01

    Samples from Keith Haring's wall painting of the Necker Children Hospital in Paris were studied by a multi-analytical protocol. X-ray fluorescence (XRF), powder X-ray diffraction (XRDP), Electron microscope (SEM-EDS), Infrared and Raman spectroscopy (μ-FT-IR and μ-Raman) measurements were performed in order to characterize the materials and to identify the art technique used to produce this contemporary work. Materials from the mural suffered from severe detachments of materials and several fragments were found on the ground beneath. Some of these fragments, which were representative of the whole palette and stratigraphic sequence, were collected and studied. The fragments were sufficiently large to enable non-invasive measurements to be performed in order to characterize the materials. A comparison of the data of the techniques applied revealed that Haring's palette was composed of organic pigments such as Naphtol red, phthalocyanine blue and green and Hansa yellow, in accordance with those used previously by the artist in other painted murals.

  19. Surface chemistry and acid-base activity of Shewanella putrefaciens: Cell wall charging and metal binding to bacterial cell walls

    NARCIS (Netherlands)

    Claessens, Jacqueline Wilhelmien

    2006-01-01

    To gain insight into the surface chemistry of live microorganisms, pH stat experiments are combined with analyses of the time-dependent changes in solution chemistry using suspensions of live cells of Shewanella putrefaciens. The results of this study illustrate the complex response of the live

  20. Surface chemistry and acid-base activity of Shewanella putrefaciens : Cell wall charging and metal binding to bacterial cell walls

    NARCIS (Netherlands)

    Claessens, J.W.

    2006-01-01

    To gain insight into the surface chemistry of live microorganisms, pH stat experiments are combined with analyses of the time-dependent changes in solution chemistry using suspensions of live cells of Shewanella putrefaciens. The results of this study illustrate the complex response of the live

  1. Modification of the large-scale features of high Reynolds number wall turbulence by passive surface obtrusions

    Energy Technology Data Exchange (ETDEWEB)

    Monty, J.P.; Lien, K.; Chong, M.S. [University of Melbourne, Department of Mechanical Engineering, Parkville, VIC (Australia); Allen, J.J. [New Mexico State University, Department of Mechanical Engineering, Las Cruces, NM (United States)

    2011-12-15

    A high Reynolds number boundary-layer wind-tunnel facility at New Mexico State University was fitted with a regularly distributed braille surface. The surface was such that braille dots were closely packed in the streamwise direction and sparsely spaced in the spanwise direction. This novel surface had an unexpected influence on the flow: the energy of the very large-scale features of wall turbulence (approximately six-times the boundary-layer thickness in length) became significantly attenuated, even into the logarithmic region. To the author's knowledge, this is the first experimental study to report a modification of 'superstructures' in a rough-wall turbulent boundary layer. The result gives rise to the possibility that flow control through very small, passive surface roughness may be possible at high Reynolds numbers, without the prohibitive drag penalty anticipated heretofore. Evidence was also found for the uninhibited existence of the near-wall cycle, well known to smooth-wall-turbulence researchers, in the spanwise space between roughness elements. (orig.)

  2. The role of Listeria monocytogenes cell wall surface anchor protein LapB in virulence, adherence, and intracellular replication

    Science.gov (United States)

    Lmof2365_2117 is a Listeria monocytogenes putative cell wall surface anchor protein with a conserved domain found in collagen binding proteins. We constructed a deletion mutation in lmof2365_2117 in serotype 4b strain F2365, evaluated its virulence, and determined its ability to adhere and invade co...

  3. Complement activation by PEG-functionalized multi-walled carbon nanotubes is independent of PEG molecular mass and surface density

    DEFF Research Database (Denmark)

    Andersen, Alina Joukainen; Windschiegl, Barbara; Ilbasmis-Tamer, Sibel

    2013-01-01

    Carboxylated (4%) multi-walled carbon nanotubes were covalently functionalized with poly(ethylene glycol)1000 (PEG1000), PEG1500 and PEG4000 with a PEG loading of approximately 11% in all cases. PEG loading generated non-uniform and heterogeneous higher surface structures and increased nanotube w...

  4. Characterization of neutrophil adhesion to different titanium surfaces

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 1. Characterization of neutrophil adhesion to different titanium surfaces ... The aim of the present study is to compare the behaviours of neutrophils in direct contact with different Ti surfaces. Isolated human neutrophils were placed into contact with Ti discs, ...

  5. Development and Characterization of CPI Surface Insulation

    Science.gov (United States)

    Tobin, A.; Feldman, C.; Reichman, J.; Russak, M.; Varisco, A.

    1973-01-01

    A new type of reusable surface material that could find application as a component of the thermal protection system of the space shuttle orbiter is discussed. These materials consist of 20-30% dense closed cell high emittance glass ceramic foams formulated by sintering an intimate mixture of fly ash cenospheres with 4-12 wt % cobalt oxide. These unique ceramic foams exhibit: (1) High mechanical strengths; (2) no need for waterproof coating due to the non-interconnecting cell network; (3) high emissivities; (4) ability to withstand space shuttle thermal environments with no loss of reuse capability; and (5) a machinable ceramic with capability of maintaining the close tolerances required of an integrated heat shield system.

  6. Characterization of Pectin Nanocoatings at Polystyrene and Titanium Surfaces

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna; Dirscherl, Kai; Yihua, Yu

    2013-01-01

    study was to physically characterize and compare polystyrene and titanium surfaces nanocoated with different Rhamnogalacturonan-Is (RG-I) and to visualize RG-I nanocoatings. RG-Is from potato and apple were coated on aminated surfaces of polystyrene, titianium discs and titanium implants...... wettability, without any major effect on surface roughness (Sa, Sdr). Furthermore, we demonstrated that it is possible to visualize the pectin RG-Is molecules and even the nanocoatings on titanium surfaces, which have not been presented before. The comparison between polystyrene and titanium surface showed...

  7. Electrospun carboxyl multi-walled carbon nanotubes grafted polyhydroxybutyrate composite nanofibers membrane scaffolds: Preparation, characterization and cytocompatibility.

    Science.gov (United States)

    Zhijiang, Cai; Cong, Zhu; Jie, Guo; Qing, Zhang; Kongyin, Zhao

    2018-01-01

    Electrospun polyhydroxybutyrate (PHB)/carboxyl multi-walled carbon nanotubes grafted polyhydroxybutyrate (CMWCNT-g-PHB) composite nanofibers scaffolds were fabricated by electrospinning technology. The grafted product CMWCNT-g-PHB was prepared by condensation reactions between the carboxyl groups of CMWCNT and hydroxyl groups of PHB molecules and characterized by FTIR, XRD, XPS, TG and TEM measurements. The surface morphology, hydrophilicity and tensile mechanical properties of the electrospun PHB/CMWCNT-g-PHB composite nanofibers membrane scaffolds were investigated. The values of tensile strength, breaking elongation rate, initial modulus and fracture energy of the composite nanofibers scaffolds can reach to 4.64MPa, 255.59%, 88MPa and 109.73kJ/m2, respectively. The biodegradability and cytocompatibility of the electrospun composite nanofibers scaffolds were preliminarily evaluated. The as-prepared electrospun PHB/CMWCNT-g-PHB composite nanofibers scaffolds with the characteristics of large specific area, high porosity, good biodegradability and cytocompatibility as well as sufficient mechanical properties should be more promising in the field of tissue engineering scaffolds and biological medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Pan Bifeng; Cui Daxiang; Xu Ping; Feng Gao; Huang Tuo; Li Qing; He Rong [Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai 200240 (China); Ozkan, Cengiz [Mechanical Engineering Department, University of California Riverside, 900 University Avenue-Riverside, CA 92521 (United States); Ozkan, Mihri [Electrical Engineering Department, University of California Riverside, 900 University Avenue, Riverside, CA 92521 (United States); Chu, Bingfeng [Department of Stomatology, General Hospital of PLA, 28 Fuxing Road, Beijing100853 (China); Hu Guohan [Department of Neurosurgery of Changzheng Hospital, 415 Fengyang Road, Second Military Medical University, Shanghai 20003 (China)], E-mail: dxcui@sjtu.edu.cn, E-mail: huguohan6504@sina.com

    2009-03-25

    With the aim of improving the amount and delivery efficiency of genes taken by carbon nanotubes into human cancer cells, different generations of polyamidoamine dendrimer modified multi-walled carbon nanotubes (dMNTs) were fabricated, and characterized by high-resolution transmission electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis, revealing the presence of dendrimer capped on the surface of carbon nanotubes. The dMNTs fully conjugated with FITC-labeled antisense c-myc oligonucleotides (asODN), those resultant asODN-dMNTs composites were incubated with human breast cancer cell line MCF-7 cells and MDA-MB-435 cells, and liver cancer cell line HepG2 cells, and confirmed to enter into tumor cells within 15 min by laser confocal microscopy. These composites inhibited the cell growth in time- and dose-dependent means, and down-regulated the expression of the c-myc gene and C-Myc protein. Compared with the composites of CNT-NH{sub 2}-asODN and dendrimer-asODN, no. 5 generation of dendrimer-modified MNT-asODN composites exhibit maximal transfection efficiencies and inhibition effects on tumor cells. The intracellular gene transport and uptake via dMNTs should be generic for the mammalian cell lines. The dMNTs have potentials in applications such as gene or drug delivery for cancer therapy and molecular imaging.

  9. Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall.).

    Science.gov (United States)

    Haldar, Koyel Mallick; Haldar, Basudeb; Chandra, Goutam

    2013-04-01

    Highly stable nanoparticles of metallic silver with average dimension of 26.6 nm were synthesized by a simple, cost-effective, reproducible and previously unexploited biogenic source viz. dried green fruits of Drypetes roxburghii (Wall.) (common name putranjiva). The as-synthesized silver nanoparticles (Ag NP) were characterized by their characteristic surface plasmon resonance absorption spectra, X-ray diffraction analysis, energy dispersive X-ray analysis and selected area electron diffraction study. The morphology of the particles was determined by high-resolution transmission electron microscopy. Fourier transform infrared analysis focuses some light on the chemical framework that stabilizes the nanoparticles. The analyses of the phytochemicals present in the fruit extract of the plant were also performed following standard protocol. Mosquito larvicidal bioassay with the Ag NPs was carried out with two mosquitoes, namely Anopheles stephensi Liston and Culex quinquefasciatus Say. The results show impressive mortality rate even at too low concentration of nanoparticle. Toxicity test on non-target organism shows no harmful effect during the study period.

  10. Computational Study of Surface Tension and Wall Adhesion Effects on an Oil Film Flow Underneath an Air Boundary Layer

    Science.gov (United States)

    Celic, Alan; Zilliac, Gregory G.

    1998-01-01

    The fringe-imaging skin friction (FISF) technique, which was originally developed by D. J. Monson and G. G. Mateer at Ames Research Center and recently extended to 3-D flows, is the most accurate skin friction measurement technique currently available. The principle of this technique is that the skin friction at a point on an aerodynamic surface can be determined by measuring the time-rate-of-change of the thickness of an oil drop placed on the surface under the influence of the external air boundary layer. Lubrication theory is used to relate the oil-patch thickness variation to shear stress. The uncertainty of FISF measurements is estimated to be as low as 4 percent, yet little is known about the effects of surface tension and wall adhesion forces on the measured results. A modified version of the free-surface Navier-Stokes solver RIPPLE, developed at Los Alamos National Laboratories, was used to compute the time development of an oil drop on a surface under a simulated air boundary layer. RIPPLE uses the volume of fluid method to track the surface and the continuum surface force approach to model surface tension and wall adhesion effects. The development of an oil drop, over a time period of approximately 4 seconds, was studied. Under the influence of shear imposed by an air boundary layer, the computed profile of the drop rapidly changes from its initial circular-arc shape to a wedge-like shape. Comparison of the time-varying oil-thickness distributions computed using RIPPLE and also computed using a greatly simplified numerical model of an oil drop equation which does not include surface tension and wall adhesion effects) was used to evaluate the effects of surface tension on FISF measurement results. The effects of surface tension were found to be small but not necessarily negligible in some cases.

  11. Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy

    Science.gov (United States)

    Syta, Olga; Rozum, Karol; Choińska, Marta; Zielińska, Dobrochna; Żukowska, Grażyna Zofia; Kijowska, Agnieszka; Wagner, Barbara

    2014-11-01

    Analytical procedure for the comprehensive chemical characterization of samples from medieval Nubian wall-paintings by means of portable X-ray fluorescence (pXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and Raman spectroscopy (RS) was proposed in this work. The procedure was used for elemental and molecular investigations of samples from archeological excavations in Nubia (modern southern Egypt and northern Sudan). Numerous remains of churches with painted decorations dated back to the 7th-14th century were excavated in the region of medieval kingdoms of Nubia but many aspects of this art and its technology are still unknown. Samples from the selected archeological sites (Faras, Old Dongola and Banganarti) were analyzed in the form of transfers (n = 26), small fragments collected during the excavations (n = 35) and cross sections (n = 15). XRF was used to collect data about elemental composition, LA-ICPMS allowed mapping of selected elements, while RS was used to get the molecular information about the samples. The preliminary results indicated the usefulness of the proposed analytical procedure for distinguishing the substances, from both the surface and sub-surface domains of the wall-paintings. The possibility to identify raw materials from the wall-paintings will be used in the further systematic, archeometric studies devoted to the detailed comparison of various historic Nubian centers.

  12. Catalyst characterization science: surface and solid state chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Deviney, M.L.; Gland, J.L. (eds.)

    1985-01-01

    The large number of typescript papers in this volume derive from a symposium held at the ACS meeting in Philadelphia in 1984. They are grouped in these categories: Spectral Surface Techniques on Complex Catalyst Systems; Multiple Surface Techniques on Model Catalyst Systems; Catalytic Mechanisms on Well-Defined Surfaces; Characterization of Bimetallic Catalysts; New Perspectives in Catalysis via Electron Microscopy and X-ray Scattering; Vibrational Characterization of Catalytic Reactions; Magnetic Methods in Catalyst Research; and New Techniques in Electrocatalysis. Both an author and a subject index are included.

  13. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics.

    Science.gov (United States)

    Cao, Qing; Han, Shu-jen; Tulevski, George S; Zhu, Yu; Lu, Darsen D; Haensch, Wilfried

    2013-03-01

    Single-walled carbon nanotubes have exceptional electronic properties and have been proposed as a replacement for silicon in applications such as low-cost thin-film transistors and high-performance logic devices. However, practical devices will require dense, aligned arrays of electronically pure nanotubes to optimize performance, maximize device packing density and provide sufficient drive current (or power output) for each transistor. Here, we show that aligned arrays of semiconducting carbon nanotubes can be assembled using the Langmuir-Schaefer method. The arrays have a semiconducting nanotube purity of 99% and can fully cover a surface with a nanotube density of more than 500 tubes/µm. The nanotube pitch is self-limited by the diameter of the nanotube plus the van der Waals separation, and the intrinsic mobility of the nanotubes is preserved after array assembly. Transistors fabricated using this approach exhibit significant device performance characteristics with a drive current density of more than 120 µA µm(-1), transconductance greater than 40 µS µm(-1) and on/off ratios of ∼1 × 10(3).

  14. Characterization of xylan in the early stages of secondary cell wall formation in tobacco bright yellow-2 cells.

    Science.gov (United States)

    Ishii, Tadashi; Matsuoka, Keita; Ono, Hiroshi; Ohnishi-Kameyama, Mayumi; Yaoi, Katsuro; Nakano, Yoshimi; Ohtani, Misato; Demura, Taku; Iwai, Hiroaki; Satoh, Shinobu

    2017-11-15

    The major polysaccharides present in the primary and secondary walls surrounding plant cells have been well characterized. However, our knowledge of the early stages of secondary wall formation is limited. To address this, cell walls were isolated from differentiating xylem vessel elements of tobacco bright yellow-2 (BY-2) cells induced by VASCULAR-RELATED NAC-DOMAIN7 (VND7). The walls of induced VND7-VP16-GR BY-2 cells consisted of cellulose, pectic polysaccharides, hemicelluloses, and lignin, and contained more xylan and cellulose compared with non-transformed BY-2 and uninduced VND7-VP16-GR BY-2 cells. A reducing end sequence of xylan containing rhamnose and galaturonic acid- residues is present in the walls of induced, uninduced, and non-transformed BY-2 cells. Glucuronic acid residues in xylan from walls of induced cells are O-methylated, while those of xylan in non-transformed BY-2 and uninduced cells are not. Our results show that xylan changes in chemical structure and amounts during the early stages of xylem differentiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. In-Silico Characterization of Multi Walled Carbon Nanotubes (MWCNTS) to Develop Gas Sensors

    Science.gov (United States)

    Premkumar, P.; Krishnan Namboori, P. K.; Gopakumar, Deepa; Mohandas, V. P.; Radhagayathri, K. U.

    2010-10-01

    This paper reports the computational modeling and simulation of `Multi walled carbon nanotube' (MWCNT) to characterize the adsorption of gases. The computational results were properly evaluated experimentally. CNT is known to undergo electrical breakdown on exposure to gases. This unique property has been used in designing CNT-based gas sensors. The electrical resistance of `large diameter MWCNT' was found to decrease in the presence of air after experiencing electrical breakdown, while `pristine MWCNTs' were not found to be appreciably sensitive. The deformation and the corresponding mechano electric effects of CNT have been well predicted. Composite electric field guided assembly (CEGA) method was used to locate a single MWCNT between electrodes. The electrical characteristics of the deposited MWCNTs were observed using I-V-curves. The large-diameter MWCNT showed better sensitivity as they possess more distorted shells that can create more adsorption sites for oxygen molecules. The oxidation of CNT begins in the defective or distorted region of the tube separated from the electrodes. The removal of complete shells including the contacts with the electrodes is observed as spikes in the I-V Graph plotted from experimental results. This observation can be due to the presence of two barriers for conductivity along the partially burnt or oxidized MWCNT, the Schottky barrier for carrier injection from the electrodes to the nanotubes and the barrier caused due to the hopping process.

  16. NASA-JSC Protocol for the Characterization of Single Wall Carbon Nanotube Material Quality

    Science.gov (United States)

    Arepalli, Sivaram; Nikolaev, Pasha; Gorelik, Olga; Hadjiev, Victor; Holmes, William; Devivar, Rodrigo; Files, Bradley; Yowell, Leonard

    2010-01-01

    It is well known that the raw as well as purified single wall carbon nanotube (SWCNT) material always contain certain amount of impurities of varying composition (mostly metal catalyst and non-tubular carbon). Particular purification method also creates defects and/or functional groups in the SWCNT material and therefore affects the its dispersability in solvents (important to subsequent application development). A number of analytical characterization tools have been used successfully in the past years to assess various properties of nanotube materials, but lack of standards makes it difficult to compare these measurements across the board. In this work we report the protocol developed at NASA-JSC which standardizes measurements using TEM, SEM, TGA, Raman and UV-Vis-NIR absorption techniques. Numerical measures are established for parameters such as metal content, homogeneity, thermal stability and dispersability, to allow easy comparison of SWCNT materials. We will also report on the recent progress in quantitative measurement of non-tubular carbon impurities and a possible purity standard for SWCNT materials.

  17. Flow characterization of a wavy-walled bioreactor for cartilage tissue engineering.

    Science.gov (United States)

    Bilgen, Bahar; Sucosky, Philippe; Neitzel, G Paul; Barabino, Gilda A

    2006-12-20

    Cartilage tissue engineering requires the use of bioreactors in order to enhance nutrient transport and to provide sufficient mechanical stimuli to promote extracellular matrix (ECM) synthesis by chondrocytes. The amount and quality of ECM components is a large determinant of the biochemical and mechanical properties of engineered cartilage constructs. Mechanical forces created by the hydrodynamic environment within the bioreactors are known to influence ECM synthesis. The present study characterizes the hydrodynamic environment within a novel wavy-walled bioreactor (WWB) used for the development of tissue-engineered cartilage. The geometry of this bioreactor provides a unique hydrodynamic environment for mammalian cell and tissue culture, and investigation of hydrodynamic effects on tissue growth and function. The flow field within the WWB was characterized using two-dimensional particle-image velocimetry (PIV). The flow in the WWB differed significantly from that in the traditional spinner flask both qualitatively and quantitatively, and was influenced by the positioning of constructs within the bioreactor. Measurements of velocity fields were used to estimate the mean-shear stress, Reynolds stress, and turbulent kinetic energy components in the vicinity of the constructs within the WWB. The mean-shear stress experienced by the tissue-engineered constructs in the WWB calculated using PIV measurements was in the range of 0-0.6 dynes/cm2. Quantification of the shear stress experienced by cartilage constructs, in this case through PIV, is essential for the development of tissue-growth models relating hydrodynamic parameters to tissue properties. Copyright 2006 Wiley Periodicals, Inc.

  18. Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy

    Science.gov (United States)

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2008-01-01

    A recently described plant cell wall dissolution system has been modified to use perdeuterated solvents to allow direct in-NMR-tube dissolution and high-resolution solution-state NMR of the whole cell wall without derivatization. Finely ground cell wall material dissolves in a solvent system containing dimethylsulfoxide-d6 and 1-methylimidazole-d6 in a ratio of 4:1 (v/...

  19. Characterization of cell wall components of wheat bran following hydrothermal pretreatment and fractionation

    OpenAIRE

    Merali, Zara; Collins, Samuel R A; Elliston, Adam; Wilson, David R; K?sper, Andres; Waldron, Keith W

    2015-01-01

    Background Pretreatments are a prerequisite for enzymatic hydrolysis of biomass and production of ethanol. They are considered to open up the plant cell wall structure by altering, moving or solubilizing lignin and hydrolyzing a proportion of hemicellulosic moieties. However, there is little information concerning pretreatment-induced changes on wheat bran cell wall polymers and indeed on changes in cell wall phenolic esters in bran or other lignocellulosic biomass. Here, we evaluate polymeri...

  20. The Surface Reactivities of Single-Walled Carbon Nanotubes and Their Related Toxicities

    Science.gov (United States)

    Ren, Lei

    After 20 years of extensive exploration, people are more and more convinced on the great potentials of single-walled carbon nanotubes (SWCNTs) in the applications of many different areas. On the other hand, the properties and toxicities have also been closely watched for the safe utilization. In this dissertation I focus on the surface properties of SWCNTs and their related toxicities. In chapter 2, we revealed the generation of peroxyl radical by the unmodified SWCNT and the poly(ethylene glycol) functionalized SWCNT in aqueous solution with capillary electrophoresis (CE) and a reactive oxygen species (ROS) indicator, 2,7-dichlorodihydrofluorescein (H2DCF). According to the results, we identified peroxyl radical, ROO• as the major ROS in our system. Peroxyl radical could be produced from the adsorption of oxygen on the SWCNT surface. In chapter 3, we studied oxidation of several biologically relevant reducing agents in the presence of SWCNTs in aqueous solutions. H2DCF and several small antioxidants (vitamin C, Trolox, and cysteine), and a high-molecular-weight ROS scavenger (bovine serum albumin (BSA)) were selected as reductants. We revealed that the unmodified or carboxylated SWCNT played duplex roles by acting as both oxidants and catalysts in the reaction. In chapter 4, we confirmed that SWCNTs bind to horseradish peroxidase (HRP) at a site proximate to the enzyme's activity center and participating in the ET process, enhancing the activity of (HRP) in the solution-based redox reaction. The capability of SWCNT in receiving electrons and the direct attachment of HRP to the surface of SWCNT strongly affected the enzyme activity due to the direct involvement of SWCNT in ET. In chapter 5, the toxicity of SWCNTs coated with different concentrations of BSA to a human fibroblast cell line was explored. The result indicates that the toxicity of SWCNTs decrease with the higher coating degree as assumed. Then we choose mitochondrion to study the interactions between

  1. Investigation on the micromilled surface characterization through replica technology

    DEFF Research Database (Denmark)

    Baruffi, Federico; Parenti, P.; Cacciatore, F.

    2016-01-01

    with quality control and tolerances to meet the parts functionality. However, in many cases, the reduced accessibility caused by the part complex features (e.g. microcavities, micro-holes, deep-cores) prevents from performing a direct measurement of the surface, using both contactand non-contact techniques...... for the indirect measurement of micromilled surfaces, characterized by submicrometer roughness levels. The study assesses the performance of the replication method by measuring the surface roughness (in terms of Sa) of specifically designed micromilled flat surfaces. A 3D confocal optical microscope is employed...

  2. Surface-Enhanced and Normal Stokes and Anti-Stokes Raman Spectroscopy of Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kneipp, K.; Kneipp, H.; Corio, P.; Brown, S. D. M.; Shafer, K.; Motz, J.; Perelman, L. T.; Hanlon, E. B.; Marucci, A.; Dresselhaus, G.; Dresselhaus, M. S.

    2000-04-01

    Surface enhancement factors of at least 1012 for the Raman scattering of single-walled carbon nanotubes in contact with fractal silver colloidal clusters result in measuring very narrow Raman bands corresponding to the homogeneous linewidth of the tangential C-C stretching mode in semiconducting nanotubes. Normal and surface-enhanced Stokes and anti-Stokes Raman spectra are discussed in the framework of selective resonant Raman contributions of semiconducting or metallic nanotubes to the Stokes or anti-Stokes spectra, respectively, of the population of vibrational levels due to the extremely strong surface-enhanced Raman process, and of phonon-phonon interactions.

  3. Immunocytochemical characterization of the cell walls of bean cell suspensions during habituation and dehabituation to dichlobenil

    DEFF Research Database (Denmark)

    Garcia-Angulo, P.; Willats, W. G. T.; Encina, A. E.

    2006-01-01

    in habituated cells also diminished with the increasing number of subcultures. Habituated cells also liberated less extensin into the medium. In habituated cells, a decrease in the cell wall arabinogalactan protein (AGP) labelling was observed both in cell walls and in the culture medium. The increase...

  4. Populations of latent Mycobacterium tuberculosis lack a cell wall: Isolation, visualization, and whole-genome characterization

    Directory of Open Access Journals (Sweden)

    Ali Akbar Velayati

    2016-01-01

    Conclusion: Here, we show cell-wall free cells of MTB bacilli in their latent state, and the biological adaptation of these cells was more phenotypic in nature than genomic. These cell-wall free cells represent a good model for understanding the nature of TB latency.

  5. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment

    Science.gov (United States)

    Shishir P. S. Chundawat; Bryon S. Donohoe; Leonardo da Costa Sousa; Thomas Elder; Umesh P. Agarwal; Fachuang Lu; John Ralph; Michael E. Himmel; Venkatesh Balan; Bruce E. Dale

    2011-01-01

    Deconstruction of lignocellulosic plant cell walls to fermentable sugars by thermochemical and/or biological means is impeded by several poorly understood ultrastructural and chemical barriers. A promising thermochemical pretreatment called ammonia fiber expansion (AFEX) overcomes the native recalcitrance of cell walls through subtle morphological and physicochemical...

  6. Surface Characterization: what has been done , what has been learnt?

    Energy Technology Data Exchange (ETDEWEB)

    Peter Kneisel

    2003-09-01

    Electromagnetic fields penetrate only a distance of {approx} 60 nm into the surface of a superconductor such as niobium. Therefore it is obvious that the condition of a cavity surface will affect the performance of this cavity. In at least the last 30 years niobium surfaces as used in superconducting accelerating cavities have been investigated by surface characterization techniques such as scanning electron microscopy (SEM), Auger spectroscopy (AES), X-ray photon spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), electron spectroscopy for chemical analysis (ESCA) and secondary ion mass spectrometry (SIMS). The objective of all these investigations was to establish correlations between surface conditions and cavity performances such as surface resistance and accelerating gradients. Much emphasis was placed on investigating surface topography and the oxidation states of niobium under varying conditions such as buffered chemical polishing, electropolishing, oxipolishing, high temperature heat treatment, post-purification heat treatment and in-situ baking. Additional measurements were conducted to characterize the behavior of a niobium surface more relevant to rf cavities such as resonant (multipacting) and non-resonant (field emission) electron loading. A large amount of knowledge has been extracted by all these investigations; nevertheless, there is still a lack of reproducibility in cavity performance when applying the ''best'' process to a cavity surface and no clear correlation has been established between niobium surface features and cavity performance. This contribution gives a review of the attempts to characterize niobium surfaces over the last three decades and tries to extract the ''white spots'' in our knowledge.

  7. In-process characterization of surface topography changes during nitration

    Science.gov (United States)

    Ciossek, Andreas; Lehmann, Peter; Patzelt, Stefan; Goch, Gert

    2000-09-01

    The nitration process influences the mechanical and chemical properties of steel and changes the near-surface characteristics. The nitrided surfaces are less sensitive to corrosive fluids and show a better stability against abrasion. Unfortunately, during treatment pores emerge at the surface. In general this is not desired, since the pores reduce the wear stability. The change of the near-surface characteristics also leads to a remodeling of the surface topography. For example, ground, smooth surfaces show an increased but isotropic roughness after nitration. During the recent years, various speckle techniques for an in-process characterization of surface topography have been improved significantly. One of these promising techniques is the method of trichromatic speckle autocorrelation. Its measuring principle is based on trichromatic light scattering and enables to determine an integral parameter of the surface roughness by the evaluation of the speckle elongation. Especially in the case of nitration, where the specimen is located in a stove filled with ammonia at a temperature of 580 degrees Celsius, this technique offers an in-processing monitoring of surface topography changes from outside the stove. In this paper, the in-process characterization of surface topography by speckle autocorrelation will be introduced. In this context an algorithm has been developed, which allows to estimate the position of the optical axis within the speckle pattern and therefore to determine the surface roughness as well as the local inclination of isotropic surfaces. An important goal of the current research is to realize a reliable process control based on the speckle autocorrelation, that is necessary to produce nitrided surfaces without pores in the compound layer and with good abrasive and corrosive resistance.

  8. Characterizing the dynamic property of the vortex tail in a gas cyclone by wall pressure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Cuizhi; Sun, Guogang; Dong, Ruiqian; Fu, Shuangcheng [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249 (China)

    2010-08-15

    To explore a determination method for cyclone vortex tail, the wall pressures at different axial and radial positions of a cylinder-on-cone cyclone were measured and analyzed by the Fast Fourier Transform (FFT) and probability density analyses in this paper. The cyclone vortex tail was also visualized by a red ink tracer. The results show that the cyclone wall pressure does not change in the cylindrical section and gradually decreases in the conical section. The magnitudes of wall pressure at different azimuths are almost identical, indicating an axisymmetrical wall pressure radial profile in these parts of the cyclone. Whereas in the lower part of the cone and/or the upper part of dipleg, there is a sudden fall of wall pressure and non-axisymmetrical pressure radial profile. The minimum wall pressure occurs at about 270 azimuth in this region. Underneath in the next part of the dipleg, the wall pressure rapidly rises and returns to axisymmetry. These characteristics indicate that the vortex tail is bended to wall, turns around in this region, and can be used as evidences of the vortex tail. The position determined by the pressure measurement is close to the position of the rotating ring observed in the tracing experiment. It is also found that the frequency of the inner vortex is different from that of the outer vortex. The inner vortex flow fluctuates stronger and faster than its outer partner. At the vortex tail zone, the vortex breaks and the inner vortex fluctuation is involved in the wall pressure signal. Therefore, the position and dynamic property of the vortex tail can be well identified from the wall pressure measurement. The pressure measurement could provide some solid experimental basis for assessing relations of natural vortex length. (author)

  9. Lutein, a Natural Carotenoid, Induces α-1,3-Glucan Accumulation on the Cell Wall Surface of Fungal Plant Pathogens

    Directory of Open Access Journals (Sweden)

    Junnosuke Otaka

    2016-07-01

    Full Text Available α-1,3-Glucan, a component of the fungal cell wall, is a refractory polysaccharide for most plants. Previously, we showed that various fungal plant pathogens masked their cell wall surfaces with α-1,3-glucan to evade plant immunity. This surface accumulation of α-1,3-glucan was infection specific, suggesting that plant factors might induce its production in fungi. Through immunofluorescence observations of fungal cell walls, we found that carrot (Daucus carota extract induced the accumulation of α-1,3-glucan on germlings in Colletotrichum fioriniae, a polyphagous fungal pathogen that causes anthracnose disease in various dicot plants. Bioassay-guided fractionation of carrot leaf extract successfully identified two active substances that caused α-1,3-glucan accumulation in this fungus: lutein, a carotenoid widely distributed in plants, and stigmasterol, a plant-specific membrane component. Lutein, which had a greater effect on C. fioriniae, also induced α-1,3-glucan accumulation in other Colletotrichum species and in the phylogenetically distant rice pathogen Cochliobolus miyabeanus, but not in the rice pathogen Magnaporthe oryzae belonging to the same phylogenetic subclass as Colletotrichum. Our results suggested that fungal plant pathogens reorganize their cell wall components in response to specific plant-derived compounds, which these pathogens may encounter during infection.

  10. Lutein, a Natural Carotenoid, Induces α-1,3-Glucan Accumulation on the Cell Wall Surface of Fungal Plant Pathogens.

    Science.gov (United States)

    Otaka, Junnosuke; Seo, Shigemi; Nishimura, Marie

    2016-07-28

    α-1,3-Glucan, a component of the fungal cell wall, is a refractory polysaccharide for most plants. Previously, we showed that various fungal plant pathogens masked their cell wall surfaces with α-1,3-glucan to evade plant immunity. This surface accumulation of α-1,3-glucan was infection specific, suggesting that plant factors might induce its production in fungi. Through immunofluorescence observations of fungal cell walls, we found that carrot (Daucus carota) extract induced the accumulation of α-1,3-glucan on germlings in Colletotrichum fioriniae, a polyphagous fungal pathogen that causes anthracnose disease in various dicot plants. Bioassay-guided fractionation of carrot leaf extract successfully identified two active substances that caused α-1,3-glucan accumulation in this fungus: lutein, a carotenoid widely distributed in plants, and stigmasterol, a plant-specific membrane component. Lutein, which had a greater effect on C. fioriniae, also induced α-1,3-glucan accumulation in other Colletotrichum species and in the phylogenetically distant rice pathogen Cochliobolus miyabeanus, but not in the rice pathogen Magnaporthe oryzae belonging to the same phylogenetic subclass as Colletotrichum. Our results suggested that fungal plant pathogens reorganize their cell wall components in response to specific plant-derived compounds, which these pathogens may encounter during infection.

  11. SURFACE COMPLEXITY COMPONENT OF LIDAR POINT CLOUD ERROR CHARACTERIZATION

    OpenAIRE

    C. Toth; Grejner-Brzezinska, D.

    2012-01-01

    There are several data product characterization methods to describe LiDAR data quality. Typically based on guidelines developed by government or professional societies, these techniques require the statistical analysis of vertical differences at known checkpoints (surface patches) to obtain a measure of the vertical accuracy. More advanced methods attempt to also characterize the horizontal accuracy of the LiDAR point cloud, using measurements at LiDAR-specific targets or other man-m...

  12. Exchange of Surfactant by Natural Organic Matter on the Surfaces of Multi-Walled Carbon Nanotubes

    Science.gov (United States)

    The increasing production and applications of multi-walled carbon nanotubes (MWCNTs) have elicited concerns regarding their release and potential adverse effects in the environment. To form stable aqueous MWCNTs suspensions, surfactants are often employed to facilitate dispersion...

  13. Effect of polymer type on characterization and filtration performances of multi-walled carbon nanotubes (MWCNT)-COOH-based polymeric mixed matrix membranes.

    Science.gov (United States)

    Sengur-Tasdemir, Reyhan; Mokkapati, Venkata R S S; Koseoglu-Imer, Derya Y; Koyuncu, Ismail

    2017-05-17

    Multi-walled carbon nanotubes (MWCNTs) can be used for the fabrication of mixed matrix polymeric membranes that can enhance filtration perfomances of the membranes by modifying membrane surface properties. In this study, detailed characterization and filtration performances of MWCNTs functionalized with COOH group, blended into polymeric flat-sheet membranes were investigated using different polymer types. Morphological characterization was carried out using atomic force microscopy, scanning electron microscopy and contact angle measurements. For filtration performance tests, protein, dextran, E. coli suspension, Xanthan Gum and real activated sludge solutions were used. Experimental data and analyses revealed that Polyethersulfone (PES) + MWCNT-COOH mixed matrix membranes have superior performance abilities compared to other tested membranes.

  14. THz reflectometric imaging of medieval wall paintings

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Jepsen, Peter Uhd

    2013-01-01

    Terahertz time-domain reflectometry has been applied to the investigation of a medieval Danish wall painting. The technique has been able to detect the presence of carbonblack layer on the surface of the wall painting and a buried insertion characterized by high reflectivity values has been found...

  15. Characterizing material properties of cement-stabilized rammed earth to construct sustainable insulated walls

    Directory of Open Access Journals (Sweden)

    Rishi Gupta

    2014-01-01

    Full Text Available Use of local materials can reduce the hauling of construction materials over long distances, thus reducing the greenhouse gas emissions associated with transporting such materials. Use of locally available soils (earth for construction of walls has been used in many parts of the world. Owing to the thermal mass of these walls and the potential to have insulation embedded in the wall section has brought this construction material/technology at the forefront in recent years. However, the mechanical properties of the rammed earth and the parameters required for design of steel reinforced walls are not fully understood. In this paper, the author presents a case study where full-scale walls were constructed using rammed earth to understand the effect of two different types of shear detailing on the structural performance of the walls. The mechanical properties of the material essential for design such as compressive strength of the material including effect of coring on the strength, pull out strength of different rebar diameters, flexural performance and out-of-plane bending on walls was studied. These results are presented in this case study.

  16. New horizons in selective laser sintering surface roughness characterization

    Science.gov (United States)

    Vetterli, M.; Schmid, M.; Knapp, W.; Wegener, K.

    2017-12-01

    Powder-based additive manufacturing of polymers and metals has evolved from a prototyping technology to an industrial process for the fabrication of small to medium series of complex geometry parts. Unfortunately due to the processing of powder as a basis material and the successive addition of layers to produce components, a significant surface roughness inherent to the process has been observed since the first use of such technologies. A novel characterization method based on an elastomeric pad coated with a reflective layer, the Gelsight, was found to be reliable and fast to characterize surfaces processed by selective laser sintering (SLS) of polymers. With help of this method, a qualitative and quantitative investigation of SLS surfaces is feasible. Repeatability and reproducibility investigations are performed for both 2D and 3D areal roughness parameters. Based on the good results, the Gelsight is used for the optimization of vertical SLS surfaces. A model built on laser scanning parameters is proposed and after confirmation could achieve a roughness reduction of 10% based on the S q parameter. The Gelsight could be successfully identified as a fast, reliable and versatile surface topography characterization method as it applies to all kind of surfaces.

  17. Staphylococcus aureus Colonization of the Mouse Gastrointestinal Tract Is Modulated by Wall Teichoic Acid, Capsule, and Surface Proteins.

    Directory of Open Access Journals (Sweden)

    Yoshiki Misawa

    2015-07-01

    Full Text Available Staphylococcus aureus colonizes the nose, throat, skin, and gastrointestinal (GI tract of humans. GI carriage of S. aureus is difficult to eradicate and has been shown to facilitate the transmission of the bacterium among individuals. Although staphylococcal colonization of the GI tract is asymptomatic, it increases the likelihood of infection, particularly skin and soft tissue infections caused by USA300 isolates. We established a mouse model of persistent S. aureus GI colonization and characterized the impact of selected surface antigens on colonization. In competition experiments, an acapsular mutant colonized better than the parental strain Newman, whereas mutants defective in sortase A and clumping factor A showed impaired ability to colonize the GI tract. Mutants lacking protein A, clumping factor B, poly-N-acetyl glucosamine, or SdrCDE showed no defect in colonization. An S. aureus wall teichoic acid (WTA mutant (ΔtagO failed to colonize the mouse nose or GI tract, and the tagO and clfA mutants showed reduced adherence in vitro to intestinal epithelial cells. The tagO mutant was recovered in lower numbers than the wild type strain in the murine stomach and duodenum 1 h after inoculation. This reduced fitness correlated with the in vitro susceptibility of the tagO mutant to bile salts, proteases, and a gut-associated defensin. Newman ΔtagO showed enhanced susceptibility to autolysis, and an autolysin (atl tagO double mutant abrogated this phenotype. However, the atl tagO mutant did not survive better in the mouse GI tract than the tagO mutant. Our results indicate that the failure of the tagO mutant to colonize the GI tract correlates with its poor adherence and susceptibility to bactericidal factors within the mouse gut, but not to enhanced activity of its major autolysin.

  18. Detection of Multi-walled Carbon Nanotubes and Carbon Nanodiscs on Workplace Surfaces at a Small-Scale Producer.

    Science.gov (United States)

    Hedmer, Maria; Ludvigsson, Linus; Isaxon, Christina; Nilsson, Patrik T; Skaug, Vidar; Bohgard, Mats; Pagels, Joakim H; Messing, Maria E; Tinnerberg, Håkan

    2015-08-01

    The industrial use of novel-manufactured nanomaterials such as carbon nanotubes and carbon nanodiscs is increasing globally. Occupational exposure can occur during production, downstream use, and disposal. The health effects of many nanomaterials are not yet fully characterized and to handle nano-objects, their aggregates and agglomerates >100nm (NOAA), a high degree of control measures and personal protective equipment are required. The emission of airborne NOAA during production and handling can contaminate workplace surfaces with dust, which can be resuspended resulting in secondary inhalation exposures and dermal exposures. This study surveys the presence of carbon-based nanomaterials, such as multi-walled carbon nanotubes (MWCNTs) and carbon nanodiscs, as surface contamination at a small-scale producer using a novel tape sampling method. Eighteen different surfaces at a small-scale producer were sampled with an adhesive tape sampling method. The surfaces selected were associated with the production and handling of MWCNT powder in the near-field zone. Surfaces in the far-field zone were also sampled. In addition, tape stripping of the skin was performed on one worker. The tape samples were analysed with scanning electron microscopy to detect the carbon-based NOAA. Air sampling with a personal impactor was also performed on a worker who was producing MWCNTs the same day as the tape samples were collected. MWCNTs were detected in 50% of the collected tape samples and carbon nanodiscs in 17%. MWCNTs and carbon nanodiscs were identified in all parts of the workplace, thus, increasing the risk for secondary inhalation and dermal exposure of the workers. Both airborne MWCNTs and carbon nanodiscs were detected in the personal impactor samples. The tape-strip samples from the worker showed no presence of carbon-containing nanoparticles. Tape sampling is a functional method for detecting surface contamination of carbon-based NOAA and for exposure control during

  19. Synthesis, surface characterization and optical properties of 3 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 34; Issue 5. Synthesis, surface characterization and optical properties of 3-thiopropionic acid capped ZnS:Cu nanocrystals ... The optical studies were done using UV-VIS spectroscopy and particle size and diameter polydispersity index (DPI) were calculated.

  20. Topochemical and morphological characterization of wood cell wall treated with the ionic liquid, 1-ethylpyridinium bromide.

    Science.gov (United States)

    Kanbayashi, Toru; Miyafuji, Hisashi

    2015-09-01

    MAIN CONCLUSION : [EtPy][Br] is more reactive toward lignin than toward the PSs in wood cell walls, and [EtPy][Br] treatment results in inhomogenous changes to the cell wall's ultrastructural and chemical components. The effects of the ionic liquid 1-ethylpyridinium bromide ([EtPy][Br]), which prefers to react with lignin rather than cellulose on the wood cell walls of Japanese cedar (Cryptomeria japonica), were investigated from a morphology and topochemistry point of view. The [EtPy][Br] treatment induced cell wall swelling, the elimination of warts, and the formation of countless pores in the tracheids. However, many of the pit membranes and the cellulose crystalline structure remained unchanged. Raman microscopic analyses revealed that chemical changes in the cell walls were different for different layers and that the lignin in the compound middle lamella and the cell corner resists interaction with [EtPy][Br]. Additionally, the interaction of [EtPy][Br] with the wood cell wall is different to that of other types of ionic liquid.

  1. Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation.

    Science.gov (United States)

    Rodrigues, Bruno Vm; Leite, Nelly Cs; Cavalcanti, Bruno das Neves; da Silva, Newton S; Marciano, Fernanda R; Corat, Evaldo J; Webster, Thomas J; Lobo, Anderson O

    2016-01-01

    Nanohydroxyapatite (nHAp) is an emergent bioceramic that shows similar chemical and crystallographic properties as the mineral phase present in bone. However, nHAp presents low fracture toughness and tensile strength, limiting its application in bone tissue engineering. Conversely, multi-walled carbon nanotubes (MWCNTs) have been widely used for composite applications due to their excellent mechanical and physicochemical properties, although their hydrophobicity usually impairs some applications. To improve MWCNT wettability, oxygen plasma etching has been applied to promote MWCNT exfoliation and oxidation and to produce graphene oxide (GO) at the end of the tips. Here, we prepared a series of nHAp/MWCNT-GO nanocomposites aimed at producing materials that combine similar bone characteristics (nHAp) with high mechanical strength (MWCNT-GO). After MWCNT production and functionalization to produce MWCNT-GO, ultrasonic irradiation was employed to precipitate nHAp onto the MWCNT-GO scaffolds (at 1-3 wt%). We employed various techniques to characterize the nanocomposites, including transmission electron microscopy (TEM), Raman spectroscopy, thermogravimetry, and gas adsorption (the Brunauer-Emmett-Teller method). We used simulated body fluid to evaluate their bioactivity and human osteoblasts (bone-forming cells) to evaluate cytocompatibility. We also investigated their bactericidal effect against Staphylococcus aureus and Escherichia coli. TEM analysis revealed homogeneous distributions of nHAp crystal grains along the MWCNT-GO surfaces. All nanocomposites were proved to be bioactive, since carbonated nHAp was found after 21 days in simulated body fluid. All nanocomposites showed potential for biomedical applications with no cytotoxicity toward osteoblasts and impressively demonstrated a bactericidal effect without the use of antibiotics. All of the aforementioned properties make these materials very attractive for bone tissue engineering applications, either as a

  2. Surface Micromachine Microfluidics: Design, Fabrication, Packaging, and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Galambos, Paul; Eaton, William P.; Shul, Randy; Willison, Christi Gober; Sniegowski, Jeffrey J.; Miller, Samuel L.; Guttierez, Daniel

    1999-06-30

    The field of microfluidics is undergoing rapid growth in terms of new device and system development. Among the many methods of fabricating microfluidic devices and systems, surface micromachining is relatively underrepresented due to difficulties in the introduction of fluids into the very small channels produced, packaging problems, and difficulties in device and system characterization. The potential advantages of using surface micromachining including compatibility with the existing integrated circuit tool set, integration of electronic sensing and actuation with microfluidics, and fluid volume minimization. In order to explore these potential advantages we have developed first generation surface micromachined microfluidic devices (channels) using an adapted pressure sensor fabrication process to produce silicon nitride channels, and the SUMMiT process to produce polysilicon channels. The channels were characterized by leak testing and flow rate vs. pressure measurements. The fabrication processes used and results of these tests are reported in this paper.

  3. SYNTHESIS AND CHARACTERIZATION OF CARBON AEROGEL NANOCOMPOSITES CONTAINING DOUBLE-WALLED CARBON NANOTUBES

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, M A; Satcher, J H; Baumann, T F

    2008-03-11

    Carbon aerogels (CAs) are novel mesoporous materials with applications such as electrode materials for super capacitors and rechargeable batteries, adsorbents and advanced catalyst supports. To expand the potential application for these unique materials, recent efforts have focused on the design of CA composites with the goal of modifying the structure, conductivity or catalytic activity of the aerogel. Carbon nanotubes (CNTs) possess a number of intrinsic properties that make them promising materials in the design of composite materials. In addition, the large aspect ratios (100-1000) of CNTs means that small additions (less than 1 vol%) of CNTs can produce a composite with novel properties. Therefore, the homogeneous incorporation of CNTs into a CA matrix provides a viable route to new carbon-based composites with enhanced thermal, electrical and mechanical properties. One of the main challenges in preparing CNT composites is achieving a good uniform dispersion of nanotubes throughout the matrix. CAs are typically prepared through the sol-gel polymerization of resorcinol with formaldehyde in aqueous solution to produce organic gels that are supercritically dried and subsequently pyrolyzed in an inert atmosphere. Therefore, a significant issue in fabricating CA-CNT composites is dispersing the CNTs in the aqueous reaction media. Previous work in the design of CACNT composites have addressed this issue by using organic solvents in the sol-gel reaction to facilitate dispersion of the CNTs. To our knowledge, no data has been published involving the preparation of CA composites containing CNTs dispersed in aqueous media. In this report, we describe a new method for the synthesis of monolithic CA-CNT composites that involves the sol-gel polymerization of resorcinol and formaldehyde in an aqueous solution containing a surfactant-stabilized dispersion of double-walled carbon nanotubes (DWNT). One of the advantages of this approach is that it allows one to uniformly

  4. Effect of airway surface liquid on the forces on the pharyngeal wall: Experimental fluid-structure interaction study.

    Science.gov (United States)

    Pirnar, Jernej; Širok, Brane; Bombač, Andrej

    2017-10-03

    Obstructive sleep apnoea syndrome (OSAS) is a breathing disorder with a multifactorial etiology. The respiratory epithelium is lined with a thin layer of airway surface liquid preventing interactions between the airflow and epithelium. The effect of the liquid lining in OSAS pathogenesis remains poorly understood despite clinical research. Previous studies have shown that the physical properties of the airway surface liquid or altered stimulation of the airway mechanoreceptors could alleviate or intensify OSAS; however, these studies do not provide a clear physical interpretation. To study the forces transmitted from the airflow to the liquid-lined compliant wall and to discuss the effects of the airway surface liquid properties on the stimulation of the mechanoreceptors, a novel and simplified experimental system mimicking the upper airway fundamental characteristics (i.e., liquid-lined compliant wall and complex unsteady airflow features) was constructed. The fluctuating force on the compliant wall was reduced through a damping mechanism when the liquid film thickness and/or the viscosity were increased. Conversely, the liquid film damping was reduced when the surface tension decreased. Based on the experimental data, empirical correlations were developed to predict the damping potential of the liquid film. In the future, this will enable us to extend the existing computational fluid-structure interaction simulations of airflow in the human upper airway by incorporating the airway surface liquid effect without adopting two-phase flow interface tracking methods. Furthermore, the experimental system developed in this study could be used to investigate the fundamental principles of the complex once/twice-coupled physical phenomena. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Assessment of Ficam VC (Bendiocarb) Residual Activity on Different Wall Surfaces for Control of Anopheles gambiae s.s. (Diptera: Culicidae) in Northern Uganda.

    Science.gov (United States)

    Kirunda, James; Okello-Onen, Joseph; Opiyo, Elizabeth A; Rwakimari, J B; de Alwis, Ranjith; Okia, Michael; Ambayo, Denis; Abola, Benard; Hoel, David F

    2017-07-01

    Insecticide decay rate on different wall surfaces is of importance to indoor residual spray (IRS) programs used as a malaria control intervention. Past IRS operations showed increasing populations of endophilic malaria vectors resting on indoor surfaces from various sites in Uganda following use of Ficam VC (bendiocarb) insecticide; variability of insecticide life was believed to be primarily due to wall surface type. Bendiocarb longevity was tested in the northern Uganda districts of Amuru, Apac, and Pader to assess its residual efficacy on three commonly encountered wall surfaces. Wall types included mud and wattle, plain brick, and painted plaster. A susceptible mosquito strain (Anopheles gambiae Kisumu) was used in all trials. Nine houses in each of the three districts were set with three test cones and one control cone per house, divided evenly among the three wall surfaces. Bioassays were run monthly through 6 mo. Painted plastered surfaces produced 100% mortality (at 24 h) through 6 mo. Plain brick surfaces killed 100% of test mosquitoes through 4 mo, while mud and wattle wall surfaces produced a 98% mortality rate at 3 mo post spray. The KD60 (knockdown at 60 min) for painted plastered surfaces was 100% for 6 mo, plain brick surface KD60 was 80% at 6 mo, and the mud and wattle surface KD60 was >80% at 3 mo. There was a significant effect on Ficam VC longevity by wall type and evidence of a relationship between test period and wall type on the KD60. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Characterizing deformability and surface friction of cancer cells.

    Science.gov (United States)

    Byun, Sangwon; Son, Sungmin; Amodei, Dario; Cermak, Nathan; Shaw, Josephine; Kang, Joon Ho; Hecht, Vivian C; Winslow, Monte M; Jacks, Tyler; Mallick, Parag; Manalis, Scott R

    2013-05-07

    Metastasis requires the penetration of cancer cells through tight spaces, which is mediated by the physical properties of the cells as well as their interactions with the confined environment. Various microfluidic approaches have been devised to mimic traversal in vitro by measuring the time required for cells to pass through a constriction. Although a cell's passage time is expected to depend on its deformability, measurements from existing approaches are confounded by a cell's size and its frictional properties with the channel wall. Here, we introduce a device that enables the precise measurement of (i) the size of a single cell, given by its buoyant mass, (ii) the velocity of the cell entering a constricted microchannel (entry velocity), and (iii) the velocity of the cell as it transits through the constriction (transit velocity). Changing the deformability of the cell by perturbing its cytoskeleton primarily alters the entry velocity, whereas changing the surface friction by immobilizing positive charges on the constriction's walls primarily alters the transit velocity, indicating that these parameters can give insight into the factors affecting the passage of each cell. When accounting for cell buoyant mass, we find that cells possessing higher metastatic potential exhibit faster entry velocities than cells with lower metastatic potential. We additionally find that some cell types with higher metastatic potential exhibit greater than expected changes in transit velocities, suggesting that not only the increased deformability but reduced friction may be a factor in enabling invasive cancer cells to efficiently squeeze through tight spaces.

  7. Application of AES and EELS for surface/interface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Plusnin, N.I. E-mail: plusnin@iacp.dvo.ru

    2004-07-01

    In the work a review of results on the surface/interface characterization in the Cr, Co and Si adsorbat--Si, CrSi{sub 2} substrate system is presented where additional possibilities for applications of AES and EELS have been developed. Peak intensity dependence versus the probing depth or the primary beam energy gives information about the thickness (AES, EELS) and the lattice interplane distance (EELS) of a surface layer. Energy position of plasma satellite peak for AES peak of substrate shows electron plasma concentration of an interface under the surface layer. Relative value of the substrate AES peak attenuation allows identify average position of atoms on its single-crystal surface.

  8. Multiecho scheme advances surface NMR for aquifer characterization

    Science.gov (United States)

    Grunewald, Elliot; Walsh, David

    2013-12-01

    nuclear magnetic resonance (NMR) is increasingly used as a method to noninvasively characterize aquifers. This technology follows a successful history of NMR logging, applied over decades to estimate hydrocarbon reservoir properties. In contrast to logging, however, surface methods have utilized relatively simple acquisition sequences, from which pore-scale properties may not be reliably and efficiently estimated. We demonstrate for the first time the capability of sophisticated multiecho measurements to rapidly record a surface NMR response that more directly reflects aquifer characteristics. Specifically, we develop an adaptation of the multipulse Carr-Purcell-Meiboom-Gill (CPMG) sequence, widely used in logging, to measure the T2 relaxation response in a single scan. We validate this approach in a field surface NMR data set and by direct comparison with an NMR log. Adoption of the CPMG marked a landmark advancement in the history of logging NMR; we have now realized this same advancement in the surface NMR method.

  9. Surface characterization of self-assembled N-Cu nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Cristina, Lucila J.; Moreno-Lopez, Juan C. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Sferco, Silvano J. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Departamento de Fisica, Facultad de Bioquimica y Ciencias Biologicas, Universidad Nacional del Litoral, Ciudad Universitaria, C.C. 242, (S3000ZAA) Santa Fe (Argentina); Passeggi, Mario C.G.; Vidal, Ricardo A. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Ferron, Julio, E-mail: jferron@intec.unl.edu.ar [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Departamento de Materiales, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829,(S3000AOM) Santa Fe (Argentina)

    2012-01-01

    We report on the process of low energy N{sub 2}{sup +} implantation and annealing of a Cu(0 0 1) surface. Through AES we study the N diffusion process as a function of the substrate temperature. With STM and LEIS we characterize the surface morphology and the electronic structure is analyzed with ARUPS. Under annealing (500 < T < 700 K) N migrates to the surface and reacts forming a Cu{sub x}N compound that decomposes at temperatures above 700 K. LEIS measurements show that N locates on the four-fold hollow sites of the Cu(0 0 1) surface in a c(2 Multiplication-Sign 2) arrangement. Finally, a gap along the [0 0 1] azimuthal direction is determined by ARUPS. DFT calculations provide support to our conclusions.

  10. Characterization and reactivity of sodium aluminoborosilicate glass fiber surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Rivera, Lymaris, E-mail: luo105@psu.edu [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Bakaev, Victor A.; Banerjee, Joy [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Mueller, Karl T. [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States); Pantano, Carlo G. [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2016-05-01

    Highlights: • XPS revealed that these fiber surfaces contain sodium carbonate weathering products. • IGC–MS data confirms the products of acetic acid reaction with sodium carbonate. • NMR data shows two closely spaced, but distinct sodium carboxylate peaks. • Acetic acid reacts with both sodium in the glass and sodium in the sodium carbonate. - Abstract: Multicomponent complex oxides, such as sodium aluminoborosilicate glass fibers, are important materials used for thermal insulation in buildings and homes. Although the surface properties of single oxides, such as silica, have been extensively studied, less is known about the distribution of reactive sites at the surface of multicomponent oxides. Here, we investigated the reactivity of sodium aluminoborosilicate glass fiber surfaces for better understanding of their interface chemistry and bonding with acrylic polymers. Acetic acid (with and without a {sup 13}C enrichment) was used as a probe representative of the carboxylic functional groups in many acrylic polymers and adhesives. Inverse gas chromatography coupled to a mass spectrometer (IGC–MS), and solid state nuclear magnetic resonance (NMR), were used to characterize the fiber surface reactions and surface chemical structure. In this way, we discovered that both sodium ions in the glass surface, as well as sodium carbonate salts that formed on the surface due to the intrinsic reactivity of this glass in humid air, are primary sites of interaction with the carboxylic acid. Surface analysis by X-ray photoelectron spectroscopy (XPS) confirmed the presence of sodium carbonates on these surfaces. Computer simulations of the interactions between the reactive sites on the glass fiber surface with acetic acid were performed to evaluate energetically favorable reactions. The adsorption reactions with sodium in the glass structure provide adhesive bonding sites, whereas the reaction with the sodium carbonate consumes the acid to form sodium-carboxylate, H

  11. The use of relative inverse thermal admittance for the characterization and optimization of fin-wall assemblies

    Directory of Open Access Journals (Sweden)

    Luna-Abad Juan P.

    2017-01-01

    Full Text Available The concept of relative inverse thermal admittance applied to the convective fin-wall assembly optimization of longitudinal rectangular fins under 2-D heat conduction is presented in this work. Since heat transfer at the fin tip is taken into account, it is not always possible to optimize the above cited geometry. This is relevant in optimization processes and because of this has been displayed in several graphs. Here, different values for convective conditions at the fin and wall surfaces are used and the influence of the hw/hf ratio in optimum geometry is determined. The fin effectiveness is used as the fundamental parameter to prove that the fin is fulfilling the objective of increasing heat dissipation. Once the optimum thickness has been obtained, the Biot number is easily calculated and the fin effectiveness for an isolated fin and the fin-wall assembly can be determined graphically. The optimization process is carried out through a set of universal graphs in which the range of parameters covers most of the practical cases a designer will find. The concept of relative inverse thermal admittance is applied in a general form and emerges as an easy used tool for optimizing fin-wall assemblies.

  12. Surface characterization of lithium disilicate ceramic after nonthermal plasma treatment.

    Science.gov (United States)

    Vechiato Filho, Aljomar José; dos Santos, Daniela Micheline; Goiato, Marcelo Coelho; de Medeiros, Rodrigo Antonio; Moreno, Amália; Bonatto, Liliane da Rocha; Rangel, Elidiane Cipriano

    2014-11-01

    Surface transformation with nonthermal plasma may be a suitable treatment for dental ceramics, because it does not affect the physical properties of the ceramic material. The purpose of this study was to characterize the chemical composition of lithium disilicate ceramic and evaluate the surface of this material after nonthermal plasma treatment. A total of 21 specimens of lithium disilicate (10 mm in diameter and 3 mm thick) were fabricated and randomly divided into 3 groups (n=7) according to surface treatment. The control group was not subjected to any treatment except surface polishing with abrasive paper. In the hydrofluoric acid group, the specimens were subjected to hydrofluoric acid gel before silane application. Specimens in the nonthermal plasma group were subjected to the nonthermal plasma treatment. The contact angle was measured to calculate surface energy. In addition, superficial roughness was measured and was examined with scanning electron microscopy, and the chemical composition was characterized with energy-dispersive spectroscopy analysis. The results were analyzed with ANOVA and the Tukey honestly significant difference test (α=.05). The water contact angle was decreased to 0 degrees after nonthermal plasma treatment. No significant difference in surface roughness was observed between the control and nonthermal plasma groups. Scanning electron microscopy and energy-dispersive spectroscopy images indicated higher amounts of oxygen (O) and silicon (Si) and a considerable reduction in carbon (C) in the specimens after nonthermal plasma treatment. Nonthermal plasma treatment can transform the characteristics of a ceramic surface without affecting its surface roughness. A reduction in C levels and an increase in O and Si levels were observed with the energy-dispersive spectroscopy analysis, indicating that the deposition of the thin silica film was efficient. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by

  13. Cell wall trapping of autocrine peptides for human G-protein-coupled receptors on the yeast cell surface.

    Directory of Open Access Journals (Sweden)

    Jun Ishii

    Full Text Available G-protein-coupled receptors (GPCRs regulate a wide variety of physiological processes and are important pharmaceutical targets for drug discovery. Here, we describe a unique concept based on yeast cell-surface display technology to selectively track eligible peptides with agonistic activity for human GPCRs (Cell Wall Trapping of Autocrine Peptides (CWTrAP strategy. In our strategy, individual recombinant yeast cells are able to report autocrine-positive activity for human GPCRs by expressing a candidate peptide fused to an anchoring motif. Following expression and activation, yeast cells trap autocrine peptides onto their cell walls. Because captured peptides are incapable of diffusion, they have no impact on surrounding yeast cells that express the target human GPCR and non-signaling peptides. Therefore, individual yeast cells can assemble the autonomous signaling complex and allow single-cell screening of a yeast population. Our strategy may be applied to identify eligible peptides with agonistic activity for target human GPCRs.

  14. Kinetic and thermodynamic characterization of the interactions between the components of human plasma kinin-forming system and isolated and purified cell wall proteins of Candida albicans.

    Science.gov (United States)

    Seweryn, Karolina; Karkowska-Kuleta, Justyna; Wolak, Natalia; Bochenska, Oliwia; Kedracka-Krok, Sylwia; Kozik, Andrzej; Rapala-Kozik, Maria

    2015-01-01

    Cell wall proteins of Candida albicans, besides their best known role in the adhesion of this fungal pathogen to host's tissues, also bind some soluble proteins, present in body fluids and involved in maintaining the biochemical homeostasis of the human organism. In particular, three plasma factors - high-molecular-mass kininogen (HK), factor XII (FXII) and prekallikrein (PPK) - have been shown to adhere to candidal cells. These proteins are involved in the surface-contact-catalyzed production of bradykinin-related peptides (kinins) that contribute to inflammatory states associated with microbial infections. We recently identified several proteins, associated with the candidal cell walls, and probably involved in the binding of HK. In our present study, a list of potential FXII- and PPK-binding proteins was proposed, using an affinity selection (on agarose-coupled FXII or PPK) from a whole mixture of β-1,3-glucanase-extrated cell wall-associated proteins and the mass-spectrometry protein identification. Five of these fungal proteins, including agglutinin-like sequence protein 3 (Als3), triosephosphate isomerase 1 (Tpi1), enolase 1 (Eno1), phosphoglycerate mutase 1 (Gpm1) and glucose-6-phosphate isomerase 1 (Gpi1), were purified and characterized in terms of affinities to the human contact factors, using the surface plasmon resonance measurements. Except Gpm1 that bound only PPK, and Als3 that exhibited an affinity to HK and FXII, the other isolated proteins interacted with all three contact factors. The determined dissociation constants for the identified protein complexes were of 10(-7) M order, and the association rate constants were in a range of 10(4)-10(5) M(-1)s(-1). The identified fungal pathogen-host protein interactions are potential targets for novel anticandidal therapeutic approaches.

  15. Characterization of Fusarium graminearum Mes1 reveals roles in cell-surface organization and virulence.

    Science.gov (United States)

    Rittenour, William R; Harris, Steven D

    2008-06-01

    The surfaces of fungal hyphae are mosaics of carbohydrates and cell-surface proteins. Presently, very little is known about the role of these proteins and their organization at the cell surface. Here, we characterize two Fusarium graminearum genes implicated in cell-surface organization, mes1 (FGSG_06680) and pls1 (FGSG_08695). Mes1 is a homologue of mesA, which is required for the formation of stable polarity axes in Aspergillus nidulans. Pls1 encodes a tetraspanin, which belongs to a class of proteins that have been shown to aggregate in membrane rafts along with integrins and other signaling proteins. Our results indicate that Pls1 is dispensable for saprophytic growth and wheat head infection by F. graminearum (a pathogen that does not form appressoria). However, deletion of mes1 reduces sexual and asexual reproduction, severely perturbs the shape of macroconidia and hyphae, alters the pattern of cell wall deposition and the organization of sterol-rich rafts, and attenuates virulence on wheat heads. Our results provide a basis for identifying determinants of fungal virulence that may localize to specialized domains at the cell surface.

  16. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pruna, R., E-mail: rpruna@el.ub.edu; Palacio, F.; López, M. [SIC, Departament d' Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain); Pérez, J. [Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, E-08028 Barcelona (Spain); Mir, M. [Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, E-08028 Barcelona (Spain); Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5 Pabellón 11, E-28029 Madrid (Spain); Blázquez, O.; Hernández, S.; Garrido, B. [MIND-IN" 2UB, Departament d' Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain)

    2016-08-08

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  17. Synthesis and characterization of macromolecular layers grafted to polymer surfaces

    Science.gov (United States)

    Burtovyy, Oleksandr

    The composition and behavior of surfaces and interfaces play a pivotal role in dictating the overall efficiency of the majority of polymeric materials and devices. Surface properties of the materials can be altered using surface modification techniques. It is necessary to highlight that successful methods of surface modification should affect only the upper layer of the polymer material without changing bulk properties. The processes must introduce new functionalities to the surface, optimize surface roughness, lubrication, hydrophobicity, hydrophilicity, adhesion, conductivity, and/or biocompatibility. Research presented in this dissertation is dedicated to the synthesis, characterization, and application of thin macromolecular layers anchored to polymer substrates. Specifically, attachment of functional polymers via a "grafting to" approach has been extensively studied using PET and nylon model substrates. First, poly(glycidyl methacrylate) was used to introduce permanent functionalities to the model substrates by anchoring it to model films. Then, three different functional polymers were grafted on top of the previous layer. As one part of this study, the temperature and time dependence of grafting functional layers were studied. The surface coverage by hydrophobic polymer was determined from experimental data and predicted by a model. In general, the model has a high degree of predictive capability. Next, surface modification of polymeric fibers and membranes is presented as an important application of the polymer thin layers targeted in the study. Specifically, the procedures developed for surface modification of model substrates was employed for modification of PET, nylon, and cotton fabrics as well as PET track-etched membranes. Since epoxy groups are highly reactive in various chemical reactions, the approach becomes virtually universal, allowing both various surfaces and end-functionalized macromolecules to be used in the grafted layer synthesis. PET

  18. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    of “ambiguous walls” as a more “critical” approach to design [1]. The concept of ambiguous walls refers to the diffuse status a lumious and possibly responsive wall will have. Instead of confining it can open up. Instead of having a static appearance, it becomes a context over time. Instead of being hard...... and flat, “ambiguous walls” combine softness, tectonics and three-dimensionality. The paper considers a selection of luminious surfaces and reflects on the extent of their ambiguous qualities. Initial ideas for new directions for the wall will be essayed through the discussion....

  19. Amplification of surface plasmon polariton wave in single-walled carbon nanotube using electric current pump

    Science.gov (United States)

    Moiseev, Sergey; Dadoenkova, Yuliya; Kadochkin, Aleksey; Zolotovskii, Igor

    2017-10-01

    We propose a surface plasmon polariton amplification technique based on direct energy transfer from a dc electric current flowing in a carbon nanotube. It is shown that when the synchronization conditions are satisfied, when the surface plasmon polariton wave velocity is close to the drift velocity of the charge carriers in the nanotube, the surface wave is significantly enhanced.

  20. Slow motion of a sphere away from a wall: Effect of surface ...

    Indian Academy of Sciences (India)

    ... a plane surface with velocity . The method replaces the no-slip condition at the rough surface by slip condition and employs the method of inner and outer regions on the sphere surface. For > 0, we have the classical slip boundary condition and the results of the paper are then of interest in the microprocessor industry.

  1. Amplification of surface plasmon polariton wave in single-walled carbon nanotube using electric current pump

    Directory of Open Access Journals (Sweden)

    Moiseev Sergey

    2017-01-01

    Full Text Available We propose a surface plasmon polariton amplification technique based on direct energy transfer from a dc electric current flowing in a carbon nanotube. It is shown that when the synchronization conditions are satisfied, when the surface plasmon polariton wave velocity is close to the drift velocity of the charge carriers in the nanotube, the surface wave is significantly enhanced.

  2. Surface characterization of nickel titanium orthodontic arch wires

    Science.gov (United States)

    Krishnan, Manu; Seema, Saraswathy; Tiwari, Brijesh; Sharma, Himanshu S.; Londhe, Sanjay; Arora, Vimal

    2015-01-01

    Background Surface roughness of nickel titanium orthodontic arch wires poses several clinical challenges. Surface modification with aesthetic/metallic/non metallic materials is therefore a recent innovation, with clinical efficacy yet to be comprehensively evaluated. Methods One conventional and five types of surface modified nickel titanium arch wires were surface characterized with scanning electron microscopy, energy dispersive analysis, Raman spectroscopy, Atomic force microscopy and 3D profilometry. Root mean square roughness values were analyzed by one way analysis of variance and post hoc Duncan's multiple range tests. Results Study groups demonstrated considerable reduction in roughness values from conventional in a material specific pattern: Group I; conventional (578.56 nm) > Group V; Teflon (365.33 nm) > Group III; nitride (301.51 nm) > Group VI (i); rhodium (290.64 nm) > Group VI (ii); silver (252.22 nm) > Group IV; titanium (229.51 nm) > Group II; resin (158.60 nm). It also showed the defects with aesthetic (resin/Teflon) and nitride surfaces and smooth topography achieved with metals; titanium/silver/rhodium. Conclusions Resin, Teflon, titanium, silver, rhodium and nitrides were effective in decreasing surface roughness of nickel titanium arch wires albeit; certain flaws. Findings have clinical implications, considering their potential in lessening biofilm adhesion, reducing friction, improving corrosion resistance and preventing nickel leach and allergic reactions. PMID:26843749

  3. Surface Adsorption and Replacement of Acid-Oxidized Single-Walled Carbon Nanotubes and Poly(vinyl pyrrolidone Chains

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2007-01-01

    Full Text Available Quartz crystal microbalance (QCM was used to investigate the adsorption of acid-oxidized single-walled carbon nanotubes (Ox-SWNTs and poly(vinyl pyrrolidone, PVP. It was found for the first time that Ox-SWNTs adsorbed onto the QCM electrode can be effectively replaced by PVP chains in an aqueous solution. This replacement process was also investigated by atomic force miscroscopic (AFM imaging, which shows good agreement with the QCM measurements. This study provides powerful tools for fundamental investigation of polymer-nanotube interactions and for controlled design/fabrication of functional polymer-nanotube surfaces for potential applications.

  4. Surface debris of canal walls after post space preparation in endodontically treated teeth: a scanning electron microscopic study.

    Science.gov (United States)

    Serafino, Cinzia; Gallina, Giuseppe; Cumbo, Enzo; Ferrari, Marco

    2004-03-01

    To evaluate surface cleanliness of root canal walls along post space after endodontic treatment using 2 different irrigant regimens, obturation techniques, and post space preparation for adhesive bonding. Forty teeth, divided into 4 groups, were instrumented, using Ni-Ti rotary files, irrigated with NaOCl or NaOCl+EDTA and obturated with cold lateral condensation (CLC) or warm vertical condensation (WVC) of gutta-percha. After post space preparation, etching, and washing procedure, canal walls were observed using a scanning electron microscope (SEM). Amount of debris, smear layer, sealer/gutta-percha remnants, and visibility of open tubules were rated. Higher amounts of rough debris, large sealer/gutta-percha remnants, thick smear layer, and no visibility of tubule orifices were recorded in all the groups at apical level of post space. At middle and coronal levels areas of clean dentin, alternating with areas covered by thin smear layer, smaller debris, gutta-percha remnants, and orifices of tubules partially or totally occluded by plugs were frequently observed. After endodontic treatment, obturation, and post space preparation SEM analysis of canal walls along post space shows large areas (covered by smear layer, debris, and sealer/gutta-percha remnants) not available for adhesive bonding and resin cementation of fiber posts.

  5. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    Energy Technology Data Exchange (ETDEWEB)

    Saleema, N., E-mail: saleema.noormohammed@imi.cnrc-nrc.gc.ca [National Research Council of Canada (ATC-NRC), 501 Boulevard University East, Saguenay, Quebec G7H 8C3 (Canada); Sarkar, D.K. [Centre Universitaire de Recherche sur l' Aluminium (CURAL), University of Quebec at Chicoutimi (UQAC), 555 Boulevard University East, Saguenay, Quebec G7H 2B1 (Canada); Paynter, R.W. [Institut National de la Recherche Scientifique Energie Materiaux Telecommunications (INRS-EMT), 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada); Gallant, D.; Eskandarian, M. [National Research Council of Canada (ATC-NRC), 501 Boulevard University East, Saguenay, Quebec G7H 8C3 (Canada)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A very simple surface treatment method to achieve excellent and durable aluminum adhesive bonding. Black-Right-Pointing-Pointer Our method involves simple immersion of aluminum in very dilute NaOH solution at room temperature with no involvement of strong acids or multiple procedures. Black-Right-Pointing-Pointer Surface analysis via various surface characterization techniques showed morphological and chemical modifications favorable for obtaining highly durable bond strengths on the treated surface. Black-Right-Pointing-Pointer Safe, economical, reproducible and simple method, easily applicable in industries. - Abstract: Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure

  6. Creep behavior and surface characterization of a laser surface nitrided Ti–6Al–4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Adriano Gonçalves dos, E-mail: areis@ita.br [Instituto Tecnológico de Aeronáutica—ITA/DCTA, Pr. M. Eduardo Gomes, 50, São José dos Campos—SP 12228-900 (Brazil); Reis, Danieli Aparecida Pereira [Universidade Federal de São Paulo—UNIFESP, R. Talim, 330, São José dos Campos—SP 12231-280 (Brazil); Moura Neto, Carlos de [Instituto Tecnológico de Aeronáutica—ITA/DCTA, Pr. M. Eduardo Gomes, 50, São José dos Campos—SP 12228-900 (Brazil); Barboza, Miguel Justino Ribeiro [Escola de Engenharia de Lorena—EEL/DEMAR/USP, Polo Urbo-Industrial Gleba AI-6 Caixa Postal 116, Lorena–SP 12600-970 (Brazil); Oñoro, Javier [Universidad Politécnica de Madrid—UPM, Plaza Cardenal Cisneros, 3, Madrid 28040 (Spain)

    2013-08-10

    Laser surface nitriding of a Ti–6Al–4V alloy is studied with the aim of increasing creep resistance. A detailed characterization of the surface and cross section of the nitrided laser surface was carried out by optical/scanning electron microscopy and X-ray diffraction techniques. The microstructure of the surface-nitrided Ti–6Al–4V consists of TiN dendrites distributed in a martensitic titanium matrix. Finally, the mechanical properties in terms of microindentation hardness and creep resistance were evaluated. Constant load creep tests were conducted on a standard creep machine at different stress levels at 500 °C, 600 °C and 700 °C. Results indicated that the creep rates of the laser nitrided alloy were lower than those of the untreated material and the microhardness of the surface was improved to 1100 VHN compared with the 340 VHN of the substrate.

  7. Dispersion of multi-wall carbon nanotubes in polyhistidine: Characterization and analytical applications

    Energy Technology Data Exchange (ETDEWEB)

    Dalmasso, Pablo R. [INFIQC, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Pedano, Maria L., E-mail: mlpedano@fcq.unc.edu.ar [INFIQC, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Rivas, Gustavo A., E-mail: grivas@mail.fcq.unc.edu.ar [INFIQC, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Polyhistidine (Polyhis) is an efficient dispersing agent of MWCNT. Black-Right-Pointing-Pointer MWCNT/Polyhis ratio and sonication time are critical variables when dispersing MWCNT. Black-Right-Pointing-Pointer MWCNT-Polyhis deposited at GCE largely catalyzes the oxidation of ascorbic acid. Black-Right-Pointing-Pointer GCE/MWCNT-Polyhis allows the selective and sensitive quantification of UA and Do. - Abstract: We report for the first time the use of polyhistidine (Polyhis) to efficiently disperse multiwall carbon nanotubes (MWCNTs). The optimum dispersion MWCNT-Polyhis was obtained by sonicating for 30 min 1.0 mg mL{sup -1} MWCNTs in 0.25 mg mL{sup -1} Polyhis solution prepared in 75:25 (v/v) ethanol/0.200 M acetate buffer solution pH 5.00. The dispersion was characterized by scanning electron microscopy, and by cyclic voltammetry and amperometry using ascorbic acid as redox marker. The modification of glassy carbon electrodes with MWCNT-Polyhis produces a drastic decrease in the overvoltage for the oxidation of ascorbic acid (580 mV) at variance with the response observed at glassy carbon electrodes modified just with Polyhis, where the charge transfer is more difficult due to the blocking effect of the polymer. The reproducibility for the sensitivities obtained after 10 successive calibration plots using the same surface was 6.3%. The MWCNT-modified glassy carbon electrode demonstrated to be highly stable since after 45 days storage at room temperature the response was 94.0% of the original. The glassy carbon electrode modified with MWCNT-Polyhis dispersion was successfully used to quantify dopamine or uric acid at nanomolar levels, even in the presence of large excess of ascorbic acid. Determinations of uric acid in human blood serum samples demonstrated a very good correlation with the value reported by Wienner laboratory.

  8. Characterization of Flow and Ohm's Law in the Rotating Wall Machine

    Science.gov (United States)

    Hannum, David; Brookhart, M.; Forest, C. B.; Kendrick, R.; Mengin, G.; Paz-Soldan, C.

    2010-11-01

    The rotating wall machine is a linear screw-pinch built to study the role of different electromagnetic boundary conditions on the Resistive Wall Mode (RWM). Its plasma is created by an array of electrostatic washer guns which can be biased to discharge up to 1 kA of current each. Individual flux ropes from the guns shear, merge, and expand into a 20 cm diameter, ˜1 m long plasma column. Langmuir (singletip) and tri-axial B-dot probes move throughout the column to measure radial and axial profiles of key plasma parameters. As the plasma current increases, more H2 fuel is ionized, raising ne to 5 x10^20 m-3 while Te stays at a constant 3 eV. The electron density expands to the wall while the current density (Jz) stays pinched to the central axis. E xB and diamagnetic drifts create radially and axially sheared plasma rotation. Plasma resistivity follows the Spitzer model in the core while exceeding it at the edge. These measurements improve the model used to predict the RWM growth rate.

  9. Study on the Surface Integrity of a Thin-Walled Aluminum Alloy Structure after a Bilateral Slid Rolling Process

    Directory of Open Access Journals (Sweden)

    Laixiao Lu

    2016-04-01

    Full Text Available For studying the influence of a bilateral slid rolling process (BSRP on the surface integrity of a thin-walled aluminum alloy structure, and revealing the generation mechanism of residual stresses, a self-designed BSRP appliance was used to conduct rolling experiments. With the aid of a surface optical profiler, an X-ray stress analyzer, and a scanning electron microscope (SEM, the differences in surface integrity before and after BSRP were explored. The internal changing mechanism of physical as well as mechanical properties was probed. The results show that surface roughness (Ra is reduced by 23.7%, microhardness is increased by 21.6%, and the depth of the hardening layer is about 100 μm. Serious plastic deformation was observed within the subsurface of the rolled region. The residual stress distributions along the depth of the rolling surface and milling surface were tested respectively. Residual stresses with deep and high amplitudes were generated via the BSRP. Based on the analysis of the microstructure, the generation mechanism of the residual stresses was probed. The residual stress of the rolling area consisted of two sections: microscopic stresses caused by local plastic deformation and macroscopic stresses caused by overall non-uniform deformation.

  10. Properties, characterization, and decay of sticky rice–lime mortars from the Wugang Ming dynasty city wall (China)

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Ya [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 (China); Cultural Relics and Archaeology Institute of Hunan, Changsha 410083 (China); Fu, Xuan; Gu, Haibing [Cultural Relics and Archaeology Institute of Hunan, Changsha 410083 (China); Gao, Feng [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Shaojun, E-mail: liumatthew@csu.edu.cn [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 (China)

    2014-04-01

    Urgent restoration of the Wugang Ming dynasty city wall brings about the need for a study of the formulation and properties of mortars. In the present paper, mortar samples from the Wugang Ming dynasty city wall were characterized in a combination of sheet polarized light optical microscopy, scanning electron microscopy with X-ray energy dispersive spectrometer, thermogravimetric/differential scanning calorimetry, X-ray powder diffraction, Fourier transform infrared spectroscopy, and inductively coupled plasma emission spectroscopy. Results show that mortars are mainly built up from inorganic calcium carbonate based organic–inorganic hybrid material with a small amount of sticky rice, which plays a crucial role in forming dense and compact microstructure of mortars and effectively hindering penetration of water and air into mortars. Analysis of decayed products shows that the detrimental soluble salts originates from ambient environment. - Highlights: • Mortars used in the Wugang city wall are a calcium carbonate-sticky rice hybrid bonding material. • Carbonation processing is extremely slow due to dense and compact microstructure of mortars. • Decying of mortars results from the appearance of soluble salt from ambient environment.

  11. Fluidization and wall slip of soft glassy materials by controlled surface roughness

    Science.gov (United States)

    Derzsi, Ladislav; Filippi, Daniele; Mistura, Giampaolo; Pierno, Matteo; Lulli, Matteo; Sbragaglia, Mauro; Bernaschi, Massimo; Garstecki, Piotr

    2017-05-01

    We present a comprehensive study of concentrated emulsions flowing in microfluidic channels, one wall of which is patterned with micron-size equally spaced grooves oriented perpendicularly to the flow direction. We find a scaling law describing the roughness-induced fluidization as a function of the density of the grooves, thus fluidization can be predicted and quantitatively regulated. This suggests common scenarios for droplet trapping and release, potentially applicable for other jammed systems as well. Numerical simulations confirm these views and provide a direct link between fluidization and the spatial distribution of plastic rearrangements.

  12. Characterization of cell wall components of wheat bran following hydrothermal pretreatment and fractionation.

    Science.gov (United States)

    Merali, Zara; Collins, Samuel R A; Elliston, Adam; Wilson, David R; Käsper, Andres; Waldron, Keith W

    2015-01-01

    Pretreatments are a prerequisite for enzymatic hydrolysis of biomass and production of ethanol. They are considered to open up the plant cell wall structure by altering, moving or solubilizing lignin and hydrolyzing a proportion of hemicellulosic moieties. However, there is little information concerning pretreatment-induced changes on wheat bran cell wall polymers and indeed on changes in cell wall phenolic esters in bran or other lignocellulosic biomass. Here, we evaluate polymeric changes (chemical and physical) as a result of selected hydrothermal pretreatment conditions on destarched wheat bran using controlled polymer extraction methods. Quantification of cell wall components together with soluble oligosaccharides, the insoluble residues and ease of extractability and fractionation of biomass residues were conducted. Pretreatment solubilized selected arabinoxylans and associated cross-linking ferulic and diferulic acids with a concomitant increase in lignin and cellulosic glucose. The remaining insoluble arabinoxylans were more readily extractable in alkali and showed considerable depolymerization. The degree of arabinose substitution was less in xylans released by higher concentrations of alkali. The recalcitrant biomass which remained after pretreatment and alkali extraction contained mostly cellulosic glucose and Klason lignin. Pretreatment generated small but insignificant amounts of yeast-inhibiting compounds such as furfural and hydroxymethyl furfural. As such, simultaneous saccharification and fermentation of the hydrothermally pretreated bran resulted in increased ethanol yields compared to that of the control (97.5% compared to 63% theoretical). Hydrothermal pretreatment of destarched wheat bran resulted in degradation and depolymerization of the hemicellulosic arabinoxylans together with some breakdown of cellulosic glucose. This was accompanied by a significant reduction in the cross-linking phenolic acids such as ferulic and diferulic acids. The

  13. Characterization of a Laser Surface-Treated Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    S.R. Al-Sayed

    2017-05-01

    Full Text Available Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m•min−1 was adopted to reach the optimum conditions for impact toughness, wear, and corrosion resistance for laser heat treated (LHT samples. The 0 °C impact energy of LHT samples indicated higher values compared to the conventionally heat treated (CHT samples. This was accompanied by the formation of a hard surface layer and a soft interior base metal. Microhardness was studied to determine the variation of hardness values with respect to the depth under the treated surface. The wear resistance at the surface was enhanced considerably. Microstructure examination was characterized using optical and scanning electron microscopes. The corrosion behavior of the LHT samples was also studied and its correlation with the microstructures was determined. The corrosion data was obtained in 3.5% NaCl solution at room temperature by means of a potentiodynamic polarization technique.

  14. Characterization of a Laser Surface-Treated Martensitic Stainless Steel

    Science.gov (United States)

    Al-Sayed, S. R.; Hussein, A. A.; Nofal, A. A.; Hassab Elnaby, S. I.; Elgazzar, H.

    2017-01-01

    Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W) with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m·min−1) was adopted to reach the optimum conditions for impact toughness, wear, and corrosion resistance for laser heat treated (LHT) samples. The 0 °C impact energy of LHT samples indicated higher values compared to the conventionally heat treated (CHT) samples. This was accompanied by the formation of a hard surface layer and a soft interior base metal. Microhardness was studied to determine the variation of hardness values with respect to the depth under the treated surface. The wear resistance at the surface was enhanced considerably. Microstructure examination was characterized using optical and scanning electron microscopes. The corrosion behavior of the LHT samples was also studied and its correlation with the microstructures was determined. The corrosion data was obtained in 3.5% NaCl solution at room temperature by means of a potentiodynamic polarization technique. PMID:28772955

  15. Sub-surface terahertz imaging through uneven surfaces: visualizing Neolithic wall paintings in Çatalhöyük.

    Science.gov (United States)

    Walker, Gillian C; Bowen, John W; Matthews, Wendy; Roychowdhury, Soumali; Labaune, Julien; Mourou, Gerard; Menu, Michel; Hodder, Ian; Jackson, J Bianca

    2013-04-08

    Pulsed terahertz imaging is being developed as a technique to image obscured mural paintings. Due to significant advances in terahertz technology, portable systems are now capable of operating in unregulated environments and this has prompted their use on archaeological excavations. August 2011 saw the first use of pulsed terahertz imaging at the archaeological site of Çatalhöyük, Turkey, where mural paintings dating from the Neolithic period are continuously being uncovered by archaeologists. In these particular paintings the paint is applied onto an uneven surface, and then covered by an equally uneven surface. Traditional terahertz data analysis has proven unsuccessful at sub-surface imaging of these paintings due to the effect of these uneven surfaces. For the first time, an image processing technique is presented, based around Gaussian beam-mode coupling, which enables the visualization of the obscured painting.

  16. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    Science.gov (United States)

    Saleema, N.; Sarkar, D. K.; Paynter, R. W.; Gallant, D.; Eskandarian, M.

    2012-11-01

    Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure of the adhesive were encountered on the NaOH treated surfaces that are comparable to the benchmark treatments such as anodization, which involve use of strong acids and multiple steps of treatment procedures. The NaOH treatment reported in this work is a very simple method with the use of a very dilute solution with simple ultrasonication being sufficient to produce durable joints.

  17. On the origin of microcraters on the surface of ion beam bombardedplant cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Salvadori, M.C.; Teixeira, F.S.; Brown, I.G.

    2005-06-01

    Ion bombardment of plant and bacterial cellular material has recently been used as a tool for the transfer of exogenous DNA macromolecules into the cell interior region. The precise mechanism that leads to the transfer of macromolecules through the cell envelope is not yet clear, however it has been observed that the ion bombardment is accompanied by the formation of ''microcraters'' on the cell wall, and it is possible that these features provide channels for the macromolecule transfer. Thus the nature and origin of the microcraters is of importance to understanding the DNA transfer phenomenon as well as being of fundamental interest. We report here on some scanning electron microscope observations we have made of onion skin cells that have been subjected to electron beam bombardment of sufficiently high power density to damage the cell wall. The damage seen is much less than and different from the microcraters formed subsequent to ion bombardment. We speculate that the microcraters may originate from the explosive release of gas generated in the biomaterial by ion bombardment.

  18. Modeling, Characterization and Analysis of the dynamic behavior of heat transfers through polyethylene and glass walls of Greenhouses

    Science.gov (United States)

    Bibi-Triki, N.; Bendimerad, S.; Chermiti, A.; Mahdjoub, T.; Draoui, B.; Abène, A.

    The conventional agricultural tunnel greenhouse is highly widespread in Mediterranean countries, despite the shortcomings it presents, specifically the overheating during the day and the intense cooling at night. This can sometimes lead to an internal thermal inversion. The chapel-shaped glass greenhouse is relatively more efficient, but its evolution remains slow because of its investment cost and amortization. The objectives of the agricultural greenhouse are to create a microclimate that is favorable to the requirements and growth of plants from the surrounding climatic conditions and produce cheap off-season fruits, vegetables and flowers which must be highly available all along the year. The agricultural greenhouse is defined by its structural and functional architecture as well as by the optical, thermal and mechanical qualities of its wall and the accompanying technical support. The greenhouse is supposed to be a confined environment where there is an exchange of several components. The main intervening factors are: light, temperature and relative humidity. When protected, the culture heats up more than when in free air because of the wall that acts as a barrier to harmful influences of the wind and the surrounding climatic variations as well as to the reduction in internal air convection. This thermal evolution state depends on the air-tightness degree of the cover and its physical characteristics. It has to be transparent to solar rays, and must as well absorb and reflect infrared rays emitted by the soil. This leads to trapped solar rays, called the "greenhouse effect". In this article, we propose the dynamic modeling of the greenhouse system, the characterization and analysis of the thermal behavior of the wall for both experimental greenhouses, where the first one is made of polyethylene (tunnel greenhouse) and the second of glass (chapel-shaped greenhouse), throughout experimentation and simulation which finally lead to identifying the evolution in the

  19. Surface microstructure of bitumen characterized by atomic force microscopy.

    Science.gov (United States)

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition

  20. Polyphasic approach to characterize heterotrophic bacteria of biofilms and patina on walls of the Suburban Bath of the Herculaneum's archaeological excavations in Italy

    Science.gov (United States)

    Ventorino, V.; Pepe, O.; Sannino, L.; Blaiotta, G.; Palomba, S.

    2012-04-01

    plates were purified in the same growth medium by streaking and differentiated by assessing their morphological (phase-contrast microscopy) and biochemical characteristics (Gram-stains KOH-lysis and catalase activity). Cultural-based method allow us to identify by 16S and 26S rRNA partial sequence analysis, heterotrophic bacteria belonging to different genera as Bacillus, Pseudomonas, Aeromonas and Microbacterium. By using this approach, Bacillus-related species (B. benzoevorans, B. megaterium and B. pumilis and B. megaterium/B. simplex group) as well as Aeromonas sobria/Aeromonas salmonicida/Aeromonas hydrophila group, Pseudomonas plecoglossicida and Microbacterium esteraromaticum were isolated in different sample points analysed. DGGE analysis of PCR amplified V3 region of rDNA from DNA directly recovered from samples of biofilms and patina, enabled identification of bacterial species not found using culturable technology, as those closest related to Aeromonas, Paenibacillus, Brevibacterium, Exiguobacterium, Microbacterium, Brevibacterium, Stenothophomonas and Streptomyces. Combination of culture-dependent and independent methods provide a better characterization of heterotrophic microbiota that colonize the surface of ancient decorated walls and can contribute to understand the potential of biodeterioration activity by heterotrophic microorganisms.

  1. Experimental Study of Back Wall Dross and Surface Roughness in Fiber Laser Microcutting of 316L Miniature Tubes

    Directory of Open Access Journals (Sweden)

    Erika García-López

    2017-12-01

    Full Text Available Laser cutting is a key technology for the medical devices industry, providing the flexibility, and precision for the processing of sheets, and tubes with high quality features. In this study, extensive experimentation was used to evaluate the effect of fiber laser micro-cutting parameters over average surface roughness ( R a and back wall dross ( D bw in AISI 316L stainless steel miniature tubes. A factorial design analysis was carried out to investigate the laser process parameters: pulse frequency, pulse width, peak power, cutting speed, and gas pressure. A real laser beam radius of 32.1 μm was fixed in all experiments. Through the appropriate combination of process parameters (i.e., high level of pulse overlapping factor, and pulse energy below 32 mJ it was possible to achieve less than 1 μm in surface roughness at the edge of the laser-cut tube, and less than 3.5% dross deposits at the back wall of the miniature tube.

  2. Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation

    Directory of Open Access Journals (Sweden)

    Yanping Yuan

    2016-02-01

    Full Text Available In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm2 is used to irradiate multi-walled carbon nanotubes (MWCNTs on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM. For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C–C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on silicon, the difference of irradiation time to achieve welding is attributed to the difference of thermal conductivity for silica and silicon. As the irradiation time is prolonged up to 12.5 s, most of the MWCNTs are welded to a silicon substrate, which leads to their frameworks of tube walls on the silicon surface. This is because the accumulation of absorbed energy makes the temperature rise. Then chemical reactions among silicon, carbon and nitrogen occur. New chemical bonds of Si–N and Si–C achieve the welding between the MWCNTs and silicon. Vibration modes of Si3N4 appear at peaks of 363 cm−1 and 663 cm−1. There are vibration modes of SiC at peaks of 618 cm−1, 779 cm−1 and 973 cm−1. The experimental observation proves chemical reactions and the formation of Si3N4 and SiC by laser irradiation.

  3. Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation

    Science.gov (United States)

    Yuan, Yanping; Chen, Jimin

    2016-01-01

    In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm2) is used to irradiate multi-walled carbon nanotubes (MWCNTs) on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM). For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C–C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on silicon, the difference of irradiation time to achieve welding is attributed to the difference of thermal conductivity for silica and silicon. As the irradiation time is prolonged up to 12.5 s, most of the MWCNTs are welded to a silicon substrate, which leads to their frameworks of tube walls on the silicon surface. This is because the accumulation of absorbed energy makes the temperature rise. Then chemical reactions among silicon, carbon and nitrogen occur. New chemical bonds of Si–N and Si–C achieve the welding between the MWCNTs and silicon. Vibration modes of Si3N4 appear at peaks of 363 cm−1 and 663 cm−1. There are vibration modes of SiC at peaks of 618 cm−1, 779 cm−1 and 973 cm−1. The experimental observation proves chemical reactions and the formation of Si3N4 and SiC by laser irradiation. PMID:28344293

  4. Observation and Characterization of Fragile Organometallic Molecules Encapsulated in Single-Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    2014-01-01

    Full Text Available Thermally fragile tris(η5-cyclopentadienylerbium (ErCp3 molecules are encapsulated in single-wall carbon nanotubes (SWCNTs with high yield. We realized the encapsulation of ErCp3 with high filling ratio by using high quality SWCNTs at an optimized temperature under higher vacuum. Structure determination based on high-resolution transmission electron microscope observations together with the image simulations reveals the presence of almost free rotation of each ErCp3 molecule in SWCNTs. The encapsulation is also confirmed by X-ray diffraction. Trivalent character of Er ions (i.e., Er3+ is confirmed by X-ray absorption spectrum.

  5. Facet Model and Mathematical Morphology for Surface Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Abidi, B.R.; Goddard, J.S.; Hunt, M.A.; Sari-Sarraf, H.

    1999-11-13

    This paper describes an algorithm for the automatic segmentation and representation of surface structures and non-uniformities in an industrial setting. The automatic image processing and analysis algorithm is developed as part of a complete on-line web characterization system of a papermaking process at the wet end. The goal is to: (1) link certain types of structures on the surface of the web to known machine parameter values, and (2) find the connection between detected structures at the beginning of the line and defects seen on the final product. Images of the pulp mixture (slurry), carried by a fast moving table, are obtained using a stroboscopic light and a CCD camera. This characterization algorithm succeeded where conventional contrast and edge detection techniques failed due to a poorly controlled environment. The images obtained have poor contrast and contain noise caused by a variety of sources. After a number of enhancement steps, conventional segmentation methods still f ailed to detect any structures and are consequently discarded. Techniques tried include the Canny edge detector, the Sobel, Roberts, and Prewitt's filters, as well as zero crossings. The facet model algorithm, is then applied to the images with various parameter settings and is found to be successful in detecting the various topographic characteristics of the surface of the slurry. Pertinent topographic elements are retained and a filtered image computed. Carefully tailored morphological operators are then applied to detect and segment regions of interest. Those regions are then selected according to their size, elongation, and orientation. Their bounding rectangles are computed and represented. Also addressed in this paper are aspects of the real time implementation of this algorithm for on-line use. The algorithm is tested on over 500 images of slurry and is found to segment and characterize nonuniformities on all 500 images.

  6. Microanalytical characterization of surface decoration in Majolica pottery

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, R. [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Havana (Cuba); Schalm, O. [Micro and Trace Analysis Center, University of Antwerp (Belgium); Janssens, K. [Micro and Trace Analysis Center, University of Antwerp (Belgium); Arrazcaeta, R. [Gabinete de Arqueologia, Oficina del Historiador de la Ciudad de la Habana (OHCH) (Cuba); Espen, P. van [Micro and Trace Analysis Center, University of Antwerp (Belgium)]. E-mail: piet.vanespen@ua.ac.be

    2005-04-11

    This paper presents the results of the characterization of the surface finishing works in archaeological pottery fragments belonging to several Majolica types. The homogeneity, thickness and inclusions of both ground glaze and color decorations were, among other characteristics, inspected by scanning electron microscopy X-ray analysis (SEM-EDX). The identification of the main constituents in the decoration motifs was performed by means of scanning micro X-ray fluorescence analysis. Additionally, compositional classification based on non-destructive quantitative analysis of the ground glaze was performed.

  7. Comparison of optical methods for surface roughness characterization

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Hansen, Poul Erik; Pilny, Lukas

    2015-01-01

    We report a study of the correlation between three optical methods for characterizing surface roughness: a laboratory scatterometer measuring the bi-directional reflection distribution function (BRDF instrument), a simple commercial scatterometer (rBRDF instrument), and a confocal optical profiler....... For each instrument, the effective range of spatial surface wavelengths is determined, and the common bandwidth used when comparing the evaluated roughness parameters. The compared roughness parameters are: the root-mean-square (RMS) profile deviation (Rq), the RMS profile slope (Rdq), and the variance...... of the scattering angle distribution (Aq). The twenty-two investigated samples were manufactured with several methods in order to obtain a suitable diversity of roughness patterns.Our study shows a one-to-one correlation of both the Rq and the Rdq roughness values when obtained with the BRDF and the confocal...

  8. Measurements of laminar mixed convection flow adjacent to an inclined surface with uniform wall heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Mulaweh, H.I. [Mechanical Engineering Department, Purdue University at Fort Wayne, 2101 E. Coliseum Blvd., 46805, Fort Wayne, IN (United States)

    2003-01-01

    Measurements of laminar mixed convection flow adjacent to an inclined heated flat plate with uniform wall heat flux are reported. Laser-doppler velocimeter and cold wire anemometer were used to measure simultaneously the velocity and temperature distributions, respectively. Measurements of the air velocity and temperature distributions are presented for a range of buoyancy parameters 0{<=}{xi}{<=}2.91. It was found that both the mixed convection local Nusselt number and local friction coefficient increase as the buoyancy force increases (under the buoyancy assisting condition). The velocity field was found to be more sensitive to the buoyancy force than the thermal field. Predictions from both local similarity and local non-similarity models agree well with the experimental results for the thermal field, but only the predictions from the local non-similarity model agree favorably with the measured values for the flow field. (authors)

  9. Characterization and Applications of Affinity Based Surface Modification of Polypyrrole

    Science.gov (United States)

    Nickels, Jonathan D.

    I present the characterization and applications of a technique to modify the surface of the conducting polymer, polypyrrole, via a novel, 12-amino acid peptide, THRTSTLDYFVI (T59). This peptide non-covalently binds to the chlorine-doped conducting polymer polypyrrole, allowing it to be used in tethering molecules to polypyrrole for uses such as a scaffold for the treatment of peripheral nerve injury or in surface coatings of neural recording electrodes. I have quantified the binding of this peptide as well as investigating the mechanism of the binding. The equilibrium constant of the binding interaction of PPyCl and the T59 peptide was found through a binding assay to be 92.6 nM, and the off rate was found to be approximately 2.49 s-1, via AFM force spectroscopy. The maximum observed surface density of the peptide was 1.27 +/- 0.42 femtomoles/cm2. Furthermore, my studies suggest that the eighth residue, aspartic acid, is the main contributor of the binding, by interacting with the partially positive charge on the backbone of polypyrrole. I have demonstrated practical applications of the technique in the successful modification of a PPyCl surface with the laminin fragment IKVAV, as well as the so-called stealth molecule poly(ethylene glycol) (PEG). A subcutaneous implant study was performed to confirm that the T59 peptide did not induce any significant reaction in vivo. Significantly, the conductivity of a PPyCl surface was unaffected by this surface modification technique.

  10. Molecular characterization of water and surfactant AOT at nanoemulsion surfaces.

    Science.gov (United States)

    Hensel, Jennifer K; Carpenter, Andrew P; Ciszewski, Regina K; Schabes, Brandon K; Kittredge, Clive T; Moore, Fred G; Richmond, Geraldine L

    2017-12-19

    Nanoemulsions and microemulsions are environments where oil and water can be solubilized in one another to provide a unique platform for many different biological and industrial applications. Nanoemulsions, unlike microemulsions, have seen little work done to characterize molecular interactions at their surfaces. This study provides a detailed investigation of the near-surface molecular structure of regular (oil in water) and reverse (water in oil) nanoemulsions stabilized with the surfactant dioctyl sodium sulfosuccinate (AOT). Vibrational sum-frequency scattering spectroscopy (VSFSS) is used to measure the vibrational spectroscopy of these AOT stabilized regular and reverse nanoemulsions. Complementary studies of AOT adsorbed at the planar oil-water interface are conducted with vibrational sum-frequency spectroscopy (VSFS). Jointly, these give comparative insights into the orientation of interfacial water and the molecular characterization of the hydrophobic and hydrophilic regions of AOT at the different oil-water interfaces. Whereas the polar region of AOT and surrounding interfacial water molecules display nearly identical behavior at both the planar and droplet interface, there is a clear difference in hydrophobic chain ordering even when possible surface concentration differences are taken into account. This chain ordering is found to be invariant as the nanodroplets grow by Ostwald ripening and also with substitution of different counterions (Na:AOT, K:AOT, and Mg:AOT) that consequently also result in different sized nanoparticles. The results paint a compelling picture of surfactant assembly at these relatively large nanoemulsion surfaces and allow for an important comparison of AOT at smaller micellar (curved) and planar oil-water interfaces.

  11. Surface characterization and clinical review of two commercially available implants.

    Science.gov (United States)

    Galli, Silvia; Jimbo, Ryo; Andersson, Martin; Bryington, Matthew; Albrektsson, Tomas

    2013-10-01

    To characterize topographically and chemically the surfaces of 2 commercially available implants. Furthermore, to gather an overview of the clinical results of these implant systems. Two commercially available oral implants were analyzed using optical interferometry, scanning electron microscopy, and energy dispersive spectroscopy. In addition, a literature search for all the clinical articles on the same implants was performed. No significant differences of topographical parameters were found between the 2 implants, except for the hybrid parameter Sdr presenting significant higher values for the Ankylos implants. Both surfaces had a homogenous microporosity. At higher magnifications of scanning electron microscope images, evenly distributed nanostructures (approximately 10 nm) were visible. Chemically, mainly titanium, oxygen and carbon were detected. Fifty-six clinical articles were included for the review. The implant survival rates (minimum follow-up: 5 years) ranged between 87.7% and 100%. The examined commercially available implants showed a moderately rough surface, with a homogenous microporosity. Nanofeatures were detected on the surface of both implants. The clinical performances of these implants were comparable to that of other commercialized implant systems.

  12. Formation and characterization of infrared absorbing copper oxide surfaces

    Science.gov (United States)

    Arslan, Burcu; Demirci, Gökhan; Erdoğan, Metehan; Karakaya, İshak

    2017-04-01

    Copper oxide formation has been investigated to combine the advantages of producing different size and shapes of coatings that possess good light absorbing properties. An aqueous blackening solution was investigated and optimum composition was found as 2.5 M NaOH and 0.225 M NaClO to form velvet copper oxide films. A two-step oxidation mechanism was proposed for the blackening process by carefully examining the experimental results. Formation of Cu2O was observed until the entire copper surface was covered at first. In the second step, Cu2O surface was further oxidized to CuO until the whole Cu2O surface was covered by CuO. Therefore, blackened copper surfaces consisted of Cu2O/CuO duplex oxides. Characterization of the coatings were performed in terms of microstructure, phase analysis, chemical state, infrared specular and total reflectivity by SEM, XRD, XPS, FTIR and UV-vis spectrophotometry, respectively.

  13. Characterization of structural cell wall polysaccharides in cattail (Typha latifolia): Evaluation as potential biofuel feedstock.

    Science.gov (United States)

    Rebaque, Diego; Martínez-Rubio, Romina; Fornalé, Silvia; García-Angulo, Penélope; Alonso-Simón, Ana; Álvarez, Jesús M; Caparros-Ruiz, David; Acebes, José L; Encina, Antonio

    2017-11-01

    Second generation bioethanol produced from lignocellulosic biomass is attracting attention as an alternative energy source. In this study, a detailed knowledge of the composition and structure of common cattail (Typha latifolia L.) cell wall polysaccharides, obtained from stem or leaves, has been conducted using a wide set of techniques to evaluate this species as a potential bioethanol feedstock. Our results showed that common cattail cellulose content was high for plants in the order Poales and was accompanied by a small amount of cross-linked polysaccharides. A high degree of arabinose-substitution in xylans, a high syringyl/guaiacyl ratio in lignin and a low level of cell wall crystallinity could yield a good performance for lignocellulose saccharification. These results identify common cattail as a promising plant for use as potential bioethanol feedstock. To the best of our knowledge, this is the first in-depth analysis to be conducted of lignocellulosic material from common cattail. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.

    2003-01-01

    We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)(2)PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray-induced photoemission spectroscopy turns out to be a valuable nondestructive...... diagnostic tool. We show that the observation of generic one-dimensional signatures in photoemission spectra of the valence band close to the Fermi level can be strongly affected by surface effects. Especially, great care must be exercised taking evidence for an unusual one-dimensional many-body state...

  15. Surface characterization and stability of an epoxy resin surface modified with polyamines grafted on polydopamine

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Vercammen, Yannick; Van Vaeck, Luc [Biomolecular and Analytical Mass Spectrometry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Vanderleyden, Els; Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 bis, B-9000 Ghent (Belgium); Vanfleteren, Jan [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium)

    2014-06-01

    This paper reports on polydopamine and polyamine surface modifications of an etched epoxy cresol novolac (ECN) resin using the ‘grafting to’ method. Three different polyamines are used for the grafting reactions: branched polyethyleneimine (B-PEI), linear polyethyleneimine (L-PEI) and diethylenetriamine (DETA). These modifications are compared to control materials prepared via direct deposition of polyamines. The stability of the modifications toward a concentrated hydrochloric acid (HCl) environment is evaluated. The modified surfaces are characterized with scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectroscopy (TOF-S-SIMS).

  16. Charged Domain Walls

    OpenAIRE

    Campanelli, L.; Cea, P.; Fogli, G. L.; Tedesco, L.

    2003-01-01

    In this paper we investigate Charged Domain Walls (CDW's), topological defects that acquire surface charge density $Q$ induced by fermion states localized on the walls. The presence of an electric and magnetic field on the walls is also discussed. We find a relation in which the value of the surface charge density $Q$ is connected with the existence of such topological defects.

  17. Titanium implant surface modification by cathodic reduction in hydrofluoric acid: surface characterization and in vivo performance.

    Science.gov (United States)

    Lamolle, Sébastien F; Monjo, Marta; Lyngstadaas, Ståle P; Ellingsen, Jan E; Haugen, Håvard J

    2009-03-01

    Etching is used for the surface modification of titanium to improve the implant performance in bone. In this study, pure titanium implants were surface modified by a cathodic reduction process by using hydrofluoric acid (HF) at various concentrations (0.001, 0.01, and 0.1 vol %) and a constant current of 1 mA/cm(2). The resulting surface microtopographies were analyzed by atomic force microscopy, scanning electron microscopy, and profilometry, while the surface chemical contents were evaluated by time of flight secondary ion mass spectrometry. The competitive forces between ionic surface implementation induced by the current direction and the HF etching effect on titanium were highlighted. The implant performance was evaluated in an in vivo rabbit model by using a pull-out test method. The group of implants modified with 0.01% HF showed the highest retention in bone. Fluoride and hydride amounts measured in the surfaces, as well as surface skewness (S(sk)), kurtosis (S(ku)), and core fluid retention (S(ci)) were positively correlated to the implant's retention in bone in vivo. Frequently used parameters for characterizing the implant, such as oxide content and the average height deviation from the mean plane (S(a)), were not correlated to implant performance, suggesting that these parameters are not the most important in predicting the implant performance. (c) 2008 Wiley Periodicals, Inc.

  18. Decoration of gold nanoparticles on surface-grown single-walled carbon nanotubes for detection of every nanotube by surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Chu, Haibin; Wang, Jinyong; Ding, Lei; Yuan, Dongning; Zhang, Yan; Liu, Jie; Li, Yan

    2009-10-14

    An electroless deposition method comprised of seed formation and subsequent seeded growth is developed for the decoration of surface-grown single-walled carbon nanotubes (SWCNTs) with gold nanoparticles of controlled size and interparticle distance. The density of the gold nanoparticles is determined by the density of seeds. Gold seeds are used for the SWCNT arrays grown on SiO(x)/Si substrates. For the dense SWCNT arrays on quartz, palladium seeds are used because it is much easier to obtain higher quantities of seeds. Attributed to both the seed formation specified on SWCNTs and the succedent efficient seeded growth process, the gold nanoparticles deposit on SWCNTs with very high selectivity. This electroless method shows no selectivity on types, defects, and conductivity of the SWCNTs, and thus ensures the uniform decoration of all SWCNTs on the wafer. Most importantly, this method provides the possibility to realize the optimal configurations of gold nanoparticles on SWCNTs for obtaining maximal surface-enhanced effects and consequently surface-enhanced Raman spectrum (SERS) of each SWCNT. Thus, both the in situ Raman detection of every SWCNT including those nonresonant with laser energy and the observation of the radial breathing modes of SWCNTs originally undetectable with resonance Raman spectroscopy are achieved. Further investigations over the effect of the laser wavelength and the interparticle distance on the SERS enhancement factors of SWCNTs prove that the coupled surface plasmon resonance absorption of the high-density gold nanoparticles decorated on SWCNTs contributes most to the strong surface enhancement.

  19. Evaluation of Different Single-Walled Carbon Nanotube Surface Coatings for Single-Particle Tracking Applications in Biological Environments.

    Science.gov (United States)

    Gao, Zhenghong; Danné, Noémie; Godin, Antoine Guillaume; Lounis, Brahim; Cognet, Laurent

    2017-11-16

    Fluorescence imaging of biological systems down to the single-molecule level has generated many advances in cellular biology. For applications within intact tissue, single-walled carbon nanotubes (SWCNTs) are emerging as distinctive single-molecule nanoprobes, due to their near-infrared photoluminescence properties. For this, SWCNT surfaces must be coated using adequate molecular moieties. Yet, the choice of the suspension agent is critical since it influences both the chemical and emission properties of the SWCNTs within their environment. Here, we compare the most commonly used surface coatings for encapsulating photoluminescent SWCNTs in the context of bio-imaging applications. To be applied as single-molecule nanoprobes, encapsulated nanotubes should display low cytotoxicity, and minimal unspecific interactions with cells while still being highly luminescent so as to be imaged and tracked down to the single nanotube level for long periods of time. We tested the cell proliferation and cellular viability of each surface coating and evaluated the impact of the biocompatible surface coatings on nanotube photoluminescence brightness. Our study establishes that phospholipid-polyethylene glycol-coated carbon nanotube is the best current choice for single nanotube tracking experiments in live biological samples.

  20. The Effect of a Thin-Wall Casting Mould Cavity Filling Conditions on the Casting Surface Quality

    Directory of Open Access Journals (Sweden)

    Trytek A.

    2016-12-01

    Full Text Available The paper presents results of metallographic examination of faults occurring in the course of founding thin-walled cast-iron castings in furan resin sand molds. A non-conformance of the scab type was Observed on surface of the casting as well as sand buckles and cold shots. Studied the chemical composition by means of a scanning electron microscope in a region of casting defects: microanalysis point and microanalysis surface. Around the observed defects discloses high concentration of oxides of iron, manganese and silicon. A computer simulation of the casting process has been carried out with the objective to establish the cause of occurrence of cold shots on casting surface. The simulation was carried out with the use of NovaFlow & Solid program. We analyzed the flowing metal in the mold cavity. The main reason for the occurrence of casting defects on the surface of the casting was gating system, which caused turbulent flow of metal with a distinctive splash stream of liquid alloy.

  1. Mechanical characterization and morphology of polylactic acid /liquid natural rubber filled with multi walled carbon nanotubes

    Science.gov (United States)

    Ali, Adilah Mat; Ahmad, Sahrim Hj.

    2013-11-01

    In this paper the polymer nanocomposite of multi-walled carbon nanotubes (MWCNTs) nanoparticles was incorporated with polylactic acid (PLA) and liquid natural rubber (LNR) as compatibilizer were prepared via melt blending method. The effect of MWCNTs loading on the tensile and impact properties of nanocomposites was investigated. The result has shown that the sample with 3.5 wt % of MWCNTs exhibited higher tensile strength, Young's modulus and impact strength. The elongation at break decreased with increasing percentage of MWCNTs. The SEM micrographs confirmed the effect of good dispersion of MWCNTs and their interfacial bonding in PLA/LNR composites. The improved dispersion of MWCNTs can be obtained due to altered interparticle interactions, MWCNTs-MWCNTs and MWCNTs-matrix networks are well combined to generate the synergistic effect of the system as shown by SEM micrographs which is improved the properties significantly.

  2. Characterization of slow-cycling cells in the mouse cochlear lateral wall.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Cochlear spiral ligament fibrocytes (SLFs play essential roles in the physiology of hearing including ion recycling and the generation of endocochlear potential. In adult animals, SLFs can repopulate after damages, yet little is known about the characteristics of proliferating cells that support SLFs' self-renewal. Here we report in detail about the characteristics of cycling cells in the spiral ligament (SL. Fifteen P6 mice and six noise-exposed P28 mice were injected with 5-bromo-2'-deoxyuridine (BrdU for 7 days and we chased BrdU retaining cells for as long as 60 days. Immunohistochemistry revealed that the BrdU positive IB4 (an endotherial marker negative cells expressed an early SLF marker Pou3f4 but negative for cleaved-Caspase 3. Marker studies revealed that type 3 SLFs displayed significantly higher percentage of BrdU+ cells compared to other subtypes. Notably, the cells retained BrdU until P72, demonstrating they were dividing slowly. In the noise-damaged mice, in contrast to the loss of the other types, the number of type 3 SLFs did not altered and the BrdU incorporating- phosphorylated Histone H3 positive type 3 cells were increased from day 1 to 14 after noise exposure. Furthermore, the cells repopulating type 1 area, where the cells diminished profoundly after damage, were positive for the type 3 SLF markers. Collectively, in the latral wall of the cochlea, type 3 SLFs have the stem cell capacity and may contribute to the endogenous regeneration of lateral wall spiral ligament. Manipulating type 3 cells may be employed for potential regenerative therapies.

  3. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black.

    Science.gov (United States)

    Ma-Hock, Lan; Strauss, Volker; Treumann, Silke; Küttler, Karin; Wohlleben, Wendel; Hofmann, Thomas; Gröters, Sibylle; Wiench, Karin; van Ravenzwaay, Bennard; Landsiedel, Robert

    2013-06-17

    Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in order to avoid unsafe applications or select

  4. Surface characterization of GSH-CdTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, J.L., E-mail: juan.gautier@usach.cl [Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O' Higgins 3363, Santiago (Chile); Monrás, J.P. [Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O' Higgins 3363, Santiago (Chile); Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Vicuña Mackena 20, Santiago (Chile); Osorio-Román, I.O. [Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Av. V. Mackenna 4860, Santiago (Chile); Vásquez, C.C. [Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O' Higgins 3363, Santiago (Chile); Bravo, D. [Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Vicuña Mackena 20, Santiago (Chile); Herranz, T.; Marco, J.F. [Instituto de Química Física “Rocasolano” CSIC, c/Serrano 119, 28006 Madrid (Spain); and others

    2013-06-15

    The surface characterization of CdTe QDs synthesized by a novel procedure using glutathione (GSH), low temperatures (60–90 °C) and K{sub 2}TeO{sub 3} as the –Te precursor is reported. Fluorescence of the produced QDs is stable in the pH range 6–13 and QDs inside eukaryotic cells are highly fluorescent. The surface composition of GSH-CdTe QDs with different spectroscopic properties and particle size distributions was determined by XPS. The XPS analysis indicated that the QDs are essentially CdTe, although all nanoparticles contain 12–24% of CdO (and in one case also TeO{sub 2}). GSH decomposes with reaction time releasing small amounts of S{sup −2} ions that react with Cd(Te) to yield Cd(Te)S in a smaller amount than that of CdTe. Finally, the use of QDs in fluorescence mediated immunodetection of bacterial pathogens has been evaluated. - Highlights: • Stable CdTe QDs of different sizes were synthesized by reacting thiol GSH and K{sub 2}TeO{sub 3} at 90 °C. • XPS analysis shows that the QDs contain CdTe, Cd(Te)S and CdO at the surface. • Small amounts of TeO{sub 2} were also observed. • Sulphur allows the binding of the QDs at biomolecules.

  5. Free surface BCP self-assembly process characterization with CDSEM

    Science.gov (United States)

    Levi, Shimon; Weinberg, Yakov; Adan, Ofer; Klinov, Michael; Argoud, Maxime; Claveau, Guillaume; Tiron, Raluca

    2016-03-01

    A simple and common practice to evaluate Block copolymers (BCP) self-assembly performances, is on a free surface wafer. With no guiding pattern the BCP designed to form line space pattern for example, spontaneously rearranges to form a random fingerprint type of a pattern. The nature of the rearrangement is dictated by the physical properties of the BCP moieties, wafer surface treatment and the self-assembly process parameters. Traditional CDSEM metrology algorithms are designed to measure pattern with predefined structure, like linespace or oval via holes. Measurement of pattern with expected geometry can reduce measurement uncertainty. Fingerprint type of structure explored in this dissertation, poses a challenge for CD-SEM measurement uncertainty and offers an opportunity to explore 2D metrology capabilities. To measure this fingerprints we developed a new metrology approach that combines image segmentation and edge detection to measure 2D pattern with arbitrary rearrangement. The segmentation approach enabled to quantify the quality of the BCP material and process, detecting 2D attributes such as: CD and CDU at one axis, and number of intersections, length and number of PS fragments, etched PMMA spaces and donut shapes numbers on the second axis. In this paper we propose a 2D metrology to measure arbitrary BCP pattern on a free surface wafer. We demonstrate experimental results demonstrating precision data, and characterization of PS-b-PMMA BCP, intrinsic period L0 = 38nm (Arkema), processed at different bake time and temperatures.

  6. The problems of the occurrence of efflorescence on the surface of buildings’ exterior walls made of vibropressed concrete blocks and the methods of blocking these processes

    OpenAIRE

    V.V. Babkov; E.A. Gafurova; O.A. Rezvov; A.V. Mokhov

    2012-01-01

    At this article it has been considered the questions concerning the occurrence of efflorescence on the surface of buildings’ exterior walls made of vibropressed concrete blocks. The chemical and mineralogical composition of efflorescences were investigated using the electron-scan microscope and diffractometer. The mechanism of the efflorescence occurrence was disclosed.The suitability of hydrophobization as a purifying method of the above mentioned walls from efflorescences was analyzed. The ...

  7. Roles for Cell Wall Glycopeptidolipid in Surface Adherence and Planktonic Dispersal of Mycobacterium avium

    Science.gov (United States)

    The opportunistic pathogen Mycobacterium avium is a significant inhabitant of biofilms in drinking water distribution systems. M. avium expresses on its cell surface serovar-specific glycopeptidolipids (ssGPLs). Studies have implicated the core GPL in biofilm formation by M. aviu...

  8. Interaction of multi-walled carbon nanotubes with perfluorinated sulfonic acid ionomers and surface treatment studies

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Borghei, Maryam

    2014-01-01

    The interaction between high surface area nano-carbon catalyst supports for proton exchange membrane fuel cells (PEMFCs) and perfluorinated sulfonic acid (Nafion®) ionomer was studied 19 fluorine nuclear magnetic resonance spectroscopy (19F-NMR). The method was developed and improved for more...

  9. Kinetic and Surface Study of Single-Walled Aluminosilicate Nanotubes and Their Precursors

    Directory of Open Access Journals (Sweden)

    Mauricio Molina

    2013-03-01

    Full Text Available The structural and surface changes undergone by the different precursors that are produced during the synthesis of imogolite are reported. The surface changes that occur during the synthesis of imogolite were determined by electrophoretic migration (EM measurements, which enabled the identification of the time at which the critical precursor of the nanoparticles was generated. A critical parameter for understanding the evolution of these precursors is the isoelectric point (IEP, of which variation revealed that the precursors modify the number of active ≡Al-OH and ≡Si-OH sites during the formation of imogolite. We also found that the IEP is displaced to a higher pH level as a consequence of the surface differentiation that occurs during the synthesis. At the same time, we established that the pH of the reaction (pHrx decreases with the evolution and condensation of the precursors during aging. Integration of all of the obtained results related to the structural and surface properties allows an overall understanding of the different processes that occur and the products that are formed during the synthesis of imogolite.

  10. Characterization of ancient construction materials (mud walls and adobe in the churches at Cisneros, Villada and Boada de Campos (Palencia

    Directory of Open Access Journals (Sweden)

    Sánchez Hernández, R.

    2000-03-01

    Full Text Available The aim of this work is to characterize the ancient building materials (mud wall and adobe of three churches in the province of Palencia. This is the first part of a study which seeks to evaluate how the mud walls of the tower of the church of Cisneros reacted to restoration treatment which consisted of a structural reinforcement made by injecting a highly fluid grout of cement/lime/sand mortar. This treatment implies the introduction of large quantities of water into the fabric. The mud walls of the tower of Cisneros are compositionally and texturally very similar to each other, which indicates that despite their large dimensions, care was taken in the homogeneity of the materials. These mud walls are also very similar to those of the church of Villada. The original raw material is mud with some additives (rubble, ashes, bones, etc. and some remains of lime used as a stabiliser. Although there is a very high proportion of clay, no effervescing clay has been detected. Hence it is deduced that once the mud wall was built, there were no important changes in volume due to variation in the humidity of the fabric. The characteristics of the adobe of the tower of Boada are logically different form those of the mud walls, being made of less sandy, more clayey mud with a high proportion of straw that the mud walls do not have, and without the addition of bricks, bones, etc.

    El objetivo de este trabajo es caracterizar los materiales antiguos de construcción (tapial y adobe de tres iglesias en la provincia de Falencia. El trabajo es la primera parte de un estudio en el que se pretende evaluar el comportamiento de los tapiales de la torre de la iglesia de Cisneros frente al tratamiento de restauración, consistente en un cosido estructural mediante la realización de perforaciones en las que se introduce una barra de acero y donde, posteriormente, se inyecta una lechada muy fluidificada de mortero de cemento/cal/arena. Este tratamiento implica la

  11. Static and dynamic characterization of robust superhydrophobic surfaces built from nano-flowers on silicon micro-post arrays

    KAUST Repository

    Chen, Longquan

    2010-09-01

    Superhydrophobic nano-flower surfaces were fabricated using MEMS technology and microwave plasma-enhanced chemical vapor deposition (MPCVD) of carbon nanotubes on silicon micro-post array surfaces. The nano-flower structures can be readily formed within 1-2 min on the micro-post arrays with the spacing ranging from 25 to 30 μm. The petals of the nano-flowers consisted of clusters of multi-wall carbon nanotubes. Patterned nano-flower structures were characterized using various microscopy techniques. After MPCVD, the apparent contact angle (160 ± 0.2°), abbreviated as ACA (defined as the measured angle between the apparent solid surface and the tangent to the liquid-fluid interface), of the nano-flower surfaces increased by 139% compared with that of the silicon micro-post arrays. The measured ACA of the nano-flower surface is consistent with the predicted ACA from a modified Cassie-Baxter equation. A high-speed CCD camera was used to study droplet impact dynamics on various micro/nanostructured surfaces. Both static testing (ACA and sliding angle) and droplet impact dynamics demonstrated that, among seven different micro/nanostructured surfaces, the nano-flower surfaces are the most robust superhydrophobic surfaces. © 2010 IOP Publishing Ltd.

  12. Gypsum plasterboard walls: inspection, pathological characterization and statistical survey using an expert system

    Directory of Open Access Journals (Sweden)

    Gaião, C.

    2012-06-01

    Full Text Available This paper presents an expert system to support the inspection and diagnosis of partition walls or wall coverings mounted using the Drywall (DW construction method. This system includes a classification of anomalies in DW and their probable causes. This inspection system was used in a field work that included the observation of 121 DWs. This paper includes a statistical analysis of the anomalies observed during these inspections and their probable causes. The correlation between anomalies and causes in the sample is also thoroughly analyzed. Anomalies are also evaluated for area affected, size, repair urgency and aesthetic value of the affected area. The conclusions of the statistical analysis allowed the creation of an inventory of preventive measures to be implemented in the design, execution and use phases in order to lessen the magnitude or eradicate the occurrence of anomalies in DW. These measures could directly help improve the quality of construction.

    Este trabajo presenta un sistema experto de apoyo a la inspección y diagnóstico de tabiques o revestimientos de yeso laminado. Dicho sistema, que permite la clasificación de las anomalías del yeso laminado y sus causas probables, se empleó en un trabajo de campo en el que se estudiaron 121 elementos construidos con este material. El trabajo incluye el análisis estadístico de las anomalías detectadas durante las inspecciones y sus motivos probables. También se analizó en detalle la correlación entre las anomalías y sus causas, evaluándose aquellas en función de la superficie afectada, la urgencia de las reparaciones y el valor estético de la zona implicada. Las conclusiones del análisis estadístico permitieron la elaboración de un inventario de medidas preventivas que deberían implantarse en las fases de proyecto, ejecución y utilización de estos elementos a fin de erradicar la aparición de anomalías en el yeso laminado o reducir su frecuencia. Dichas

  13. Comparative study of the cell wall composition of broccoli, carrot, and tomato: structural characterization of the extractable pectins and hemicelluloses.

    Science.gov (United States)

    Houben, Ken; Jolie, Ruben P; Fraeye, Ilse; Van Loey, Ann M; Hendrickx, Marc E

    2011-07-01

    This study delivers a comparison of the pectic and hemicellulosic cell wall polysaccharides between the commonly used vegetables broccoli (stem and florets separately), carrot, and tomato. Alcohol-insoluble residues were prepared from the plant sources and sequentially extracted with water, cyclohexane-trans-1,2-diamine tetra-acetic acid, sodium carbonate, and potassium hydroxide solutions, to obtain individual fractions, each containing polysaccharides bound to the cell wall in a specific manner. Structural characterization of the polysaccharide fractions was conducted using colorimetric and chromatographic approaches. Sugar ratios were defined to ameliorate data interpretation. These ratios allowed gaining information concerning polysaccharide structure from sugar composition data. Structural analysis of broccoli revealed organ-specific characteristics: the pectin degree of methoxylation (DM) of stem and florets differed, the sugar composition data inferred differences in polymeric composition. On the other hand, the molar mass (MM) distribution profiles of the polysaccharide fractions were virtually identical for both organs. Carrot root displayed a different MM distribution for the polysaccharides solubilized by potassium hydroxide compared to broccoli and tomato, possibly due to the high contribution of branched pectins to this otherwise hemicellulose-enriched fraction. Tomato fruit showed the pectins with the broadest range in DM, the highest MM, the greatest overall linearity and the lowest extent of branching of rhamnogalacturonan I, pointing to particularly long, linear pectins in tomato compared with the other vegetable organs studied, suggesting possible implications toward functional behavior. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Biodiesel synthesis from cottonseed oil using homogeneous alkali catalyst and using heterogeneous multi walled carbon nanotubes: Characterization and blending studies

    Directory of Open Access Journals (Sweden)

    A. Arun Shankar

    2017-03-01

    Full Text Available The trans-esterification of cottonseed oil using strong alkali catalyst and using multi walled carbon nano tubes as catalyst to produce biodiesel was studied. The interaction effects of various factors such as temperature, amount of alkali used, alcohol to oil ratio and reaction time on yield of biodiesel were studied. The maximum yield of 95% biodiesel was obtained. The biodiesel produced was characterized using FT-IR spectral analysis and GC–MS analysis to ascertain the various functional groups and compounds available in it. The properties of biodiesel using homogeneous alkali catalyst and heterogeneous multi walled carbon nanotubes such as calorific value (36.18 MJ/kg, 33.78 MJ/kg, flash point (160 °C, 156 °C and other properties such as viscosity, cloud point, pour point and density were found to determine the quality of biodiesel produced. The studies were done by blending the biodiesel produced with diesel and properties of blended samples were estimated to ascertain the use of blended samples in internal combustion engines.

  15. Optimal conditions for decorating outer surface of single-walled carbon nanotubes with RecA proteins

    Science.gov (United States)

    Oura, Shusuke; Umemura, Kazuo

    2016-03-01

    In this study, we estimated the optimal reaction conditions for decorating the outer surface of single-walled carbon nanotubes (SWNTs) with RecA proteins by comparison with hybrids of RecA and single-stranded DNA (ssDNA). To react SWNTs with RecA proteins, we first prepared ssDNA-SWNT hybrids. The heights of the ssDNA-SWNT hybrids increased as the amount of RecA used in the reaction increased, as determined from atomic force microscopy images. We further confirmed the increasing adsorption of RecA proteins onto ssDNA on SWNT surfaces by agarose gel electrophoresis. These results suggest that the combination of RecA proteins and ssDNA-SWNT hybrids forms RecA-ssDNA-SWNT hybrids. We also successfully controlled the amount of RecA adsorbed on the ssDNA-SWNT hybrids. Our results thus indicate the optimized reaction conditions for decorating the outer surface of SWNTs with RecA proteins, which is the key to the development of novel biosensors and nanomaterial-based bioelectronics.

  16. Desorption of 1,3,5-Trichlorobenzene from Multi-Walled Carbon Nanotubes: Impact of Solution Chemistry and Surface Chemistry

    Directory of Open Access Journals (Sweden)

    Sheikh Uddin

    2013-05-01

    Full Text Available The strong affinity of carbon nanotubes (CNTs to environmental contaminants has raised serious concern that CNTs may function as a carrier of environmental pollutants and lead to contamination in places where the environmental pollutants are not expected. However, this concern will not be realized until the contaminants are desorbed from CNTs. It is well recognized that the desorption of environmental pollutants from pre-laden CNTs varies with the environmental conditions, such as the solution pH and ionic strength. However, comprehensive investigation on the influence of solution chemistry on the desorption process has not been carried out, even though numerous investigations have been conducted to investigate the impact of solution chemistry on the adsorption of environmental pollutants on CNTs. The main objective of this study was to determine the influence of solution chemistry (e.g., pH, ionic strength and surface functionalization on the desorption of preloaded 1,3,5-trichlorobenzene (1,3,5-TCB from multi-walled carbon nanotubes (MWNTs. The results suggested that higher pH, ionic strength and natural organic matter in solution generally led to higher desorption of 1,3,5-TCB from MWNTs. However, the extent of change varied at different values of the tested parameters (e.g., pH 7. In addition, the impact of these parameters varied with MWNTs possessing different surface functional groups, suggesting that surface functionalization could considerably alter the environmental behaviors and impact of MWNTs.

  17. Tip clearance effect on heat transfer and leakage flows on the shroud-wall surface in an axial flow turbine

    Science.gov (United States)

    Kumada, Masaya; Iwata, Satoshi; Obata, Masakazu; Watanabe, Osamu

    1992-06-01

    An axial flow turbine for a turbocharger is used as a test turbine, and the local heat transfer coefficient on the surface of the shroud is measured under uniform heat flux conditions. The nature of the tip clearance flow on the shroud surface and a flow pattern in the downstream region of the rotor blades are studied, and measurements are obtained by using a hot-wire anemometer in combination with a periodic multisampling and an ensemble averaging technique. Data are obtained under on- and off-design conditions. The effects of inlet flow angle, rotational speed and tip clearance on the local heat transfer coefficient are elucidated. The mean heat transfer coefficient is correlated with the tip clearance, and the mean velocity is calculated by the velocity triangle method for approximation. A leakage flow region exists in the downstream direction beyond the middle of the wall surface opposite the rotor blade, and a leakage vortex is recognized at the suction side near the trailing edge.

  18. Planetary surface characterization from dual-polarization radar observations

    Science.gov (United States)

    Virkki, Anne; Planetary Radar Team of the Arecibo Observatory

    2017-10-01

    We present a new method to investigate the physical properties of planetary surfaces using dual-polarization radar measurements. The number of radar observations has increased radically during the last five years, allowing us to compare the radar scattering properties of different small-body populations and compositional types. There has also been progress in the laboratory studies of the materials that are relevant to asteroids and comets.In a typical planetary radar measurement a circularly polarized signal is transmitted using a frequency of 2380 MHz (wavelength of 12.6 cm) or 8560 MHz (3.5 cm). The echo is received simultaneously in the same circular (SC) and the opposite circular (OC) polarization as the transmitted signal. The delay and doppler frequency of the signal give highly accurate astrometric information, and the intensity and the polarization are suggestive of the physical properties of the target's near-surface.The radar albedo describes the radar reflectivity of the target. If the effective near-surface is smooth and homogeneous in the wavelength-scale, the echo is received fully in the OC polarization. Wavelength-scale surface roughness or boulders within the effective near-surface volume increase the received echo power in both polarizations. However, there is a lack in the literature describing exactly how the physical properties of the target affect the radar albedo in each polarization, or how they can be derived from the radar measurements.To resolve this problem, we utilize the information that the diffuse components of the OC and SC parts are correlated when the near-surface contains wavelength-scale scatterers such as boulders. A linear least-squares fit to the detected values of OC and SC radar albedos allows us to separate the diffusely scattering part from the quasi-specular part. Combined with the spectro-photometric information of the target and laboratory studies of the permittivity-density dependence, the method provides us with a

  19. Characterization of ionic liquid pretreated plant cell wall for improved enzymatic digestibility.

    Science.gov (United States)

    Raj, Tirath; Gaur, Ruchi; Lamba, Bhawna Yadav; Singh, Nitu; Gupta, Ravi P; Kumar, Ravindra; Puri, Suresh K; Ramakumar, S S V

    2017-10-04

    An insight into the properties of cell wall of mustard stalk (MS) pretreated by five ionic liquids (ILs) revealed ILs interaction with cellulose, hemicellulose and lignin components. Differential Scanning Calorimetry (DSC) showed increased pore size coupled with increased population of pores evoked by certain ILs in better facilitating enzymatic accessibility. Interestingly, all the five ILs predominantly increased the propensity of two pore sizes formation; 19 and 198 nm, but remarkable difference in the pore volumes of pretreated MS suggested the supremacy of [OAc](-) based ILs, resulting in higher glucose yields. Cellulose I to II transition in pretreated MS was supported by the reduced total crystallinity index (TCI), lateral order index (LOI) values. Strong inverse correlation existed between the said parameters and residual acetyl content with enzymatic hydrolysis (R(2) > 0.8). An inverse relationship between hydrogen bond basicity, LOI and TCI suggested it to be a good indicator of IL pretreatment efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Purification and characterization of a wound-inducible cell wall cationic peroxidase from carrot roots.

    Science.gov (United States)

    Nair, A R; Showalter, A M

    1996-09-04

    We have isolated a novel cell wall, cationic peroxidase (pI > 9.3) from roots of the carrot plant, Daucus carota. The purified isozyme, referred to as CP > 9.3, has a molecular mass of 45 kilodaltons and an Reinheitzahl value of 2.3. Amino-acid composition analysis and N-terminal sequencing have been performed with CP > 9.3. The N-terminal sequence shows no homology to any sequence in the protein and nucleic acid data banks. CP > 9.3 activity is induced by wounding in carrot leaves and petioles; this activity is also present in carrot roots but is unaltered by wounding. Enhanced CP > 9.3 activity is seen at 12 hr post-wounding and continues for at least 60 hr in leaves and petioles. Based on studies using cycloheximide, early activation of CP > 9.3 is not due to de novo protein synthesis, but rather to enzyme activation. Temperature and pH optima for CP > 9.3 using guaiacol as a substrate have been determined to be 32 degrees C and 4.9.

  1. Covalent functionalization of single-walled carbon nanotubes with polytyrosine: Characterization and analytical applications for the sensitive quantification of polyphenols.

    Science.gov (United States)

    Eguílaz, Marcos; Gutiérrez, Alejandro; Gutierrez, Fabiana; González-Domínguez, Jose Miguel; Ansón-Casaos, Alejandro; Hernández-Ferrer, Javier; Ferreyra, Nancy F; Martínez, María T; Rivas, Gustavo

    2016-02-25

    This work reports the synthesis and characterization of single-walled carbon nanotubes (SWCNT) covalently functionalized with polytyrosine (Polytyr); the critical analysis of the experimental conditions to obtain the efficient dispersion of the modified carbon nanotubes; and the analytical performance of glassy carbon electrodes (GCE) modified with the dispersion (GCE/SWCNT-Polytyr) for the highly sensitive quantification of polyphenols. Under the optimal conditions, the calibration plot for the amperometric response of gallic acid (GA) shows a linear range between 5.0 × 10(-7) and 1.7 × 10(-4) M, with a sensitivity of (518 ± 5) m AM(-1) cm(-2), and a detection limit of 8.8 nM. The proposed sensor was successfully used for the determination of total polyphenolic content in tea extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A novel approach to mapping load transfer from the plantar surface of the foot to the walls of the total contact cast: a proof of concept study

    Directory of Open Access Journals (Sweden)

    Begg Lindy

    2012-12-01

    Full Text Available Abstract Background Total contact casting is regarded as the gold standard treatment for plantar foot ulcers. Load transfer from the plantar surface of the foot to the walls of the total contact cast has previously been assessed indirectly. The aim of this proof of concept study was to determine the feasibility of a new method to directly measure the load between the cast wall and the lower leg interface using capacitance sensors. Methods Plantar load was measured with pedar® sensor insoles and cast wall load with pliance® sensor strips as participants (n=2 walked along a 9 m walkway at 0.4±0.04 m/sec. The relative force (% on the cast wall was calculated by dividing the mean cast wall force (N per step by the mean plantar force (N per step in the shoe-cast condition. Results The combined average measured load per step upon the walls of the TCC equated to 23-34% of the average plantar load on the opposite foot. The highest areas of load on the lower leg were located at the posterior margin of the lateral malleolus and at the anterior ankle/extensor retinaculum. Conclusions These direct measurements of cast wall load are similar to previous indirect assessment of load transfer (30-36% to the cast walls. This new methodology may provide a more comprehensive understanding of the mechanism of load transfer from the plantar surface of the foot to the cast walls of the total contact cast.

  3. Surface Characterization of a Paper Web at the Wet End

    Energy Technology Data Exchange (ETDEWEB)

    Abidi, B.R.; Goddard, J.S.; Sari-Sarraf, H.

    1999-06-23

    We present an algorithm for the detection and representation of structures and non-uniformities on the surface of a paper web at the wet end (slurry). This image processing/analysis algorithm is developed as part of a complete on-line web characterization system. Images of the slurry, carried by a fast moving table, are obtained using a stroboscopic light and a CCD camera. The images have very poor contrast and contain noise from a variety of sources. Those sources include the acquisition system itself, the lighting, the vibrations of the moving table being imaged, and the scattering water from the same table's movement. After many steps of enhancement, conventional edge detection methods were still inconclusive and were discarded. The facet model algorithm, is applied to the images and is found successful in detecting the various topographic characteristics of the surface of the slurry. Pertinent topographic elements are retained and a filtered image is computed based on the general appearance and characteristics of the structures in question. Morphological operators are applied to detect and segment regions of interest. Those regions are then filtered according to their size, elongation, and orientation.Their bounding rectangles are computed and superimposed on the original image. Real time implementation of this algorithm for on-line use is also addressed in this paper. The algorithm is tested on over 500 images of slurry and is found to detect nonuniformities on all 500 images. Locating and characterizing all different size structures is also achieved on all 500 images of the web.

  4. Partial structural characterization of pectin cell wall from Argania spinosa leaves

    OpenAIRE

    Hachem, Kadda; Benabdesslem, Yasmina; Ghomari, Samia; Hasnaoui, Okkacha; Kaid-Harche, Meriem

    2016-01-01

    The pectin polysaccharides from leaves of Argania spinosa (L.) Skeels, collected from Stidia area in the west coast of northern Algeria, were investigated by using sequential extractions and the resulting fractions were analysed for monosaccharide composition and chemical structure. Water-soluble pectic (ALS-WSP) and chelating-soluble pectic (ALS-CSP) fractions were obtained, de-esterified and fractionated by anion-exchange chromatography and characterized by sugar analysis combined with meth...

  5. Characterization of multi-walled carbon nanotube electrodes functionalized by electropolymerized tris(pyrrole-ether bipyridine) ruthenium (II)

    Energy Technology Data Exchange (ETDEWEB)

    Le Goff, Alan; Holzinger, Michael [Departement de Chimie Moleculaire UMR-5250, ICMG FR-2607, CNRS Universite Joseph Fourier, BP-53, 38041 Grenoble (France); Cosnier, Serge, E-mail: Serge.Cosnier@ujf-grenoble.f [Departement de Chimie Moleculaire UMR-5250, ICMG FR-2607, CNRS Universite Joseph Fourier, BP-53, 38041 Grenoble (France)

    2011-04-01

    We synthesized new electropolymerizable [Ru(bpy){sub n}L{sub m}](PF{sub 6}){sub 2} (L = 4,4 bis(3-pyrrol-1-ylpropyloxy)bipyridyl) derivatives. The introduction of electron donating ether groups in the bipyridine ligand induced a negative shift of the Ru(III)/(II) redox couple. The electrochemical behavior of complex Ru1 (n = 2, m = 1) and complex Ru2 (n = 0, m = 3) were compared using platinum and Multi-Walled Carbon Nanotube (MWCNT) electrode. Higher polymerization yields and surface concentrations were obtained at MWCNT electrodes. Furthermore, MWCNT electrodes increase polymer permeability and decrease the charge trapping phenomenon involved in the oxidation and reduction of the polypyrrolic skeleton of the Ru(II) functionalized polymers.

  6. Hexafluorozirconic Acid Based Surface Pretreatments: Characterization and Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, Saikat [Ohio State University; Unocic, Kinga A [ORNL; Zhai, Yumei [Ohio State University; Frankel, Gerald [Ohio State University; Zimmerman, John [Henkel Corp; Fristad, W [Henkel Corp

    2010-01-01

    A new phosphate-free pretreatment from Henkel Corp. named TecTalis , was investigated. The treatment bath is composed of dilute hexafluorozirconic acid with small quantities of non-hazardous components containing Si and Cu. The performance of treated steel was compared to samples treated in a phosphate conversion coating bath, in simple hexafluorozirconic acid and in TecTalis without the addition of the Cu containing component. Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) were used to characterize the coating surface morphology, structure and composition. A Quartz Crystal Microbalance (QCM) was used for studying film growth kinetics on thin films of pure Fe, Al and Zn. Electrochemical Impedance Spectroscopy (EIS) was performed on treated and painted steel for studying long-term corrosion performance of the coatings. The phosphate-free coating provided long-term corrosion performance comparable to that of phosphate conversion coatings. The coatings uniformly cover the surface in the form of 10-20 nm sized nodules and clusters of these features up to 500 nm in size. The coatings are usually about 20-30 nm thick and are mostly composed of Zr and O with enrichment of copper at randomly distributed locations and clusters.

  7. Characterization of RNase Immobilization at Surfaces by NEXAFS

    Science.gov (United States)

    Liu, Xiaosong; Jang, Chang-Hyun; Zheng, Fan; Jurgensen, Astrid; Abbott, Nicholas L.; Himpsel, F. J.

    2006-03-01

    Immobilization of proteins at surfaces plays an increasingly-important role for applications in biosensors and biochips, bioelectronics, bio-compatible implants, and biomimetic devices. In this study, Ribonuclease A (RNase A) is immobilized on silver surfaces in oriented and random form via self-assembled monolayers (SAMs) of alkanethiols as described previously.^[1] The immobilization process is characterized step by step using chemically-selective near edge x-ray absorption fine structure spectroscopy (NEXAFS) at the C, N, and S K-edges. Oriented protein layers exhibit a small, but distinct polarization dependence of the N1s to π* orbital that is delocalized over O=C-NH, which is not seen for random orientation. They also have higher coverage. Oxidation and partial desorption of the alkanethiol SAMs are found to be predominant causes of imperfect immobilization. The results show how NEXAFS is able to provide feedback for optimizing the immobilization of proteins. [1] Luk, Y.-Y.; Tingey, M. L.; Dickson, K. A.; Raines, R. T.; Abbott, N. L. Journal of the American Chemical Society 2004, 126, (29), 9024.

  8. Interfacial characterization and analytical applications of chemically-modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianhong [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    The goal of this work is to explore several new strategies and approaches to the surface modification and the microscopic characterization of interfaces in the areas mainly targeting sensor technologies that are of interest to environmental control or monitoring, and scanning probe microscopies techniques that can monitor interfacial chemical reactions in real time. Centered on the main theme, four specific topics are presented as four chapters in this dissertation following the general introduction. Chapter 1 describes the development of two immobilization schemes for covalently immobilizing fluoresceinamine at cellulose acetate and its application as a pH sensing film. Chapter 2 investigates the applicability of SFM to following the base-hydrolysis of a dithio-bis(succinimidylundecanoate) monolayer at gold in situ. Chapter 3 studies the mechanism for the accelerated rate of hydrolysis of the dithio-bis(succinimidylundecanoate) monolayer at Au(111) surface. Chapter 4 focuses on the development of an electrochemical approach to the elimination of chloride interference in Chemical Oxygen Demand (COD) analysis of waste water. The procedures, results and conclusions are described in each chapter. This report contains the introduction, references, and general conclusions. Chapters have been processed separately for inclusion on the data base. 95 refs.

  9. Characterization of surface antigens of reticulated immature platelets.

    Science.gov (United States)

    Lador, Adi; Leshem-Lev, Dorit; Spectre, Galia; Abelow, Aryeh; Kornowski, Ran; Lev, Eli I

    2017-10-01

    Reticulated platelets (RPs) are immature platelets with high dense granules content and a residual amount of megakaryocyte-derived of mRNA. Increased level of RPs has been found to be an independent predictor of cardiovascular ischemic events, and has been associated with impaired response to various anti-platelet drugs. The study aimed to characterize and compare the surface antigenic properties of reticulated versus mature platelets. Platelets from healthy individuals and diabetic patients were tested at rest and after activation with adenosine diphosphate (ADP). For each patient, we calculated the proportion of RPs and mature platelets using flow cytometry analysis with thiazole orange staining (for RPs) and CD42b platelet-specific antibody. We also tested the surface expression of P-selectin and Annexin V, by double staining flow cytometry in RPs versus mature platelets. A total of 20 subjects were recruited (10 healthy individuals, 10 diabetics). Activation with ADP did not cause a significant change in the proportion of RPs. Following activation, RPs demonstrated a significant increase in the expression of both P-selectin and Annexin V, while mature platelets exhibited a non-significant increase in both markers. These findings were consistent in both healthy subjects and patients with diabetes. In conclusion, RPs have a significantly higher capacity to increase the expression of platelet activation markers compared with mature platelets.

  10. The adsorption of biomolecules to multi-walled carbon nanotubes is influenced by both pulmonary surfactant lipids and surface chemistry

    Directory of Open Access Journals (Sweden)

    Yan Bing

    2010-12-01

    Full Text Available Abstract Background During production and processing of multi-walled carbon nanotubes (MWCNTs, they may be inhaled and may enter the pulmonary circulation. It is essential that interactions with involved body fluids like the pulmonary surfactant, the blood and others are investigated, particularly as these interactions could lead to coating of the tubes and may affect their chemical and physical characteristics. The aim of this study was to characterize the possible coatings of different functionalized MWCNTs in a cell free environment. Results To simulate the first contact in the lung, the tubes were coated with pulmonary surfactant and subsequently bound lipids were characterized. The further coating in the blood circulation was simulated by incubating the tubes in blood plasma. MWCNTs were amino (NH2- and carboxyl (-COOH-modified, in order to investigate the influence on the bound lipid and protein patterns. It was shown that surfactant lipids bind unspecifically to different functionalized MWCNTs, in contrast to the blood plasma proteins which showed characteristic binding patterns. Patterns of bound surfactant lipids were altered after a subsequent incubation in blood plasma. In addition, it was found that bound plasma protein patterns were altered when MWCNTs were previously coated with pulmonary surfactant. Conclusions A pulmonary surfactant coating and the functionalization of MWCNTs have both the potential to alter the MWCNTs blood plasma protein coating and to determine their properties and behaviour in biological systems.

  11. IDENTIFICATION AND CHARACTERIZATION OF THERMOBIFIDA FUSCA GENES INVOLVED IN PLANT CELL WALL DEGRADATION.

    Energy Technology Data Exchange (ETDEWEB)

    David B. Wilson

    2006-01-23

    Micro-array experiments identified a number of Thermobifida fusca genes which were upregulated by growth on cellulose or plant biomass. Five of these genes were cloned, overexpressed in E. coli and the expressed proteins were purified and characterized. These were a xyloglucanase,a 1-3,beta glucanase, a family 18 hydrolase and twocellulose binding proteins that contained no catalytic domains. The catalyic domain of the family 74 endoxyloglucanase with a C-terminal, cellulose binding module was crystalized and its 3-dimensional structure was determined by X-ray crystallography.

  12. Reliability of the diaphragmatic compound muscle action potential evoked by cervical magnetic stimulation and recorded via chest wall surface EMG.

    Science.gov (United States)

    Welch, Joseph F; Mildren, Robyn L; Zaback, Martin; Archiza, Bruno; Allen, Grayson P; Sheel, A William

    2017-09-01

    Stimulation of the phrenic nerve via cervical magnetic stimulation (CMS) elicits a compound muscle action potential (CMAP) that allows for assessment of diaphragm activation. The reliability of CMS to evoke the CMAP recorded by chest wall surface EMG has yet to be comprehensively examined. CMS was performed on healthy young males (n=10) and females (n=10). Surface EMG electrodes were placed on the right and left hemi-diaphragm between the 6-8th intercostal spaces. CMAPs were analysed for: latency, duration, peak-to-peak amplitude, and area. Reliability within and between experimental sessions was assessed using intraclass correlation coefficients (ICC). Bilateral (right-left) and sex-based (male-female) comparisons were also made (independent samples t-test). All CMAP characteristics demonstrated high reproducibility within (ICCs>0.96) and between (ICCs>0.89) experimental sessions. No statistically significant bilateral or sex-based differences were found (p>0.05). CMS is a reliable and non-invasive method to evaluate phrenic nerve conduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Identifying two regimes of slip of simple fluids over smooth surfaces with weak and strong wall-fluid interaction energies.

    Science.gov (United States)

    Hu, Haibao; Bao, Luyao; Priezjev, Nikolai V; Luo, Kai

    2017-01-21

    The slip behavior of simple fluids over atomically smooth surfaces was investigated in a wide range of wall-fluid interaction (WFI) energies at low shear rates using non-equilibrium molecular dynamics simulations. The relationship between slip and WFI shows two regimes (the strong-WFI and weak-WFI regimes): as WFI decreases, the slip length increases in the strong-WFI regime and decreases in the weak-WFI regime. The critical value of WFI energy that separates these regimes increases with temperature, but it remains unaffected by the driving force. The mechanism of slip was analyzed by examining the density-weighted average energy barrier (ΔE¯) encountered by fluid atoms in the first fluid layer (FFL) during their hopping between minima of the surface potential. We demonstrated that the relationship between slip and WFI can be rationalized by considering the effect of the fluid density distribution in the FFL on ΔE¯ as a function of the WFI energy. Moreover, the dependence of the slip length on WFI and temperature is well correlated with the exponential factor exp(-ΔE¯/(kBT)), which also determines the critical value of WFI between the strong-WFI and weak-WFI regimes.

  14. Localization and structural analysis of a conserved pyruvylated epitope in Bacillus anthracis secondary cell wall polysaccharides and characterization of the galactose-deficient wall polysaccharide from avirulent B. anthracis CDC 684.

    Science.gov (United States)

    Forsberg, L Scott; Abshire, Teresa G; Friedlander, Arthur; Quinn, Conrad P; Kannenberg, Elmar L; Carlson, Russell W

    2012-08-01

    Bacillus anthracis CDC 684 is a naturally occurring, avirulent variant and close relative of the highly pathogenic B. anthracis Vollum. Bacillus anthracis CDC 684 contains both virulence plasmids, pXO1 and pXO2, yet is non-pathogenic in animal models, prompting closer scrutiny of the molecular basis of attenuation. We structurally characterized the secondary cell wall polysaccharide (SCWP) of B. anthracis CDC 684 (Ba684) using chemical and NMR spectroscopy analysis. The SCWP consists of a HexNAc trisaccharide backbone having identical structure as that of B. anthracis Pasteur, Sterne and Ames, →4)-β-d-ManpNAc-(1 → 4)-β-d-GlcpNAc-(1 → 6)-α-d-GlcpNAc-(1→. Remarkably, although the backbone is fully polymerized, the SCWP is the devoid of all galactosyl side residues, a feature which normally comprises 50% of the glycosyl residues on the highly galactosylated SCWPs from pathogenic strains. This observation highlights the role of defective wall assembly in virulence and indicates that polymerization occurs independently of galactose side residue attachment. Of particular interest, the polymerized Ba684 backbone retains the substoichiometric pyruvate acetal, O-acetate and amino group modifications found on SCWPs from normal B. anthracis strains, and immunofluorescence analysis confirms that SCWP expression coincides with the ability to bind the surface layer homology (SLH) domain containing S-layer protein extractable antigen-1. Pyruvate was previously demonstrated as part of a conserved epitope, mediating SLH-domain protein attachment to the underlying peptidoglycan layer. We find that a single repeating unit, located at the distal (non-reducing) end of the Ba684 SCWP, is structurally modified and that this modification is present in identical manner in the SCWPs of normal B. anthracis strains. These polysaccharides terminate in the sequence: (S)-4,6-O-(1-carboxyethylidene)-β-d-ManpNAc-(1 → 4)-[3-O-acetyl]-β-d-GlcpNAc-(1 → 6)-α-d-GlcpNH(2)-(1→.

  15. Partial structural characterization of pectin cell wall from Argania spinosa leaves.

    Science.gov (United States)

    Hachem, Kadda; Benabdesslem, Yasmina; Ghomari, Samia; Hasnaoui, Okkacha; Kaid-Harche, Meriem

    2016-02-01

    The pectin polysaccharides from leaves of Argania spinosa (L.) Skeels, collected from Stidia area in the west coast of northern Algeria, were investigated by using sequential extractions and the resulting fractions were analysed for monosaccharide composition and chemical structure. Water-soluble pectic (ALS-WSP) and chelating-soluble pectic (ALS-CSP) fractions were obtained, de-esterified and fractionated by anion-exchange chromatography and characterized by sugar analysis combined with methylation analysis and (1)H and (13)C NMR spectroscopy. The data reveal the presence of altering homogalacturonan (HG) and rhamnogalacturonan I (RG-I) in both pectin fraction. The rhamnogalacturonan I (RG-I) are consisted of a disaccharide repeating unit [→ α-D-GalpA-1,2-α-L-Rhap-1,4 →] backbone, with side chains contained highly branched α-(1 → 5)-linked arabinan and short linear β-(1 → 4)-linked galactan, attached to O-4 of the rhamnosyl residues.

  16. Quantification and characterization of cell wall polysaccharides released by non-Saccharomyces yeast strains during alcoholic fermentation.

    Science.gov (United States)

    Giovani, Giovanna; Rosi, Iolanda; Bertuccioli, Mario

    2012-11-15

    In order to improve knowledge about the oenological characteristics of non-Saccharomyces yeast strains, and to reconsider their contribution to wine quality, we studied the release of polysaccharides by 13 non-Saccharomyces strains of different species (three wine yeasts, six grape yeasts, and three spoilage yeasts) during alcoholic fermentation in synthetic must. Three Saccharomyces cerevisiae strains were included for comparison. All of the non-Saccharomyces strains released polysaccharides into fermentation medium; the amount released depended on the yeast species, the number of cells formed and their physiological conditions. Normalizing the quantity of macromolecules released to the cell biomass revealed that most non-Saccharomyces strains produced a greater quantity of polysaccharides compared to S. cerevisiae strains after 7 and 14days of fermentation. This capacity was particularly expressed in the studied wine spoilage yeasts (Saccharomycodes ludwigii, Zygosaccharomyces bailii, and Brettanomyces bruxellensis). Chemical characterization of exocellular polysaccharides produced by non-Saccharomyces yeasts revealed them to essentially be mannoproteins with high mannose contents, ranging from 93% for S'codes. ludwigii to 73-74% for Pichia anomala and Starmerella bombicola. Protein contents varied from 9% for P. anomala to 29% for Z. bailii. These compositions were very similar to those of the S. cerevisiae strains, and to the chemical composition of the cell wall mannoproteins of different yeast species. The presence of galactose, in addition to mannose and glucose, in the exocellular polysaccharides released by Schizosaccharomyces pombe, confirmed the parietal nature of the polysaccharides released by non-Saccharomyces yeasts; only this species has a galactomannan located in the outer layer of the cell wall. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Ionic Strength-Mediated Phase Transitions of Surface-Adsorbed DNA on Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Salem, Daniel P; Gong, Xun; Liu, Albert Tianxiang; Koman, Volodymyr B; Dong, Juyao; Strano, Michael S

    2017-11-22

    Single-stranded DNA oligonucleotides have unique, and in some cases sequence-specific molecular interactions with the surface of carbon nanotubes that remain the subject of fundamental study. In this work, we observe and analyze a generic, ionic strength-mediated phase transition exhibited by over 25 distinct oligonucleotides adsorbed to single-walled carbon nanotubes (SWCNTs) in colloidal suspension. The phase transition occurs as monovalent salts are used to modify the ionic strength from 500 mM to 1 mM, causing a reversible reduction in the fluorescence quantum yield by as much as 90%. The phase transition is only observable by fluorescence quenching within a window of pH and in the presence of dissolved O2, but occurs independently of this optical quenching. The negatively charged phosphate backbone increases (decreases) the DNA surface coverage on an areal basis at high (low) ionic strength, and is well described by a two-state equilibrium model. The resulting quantitative model is able to describe and link, for the first time, the observed changes in optical properties of DNA-wrapped SWCNTs with ionic strength, pH, adsorbed O2, and ascorbic acid. Cytosine nucleobases are shown to alter the adhesion of the DNA to SWCNTs through direct protonation from solution, decreasing the driving force for this phase transition. We show that the phase transition also changes the observed SWCNT corona phase, modulating the recognition of riboflavin. These results provide insight into the unique molecular interactions between DNA and the SWCNT surface, and have implications for molecular sensing, assembly, and nanoparticle separations.

  18. Electrochemical Characterization of O2 Plasma Functionalized Multi-Walled Carbon Nanotube Electrode for Legionella pneumophila DNA Sensor

    Science.gov (United States)

    Park, Eun Jin; Lee, Jun-Yong; Hyup Kim, Jun; Kug Kim, Sun; Lee, Cheol Jin; Min, Nam Ki

    2010-08-01

    An electrochemical DNA sensor for Legionella pneumophila detection was constructed using O2 plasma functionalized multi-walled carbon nanotube (MWCNT) film as a working electrode (WE). The cyclic voltammetry (CV) results revealed that the electrocatalytic activity of plasma functionalized MWCNT (pf-MWCNT) significantly changed depending on O2 plasma treatment time due to some oxygen containing functional groups on the pf-MWCNT surface. Scanning electron microscope (SEM) images and X-ray photoelectron spectroscopy (XPS) spectra were also presented the changes of their surface morphologies and oxygen composition before and after plasma treatment. From a comparison study, it was found that the pf-MWCNT WEs had higher electrocatalytic activity and more capability of probe DNA immobilization: therefore, electrochemical signal changes by probe DNA immobilization and hybridization on pf-MWCNT WEs were larger than on Au WEs. The pf-MWCNT based DNA sensor was able to detect a concentration range of 10 pM-100 nM of target DNA to detect L. pneumophila.

  19. A comparison RSM and ANN surface roughness models in thin-wall machining of Ti6Al4V using vegetable oils under MQL-condition

    Science.gov (United States)

    Mohruni, Amrifan Saladin; Yanis, Muhammad; Sharif, Safian; Yani, Irsyadi; Yuliwati, Erna; Ismail, Ahmad Fauzi; Shayfull, Zamree

    2017-09-01

    Thin-wall components as usually applied in the structural parts of aeronautical industry require significant challenges in machining. Unacceptable surface roughness can occur during machining of thin-wall. Titanium product such Ti6Al4V is mostly applied to get the appropriate surface texture in thin wall designed requirements. In this study, the comparison of the accuracy between Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) in the prediction of surface roughness was conducted. Furthermore, the machining tests were carried out under Minimum Quantity Lubrication (MQL) using AlCrN-coated carbide tools. The use of Coconut oil as cutting fluids was also chosen in order to evaluate its performance when involved in end milling. This selection of cutting fluids is based on the better performance of oxidative stability than that of other vegetable based cutting fluids. The cutting speed, feed rate, radial and axial depth of cut were used as independent variables, while surface roughness is evaluated as the dependent variable or output. The results showed that the feed rate is the most significant factors in increasing the surface roughness value followed by the radial depth of cut and lastly the axial depth of cut. In contrary, the surface becomes smoother with increasing the cutting speed. From a comparison of both methods, the ANN model delivered a better accuracy than the RSM model.

  20. Partial structural characterization of pectin cell wall from Argania spinosa leaves

    Directory of Open Access Journals (Sweden)

    Kadda Hachem

    2016-02-01

    Full Text Available The pectin polysaccharides from leaves of Argania spinosa (L. Skeels, collected from Stidia area in the west coast of northern Algeria, were investigated by using sequential extractions and the resulting fractions were analysed for monosaccharide composition and chemical structure. Water-soluble pectic (ALS-WSP and chelating-soluble pectic (ALS-CSP fractions were obtained, de-esterified and fractionated by anion-exchange chromatography and characterized by sugar analysis combined with methylation analysis and 1H and 13C NMR spectroscopy. The data reveal the presence of altering homogalacturonan (HG and rhamnogalacturonan I (RG-I in both pectin fraction. The rhamnogalacturonan I (RG-I are consisted of a disaccharide repeating unit [→ α-D-GalpA-1,2-α-L-Rhap-1,4 →] backbone, with side chains contained highly branched α-(1 → 5-linked arabinan and short linear β-(1 → 4-linked galactan, attached to O-4 of the rhamnosyl residues.

  1. Surface characterization and direct bioelectrocatalysis of multicopper oxidases

    Energy Technology Data Exchange (ETDEWEB)

    Ivnitski, Dmitri M., E-mail: ivnitski@unm.ed [Chemical and Nuclear Engineering, University of New Mexico, Albuquerque 87131 (United States)] [Air Force Research Laboratory, AFRL/RXQL, Microbiology and Applied Biochemistry, Tyndall Air Force Base, FL 32403 (United States); Khripin, Constantine [Chemical and Nuclear Engineering, University of New Mexico, Albuquerque 87131 (United States); Luckarift, Heather R. [Air Force Research Laboratory, AFRL/RXQL, Microbiology and Applied Biochemistry, Tyndall Air Force Base, FL 32403 (United States)] [Universal Technology Corporation, 1270 N. Fairfield Road, Dayton, OH 45432 (United States); Johnson, Glenn R. [Air Force Research Laboratory, AFRL/RXQL, Microbiology and Applied Biochemistry, Tyndall Air Force Base, FL 32403 (United States); Atanassov, Plamen, E-mail: plamen@unm.ed [Chemical and Nuclear Engineering, University of New Mexico, Albuquerque 87131 (United States)

    2010-10-01

    Multicopper oxidases (MCO) have been extensively studied as oxygen reduction catalysts for cathodic reactions in biofuel cells. Theoretically, direct electron transfer between an enzyme and electrode offers optimal energy conversion efficiency providing that the enzyme/electrode interface can be engineered to establish efficient electrical communication. In this study, the direct bioelectrocatalysis of three MCO (Laccase from Trametes versicolor, bilirubin oxidase (BOD) from the fungi Myrothecium verrucaria and ascorbate oxidase (AOx) from Cucurbita sp.) was investigated and compared as oxygen reduction catalysts. Protein film voltammetry and electrochemical characterization of the MCO electrodes showed that DET had been successfully established in all cases. Atomic force microscopy imaging and force measurements indicated that enzyme was immobilized as a monolayer on the electrode surface. Evidence for three clearly separated anodic and cathodic redox events related to the Type 1 (T1) and the trinculear copper centers (T2, T3) of various MCO was observed. The redox potential of the T1 center was strongly modulated by physiological factors including pH, anaerobic and aerobic conditions and the presence of inhibitors.

  2. Structural characterization of pectic hairy regions isolated from apple cell walls = Structuurkenmerken van vertakte pectine fragmenten afkomstig van de celwanden van appel

    NARCIS (Netherlands)

    Schols, H.

    1995-01-01

    Cell wall pectic substances have a great influence on the production and quality aspects of apple juice. Apple juices were characterized by their polysaccharide content and composition. A pectic fraction, retained by ultrafiltration of a liquefaction juice, was isolated and termed MHR

  3. Instantaneous heat flux flowing into ceramic combustion chamber wall surface of low heat rejection engine; Shanetsu engine no ceramic nenshoshitsu hekimen eno shunji netsuryusoku

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Y.; Hagihara, Y. [Musashi Institute of Technology, Tokyo (Japan); Kimura, S. [Nissan Motor Co. Ltd., Tokyo (Japan); Adachi, K. [Daido Hoxan Inc., Sapporo (Japan); Nagano, H. [Riso Kagaku Corp., Tokyo (Japan); Ishii, A. [Mitani Sangyo Co. Ltd., Tokyo (Japan)

    1998-08-25

    To evaluate the effectiveness of low heat rejection engine under heat loss condition, instantaneous heat fluxes flowing into ceramic piston surface and aluminum alloy (Loex) piston surface using thin film thermocouple were measured, and both were compared. As a result, in the working stroke, the instantaneous heat flux flowing into ceramic piston surface was larger than the instantaneous heat flux flowing into Loex piston surface. Accordingly, it became clear that reduction of heat loss was not effected when ceramics that thermal conductivity is small was used for combustion chamber wall. 21 refs., 14 figs.

  4. C lostridium difficile surface proteins are anchored to the cell wall using CWB2 motifs that recognise the anionic polymer PSII

    Science.gov (United States)

    Willing, Stephanie E.; Candela, Thomas; Shaw, Helen Alexandra; Seager, Zoe; Mesnage, Stéphane; Fagan, Robert P.

    2015-01-01

    Summary Gram‐positive surface proteins can be covalently or non‐covalently anchored to the cell wall and can impart important properties on the bacterium in respect of cell envelope organisation and interaction with the environment. We describe here a mechanism of protein anchoring involving tandem CWB2 motifs found in a large number of cell wall proteins in the Firmicutes. In the Clostridium difficile cell wall protein family, we show the three tandem repeats of the CWB2 motif are essential for correct anchoring to the cell wall. CWB2 repeats are non‐identical and cannot substitute for each other, as shown by the secretion into the culture supernatant of proteins containing variations in the patterns of repeats. A conserved Ile Leu Leu sequence within the CWB2 repeats is essential for correct anchoring, although a preceding proline residue is dispensable. We propose a likely genetic locus encoding synthesis of the anionic polymer PSII and, using RNA knock‐down of key genes, reveal subtle effects on cell wall composition. We show that the anionic polymer PSII binds two cell wall proteins, SlpA and Cwp2, and these interactions require the CWB2 repeats, defining a new mechanism of protein anchoring in Gram‐positive bacteria. PMID:25649385

  5. Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data over smooth and rough surfaces in pipe flow

    Science.gov (United States)

    Evans, Neal D.; Capone, Dean E.; Bonness, William K.

    2013-07-01

    The vibration response of a thin cylindrical shell excited by fully developed turbulent pipe flow is measured and used to extract the fluctuating pressure levels generated by the boundary layer. Parameters used to extract the turbulent fluctuating pressure levels are determined via experimental modal analyses of the water-filled pipe and measured vibration levels from flow through the pipe at 5.8 m/s. Measurements are reported for hydraulically smooth and fully rough surface conditions. Smooth wall-pressure levels are compared to the turbulent boundary layer pressure model of Chase [The character of the turbulent wall pressure at subconvective wavenumbers and a suggested comprehensive model. Journal of Sound and Vibration112 (1) (1987) 125-147] and the measurements of Bonness et al. [Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data on a cylinder in pipe flow. Journal of Sound and Vibration329 (2010) 4166-4180]. Results for the smooth pipe match the predicted smooth wall-pressure spectrum and correspond to a normalized low wavenumber-white level which is -41 dB below the maximum level at the convective peak. Pressure levels from the fully rough condition display a low-wavenumber-white level which is 28 dB below the convective peak level. This suggests an increase of 13 dB in low-wavenumber wall pressure for the uniformly distributed roughness elements in this study over a hydraulically smooth surface.

  6. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses

    Directory of Open Access Journals (Sweden)

    Majse eNafisi

    2015-07-01

    Full Text Available The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2, previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species, and defense against microbial pathogens (e.g. lipid transfer proteins, peroxidases. In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.

  7. Surface and interface characterization for low temperature plasma interface engineering of aluminum alloy surfaces

    Science.gov (United States)

    Moffitt, Christopher Edward

    2000-10-01

    High strength aluminum alloys owe their improved structural integrity to the addition of alloying elements to an aluminum matrix. In the highest strength alloys, these additions have the unfortunate effect of decreasing the corrosion resistance of the alloy, as compared to pure aluminum. Costs associated with the corrosion of structural materials greatly affect the world's economies, forcing the early replacement or failure of infrastructure components, industrial products, and military weapons systems, to name a few crucial example areas. Current methods for the protection of structural aluminum alloys employ hexavalent chromium as a corrosion inhibitor and surface passivating agent. This form of chromium is now known to be carcinogenic and it has come under great scrutiny as of late, due to pollution and remediation costs associated with its use. Research toward the development of more environmentally benign corrosion resistant coatings using plasma polymers, as intermediary adhesion and barrier layers on aluminum alloys, is showing great promise as an alternative protection method. These plasma polymer films also exhibit characteristics, in combination with certain conventional polymer coatings, that may lead to the development of long service-life coatings systems. The integrity of interfaces between each successive coating layer is the most critical factor in the overall performance of any system, given that the coatings themselves are stable. It is therefore necessary to more fully understand the specific chemistry of the surfaces under consideration. Electron spectroscopies allow for the investigation of surface chemistry and, when combined with inert ion sputtering, have the ability to characterize the chemistry throughout an entire film and its interface with a particular substrate. X-ray photoelectron spectroscopy has been employed to investigate the alloy surface modifications from various chemical and plasma pretreatments, the surface and bulk film

  8. Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes.

    Science.gov (United States)

    Bulusheva, Lyubov G; Fedoseeva, Yuliya V; Flahaut, Emmanuel; Rio, Jérémy; Ewels, Christopher P; Koroteev, Victor O; Van Lier, Gregory; Vyalikh, Denis V; Okotrub, Alexander V

    2017-01-01

    Double-walled carbon nanotubes (DWCNTs) are fluorinated using (1) fluorine F 2 at 200 °C, (2) gaseous BrF 3 at room temperature, and (3) CF 4 radio-frequency plasma functionalization. These have been comparatively studied using transmission electron microscopy and infrared, Raman, X-ray photoelectron, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. A formation of covalent C-F bonds and a considerable reduction in the intensity of radial breathing modes from the outer shells of DWCNTs are observed for all samples. Differences in the electronic state of fluorine and the C-F vibrations for three kinds of the fluorinated DWCNTs are attributed to distinct local surroundings of the attached fluorine atoms. Possible fluorine patterns realized through a certain fluorination technique are revealed from comparison of experimental NEXAFS F K-edge spectra with quantum-chemical calculations of various models. It is proposed that fluorination with F 2 and BrF 3 produces small fully fluorinated areas and short fluorinated chains, respectively, while the treatment with CF 4 plasma results in various attached species, including single or paired fluorine atoms and -CF 3 groups. The results demonstrate a possibility of different patterning of carbon surfaces through choosing the fluorination method.

  9. Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Lyubov G. Bulusheva

    2017-08-01

    Full Text Available Double-walled carbon nanotubes (DWCNTs are fluorinated using (1 fluorine F2 at 200 °C, (2 gaseous BrF3 at room temperature, and (3 CF4 radio-frequency plasma functionalization. These have been comparatively studied using transmission electron microscopy and infrared, Raman, X-ray photoelectron, and near-edge X-ray absorption fine structure (NEXAFS spectroscopy. A formation of covalent C–F bonds and a considerable reduction in the intensity of radial breathing modes from the outer shells of DWCNTs are observed for all samples. Differences in the electronic state of fluorine and the C–F vibrations for three kinds of the fluorinated DWCNTs are attributed to distinct local surroundings of the attached fluorine atoms. Possible fluorine patterns realized through a certain fluorination technique are revealed from comparison of experimental NEXAFS F K-edge spectra with quantum-chemical calculations of various models. It is proposed that fluorination with F2 and BrF3 produces small fully fluorinated areas and short fluorinated chains, respectively, while the treatment with CF4 plasma results in various attached species, including single or paired fluorine atoms and –CF3 groups. The results demonstrate a possibility of different patterning of carbon surfaces through choosing the fluorination method.

  10. Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity

    Directory of Open Access Journals (Sweden)

    Bussy Cyrill

    2012-11-01

    Full Text Available Abstract Given the increasing use of carbon nanotubes (CNT in composite materials and their possible expansion to new areas such as nanomedicine which will both lead to higher human exposure, a better understanding of their potential to cause adverse effects on human health is needed. Like other nanomaterials, the biological reactivity and toxicity of CNT were shown to depend on various physicochemical characteristics, and length has been suggested to play a critical role. We therefore designed a comprehensive study that aimed at comparing the effects on murine macrophages of two samples of multi-walled CNT (MWCNT specifically synthesized following a similar production process (aerosol-assisted CVD, and used a soft ultrasonic treatment in water to modify the length of one of them. We showed that modification of the length of MWCNT leads, unavoidably, to accompanying structural (i.e. defects and chemical (i.e. oxidation modifications that affect both surface and residual catalyst iron nanoparticle content of CNT. The biological response of murine macrophages to the two different MWCNT samples was evaluated in terms of cell viability, pro-inflammatory cytokines secretion and oxidative stress. We showed that structural defects and oxidation both induced by the length reduction process are at least as responsible as the length reduction itself for the enhanced pro-inflammatory and pro-oxidative response observed with short (oxidized compared to long (pristine MWCNT. In conclusion, our results stress that surface properties should be considered, alongside the length, as essential parameters in CNT-induced inflammation, especially when dealing with a safe design of CNT, for application in nanomedicine for example.

  11. A stent for co-delivering paclitaxel and nitric oxide from abluminal and luminal surfaces: Preparation, surface characterization, and in vitro drug release studies

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Annemarie; Mani, Gopinath, E-mail: Gopinath.Mani@usd.edu

    2013-08-15

    Most drug-eluting stents currently available are coated with anti-proliferative drugs on both abluminal (toward blood vessel wall) and luminal (toward lumen) surfaces to prevent neointimal hyperplasia. While the abluminal delivery of anti-proliferative drugs is useful for controlling neointimal hyperplasia, the luminal delivery of such drugs impairs or prevents endothelialization which causes late stent thrombosis. This research is focused on developing a bidirectional dual drug-eluting stent to co-deliver an anti-proliferative agent (paclitaxel – PAT) and an endothelial cell promoting agent (nitric oxide – NO) from abluminal and luminal surfaces of the stent, respectively. Phosphonoacetic acid, a polymer-free drug delivery platform, was initially coated on the stents. Then, the PAT and NO donor drugs were co-coated on the abluminal and luminal stent surfaces, respectively. The co-coating of drugs was collectively confirmed by the surface characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), 3D optical surface profilometry, and contact angle goniometry. SEM showed that the integrity of the co-coating of drugs was maintained without delamination or cracks formation occurring during the stent expansion experiments. In vitro drug release studies showed that the PAT was released from the abluminal stent surfaces in a biphasic manner, which is an initial burst followed by a slow and sustained release. The NO was burst released from the luminal stent surfaces. Thus, this study demonstrated the co-delivery of PAT and NO from abluminal and luminal stent surfaces, respectively. The stent developed in this study has potential applications in inhibiting neointimal hyperplasia as well as encouraging luminal endothelialization to prevent late stent thrombosis.

  12. Novel Zirconia Surface Treatments for Enhanced Osseointegration: Laboratory Characterization

    Directory of Open Access Journals (Sweden)

    Ola H. Ewais

    2014-01-01

    Full Text Available Purpose. The aim of this study was to evaluate three novel surface treatments intended to improve osseointegration of zirconia implants: selective infiltration etching treatment (SIE, fusion sputtering (FS, and low pressure particle abrasion (LPPA. The effects of surface treatments on roughness, topography, hardness, and porosity of implants were also assessed. Materials and Methods. 45 zirconia discs (19 mm in diameter × 3 mm in thickness received 3 different surface treatments: selective infiltration etching, low pressure particle abrasion with 30 µm alumina, and fusion sputtering while nontreated surface served as control. Surface roughness was evaluated quantitatively using profilometery, porosity was evaluated using mercury prosimetry, and Vickers microhardness was used to assess surface hardness. Surface topography was analyzed using scanning and atomic force microscopy (α=0.05. Results. There were significant differences between all groups regarding surface roughness (F=1678, P<0.001, porosity (F=3278, P<0.001, and hardness (F=1106.158, P<0.001. Scanning and atomic force microscopy revealed a nanoporous surface characteristic of SIE, and FS resulted in the creation of surface microbeads, while LPPA resulted in limited abrasion of the surface. Conclusion. Within the limitations of the study, changes in surface characteristics and topography of zirconia implants have been observed after different surface treatment approaches. Thus possibilities for enhanced osseointegration could be additionally offered.

  13. Characterization methods of nano-patterned surfaces generated by induction heating assisted injection molding

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Ravn, Christian; Menotti, Stefano

    2015-01-01

    An induction heating-assisted injection molding (IHAIM) process developed by the authors is used to replicate surfaces containing random nano-patterns. The injection molding setup is developed so that an induction heating system rapidly heats the cavity wall at rates of up to 10◦C/s. In order...

  14. Learning-based automated segmentation of the carotid artery vessel wall in dual-sequence MRI using subdivision surface fitting

    NARCIS (Netherlands)

    Gao, Shan; van't Klooster, Ronald; Kitslaar, Pieter H.; Coolen, Bram F.; van den Berg, Alexandra M.; Smits, Loek P.; Shahzad, Rahil; Shamonin, Denis P.; de Koning, Patrick J. H.; Nederveen, Aart J.; van der Geest, Rob J.

    2017-01-01

    Purpose: The quantification of vessel wall morphology and plaque burden requires vessel segmentation, which is generally performed by manual delineations. The purpose of our work is to develop and evaluate a new 3D model-based approach for carotid artery wall segmentation from dual-sequence MRI.

  15. Application of polypyrrole multi-walled carbon nanotube composite layer for detection of mercury, lead and iron ions using surface plasmon resonance technique.

    Directory of Open Access Journals (Sweden)

    Amir Reza Sadrolhosseini

    Full Text Available Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg, lead (Pb, and iron (Fe ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°.

  16. Application of polypyrrole multi-walled carbon nanotube composite layer for detection of mercury, lead and iron ions using surface plasmon resonance technique.

    Science.gov (United States)

    Sadrolhosseini, Amir Reza; Noor, A S M; Bahrami, Afarin; Lim, H N; Talib, Zainal Abidin; Mahdi, Mohd Adzir

    2014-01-01

    Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°.

  17. Seismic fragility of RC shear walls in nuclear power plant Part 1: Characterization of uncertainty in concrete constitutive model

    Energy Technology Data Exchange (ETDEWEB)

    Syed, Sammiuddin [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 426 Mann Hall, Campus Box 7908, Raleigh, NC 27695-7908 (United States); Gupta, Abhinav, E-mail: agupta1@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 413 Mann Hall, Campus Box 7908, Raleigh, NC 27695-7908 (United States)

    2015-12-15

    Highlights: • A framework is proposed for seismic fragility assessment of Reinforced Concrete structures. • Experimentally validated finite element models are used to conduct nonlinear simulations. • Critical parameters in concrete constitutive model are identified to conduct nonlinear simulations. • Uncertainties in model parameters of concrete damage plasticity model is characterized. • Closed form expressions are used to compute the damage variables and plasticity. - Abstract: This two part manuscript proposes a framework for seismic fragility assessment of reinforced concrete structures in nuclear energy facilities. The novelty of the proposed approach lies in the characterization of uncertainties in the parameters of the material constitutive model. Concrete constitutive models that comprehensively address different damage states such as tensile cracking, compression failure, stiffness degradation, and recovery of degraded stiffness due to closing of previously formed cracks under dynamic loading are generally defined in terms of a large number of variables to characterize the plasticity and damage at material level. Over the past several years, many different studies have been presented on evaluation of fragility for reinforced concrete structures using nonlinear time history simulations. However, almost all of these studies do not consider uncertainties in the parameters of a comprehensive constitutive model. Part-I of this two-part manuscript presents a study that is used to identify uncertainties associated with the critical parameters in nonlinear concrete damage plasticity model proposed by Lubliner et al. (1989. Int. J. Solids Struct., 25(3), 299) and later modified by Lee and Fenves (1998a. J. Eng. Mech., ASCE, 124(8), 892) and Lee and Fenves (1998b. Earthquake Eng. Struct. Dyn., 27(9), 937) for the purpose of seismic fragility assessment. The limitations in implementation of the damage plasticity model within a finite element framework and

  18. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Wenxing; Bhatt, Avni [University of Florida, Department of Biochemistry and Molecular Biology, College of Medicine (United States); Smith, Adam N. [University of Florida, Department of Chemistry, College of Liberal Arts and Sciences (United States); Crowley, Paula J.; Brady, L. Jeannine, E-mail: jbrady@dental.ufl.edu [University of Florida, Department of Oral Biology, College of Dentistry (United States); Long, Joanna R., E-mail: jrlong@ufl.edu [University of Florida, Department of Biochemistry and Molecular Biology, College of Medicine (United States)

    2016-02-15

    The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ∼57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to (1) globally characterize cell walls isolated from a Gram-positive bacterium and (2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin.

  19. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy.

    Science.gov (United States)

    Tang, Wenxing; Bhatt, Avni; Smith, Adam N; Crowley, Paula J; Brady, L Jeannine; Long, Joanna R

    2016-02-01

    The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ~57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to (1) globally characterize cell walls isolated from a Gram-positive bacterium and (2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin.

  20. Control and characterization of textured, hydrophobic ionomer surfaces

    Science.gov (United States)

    Wang, Xueyuan

    Polymer thin films are of increasing interest in many industrial and technological applications. Superhydrophobic, self-cleaning surfaces have attracted a lot of attention for their application in self-cleaning, anti-sticking coatings, stain resistance, or anti-contamination surfaces in diverse technologies, including medical, transportation, textiles, electronics and paints. This thesis focuses on the preparation of nanometer to micrometer-size particle textured surfaces which are desirable for super water repellency. Textured surfaces consisting of nanometer to micrometer-sized lightly sulfonated polystyrene ionomer (SPS) particles were prepared by rapid evaporation of the solvent from a dilute polymer solution cast onto silica. The effect of the solvent used to spin coat the film, the molecular weight of the ionomer, and the rate of solvent evaporation were investigated. The nano-particle or micron-particle textured ionomer surfaces were prepared by either spin coating or solution casting ionomer solutions at controlled evaporation rates. The surface morphologies were consistent with a spinodal decomposition mechanism where the surface first existed as a percolated-like structure and then ripened into droplets if molecular mobility was retained for sufficient time. The SPS particles or particle aggregates were robust and resisted deformation even after annealing at 120°C for one week. The water contact angles on as-prepared surfaces were relatively low, ~ 90° since the polar groups in ionomer reduce the surface hydrophobicity. After chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltrichlorosilane, the surface contact angles increased to ~ 109° on smooth surfaces and ~140° on the textured surfaces. Water droplets stuck to these surfaces even when tilted 90 degrees. Superhydrophobic surfaces were prepared by spraying coating ionomer solutions and Chemical Vapor Deposition (CVD) of 1H,1H,2H,2H-perfluorooctyltrichlorosilane onto textured surfaces. The

  1. Synthesis, Characterization and Application of Poly (Styrene-4- Vinyl Pyridine) Membranes Assembled With Single-Wall Carbon Nanotubes

    KAUST Repository

    He, Haoze

    2011-06-01

    Poly(styrene‐4‐vinylpyridine) (PS‐P4VP) isoporous membranes were prepared and their properties were evaluated in this research. The solution was prepared by dissolving PS‐P4VP polymer with necessary additives into a 1:1:1 1,4‐dioxane – N,N‐dimethyl formamide – tetrahydrofuran (DOX‐DMF‐THF, DDT) solvent. Then 0.5‐1.0 mL of the primary solution was cast onto the non‐woven substrate membrane on a glass slide, evaporated for 15‐20 sec and immersed into de‐ionized water for more than 30 min for the solidification of isoporous structure and for the formation of the primary films, which could be post‐processed in different ways for different tests. The membrane surface presents a well‐ordered, hexagonal self‐assembly structure, which is fit for aqueous and gaseous filtration. The pore size of the isoporous surface is 30~40 nm. The pore size is also sensitive to [H+] in the solution and a typical pair of S‐shape pH‐correlation curves with significant hysteresis was found. Four techniques were tried to improve the properties of the membranes in this research: 1) 1,4‐diiodobutane was introduced to chemically change the structure as a cross‐linking agent. 2) single‐wall carbon nanotube (SWCNT) was linked to the membranes in order to strengthen the stability and rigidity and to reduce the hysteresis. 3) Homo‐poly(4‐vinylpyridine) (homo‐P4VP) was added and inserted into the PS‐P4VP micelles to affect the pore size and surface structure. 4) Copper acetate (Cu(Ac)2) was used as substitute of dioxane to prepare the Cu(Ac)2‐DMF‐THF (CDT) mixed solvent, for a better SWCNT dispersion. All the possible improvements were judged by the atomic force microscopy (AFM) images, water and gas flux tests and pH‐correlation curves. The introduction of SWCNT was the most important innovation in this research and is promising in future applications.

  2. Multitechnique characterization of CPTi surfaces after electro discharge machining (EDM).

    Science.gov (United States)

    Zinelis, Spiros; Al Jabbari, Youssef S; Thomas, Andrew; Silikas, Nick; Eliades, George

    2014-01-01

    The aim of this study was to comparatively assess the surface roughness parameters, the hardness, and the elemental and molecular alterations induced on CPTi surfaces after conventional finishing and finishing with electro discharge machining (EDM). A completed cast model of an arch that received four implants was used for the preparation of two grade II CPTi castings. One framework was conventionally finished (CF), whereas the other was subjected to EDM finishing. The surface morphology was imaged employing SEM. 3D surface parameters (S a, S q, S z, S ds, S dr, and S ci) were calculated by optical profilometry. The elemental composition of the treated surfaces was determined by energy dispersive X-ray analysis, whereas the elemental and chemical states of the outmost layer were investigated by X-ray photoelectron spectrometry. Surface hardness was also tested with a Knoop indenter. The results of surface roughness parameters, elemental analysis, and hardness were compared using unpaired t test (a = 0.05). The EDM group demonstrated a rougher surface, with a significant uptake of C and Cu. The CF surface mainly consisted of TiO2. On EDM surface though, Ti was probed in different chemicals states (TiO2, Ti2O3, TiC and metallic Ti) and Cu was traced as Cu2O and CuO. Hardness after EDM was almost ten times higher than CF. EDM significantly affected surface roughness, chemical state, and hardness properties of grade II CPTi castings in comparison with CF. The morphological and elemental alterations of EDM-treated CPTi surfaces may strongly contribute to the reduced corrosion resistance documented for this procedure. The degradation of electrochemical properties may have further biological implications through ionic release in the oral environment.

  3. Identification and characterization of plant cell wall degrading enzymes from three glycoside hydrolase families in the cerambycid beetle Apriona japonica.

    Science.gov (United States)

    Pauchet, Yannick; Kirsch, Roy; Giraud, Sandra; Vogel, Heiko; Heckel, David G

    2014-06-01

    Xylophagous insects have evolved to thrive in a highly challenging environment. For example, wood-boring beetles from the family Cerambycidae feed exclusively on woody tissues, and to efficiently access the nutrients present in this sub-optimal environment, they have to cope with the lignocellulose barrier. Whereas microbes of the insect's gut flora were hypothesized to be responsible for the degradation of lignin, the beetle itself depends heavily on the secretion of a range of enzymes, known as plant cell wall degrading enzymes (PCWDEs), to efficiently digest both hemicellulose and cellulose networks. Here we sequenced the larval gut transcriptome of the Mulberry longhorn beetle, Apriona japonica (Cerambycidae, Lamiinae), in order to investigate the arsenal of putative PCWDEs secreted by this species. We combined our transcriptome with all available sequencing data derived from other cerambycid beetles in order to analyze and get insight into the evolutionary history of the corresponding gene families. Finally, we heterologously expressed and functionally characterized the A. japonica PCWDEs we identified from the transcriptome. Together with a range of endo-β-1,4-glucanases, we describe here for the first time the presence in a species of Cerambycidae of (i) a xylanase member of the subfamily 2 of glycoside hydrolase family 5 (GH5 subfamily 2), as well as (ii) an exopolygalacturonase from family GH28. Our analyses greatly contribute to a better understanding of the digestion physiology of this important group of insects, many of which are major pests of forestry worldwide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Characterization and phylogenetic analysis of lectin gene cDNA isolated from sea cucumber ( Apostichopus japonicus) body wall

    Science.gov (United States)

    Xue, Zhuang; Li, Hui; Liu, Yang; Zhou, Wei; Sun, Jing; Wang, Xiuli

    2017-12-01

    As a `living fossil' of species origin and `rich treasure' of food and nutrition development, sea cucumber has received a lot of attentions from researchers. The cDNA library construction and EST sequencing of blood had been conducted previously in our lab. The bioinformatic analysis provided a gene fragment which is highly homologous with the genes of lectin family, named AjL ( Apostichopus japonicus lectin). To characterize and determine the phylogeny of AjL genes in early evolution, we isolated a full-length cDNA of lectin gene from the body wall of A. japonicus. The open reading frame of this gene contained 489 bp and encoded a 163 amino acids secretory protein being homologous to lectins of mammals and aquatic organisms. The deduced protein included a lectin-like domain. SDS-PAGE analysis showed that AjL migrated as a specific band (about 36.09 kDa under reducing), and agglutinated against rabbit red blood cells. AjL was similar to chain A of CEL-IV in space structure. We predicted that AjL may play the same role of CEL-IV. Our results suggested that more than one lectin gene functioned in sea cucumber and most of other species, which was fused by uncertain sequences during the evolution and encoded different proteins with diverse functions. Our findings provided the insights into the function and characteristics of lectin genes invertebrates. The results will also be helpful for the identification and structural, functional, and evolutionary analyses of lectin genes.

  5. Preparation and characterization of low-defect surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Timothy Oren [Univ. of California, Berkeley, CA (United States)

    1991-12-01

    Silver crystal surfaces with low defect densities were prepared electrochemically from aqueous solutions using capillary-growth techniques. These surfaces had low rates for the nucleation of new silver layers. The impedance of these inert silver/aqueous silver nitrate interfaces was used to determine silver adatom concentration and water dipole reorientation energetics.

  6. Surface characterization of silver and palladium modified glassy ...

    Indian Academy of Sciences (India)

    Keywords. Glass-like carbon; doping; surface modification; mass spectroscopy; temperature programmed desorption; surface properties. ... V Laušević2 Mila D Laušević1. Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbia; Institute of Nuclear Sciences 'Vinča', Belgrade, Serbia ...

  7. STM characterization of MOVPE-prepared silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kleinschmidt, Peter; Brueckner, Sebastian; Luczak, Johannes; Supplie, Oliver; Dobrich, Anja; Doescher, Henning; Hannappel, Thomas [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2011-07-01

    The clean Si(100) surface reconstructs by forming dimers, thus reducing the number of dangling bonds at the surface. In the MOVPE environment hydrogen is commonly used as process gas, which leads to a monohydride silicon surface with a 2 x 1 unit cell consisting of H-Si-Si-H dimers. Even so, the quality of the surface can vary dramatically depending on process conditions. In general, annealing in hydrogen leads to a two-domain surface structure with monoatomic steps, where the resulting structure also strongly depends on misorientation. We find process conditions for preparation of Si(100) surfaces with 0.1 , 2 and 6 offcut where a strong preference for one domain is obtained, making the resulting surfaces ideal substrates for III-V-on-Si epitaxy. A process consisting of deoxidation, homoepitaxial buffer layer growth and annealing is found to result in D{sub A}-type double layer steps for 0.1 , and D{sub B}-type double layer steps for 6 offcut. The identical process leads to single layer steps for 2 offcut. Here, we obtain D{sub A}-type double layer steps by a modified process which includes a slow cooling phase after the annealing step. Our results, verified by scanning tunneling microscopy, low energy electron diffraction and Fourier-transform infrared spectroscopy, are in sharp contrast to the clean and the hydrogenated Si(100) surface prepared in UHV.

  8. Gamma-ray computed tomography to characterize soil surface sealing.

    Science.gov (United States)

    Pires, Luiz F; de Macedo, Jose R; de Souza, Manoel D; Bacchi, Osny O S; Reichardt, Klaus

    2002-09-01

    The application of sewage sludge as a fertilizer on soils may cause compacted surface layers (surface sealing), which can promote changes on soil physical properties. The objective of this work was to study the use of gamma-ray computed tomography, as a diagnostic tool for the evaluation of this sealing process through the measurement of soil bulk density distribution of the soil surface layer of samples subjected to sewage sludge application. Tomographic images were taken with a first generation tomograph with a resolution of 1 mm. The image analysis opened the possibility to obtain soil bulk density profiles and average soil bulk densities of the surface layer and to detect the presence of soil surface sealing. The sealing crust thickness was estimated to be in the range of 2-4 mm.

  9. Toward optimizing dental implant performance: Surface characterization of Ti and TiZr implant materials.

    OpenAIRE

    Murphy, Matthew; Walczak, Monika; Thomas, Andrew; Silikas, Nick; Berner, S.; Lindsay, Robert

    2017-01-01

    ObjectiveTargeting understanding enhanced osseointegration kinetics, the goal of this study was to characterize the surface morphology and composition of Ti and TiZr dental implant substrates subjected to one of two surface treatments developed by Straumann. These two treatments are typically known as SLA and SLActive, with the latter resulting in more rapid osseointegration.MethodsA range of techniques was applied to characterize four different substrate/surface treatment combinations (TiSLA...

  10. Single-axis combined shearography and digital speckle photography instrument for full surface strain characterization

    OpenAIRE

    Groves, Roger M.; Fu, S.; James, Stephen W.; Tatam, Ralph P.

    2005-01-01

    Full characterization of the surface strain requires the measurement of six displacement gradient components of the surface strain tensor. The out-of-plane displacement gradient component may be directly measured using the full-field speckle interferometry technique of shearography, but to fully characterize the surface strain using shearography, a minimum of three illumination, or viewing, directions are required. The image processing technique of digital speckle photograph...

  11. Surface modification and characterization of aramid fibers with hybrid coating

    Science.gov (United States)

    Chen, Jianrui; Zhu, Yaofeng; Ni, Qingqing; Fu, Yaqin; Fu, Xiang

    2014-12-01

    Aramid fibers were modified through solution dip-coating and interfacial in situ polymerization using a newly synthesized SiO2/shape memory polyurethane (SiO2/SMPU) hybrid. Fourier transform infrared and X-ray photoelectron spectroscopy indicated that the synthesized SiO2/SMPU hybrid successfully coated the fiber surface. The surface morphology of the aramid fibers and the single fiber tensile strength and interfacial shear strength (IFSS) of the composites were determined. The IFSS of the fiber coated with the hybrid improved by 45%, which benefited from a special "pizza-like" structure on the fiber surface.

  12. Coupling and scattering power exchange between phonon modes observed in surface-enhanced Raman spectra of single-wall carbon nanotubes on silver colloidal clusters

    Science.gov (United States)

    Kneipp, K.; Perelman, L. T.; Kneipp, H.; Backman, V.; Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S.

    2001-05-01

    In the surface-enhanced Raman spectra of single-wall carbon nanotubes on silver colloidal clusters, at high excitation laser intensities, we observed with increasing laser excitation intensity, an exchange in the scattering power between two phonon modes that constitute the 1590 cm-1 feature of the G band. We explain this effect in terms of phonon-phonon coupling, which occurs for the extremely strong Raman effect in intense optical fields in the ``hot'' areas of silver clusters.

  13. Spinorial Characterizations of Surfaces into 3-dimensional Pseudo-Riemannian Space Forms

    Energy Technology Data Exchange (ETDEWEB)

    Lawn, Marie-Amelie, E-mail: marie-amelie.lawn@unine.ch [Universite de Neuchatel, Institut de Mathematiques (Switzerland); Roth, Julien, E-mail: julien.roth@univ-mlv.fr [Universite Paris-Est Marne-la-Vallee, Laboratoire d' Analyse et de Mathematiques Appliquees (UMR 8050) (France)

    2011-09-15

    We give a spinorial characterization of isometrically immersed surfaces of arbitrary signature into 3-dimensional pseudo-Riemannian space forms. This generalizes a recent work of the first author for spacelike immersed Lorentzian surfaces in Double-Struck-Capital-R {sup 2,1} to other Lorentzian space forms. We also characterize immersions of Riemannian surfaces in these spaces. From this we can deduce analogous results for timelike immersions of Lorentzian surfaces in space forms of corresponding signature, as well as for spacelike and timelike immersions of surfaces of signature (0, 2), hence achieving a complete spinorial description for this class of pseudo-Riemannian immersions.

  14. Characterization of atherosclerotic plaque of carotid arteries with histopathological correlation: Vascular wall MR imaging vs. color Doppler ultrasonography (US)

    National Research Council Canada - National Science Library

    Watanabe, Yuji; Nagayama, Masako; Suga, Tsuyoshi; Yoshida, Kazumichi; Yamagata, Sen; Okumura, Akira; Amoh, Yoshiki; Nakashita, Satoru; Van Cauteren, Marc; Dodo, Yoshihiro

    2008-01-01

    To investigate whether the vessel wall MRI of carotid arteries would differentiate at-risk soft plaque from solid fibrous plaque by identifying liquid components more accurately than color Doppler ultrasonography (US...

  15. Surface characterization of pretreated and microbial-treated populus cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, Allison K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    The first objective of this thesis is to illustrate the advantages of surface characterization in biomass utilization studies. The second objective is to gain insight into the workings of potential consolidated bioprocessing microorganisms on the surface of poplar samples. The third objective is to determine the impact biomass recalcitrance has on enzymatic hydrolysis and microbial fermentation in relation to the surface chemistry.

  16. Surface modification and characterization of aramid fibers with hybrid coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianrui; Zhu, Yaofeng; Ni, Qingqing; Fu, Yaqin, E-mail: fyq01@zstu.edu.cn; Fu, Xiang

    2014-12-01

    Graphical abstract: - Highlights: • Aramid fibers modification sizing synthesized by sol–gel in the absence of water. • The strength and interfacial adhesion property of modified fibers were improved. • Modified fibers show a special surface structure. • The mechanism explains the function of structure. - Abstract: Aramid fibers were modified through solution dip-coating and interfacial in situ polymerization using a newly synthesized SiO{sub 2}/shape memory polyurethane (SiO{sub 2}/SMPU) hybrid. Fourier transform infrared and X-ray photoelectron spectroscopy indicated that the synthesized SiO{sub 2}/SMPU hybrid successfully coated the fiber surface. The surface morphology of the aramid fibers and the single fiber tensile strength and interfacial shear strength (IFSS) of the composites were determined. The IFSS of the fiber coated with the hybrid improved by 45%, which benefited from a special “pizza-like” structure on the fiber surface.

  17. Quantitative characterization of surface topography using spectral analysis

    Science.gov (United States)

    Jacobs, Tevis D. B.; Junge, Till; Pastewka, Lars

    2017-03-01

    Roughness determines many functional properties of surfaces, such as adhesion, friction, and (thermal and electrical) contact conductance. Recent analytical models and simulations enable quantitative prediction of these properties from knowledge of the power spectral density (PSD) of the surface topography. The utility of the PSD is that it contains statistical information that is unbiased by the particular scan size and pixel resolution chosen by the researcher. In this article, we first review the mathematical definition of the PSD, including the one- and two-dimensional cases, and common variations of each. We then discuss strategies for reconstructing an accurate PSD of a surface using topography measurements at different size scales. Finally, we discuss detecting and mitigating artifacts at the smallest scales, and computing upper/lower bounds on functional properties obtained from models. We accompany our discussion with virtual measurements on computer-generated surfaces. This discussion summarizes how to analyze topography measurements to reconstruct a reliable PSD. Analytical models demonstrate the potential for tuning functional properties by rationally tailoring surface topography—however, this potential can only be achieved through the accurate, quantitative reconstruction of the PSDs of real-world surfaces.

  18. Wall conditioning and particle control in Extrap T2

    Science.gov (United States)

    Bergsåker, H.; Larsson, D.; Brunsell, P.; Möller, A.; Tramontin, L.

    1997-02-01

    The Extrap T2 reversed field pinch experiment is operated with the former OHTE vacuum vessel, of dimensions R = 1.24 m and a = 0.18 m and with a complete graphite liner. It is shown that a rudimentary density control can be achieved by means of frequent helium glow discharge conditioning of the wall. The standard He-GDC is well characterized and reproducible. The trapping and release of hydrogen and impurities at the wall surfaces have been studied by mass spectrometry and surface analysis. The shot to shot particle exchange between wall and plasma can be approximately accounted for.

  19. Characterization of Natural Slip Surfaces Relevant to Earthquake Mechanics

    Science.gov (United States)

    Chester, J. S.; Kronenberg, A. K.; Chester, F. M.; Guillemette, R. N.

    2003-12-01

    The Punchbowl fault, an ancient trace of the San Andreas, displays extreme localization of displacement to a meters-thick fault core containing an ultracataclasite layer with mesoscale slip surfaces. New maps of the Punchbowl fault slip surface and ultracataclasite produced using optical and electron microscopy document that extreme localization of slip also occurred at the microscopic scale. The prominent mesoscopic scale slip surface is a thin (mm thick), texturally distinct layer of ultracataclasite with a crystal-lattice preferred orientation, as evidenced by uniform birefringence, within which distinct microscopic slip surfaces are evident. Thin sinuous seams and possible injection-like structures of opaque, ultrafine material and thin zones of cataclastic flow occur at the microscopic slip surface. Evidence for multiple episodes of synfaulting mineral alteration and cementation in the surrounding ultracataclasite documents chemical processes likely were important to strength recovery. Overall, microstructural features are consistent with the inference that repeated slip occurred on the mesoscopic-scale slip surface, and that older slip-surfaces are present throughout the ultracataclasite layer. Diffraction-contrast TEM imaging, micro-electron diffraction, quantitative elemental mapping and energy dispersive spectroscopy (EDS) are being used to determine relative abundance and types of crystalline phases, glass, or other friction-induced amorphous phases (e.g., silica gel). Preliminary TEM observations indicate that the ultracataclasite consists almost entirely of ultrafine particles (4 to 400 nm diameter), with rounded relict grains of the host rocks, faulted and unfaulted veins, sheared and kinked clay minerals, and new, euhedral grains. Low permeabilities are implied by the fine grain size and corresponding nm-scale pores. Although rapid slip on mesoscopic scale slip surfaces would be expected to have produced thermal transients, we have not, as yet, found

  20. Characterization, modeling and simulation of fused deposition modeling fabricated part surfaces

    Science.gov (United States)

    Taufik, Mohammad; Jain, Prashant K.

    2017-12-01

    Surface roughness is generally used for characterization, modeling and simulation of fused deposition modeling (FDM) fabricated part surfaces. But the average surface roughness is not able to provide the insight of surface characteristics with sharp peaks and deep valleys. It deals in the average sense for all types of surfaces, including FDM fabricated surfaces with distinct surface profile features. The present research work shows that kurtosis and skewness can be used for characterization, modeling and simulation of FDM surfaces because these roughness parameters have the ability to characterize a surface with sharp peaks and deep valleys. It can be critical in certain application areas in tribology and biomedicine, where the surface profile plays an important role. Thus, in this study along with surface roughness, skewness and kurtosis are considered to show a novel strategy to provide new transferable knowledge about FDM fabricated part surfaces. The results suggest that the surface roughness, skewness and kurtosis are significantly different at 0° and in the range (0°, 30°], [30°, 90°] of build orientation.

  1. Electrochemical characterization of GaN surface states

    Science.gov (United States)

    Winnerl, Andrea; Garrido, Jose A.; Stutzmann, Martin

    2017-07-01

    In this work, we present a systematic study of the electrochemical properties of metal-organic chemical vapor deposition and hybrid vapor phase epitaxy grown n-type GaN in aqueous electrolytes. For this purpose, we perform cyclic voltammetry and impedance spectroscopy measurements over a wide range of potentials and frequencies, using a pure aqueous electrolyte and adding two different types of redox couples, as well as applying different surface treatments to the GaN electrodes. For Ga-polar GaN electrodes, the charge transfer to an electrolyte is dominated by surface states, which are not related to dislocations and are independent of the specific growth technique. These surface states can be modified by the surface treatment; they are generated by etching in HCl and are passivated by oxidation. Different surface defect states are present on N-polar GaN electrodes which do not significantly contribute to the charge transfer across the GaN/electrolyte interface.

  2. Characterization of mechanical properties of hydroxyapatite-silicon-multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application.

    Science.gov (United States)

    Khalili, Vida; Khalil-Allafi, Jafar; Sengstock, Christina; Motemani, Yahya; Paulsen, Alexander; Frenzel, Jan; Eggeler, Gunther; Köller, Manfred

    2016-06-01

    Release of Ni(1+) ions from NiTi alloy into tissue environment, biological response on the surface of NiTi and the allergic reaction of atopic people towards Ni are challengeable issues for biomedical application. In this study, composite coatings of hydroxyapatite-silicon multi walled carbon nano-tubes with 20wt% Silicon and 1wt% multi walled carbon nano-tubes of HA were deposited on a NiTi substrate using electrophoretic methods. The SEM images of coated samples exhibit a continuous and compact morphology for hydroxyapatite-silicon and hydroxyapatite-silicon-multi walled carbon nano-tubes coatings. Nano-indentation analysis on different locations of coatings represents the highest elastic modulus (45.8GPa) for HA-Si-MWCNTs which is between the elastic modulus of NiTi substrate (66.5GPa) and bone tissue (≈30GPa). This results in decrease of stress gradient on coating-substrate-bone interfaces during performance. The results of nano-scratch analysis show the highest critical distance of delamination (2.5mm) and normal load before failure (837mN) as well as highest critical contact pressure for hydroxyapatite-silicon-multi walled carbon nano-tubes coating. The cell culture results show that human mesenchymal stem cells are able to adhere and proliferate on the pure hydroxyapatite and composite coatings. The presence of both silicon and multi walled carbon nano-tubes (CS3) in the hydroxyapatite coating induce more adherence of viable human mesenchymal stem cells in contrast to the HA coated samples with only silicon (CS2). These results make hydroxyapatite-silicon-multi walled carbon nano-tubes a promising composite coating for future bone implant application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Characterization of Wheel Surface Topography in cBN Grinding

    Science.gov (United States)

    Fujimoto, Masakazu; Ichida, Yoshio; Sato, Ryunosuke; Morimoto, Yoshitaka

    The wheel surface topography in the grinding process with vitrified cBN wheels has been investigated on the basis of 3-dimensional analysis using a multi-probe SEM, and the relationships between these results and the grinding characteristic parameters have been discussed. Moreover, the change of the wheel surface profile in the grinding process has been evaluated using fractal analysis. There are two regions: an initial wear region and a steady-state wear region, in the grinding process. In the initial wear region, a rapid decrease of grinding force and a rapid increase of wheel wear occur with increasing stock removal. In the steady-state wear region, the micro self-sharpening phenomenon owing to the micro fracture as well as the attritious wear of cutting edge occurs. The change in fractal dimension of the wheel surface is closely related to the change of grinding force dominated by the wear behavior of grain cutting edges.

  4. Surface characterization of the atmospheric contamination of hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Charenton, J.C.; Sacher, E.; McIntyre, N.S.

    1988-01-01

    Hydrogenated amorphous silicon (a-Si:H), plasma deposited under positive substrate bias, is shown to undergo atmospheric contamination after removal from the preparation chamber. The contamination rate follows complex-order kinetics and is over within 10/sup 4/ s. Auger spectroscopy depth profiles, obtained through Ar ion etching, are different than those for substrates self-biased during deposition. The same chemical structures appear to exist as are found on crystalline Si surfaces, as is evident from the fact that, when the a-Si:H surface is etched to the point where the Si:C:O ratios are the same as found on crystalline Si, the surface tensions are identical.

  5. Increase of the adhesion ability and display of a rumen fungal xylanase on the cell surface of Lactobacillus casei by using a listerial cell-wall-anchoring protein.

    Science.gov (United States)

    Hsueh, Hsiang-Yun; Yu, Bi; Liu, Chi-Te; Liu, Je-Ruei

    2014-02-01

    Lactobacillus, which has great adhesion ability to intestinal mucosa and is able to hydrolyse plant cell walls, can be used more efficiently as a feed additive. To increase the adhesion ability and display a fungal xylanase on the cell surface of Lactobacillus casei, the Listeria monocytogenes cell-wall-anchoring protein gene, mub, was introduced into L. casei ATCC 393 cells and used as a fusion partner to display the rumen fungal xylanase XynCDBFV on the cell surface of the transformed strains. The transformed strain L. casei pNZ-mub, which harboured mub gene, displayed recombinant Mub on its cell surface and showed greater adhesion ability to Caco-2 cells than the parental strain. The transformed strain L. casei pNZ-mub/xyn, which harboured mub-xynCDBFV fusion gene, acquired the capacity to break down oat spelt xylan and exhibited greater competition ability against the adhesion of L. monocytogenes to Caco-2 cells, in comparison with the parental strain. Mub has a potential to be used as a fusion partner to display heterologous proteins on the cell surface of Lactobacillus. Moreover, this is the first report of the successful display of xylanase on the cell surface of Lactobacillus. © 2013 Society of Chemical Industry.

  6. Characterization of the solar climate in Malawi using NASA's surface ...

    African Journals Online (AJOL)

    This paper presents the characterization of global solar radiation (GSR) for Malawi using NASA's SSE model. The mean monthly daily GSR monthly variation in the three regions of Malawi has been investigated. It has been found that there is a general gradient in GSR in the north-south direction. This gradient correlates ...

  7. Structural and surface compositional characterization of silver thin ...

    African Journals Online (AJOL)

    Silver thin films were deposited on microscope glass slides by the electroless Solution Growth Technique (SGT). The films were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and x-ray photoelectron spectroscopy (XPS). The films were found to exhibit a random orientation with peak positions ...

  8. Spatial characterization of nanotextured surfaces by visual color imaging

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Murthy, Swathi; Madsen, Morten H.

    2016-01-01

    We present a method using an ordinary color camera to characterize nanostructures from the visual color of the structures. The method provides a macroscale overview image from which micrometer-sized regions can be analyzed independently, hereby revealing long-range spatial variations...

  9. Detection and characterization of near surface structures using ...

    African Journals Online (AJOL)

    A geophysical investigation was carried out at Shika, using seismic refraction method. The aim was to delineate, map and characterize the different strata of the subsurface within the flanks of a dam. In order to achieve this aim, varying geometric spreads were used with geophone spacings of 5m, 4m, 3m and 2m ...

  10. Dental Surface Texture Characterization Based on Erosive Tooth Wear Processes.

    Science.gov (United States)

    Hara, A T; Livengood, S V; Lippert, F; Eckert, G J; Ungar, P S

    2016-05-01

    The differential diagnosis of dental wear lesions affects their clinical management. We hypothesized that surface texture parameters can differentiate simulated erosion, abrasion, and erosion-abrasion lesions on human enamel and dentin. This in vitro study comprised 2 parts (both factorial 4 × 2), with 4 lesion types (erosion, abrasion, erosion-abrasion, and sound [no lesion; control]) and 2 substrates (enamel and dentin). Flattened/polished dental specimens were used in part 1, whereas natural dental surfaces were used in part 2. Testing surfaces were evaluated in blind conditions, using average surface roughness (Sa) and the following scale-sensitive fractal analysis parameters: area-scale fractal complexity (Asfc), exact proportion length-scale anisotropy of relief (eplsar), scale of maximum complexity (Smc), and textural fill volume (Tfv). Two-way analyses of variance, followed by Fisher's protected least significant difference tests (α = 0.05), were used to evaluate the effects of lesion and substrate. Classification trees were constructed to verify the strength of potential associations of the tested parameters. In part 1,Asfc, Sa, and Tfv were able to differentiate erosion and erosion-abrasion lesions from the sound (no lesion) control in both substrates; only Asfc differentiated erosion and erosion-abrasion enamel lesions (allPabrasion lesions from the sound (no lesion) control in both substrates, whereas eplsar was able to differentiate erosion from erosion-abrasion (allPabrasion lesions, despite their complicated surface textures. The association of parameters improved the differentiation of lesions for both enamel and dentin in polished or natural surfaces. © International & American Associations for Dental Research 2016.

  11. Sphingosine-1-phosphate reduces adhesion of malignant mammary tumor cells MDA-MB-231 to microvessel walls by protecting endothelial surface glycocalyx.

    Science.gov (United States)

    Zhang, L; Zeng, M; Fu, B M

    2017-04-29

    Sphingosine-1-phosphate (S1P) is a sphingolipid in plasma that plays a critical role in cardiovascular and immune systems. Endothelial surface glycocalyx (ESG) decorating the inner wall of blood vessels is a regulator of multiple vascular functions. To test the hypothesis that S1P can reduce tumor cell adhesion to microvessel walls by protecting the ESG, we quantified the ESG and MDA-MB-231 tumor cell adhesion in the presence and absence of 1μM S1P, and in the presence of the matrix metalloproteinase (MMP) inhibitor in post-capillary venules of rat mesentery. We also measured the microvessel permeability to albumin as an indicator for the microvessel wall integrity. In the absence of S1P, ESG was ~10% of that in the presence of S1P, whereas adherent tumor cells and the permeability to albumin and were ~3.5-fold (after 30 min adhesion) and ~7.7-fold that in the presence of S1P, respectively. In the presence of the MMP inhibitor, the results are similar to those in the presence of S1P. Our results conform to the hypothesis that protecting ESG by S1P inhibits MDA-MB-231 tumor cell adhesion to the microvessel wall.

  12. Pendant bubble method for an accurate characterization of superhydrophobic surfaces.

    Science.gov (United States)

    Ling, William Yeong Liang; Ng, Tuck Wah; Neild, Adrian

    2011-12-06

    The commonly used sessile drop method for measuring contact angles and surface tension suffers from errors on superhydrophobic surfaces. This occurs from unavoidable experimental error in determining the vertical location of the liquid-solid-vapor interface due to a camera's finite pixel resolution, thereby necessitating the development and application of subpixel algorithms. We demonstrate here the advantage of a pendant bubble in decreasing the resulting error prior to the application of additional algorithms. For sessile drops to attain an equivalent accuracy, the pixel count would have to be increased by 2 orders of magnitude. © 2011 American Chemical Society

  13. Experimental characterization of micromilled surfaces by large range AFM

    DEFF Research Database (Denmark)

    Bariani, Paolo; Bissacco, Giuliano; Hansen, Hans Nørgaard

    2004-01-01

    of workpiece material, particularly when sub-micrometer chip thicknesses are considered and when machining hard materials. Quantification of surface topography is of fundamental importance for the evaluation of the generated surface; high resolution and wide measuring range being highly desirable...... was achieved by the use of an atomic force microscope mounted on a CMM, which takes advantage of the small radius of curvature of its tip. Its limitation on the scanning range is overcome by taking multiple scans and stitching procedures. Other measuring techniques such as, stylus profilometry, optical...

  14. Rockfall source characterization at high rock walls in complex geological settings by photogrammetry, structural analysis and DFN techniques

    Science.gov (United States)

    Agliardi, Federico; Riva, Federico; Galletti, Laura; Zanchi, Andrea; Crosta, Giovanni B.

    2016-04-01

    Rockfall quantitative risk analysis in areas impended by high, subvertical cliffs remains a challenge, due to the difficult definition of potential rockfall sources, event magnitude scenarios and related probabilities. For this reasons, rockfall analyses traditionally focus on modelling the runout component of rockfall processes, whereas rock-fall source identification, mapping and characterization (block size distribution and susceptibility) are over-simplified in most practical applications, especially when structurally complex rock masses are involved. We integrated field and remote survey and rock mass modelling techniques to characterize rock masses and detect rockfall source in complex geo-structural settings. We focused on a test site located at Valmadrera, near Lecco (Southern Alps, Italy), where cliffs up to 600 m high impend on a narrow strip of Lake Como shore. The massive carbonates forming the cliff (Dolomia Principale Fm), normally characterized by brittle structural associations due to their high strength and stiffness, are here involved in an ENE-trending, S-verging kilometre-scale syncline. Brittle mechanisms associated to folding strongly controlled the nature of discontinuities (bedding slip, strike-slip faults, tensile fractures) and their attributes (spacing and size), as well as the spatial variability of bedding attitude and fracture intensity, with individual block sizes up to 15 m3. We carried out a high-resolution terrestrial photogrammetric survey from distances ranging from 1500 m (11 camera stations from the opposite lake shore, 265 pictures) to 150 m (28 camera stations along N-S directed boat routes, 200 pictures), using RTK GNSS measurements for camera station geo-referencing. Data processing by Structure-from-Motion techniques resulted in detailed long-range (1500 m) and medium-range (150 to 800 m) point clouds covering the entire slope with maximum surface point densities exceeding 50 pts/m2. Point clouds allowed a detailed

  15. Investigations of surface characterization of silicone rubber due to ...

    Indian Academy of Sciences (India)

    In the present work, tracking phenomena has been studied with silicone rubber material under the a.c. and d.c. voltages following IEC-587 standards. The surface condition of the tracked zone was analysed using wide angle X-ray diffraction (WAXD) and thermogravimetric differential thermal analysis (TG–DTA) studies.

  16. Industrial characterization of nano-scale roughness on polished surfaces

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Hansen, Poul-Erik; Pilny, Lukas

    2015-01-01

    with a thin liquid film. It is shown that the changes in the angular scattering intensities can be compensated for the liquid film, using empirically determined relations. This allows a restoration of the “true” scattering intensities which would be measured from a corresponding clean surface. The compensated...

  17. Geochemical characterization of surface water and spring water in ...

    Indian Academy of Sciences (India)

    Water samples from precipitation, glacier melt, snow melt, glacial lake, streams and karst springs were collected across SE of .... Sampling details of surface and subsurface water samples of SE part of Kashmir Valley. Sampling. Latitude ..... ination of water and waste water (APHA-AWWA-WEF. Washington). Bonaccio 2004 ...

  18. Formation and surface characterization of nanostructured Al2O3 ...

    Indian Academy of Sciences (India)

    Administrator

    obtained from various concentrations of PTO electrolyte, ranges from 104∙75 to 161∙47 nm and 124∙06 to 154∙60 nm for various current densities. 3.4 Evaluation of corrosion resistance of ceramic coatings. The degree of corrosion protection offered by the ceramic coating fabricated on aluminium surface by anodization ...

  19. Characterization of Surfaces and the Estimation of Shock Induced Vorticity

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, L; Ray, J; Peyser, T

    2002-09-17

    When shocks impinge on a surface separating fluids of two different densities, one observes the development and growth of various vortical structures. The flow induced by this Richtmyer-Meshkov (RM) instability depends on a variety of factors such as the shock strength, the density ratio of the fluids and the exact form of the surface perturbation. The most common way to model the form of the surface perturbation is through Fourier analysis which is suitable for large-scale sinusoidal structures and is straightforward mathematically. In surfaces of practical interest, however, to a wide range of application, there may also be a broad spectrum of high frequency modes in addition to the lower frequency modes described by Fourier methods. We propose here that these high frequency modes can be efficiently quantified in terms of wavelet analysis. From a numerical point of view, the scale that the roughness occurs at is far to small to numerically resolve and thus we propose that our new methodology can be used to model the subgrid scale generation of vorticity. Thus the combination of wavelet analysis and Fourier analysis will be used to model the generation of vorticity for the RM instability.

  20. Electrochemical and surface characterization of a nickel-titanium alloy

    NARCIS (Netherlands)

    Wever, Dirk; Veldhuizen, AG; de Vries, J; Busscher, HJ; Uges, DRA; van Horn, James

    1998-01-01

    For clinical implantation purposes of shape memory metals the nearly equiatomic nickel-titanium (NiTi) alloy is generally used. In this study, the corrosion properties and surface characteristics of this alloy were investigated and compared with two reference controls, AISI 316 LVM stainless steel

  1. Characterization of large area nanostructured surfaces using AFM measurements

    DEFF Research Database (Denmark)

    Calaon, Matteo; Hansen, Hans Nørgaard; Tosello, Guido

    2012-01-01

    magnitude of the 3D surface amplitude parameters chosen for the analysis, when increasing the Al purity from 99,5% to 99,999%. AFM was then employed to evaluate the periodical arrangements of the nano structured cells. Image processing was used to estimate the average areas value, the height variation...

  2. P-I-N Silicon Nanowires: Raman Spectroscopy, Electrical Characterization, and TCAD Simulation of Doping and Surface States

    Science.gov (United States)

    O'Regan, Terrance; Krylyuk, Sergiy; Birdwell, A. Glen; Sharma, Deepak; Crowne, Frank; Motayed, Abhishek; Shah, Pankaj; Davydov, Albert V.

    2013-03-01

    We investigated the alternate axial doping of silicon nanowires with Raman spectroscopy, electrical characterization, and TCAD simulation. The P-I-N nanowires were grown in a hot-wall CVD reactor via the vapor-liquid-solid mechanism with gold catalyst and doped in-situ. The resulting nanowire diameters and lengths were nominally 140 nm and 10 ?m, respectively. Peak broadening as a result of the Fano effect seen in the Raman line shape was compared to the bulk Si data in the literature to estimate the doping type and concentration. Electrical characterization and TCAD simulation confirmed the Raman results and were used to estimate the doping distribution, especially at the diode junctions and nanowire surface. Although Raman spectroscopy was useful in determining type and concentration of doping along the length of the nanowires, it was unable to resolve doping concentration along the nanowire diameter or at the axial junctions due to limited spatial resolution (about 350 nm). Furthermore, the Raman results showed sensitivity to surface states at the ends of the nanowires.

  3. Characterization of a gold coated cantilever surface for biosensing applications.

    Science.gov (United States)

    Haag, Ann-Lauriene; Nagai, Yoshihiko; Lennox, R Bruce; Grütter, Peter

    Cantilever based sensors are a promising tool for a very diverse spectrum of biological sensors. They have been used for the detection of proteins, DNA, antigens, bacteria viruses and many other biologically relevant targets. Although cantilever sensing has been described for over 20 years, there are still no viable commercial cantilever-based sensing products on the market. Several reasons can be found for this - a lack of detailed understanding of the origin of signals being an important one. As a consequence application-relevant issues such as shelf life and robust protocols distinguishing targets from false responses have received very little attention. Here, we will discuss a cantilever sensing platform combined with an electrochemical system. The detected surface stress signal is modulated by applying a square wave potential to a gold coated cantilever. The square wave potential induces adsorption and desorption onto the gold electrode surface as well as possible structural changes of the target and probe molecules on the cantilever surface resulting in a measurable surface stress change. What sets this approach apart from regular cantilever sensing is that the quantification and identification of observed signals due to target-probe interactions are not only a function of stress value (i.e. amplitude), but also of the temporal evolution of the stress response as a function of the rate and magnitude of the applied potential change, and the limits of the potential change. This paper will discuss three issues that play an important role in future successful applications of cantilever-based sensing. First, we will discuss what is required to achieve a large surface stress signal to improve sensitivity. Second, a mechanism to achieve an optimal probe density is described that improves the signal-to-noise ratio and response times of the sensor. Lastly, lifetime and long term measurements are discussed.

  4. Surface Characterization of Polymer Blends by XPS and ToF-SIMS

    Directory of Open Access Journals (Sweden)

    Chi Ming Chan

    2016-08-01

    Full Text Available The surface properties of polymer blends are important for many industrial applications. The physical and chemical properties at the surface of polymer blends can be drastically different from those in the bulk due to the surface segregation of the low surface energy component. X-ray photoelectron spectroscopy (XPS and time-of-flight secondary mass spectrometry (ToF-SIMS have been widely used to characterize surface and bulk properties. This review provides a brief introduction to the principles of XPS and ToF-SIMS and their application to the study of the surface physical and chemical properties of polymer blends.

  5. One repeat of the cell wall binding domain is sufficient for anchoring the Lactobacillus acidophilus surface layer protein

    NARCIS (Netherlands)

    Smit, E.; Pouwels, P.H.

    2002-01-01

    The N-terminal repeat (SAC1) of the S-protein of Lactobacillus acidophilus bound efficiently and specifically to cell wall fragments (CWFs) when fused to green fluorescent protein, whereas the C-terminal repeat (SAC2) did not. Treatment of CWFs with hydrofluoric acid, but not phenol, prevented

  6. Biological characterization of implant surfaces - in vitro study

    Directory of Open Access Journals (Sweden)

    Priscilla Barbosa Ferreira Soares

    Full Text Available AbstractObjectiveEvaluate the biological performance of titanium alloys grade IV under different surface treatments: sandblasting and double etching (Experimental surface 1; Exp1, NEODENT; surface with wettability increase (Experimental surface 2; Exp2, NEODENT on response of preliminary differentiation and cell maturation.Material and methodImmortalized osteoblast cells were plated on Exp1 and Exp2 titanium discs. The polystyrene plate surface without disc was used as control group (C. Cell viability was assessed by measuring mitochondrial activity (MTT at 4 and 24 h (n = 5, cell attachment was performed using trypan blue exclusion within 4 hours (n = 5, serum total protein and alkaline phosphatase normalization was performed at 4, 7 and 14 days (n = 5. Data were analyzed using one-way ANOVA and Tukey test.ResultThe values of cell viability were: 4h: C– 0.32±0.01A; Exp1– 0.34±0.08A; Exp2– 0.29±0.03A. 24h: C– 0.43±0.02A; Exp1– 0.39±0.01A; Exp2– 0.37±0.03A. The cell adhesion counting was: C– 85±10A; Exp1- 35±5B; Exp2– 20±2B. The amounts of serum total protein were 4d: C– 40±2B; Exp1– 120±10A; Exp2– 130±20A. 7d: C– 38±2B; Exp1– 75±4A; Exp2– 70±6A. 14 d: C– 100±3A; Exp1– 130±5A; Exp2– 137±9A. The values of alkaline phosphatase normalization were: 4d: C– 2.0±0.1C; Exp1– 5.1±0.8B; Exp2– 9.8±2.0A. 7d: C– 1.0±0.01C; Exp1– 5.3±0.5A; Exp2– 3.0±0.3B. 14 d: C– 4.1±0.3A; Exp1– 4.4±0.8A; Exp2– 2.2±0.2B. Different letters related to statistical differences.ConclusionThe surfaces tested exhibit different behavior at dosage of alkaline phosphatase normalization showing that the Exp2 is more associated with induction of cell differentiation process and that Exp1 is more related to the mineralization process.

  7. Surface grafted chitosan gels. Part II. Gel formation and characterization

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    cross-linking the chitosan present in the polyelectrolyte multilayer, poly(acrylic acid) is partly removed by exposing the multilayer structure to a concentrated carbonate buffer solution at a high pH, leaving a surface-grafted cross-linked gel. Chemical cross-linking enhances the gel stability against......Responsive biomaterial hydrogels attract significant attention due to their biocompatibility and degradability. In order to make chitosan based gels, we first graft one layer of chitosan to silica, and then build a chitosan/poly(acrylic acid) multilayer using the layer-by-layer approach. After......-linking density. The amount of poly(acrylic acid) trapped inside the surface grafted films was found to decrease with decreasing cross-linking density, as confirmed in situ using TIRR, and ex situ by Fourier transform infrared (FTIR) measurements on dried films. The responsiveness of the chitosan-based gels...

  8. Flying PIV measurements in a 4-valve IC engine water analogue to characterize the near-wall flow evolution

    OpenAIRE

    Koehler, M.; Hess, D.; Bruecker, C.

    2015-01-01

    For a deeper understanding of the highly unsteady near-wall boundary layer flows in internal combustion (IC) engines, PIV-based flow field measurements close to the inner cylinder and piston walls within transparent engines are required. The herein described flying PIV method in combination with a scanning light-sheet provides time-resolved PIV measurements in a transparent IC engine water analogue in a radial plane 1.5 mm apart from the planar piston crown while the piston is moving. The lig...

  9. Characterization of a surface micromachined pressure sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, W.P. [New Mexico Univ., Albuquerque, NM (United States). Center for High Technology Materials; Smith, J.H. [Sandia National Labs., Albuquerque, NM (United States)

    1995-08-01

    A surface micromachined pressure sensor array has been designed and fabricated. The sensors are based upon deformable, silicon nitride diaphragms with polysilicon piezoresistors. Absolute pressure is detected by virtue of reference pressure cavities underneath the diaphragms. For this type of sensor, design tradeoffs must be made among allowable diaphragm size, and desirable pressure ranges. Several fabrication issues were observed and addressed. Offset voltage, sensitivity, and nonlinearity of 100 {mu}m diameter sensors were measured.

  10. Surface characterization and cytotoxicity response of biodegradable magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pompa, Luis; Rahman, Zia Ur; Munoz, Edgar; Haider, Waseem, E-mail: haiderw@utpa.edu

    2015-04-01

    Magnesium alloys have raised an immense amount of interest to many researchers because of their evolution as a new kind of third generation materials. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium alloys experience a natural phenomenon to biodegrade in aqueous solutions due to its corrosion activity, which is excellent for orthopedic and cardiovascular applications. However, a major concern with such alloys is fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of biodegradable implants. In this investigation, three different grades of magnesium alloys: AZ31B, AZ91E and ZK60A were studied for their corrosion resistance and biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter are used to study surface morphology, chemistry, roughness and wettability, respectively. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium based bio-assay, MTS. - Highlights: • Micro-textured features formed after the anodization of magnesium alloys. • Contact angle increased and surface free energy decreased by anodization. • Corrosion rate increased for anodized surfaces compared to untreated samples. • Cell viability was greater than 75% implying the cytocompatibility of Mg alloys.

  11. Characterization and quality control of stone columns using surface wave testing

    National Research Council Canada - National Science Library

    Madun, A; Jefferson, I; Foo, K.Y; Chapman, D.N; Culshaw, M.G; Atkins, P.R

    2012-01-01

    .... This study evaluates the application of surface waves in characterizing the properties of laterally heterogeneous soil, specifically for use in the quality control of stone columns used for ground improvement...

  12. Evaluation for activities of component of Cyclotron-Based Epithermal Neutron Source (C-BENS) and the surface of concrete wall in irradiation room.

    Science.gov (United States)

    Imoto, M; Tanaka, H; Fujita, K; Mitsumoto, T; Ono, K; Maruhashi, A; Sakurai, Y

    2011-12-01

    The workers employed in BNCT must enter the irradiation room just after an irradiation under the condition of remaining activities. To reduce the radiation exposure for the workers, it is important to identify the origins of the activities. In this research, the activities induced on the concrete wall surface were evaluated using MCNP-5 and the measurement results of thermal neutron distribution. Furthermore, the radioisotopes produced in the moderator were identified with a High Purity Germanium detector. It was found that the activities of the wall were mainly caused by (46)Sc, (60)Co and (152)Eu, and that (24)Na and (56)Mn were mainly produced in the moderator. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Spectroscopic characterization of the on-surface induced (cyclo) dehydrogenation of a N-heteroaromatic compound on noble metal surfaces

    Czech Academy of Sciences Publication Activity Database

    Palacio, I.; Pinardi, A. L.; Martínez, J. I.; Preobrajenski, A.; Cossaro, A.; Jančařík, Andrej; Stará, Irena G.; Starý, Ivo; Méndez, J.; Martín-Gago, J.A.; López, M.F.

    2017-01-01

    Roč. 19, č. 33 (2017), s. 22454-22461 ISSN 1463-9076 Institutional support: RVO:61388963 Keywords : dibenzohelicene * on-surface (cyclo)dehydrogenation * spectroscopic characterization Subject RIV: CC - Organic Chemistry Impact factor: 4.123, year: 2016

  14. Theoretical characterization of the potential energy surface for the reversible reaction H + O2 yields HO2(asterisk) yields OH + O. III - Computed points to define a global potential energy surface

    Science.gov (United States)

    Walch, Stephen P.; Duchovic, Ronald J.

    1991-01-01

    Computed energies and geometries are reported which, combined with previously published calculations, permit a global representation of the potential energy surface for the reaction H + O2 yields HO2(asterisk) yields OH + O. These new calculations characterize the potential energy surface (PES) for all H atom angles of approach to O2 and for the region of the inner repulsive wall. The region of the T-shaped H-O2 exchange saddle point is connected with the constrained energy minimum (CEM) path, and a new collinear H-O2 exchange saddle point is characterized which lies only 9 kcal/mol above the H + O2 asymptote. A vibrational analysis which utilizes local cubic and quartic polynomial representations of the PES along the CEM path has been carried out. Optimal geometries, energies, and harmonic frequencies are reported along with anharmonic analyses for the O2 and OH asymptotes and for the HO2 minimum region of the PES.

  15. Preparation and characterization of functionalized single walled carbon nanotubes (fSWCNT)/ Hydroxyapatite (HAp)-Nylon hybridized composite biomaterial to study the mechanical properties

    Science.gov (United States)

    Khanal, Suraj; Leventouri, Theodora; Mahfuz, Hassan; Rondinone, Adam

    2014-03-01

    Synthetic hydroxyapatite (HAp) bears poor mechanical properties that limit its applicability in orthopedics. We study the possibility of overcoming such limitations by incorporating functionalized single walled carbon nanotubes (fSWCNT) in a biocompatible/bioactive nano-composite. We present results from synthesis and characterization of samples prepared under different processing parameters. Ultra sonication method was to disperse functionalized single walled carbon nanotubes (fSWCNT) in HAp followed by a simple hot assorting method to incorporate with polymerized ɛ-caprolactam. The fracture toughness of the composite materials was tested in compliance with the ASTM D-5045 standard. We have found that while the fracture toughness strongly depends on the processing parameters, a value comparable to the one for cortical bone is achieved. Mechanical properties, electron microscopy and crystal structure properties of the composite materials will be discussed.

  16. Polar and non-polar organic binder characterization in Pompeian wall paintings: comparison to a simulated painting mimicking an "a secco" technique.

    Science.gov (United States)

    Corso, Gaetano; Gelzo, Monica; Sanges, Carmen; Chambery, Angela; Di Maro, Antimo; Severino, Valeria; Dello Russo, Antonio; Piccioli, Ciro; Arcari, Paolo

    2012-03-01

    The use of Fourier transform infrared spectromicroscopy and mass spectrometry (MS) allowed us to characterize the composition of polar and non-polar binders present in sporadic wall paint fragments taken from Pompeii's archaeological excavation. The analyses of the polar and non-polar binder components extracted from paint powder layer showed the presence of amino acids, sugars, and fatty acids but the absence of proteinaceous material. These results are consistent with a water tempera painting mixture composed of pigments, flours, gums, and oils and are in agreement with those obtained from a simulated wall paint sample made for mimicking an ancient "a secco" technique. Notably, for the first time, we report the capability to discriminate by tandem MS the presence of free amino acids in the paint layer.

  17. LINEAR INFRASTRUCTURES THAT CHARACTERIZE A PAST LAND MANAGEMENT: THE MONTAGNOLA SENESE DRY STONE WALLS. A METHODOLOGICAL APPROACH OF ANALYSIS

    Directory of Open Access Journals (Sweden)

    Emanuele Vazzano

    2012-06-01

    Full Text Available The aim of this paper is to highlight the development of a methodology for studying linear infrastructures such as dry stone walls, characteristic of an earlier land management in the Siena countryside. The study area on which this methodology was tested is located in the Site of Community Importance (SCI “Montagnola Senese”. It was chosen as an example of a historical form of agricultural and forest land management, partly related to the key presence of the above mentioned artifacts. This methodology was based on the analysis of a historical cadastre and the concurrent construction and updating of a L.I.S. (Land Information System processed in a GIS environment. In order to compare 1825 data about land use, land ownership and parcel boundaries of the current walls were surveyed during fieldwork through GPS handheld equipment. The results show quite a good correspondence between wall lines and cadastral parcel boundary lines, mostly in the woodland. The analysis of the study area brings out that the walls were designed to carry out different functions such as property boundary, to enclose fields and defend them from the entrance of livestock grazing in the woodland, and subdivide a same land property in different management portions both as cultivated fields and as woodland.

  18. Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices

    NARCIS (Netherlands)

    Philipps, V.; Malaquias, A.; Hakola, A.; Karhunen, J.; Maddaluno, G.; Almaviva, S.; Caneve, L.; Colao, F.; Fortuna, E.; Gasior, P.; Kubkowska, M.; Czarnecka, A.; Laan, M.; Lissovski, A.; Paris, P.; van der Meiden, H. J.; Petersson, P.; Rubel, M.; Huber, A.; Zlobinski, M.; Schweer, B.; Gierse, N.; Xiao, Q.; Sergienko, G.

    2013-01-01

    Analysis and understanding of wall erosion, material transport and fuel retention are among the most important tasks for ITER and future devices, since these questions determine largely the lifetime and availability of the fusion reactor. These data are also of extreme value to improve the

  19. Characterizing transient thermal interactions between lunar regolith and surface spacecraft

    Science.gov (United States)

    Hager, P. B.; Klaus, D. M.; Walter, U.

    2014-03-01

    We present a new method, its development, implementation, and verification, for calculating the transient thermal interaction between lunar regolith and moving spacecraft travelling across the surface of the Moon. Regolith temperatures can be determined for lunar landscapes as defined by laser altimeter remote sensing data refined with local crater and boulder models. The purpose of this approach is to enable more detailed, dynamic thermal analyses of mobile systems on the lunar surface rather than relying on worst case, boundary condition design approaches typically used for spacecraft thermal engineering. This new simulation method is based on integrating models that represent small and large scale landscapes; reproduce regolith and boulder temperatures on the Moon; define the position of the Sun; and perform ray tracing to determine infrared and solar heat fluxes between passing objects and the surface. The thermal model of the lunar regolith enhances established models with a slope- and depth-dependent density. The simulation results were verified against remote sensing data obtained from the Diviner Lunar Radiometer Experiment of the Lunar Reconnaissance Orbiter (LRO) and from other sources cited in the literature. The verification results for isolated regolith surface patches showed a deviation from established models of about ±3-6 K (±1-6%) during lunar day, and lunar night. For real landscapes such as Crater Calippus and Crater Marius A, the deviation is less than ±15 K (±10%) compared to remote sensing data for the majority of measured data points. Only in regions with presumed different regolith material properties, such as steep slopes or depressions, or in regions with a low resolution on the topographic map, were the deviations up to 100 K (60%). From the results, empirical equations were derived, which can be used for worst case calculations or to calculate initial temperatures for more elaborate time marching numerical models. The proposed new

  20. Chemical and Molecular Characterization of Biofilm on Metal Surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.

    -film Development of conditioning-film on glass cover slips immersed in marine waters over a period of 24 h is shown in Fig. 1. This figure clearly shows the accumulation of organic carbon and nitrogen on glass surface during the 24 h period of immersion in seawater... the nature of the conditioning film organic matter developed on the glass panels immersed in marine waters. Amino acids in the conditioning film THAA concentrations of the conditioning film showed small non-linear increase over the period of immersion...

  1. Characterization of silicon surface states at clean and copper contaminated condition via transient capacitance measurement

    Science.gov (United States)

    Song, Lihui; Xie, Meng; Yu, Xuegong; Yang, Deren

    2017-10-01

    Silicon surface is one of the dominant recombination sites for silicon solar cells. Generally, the recombination ability of silicon surface is characterized in terms of surface recombination velocity. However, silicon surface actually contain a series of donor and acceptor levels across the silicon band gap, and therefore the surface recombination velocity is too general to provide detailed information of the silicon surface states. In this paper, we used the measured transient capacitance data to extract the detailed information (like defect energy levels, defect densities, and capture cross sections) of the silicon surface states. Furthermore, the influence of copper contamination on silicon surface states was examined, and it was found that copper contamination can change the localized energy levels of "clean" silicon surface states to the band-like energy levels, meanwhile the defect densities and capture cross sections were both enlarged.

  2. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    Science.gov (United States)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2017-12-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT ) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  3. Long-term stability of superhydrophilic oxygen plasma-modified single-walled carbon nanotube network surfaces and the influence on ammonia gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sungjoon [Department of Biomicrosystem Technology, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Joonhyub [Department of Control and Instrumentation Engineering, Korea University, 2511 Sejong-ro, Sejong City 339-770 (Korea, Republic of); Park, Chanwon [Department of Electrical and Electronic Engineering, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Jin, Joon-Hyung, E-mail: jj1023@chol.com [Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227 (Korea, Republic of); Min, Nam Ki, E-mail: nkmin@korea.ac.kr [Department of Biomicrosystem Technology, Korea University, Seoul 136-713 (Korea, Republic of)

    2017-07-15

    Graphical abstract: Superhydrophilic single-walled carbon nanotube obtained by O{sub 2} plasma treatment voluntarily and non-reversibly reverts to a metastable state. This aerobic aging is an essential process to develop a stable carbon nanotube-based sensor. - Highlights: • Superhydrophilic single-walled carbon nanotube network can be obtained by O{sub 2} plasma-based surface modification. • The modified carbon nanotube surface invariably reverts to a metastable state in a non-reversible manner. • Aerobic aging is essential to stabilize the modified carbon nanotube and the carbon nanotube-based sensing device due to minimized sensor-to-sensor variation. - Abstract: Single-walled carbon nanotube (SWCNT) networks are subjected to a low-powered oxygen plasma for the surface modification. Changes in the surface chemical composition and the stability of the plasma-treated SWCNT (p-SWCNT) with aging in air for up to five weeks are studied using X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The contact angle decreases from 120° of the untreated hydrophobic SWCNT to 0° for the superhydrophilic p-SWCNT. Similarly, the ratio of oxygen to carbon (O:C) based on the XPS spectra increases from 0.25 to 1.19, indicating an increase in surface energy of the p-SWCNT. The enhanced surface energy is gradually dissipated and the p-SWCNT network loses the superhydrophilic surface property. However, it never revert to the original hydrophobic surface state but to a metastable hydrophilic state. The aging effect on sensitivity of the p-SWCNT network-based ammonia sensor is investigated to show the importance of the aging process for the stabilization of the p-SWCNT. The best sensitivity for monitoring NH{sub 3} gas is observed with the as-prepared p-SWCNT, and the sensitivity decreases as similar as the p-SWCNT loses its hydrophilicity with time goes by. After a large performance degradation during the aging time for about two weeks, the response

  4. Surface characterization and wear behaviour of laser surface melted AISI 316L stainless steel

    CSIR Research Space (South Africa)

    Kumar, A

    2010-01-01

    Full Text Available in N2 shroud. Lattice strain and residual stress are also reduced by laser surface melting. The average microhardness of the melt zone increases from 240 VHN (for as-received AISI 316L stainless steel) to 375 VHN and 475 VHN for laser surface melted...

  5. Characterization Investigation Study: Volume 3, Radiological survey of surface soils

    Energy Technology Data Exchange (ETDEWEB)

    Solow, A.J.; Phoenix, D.R.

    1987-12-01

    The Feed Materials Production Center was constructed to produce high purity uranium metal for use at various Department of Energy facilities. The waste products from these operations include general uncontaminated scrap and refuse, contaminated and uncontaminated metal scrap, waste oils, low-level radioactive waste, co-contaminated wastes, mixed waste, toxic waste, sludges from water treatment, and fly ash from the steam plant. This material is estimated to total more than 350,000 cubic meters. Other wastes stored in this area include laboratory chemicals and other combustible materials in the burn pit; fine waste stream sediments in the clear well; fly ash and waste oils in the two fly ash areas; lime-alum sludges and boiler plant blowdown in the lime sludge ponds; and nonradioactive sanitary waste, construction rubble, and asbestos in the sanitary landfill. A systematic survey of the surface soils throughout the Waste Storage Area, associated on-site drainages, and the fly ash piles was conducted using a Field Instrument for Detecting Low-Energy Radiation (FIDLER). Uranium is the most prevalent radioactive element in surface soil; U-238 is the principal radionuclide, ranging from 2.2 to 1790 pCi/g in the general Waste Storage Area. The maximum values for the next highest activity concentrations in the same area were 972 pCi/g for Th-230 and 298 pCi/g for U-234. Elevated activity concentrations of Th-230 were found along the K-65 slurry line, the maximum at 3010 pCi/g. U-238 had the highest value of 761 pCi/g in the drainage just south of pit no. 5. The upper fly ash area had the highest radionuclide activity concentrations in the surface soils with the maximum values for U-238 at 8600 pCi/g, U-235 at 2190 pCi/g, U-234 at 11,400 pCi/g, Tc-99 at 594 pCi/g, Ra-226 at 279 pCi/g, and Th-230 at 164 pCi/g.

  6. Captive bubble and sessile drop surface characterization of a submerged aquatic plant, Hydrilla verticillata

    Science.gov (United States)

    The surface energy parameters of the invasive aquatic weed, Hydrilla verticillata, were determined using contact angle measurements using two different methods. The abaxial and adaxial surfaces of the leaves and stem were characterized for the weed while submerged in water using captive air and octa...

  7. Functional properties of bio-inspired surfaces: characterization and technological applications

    National Research Council Canada - National Science Library

    Favret, Eduardo A; Fuentes, Néstor O

    2009-01-01

    ... to functional technological materials. It analyses how such surfaces can be described and characterized using microscopic techniques and thus reproduced, encompassing the important areas of current surface replication techniques and the associated acquisition of good master structures. It is well known that biological systems have the ability to sense, ...

  8. Characterization and flip angle calibration of 13C surface coils for hyperpolarization studies

    DEFF Research Database (Denmark)

    Hansen, Rie Beck; Gutte, Henrik; Larsen, Majbrit M E

    The aim of the present work is to address the challenge of optimal The aim of the present work is to address the challenge of optimal flflip angle calibration of ip angle calibration of C surface coils in C surface coils in hyperpolarization studies. To this end, we characterize the spatial pro h...

  9. Functional properties of bio-inspired surfaces: characterization and technological applications

    National Research Council Canada - National Science Library

    Favret, Eduardo A; Fuentes, Néstor O

    2009-01-01

    ... technological materials. It analyses how such surfaces can be described and characterized using microscopic techniques and thus reproduced, encompassing the important areas of current surface replication techniques and the associated acquisition of good master structures. It is well known that biological systems have the ability to sense, ...

  10. Nanodiamond preparation and surface characterization for biological applications

    Science.gov (United States)

    Woodhams, Ben J.; Knowles, Helena S.; Kara, Dhiren M.; Atatüre, Mete; Bohndiek, Sarah E.

    2017-02-01

    Nanodiamonds contain stable fluorescent emitters and hence can be used for molecular fluorescence imaging and precision sensing of electromagnetic fields. The physical properties of these emitters together with their low reported cytotoxicity make them attractive for biological imaging applications. The controlled application of nanodiamonds for cellular imaging requires detailed understanding of surface chemistry, size ranges and aggregation, as these can all influence cellular interactions. We compared these characteristics for graphitic and oxidized nanodiamonds. Oxidation is generally used for surface functionalization, and was optimized by Thermogravimetric Analysis, achieved by 445+/-5°C heating in air for 5 hours, then confirmed via Raman and Infrared spectroscopies. Size ranges and aggregation were assessed using Atomic Force Microscopy and Dynamic Light Scattering. Biocompatibility in breast cancer cell lines was measured using a proliferation assay. Heating at 445+/-5°C reduced the Raman signal of graphitic carbon (1575 cm-1) as compared to that of diamond (1332 cm-1) from 0.31+/-0.07 Raman intensity units to 0.07+/-0.04. This temperature was substantially below the onset of major mass loss (observed at 535+/-1°C) and therefore achieved cost efficiency, convenience and high yield. Graphitic and oxidized nanodiamonds formed aggregates in water, with a mean particle size of 192+/-4nm and 166+/-2nm at a concentration of 66μg/mL. We then applied the graphitic and oxidized nanodiamonds to cells in culture at 1μg/mL and found no significant change in the proliferation rate (-5+/-2% and -1+/-3% respectively). Nanodiamonds may therefore be suitable for development as a novel transformative tool in the life sciences.

  11. Monitoring the accumulated water soluble airborne compounds deposited on surfaces of showcases and walls in museums, archives and historical buildings

    DEFF Research Database (Denmark)

    Skytte, Lilian; Rasmussen, Kaare Lund; Svensmark, Bo

    2017-01-01

    of the surfaces have been analysed by XRF to clarify these more complex situations. Conclusions: Clear results appear from smooth or well defined surfaces, whereas more complex situations arise when the underlying surface itself contributes to the flush water. The method is working very well and is easy and cheap...

  12. Application of scanning force and near field microscopies to the characterization of minimally adhesive polymer surfaces.

    Science.gov (United States)

    Akhremitchev, Boris B; Bemis, Jason E; al-Maawali, Sabah; Sun, Yujie; Stebounova, Larissa; Walker, Gilbert C

    2003-04-01

    This mini-review reports efforts to develop new scanning probe microscopies to characterize the function and aging of textured, minimally adhesive polymer surfaces used for antifouling applications in the marine environment. Novel atomic force and infrared near field microscopy techniques have been used to characterize the polymer surface adhesion and structural properties. These techniques may find promise for characterizing the deposition of the extracellular matrix of organisms as well as aging of the polymer coating itself. The reported work is part of a larger effort to reduce biofouling on ships' hulls through the development and use of improved coating materials.

  13. Green walls in Vancouver

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R. [Sharp and Diamond Landscape Architecture Inc., Vancouver, BC (Canada)

    2007-07-01

    With the renewed interest in design for microclimate control and energy conservation, many cities are implementing clean air initiatives and sustainable planning policies to mitigate the effects of urban climate and the urban heat island effect. Green roofs, sky courts and green walls must be thoughtfully designed to withstand severe conditions such as moisture stress, extremes in temperature, tropical storms and strong desiccating winds. This paper focused on the installation of green wall systems. There are 2 general types of green walls systems, namely facade greening and living walls. Green facades are trellis systems where climbing plants can grow vertically without attaching to the surface of the building. Living walls are part of a building envelope system where plants are actually planted and grown in a wall system. A modular G-SKY Green Wall Panel was installed at the Aquaquest Learning Centre at the Vancouver Aquarium in Stanley Park in September 2006. This green wall panel, which was originally developed in Japan, incorporates many innovative features in the building envelope. It provides an exterior wall covered with 8 species of plants native to the Coastal Temperate Rain Forest. The living wall is irrigated by rainwater collected from the roof, stored in an underground cistern and fed through a drip irrigation system. From a habitat perspective, the building imitates an escarpment. Installation, support systems, irrigation, replacement of modules and maintenance are included in the complete wall system. Living walls reduce the surface temperature of buildings by as much as 10 degrees C when covered with vegetation and a growing medium. The project team is anticipating LEED gold certification under the United States-Canada Green Building Council. It was concluded that this technology of vegetated building envelopes is applicable for acoustical control at airports, biofiltration of indoor air, greywater treatment, and urban agriculture and vertical

  14. A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Liu

    Full Text Available Rapid and accurate diagnosis for pathogens and their antibiotic susceptibility is critical for controlling bacterial infections. Conventional methods for determining bacterium's sensitivity to antibiotic depend mostly on measuring the change of microbial proliferation in response to the drug. Such "biological assay" inevitably takes time, ranging from days for fast-growing bacteria to weeks for slow-growers. Here, a novel tool has been developed to detect the "chemical features" of bacterial cell wall that enables rapid identification of drug resistant bacteria within hours. The surface-enhanced Raman scattering (SERS technique based on our newly developed SERS-active substrate was applied to assess the fine structures of the bacterial cell wall. The SERS profiles recorded by such a platform are sensitive and stable, that could readily reflect different bacterial cell walls found in Gram-positive, Gram-negative, or mycobacteria groups. Moreover, characteristic changes in SERS profile were noticed in the drug-sensitive bacteria at the early period (i.e., approximately 1 hr of antibiotic exposure, which could be used to differentiate them from the drug-resistant ones. The SERS-based diagnosis could be applied to a single bacterium. The high-speed SERS detection represents a novel approach for microbial diagnostics. The single-bacterium detection capability of SERS makes possible analyses directly on clinical specimen instead of pure cultured bacteria.

  15. Experimental study on the wall jet over a riblet surface. ; Measurement of mean and fluctuating velocities and estimation of drag reduction. Riburetto men ni sou hekimen funryu ni kansuru jikkenteki kenkyu. ; Heikin-hendo sokudoba to teiko gensho no hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, S. (Gifu Univ., Gifu (Japan). Faculty of Engineering); Hayashimoto, H. (Gifu Univ., Gifu (Japan). Graduate School); Inoue, Y. (Suzuka National College of Technology, Mie (Japan)); Iwakami, Y.

    1994-04-25

    A wall-jet has a wide range of application such as to control of the boundary layer of a wing of an aeroplane, control of temperature of the vanes of a gas turbine and flow inside a fluid control device. This field of flow comprises a wall layer on the wall side having the characteristics of a boundary layer and an outer layer on the external side which is like a free jet, the two layers being separated by a boundary where the flow is at a maximum speed. This study was carried out to clarify the effect of riblets experimentally using as a base jet a wall jet which was one of basic shearing flows. In particular, studied were the degrees of change in the mean and fluctuating velocities near the wall surface and reduction of drag. The following results were obtained. A significant difference was recognized in the vicinity of the wall in the mean velocity distribution between the mean velocities on the riblet surface and on the smooth surface. The fluctuating velocity component in the x direction on the riblet surface decreased by about a maximum of 20% when compared with that on the smooth surface. In contrast, the fluctuating velocity in the y direction and Reynolds shearing stress both on the riblet and smooth surfaces were substantially in agreement with each other within the range of this experiment. 28 refs., 12 figs., 1 tab.

  16. Interface characterization of TTF-TCNQ on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Torrente, Isabel; Franke, Katharina J.; Henningsen, Nils; Pascual, Jose [Institut fuer Experimentalphysik, Freie Universitaet Berlin (Germany); Monturet, Sergio; Lorente, Nicolas [Universite Paul Sabatier, Toulouse (France); Fraxedas, Jordi [ICMAB, Campus UAB, Bellatera (Spain)

    2007-07-01

    Molecular charge transfer (CT) complexes are defined as the association of donor and acceptor molecules. The self-assembling properties of molecules open the possibility of building different donor-acceptor stacking structures which rule the electronic functionality of the compound. Tetrathiafulvalene 7,7,8,8-tetracyanoquinodimethane (TTF-TCNQ) is an example of a CT complex which shows a metal conducting behaviour. The stacking of TTF and TCNQ forms in bulk one-dimensional partially occupied energy bands that gives rise to the metallicity. By means of Low Temperature Scanning Tunneling Microscopy/Spectroscopy we have characterised for the first time the mixed growth of TTF and TCNQ on a metallic surface in submonolayer and monolayer regimes. The self-assembled growth is governed by donor-acceptor recognition. In particular a one dimensional phase with alternating lines of TTF and TCNQ is formed and can be considered as the precursor stage for the bulk structure. By Scanning Tunneling Spectroscopy we associate electronic resonances with the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) of TTF and TCNQ and the self-assembled TTF-TCNQ.

  17. Elemental Characterization of Single-Wall Carbon Nanotube Certified Reference Material by Neutron and Prompt gamma Activation Analysis

    Czech Academy of Sciences Publication Activity Database

    Kučera, Jan; Bennett, J. W.; Oflaz, R.; Paul, R. L.; De Nadai Fernandes, E. A.; Kubešová, Marie; Bacchi, M. A.; Stopic, A. J.; Sturgeon, R. E.; Grinberg, P.

    2015-01-01

    Roč. 87, č. 7 (2015), s. 3699-3705 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : Neutron Activation Analyses * nanotechnology * Carbon nanotubes * Chemical activation * Single-walled carbon nanotubes (SWCN) Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.886, year: 2015

  18. Surface ozone characterization at Larsemann Hills and Maitri, Antarctica.

    Science.gov (United States)

    Ali, Kaushar; Trivedi, D K; Sahu, S K

    2017-04-15

    Data are analyzed in terms of daily average ozone, its diurnal variation and its relation with meteorological parameters like dry bulb temperature (T), wet bulb temperature (T w ), atmospheric pressure and wind speed based on measurement of these parameters at two Indian Antarctic stations (Larsemann Hills, and Maitri) during 28th Indian Scientific Expedition of Antarctica (ISEA) organized during Antarctic summer of the year 2008-09. The work has been carried out to investigate summer time ozone level and its day-to-day and diurnal variability at these coastal locations and to highlight possible mechanism of ozone production and destruction. The result of the analysis indicates that daily average ozone concentration at Larsemann Hills varied from ~13 and ~20ppb with overall average value of ~16ppb and at Maitri, it varied from ~16 and ~21ppb with overall average value of ~18ppb. Photochemistry is found to partially contribute occasionally to the surface layer ozone at both the stations. Lower concentration of ozone at Maitri during beginning of the observational days may be due to destruction of ozone through activated halogens, whereas higher ozone on latter days may be due to photochemistry and advective transport from east to south-east areas. Ozone concentration during blizzard episodes at both the stations is reduced due to slow photochemical production of ozone, its photochemical removal and removal through deposition of ozone molecules on precipitation particles. Diurnal variation of ozone at Larsemann Hills and Maitri has been found to be absent. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Characterization of non-calcareous 'thin' red clay from south-eastern Brazil: applicability in wall tile manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, S.J.G.; Holanda, J.N.F., E-mail: sidnei_rjsousa@yahoo.com.br, E-mail: holanda@uenf.br [Grupo de Materiais Ceramicos - LAMAV-CCT, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ (Brazil)

    2012-04-15

    In this work the use of 'thin' red clay from south-eastern Brazil (Campos dos Goytacazes, RJ) as raw material for the manufacture of wall tile was investigated. A wide range of characterization techniques was employed, including X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), grain-size analysis, and thermogravimetric analysis. The wall tile body was prepared by the dry process. The tile pieces were uniaxially pressed and fired between 1080 - 1180 deg C using a fast-firing cycle. The following technological properties were determined: linear shrinkage, water absorption, apparent density, and flexural strength. The development of the microstructure was followed by SEM and XRD analyses. It was found that the 'thin' red clay is kaolinitic type containing a substantial amount of quartz. The results also showed that the 'thin' red clay could be used in the manufacture of wall tiles, as they present properties compatible with those specified for class BIII of ISO 13006 standard. (author)

  20. Numerical study of mixed convection and conduction in a 2-D square ventilated cavity with an inlet at the vertical glazing wall and outlet at the top surface

    Science.gov (United States)

    Arce, J.; Xamán, J.; Álvarez, G.

    2011-02-01

    A steady state numerical study of combined laminar mixed convection and conduction heat transfer in a ventilated square cavity is presented. The air inlet gap is located at the bottom of a vertical glazing wall and air exits the cavity via a gap located at the top surface. Three locations for the opening at the top surface: left (case a), center (case b) and right side (case c) are considered. All the remaining surfaces are considered adiabatic. The mass, momentum and energy conservation equations were solved using the finite volume method for different Rayleigh numbers in the interval of 104 < Ra < 106 and Reynolds number in the interval of 100 < Re < 700. Temperature, flow field, and heat transfer rates are analyzed. The effect of the interaction between ambient conditions outside the glazing and the air inlet gap at the bottom for different air outlet gap positions at the top surface modifies the flow structure and temperature distribution of the air inside the cavity. The Nusselt number as a function of the Reynolds number was determined for the three cases. It was found that configuration for case (a) removes a higher amount of heat entering the cavity compared to cases (b) and (c). This is due to the short distance between the main stream and the glass wall surface. Thus, the forced airflow entering the cavity is assisted by the buoyancy forces, and most of the cavity remains at the inlet flow temperature, which should be appropriate for warm climates. These results may provide useful information about the heat transfer and fluid flow for future studies.

  1. Long-term stability of superhydrophilic oxygen plasma-modified single-walled carbon nanotube network surfaces and the influence on ammonia gas detection

    Science.gov (United States)

    Min, Sungjoon; Kim, Joonhyub; Park, Chanwon; Jin, Joon-Hyung; Min, Nam Ki

    2017-07-01

    Single-walled carbon nanotube (SWCNT) networks are subjected to a low-powered oxygen plasma for the surface modification. Changes in the surface chemical composition and the stability of the plasma-treated SWCNT (p-SWCNT) with aging in air for up to five weeks are studied using X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The contact angle decreases from 120° of the untreated hydrophobic SWCNT to 0° for the superhydrophilic p-SWCNT. Similarly, the ratio of oxygen to carbon (O:C) based on the XPS spectra increases from 0.25 to 1.19, indicating an increase in surface energy of the p-SWCNT. The enhanced surface energy is gradually dissipated and the p-SWCNT network loses the superhydrophilic surface property. However, it never revert to the original hydrophobic surface state but to a metastable hydrophilic state. The aging effect on sensitivity of the p-SWCNT network-based ammonia sensor is investigated to show the importance of the aging process for the stabilization of the p-SWCNT. The best sensitivity for monitoring NH3 gas is observed with the as-prepared p-SWCNT, and the sensitivity decreases as similar as the p-SWCNT loses its hydrophilicity with time goes by. After a large performance degradation during the aging time for about two weeks, the response characteristics including sensitivity and response time of the p-SWCNT to ammonia gas are stabilized and eventually saturated.

  2. Electrode structure analysis and surface characterization for lithium-ion cells simulated low-Earth-orbit satellite operation. II: Electrode surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianming; Yamada, Chisa; Naito, Hitoshi; Segami, Go; Kibe, Koichi [Institute of Space Technology and Aeronautics, Japan Aerospace Exploration Agency, Tsukuba Space Center, Sengen 2-1-1, Ibaraki 305-8505 (Japan); Hironaka, Toshiya; Hayashi, Eiji; Sakiyama, Yoko; Takahashi, Yoshikazu [Toray Research Center, Inc., Sonoyama 3-3-7, Otsu, Shiga 520-8567 (Japan)

    2007-06-01

    As a sequence work to investigate the performance-degradation mechanism of an aged commercial laminated lithium-ion cell experiencing 4350-cycle charge-discharge in a simulated low-Earth-orbit (LEO) satellite operation, we performed the surface characterization of LiCoO{sub 2} cathode and graphite anode by Fourier transform infrared-Attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analysis in this work. Overall, the graphite anode had a larger change in surface chemistry than that of the LiCoO{sub 2} cathode. Except the common surface components, we detected Co metal at the aged graphite surface in the first time. This Co metal deposition was believed to originate from Co{sup 2+} dissolution from LiCoO{sub 2} cathode during prolonged cycling, and detrimental to structure stability of LiCoO{sub 2} cathode which was a main cause of cell capacity loss. The amount of surface-film component was also estimated by FTIR analysis. Though the total amount of surface film increased, the organic (inorganic) surface film decreased (increased) with prolonged cycling. (author)

  3. Surface and Subsurface Geodesy Combined with Active Borehole Experimentation for the Advanced Characterization of EGS Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Elsworth, Derek [Pennsylvania State Univ., University Park, PA (United States); Im, Kyungjae [Pennsylvania State Univ., University Park, PA (United States); Guglielmi, Yves [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mattioli, Glen [Univ. of Texas, Arlington, TX (United States). UNAVCO

    2016-11-14

    We explore the utility of combining active downhole experimentation with borehole and surface geodesy to determine both the characteristics and evolving state of EGS reservoirs during stimulation through production. The study is divided into two parts. We demonstrate the feasibility of determining in situ reservoir characteristics of reservoir size, strain and fracture permeability and their dependence on feedbacks of stress and temperature using surface and borehole geodetic measurements (Part I). We then define the opportunity to apply the unique hydraulic pulse protocol (HPP) borehole tool to evaluate reservoir state. This can be accomplished by monitoring and co-inverting measured reservoir characteristics (from the HPP tool) with surface geodetic measurements of deformation, tilt and strain with continuous measurements of borehole-wall strain (via optical fiber and fiber Bragg gratings) and measured flow rates (Part II).

  4. Identification and characterization of the surface-layer protein of Clostridium tetani.

    Science.gov (United States)

    Qazi, Omar; Brailsford, Alan; Wright, Anne; Faraar, Jeremy; Campbell, Jim; Fairweather, Neil

    2007-09-01

    Many bacterial species produce a paracrystalline layer, the surface layer, which completely surrounds the exterior of the cell. In some bacteria, the surface layer is implicated in pathogenesis. Two proteins present in cell wall extracts from Clostridium tetani have been investigated and identified one of these has been unambiguously as the surface-layer protein (SLP). The gene, slpA, has been located in the genome of C. tetani E88 that encodes the SLP. The molecular mass of the protein as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is considerably larger than that predicted from the gene; however the protein does not appear to be glycosylated. Furthermore, analysis of five C. tetani strains, including three recent clinical isolates, shows considerable variation in the sizes of the SLP.

  5. Validation of in-line surface characterization by light scattering in Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2014-01-01

    The suitability of a commercial scattered light sensor for in-line characterization of fine surfaces in the roughness range Sa 1 – 30 nm generated by the Robot Assisted Polishing (RAP) was investigated and validated. A number of surfaces were generated and directly measured with the scattered light...... sensor on the machine in a shop floor environment. Scattered light roughness measurements of the whole surfaces were performed to investigate the measurement method suitability for 100% quality control. For comparison, the surfaces were measured with reference optical instruments in laboratory conditions....... Comparison of the scattered light measurements results taken on the machine with the reference optical roughness measurements taken in laboratory demonstrate the capability of the scattered light sensor for robust in-line surface characterization. This allows for the RAP process control by proper process...

  6. Surface treatment of glass fiber and carbon fiber posts: SEM characterization.

    Science.gov (United States)

    Naves, Lucas Zago; Santana, Fernanda Ribeiro; Castro, Carolina Guimarães; Valdivia, Andréa Dolores Correia Miranda; Da Mota, Adérito Soares; Estrela, Carlos; Correr-Sobrinho, Lourenço; Soares, Carlos José

    2011-12-01

    Morphology, etching patterns, surface modification, and characterization of 2 different fiber posts: Gfp, Glass fiber post; and Cfp, carbon fiber were investigated by SEM analysis, after different surface treatments. Thirty fiber posts, being 15 Gfp and 15 Cfp were divided into a 5 surface treatments (n = 3): C-alcohol 70% (control); HF 4%-immersion in 4% hydrofluoric acid for 1min; H(3) PO(4) 37%-immersion in 37% phosphoric acid for 30s; H(2) O(2) 10%-immersion in 10% hydrogen peroxide for 20 min; H(2) O(2) 24%-immersion in 24% hydrogen peroxide for 10 min. Morphology, etching patterns, surface modification and surface characterization were acessed by SEM analysis. SEM evaluation revealed that the post surface morphology was modified following all treatment when compared with a control group, for both type of reinforced posts. HF seems to penetrate around the fibers of Gfp and promoted surface alterations. The Cfp surface seems to be inert to treatment with HF 4%. Dissolution of epoxy resin and exposure of the superficial fiber was observed in both post groups, regardless the type of reinforcing fiber, H(2) O(2) in both concentrations. Relative smooth surface area was produced by H(3) PO(4) 37% treatment, but with similar features to untreated group. Surface treatment of fiber post is a determinant factor on micromechanical entanglement to resin composite core. Post treatment with hydrogen peroxide resulted strength of carbon and glass/epoxy resin fiber posts to resin composite core. Copyright © 2011 Wiley Periodicals, Inc.

  7. Surfactant-mediated PMMA-templating fabrication and characterization of three-dimensionally ordered macroporous Eu{sub 2}O{sub 3} and Sm{sub 2}O{sub 3} with mesoporous walls

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Han [Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Dai Hongxing, E-mail: hxdai@bjut.edu.cn [Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Liu Yuxi; Deng Jiguang; Zhang Lei; Ji Kemeng [Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China)

    2011-09-15

    Graphical abstract: Three-dimensionally ordered macroporous (3DOM) Eu{sub 2}O{sub 3} and Sm{sub 2}O{sub 3} with mesopore walls can be fabricated by the surfactant-assisted PMMA-templating method. 3DOM Eu{sub 2}O{sub 3} obtained with sucrose possesses a surface area up to 37 m{sup 2} g{sup -1}. 3DOM Eu{sub 2}O{sub 3} and Sm{sub 2}O{sub 3} show strong UV-light absorption. By tailoring the pore structure of Eu{sub 2}O{sub 3} and Sm{sub 2}O{sub 3}, the luminescent property can be modified. Highlights: {yields} 3DOM Eu{sub 2}O{sub 3} and Sm{sub 2}O{sub 3} with mesopore walls are fabricated by the PMMA-templating method. {yields} Surfactant addition and carbonization process favor the formation of the 3DOM structure. {yields} 3DOM Eu{sub 2}O{sub 3} obtained with sucrose possesses a surface area up to about 37 m{sup 2} g{sup -1}. {yields} 3DOM Eu{sub 2}O{sub 3} and Sm{sub 2}O{sub 3} show excellent UV-light absorption. {yields} The luminescent property can be modified by tailoring the pore structure of Eu{sub 2}O{sub 3} and Sm{sub 2}O{sub 3}. - Abstract: Three-dimensionally ordered macroporous (3DOM) europium oxide and samarium oxide with mesoporous walls and cubic crystal structures have been successfully fabricated with polymethyl methacrylate (PMMA) as hard template and F127, sucrose, and L-lysine as surfactant. The as-fabricated rare earth oxides were characterized by means of X-ray diffraction, thermogravimetric analysis, differential scanning calorimetric analysis, Fourier-transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, selected-area electron diffraction, nitrogen adsorption-desorption, ultraviolet-visible diffuse reflectance spectroscopy, and photoluminescence spectroscopy. It is shown that the as-fabricated Eu{sub 2}O{sub 3} and Sm{sub 2}O{sub 3} samples displayed 3DOM architectures with polycrystalline wormhole-like mesoporous walls. The nature of surfactant and solvent and calcination parameter had important

  8. Physical and chemical characterization methods of surfaces and interfaces; Methodes de caracterisation physico-chimique des surfaces et des interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Barthes-Labrousse, M.G. [Centre d`Etudes de Chimie Metallurgique, 94 - Vitry-sur-Seine (France)

    1997-12-31

    The main physical and chemical characterization techniques of surfaces and interfaces are presented. There are: Auger electron spectroscopy, photoelectron spectroscopies (XPS and UPS), secondary ions mass spectroscopy (SIMS), infrared and Raman spectroscopies, electron energy loss spectroscopy (EELS and HREELS) and atomic force microscopy (AFM). For each method is given the theoretical principle, the apparatus and the main uses of the techniques. (O.M.) 27 refs.

  9. Surface characterization and antifouling properties of nanostructured gold chips for imaging surface plasmon resonance biosensing

    NARCIS (Netherlands)

    Joshi, S.; Pellacani, P.; Beek, van T.A.; Zuilhof, H.; Nielen, M.W.F.

    2015-01-01

    Surface Plasmon Resonance (SPR) optical sensing is a label-free technique for real-time monitoring of biomolecular interactions. Recently, a portable imaging SPR (iSPR) prototype instrument, featuring a nanostructured gold chip, has been developed. In the present work, we investigated the crucial

  10. Preparation of Surface Adsorbed and Impregnated Multi-walled Carbon Nanotube/Nylon-6 Nanofiber Composites and Investigation of their Gas Sensing Ability

    Directory of Open Access Journals (Sweden)

    Velmurugan Thavasi

    2009-01-01

    Full Text Available We have prepared electrospun Nylon-6 nanofibers via electrospinning, and adsorbed multi-walled carbon nanotubes (MWCNTs onto the surface of Nylon-6 fibers using Triton® X-100 to form a MWCNTs/Nylon-6 nanofiber composite. The dispersed MWCNTs have been found to be stable in hexafluoroisopropanol for several months without precipitation. A MWCNTs/Nylon-6 nanofiber composite based chemical sensor has demonstrated its responsiveness towards a wide range of solvent vapours at room temperature and only mg quantities of MWCNTs were expended. The large surface area and porous nature of the electrospun Nylon-6/MWCNT nanofibers facilitates greater analyte permeability. The experimental analysis has indicated that the dipole moment, functional group and vapour pressure of the analytes determine the magnitude of the responsiveness.

  11. Characterization of Modified and Polymer Coated Alumina Surfaces by Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ashraf Yehia El-Naggar

    2013-01-01

    Full Text Available The prepared, modified, and coated alumina surfaces were characterized by infrared spectroscopy (FTIR to investigate the surface properties of the individual and double modified samples. FTIR helps in reporting the changes occurred in hydroxyl groups as well as the structure changes as a result of thermal treating, hydrothermal treating, silylation treating, alkali metal treating, coating, and bonding with polymer. FTIR spectroscopy represents the strength and abundance of surface acidic OH which determine the adsorption properties of polar and nonpolar sorbents. Generally, all treated samples exhibit decrease of OH groups compared with those of parent ones producing alumina surfaces of different adsorptive powers.

  12. Short communication: Unexpected findings on the physicochemical characterization of the silver nanoparticle surface

    Science.gov (United States)

    Loran, S.; Yelon, A.; Sacher, E.

    2018-01-01

    The bactericidal properties of silver nanoparticles (Ag NPs) have been variously attributed to the action of the NP surface and/or the Ag ions released therefrom. However, the published literature does not appear to contain any information on the physicochemical characterization of the NP surface. Herein, we report on the surprisingly reactive surface of the Ag NP, which has an almost total lack of free Ag on atmospheric exposure. Rather, an abundance of surface hydrocarbons, hydrides and oxides, as well as amines and oxidized N, argues for a reinterpretation of their bactericidal action.

  13. Nonlinear vibration of double-walled boron nitride and carbon nanopeapods under multi-physical fields with consideration of surface stress effects

    Science.gov (United States)

    Ghorbanpour Arani, A.; Sabzeali, M.; BabaAkbar Zarei, H.

    2017-12-01

    In this study, the nonlinear thermo-electro vibrations of double-walled boron nitride nanopeapods (DWBNNPPs) and double-walled carbon nanopeapods (DWCNPPs) under magnetic field embedded in an elastic medium is investigated. DWBNNPPs are made of piezoelectric and smart materials therefore, electric field is effective on them; meanwhile, DWCNPPs are made of carbon thus, magnetic field can be useful to control them. The Pasternak model is used to simulate the effects of elastic medium which surrounds the system. Nanotubes are modeled with assumption of the Euler-Bernoulli beam (EBB) theory and the surface effects are considered to achieve accurate response of the system. Moreover, interaction between two layers is modeled by van der Waals (vdW) forces. The equations of motion are derived using the energy method and the Hamilton principle. Then the governing equations are solved by using Galerkin's method and incremental harmonic balance method (IHBM). The influences of various parameters such as the magnetic field, different types of DWCNPPs and DWBNNPPs, elastic medium, existence of fullerene and surface effect on the vibration behavior of the system are investigated. The results demonstrate that DWBNNPPs have more influence on the frequency of the system than DWCNPPs. In addition, the presence of fullerene in nanotubes has a negative impact on the frequency behavior of revisionthe system.

  14. Measurement and characterization of three-dimensional microstructures on precision roller surfaces

    Science.gov (United States)

    Kong, L. B.; Cheung, C. F.; Lee, W. B.; To, S.; Ren, M. J.

    2016-01-01

    Precision roller with microstructures is the key tooling component in the precision embossing by roller process such as Roll-to-Roll to manufacture optical plastic plates or films with three dimensional (3D)-microstructures. Measurement and analysis of 3D-microstructures on a precision roller is essential before the embossing process is being undertaken to ensure the quality of the embossed surfaces. Different from 3D-microstructures on a planar surface, it is difficult to measure and characterize the 3D-microstructures on the cylindrical surface of a precision roller due to the geometrical complexity of such integrated surfaces such as V-groove microstructures on a cylindrical surface. This paper presents a study of method and algorithms for the measurement and characterization of 3D-microstructures on a precision roller surface. A feature-based characterization method (FBCM) is proposed to analyze the V-groove microstructures. In this method, a normal template is generated based on the design specifications, and the measured data is fitted with the feature points. Hence alignment and matching of the measured data to the normal template based on the derived feature points are undertaken. After that the V-groove is characterized by some feature parameters such as pitch, depth, angle of the V-grooves. The method also provides an approach for the analysis of burs generated during the machining of Vgroove microstructures. A precision roller with V-groove microstructures has been machined by a Four-axis ultraprecision machine and the machined surface is measured by a contact measuring instrument. The measured data are then characterized and analyzed by the proposed FBCM. The results are presented and discussed, and they indicate the dominant and regular machining errors that are involved in the machining of the V-groove microstructures on roller surfaces.

  15. γ-Fe{sub 2}O{sub 3} magnetic nanoparticle functionalized with carboxylated multi walled carbon nanotube: Synthesis, characterization, analytical and biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Kılınç, Ersin, E-mail: kilincersin@gmail.com

    2016-03-01

    In recent years, magnetic nanoparticles attained special interest in nanobiotechnology and nanomedicine due to their uniqe properties and biocompatibilities. From this perspective, hybride nanostructure composed from γ-Fe{sub 2}O{sub 3} magnetic nanoparticle and carboxylated multi walled carbon nanotube was synthesized and characterized by FT-IR, VSM, SEM, HR-TEM and ICP-OES. Microscopy images showed that magnetic nanoparticles were nearly spherical structure that arranged on the axis of carboxylated MWCNT. Particle size was found lower than 10 nm. VSM results showed that the obtained magnetic nanoparticles presented superparamagnetic properties at room temperature. The magnetic saturation value was determined as 35.2 emu/g. It was used for the adsorption and controlled release of harmane, a potent tremor-producing neurotoxin. Maximum adsorption capacity was calculated as 151.5 mg/g from Langmuir isotherm. Concentration of harmane was determined by HPLC with fluorescence detection. The antimicrobial activity of synthesized magnetic nanoparticle was investigated against gram-negative and gram-positive bacteria. However, no activity was observed. - Highlights: • A nanomaterial from gamma iron oxide and multi walled carbon nanotube was synthesized. • It was characterized and microstructure was investigated. • No antimicrobial activity was observed. • Adsorption and release of harmane on its were examined.

  16. A study of the flow boiling heat transfer in a minichannel for a heated wall with surface texture produced by vibration-assisted laser machining

    Science.gov (United States)

    Piasecka, Magdalena; Strąk, Kinga; Maciejewska, Beata; Grabas, Bogusław

    2016-09-01

    The paper presents results concerning flow boiling heat transfer in a vertical minichannel with a depth of 1.7 mm and a width of 16 mm. The element responsible for heating FC-72, which flowed laminarly in the minichannel, was a plate with an enhanced surface. Two types of surface textures were considered. Both were produced by vibration-assisted laser machining. Infrared thermography was used to record changes in the temperature on the outer smooth side of the plate. Two-phase flow patterns were observed through a glass pane. The main aim of the study was to analyze how the two types of surface textures affect the heat transfer coefficient. A two-dimensional heat transfer approach was proposed to determine the local values of the heat transfer coefficient. The inverse problem for the heated wall was solved using a semi-analytical method based on the Trefftz functions. The results are presented as relationships between the heat transfer coefficient and the distance along the minichannel length and as boiling curves. The experimental data obtained for the two types of enhanced heated surfaces was compared with the results recorded for the smooth heated surface. The highest local values of the heat transfer coefficient were reported in the saturated boiling region for the plate with the type 1 texture produced by vibration-assisted laser machining.

  17. Turbine airfoil with outer wall thickness indicators

    Science.gov (United States)

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  18. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media

    Science.gov (United States)

    Kamiya, Hidehiro; Iijima, Motoyuki

    2010-01-01

    Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM). Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids. PMID:27877345

  19. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media

    Directory of Open Access Journals (Sweden)

    Hidehiro Kamiya and Motoyuki Iijima

    2010-01-01

    Full Text Available Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM. Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids.

  20. Characterizing the geometric and electronic structure of defects in the "29" copper surface oxide

    Science.gov (United States)

    Therrien, Andrew J.; Hensley, Alyssa J. R.; Zhang, Renqin; Pronschinske, Alex; Marcinkowski, Matthew D.; McEwen, Jean-Sabin; Sykes, E. Charles H.

    2017-12-01

    The geometric and electronic structural characterization of thin film metal oxides is of fundamental importance to many fields such as catalysis, photovoltaics, and electrochemistry. Surface defects are also well known to impact a material's performance in any such applications. Here, we focus on the "29" oxide Cu2O/Cu(111) surface and we observe two common structural defects which we characterize using scanning tunneling microscopy/spectroscopy and density functional theory. The defects are proposed to be O vacancies and Cu adatoms, which both show unique topographic and spectroscopic signatures. The spatially resolved electronic and charge state effects of the defects are investigated, and implications for their reactivity are given.

  1. Using SMOS brightness temperature and derived surface-soil moisture to characterize surface conditions and validate land surface models.

    Science.gov (United States)

    Polcher, Jan; Barella-Ortiz, Anaïs; Piles, Maria; Gelati, Emiliano; de Rosnay, Patricia

    2017-04-01

    The SMOS satellite, operated by ESA, observes the surface in the L-band. On continental surface these observations are sensitive to moisture and in particular surface-soil moisture (SSM). In this presentation we will explore how the observations of this satellite can be exploited over the Iberian Peninsula by comparing its results with two land surface models : ORCHIDEE and HTESSEL. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies. When comparing the surface-soil moisture of the models with the product derived operationally by ESA from SMOS observations similar results are found. The spatial correlation over the IP between SMOS and ORCHIDEE SSM estimates is poor (ρ 0.3). A single value decomposition (SVD) analysis of rainfall and SSM shows that the co-varying patterns of these variables are in reasonable agreement between both products. Moreover the first three SVD soil moisture patterns explain over 80% of the SSM variance simulated by the model while the explained fraction is only 52% of the remotely sensed values. These results suggest that the rainfall-driven soil moisture variability may not account for the poor spatial correlation between SMOS and ORCHIDEE products. Other reasons have to

  2. Transport of oxidized multi-walled carbon nanotubes through silica based porous media: influences of aquatic chemistry, surface chemistry, and natural organic matter.

    Science.gov (United States)

    Yang, Jin; Bitter, Julie L; Smith, Billy A; Fairbrother, D Howard; Ball, William P

    2013-12-17

    This paper provides results from studies of the transport of oxidized multi-walled carbon nanotubes (O-MWCNTs) of varying surface oxygen concentrations under a range of aquatic conditions and through uniform silica glass bead media. In the presence of Na(+), the required ionic strength (IS) for maximum particle attachment efficiency (i.e., the critical deposition concentration, or CDC) increased as the surface oxygen concentration of the O-MWCNTs or pH increased, following qualitative tenets of theories based on electrostatic interactions. In the presence of Ca(2+), CDC values were lower than those with Na(+) present, but were no longer sensitive to surface oxygen content, suggesting that Ca(2+) impacts the interactions between O-MWCNTs and glass beads by mechanisms other than electrostatic alone. The presence of Suwannee River natural organic matter (SRNOM) decreased the attachment efficiency of O-MWCNTs in the presence of either Na(+) or Ca(2+), but with more pronounced effects when Na(+) was present. Nevertheless, low concentrations of SRNOM (organic carbon) were sufficient to mobilize all O-MWCNTs studied at CaCl2 concentrations as high as 10 mM. Overall, this study reveals that NOM content, pH, and cation type show more importance than surface chemistry in affecting O-MWCNTs deposition during transport through silica-based porous media.

  3. Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments.

    Science.gov (United States)

    Chundawat, Shishir P S; Vismeh, Ramin; Sharma, Lekh N; Humpula, James F; da Costa Sousa, Leonardo; Chambliss, C Kevin; Jones, A Daniel; Balan, Venkatesh; Dale, Bruce E

    2010-11-01

    Decomposition products formed/released during ammonia fiber expansion (AFEX) and dilute acid (DA) pretreatment of corn stover (CS) were quantified using robust mass spectrometry based analytical platforms. Ammonolytic cleavage of cell wall ester linkages during AFEX resulted in the formation of acetamide (25mg/g AFEX CS) and various phenolic amides (15mg/g AFEX CS) that are effective nutrients for downstream fermentation. After ammonolysis, Maillard reactions with carbonyl-containing intermediates represent the second largest sink for ammonia during AFEX. On the other hand, several carboxylic acids were formed (e.g. 35mg acetic acid/g DA CS) during DA pretreatment. Formation of furans was 36-fold lower for AFEX compared to DA treatment; while carboxylic acids (e.g. lactic and succinic acids) yield was 100-1000-fold lower during AFEX compared to previous reports using sodium hydroxide as pretreatment reagent. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Cellulose aerogels decorated with multi-walled carbon nanotubes: preparation, characterization, and application for electromagnetic interference shielding

    Directory of Open Access Journals (Sweden)

    Jian LI,Caichao WAN

    2015-12-01

    Full Text Available Electromagnetic wave pollution has attracted extensive attention because of its ability to affect the operation of electronic machinery and endanger human health. In this work, the environmentally-friendly hybrid aerogels consisting of cellulose and multi-walled carbon nanotubes (MWCNTs were fabricated. The aerogels have a low bulk density of 58.17 mg·cm-3. The incorporation of MWCNTs leads to an improvement in the thermal stability. In addition, the aerogels show a high electromagnetic interference (EMI SEtotal value of 19.4 dB. Meanwhile, the absorption-dominant shielding mechanism helps a lot to reduce secondary radiation, which is beneficial to develop novel eco-friendly EMI shielding materials.

  5. The use of combined synchrotron radiation micro FT-IR and XRD for the characterization of Romanesque wall paintings

    Energy Technology Data Exchange (ETDEWEB)

    Salvado, N.; Buti, S. [Universitat Politecnica de Catalunya, Dpt. d' Enginyeria Quimica, EPSEVG, Vilanova i la Geltru, Barcelona (Spain); Pantos, E.; Bahrami, F. [CCLRC, Daresbury Laboratory, Warrington (United Kingdom); Labrador, A. [LLS, BM16-ESRF, BP 220, Grenoble Cedex (France); Pradell, T. [Universitat Politecnica de Catalunya, Dpt. Fisica i Enginyeria Nuclear, ESAB, Castelldefels, Barcelona (Spain)

    2008-01-15

    The high analytical sensitivity and high spatial resolution of synchrotron radiation-based techniques, in particular SR-XRD and SR-FT-IR, allows the identification of complex micrometric mixtures of compounds that constitute the different layers of ancient paintings. The reliability of the measurements even with an extremely small amount of sampled material is very high, and this is particularly important when analyzing art works. Furthermore, the micro size (10 x 10{mu}m for FT-IR and 30 to 50 {mu}m squared spot size for XRD) of the beam enables one to obtain detailed compositional profiles from the different chromatic and preparation layers. The sensitivity of the techniques is high enough for the determination of minor and trace compounds, such as reaction and weathering compounds. We report here the identification of pigments in the Romanesque wall paintings found in situ in the church of Saint Eulalia of Unha place in the Aran valley (central Pyrenees). During the first centuries of the second millennium numerous religious buildings were built in Western Europe in the Romanesque style. In particular, a great number of churches were built in the Pyrenees, most of which were decorated with wall paintings. Although only a few of these paintings have survived, they represent one of the most important collections of Romanesque art, both for their quantity and quality. A full identification of the pigments, binder, supports, and reaction and weathering compounds has been obtained. The results obtained, in particular aerinite as a pigment, indicate a clear connection between the paintings found in this Occitanian church and the Catalan Romanesque paintings from the south bound of the Pyrenees. (orig.)

  6. Effect of a fan in reducing the concentration of the radon daughters inside a room by plate-out to the surface of the wall using plastic. cap alpha. -detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F. (University of Petroleum and Minerals, Dhahran, Saudi Arabia); Fremlin, J.H. (Birmingham Univ. (UK). Dept. of Physics)

    1982-01-01

    Solid state nuclear track detectors (CR-39) have been used to study the turbulence effect in a room contaminated by a radium compound giving a radon activity of approximately 5 pci 1/sup -1/. The room is in a basement, without windows and is normally closed and unused. The number of radon daughters deposited per unit area on the two sides of the blades of the fan was more than those plated out per unit area on the wall surfaces. However, the total surface area of the fan blades was only 0.2% of the surface area of the walls. The activity on the blades was calculated as reducing the level inside the room by approximately 1%, while the main decrease in the airborne activity was due to the plate-out on the surface of the room walls.

  7. Dispersive Stiffness of Dzyaloshinskii Domain Walls

    Science.gov (United States)

    Pellegren, J. P.; Lau, D.; Sokalski, V.

    2017-07-01

    It is well documented that subjecting perpendicular magnetic films that exhibit the interfacial Dzyaloshinskii-Moriya interaction to an in-plane magnetic field results in a domain wall (DW) energy σ , which is highly anisotropic with respect to the orientation of the DW in the film plane Θ . We demonstrate that this anisotropy has a profound impact on the elastic response of the DW as characterized by the surface stiffness σ ˜ (Θ )=σ (Θ )+σ''(Θ ) and evaluate its dependence on the length scale of deformation. The influence of stiffness on DW mobility in the creep regime is assessed, with analytic and numerical calculations showing trends in σ ˜ that better represent experimental measurements of domain wall velocity in magnetic thin films compared to σ alone. Our treatment provides experimental support for theoretical models of the mobility of anisotropic elastic manifolds and makes progress toward a more complete understanding of magnetic domain wall creep.

  8. Synthesis of plant cell wall oligosaccharides

    DEFF Research Database (Denmark)

    Clausen, Mads Hartvig

    Plant cell walls are structurally complex and contain a large number of diverse carbohydrate polymers. These plant fibers are a highly valuable bio-resource and the focus of food, energy and health research. We are interested in studying the interplay of plant cell wall carbohydrates with proteins...... for characterizing protein-carbohydrate binding. The presentation will highlight chemical syntheses of plant cell wall oligosaccharides from the group and provide examples from studies of their interactions with proteins....... such as enzymes, cell surface lectins, and antibodies. However, detailed molecular level investigations of such interactions are hampered by the heterogeneity and diversity of the polymers of interest. To circumvent this, we target well-defined oligosaccharides with representative structures that can be used...

  9. Virtual laparoscopy: Initial experience with three-dimensional ultrasonography to characterize hepatic surface features

    Energy Technology Data Exchange (ETDEWEB)

    Sekimoto, Tadashi, E-mail: tad_sekimoto@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Maruyama, Hitoshi, E-mail: maru-cib@umin.ac.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Kondo, Takayuki, E-mail: takakondonaika@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Shimada, Taro, E-mail: bobtaro51@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Takahashi, Masanori, E-mail: machat1215@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Yokosuka, Osamu, E-mail: yokosukao@faculty.chiba-u.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Otsuka, Masayuki, E-mail: otsuka-m@faculty.chiba-u.jp [Department of General Surgery, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Miyazaki, Masaru, E-mail: masaru@faculty.chiba-u.jp [Department of General Surgery, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Mine, Yoshitaka, E-mail: yoshitaka.mine@toshiba.co.jp [Toshiba Medical Systems Corporation, Ultrasound Systems Division, Ultrasound Systems Development Department, Otawara, Tochigi (Japan)

    2013-06-15

    Objective: To examine the potential utility of 3D-reconstructed sonograms to distinguish cirrhotic from non-cirrhotic livers by demonstrating hepatic surface characteristics. Materials and methods: A preliminary phantom study was performed to examine the potential resolution of 3D images, recognizing surface irregularities as a difference in height. In a prospective clinical study of 31 consecutive patients with ascites (21 cirrhosis, 10 non-cirrhosis), liver volume data were acquired by transabdominal mechanical scanning. The hepatic surface features of cirrhotic and non-cirrhotic patients were compared by 2 independent reviewers. Intra- and inter-operator/reviewer agreements were also examined. Results: The phantom study revealed that 0.4 mm was the minimum recognizable difference in height on the 3D sonograms. The hepatic surface image was successfully visualized in 74% patients (23/31). Success depended on the amount of ascites; visualization was 100% with ascites of 10 mm or more between the hepatic surface and abdominal wall. The images showed irregularity of the hepatic surface in all cirrhotic patients. The surface appearance was confirmed as being very similar in 3 patients who had both 3D sonogram and liver resection for transplantation. The ability to distinguish cirrhotic liver from non-cirrhotic liver improved with the use of combination of 2D- and 3D-imaging versus 2D-imaging alone (sensitivity, p = 0.02; accuracy, p = 0.02) or 3D-imaging alone (sensitivity, p = 0.03). Intra-/inter-operator and inter-reviewer agreement were excellent (κ = 1.0). Conclusion: 3D-based sonographic visualization of the hepatic surface showed high reliability and reproducibility, acting as a virtual laparoscopy method, and the technique has the potential to improve the diagnosis of cirrhosis.

  10. Design and characterization of textured surfaces for applications in the food industry

    Science.gov (United States)

    Lazzini, G.; Romoli, L.; Blunt, L.; Gemini, L.

    2017-12-01

    The aim of this work is to design, manufacture and characterize surface morphologies on AISI 316L stainless steel produced by a custom designed laser-texturing strategy. Surface textures were characterized at a micrometric dimension in terms of areal parameters compliant with ISO 25178, and correlations between these parameters and processing parameters (e.g. laser energy dose supplied to the material, repetition rate of the laser pulses and scanning velocity) were investigated. Preliminary efforts were devoted to the research of special requirements for surface morphology that, according to the commonly accepted research on the influence of surface roughness on cellular adhesion on surfaces, should discourage the formation of biofilms. The topographical characterization of the surfaces was performed with a coherence scanning interferometer. This approach showed that increasing doses of energy to the surfaces increased the global level of roughness as well as the surface complexity. Moreover, the behavior of the parameters S pk, S vk also indicates that, due to the ablation process, an increase in the energy dose causes an average increase in the height of the highest peaks and in the depth of the deepest dales. The study of the density of peaks S pd showed that none of the surfaces analyzed here seem to perfectly match the conditions dictated by the theories on cellular adhesion to confer anti-biofouling properties. However, this result seems to be mainly due to the limits of the resolving power of coherence scanning interferometry, which does not allow the resolution of sub-micrometric features which could be crucial in the prevention of cellular attachment.

  11. Conductive cable fibers with insulating surface prepared by co-axial electrospinning of multi-walled nanotubes and cellulose

    Science.gov (United States)

    Miyauchi, Minoru; Miao, Jianjun; Simmons, Trevor J.; Lee, Jong-Won; Doherty, Thomas V.; Dordick, Jonathan S.; Linhardt, Robert J.

    2010-01-01

    A core-sheath of multi-walled carbon nanotube (MWNT)-cellulose fibers of diameters from several hundreds nm to several µm were prepared by co-axial electrospinning from a non-valatile, non-flammable ionic liquid (IL) solvent, 1-methyl-3-methylimidazolium acetate ([EMIM][Ac]). MWNTs were dispersed in IL to form a gel solution. This gel core solution was electrospun surrounded by a sheath solution of cellulose disolved in the same IL. Electrospun fibers were collected in a coagulation bath containing ethanol-water to completely remove the IL and dried to form a core-sheath MWNT-cellulose fibers having a cable structure with a conductive core and insulating sheath. Enzymatic treatment of a portion of a mat of these fibers with cellulase selectively removed the cellulose sheath exposing the MWNT core for connection to an electrode. These MWNT-cellulose fiber mats demonstrated excellent conductivity due to a conductive pathway of bundleled MWNTs. Fiber mat conductivity increased with increasing ratio of MWNT in the fibers with a maximum conductivity of 10.7 S/m obtained at 45 wt% MWNT loading. PMID:20690644

  12. Surface-Anchored Poly(4-vinylpyridine)–Single-Walled Carbon Nanotube–Metal Composites for Gas Detection

    KAUST Repository

    Yoon, Bora

    2016-08-05

    A platform for chemiresistive gas detectors based upon single-walled carbon nanotube (SWCNT) dispersions stabilized by poly(4-vinylpyridine) (P4VP) covalently immobilized onto a glass substrate was developed. To fabricate these devices, a glass substrate with gold electrodes is treated with 3-bromopropyltrichlorosilane. The resulting alkyl bromide coating presents groups that can react with the P4VP to covalently bond (anchor) the polymer–SWCNT composite to the substrate. Residual pyridyl groups in P4VP not consumed in this quaternization reaction are available to coordinate metal nanoparticles or ions chosen to confer selectivity and sensitivity to target gas analytes. Generation of P4VP coordinated to silver nanoparticles produces an enhanced response to ammonia gas. The incorporation of soft Lewis acidic Pd2+ cations by binding PdCl2 to P4VP yields a selective and highly sensitive device that changes resistance upon exposure to vapors of thioethers. The latter materials have utility for odorized fuel leak detection, microbial activity, and breath diagnostics. A third demonstration makes use of permanganate incorporation to produce devices with large responses to vapors of volatile organic compounds that are susceptible to oxidation.

  13. Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques

    Science.gov (United States)

    Chan, Kwai S.

    2015-12-01

    Rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) were fabricated by layer-by-layer deposition techniques that included electron beam melting (EBM) and laser beam melting (LBM). The surface conditions of these plates were characterized using x-ray micro-computed tomography. The depth and radius of surface notch-like features on the LBM and EBM plates were measured from sectional images of individual virtual slices of the rectangular plates. The stress concentration factors of individual surface notches were computed and analyzed statistically to determine the appropriate distributions for the notch depth, notch radius, and stress concentration factor. These results were correlated with the fatigue life of the Ti-6Al-4V ELI alloys from an earlier investigation. A surface notch analysis was performed to assess the debit in the fatigue strength due to the surface notches. The assessment revealed that the fatigue lives of the additively manufactured plates with rough surface topographies and notch-like features are dominated by the fatigue crack growth of large cracks for both the LBM and EBM materials. The fatigue strength reduction due to the surface notches can be as large as 60%-75%. It is concluded that for better fatigue performance, the surface notches on EBM and LBM materials need to be removed by machining and the surface roughness be improved to a surface finish of about 1 μm.

  14. Plasma-induced grafting of polydimethylsiloxane onto polyurethane surface: Characterization and in vitro assay

    Energy Technology Data Exchange (ETDEWEB)

    Shourgashti, Z. [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Khorasani, M.T., E-mail: m.khorasani@ippi.ac.i [Biomaterials Department of Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Khosroshahi, S.M.E. [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2010-09-15

    Plasma-induced grafting of polydimethylsiloxane (PDMS) onto the surface of polyurethane (PU) film. The virgin, plasma treated, and PDMS grafted PU films were characterized by means of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, water drop contact angle measurements, and scanning electron microscopy (SEM). The ATR-FTIR spectrogram of the grafted film showed the new characteristic peaks of PDMS. These grafted surfaces exhibited higher hydrophobicity and homogenous morphology. In vitro cell culture study showed that modified surfaces as well as virgin film were compatible with fibroblast cells. The formation of graft polymers combines the biostability of silicone with excellent physical and mechanical properties of PU.

  15. ZnO Functionalization of Surface Pre-treated Multi-walled Carbon Nanotubes for Methane Sensing

    Science.gov (United States)

    Bare carbon nanotubes (CNTs) cannot be used to sense most gases due to poor bonding between the chemically inert graphitic surface and the different compounds CNTs are exposed to. Consequently, for gas sensing applications, functionalization of CNTs with reactive compounds is req...

  16. Experimental and Numerical Investigation of the Effect of Process Conditions on Residual Wall Thickness and Cooling and Surface Characteristics of Water-Assisted Injection Molded Hollow Products

    Directory of Open Access Journals (Sweden)

    Hyungpil Park

    2015-01-01

    Full Text Available Recently, water-assisted injection molding was employed in the automobile industry to manufacture three-dimensional hollow tube-type products with functionalities. However, process optimization is difficult in the case of water-assisted injection molding because of the various rheological interactions between the injected water and the polymer. In this study, the boiling phenomenon that occurs because of the high melt temperature when injecting water and the molding characteristics of the hollow section during the water-assisted injection process were analyzed by a water-assisted injection molding analysis. In addition, the changes in the residual wall thickness accompanying changes in the process conditions were compared with the analysis results by considering water-assisted injection molding based on gas-assisted injection molding. Furthermore, by comparing the cooling characteristics and inner wall surface qualities corresponding to the formation of the hollow section by gas and water injections, a water-assisted injection molding technique was proposed for manufacturing hollow products with functionality.

  17. Synthesis and Characterization of Boron Nitride and Molybdenum Nitride Multi-Walled Nanotubes Using Liquid Plasma Arc Discharge

    Science.gov (United States)

    Holliday, Roger; Falvo, Mike; Washburn, Sean; Superfine, Rich

    2001-11-01

    We will present results on synthesis of Boron Nitride and Molybdenum Nitride nanotubes using the liquid nitrogen plasma-arc discharge method previously reported for carbon nanotubes synthesis[1]. We created a 60-100A/20-40V arc across electrodes of Hafnium Boride and Molybdenum Sulfide in a liquid nitrogen atmosphere. Nanotube geometry, nano-structure and composition characterization using TEM and EDAX will be presented. Progress in electronic and mechanical characterization as well as our incorporation of these nanotubes in to novel NEMS devices will be discussed. [1] M. Ishigami, J. Cummings, A. Zettl, S. Chen. Chemical Physical Letters 319 (2000) 457-459.

  18. Characterization of peptide immobilization on an acetylene terminated surface via click chemistry

    Science.gov (United States)

    Shamsi, Fahimeh; Coster, Hans; Jolliffe, Katrina A.

    2011-10-01

    Peptide (A-A-A-A-G-G-G-E-R-G-D)1A: Alanine; D: Glutamic acid; E: Aspartic acid; G: Glycine; R: Arginine. conjugated surfaces were prepared on silicon surfaces through click chemistry. The amino acid sequence RGD is the cellular attachment site of a large number of extracellular matrices such as blood and cell surface proteins. Recent research has focused on developing RGD peptides which mimic cell adhesion proteins and integrins [1,2].The steps involved the formation of an alkyne-terminated monolayer on Si(111), followed by linking the peptide to 4-azidophenyl isothiocyanate via a specific and gentle reaction. This was followed by the attachment of the azido peptide to the surface-bound alkynes using the Cu (I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. The surface structures of the alkyne terminated monolayer and the attached peptide were characterized using high resolution impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared (ATR-FTIR) Spectroscopy. EIS characterization revealed the alkyne layer and the hydrophobic and polar regions of the attached peptide. XPS analysis showed a high surface coverage of the peptide on the silicon substrates and this was confirmed by FTIR.Our results confirmed a specific covalent attachment of the peptide on the silicon surfaces. This approach offers a versatile, experimentally simple, method for the specific attachment of peptide ligands. This approach would have applications for cell attachment and biosensors.

  19. Method for observing the features characterizing the surface of a land mass

    Science.gov (United States)

    Reed, R. D. (Inventor)

    1980-01-01

    A method is described where a propeller driven, hydrazine powered aircraft is remotely piloted through rarefied atmosphere of a selected planet, including the planet Earth. It is employed as a communication platform for a telemetry system provided for relaying information relating to features characterizing the surface of the planet.

  20. Characterization of ultra-fine surfaces produced by robot assisted polishing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Gasparin, Stefania; Sobiecki, Rene

    2011-01-01

    Polishing is the final processing steps in many high precision applications as for example bearings, moulds and dies. The paper describes a new robot assisted polishing (RAP) machine and the characterization techniques employed to measure the polished surfaces. Focus is given to the comparison...

  1. Facile synthesis and characterization of rough surface V2O5 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 6. Facile synthesis and characterization of rough surface V 2 O 5 nanomaterials for pseudo-supercapacitor electrode material with high capacitance. YIFU ZHANG YUTING HUANG. Volume 40 Issue 6 October 2017 pp 1137-1149 ...

  2. Characterization of the carbohydrate binding specificity and kinetic parameters of lectins by using surface plasmon resonance

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Haseley, S.R.; Talaga, P.; Kamerling, J.P.

    1999-01-01

    An accurate, rapid, and sensitive method for characterizing the carbohydrate binding properties of lectins using a BIAcore apparatus and the detection method of surface plasmon resonance is described. As a model study, the sialic acid binding lectins from Sambucus nigra and Maackia amurensis, which

  3. Characterization of Emissions and Residues from Simulations of the Deepwater Horizon Surface Oil Burns

    Science.gov (United States)

    The surface oil burns conducted by the U.S. Coast Guard from April to July 2010 during the Deepwater Horizon disaster in the Gulf of Mexico were simulated by small scale burns to characterize the pollutants, determine emission factors, and gather particulate matter for subsequent...

  4. Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, Colton; Dorsey, Alison; Louie, John [UNR; Schwering, Paul; Pullammanappallil, Satish

    2016-08-01

    Colton Dudley, Alison Dorsey, Paul Opdyke, Dustin Naphan, Marlon Ramos, John Louie, Paul Schwering, and Satish Pullammanappallil, 2013, Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada: presented at Amer. Assoc. Petroleum Geologists, Pacific Section Annual Meeting, Monterey, Calif., April 19-25.

  5. Characterization of metal contacts on and surfaces of cadmium zinc telluride

    CERN Document Server

    Bürger, A; Chattopadhyay, K; Shi, D; Morgan, S H; Collins, W E; James, R B

    1999-01-01

    In the past several years significant progress has been made in building a database of physical properties for detector quality Cd sub x Zn sub 1 sub - sub x Te (CZT) (x=0.1-0.2) crystal material. CZT's high efficiency combined with its room temperature operation make the material an excellent choice for imaging and spectroscopy in the 10-200 keV energy range. For detector grade material, superior crystallinity and high bulk resistivity are required. The surface preparation during the detector fabrication plays a vital role in determining the contact characteristics and the surface leakage current, which are often the dominant factors influencing its performance. This paper presents a surface and contact characterization study aimed at establishing the effects of the surface preparation steps prior to contacting (polishing and chemical etching), the choice of the metal and contact deposition technique, and the surface oxidation process. A photoconductivity mapping technique is used for studying the effects of...

  6. Technological Characterization of Wall Paintings from the A Mithraic Tomb Dated to 4th-5th Century AD, Gargaresc, Libya

    Science.gov (United States)

    Abd El Salam, S.; Maniatis, Y.

    2009-04-01

    The excavations of Gargaresc started in 1965 and were one of the most important archaeological sites in Tripoli because it includes a period of about 500 years starting from the 1stc. AD was and continuing until the 5th century AD. The Mithraic tomb is one of the most important outlying monuments of Oea, 200 yards south of the western end of Gargaresc oasis, on the left of the Tripoli-Zuara road between kilometers 5 & 6. The tomb is cut in an outcrop of soft sandstone. The wall paintings found were symbolic to the religion of that period; which contained a mixture of older religions and Christian, and presented the interaction between the artistic and religious elements of that time. Several optical, chemical and mineralogical methods were applied to identify the materials, composition and technology of the plasters and mortars, as well as, the pigments used in the tomb. These are: -OP: Optical microscopy was used as the initial examination of polished cross-sections to identify the structure and microstratigraphy of the plasters and mortars as well as the painted layers. -MCT: Micro-chemical tests were used to identify the type of the plasters and mortars- calcium aluminium silicate and water-soluble salt to identify sulphates, chlorides, carbonates, nitrites and nitrates. -SM: Standard methods for chemical analysis to identify the quantitative and qualitative nature of the plasters and mortars and their mixture. -SEM & EDS: Analytical Scanning electron microscope with energy dispersive x-ray analysis system to examine the micrmorphology and determine the chemical composition of the plasters, pigments and the inclusions. -XRD: X-ray powder diffraction to identify the mineralogical composition of the plasters, mortars and pigments. On the bases of all the data obtained, it was possible to establish the nature of the plasters, mortars and their binder. The examination and analysis gave a full picture about the materials and the approximate ratio of amount of

  7. Single-axis combined shearography and digital speckle photography instrument for full surface strain characterization

    Science.gov (United States)

    Groves, Roger M.; Fu, Shan; James, Stephen W.; Tatam, Ralph P.

    2005-02-01

    Full characterization of the surface strain requires the measurement of six displacement gradient components of the surface strain tensor. The out-of-plane displacement gradient component may be directly measured using the full-field speckle interferometry technique of shearography, but to fully characterize the surface strain using shearography, a minimum of three illumination, or viewing, directions are required. The image processing technique of digital speckle photography (DSP) is sensitive to in-plane displacement for normal collinear illumination and viewing, with the displacement gradient components obtained by differentiation. A combination of shearography and digital speckle photography is used to perform full characterization of the surface strain using a single illumination and viewing direction. The increase in complexity compared with a standard single-channel shearography system lies predominantly in the additional image processing requirements. Digital speckle photography image processing is performed using the optical flow field technique and the advantages of this technique compared with correlation are discussed. The design of the instrument is described and full surface strain measurements made with the system are presented.

  8. Self-organization in arrays of surface-grown nanoparticles: characterization, control, driving forces

    Energy Technology Data Exchange (ETDEWEB)

    Levchenko, I; Kumar, S; Yajadda, M M A; Han, Z J; Furman, S; Ostrikov, K, E-mail: Igor.Levchenko@csiro.au [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, PO Box 218, Lindfield, New South Wales 2070 (Australia)

    2011-05-04

    Some important issues related to the self-organization in the arrays of nanoparticles on solid surfaces exposed to the low-temperature plasma are analysed and discussed. The available tools for the characterization of the size and position uniformity in nanoarrays are examined. The technique capable of revealing the realistic adsorbed atom and adsorbed radical capture zone pattern based on the surface physics is indicated as the most promising characterization tool. The processes responsible for the self-organization are analysed, the main driving forces of the self-organization are discussed, and possible ways to control the self-organization by controlling the plasma parameters are introduced. A view on the possible ways to further improve the methods of nanoarray characterization and self-organization is presented as well.

  9. Characterizing Pavement Surface Distress Conditions with Hyper-Spatial Resolution Natural Color Aerial Photography

    Directory of Open Access Journals (Sweden)

    Su Zhang

    2016-05-01

    Full Text Available Roadway pavement surface distress information is critical for effective pavement asset management, and subsequently, transportation management agencies at all levels (i.e., federal, state, and local dedicate a large amount of time and money to routinely evaluate pavement surface distress conditions as the core of their asset management programs. However, currently adopted ground-based evaluation methods for pavement surface conditions have many disadvantages, like being time-consuming and expensive. Aircraft-based evaluation methods, although getting more attention, have not been used for any operational evaluation programs yet because the acquired images lack the spatial resolution to resolve finer scale pavement surface distresses. Hyper-spatial resolution natural color aerial photography (HSR-AP provides a potential method for collecting pavement surface distress information that can supplement or substitute for currently adopted evaluation methods. Using roadway pavement sections located in the State of New Mexico as an example, this research explored the utility of aerial triangulation (AT technique and HSR-AP acquired from a low-altitude and low-cost small-unmanned aircraft system (S-UAS, in this case a tethered helium weather balloon, to permit characterization of detailed pavement surface distress conditions. The Wilcoxon Signed Rank test, Mann-Whitney U test, and visual comparison were used to compare detailed pavement surface distress rates measured from HSR-AP derived products (orthophotos and digital surface models generated from AT with reference distress rates manually collected on the ground using standard protocols. The results reveal that S-UAS based hyper-spatial resolution imaging and AT techniques can provide detailed and reliable primary observations suitable for characterizing detailed pavement surface distress conditions comparable to the ground-based manual measurement, which lays the foundation for the future application

  10. Evaluation of surface analysis methods for characterization of trace metal surface contaminants found in silicon IC manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, A.C.; Maillot, P.; Gordon, M.; Baylis, J.; Chacon, J.; Witowski, R. (SEMATECH, Austin, TX (United States)); Arlinghaus, H. (Atom Sciences, Inc., Oak Ridge, TN (United States)); Knapp, J.A.; Doyle, B.L. (Sandia National Labs., Albuquerque, NM (United States))

    1991-01-01

    A major topic at recent silicon-based integrated circuit (IC) manufacturing symposia is the pursuit of decreased contamination levels. The aim is to remove contamination from both processes and materials. In conjunction with this effort, characterization methods are being pushed to lower and lower detection limits. In this paper, we evaluate surface analysis methods used to determine the concentration of inorganic contamination on unpatterned Si wafers. We compare sampling depths, detection limits, and applicability of each method for use in support of Si IC manufacturing. This comparison is further limited to Fe and Cu which are transition metal contaminants associated with manufacturing yield loss. The surface analysis methods included in this evaluation are: Total Reflection X-Ray Fluorescence (TXRF or TRXRF); Secondary Ion Mass Spectrometry (SIMS); two post-ionization'' methods Surface Analysis by Laser Ionization (SALI) and Sputter Initiated Resonant Ionization Spectroscopy (SIRIS); Heavy Ion Backscattering Spectroscopy (HIBS); and Vapor Phase Phase Decomposition (VPD) based methods Atomic Absorption (VPD-AA) along with VPD-TXRF. Sets of 6 in. Si wafers with concentration levels between 10{sup 9} atoms/cm{sup 2} and 10{sup 12} atoms/cm{sup 2} Fe and Cu were characterized by TXRF, SIMS, SIRIS, and HIBS. This data allows estimation of detection limits (DLs) and relative method accuracy. In Section 1 we describe each surface analysis method and the circumstance under which it would be used to support Si IC manufacturing. The equipment used for this comparison and the 150 mm Si wafer set are described in Section 2. Results from each method are contrasted in Section 3. Finally, a conclusion is presented in Section 4.

  11. Characterization of Satellite-Based Carbon Monoxide Surface Retrievals from MOPITT

    Science.gov (United States)

    Martinez-Alonso, S.; Deeter, M. N.; Barré, J.; Worden, H. M.

    2016-12-01

    Terra-MOPITT CO retrievals are routinely validated using airborne and satellite data. While MOPITT's performance in the mid- and upper-troposphere is well understood, surface retrievals are still not fully characterized. CO sources are mostly at the surface; thus, understanding the accuracy and limitations of MOPITT and other satellite-based surface retrievals is key if they are to be used in air quality monitoring and climate studies. A previous comparison of MOPITT surface CO retrievals to true values (ground and airborne measurements) provided mixed results: biases between retrievals and measurements varied greatly from site to site. The low-density coverage (spatially and temporally) of the true datasets was insufficient to explain MOPITT's mixed performance.Here we present a complementary comparison between a CO dataset produced with the GEOS-5 model and the synthetic MOPITT dataset derived from it. Both describe tropospheric CO composition over the contiguous USA during 2006, at 6-hour and 0.5o resolution. We applied to them the analysis we formulated in our previous comparison. We estimated atmospheric surface layer thickness via the VCL (Vertical Correlation Length), derived from the statistics of vertical profiles acquired at each site of interest. We determined the vertical resolution at the surface of MOPITT by measuring the FWHM (Full Width at Half Maximum) of its surface averaging kernels. We hypothesize that surface CO can be resolved if FWHM≤VCL. The spatial and temporal distribution of resolvable sites were then mapped.This ideal framework allows us to investigate spatial and temporal patterns in surface CO bias and relate those to relevant parameters (e.g., surface thermal contrast, planetary boundary layer height, degrees of freedom for signal at the surface). The ultimate goal is to predict under what circumstances are MOPITT surface retrievals accurate and, conversely, to understand what physical factors can hinder the surface retrieval

  12. Characterization of storage cell wall polysaccharides from Brazilian legume seeds and the formation of aqueous two-phase systems.

    Science.gov (United States)

    Franco, T T; Rodrigues, N R; Serra, G E; Panegassi, V R; Buckeridge, M S

    1996-05-17

    Cell wall storage polysaccharides from Brazilian legume seeds of Dimorphandra mollis, Schizolobium parahybum (galactomannans), Copaifera langsdorffii, Hymenaea courbaril (xyloglucans) and the galactan from cotyledons of the Mediterranean species Lupinus angustifolius were extracted and their apparent molecular masses were determined by high-performance size exclusion chromatography analysis. They were, to a large degree, polydisperse, showing molecular masses that varied from 100,000 to 2,000,000. Polyethylene glycol (PEG, 1500, 4000, 6000 and 8000), sodium citrate and dextran (73,000, 60,000-90,000, 505,000 and 2,000,000) were used for investigating phase formation with the seed polysaccharides. Galactomannans and xyloglucans demonstrated phase formation with sodium citrate concentrations lower than 30%, as well as dextrans and polyethylene glycol, and formed gels in the presence of high concentrations of sodium citrate (above 30%). Galactan did not promote phase formation with any of the reagents used. On the basis of the results obtained, the possibility of using legume seed polysaccharides for the partitioning and purification of polysaccharide enzymes in aqueous two-phase systems is suggested.

  13. Micromechanical characterization of single-walled carbon nanotube reinforced ethylidene norbornene nanocomposites for self-healing applications

    Science.gov (United States)

    Aïssa, B.; Haddad, E.; Jamroz, W.; Hassani, S.; Farahani, R. D.; Merle, P. G.; Therriault, D.

    2012-10-01

    We report on the fabrication of self-healing nanocomposite materials, consisting of single-walled carbon nanotube (SWCNT) reinforced 5-ethylidene-2-norbornene (5E2N) healing agent—reacted with ruthenium Grubbs catalyst—by means of ultrasonication, followed by a three-roll mixing mill process. The kinetics of the 5E2N ring opening metathesis polymerization (ROMP) was studied as a function of the reaction temperature and the SWCNT loads. Our results demonstrated that the ROMP reaction was still effective in a large temperature domain ( - 15-45 °C), occurring at very short time scales (less than 1 min at 40 °C). On the other hand, the micro-indentation analysis performed on the SWCNT/5E2N nanocomposite material after its ROMP polymerization showed a clear increase in both the hardness and the Young modulus—up to nine times higher than that of the virgin polymer—when SWCNT loads range only from 0.1 to 2 wt%. The approach demonstrated here opens new prospects for using carbon nanotube and healing agent nanocomposite materials for self-repair functionality, especially in a space environment.

  14. Nanoencapsulation of chia seed oil with chia mucilage (Salvia hispanica L.) as wall material: Characterization and stability evaluation.

    Science.gov (United States)

    de Campo, Camila; Dos Santos, Priscilla Pereira; Costa, Tania Maria Haas; Paese, Karina; Guterres, Silvia Stanisçuaski; Rios, Alessandro de Oliveira; Flôres, Simone Hickmann

    2017-11-01

    In this study, chia seed oil was nanoencapsulated utilizing chia seed mucilage (CSM) as wall material. The viscosity, encapsulation efficiency, loading capacity, transmission electron microscopy, FT-IR spectroscopy and thermal properties of chia seed oil nanoparticles (CSO-NP) were performed after preparation. Particle size, zeta potential, span value, and pH of CSO-NP and oxidation stability of nanoencapsulated and unencapsulated oil were evaluated during 28days of storage at accelerated conditions (40°C). The CSO-NP showed spherical shape, an average size of 205±4.24nm and zeta potential of -11.58±1.87mV. The encapsulation efficiency (82.8%), loading capacity (35.38%) and FT-IR spectroscopy demonstrated the interaction between oil and mucilage. Furthermore, CSO-NP were thermally stable at temperatures up 300°C and nanoencapsulated oil showed higher stability against oxidation than unencapsulated oil. The results suggest that chia seed mucilage represents a promising alternative to substitute synthetic polymers in nanoencapsulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Characterization of a novel cell wall binding domain-containing Staphylococcus aureus endolysin LysSA97.

    Science.gov (United States)

    Chang, Yoonjee; Ryu, Sangryeol

    2017-01-01

    Endolysin from Staphylococcus aureus phage SA97 (LysSA97) was cloned and investigated. LysSA97 specifically lyse the staphylococcal strains and effectively disrupted staphylococcal biofilms. Bioinformatic analysis of LysSA97 revealed a novel putative cell wall binding domain (CBD) as well as two enzymatically active domains (EADs) containing cysteine, histidine-dependent amidohydrolases/peptidases (CHAP, PF05257) and N-acetylmuramoyl-L-alanine amidase (Amidase-3, PF01520) domains. Comparison of 98 endolysin genes of S. aureus phages deposited in GenBank showed that they can be classified into six groups based on their domain composition. Interestingly, approximately 80.61 % of the staphylococcal endolysins have a src-homology 3 (SH3, PF08460) domain as CBD, but the remaining 19.39 %, including LysSA97, has a putative C-terminal CBD with no homology to the known CBD. The fusion protein containing green fluorescent protein and the putative CBD of LysSA97 showed a specific binding spectrum against staphylococcal cells comparable to SH3 domain (PF08460), suggesting that the C-terminal domain of LysSA97 is a novel CBD of staphylococcal endolysins.

  16. Attenuation of Temperature Fluctuations on an External Surface of the Wall by a Phase Change Material-Activated Layer

    Directory of Open Access Journals (Sweden)

    Dariusz Heim

    2017-12-01

    Full Text Available Periodical changes of temperature on an external surface of building envelope, e.g., thermal stress or excessive heat gains, is often an undesirable phenomenon. The idea proposed and described in the following paper is to stabilize the external surface temperature in a period of significant heat gains by the originally developed, novel composite modified by phase change material (PCM and applied as an external, thin finishing plaster layer. The PCM composite is made from porous, granulated perlite soaked with paraffin wax (Tm = 25 °C and macro-encapsulated by synthetic resin. The effect of temperature attenuation was estimated for two designated periods of time—the heat gains season (HGS and the heat losses season (HLS. The attenuation coefficient (AC was proposed as evaluation parameter of isothermal storage of heat gains determining the reduction of temperature fluctuations. The maximum registered temperature of an external surface for a standard insulation layer was around 20 K higher than for the case modified by PCM. The calculated values of AC were relatively constant during HGS and around two times lower for PCM case. The obtained results confirmed that the proposed modification of an external partition by equipped with additional PCM layer can be effectively used to minimize temperature variations and heat flux in the heat gains season.

  17. Potentialities of some surface characterization techniques for the development of titanium biomedical alloys

    Directory of Open Access Journals (Sweden)

    P.S. Vanzillotta

    2004-09-01

    Full Text Available Bone formation around a metallic implant is a complex process that involves micro- and nanometric interactions. Several surface treatments, including coatings were developed in order to obtain faster osseointegration. To understand the role of these surface treatments on bone formation it is necessary to choose adequate characterization techniques. Among them, we have selected electron microscopy, profilometry, atomic force microscopy (AFM and X-ray photoelectron spectroscopy (XPS to describe them briefly. Examples of the potentialities of these techniques on the characterization of titanium for biomedical applications were also presented and discussed. Unfortunately more than one technique is usually necessary to describe conveniently the topography (scanning electron microsocopy, profilometry and/or AFM and the chemical state (XPS of the external layer of the material surface. The employment of the techniques above described can be useful especially for the development of new materials or products.

  18. Characterization of Layer-by-layer Self-assembled Multi-walled Carbon Nanotube Film Sensor and Its Ethanol Gas-sensing Properties

    Directory of Open Access Journals (Sweden)

    Bokai Xia

    2013-03-01

    Full Text Available Multi-wall carbon nanotubes (MWNTs film-based sensor on the substrate of printed circuit board (PCB with interdigital electrodes (IDE were fabricated using layer-by-layer self-assembly, and the electrical properties of MWNTs film sensor were investigated through establishing models involved with number of self-assembled layers and IDE finger gap, and also its ethanol gas-sensing properties with varying gas concentration are characterized at room temperature. Through comparing with the thermal evaporation method, the experiment results shown that the layer-by-layer self-assembled MWNTs film sensor have a faster response and more sensitive resistance change when exposed to ethanol gas, indicated a prospective application for ethanol gas detection with high performance and low-cost.

  19. Surface-treated commercially pure titanium for biomedical applications: Electrochemical, structural, mechanical and chemical characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Erika S.; Matos, Adaias O.; Beline, Thamara [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); IBTN/Br—Institute of Biomaterials, Tribocorrosion and Nanomedicine—Brazilian Branch (Brazil); Marques, Isabella S.V. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); Sukotjo, Cortino [Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, 801 S Paulina, Chicago, IL, USA, 60612 (United States); IBTN—Institute of Biomaterials, Tribocorrosion and Nanomedicine (United States); Mathew, Mathew T. [IBTN—Institute of Biomaterials, Tribocorrosion and Nanomedicine (United States); Department of Biomedical Sciences, University of Illinois, College of Medicine at Rockford, 1601 Parkview Avenue, Rockford, IL, USA, 61107 (United States); Rangel, Elidiane C.; Cruz, Nilson C. [IBTN/Br—Institute of Biomaterials, Tribocorrosion and Nanomedicine—Brazilian Branch (Brazil); Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Av Três de Março, 511, Sorocaba, São Paulo 18087-180 (Brazil); Mesquita, Marcelo F.; Consani, Rafael X. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); and others

    2016-08-01

    Modified surfaces have improved the biological performance and biomechanical fixation of dental implants compared to machined (polished) surfaces. However, there is a lack of knowledge about the surface properties of titanium (Ti) as a function of different surface treatment. This study investigated the role of surface treatments on the electrochemical, structural, mechanical and chemical properties of commercial pure titanium (cp-Ti) under different electrolytes. Cp-Ti discs were divided into 6 groups (n = 5): machined (M—control); etched with HCl + H{sub 2}O{sub 2} (Cl), H{sub 2}SO{sub 4} + H{sub 2}O{sub 2} (S); sandblasted with Al{sub 2}O{sub 3} (Sb), Al{sub 2}O{sub 3} followed by HCl + H{sub 2}O{sub 2} (SbCl), and Al{sub 2}O{sub 3} followed by H{sub 2}SO{sub 4} + H{sub 2}O{sub 2} (SbS). Electrochemical tests were conducted in artificial saliva (pHs 3; 6.5 and 9) and simulated body fluid (SBF—pH 7.4). All surfaces were characterized before and after corrosion tests using atomic force microscopy, scanning electron microscopy, energy dispersive microscopy, X-ray diffraction, surface roughness, Vickers microhardness and surface free energy. The results indicated that Cl group exhibited the highest polarization resistance (R{sub p}) and the lowest capacitance (Q) and corrosion current density (I{sub corr}) values. Reduced corrosion stability was noted for the sandblasted groups. Acidic artificial saliva decreased the R{sub p} values of cp-Ti surfaces and produced the highest I{sub corr} values. Also, the surface treatment and corrosion process influenced the surface roughness, Vickers microhardness and surface free energy. Based on these results, it can be concluded that acid-etching treatment improved the electrochemical stability of cp-Ti and all treated surfaces behaved negatively in acidic artificial saliva. - Highlights: • Characterization of surface treatment for biomedical implants was investigated. • Sandblasting reduced the corrosion stability of cp

  20. Chemical Genetic Analysis and Functional Characterization of Staphylococcal Wall Teichoic Acid 2-Epimerases Reveals Unconventional Antibiotic Drug Targets.

    Directory of Open Access Journals (Sweden)

    Paul A Mann

    2016-05-01

    Full Text Available Here we describe a chemical biology strategy performed in Staphylococcus aureus and Staphylococcus epidermidis to identify MnaA, a 2-epimerase that we demonstrate interconverts UDP-GlcNAc and UDP-ManNAc to modulate substrate levels of TarO and TarA wall teichoic acid (WTA biosynthesis enzymes. Genetic inactivation of mnaA results in complete loss of WTA and dramatic in vitro β-lactam hypersensitivity in methicillin-resistant S. aureus (MRSA and S. epidermidis (MRSE. Likewise, the β-lactam antibiotic imipenem exhibits restored bactericidal activity against mnaA mutants in vitro and concomitant efficacy against 2-epimerase defective strains in a mouse thigh model of MRSA and MRSE infection. Interestingly, whereas MnaA serves as the sole 2-epimerase required for WTA biosynthesis in S. epidermidis, MnaA and Cap5P provide compensatory WTA functional roles in S. aureus. We also demonstrate that MnaA and other enzymes of WTA biosynthesis are required for biofilm formation in MRSA and MRSE. We further determine the 1.9Å crystal structure of S. aureus MnaA and identify critical residues for enzymatic dimerization, stability, and substrate binding. Finally, the natural product antibiotic tunicamycin is shown to physically bind MnaA and Cap5P and inhibit 2-epimerase activity, demonstrating that it inhibits a previously unanticipated step in WTA biosynthesis. In summary, MnaA serves as a new Staphylococcal antibiotic target with cognate inhibitors predicted to possess dual therapeutic benefit: as combination agents to restore β-lactam efficacy against MRSA and MRSE and as non-bioactive prophylactic agents to prevent Staphylococcal biofilm formation.

  1. Cell wall polysaccharides released during the alcoholic fermentation by Schizosaccharomyces pombe and S. japonicus: quantification and characterization

    Science.gov (United States)

    Domizio, P.; Liu, Y.; Bisson, L.F.; Barile, D.

    2016-01-01

    The present work demonstrates that yeasts belonging to the Schizosaccharomyces genus release a high quantity of polysaccharides of cell wall origin starting from the onset of the alcoholic fermentation. By the end of the alcoholic fermentation, all of the Schizosaccharomyces yeast strains released a quantity of polysaccharides approximately 3-7 times higher than that released by a commercial Saccharomyces cerevisiae yeast strain under the same fermentative conditions of synthetic juice. A higher content of polysaccharide was found in media fermented by Schizosaccharomyces japonicus with respect to that of Schizosaccharomyces pombe. Some of the strains evaluated were also able to produce high levels of pyruvic acid, which has been shown to be an important compound for color stability of wine. The presence of strains with different malic acid consumption patterns along with high polysaccharide release would enable production of naturally modified wines with enhanced mouth feel and reduced acidity. The chemical analysis of the released polysaccharides demonstrated divergence between the two yeast species S. pombe and S. japonicus. A different mannose/galactose ratio and a different percentage of proteins was observed on the polysaccharides released by S. pombe as compared to S. japonicus. Analysis of the proteins released in the media revealed the presence of a glycoprotein with a molecular size around 32-33 kDa only for the species S. japonicus. Mass spectrometry analysis of carbohydrate moieties showed similar proportions among the N-glycan chains released in the media by both yeast species but differences between the two species were also observed. These observations suggest a possible role of rapid MALDI-TOF screening of N-glycans compositional fingerprint as a taxonomic tool for this genus. Polysaccharides release in the media, in particular galactomannoproteins in significant amounts, could make these yeasts particularly interesting also for the industrial

  2. Cell wall polysaccharides released during the alcoholic fermentation by Schizosaccharomyces pombe and S. japonicus: quantification and characterization.

    Science.gov (United States)

    Domizio, P; Liu, Y; Bisson, L F; Barile, D

    2017-02-01

    The present work demonstrates that yeasts belonging to the Schizosaccharomyces genus release a high quantity of polysaccharides of cell wall origin starting from the onset of the alcoholic fermentation. By the end of the alcoholic fermentation, all of the Schizosaccharomyces yeast strains released a quantity of polysaccharides approximately 3-7 times higher than that released by a commercial Saccharomyces cerevisiae yeast strain under the same fermentative conditions of synthetic juice. A higher content of polysaccharide was found in media fermented by Schizosaccharomyces japonicus with respect to that of Schizosaccharomyces pombe. Some of the strains evaluated were also able to produce high levels of pyruvic acid, which has been shown to be an important compound for color stability of wine. The presence of strains with different malic acid consumption patterns along with high polysaccharide release would enable production of naturally modified wines with enhanced mouth feel and reduced acidity. The chemical analysis of the released polysaccharides demonstrated divergence between the two yeast species S. pombe and S. japonicus. A different mannose/galactose ratio and a different percentage of proteins was observed on the polysaccharides released by S. pombe as compared to S. japonicus. Analysis of the proteins released in the media revealed the presence of a glycoprotein with a molecular size around 32-33 kDa only for the species S. japonicus. Mass spectrometry analysis of carbohydrate moieties showed similar proportions among the N-glycan chains released in the media by both yeast species but differences between the two species were also observed. These observations suggest a possible role of rapid MALDI-TOF screening of N-glycans compositional fingerprint as a taxonomic tool for this genus. Polysaccharides release in the media, in particular galactomannoproteins in significant amounts, could make these yeasts particularly interesting also for the industrial

  3. Chemical Genetic Analysis and Functional Characterization of Staphylococcal Wall Teichoic Acid 2-Epimerases Reveals Unconventional Antibiotic Drug Targets

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Paul A.; Müller, Anna; Wolff, Kerstin A.; Fischmann, Thierry; Wang, Hao; Reed, Patricia; Hou, Yan; Li, Wenjin; Müller, Christa E.; Xiao, Jianying; Murgolo, Nicholas; Sher, Xinwei; Mayhood, Todd; Sheth, Payal R.; Mirza, Asra; Labroli, Marc; Xiao, Li; McCoy, Mark; Gill, Charles J.; Pinho, Mariana G.; Schneider, Tanja; Roemer, Terry (Merck); (Bonn); (FCT/UNL)

    2016-05-04

    Here we describe a chemical biology strategy performed in Staphylococcus aureus and Staphylococcus epidermidis to identify MnaA, a 2-epimerase that we demonstrate interconverts UDP-GlcNAc and UDP-ManNAc to modulate substrate levels of TarO and TarA wall teichoic acid (WTA) biosynthesis enzymes. Genetic inactivation of mnaA results in complete loss of WTA and dramatic in vitro β-lactam hypersensitivity in methicillin-resistant S. aureus (MRSA) and S. epidermidis (MRSE). Likewise, the β-lactam antibiotic imipenem exhibits restored bactericidal activity against mnaA mutants in vitro and concomitant efficacy against 2-epimerase defective strains in a mouse thigh model of MRSA and MRSE infection. Interestingly, whereas MnaA serves as the sole 2-epimerase required for WTA biosynthesis in S. epidermidis, MnaA and Cap5P provide compensatory WTA functional roles in S. aureus. We also demonstrate that MnaA and other enzymes of WTA biosynthesis are required for biofilm formation in MRSA and MRSE. We further determine the 1.9Å crystal structure of S. aureus MnaA and identify critical residues for enzymatic dimerization, stability, and substrate binding. Finally, the natural product antibiotic tunicamycin is shown to physically bind MnaA and Cap5P and inhibit 2-epimerase activity, demonstrating that it inhibits a previously unanticipated step in WTA biosynthesis. In summary, MnaA serves as a new Staphylococcal antibiotic target with cognate inhibitors predicted to possess dual therapeutic benefit: as combination agents to restore β-lactam efficacy against MRSA and MRSE and as non-bioactive prophylactic agents to prevent Staphylococcal biofilm formation.

  4. Mechanical characterization and validation of poly (methyl methacrylate)/multi walled carbon nanotube composite for the polycentric knee joint.

    Science.gov (United States)

    Arun, S; Kanagaraj, S

    2015-10-01

    Trans femoral amputation is one of the most uncomfortable surgeries in patient׳s life, where the prosthesis consisting of a socket, knee joint, pylon and foot is used to do the walking activities. The artificial prosthetic knee joint imitates the functions of human knee to achieve the flexion-extension for the above knee amputee. The objective of present work is to develop a light weight composite material for the knee joint to reduce the metabolic cost of an amputee. Hence, an attempt was made to study the mechanical properties of multi walled carbon nanotubes (MWCNT) reinforced Poly (methyl methacrylate) (PMMA) prepared through melt mixing technique and optimize the concentration of reinforcement. The PMMA nanocomposites were prepared by reinforcing 0, 0.1, 0.2, 0.25, 0.3 and 0.4 wt% of MWCNT using injection moulding machine via twin screw extruder. It is observed that the tensile and flexural strength of PMMA, which were studied as per ASTM D638 and D790, respectively, were increased by 32.9% and 26.3% till 0.25 wt% reinforcement of MWCNT. The experimental results of strength and modulus were compared with theoretical prediction, where a good correlation was noted. It is concluded that the mechanical properties of PMMA were found to be increased to maximum at 0.25 wt% reinforcement of MWCNT, where the Pukanszky model and modified Halpin-Tsai model are suggested to predict the strength and modulus, respectively, of the PMMA/MWCNT composite, which can be opted as a suitable materiel for the development of polycentric knee joint. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Isolation and characterization of a novel wall-associated kinase gene TaWAK5 in wheat (Triticum aestivum

    Directory of Open Access Journals (Sweden)

    Kun Yang

    2014-10-01

    Full Text Available Wall-associated kinases (WAKs play an important role in plant defense and development. Considerable progress has been made in understanding WAK genes in Arabidopsis thaliana. However, much less is known about these genes in common wheat. Here, we isolated a novel wheat WAK gene TaWAK5 from sharp eyespot disease-resistant wheat line CI12633, based on a differentially-expressed sequence identified by microarray analysis. The transcript abundance of TaWAK5 was rapidly increased following inoculation with the pathogen Rhizoctonia cerealis. TaWAK5 in resistant wheat lines was induced to higher levels than in susceptible lines at 7 days post inoculation with R. cerealis. The expression of TaWAK5 was also induced by treatments with exogenous salicylic acid, abscisic acid, and methyl jasmonate. The deduced TaWAK5 protein contained a signal peptide, two epidermal growth factor (EGF-like repeats, a transmembrane domain, and a serine/threonine protein kinase catalytic domain. Subcellular localization analyses in onion epidermal cells indicated that the TaWAK5 protein was localized to the plasma membrane. Virus-induced gene silencing of TaWAK5 in CI12633 plants showed that the silencing of TaWAK5 did not obviously impair wheat resistance to R. cerealis, suggesting that TaWAK5 may be not the major gene in wheat defense response to R. cerealis, or that it is functionally redundant with other genes. This study paves the way for further research into WAK functions in wheat stress physiology.

  6. Characterization of Surface Properties of Glass Vials Used as Primary Packaging Material for Parenterals.

    Science.gov (United States)

    Ditter, Dominique; Mahler, Hanns-Christian; Roehl, Holger; Wahl, Michael; Huwyler, Joerg; Nieto, Alejandra; Allmendinger, Andrea

    2018-01-10

    The appropriate selection of adequate primary packaging, such as the glass vial, rubber stopper, and crimp cap for parenteral products is of high importance to ensure product stability, microbiological quality (integrity) during storage as well as patient safety. A number of issues can arise when inadequate vial material is chosen, and sole compliance to hydrolytic class I is sometimes not sufficient when choosing a glass vial. Using an appropriate pre-treatment, such as surface modification or coating of the inner vial surface after the vial forming process the glass container quality is often improved and interactions of the formulation with the surface of glass may be minimized. This study aimed to characterize the inner surface of different type I glass vials (Exp33, Exp51, Siliconized, TopLyo TM and Type I plus®) at the nanoscale level. All vials were investigated topographically by colorimetric staining and Scanning Electron Microscopy (SEM). Glass composition of the surface was studied by Time-of-Flight - Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS), and hydrophobicity/hydrophilicity of the inner surface was assessed by dye tests and surface energy measurements. All containers were studied unprocessed, as received from the vendor, i.e. in unwashed and non-depyrogenized condition. Clear differences were found between the different vial types studied. Especially glass vials without further surface modifications, like Exp33 and Exp51 vials, showed significant (I) vial-to-vial variations within one vial lot as well as (II) variations along the vertical axis of a single vial when studying topography and chemical composition. In addition, differences and heterogeneity in surface energy were found within a given tranche (circumferential direction) of Exp51 as well as Type I plus® vials. Most consistent quality was achieved with TopLyo TM vials. The present comprehensive characterization of surface properties of the

  7. Modification of the cellulosic component of hemp fibers using sulfonic acid derivatives: Surface and thermal characterization.

    Science.gov (United States)

    George, Michael; Mussone, Paolo G; Bressler, David C

    2015-12-10

    The aim of this study was to characterize the surface, morphological, and thermal properties of hemp fibers treated with two commercially available, inexpensive, and water soluble sulfonic acid derivatives. Specifically, the cellulosic component of the fibers were targeted, because cellulose is not easily removed during chemical treatment. These acids have the potential to selectively transform the surfaces of natural fibers for composite applications. The proposed method proceeds in the absence of conventional organic solvents and high reaction temperatures. Surface chemical composition and signature were measured using gravimetric analysis, X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR). XPS data from the treated hemp fibers were characterized by measuring the reduction in O/C ratio and an increase in abundance of the C-C-O signature. FTIR confirmed the reaction with the emergence of peaks characteristic of disubstituted benzene and amino groups. Grafting of the sulfonic derivatives resulted in lower surface polarity. Thermogravimetric analysis revealed that treated fibers were characterized by lower percent degradation between 200 and 300 °C, and a higher initial degradation temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Characterization of Boroaluminosilicate Glass Surface Structures by B k-edge NEXAFS

    Energy Technology Data Exchange (ETDEWEB)

    R Schaut; R Lobello; K Mueller; C Pantano

    2011-12-31

    Techniques traditionally used to characterize bulk glass structure (NMR, IR, etc.) have improved significantly, but none provide direct measurement of local atomic coordination of glass surface species. Here, we used Near-Edge X-ray Absorption Fine Structure (NEXAFS) as a direct measure of atomic structure at multicomponent glass surfaces. Focusing on the local chemical structure of boron, we address technique-related issues of calibration, quantification, and interactions of the beam with the material. We demonstrate that beam-induced adsorption and structural damage can occur within the timeframe of typical measurements. The technique is then applied to the study of various fracture surfaces where it is shown that adsorption and reaction of water with boroaluminosilicate glass surfaces induces structural changes in the local coordination of boron, favoring B{sup IV} species after reaction.

  9. DFT study of adsorption of picric acid molecule on the surface of single-walled ZnO nanotube; as potential new chemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Farmanzadeh, Davood, E-mail: d.farmanzad@umz.ac.ir; Tabari, Leila

    2015-01-01

    Highlights: • The results suggest that picric acid molecule can be chemisorbed on the surface of the zinc oxide nanotube. • The significant charge transfer could induce significant changes in the electrical conductivity of the tube. • The positive ZnONT might sensitively detect the PA molecule in comparison to the negative tube. - Abstract: Using density functional theory (DFT), we have investigated the adsorption of picric acid (PA) molecule on the surface of (8,0) single-walled ZnO nanotube (ZnONT). The results show that the PA molecule can be chemisorbed on the surface of ZnONT with adsorption energies of −82.01 and −75.26 kJ/mol in gas and aqueous phase, respectively. Frontier molecular orbital analysis show that HOMO/LUMO gap of ZnONT reduces from 1.66 and 1.75 eV in the pristine nanotube to 0.83 and 0.72 eV in PA-adsorbed form in gas and aqueous phase, respectively. It suggests that the process can affect the electronic properties of the studied nanotube which would lead to its conductance change upon the adsorption of PA molecule. The modifying effect on the electrical conductance of ZnONT underlies the working mechanism of gas sensors for detecting the PA molecules. Analyses of the adsorption behavior of the electrically charged ZnONT toward PA molecule in the gas phase show that the PA molecule can be strongly adsorbed on the negatively charged ZnONT surface with significant adsorption energy (−135.1 kJ/mol). However, from the HOMO/LUMO gap changes, it can be concluded that the positive ZnONT might sensitively detect the PA molecule in comparison to the negative tube. These results can provide helpful information for experimental investigation to develop novel nanotube-based sensors.

  10. Toward optimizing dental implant performance: Surface characterization of Ti and TiZr implant materials.

    Science.gov (United States)

    Murphy, M; Walczak, M S; Thomas, A G; Silikas, N; Berner, S; Lindsay, R

    2017-01-01

    Targeting understanding enhanced osseointegration kinetics, the goal of this study was to characterize the surface morphology and composition of Ti and TiZr dental implant substrates subjected to one of two surface treatments developed by Straumann. These two treatments are typically known as SLA and SLActive, with the latter resulting in more rapid osseointegration. A range of techniques was applied to characterize four different substrate/surface treatment combinations (TiSLA, TiSLActive, TiZrSLA, and TiZrSLActive). Contact angle measurements established their hydrophilic/hydrophobic nature. Surface morphology was probed with scanning electron microscopy. X-ray diffraction, Raman μ-spectroscopy, and X-ray photoelectron spectroscopy were used to elucidate the composition of the near-surface region. Consistent with previous work, surface morphology was found to differ only at the nanoscale, with both SLActive substrates displaying nano-protrusions. Spectroscopic data indicate that all substrates exhibit surface films of titanium oxide displaying near TiO2 stoichiometry. Raman μ-spectroscopy reveals that amorphous TiO2 is most likely the only phase present on TiSLA, whilst rutile-TiO2 is also evidenced on TiSLActive, TiZrSLA, and TiZrSLActive. For TiZr alloy substrates, there is no evidence of discrete phases of oxidized Zr. X-ray photoelectron spectra demonstrate that all samples are terminated by adventitious carbon, with it being somewhat thicker (∼1nm) on TiSLA and TiZrSLA. Given previous in vivo studies, acquired data suggest that both nanoscale protrusions, and a thinner layer of adventitious carbon contribute to the more rapid osseointegration of SLActive dental implants. Composition of the surface oxide layer is apparently less important in determining osseointegration kinetics. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Characterizing land surface erosion from cesium-137 profiles in lake and reservoir sediments.

    Science.gov (United States)

    Zhang, Xinbao; Walling, Desmond E

    2005-01-01

    Recognition of the threat to the sustainable use of the earth's resources posed by soil erosion and associated off-site sedimentation has generated an increasing need for reliable information on global rates of soil loss. Existing methods of assessing rates of soil loss across large areas possess many limitations and there is a need to explore alternative approaches to characterizing land surface erosion at the regional and global scale. The downcore profiles of 137Cs activity available for numerous lakes and reservoirs located in different areas of the world can be used to provide information on land surface erosion within the upstream catchments. The rate of decline of 137Cs activity toward the surface of the sediment deposited in a lake or reservoir can be used to estimate the rate of surface lowering associated with eroding areas within the upstream catchment, and the concentration of 137Cs in recently deposited sediment provides a basis for estimating the relative importance of surface and channel, gully, and/or subsurface erosion as a source of the deposited sediment. The approach has been tested using 137Cs data from several lakes and reservoirs in southern England and China, spanning a wide range of specific suspended sediment yield. The results obtained are consistent with other independent evidence of erosion rates and sediment sources within the lake and reservoir catchments and confirm the validity of the overall approach. The approach appears to offer valuable potential for characterizing land surface erosion, particularly in terms of its ability to provide information on the rate of surface lowering associated with the eroding areas, rather than an average rate of lowering for the entire catchment surface.

  12. Characterization of dust particles produced in an all-tungsten wall tokamak and potentially mobilized by airflow

    Energy Technology Data Exchange (ETDEWEB)

    Rondeau, A., E-mail: anthony.rondeau@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, SCA, 91192 Gif-sur-Yvette (France); Peillon, S.; Roynette, A.; Sabroux, J.-C.; Gelain, T.; Gensdarmes, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, SCA, 91192 Gif-sur-Yvette (France); Rohde, V. [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Grisolia, C. [CEA, IRFM, 13108 Saint-Paul-lez-Durance (France); Chassefière, E. [Laboratoire Géosciences Paris Sud (GEOPS), UMR 8148, Université Paris Sud, 91403 Orsay Cedex (France)

    2015-08-15

    At the starting of the shutdown of the AUG (ASDEX Upgrade: Axially Symmetric Divertor EXperiment) German tokamak, we collected particles deposited on the divertor surfaces by means of a dedicated device called “Duster Box”. This device allows to collect the particles using a controlled airflow with a defined shear stress. Consequently, the particles collected correspond to a potentially mobilizable fraction, by an airflow, of deposited dust. A total of more than 70,000 tungsten particles was, analysed showing a bimodal particle size distribution with a mode composed of flakes at 0.6 μm and a mode composed of spherical particles at 1.8 μm.

  13. Multi-scale microstructural characterization of micro-textured Ti-6Al-4V surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Soboyejo, W.O.; Mercer, C.; Allameh, S.; Nemetski, B. [Princeton Materials Inst., NJ (United States). Dept. of Mechanical and Aerospace Engineering; Marcantonio, N. [Brown Univ., Providence, RI (United States). Div. of Engineering; Ricci, J.L. [Univ. of Medicine and Dentistry of New Jersey, Newark, NJ (United States). Dept. of Orthodontics

    2001-07-01

    This paper presents the results of a multi-scale microstructural characterization of micro-textured Ti-6Al-4V surfaces that are used in biomedical implants. The hierarchies of substructural and microstructural features associated with laser micro-texturing, mechanical polishing and surface blasting with alumina pellets are elucidated via atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and optical microscopy (OM). The nano-scale roughness profiles for the different surface textures are characterized via AFM. Sub-micron precipitates and dislocation substructures associated with wrought processing and laser processing are revealed by TEM. OM and SEM micro- and mesoscale images of the groove structures and then described before discussing the implications of the result for the optimization of laser processing schemes. The implications of the results are examined for the fabrication of micro-textured surfaces that will facilitate the self organization of proteins, and the attachment of mammalian cells to the Ti-6Al-4V surfaces in biomedical implants. (orig.)

  14. The effects of hydroxyapatite/calcium phosphate glass scaffold and its surface modification with bovine serum albumin on 1-wall intrabony defects of beagle dogs: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Um, Yoo-Jung; Jung, Ui-Won; Chae, Gyung-Joon; Kim, Chang-Sung; Cho, Kyoo-Sung; Kim, Chong-Kwan; Choi, Seong-Ho [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-752 l (Korea, Republic of); Lee, Yong-Keun [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-750 (Korea, Republic of)], E-mail: shchoi726@yuhs.ac

    2008-12-15

    The purpose of this study was to evaluate the effects of biphasic hydroxyapatite/calcium phosphate glass (HA/CPG) scaffold and its surface modification with bovine serum albumin (BSA) on periodontal regeneration. 1-wall intrabony defects were surgically created on five beagle dogs. HA/CPG scaffolds, with a hydroxyapatite (HA)/calcium phosphate glass (CPG) ratio of 95:5 by weight (%) and surface modification done by 2% bovine serum albumin, were used. The control group received surgical flap operation, and the experimental groups were filled with HA/CPG scaffolds and HA/CPG(BSA) scaffolds. The animals were sacrificed eight weeks after surgery. Histological findings revealed better space maintenance in the experimental groups than the control group, and showed new bone formation intermittently in between the residual material particles. The newly formed bone was mostly woven bone and the residual particles were undergoing resorption. Cementum regeneration was observed with limited root resorption in all the groups. Histometric analysis also revealed greater mean values in new bone formation, cementum regeneration and bone area than the control group in both experimental groups. However, similar findings were presented between HA/CPG and HA/CPG(BSA). The result of the present study revealed the newly fabricated HA/CPG scaffold to have a potential use as a bone substitute material.

  15. Surface-enhanced oxidation and detection of Sunset Yellow and Tartrazine using multi-walled carbon nanotubes film-modified electrode.

    Science.gov (United States)

    Zhang, Weikang; Liu, Tao; Zheng, Xiaojiang; Huang, Wensheng; Wan, Chidan

    2009-11-01

    The insoluble multi-walled carbon nanotubes (MWNT) was successfully dispersed into water in the presence of hydrophobic surfactant. After that, MWNT film-coated glassy carbon electrode (GCE) was achieved via dip-coating and evaporating water. Owing to huge surface area, high sorption capacity and subtle electronic properties, MWNT film exhibits highly efficient accumulation efficiency as well as considerable surface enhancement effects to Sunset Yellow and Tartrazine. As a result, the oxidation peak currents of Sunset Yellow and Tartrazine remarkably increase at the MWNT film-modified GCE. Based on this, a novel electrochemical method was developed for the simultaneous determination of Sunset Yellow and Tartrazine. The limits of detection are 10.0 ng mL(-1) (2.2 x 10(-8)mol L(-1)) and 0.1 microg mL(-1) (1.88 x 10(-7)mol L(-1)) for Sunset Yellow and Tartrazine. Finally, the proposed method was successfully used to detect Sunset Yellow and Tartrazine in soft drinks.

  16. Characterization of thiol-functionalised silica films deposited on electrode surfaces

    Directory of Open Access Journals (Sweden)

    Ivana Cesarino

    2008-12-01

    Full Text Available Thiol-functionalised silica films were deposited on various electrode surfaces (gold, platinum, glassy carbon by spin-coating sol-gel mixtures in the presence of a surfactant template. Film formation occurred by evaporation induced self-assembly (EISA involving the hydrolysis and (cocondensation of silane and organosilane precursors on the electrode surface. The characterization of such material was performed by IR spectroscopy, thermogravimetry (TG, elemental analysis (EA, atomic force microscopy (AFM, scanning electron microscopy (SEM and cyclic voltammetry (CV.

  17. Characterization of pigment-leached antifouling coatings using BET surface area measurements and mercury porosimetry

    DEFF Research Database (Denmark)

    Kiil, Søren; Dam-Johansen, Kim

    2007-01-01

    In this work BET surface area measurements and mercury porosimetry are used to characterize leached layers formed when seawater-soluble pigments (Cu2O and ZnO) dissolve during accelerated leaching of simple antifouling coatings. Measurements on single-pigment coatings show that an increasing...... of antifouling coating behaviour because the active binder surface area and porosity of the leached layer are substantially increased. A similar effect was not observed for a coating with a mixture of ZnO and TiO2 pigments. The two experimental methods are expected to be useful for practical analysis of leaching...

  18. Characterization of internal geometry / covered surface defects with a visible light sensing system

    Science.gov (United States)

    Straub, Jeremy

    2016-05-01

    Previous work has used visible light scanning to detect and characterize defects in 3D printed objects. This paper focuses on assessing the internal structures and external surfaces (that will be later hidden) of complex objects. These features make in-process defect detection far more important than it would be with an object that can be fully assessed with a post-completion scan, as it is required both for in-process correction and end-product quality assurance. This paper presents work on the use of a multi-camera visible light 3D scanning system to identify defects with printed objects' interior and covered / obscured exterior surfaces.

  19. Morpho-chemical characterization and surface properties of carcinogenic zeolite fibers.

    Science.gov (United States)

    Mattioli, Michele; Giordani, Matteo; Dogan, Meral; Cangiotti, Michela; Avella, Giuseppe; Giorgi, Rodorico; Dogan, A Umran; Ottaviani, Maria Francesca

    2016-04-05

    Erionite belonging to the zeolite family is a human health-hazard, since it was demonstrated to be carcinogenic. Conversely, offretite family zeolites were suspected carcinogenic. Mineralogical, morphological, chemical, and surface characterizations were performed on two erionites (GF1, MD8) and one offretite (BV12) fibrous samples and, for comparison, one scolecite (SC1) sample. The specific surface area analysis indicated a larger availability of surface sites for the adsorption onto GF1, while SC1 shows the lowest one and the presence of large pores in the poorly fibrous zeolite aggregates. Selected spin probes revealed a high adsorption capacity of GF1 compared to the other zeolites, but the polar/charged interacting sites were well distributed, intercalated by less polar sites (Si-O-Si). MD8 surface is less homogeneous and the polar/charged sites are more interacting and closer to each other compared to GF1. The interacting ability of BV12 surface is much lower than that found for GF1 and MD8 and the probes are trapped in small pores into the fibrous aggregates. In comparison with the other zeolites, the non-carcinogenic SC1 shows a poor interacting ability and a lower surface polarity. These results helped to clarify the chemical properties and the surface interacting ability of these zeolite fibers which may be related to their carcinogenicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. RF Sheath-Enhanced Plasma Surface Interaction Studies using Beryllium Optical Emission Spectroscopy in JET ITER-Like Wall

    Energy Technology Data Exchange (ETDEWEB)

    Agarici, G. [Fusion for Energy (F4E), Barcelona, Spain; Klepper, C Christopher [ORNL; Colas, L. [French Atomic Energy Commission (CEA); Krivska, Alena [Ecole Royale Militaire, Brussels Belgium; Bobkov, V. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, Garching, Germany; Jacquet, P. [Culham Centre for Fusion Energy (CCFE), Abingdon, UK; Delabie, Ephrem G. [ORNL; Giroud, C. [EURATOM / UKAEA, UK; Kirov, K K. [Association EURATOM-CCFE, Abingdon, UK; Lasa Esquisabel, Ane [ORNL; Lerche, E. [ERM-KMS, Association EURATOM-Belgian State, Brussels, Belgium; Dumortier, P. [ERM-KMS, Association EURATOM-Belgian State, Brussels, Belgium; Durodie, Frederic [Ecole Royale Militaire, Brussels Belgium

    2017-10-01

    A dedicated study on JET-ILW, deploying two types of ICRH antennas and spectroscopic observation spots at two outboard, beryllium limiters, has provided insight on long-range (up to 6m) RFenhanced plasma-surface interactions (RF-PSI) due to near-antenna electric fields. To aid in the interpretation of optical emission measurements of these effects, the antenna near-fields are computed using the TOPICA code, specifically run for the ITER-like antenna (ILA); similar modelling already existed for the standard JET antennas (A2). In the experiment, both antennas were operated in current drive mode, as RF-PSI tends to be higher in this phasing and at similar power (∼0.5 MW). When sweeping the edge magnetic field pitch angle, peaked RF-PSI effects, in the form of 2-4 fold increase in the local Be source,are consistently measured with the observation spots magnetically connect to regions of TOPICAL-calculated high near-fields, particularly at the near-antenna limiters. It is also found that similar RF-PSI effects are produced by the two types of antenna on similarly distant limiters. Although this mapping of calculated near-fields to enhanced RF-PSI gives only qualitative interpretion of the data, the present dataset is expected to provide a sound experimental basis for emerging RF sheath simulation model validation.

  1. RF Sheath-Enhanced Plasma Surface Interaction Studies using Beryllium Optical Emission Spectroscopy in JET ITER-Like Wall

    Directory of Open Access Journals (Sweden)

    Christopher Klepper C.

    2017-01-01

    Full Text Available A dedicated study on JET-ILW, deploying two types of ICRH antennas and spectroscopic observation spots at two outboard, beryllium limiters, has provided insight on long-range (up to 6m RFenhanced plasma-surface interactions (RF-PSI due to near-antenna electric fields. To aid in the interpretation of optical emission measurements of these effects, the antenna near-fields are computed using the TOPICA code, specifically run for the ITER-like antenna (ILA; similar modelling already existed for the standard JET antennas (A2. In the experiment, both antennas were operated in current drive mode, as RF-PSI tends to be higher in this phasing and at similar power (∼0.5 MW. When sweeping the edge magnetic field pitch angle, peaked RF-PSI effects, in the form of 2-4 fold increase in the local Be source,are consistently measured with the observation spots magnetically connect to regions of TOPICAL-calculated high near-fields, particularly at the near-antenna limiters. It is also found that similar RF-PSI effects are produced by the two types of antenna on similarly distant limiters. Although this mapping of calculated near-fields to enhanced RF-PSI gives only qualitative interpretion of the data, the present dataset is expected to provide a sound experimental basis for emerging RF sheath simulation model validation.

  2. RF Sheath-Enhanced Plasma Surface Interaction Studies using Beryllium Optical Emission Spectroscopy in JET ITER-Like Wall

    Science.gov (United States)

    Christopher Klepper, C.; Colas, Laurent; Křivská, Alena; Bobkov, Volodymyr; Jacquet, Philippe; Delabie, Ephrem; Giroud, Carine; Kirov, Krassimir; Lasa, Ane; Lerche, Ernesto; Dumortier, Pierre; Durodié, Frederic; Firdaouss, Mehdi

    2017-10-01

    A dedicated study on JET-ILW, deploying two types of ICRH antennas and spectroscopic observation spots at two outboard, beryllium limiters, has provided insight on long-range (up to 6m) RFenhanced plasma-surface interactions (RF-PSI) due to near-antenna electric fields. To aid in the interpretation of optical emission measurements of these effects, the antenna near-fields are computed using the TOPICA code, specifically run for the ITER-like antenna (ILA); similar modelling already existed for the standard JET antennas (A2). In the experiment, both antennas were operated in current drive mode, as RF-PSI tends to be higher in this phasing and at similar power (˜0.5 MW). When sweeping the edge magnetic field pitch angle, peaked RF-PSI effects, in the form of 2-4 fold increase in the local Be source,are consistently measured with the observation spots magnetically connect to regions of TOPICAL-calculated high near-fields, particularly at the near-antenna limiters. It is also found that similar RF-PSI effects are produced by the two types of antenna on similarly distant limiters. Although this mapping of calculated near-fields to enhanced RF-PSI gives only qualitative interpretion of the data, the present dataset is expected to provide a sound experimental basis for emerging RF sheath simulation model validation.

  3. Synthesis, Characterization, Topographical Modification, and Surface Properties of Copoly(Imide Siloxane)s

    Science.gov (United States)

    Wohl, Christopher J.; Atkins, Brad M.; Belcher, Marcus A.; Connell, John W.

    2012-01-01

    Novel copoly(imide siloxane)s were synthesized from commercially available aminopropyl terminated siloxane oligomers, aromatic dianhydrides, and diamines. This synthetic approach produced copolymers with well-defined siloxane blocks linked with imide units in a random fashion. The copoly(amide acid)s were characterized by solution viscosity and subsequently used to cast thin films followed by thermal imidization in an inert atmosphere. Thin films were characterized using contact angle goniometry, attenuated total reflection Fourier transform infrared spectroscopy, confocal and optical microscopy, and tensile testing. Adhesion of micronsized particles was determined quantitatively using a sonication device. The polydimethylsiloxane (PDMS) moieties lowered the copolymer surface energy due to migration of siloxane moieties to the film s surface, resulting in a notable reduction in particle adhesion. A further reduction in particle adhesion was achieved by introducing topographical features on a scale of several to tens of microns by a laser ablation technique.

  4. New Method to Characterize Degradation of First Surface Aluminum Reflectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, F.; Heller, P.; Meyen, S.; Pitz-Paal, R.; Kennedy, C.; Fernandez-Garcia, A.; Schmucker, M.

    2010-10-01

    This paper reports the development of a new optical instrument capable of characterizing the aging process of enhanced first surface aluminum reflectors for concentrating solar power (CSP) application. Samples were exposed outdoors at different sites and in accelerated exposure tests. All samples exposed outdoors showed localized corrosion spots. Degradation originated from points of damage in the protective coating, but propagated underneath the protective coating. The degraded samples were analyzed with a microscope and with a newly designed space-resolved specular reflectometer (SR)2 that is capable of optically detecting and characterizing the corrosion spots. The device measures the specular reflectance at three acceptance angles and the wavelengths with spatial resolution using a digital camera's CMOS sensor. It can be used to measure the corrosion growth rate during outdoor and accelerated exposure tests. These results will allow a correlation between the degraded mirror surface and its specular reflectance.

  5. Preparation, characterization, surface modification and redox reactions of silver nanoparticles in the presence of tryptophan.

    Science.gov (United States)

    Jacob, Jasmine A; Naumov, Sergej; Mukherjee, Tulsi; Kapoor, Sudhir

    2011-10-15

    The synthesis and characterization of water-soluble dispersions of Ag nanoparticles by the reduction of AgNO(3) using tryptophan under alkaline synthesis conditions are reported. The Ag nanoparticle formation was very slow at low concentration and rapid at extremes. For surface modification and redox reactions, manipulating the interparticles interaction controlled the size of Ag nanoparticles aggregates. Our results suggest that the replacement of the BH(4)(-) ions adsorbed on the nanoparticle surface by tryptophan destabilizes the particles and further caused aggregation. A mechanism is proposed for the formation of silver nanoparticles by tryptophan. The experimental results are supported by theoretical calculations. The Ag nanoparticles were characterized by UV-vis absorption, dynamic light scattering and transmission electron microscopy techniques. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A new procedure for characterizing textured surfaces with a deterministic pattern of valley features

    DEFF Research Database (Denmark)

    Godi, Alessandro; Kühle, A; De Chiffre, Leonardo

    2013-01-01

    , therefore some modifications are investigated. In particular the robust Gaussian regression filter has been modified providing an envelope first-guess in order to always fit the mean line through the plateau region. Starting from a filtered and aligned profile, the feature thresholds recognition...... properly characterize such surfaces, providing at times unreasonable values. In this paper, a new procedure for characterizing such surfaces is proposed, relying on advanced filtering and feature recognition and separation. Existing advanced filtering methods do not always eliminate all distortions...... and separation is therefore made possible. In particular the plateau and valley regions can be detected, separated and independently analyzed according to their function. The example of a multifunctional profile is presented. The profile is analyzed using the new procedure, which demonstrates outputting...

  7. Enhancing Europa surface characterization with ice penetrating radar: A Comparative study in Antarctica

    Science.gov (United States)

    Curra, C.; Arnold, E.; Karwoski, B.; Grima, C.; Schroeder, D. M.; Young, D. A.; Blankenship, D. D.

    2013-12-01

    The shape and composition of the surface of Europa result from multiple processes, most of them involving direct and indirect interactions between the liquid and solid phases of its outer water layer. The surface ice composition is likely to reflect the material exchanged with the sub-glacial ocean and potentially holds signatures of organic compounds that could demonstrate the ability of the icy moon to sustain life. Therefore, the most likely targets for in-situ landing missions are primarily located in complex terrains disrupted by exchange mechanisms with the ocean/lenses of sub-glacial liquid water. Any landing site selection process to ensure a safe delivery of a future lander, will then have to confidently characterize its surface roughness. We evaluate the capability of an ice-penetrating radar to characterize the roughness using a statistical method applied to the surface echoes. Our approach is to compare radar-derived data with nadir-imagery and laser altimetry simultaneously acquired on an airborne platform over Marie Byrd Land, West Antarctica, during the 2012-13 GIMBLE survey. The radar is the High-Capability Radar Sounder 2 (HiCARS 2, 60 MHz) system operated by the University of Texas Institute for Geophysics (UTIG), with specifications similar to the Ice Penetrating Radar (IPR) of the Europa Clipper project. Surface textures as seen by simultaneously collected nadir imagery are manually classified, allowing individual contrast stretching for better identification. We identified crevasse fields, blue ice patches, and families of wind-blown patterns. Homogeneity/heterogeneity of the textures has also been an important classification criterion. The various textures are geolocated and compared to the evolution and amplitude of laser-derived and radar-derived roughness. Similarities and discrepancies between these three datasets are illustrated and analyzed to qualitatively constrain radar sensitivity to the surface textures. The result allows for a

  8. Surface characterizations of fluorescent-functionalized silica nanoparticles: from the macroscale to the nanoscale

    OpenAIRE

    Samuel, Jorice; Racurt, Olivier; Poncelet, Olivier; Auger, Aurélien; Ling, Wai-Li; Cherns, Peter; Grunwald, Didier; Tillement, Olivier

    2010-01-01

    International audience; Fluorescent silica nanoparticles are widely used for various applications from mechanical reinforcement to biology. In many cases, their surface has to be tailored. Herein fluorescent silica nanoparticles are synthesized by a reverse micro-emulsion process and functionalized by silane coupling agents owning amino and thiol groups. The functionalization is then characterized by macroscopic well-known methods (zeta potential, hydrophilic to hydrophobic ratio, etc.) and a...

  9. Comparative Analysis of the Proteins with Tandem Repeats from 8 Microsporidia and Characterization of a Novel Endospore Wall Protein Colocalizing with Polar Tube from Nosema bombycis.

    Science.gov (United States)

    Wang, Ying; Geng, Huixia; Dang, Xiaoqun; Xiang, Heng; Li, Tian; Pan, Guoqing; Zhou, Zeyang

    2017-09-01

    As a common feature of eukaryotic proteins, tandem amino acid repeat has been studied extensively in both animal and plant proteins. Here, a comparative analysis focusing on the proteins having tandem repeats was conducted in eight microsporidia, including four mammal-infecting microsporidia (Encephalitozoon cuniculi, Encephalitozoon intestinalis, Encephalitozoon hellem and Encephalitozoon bieneusi) and four insect-infecting microsporidia (Nosema apis, Nosema ceranae, Vavraia culicis and Nosema bombycis). We found that the proteins with tandem repeats were abundant in these species. The quantity of these proteins in insect-infecting microsporidia was larger than that of mammal-infecting microsporidia. Additionally, the hydrophilic residues were overrepresented in the tandem repeats of these eight microsporidian proteins and the amino acids residues in these tandem repeat sequences tend to be encoded by GC-rich codons. The tandem repeat position within proteins of insect-infecting microsporidia was randomly distributed, whereas the tandem repeats within proteins of mammal-infecting microsporidia rarely tend to be present in the N terminal regions, when compared with those present in the C terminal and middle regions. Finally, a hypothetical protein EOB14572 possessing four tandem repeats was successfully characterized as a novel endospore wall protein, which colocalized with polar tube of N. bombycis. Our study provided useful insight for the study of the proteins with tandem repeats in N. bombycis, but also further enriched the spore wall components of this obligate unicellular eukaryotic parasite. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.

  10. Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response.

    Science.gov (United States)

    Bayry, Jagadeesh; Beaussart, Audrey; Dufrêne, Yves F; Sharma, Meenu; Bansal, Kushagra; Kniemeyer, Olaf; Aimanianda, Vishukumar; Brakhage, Axel A; Kaveri, Srini V; Kwon-Chung, Kyung J; Latgé, Jean-Paul; Beauvais, Anne

    2014-08-01

    In Aspergillus fumigatus, the conidial surface contains dihydroxynaphthalene (DHN)-melanin. Six-clustered gene products have been identified that mediate sequential catalysis of DHN-melanin biosynthesis. Melanin thus produced is known to be a virulence factor, protecting the fungus from the host defense mechanisms. In the present study, individual deletion of the genes involved in the initial three steps of melanin biosynthesis resulted in an altered conidial surface with masked surface rodlet layer, leaky cell wall allowing the deposition of proteins on the cell surface and exposing the otherwise-masked cell wall polysaccharides at the surface. Melanin as such was immunologically inert; however, deletion mutant conidia with modified surfaces could activate human dendritic cells and the subsequent cytokine production in contrast to the wild-type conidia. Cell surface defects were rectified in the conidia mutated in downstream melanin biosynthetic pathway, and maximum immune inertness was observed upon synthesis of vermelone onward. These observations suggest that although melanin as such is an immunologically inert material, it confers virulence by facilitating proper formation of the A. fumigatus conidial surface. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. The characterization of the antibacterial efficacy of an electrically activated silver ion-based surface system

    Science.gov (United States)

    Shirwaiker, Rohan A.

    There have been growing concerns in the global healthcare system about the eradication of pathogens in hospitals and other health-critical environments. The problem has been aggravated by the overuse of antibiotics and antimicrobial agents leading to the emergence of antibiotic-resistant superbugs such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) which are difficult to kill. Lower immunity of sick patients coupled with the escalating concurrent problem of antibiotic-resistant pathogens has resulted in increasing incidences of hospital acquired (nosocomial) infections. There is an immediate need to control the transmission of such infections, primarily in healthcare environments, by creating touch-contact and work surfaces (e.g., door knobs, push plates, countertops) that utilize alternative antibacterial materials like the heavy metal, silver. Recent research has shown that it is silver in its ionic (Ag+ ) and not elemental form that is antibacterial. Thus, silver-based antibacterial surfaces have to release silver ions directly into the pathogenic environment (generally, an aqueous media) in order to be effective. This dissertation presents the study and analysis of a new silver-based surface system that utilizes low intensity direct electric current (LIDC) for generation of silver ions to primarily inhibit indirect contact transmission of infections. The broader objective of this research is to understand the design, and characterization of the electrically activated silver ion-based antibacterial surface system. The specific objectives of this dissertation include: (1) Developing a comprehensive system design, and identifying and studying its critical design parameters and functional mechanisms. (2) Evaluating effects of the critical design parameters on the antibacterial efficacy of the proposed surface system. (3) Developing a response surface model for the surface system performance. These objectives are

  12. Rapid profiling and structural characterization of bioactive compounds and their distribution in different parts of Berberis petiolaris Wall. ex G. Don applying hyphenated mass spectrometric techniques.

    Science.gov (United States)

    Singh, A; Bajpai, V; Srivastava, M; Arya, K R; Kumar, B

    2014-10-15

    Berberis petiolaris Wall. is a lesser known medicinal plant, belonging to the family Berberidaceae. The genus Berberis is known for many biological activities such as anti-microbial, anti-inflammatory and anti-diarrheal, etc. There are not many reports of the isolation of components from Berberis petiolaris. This study aims to seek identification, characterization and quantification of components. A method was developed for rapid screening of phytochemicals using high-pressure liquid chromatography hyphenated with quadrupole time-of-flight mass spectrometry (HPLC/ESI-QTOF-MS/MS). Suitable collision-induced dissociation mass spectrometry (CID-MS/MS) methods were developed for structural investigation of alkaloids, flavanoids and other classes of compounds using nine reference standards for authentication. Multiple reaction monitoring (MRM) methods were developed for quantitative study of five constituents using triple quadrupole-linear ion trap mass spectrometry (UPLC/QqLIT-MS/MS). On the basis of HPLC retention behavior and fragmentation pathways obtained by high-resolution MS and MS/MS, 32 compounds were identified and characterized in different parts of Berberis petiolaris. Quantitative studies of chlorogenic acid, magnoflorine, jatrorrhizine, palmatine and berberine were also completed successfully. Rapid and accurate HPLC/ESI-QTOF-MS/MS and UPLC/ESI-QqLIT-MS/MS methods were established for identification, characterization and quantification of phytochemicals in the ethanolic extract of Berberis petiolaris. These methods, therefore, can be used for studies on phytochemical variation in different parts of the plant. Principle components analysis (PCA) may be used for plant part discrimination. Copyright © 2014 John Wiley & Sons, Ltd.

  13. A novel, effective and low cost catalyst for methanol oxidation based on nickel ions dispersed onto poly(o-toluidine)/Triton X-100 film at the surface of multi-walled carbon nanotube paste electrode

    Energy Technology Data Exchange (ETDEWEB)

    Raoof, Jahan-Bakhsh; Ojani, Reza; Hosseini, Sayed Reza [Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, Mazandaran University, Postal Code 47416-95447, Babolsar (Iran, Islamic Republic of)

    2011-02-15

    In this work, for the first time an aqueous solution of Triton X-100 (TX-100) [t-octyl phenoxy polyethoxy ethanol] non-ionic surfactant is used as an additive for electropolymerization of o-toluidine (OT) onto multi-walled carbon nanotube paste electrode (CNTPE), which is investigated as a novel matrix for dispersion of nickel ions. The growth of polymeric film in the absence of TX-100 is poor, while it considerably increases in the presence of the surfactant and its growth is continued up to 60th cycle. The as-prepared substrate is used as porous matrix for dispersion of transition metal ions of Ni(II) to POT/TX-100 film by immersing the modified electrode in a 0.1 M nickel sulfate solution. The electrochemical characterization of this modified electrode exhibits redox behavior of Ni(III)/Ni(II) couple. It has been shown that POT/TX-100 at the surface of CNTPE improves catalytic efficiency of the dispersed nickel ions toward methanol oxidation. Then, using a chronoamperometric method, the catalytic rate constant, k, for methanol oxidation is found to be 7.40 x 10{sup 4} cm{sup 3} mol{sup -1} s{sup -1}. At the end of this work, long-term stability of this modified electrode has been investigated. (author)

  14. Statistical analysis of surface lineaments and fractures for characterizing naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Genliang; George, S.A.; Lindsey, R.P.

    1997-08-01

    Thirty-six sets of surface lineaments and fractures mapped from satellite images and/or aerial photos from parts of the Mid-continent and Colorado Plateau regions were collected, digitized, and statistically analyzed in order to obtain the probability distribution functions of natural fractures for characterizing naturally fractured reservoirs. The orientations and lengths of the surface linear features were calculated using the digitized coordinates of the two end points of each individual linear feature. The spacing data of the surface linear features within an individual set were, obtained using a new analytical sampling technique. Statistical analyses were then performed to find the best-fit probability distribution functions for the orientation, length, and spacing of each data set. Twenty-five hypothesized probability distribution functions were used to fit each data set. A chi-square goodness-of-fit test was used to rank the significance of each fit. A distribution which provides the lowest chi-square goodness-of-fit value was considered the best-fit distribution. The orientations of surface linear features were best-fitted by triangular, normal, or logistic distributions; the lengths were best-fitted by PearsonVI, PearsonV, lognormal2, or extreme-value distributions; and the spacing data were best-fitted by lognormal2, PearsonVI, or lognormal distributions. These probability functions can be used to stochastically characterize naturally fractured reservoirs.

  15. Nanoscale Surface Characterization of Human Erythrocytes by Atomic Force Microscopy: A Critical Review.

    Science.gov (United States)

    Mukherjee, Rashmi; Saha, Monjoy; Routray, Aurobinda; Chakraborty, Chandan

    2015-09-01

    Erythrocytes (red blood cells, RBCs), the most common type of blood cells in humans are well known for their ability in transporting oxygen to the whole body through hemoglobin. Alterations in their membrane skeletal proteins modify shape and mechanical properties resulting in several diseases. Atomic force microscopy (AFM), a new emerging technique allows non-invasive imaging of cell, its membrane and characterization of surface roughness at micrometer/nanometer resolution with minimal sample preparation. AFM imaging provides direct measurement of single cell morphology, its alteration and quantitative data on surface properties. Hence, AFM studies of human RBCs have picked up pace in the last decade. The aim of this paper is to review the various applications of AFM for characterization of human RBCs topology. AFM has been used for studying surface characteristics like nanostructure of membranes, cytoskeleton, microstructure, fluidity, vascular endothelium, etc., of human RBCs. Various modes of AFM imaging has been used to measure surface properties like stiffness, roughness, and elasticity. Topological alterations of erythrocytes in response to different pathological conditions have also been investigated by AFM. Thus, AFM-based studies and application of image processing techniques can effectively provide detailed insights about the morphology and membrane properties of human erythrocytes at nanoscale.

  16. Contribution of polarimetric imaging for the characterization of fibrous surface properties at different scales

    Science.gov (United States)

    Tourlonias, Michel; Bigué, Laurent; Bueno, Marie-Ange

    2010-01-01

    The point in using polarimetric imaging for surface characterization is highlighted in this paper. A method for the evaluation of nonwoven surface properties at microscopic and macroscopic scales is described. This method is based on a polarimetric apparatus and various image processing operations are then performed depending on the studied scale. Polarimetric imaging applied to nonwovens, particularly degree of polarization imaging, highlights texture inhomogeneities. At both scales, image processing techniques were designed to analyze surface zones of different textures. At the macroscopic scale, a basic image processing was developed in order to detect the nonwoven manufacturing process defects. Moreover at the microscopic scale, i.e. at the fiber scale, image processing was adapted to evaluate fiber orientation within nonwovens, which is known to be an important information for mechanical behavior prediction.

  17. Characterization on Contacting Surfaces of MEMS Electrostatic Switches by SEM, EDXA, and XPS

    Directory of Open Access Journals (Sweden)

    I. A. Afinogenov

    2015-01-01

    Full Text Available We focus on the origin and sources of surface contamination and defects causing the failure of MEMS electrostatic switches. The morphology, and elemental and chemical compositions of the contacting surfaces, conducting paths, and other parts of switches have been characterized by means of SEM, EDXA, and XPS in order to understand the difference between the data collected for the devices that had passed the electrical conductivity test and those found to be defective. C, O, Al, Ca, Ti, Cu, and some other impurities were detected on the details of defective switches. Contrariwise, the working switches were found to be clean, at least on the level of EDXA and XPS sensitivity. The main sources of surface contamination and defects were incompletely deleted sacrificial layers, substrate materials, and electrolytes employed for Rh plating of the contacts. The negative influence of foreign microparticles, especially alumina and copper oxides, on the conductivity and porosity of contacts was highlighted.

  18. Nonlinear dynamic analysis of D α signals for type I edge localized modes characterization on JET with a carbon wall

    Science.gov (United States)

    Cannas, Barbara; Fanni, Alessandra; Murari, Andrea; Pisano, Fabio; Contributors, JET

    2018-02-01

    In this paper, the dynamic characteristics of type-I ELM time-series from the JET tokamak, the world’s largest magnetic confinement plasma physics experiment, have been investigated. The dynamic analysis has been focused on the detection of nonlinear structure in D α radiation time series. Firstly, the method of surrogate data has been applied to evaluate the statistical significance of the null hypothesis of static nonlinear distortion of an underlying Gaussian linear process. Several nonlinear statistics have been evaluated, such us the time delayed mutual information, the correlation dimension and the maximal Lyapunov exponent. The obtained results allow us to reject the null hypothesis, giving evidence of underlying nonlinear dynamics. Moreover, no evidence of low-dimensional chaos has been found; indeed, the analysed time series are better characterized by the power law sensitivity to initial conditions which can suggest a motion at the ‘edge of chaos’, at the border between chaotic and regular non-chaotic dynamics. This uncertainty makes it necessary to further investigate about the nature of the nonlinear dynamics. For this purpose, a second surrogate test to distinguish chaotic orbits from pseudo-periodic orbits has been applied. In this case, we cannot reject the null hypothesis which means that the ELM time series is possibly pseudo-periodic. In order to reproduce pseudo-periodic dynamical properties, a periodic state-of-the-art model, proposed to reproduce the ELM cycle, has been corrupted by a dynamical noise, obtaining time series qualitatively in agreement with experimental time series.

  19. Surface characterization of retinal tissues for the enhancement of vitreoretinal surgical methods

    Science.gov (United States)

    Valentin-Rodriguez, Celimar

    Diabetic retinopathy is the most common ophthalmic complication of diabetes and the leading cause of blindness among adults, ages 30 to 70. Surgery to remove scar tissue in the eye is the only corrective treatment once the retina is affected. Visual recovery is often hampered by retinal trauma during surgery and by low patient compliance. Our work in this project aimed to improve vitreoretinal surgical methods from information gathered by sensitive surface analysis of pre-retinal tissues found at the vitreoretinal interface. Atomic force microscopy characterization of human retinal tissues revealed that surgically excised inner limiting membrane (ILM) has a heterogeneous surface and is mainly composed of globular and fibrous structures. ILM tissues also show low adhesion for clean unmodified surfaces as opposed to those with functional groups attractive to those on the ILM surface, due to their charge. Based on these observations, layer-by-layer films with embedded gold nanoparticles with a positive outer charge were designed. These modifications increased the adhesion between surgical instruments and ILM by increasing the roughness and tuning the film surface charge. These films proved to be stable under physiological conditions. Finally, the effect of vital dyes on the topographical characteristics of ILMs was characterized and new imaging modes to further reveal ILM topography were utilized. Roughness and adhesion force data suggest that second generation dyes have no effect on the surface nanostructure of ILMs, but increase adhesion at the tip sample interface. This project clearly illustrates that physicochemical information from tissues can be used to rationally re-design surgical procedures, in this case for tissue removal purposes. This rational design method can be applied to other soft tissue excision procedures as is the case of cataract surgery or laparoscopic removal of endometrial tissue.

  20. Morpho-chemical characterization and surface properties of carcinogenic zeolite fibers

    Energy Technology Data Exchange (ETDEWEB)

    Mattioli, Michele, E-mail: michele.mattioli@uniurb.it [Department of Earth, Life and Environment Sciences, University of Urbino, 61029 Urbino (Italy); Giordani, Matteo [Department of Earth, Life and Environment Sciences, University of Urbino, 61029 Urbino (Italy); Dogan, Meral [Geological Engineering Department, Hacettepe University, Beytepe, Ankara, Turkey & Center for Global and Regional Environmental Research, University of Iowa, Iowa City, Iowa 52242 (United States); Cangiotti, Michela; Avella, Giuseppe [Department of Earth, Life and Environment Sciences, University of Urbino, 61029 Urbino (Italy); Giorgi, Rodorico [Department of Chemistry, University of Florence, 50019 Firenze (Italy); Dogan, A. Umran [Chemical and Biochemical Engineering Department & Center for Global and Regional Environmental Research, University of Iowa, Iowa City, Iowa 52242 (United States); Ottaviani, Maria Francesca, E-mail: maria.ottaviani@uniurb.it [Department of Earth, Life and Environment Sciences, University of Urbino, 61029 Urbino (Italy)

    2016-04-05

    Highlights: • Differently carcinogenic zeolite fibers were investigated combining physico-chemical methods. • For the first time, zeolite fibers were studied by means of the EPR technique using different spin probes. • The structural properties and the adsorption capability are function of different types and distributions of adsorption sites. • The interacting ability of erionite is higher than that of other fibrous zeolites. • The surface interacting properties may be related with the carcinogenicity of the zeolite fibers. - Abstract: Erionite belonging to the zeolite family is a human health-hazard, since it was demonstrated to be carcinogenic. Conversely, offretite family zeolites were suspected carcinogenic. Mineralogical, morphological, chemical, and surface characterizations were performed on two erionites (GF1, MD8) and one offretite (BV12) fibrous samples and, for comparison, one scolecite (SC1) sample. The specific surface area analysis indicated a larger availability of surface sites for the adsorption onto GF1, while SC1 shows the lowest one and the presence of large pores in the poorly fibrous zeolite aggregates. Selected spin probes revealed a high adsorption capacity of GF1 compared to the other zeolites, but the polar/charged interacting sites were well distributed, intercalated by less polar sites (Si–O–Si). MD8 surface is less homogeneous and the polar/charged sites are more interacting and closer to each other compared to GF1. The interacting ability of BV12 surface is much lower than that found for GF1 and MD8 and the probes are trapped in small pores into the fibrous aggregates. In comparison with the other zeolites, the non-carcinogenic SC1 shows a poor interacting ability and a lower surface polarity. These results helped to clarify the chemical properties and the surface interacting ability of these zeolite fibers which may be related to their carcinogenicity.

  1. A contactless ultrasonic surface wave approach to characterize distributed cracking damage in concrete.

    Science.gov (United States)

    Ham, Suyun; Song, Homin; Oelze, Michael L; Popovics, John S

    2017-03-01

    We describe an approach that utilizes ultrasonic surface wave backscatter measurements to characterize the volume content of relatively small distributed defects (microcrack networks) in concrete. A simplified weak scattering model is used to demonstrate that the scattered wave field projected in the direction of the surface wave propagation is relatively insensitive to scatterers that are smaller than the propagating wavelength, while the scattered field projected in the opposite direction is more sensitive to sub-wavelength scatterers. Distributed microcracks in the concrete serve as the small scatterers that interact with a propagating surface wave. Data from a finite element simulation were used to demonstrate the viability of the proposed approach, and also to optimize a testing configuration to collect data. Simulations were validated through experimental measurements of ultrasonic backscattered surface waves from test samples of concrete constructed with different concentrations of fiber filler (0.0, 0.3 and 0.6%) to mimic increasing microcrack volume density and then samples with actual cracking induced by controlled thermal cycles. A surface wave was induced in the concrete samples by a 50kHz ultrasonic source operating 10mm above the surface at an angle of incidence of 9°. Silicon-based miniature MEMS acoustic sensors located a few millimeters above the concrete surface both behind and in front of the sender were used to detect leaky ultrasonic surface waves emanating from concrete. A normalized backscattered energy parameter was calculated from the signals. Statistically significant differences in the normalized backscattered energy were observed between concrete samples with varying levels of simulated and actual cracking damage volume. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces.

    Science.gov (United States)

    Khan, Mohiuddin Md Taimur; Stewart, Philip S; Moll, David J; Mickols, William E; Nelson, Sara E; Camper, Anne K

    2011-02-01

    Biofouling is a major reason for flux decline in the performance of membrane-based water and wastewater treatment plants. Initial biochemical characterization of biofilm formation potential and biofouling on two commercially available membrane surfaces from FilmTec Corporation were investigated without filtration in laboratory rotating disc reactor systems. These surfaces were polyamide aromatic thin-film reverse osmosis (RO) (BW30) and semi-aromatic nanofiltration (NF270) membranes. Membrane swatches were fixed on removable coupons and exposed to water with indigenous microorganisms supplemented with 1.5 mg l(-1) organic carbon under continuous flow. After biofilms formed, the membrane swatches were removed for analyses. Staining and epifluorescence microscopy revealed more cells on the RO than on the NF surface. Based on image analyses of 5-μm thick cryo-sections, the accumulation of hydrated biofoulants on the RO and NF surfaces exceeded 0.74 and 0.64 μm day(-1), respectively. As determined by contact angle the biofoulants increased the hydrophobicity up to 30° for RO and 4° for NF surfaces. The initial difference between virgin RO and NO hydrophobicities was ∼5°, which increased up to 25° after biofoulant formation. The initial roughness of RO and NF virgin surfaces (75.3 nm and 8.2 nm, respectively) increased to 48 nm and 39 nm after fouling. A wide range of changes of the chemical element mass percentages on membrane surfaces was observed with X-ray photoelectron spectroscopy. The initial chemical signature on the NF surface was better restored after cleaning than the RO membrane. All the data suggest that the semi-aromatic NF surface was more biofilm resistant than the aromatic RO surface. The morphology of the biofilm and the location of active and dead cell zones could be related to the membrane surface properties and general biofouling accumulation was associated with changes in the surface chemistry of the membranes, suggesting the validity of

  3. Restrained shrinkage of masonry walls

    NARCIS (Netherlands)

    Zijl, G.P.A.G. van; Rots, J.G.

    1998-01-01

    State of the art computational rnechanics, in combination with experimental programmes have a lot to offer in providing insight, characterization of total behaviour and predictive ability of structural masonry. Here numerical research towards rationalizing masonry wall movement joint positioning and

  4. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Paladini, F., E-mail: federica.paladini@unisalento.it [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Picca, R.A.; Sportelli, M.C.; Cioffi, N. [Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona 4, 70126 Bari (Italy); Sannino, A.; Pollini, M. [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy)

    2015-07-01

    Silver nanophases are increasingly used as effective antibacterial a