WorldWideScience

Sample records for wall motion studies

  1. Tissue Doppler imaging of carotid plaque wall motion: a pilot study

    Directory of Open Access Journals (Sweden)

    Naylor A Ross

    2003-12-01

    Full Text Available Abstract Background Studies suggest the physical and mechanical properties of vessel walls and plaque may be of clinical value in the diagnosis and treatment of cardiovascular atherosclerotic disease. The purpose of this pilot study was to investigate the potential clinical application of ultrasound Tissue Doppler Imaging (TDI of Arterial Wall Motion (AWM and to quantify simple wall motion indices in normal and diseased carotid arteries. Methods 224 normal and diseased carotid arteries (0–100% stenoses were imaged in 126 patients (age 25–88 years, mean 68 ± 11. Longitudinal sections of the carotid bifurcation were imaged using a Philips HDI5000 scanner and L12-5 probe under optimized TDI settings. Temporal and spatial AWMs were analyzed to evaluate the vessel wall displacements and spatial gradients at peak systole averaged over 5 cardiac cycles. Results AWM data were successfully extracted in 91% of cases. Within the carotid bifurcation/plaque region, the maximum wall dilation at peak systole ranged from -100 to 750 microns, mean 335 ± 138 microns. Maximum wall dilation spatial gradients ranged 0–0.49, mean 0.14 ± 0.08. The AWM parameters showed a wide variation and had poor correlation with stenoses severity. Case studies illustrated a variety of pertinent qualitative and quantitative wall motion features related to the biophysics of arterial disease. Conclusion Our clinical experience, using a challenging but realistic imaging protocol, suggests the use of simple quantitative AWM measures may have limitations due to high variability. Despite this, pertinent features of AWM in normal and diseased arteries demonstrate the potential clinical benefit of the biomechanical information provided by TDI.

  2. Noninvasive assessment of right ventricular wall motion by radionuclide cardioangiography

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Uehara, Toshiisa; Naito, Hiroaki; Hayashida, Kohei; Kozuka, Takahiro

    1981-01-01

    Radionuclide cardioangiography is a useful method to evaluate the left ventricular wall motion in various heart diseases. It has been also attempted to assess the right ventricular wall motion simultaneously by radionuclide method. In this study, using the combination of first-pass (RAO 30 0 ) and multi-gate (LAO 40 0 ) method, the site of right vetricle was classified in five. (1 inflow, 2 sinus, 3 outflow, 4 septal, 5 lateral) and the degree of wall motion was classified in four stages (dyskinesis, akinesis, hypokinesis, normal) according to the AHA committee report. These methods were applied clinically to forty-eight patients with various heart diseases. In the cases with right ventricular pressure or volume overload such as COLD, pulmonary infarction, the right ventricle was dilated and the wall motion was reduced in all portions. Especially, in the cases with right ventricular infarction, the right ventricular wall motion was reduced in the infarcted area. The findings of radionuclide method were in good agreement with those of contrast right ventriculography or echocardiography. In conclusion, radionuclide cardioangiography is a useful and noninvasive method to assess not only the left but also the right ventricular wall motion. (author)

  3. Intraventricular flow alterations due to dyssynchronous wall motion

    Science.gov (United States)

    Pope, Audrey M.; Lai, Hong Kuan; Samaee, Milad; Santhanakrishnan, Arvind

    2015-11-01

    Roughly 30% of patients with systolic heart failure suffer from left ventricular dyssynchrony (LVD), in which mechanical discoordination of the ventricle walls leads to poor hemodynamics and suboptimal cardiac function. There is currently no clear mechanistic understanding of how abnormalities in septal-lateral (SL) wall motion affects left ventricle (LV) function, which is needed to improve the treatment of LVD using cardiac resynchronization therapy. We use an experimental flow phantom with an LV physical model to study mechanistic effects of SL wall motion delay on LV function. To simulate mechanical LVD, two rigid shafts were coupled to two segments (apical and mid sections) along the septal wall of the LV model. Flow through the LV model was driven using a piston pump, and stepper motors coupled to the above shafts were used to locally perturb the septal wall segments relative to the pump motion. 2D PIV was used to examine the intraventricular flow through the LV physical model. Alterations to SL delay results in a reduction in the kinetic energy (KE) of the flow field compared to synchronous SL motion. The effect of varying SL motion delay from 0% (synchronous) to 100% (out-of-phase) on KE and viscous dissipation will be presented. This research was supported by the Oklahoma Center for Advancement of Science and Technology (HR14-022).

  4. Clustering Of Left Ventricular Wall Motion Patterns

    Science.gov (United States)

    Bjelogrlic, Z.; Jakopin, J.; Gyergyek, L.

    1982-11-01

    A method for detection of wall regions with similar motion was presented. A model based on local direction information was used to measure the left ventricular wall motion from cineangiographic sequence. Three time functions were used to define segmental motion patterns: distance of a ventricular contour segment from the mean contour, the velocity of a segment and its acceleration. Motion patterns were clustered by the UPGMA algorithm and by an algorithm based on K-nearest neighboor classification rule.

  5. Wall motion abnormality of myocardial infarction

    International Nuclear Information System (INIS)

    Hayashi, Senji; Tsuda, Takashi; Ojima, Kenji

    1984-01-01

    By use of the gated blood pool scan, we divided the left ventricular LAO 45 image into 8 sections with the center of the volume as the basal point, and devised a method of quantitative evaluation of the regional wall motion from 2 aspects: 1) wall movement and 2) phase abnormality. To evaluate the wall movement, we obtained the following indeces from count curves of each section: 1) EF1=(end-diastolic count-end-systolic count)/ end-diastolic count, 2) EF2=(maximum count-minimum count)/maximum count, and 3) the difference of the two (EF2-EF1). As indeces of the phase abnormality, the mean value of phases of the pixels (phase characteristics) and the standard deviation (variation) of each section were calculated. Furthermore, the phase delay of each section was calculated as the difference from the earliest phase value of the 8 sections. Control values and standard deviation were obtained from 8 healthy controls. By this method, we analyzed 20 patients with old myocardial infarction. And following results were obtained: 1. Applying this method, we could evaluate the regional wall motion of the left ventricle more precisely, and we considered it would be useful clinically. 2. The abnormal regional wall motion of old myocardial infarction were classified into 4 typical forms as follows: 1) the wall movement decreased extremely. 2) the wall movement decreased, but no phase delay recognized. 3) the wall movement did not decrease, but phase delay was recognized. 4) the wall movement decreased, and phase delay was recognized. (author)

  6. Detection of cardiac wall motion defects with combined amplitude/phase analysis

    International Nuclear Information System (INIS)

    Bacharach, S.L.; Green, M.V.; Bonow, R.O.; Pace, L.; Brunetti, A.; Larson, S.M.

    1985-01-01

    Fourier phase images have been used with some success to detect and quantify left ventricular (LV) wall motion defects. In abnormal regions of the LV, wall motion asynchronies often cause the time activity curve (TAC) to be shifted in phase. Such regional shifts are detected by analysis of the distribution function of phase values over the LV. However, not all wall motion defects result in detectable regional phase abnormalities. Such abnormalities may cause a reduction in the magnitude of contraction (and hence TAC amplitude) without any appreciable change in TAC shape(and hence phase). In an attempt to improve the sensitivity of the Fourier phase method for the detection of wall motion defects the authors analyzed the distribution function of Fourier amplitude as well as phase. 26 individuals with normal cardiac function and no history of cardiac disease served as controls. The goal was to detect and quantify wall motion as compared to the consensus of 3 independent observers viewing the scintigraphic cines. 26 subjects with coronary artery disease and mild wall motion defects (22 with normal EF) were studied ate rest. They found that analysis of the skew of thew amplitude distribution function improved the sensitivity for the detection of wall motion abnormalities at rest in the group from 65% to 85% (17/26 detected by phase alone, 22/26 by combined phase and amplitude analysis) while retaining a 0 false positive rate in the normal group. The authors conclude that analysis of Fourier amplitude distribution functions can significantly increase the sensitivity of phase imaging for detection of wall motion abnormalities

  7. Induced motion of domain walls in multiferroics with quadratic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimchuk, Victor S., E-mail: viktor.gera@gmail.com [National Technical University of Ukraine “Kyiv Polytechnic Institute”, Peremohy Avenue 37, 03056 Kiev (Ukraine); Shitov, Anatoliy A., E-mail: shitov@mail.ru [Donbass National Academy of Civil Engineering, Derzhavina Street 2, 86123 Makeevka, Donetsk Region (Ukraine)

    2013-10-15

    We theoretically study the dynamics of 180-degree domain wall of the ab-type in magnetic materials with quadratic magnetoelectric interaction in external alternating magnetic and electric fields. The features of the oscillatory and translational motions of the domain walls and stripe structures depending on the parameters of external fields and characteristics of the multiferroics are discussed. The possibility of the domain walls drift in a purely electric field is established. - Highlights: • We study DW and stripe DS in multiferroics with quadratic magnetoelectric interaction. • We build up the theory of oscillatory and translational (drift) DW and DS motion. • DW motion can be caused by crossed alternating electric and magnetic fields. • DW motion can be caused by alternating “pure” electric field. • DW drift velocity is formed by the AFM and Dzyaloshinskii interaction terms.

  8. Magnetization reversal in ferromagnetic spirals via domain wall motion

    Science.gov (United States)

    Schumm, Ryan D.; Kunz, Andrew

    2016-11-01

    Domain wall dynamics have been investigated in a variety of ferromagnetic nanostructures for potential applications in logic, sensing, and recording. We present a combination of analytic and simulated results describing the reliable field driven motion of a domain wall through the arms of a ferromagnetic spiral nanowire. The spiral geometry is capable of taking advantage of the benefits of both straight and circular wires. Measurements of the in-plane components of the spirals' magnetization can be used to determine the angular location of the domain wall, impacting the magnetoresistive applications dependent on the domain wall location. The spirals' magnetization components are found to depend on the spiral parameters: the initial radius and spacing between spiral arms, along with the domain wall location. The magnetization is independent of the parameters of the rotating field used to move the domain wall, and therefore the model is valid for current induced domain wall motion as well. The speed of the domain wall is found to depend on the frequency of the rotating driving field, and the domain wall speeds can be reliably varied over several orders of magnitude. We further demonstrate a technique capable of injecting multiple domain walls and show the reliable and unidirectional motion of domain walls through the arms of the spiral.

  9. Rashba spin–orbit coupling effects on a current-induced domain wall motion

    International Nuclear Information System (INIS)

    Ryu, Jisu; Seo, Soo-Man; Lee, Kyung-Jin; Lee, Hyun-Woo

    2012-01-01

    A current-induced domain wall motion in magnetic nanowires with a strong structural inversion asymmetry [I.M. Miron, T. Moore, H. Szambolics, L.D. Buda-Prejbeanu, S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, A. Schuhl, G. Gaudin, Nat. Mat. 10 (2011) 419] seems to have novel features such as the domain wall motion along the current direction or the delay of the onset of the Walker breakdown. In such a highly asymmetric system, the Rashba spin–orbit coupling (RSOC) may affect a domain wall motion. We studied theoretically the RSOC effects on a domain wall motion and found that the RSOC, indeed, can induce the domain wall motion along the current direction in certain situations. It also delays the Walker breakdown and for a strong RSOC, the Walker breakdown does not occur at all. The RSOC effects are sensitive to the magnetic anisotropy of nanowires and also to the ratio between the Gilbert damping parameter α and the non-adiabaticity parameter β. - Highlights: ► Effects of Rashba spin–orbit coupling on a domain wall motion is calculated. ► The effects depend highly on the anisotropy of a magnetic system. ► It modifies the wall velocity for the system with a perpendicular magnetic anisotropy. ► The modified velocity can be along the current direction in certain situations. ► Rashba spin–orbit coupling also hinders the onset of the Walker breakdown.

  10. Unidirectional Magnon-Driven Domain Wall Motion due to Interfacial Dzyaloshinskii-Moriya Interaction

    KAUST Repository

    Lee, Seo-Won

    2018-03-28

    We theoretically study magnon-driven motion of a tranverse domain wall in the presence of interfacial Dzyaloshinskii-Moriya interaction (DMI). Contrary to previous studies, the domain wall moves along the same direction regardless of the magnon-flow direction. Our symmetry analysis reveals that the odd order DMI contributions to the domain wall velocity are independent of the magnon-flow direction. Corresponding DMI-induced asymmetric transitions from a spin-wave state to another give rise to a large momentum transfer to the domain wall without nonreciprocity and much reflection. This counterintuitive unidirectional motion occurs not only for a spin wave with a single wavevector but also for thermal magnons with distributed wavevectors.

  11. Unidirectional Magnon-Driven Domain Wall Motion due to Interfacial Dzyaloshinskii-Moriya Interaction

    KAUST Repository

    Lee, Seo-Won; Kim, Kyoung-Whan; Moon, Jung-Hwan; Go, Gyungchoon; Manchon, Aurelien; Lee, Hyun-Woo; Everschor-Sitte, Karin; Lee, Kyung-Jin

    2018-01-01

    We theoretically study magnon-driven motion of a tranverse domain wall in the presence of interfacial Dzyaloshinskii-Moriya interaction (DMI). Contrary to previous studies, the domain wall moves along the same direction regardless of the magnon-flow direction. Our symmetry analysis reveals that the odd order DMI contributions to the domain wall velocity are independent of the magnon-flow direction. Corresponding DMI-induced asymmetric transitions from a spin-wave state to another give rise to a large momentum transfer to the domain wall without nonreciprocity and much reflection. This counterintuitive unidirectional motion occurs not only for a spin wave with a single wavevector but also for thermal magnons with distributed wavevectors.

  12. Evaluation of segmental left ventricular wall motion by equilibrium gated radionuclide ventriculography.

    Science.gov (United States)

    Van Nostrand, D; Janowitz, W R; Holmes, D R; Cohen, H A

    1979-01-01

    The ability of equilibrium gated radionuclide ventriculography to detect segmental left ventricular (LV) wall motion abnormalities was determined in 26 patients undergoing cardiac catheterization. Multiple gated studies obtained in 30 degrees right anterior oblique and 45 degrees left anterior oblique projections, played back in a movie format, were compared to the corresponding LV ventriculograms. The LV wall in the two projections was divided into eight segments. Each segment was graded as normal, hypokinetic, akinetic, dyskinetic, or indeterminate. Thirteen percent of the segments in the gated images were indeterminate; 24 out of 27 of these were proximal or distal inferior wall segments. There was exact agreement in 86% of the remaining segments. The sensitivity of the radionuclide technique for detecting normal versus any abnormal wall motion was 71%, with a specificity of 99%. Equilibrium gated ventriculography is an excellent noninvasive technique for evaluating segmental LV wall motion. It is least reliable in assessing the proximal inferior wall and interventricular septum.

  13. Clinical impact of ' in-treatment' wall motion abnormalities in hypertensive patients with left ventricular hypertrophy: the LIFE study

    DEFF Research Database (Denmark)

    Cicala, S.; Simone, G. de; Wachtell, K.

    2008-01-01

    Objectives Left ventricular systolic wall motion abnormalities have prognostic value. Whether wall motion detected by serial echocardiographic examinations predicts prognosis in hypertensive patients with left ventricular hypertrophy ( LVH) without clinically recognized atherosclerotic disease ha...

  14. Domain-walls motion in glass-coated CoFeSiB amorphous microwires

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, A.S. E-mail: as.antonov@mtu-net.ru; Buznikov, N.A.; Granovsky, A.B.; Joura, A.V.; Rakhmanov, A.L.; Yakunin, A.M

    2002-08-01

    A method for observation of domain-walls motion in amorphous microwires with circular magnetic anisotropy is proposed. Using the method, the magnetization reversal of glass-coated Co-based microwires induced by current pulses of high amplitude is studied. The magnetization reversal is shown to occur due to the nucleation of the domain walls at the sample ends and their subsequent motion along the microwire. The dependencies of the domain-wall velocity on the current pulse amplitude and a longitudinal DC magnetic field are measured. A model describing main features of experimental data is presented.

  15. Domain-walls motion in glass-coated CoFeSiB amorphous microwires

    International Nuclear Information System (INIS)

    Antonov, A.S.; Buznikov, N.A.; Granovsky, A.B.; Joura, A.V.; Rakhmanov, A.L.; Yakunin, A.M.

    2002-01-01

    A method for observation of domain-walls motion in amorphous microwires with circular magnetic anisotropy is proposed. Using the method, the magnetization reversal of glass-coated Co-based microwires induced by current pulses of high amplitude is studied. The magnetization reversal is shown to occur due to the nucleation of the domain walls at the sample ends and their subsequent motion along the microwire. The dependencies of the domain-wall velocity on the current pulse amplitude and a longitudinal DC magnetic field are measured. A model describing main features of experimental data is presented

  16. Geometric Relations for CYLEX Test Tube-Wall Motion

    Science.gov (United States)

    Hill, Larry

    2015-06-01

    The CYLinder EXpansion (CYLEX) test is a (precision, instrumented, high-purity annealed copper) pipe bomb. Its essential measured quantities are detonation speed and tube-wall motion. Its main purpose is to calibrate detonation product equations of state (EOS) by measuring how product fluid pushes metal. In its full complexity, CYLEX is an integral test, for which EOS calibration requires the entire system to be computationally modeled and compared to salient data. Stripped to its essence, CYLEX is a non-integral test for which one may perform the inverse problem, to infer the EOS directly from data. CYLEX analysis can be simplified by the fact that the test constituents achieve a steady traveling wave structure; this allows derivation of several useful geometric relationships regarding tube wall motion. The first such treatment was by G.I. Taylor. Although his analysis was limited to small wall deflection angles, he asserted that the results remain valid for arbitrary ones. I confirm this attribute and present additional useful relationships. In the past decade, CYLEX wall-motion instrumentation has migrated almost entirely from streak camera to PDV, yet discrepancies remain between the two methods. I further present geometric relationships that shed light on this issue. Work supported by the U.S. DOE.

  17. Clinical evaluation of segmental wall motion by radionuclide cardioangiography in the patients with myocardial infarction

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Uehara, Toshiisa; Kozuka, Takahiro

    1980-01-01

    To detect segmental wall motion of left ventricle is useful to identify the size and location of infarcted area in coronary arteries diseases. In this study, segmental wall motion by radionuclide cardioangiography were evaluated to compare with contrast left ventriculography in fifty patients of myocardial infarction. Segmental wall motion in RAO position by first pass method, in LAO position by multi-gated method were evaluated using an Anger camera and on-line minicomputer system by following methods; ED, ES images, sequential images, edge display, regional ejection fraction and movie imaging system (MIS). The percent agreements of segmental wall motion by RI and LVG were 84% in 350 segments of 50 cases. In all segments, segments 4, 6, 7 were better agreements than other segments. For the degree of wall motion, skinesis and dyskinesis were good agreements in both methods, while hypokinesia was slightly poor agreement (62%). On the other hand, the size of infarction, that is, percent thallium defect area was good correlated with radionuclide left ventricular ejection fraction (r = -0.855 in anterior infarction, r = -0.646 in inferior infarction). From these data, wall motion was thought to be closely related with left ventricular function, therefore, regional ejection fraction in seven areas in left ventricular image was developed and compared with segmental wall motion in left ventriculogram according to the classification of A.H.A. Comittee Report. The value of regional ejection fraction is 0.29, 0.40, 0.60 in akinesis, hypokinesis and normal. In conclusion, radionuclide cardioangiography is useful in the detection of abnormal segmental wall motion as noninvasive methods. (author)

  18. Reliable 5-min real-time MR technique for left-ventricular-wall motion analysis

    International Nuclear Information System (INIS)

    Katoh, Marcus; Spuentrup, Elmar; Guenther, Rolf W.; Buecker, Arno; Kuehl, Harald P.; Lipke, Claudia S.A.

    2007-01-01

    The aim of this study was to investigate the value of a real-time magnetic resonance imaging (MRI) approach for the assessment of left-ventricular-wall motion in patients with insufficient transthoracic echocardiography in terms of accuracy and temporal expenditure. Twenty-five consecutive patients were examined on a 1.5-Tesla whole-body MR system (ACS-NT, Philips Medical Systems, Best, NL) using a real-time and ECG-gated (the current gold standard) steady-state free-precession (SSFP) sequence. Wall motion was analyzed by three observers by consensus interpretation. In addition, the preparation, scanning, and overall examination times were measured. The assessment of the wall motion demonstrated a close agreement between the two modalities resulting in a mean κ coefficient of 0.8. At the same time, each stage of the examination was significantly shortened using the real-time MR approach. Real-time imaging allows for accurate assessment of left-ventricular-wall motion with the added benefit of decreased examination time. Therefore, it may serve as a cost-efficient alternative in patients with insufficient echocardiography. (orig.)

  19. Segmental wall motion abnormalities in dilated cardiomyopathy: hemodynamic characteristics and comparison with thallium-201 myocardial scintigraphy

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Tsuiki, K.; Hayasaka, M.; Yasui, S.

    1987-01-01

    This study assessed the hemodynamic characteristics of segmental wall motion abnormality of the left ventricle in patients with dilated cardiomyopathy (DCM) and its relation to the thallium-201 (TI-201) myocardial scintigraphy (MPI). Left ventriculograms and MPI in 23 patients were analyzed by the use of quantitative indexes of regional wall motion and TI-201 uptake based on a mean and a standard deviation of 13 normal subjects. Relative normokinesis in our definition was more frequently seen in the inferior wall than in the anterior wall (p less than 0.01). In contrast, severe asynergy was more often seen in the anterior wall than in the inferior wall (p less than 0.01). There were 11 patients who had relative normokinesis and asynergy together. By means of the index of wall motion, the DCM patients were divided into two groups, one with segmental wall motion abnormality (SWMA) and another with diffuse wall motion abnormality (DWMA). The DWMA group had higher left ventricular end-diastolic pressures (p less than 0.05) and the tendency of large left ventricular end-diastolic volumes than the SWMA group. There was a rough correlation (r = 0.58) between the quantitative indexes of TI-201 uptake and wall motion at the same region of the left ventricle. Thus, the nonuniformity of the left ventricular wall motion was recognized in the patients with DCM and more increased preload was shown in the patients with DWMA than in the group with SWMA. Further, the regional asynergy may be related to the localized fibrosis within the left ventricle in DCM, considering the result that the worse TI-201 uptake was roughly accompanied by the more severe asynergy

  20. Imaging of left ventricular wall motion via venous DSA

    International Nuclear Information System (INIS)

    Witte, G.; Roediger, W.; Buecheler, E.; Hamburg Univ.

    1986-01-01

    Until now, angiographical and nuclear medicine examination techniques for imaging left ventricular wall motion have been presenting with difficulties endemic to the methods themselves. For the first time in cardiological diagnostics, digital subtraction angiography (DSA) makes it possible to perform a fairly non-invasive examination with good spatial and temporal resolution. Functional analytic evaluation, however, still demands time-consuming, complicated post-processing. In this article we introduce a method that uses an additive window technique for the immediate generation of wall motion images. (orig.) [de

  1. Clinical significance of exercise-induced left ventricular wall motion abnormality occurring at a low heart rate

    International Nuclear Information System (INIS)

    Kimchi, A.; Rozanski, A.; Fletcher, C.; Maddahi, J.; Swan, H.J.; Berman, D.S.

    1987-01-01

    We studied the relationship between the heart rate at the time of onset of exercise-induced wall motion abnormality and the severity of coronary artery disease in 89 patients who underwent exercise equilibrium radionuclide ventriculography as part of their evaluation for coronary artery disease. Segmental wall motion was scored with a five-point system (3 = normal; -1 = dyskinesis); a decrease of one score defined the onset of wall motion abnormality. The onset of wall motion abnormality at less than or equal to 70% of maximal predicted heart rate had 100% predictive accuracy for coronary artery disease and higher sensitivity than the onset of ischemic ST segment depression at similar heart rate during exercise: 36% (25 of 69 patients with coronary disease) vs 19% (13 of 69 patients), p = 0.01. Wall motion abnormality occurring at less than or equal to 70% of maximal predicted heart rate was present in 49% of patients (23 of 47) with critical stenosis (greater than or equal to 90% luminal diameter narrowing), and in only 5% of patients (2 of 42) without such severe stenosis, p less than 0.001. The sensitivity of exercise-induced wall motion abnormality occurring at a low heart rate for the presence of severe coronary artery disease was similar to that of a deterioration in wall motion by more than two scores during exercise (49% vs 53%) or an absolute decrease of greater than or equal to 5% in exercise left ventricular ejection fraction (49% vs 45%)

  2. Micromagnetic analysis of current-induced domain wall motion in a bilayer nanowire with synthetic antiferromagnetic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Komine, Takashi, E-mail: komine@mx.ibaraki.ac.jp; Aono, Tomosuke [Faculty of Engineering, Ibaraki University 4-12-1, Nakanarusawa, Hitachi, Ibaraki, 316-8511 (Japan)

    2016-05-15

    We demonstrate current-induced domain wall motion in bilayer nanowire with synthetic antiferromagnetic (SAF) coupling by modeling two body problems for motion equations of domain wall. The influence of interlayer exchange coupling and magnetostatic interactions on current-induced domain wall motion in SAF nanowires was also investigated. By assuming the rigid wall model for translational motion, the interlayer exchange coupling and the magnetostatic interaction between walls and domains in SAF nanowires enhances domain wall speed without any spin-orbit-torque. The enhancement of domain wall speed was discussed by energy distribution as a function of wall angle configuration in bilayer nanowires.

  3. Linear motion feed through with thin wall rubber sealing element

    Science.gov (United States)

    Mikhailov, V. P.; Deulin, E. A.

    2017-07-01

    The patented linear motion feedthrough is based on elastic thin rubber walls usage being reinforced with analeptic string fixed in the middle part of the walls. The pneumatic or hydro actuators create linear movement of stock. The length of this movement is two times more the rubber wall length. This flexible wall is a sealing element of feedthrough. The main advantage of device is negligible resistance force that is less then mentioned one in sealing bellows that leads to positioning error decreasing. Nevertheless, the thin wall rubber sealing element (TRE) of the feedthrough is the main unreliable element that was the reason of this element longevity research. The theory and experimental results help to create equation for TRE longevity calculation under vacuum or extra high pressure difference action. The equation was used for TRE longevity determination for hydraulic or vacuum equipment realization also as it helps for gas flow being leaking through the cracks in thin walls of rubber sealing element of linear motion feedthrough calculation.

  4. Domain wall motion in ferromagnetic systems with perpendicular magnetization

    International Nuclear Information System (INIS)

    Szambolics, H.; Toussaint, J.-Ch.; Marty, A.; Miron, I.M.; Buda-Prejbeanu, L.D.

    2009-01-01

    Although we lack clear experimental evidence, apparently out-of-plane magnetized systems are better suited for spintronic applications than the in-plane magnetized ones, mainly due to the smaller current densities required for achieving domain wall motion. [Co/Pt] multilayers belong to the first category of materials, the out-of-plane magnetization orientation arising from the strong perpendicular magnetocrystalline anisotropy. If the magnetization arranges itself out-of-plane narrow Bloch walls occur. In the present paper, both field and current-driven domain wall motion have been investigated for this system, using micromagnetic simulations. Three types of geometries have been taken into account: bulk, thin film and wire, and for all of them a full comparison is done between the effect of the applied field and injected current. The reduction of the system's dimension induces the decrease of the critical field and the critical current, but it does not influence the domain wall displacement mechanism.

  5. Echocardiographic Wall Motion Abnormality in Posterior Myocardial Infarction: The Diagnostic Value of Posterior Leads

    Directory of Open Access Journals (Sweden)

    A Darehzereshki

    2008-06-01

    Full Text Available Background: For the purpose of ascertaining myocardial infarction (MI and ischemia, the sensitivity of the initial 12-lead ECG is inadequate. It is risky to diagnose posterior MI using only precordial reciprocal changes, since the other leads may be more optimally positioned for the identification of electrocardiographic changes. In this study, we evaluated the relationship between electrocardiography changes and wall motion abnormalities in patients with posterior MI for earlier and better diagnosis of posterior MI.Methods: In this prospective cross-sectional study, we enrolled patients with posterior MI who had come to the Emergency Department of Shariati Hospital with their first episode of chest pain. A 12-lead surface electrocardiogram using posterior leads (V7-V9 was performed for all participants. Patients with ST elevation >0.05 mV or pathologic Q wave in the posterior leads, as well as those with specific changes indicating posterior MI in V1-V2, were evaluated by echocardiography in terms of wall motion abnormalities. All data were analyzed using SPSS and p<0.05 were considered statistically significant.Results: Of a total 79 patients enrolled, 48 (60.8% were men, and the mean age was 57.35±8.22 years. Smoking (54.4% and diabetes (48% were the most prevalent risk factors. In the echocardiographic evaluation, all patients had wall motion abnormalities in the left ventricle and 19 patients (24.1% had wall motion abnormalities in the right ventricle. The most frequent segment with motion abnormality among the all patients was the mid-posterior. The posterior leads showed better positive predictive value than the anterior leads for posterior wall motion abnormality.Conclusion: Electrocardiography of the posterior leads in patients with acute chest pain can help in earlier diagnosis and in time treatment of posterior MI.

  6. Segmentation of arterial vessel wall motion to sub-pixel resolution using M-mode ultrasound.

    Science.gov (United States)

    Fancourt, Craig; Azer, Karim; Ramcharan, Sharmilee L; Bunzel, Michelle; Cambell, Barry R; Sachs, Jeffrey R; Walker, Matthew

    2008-01-01

    We describe a method for segmenting arterial vessel wall motion to sub-pixel resolution, using the returns from M-mode ultrasound. The technique involves measuring the spatial offset between all pairs of scans from their cross-correlation, converting the spatial offsets to relative wall motion through a global optimization, and finally translating from relative to absolute wall motion by interpolation over the M-mode image. The resulting detailed wall distension waveform has the potential to enhance existing vascular biomarkers, such as strain and compliance, as well as enable new ones.

  7. Current-induced domain wall motion in magnetic nanowires with spatial variation

    International Nuclear Information System (INIS)

    Ieda, Jun'ichi; Sugishita, Hiroki; Maekawa, Sadamichi

    2010-01-01

    We model current-induced domain wall motion in magnetic nanowires with the variable width. Employing the collective coordinate method we trace the wall dynamics. The effect of the width modulation is implemented by spatial dependence of an effective magnetic field. The wall destination in the potential energy landscape due to the magnetic anisotropy and the spatial nonuniformity is obtained as a function of the current density. For a nanowire of a periodically modulated width, we identify three (pinned, nonlinear, and linear) current density regimes for current-induced wall motion. The threshold current densities depend on the pulse duration as well as the magnitude of wire modulation. In the nonlinear regime, application of ns order current pulses results in wall displacement which opposes or exceeds the prediction of the spin transfer mechanism. The finding explains stochastic nature of the domain wall displacement observed in recent experiments.

  8. Assessment of left ventricular wall motion and function by cross-sectional echocardiography

    International Nuclear Information System (INIS)

    Ono, Akifumi; Hirata, Shunkichi; Ishikawa, Kyozo

    1982-01-01

    The clinical efficacy of cross-sectional echocardiography (CSE) was evaluated with M-mode echocardiography and radionuclide cardioangiography (RCG) in 50 cases including 30 patients with myocardial infarction. Segmental wall motion by CSE was highly correlated with segmental wall motion and left ventricular ejection fraction by RCG (r = 0.89 in the former, r = -0.84 in the latter). On the other hand, the left ventricular ejection fraction by M-mode echocardiography revealed a fairly well correlation with that by RCG ( r = 0.68). These results suggest that, as compared with RCG, CSE is quite useful in an evaluation of left ventricular function and in a detection of segmental wall motion abnormalities. (author)

  9. Changes in sitting posture induce multiplanar changes in chest wall shape and motion with breathing.

    Science.gov (United States)

    Lee, Linda-Joy; Chang, Angela T; Coppieters, Michel W; Hodges, Paul W

    2010-03-31

    This study examined the effect of sitting posture on regional chest wall shape in three dimensions, chest wall motion (measured with electromagnetic motion analysis system), and relative contributions of the ribcage and abdomen to tidal volume (%RC/V(t)) (measured with inductance plethysmography) in 7 healthy volunteers. In seven seated postures, increased dead space breathing automatically increased V(t) (to 1.5 V(t)) to match volume between conditions and study the effects of posture independent of volume changes. %RC/V(t) (pplane changes in sitting posture alter three-dimensional ribcage configuration and chest wall kinematics during breathing, while maintaining constant respiratory function. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Minimization of Ohmic losses for domain wall motion in ferromagnetic nanowires

    Science.gov (United States)

    Abanov, Artem; Tretiakov, Oleg; Liu, Yang

    2011-03-01

    We study current-induced domain-wall motion in a narrow ferromagnetic wire. We propose a way to move domain walls with a resonant time-dependent current which dramatically decreases the Ohmic losses in the wire and allows driving of the domain wall with higher speed without burning the wire. For any domain wall velocity we find the time-dependence of the current needed to minimize the Ohmic losses. Below a critical domain-wall velocity specified by the parameters of the wire the minimal Ohmic losses are achieved by dc current. Furthermore, we identify the wire parameters for which the losses reduction from its dc value is the most dramatic. This work was supported by the NSF Grant No. 0757992 and Welch Foundation (A-1678).

  11. Minimization of Ohmic Losses for Domain Wall Motion in a Ferromagnetic Nanowire

    Science.gov (United States)

    Tretiakov, O. A.; Liu, Y.; Abanov, Ar.

    2010-11-01

    We study current-induced domain-wall motion in a narrow ferromagnetic wire. We propose a way to move domain walls with a resonant time-dependent current which dramatically decreases the Ohmic losses in the wire and allows driving of the domain wall with higher speed without burning the wire. For any domain-wall velocity we find the time dependence of the current needed to minimize the Ohmic losses. Below a critical domain-wall velocity specified by the parameters of the wire the minimal Ohmic losses are achieved by dc current. Furthermore, we identify the wire parameters for which the losses reduction from its dc value is the most dramatic.

  12. Segmental wall-motion analysis in the right anterior oblique projection: comparison of exercise equilibrium radionuclide ventriculography and exercise contrast ventriculography

    International Nuclear Information System (INIS)

    Brady, T.J.; Thrall, J.H.; Keyes, J.W. Jr.; Brymer, J.F.; Walton, J.A.; Pitt, B.

    1980-01-01

    Thirty-nine patients with known or suspected coronary artery disease were studied at rest and during supine bicycle exercise with radionuclide and contrast left ventriculography. Analysis of regional wall motion was made by visual evaluation of the five standard 30 0 right anterior oblique (RAO) wall segments in the contrast images and the corresponding 10 0 RAO radionuclide segments. The radionuclide studies were evaluated independently by three observers using a five-point grading system. The interobserver wall-motion grading agreed completely in more than 80% of segments at rest and exercise, and agreed within one wall-motion grade in more than 95% of segments. The comparison of wall-motion grades between radionuclide and contrast ventriculograms showed complete agreement in 86% of segments at rest and in 78% during exercise, and agreement within one wall-motion grade in 97% of rest and 96% of exercise segments. Visual evaluation of 10 0 RAO rest and exercise radionuclide ventriculograms compares favorably with rest and exercise 30 0 RAO contrast ventriculograms and demonstrates satisfactory interobserver agreement

  13. Value of gated SPECT in the analysis of regional wall motion of the interventricular septum after coronary artery bypass grafting

    International Nuclear Information System (INIS)

    Giubbini, Raffaele; Rossini, Pierluigi; Bertagna, Francesco; Bosio, Giovanni; Paghera, Barbara; Pizzocaro, Claudio; Canclini, Silvana; Terzi, Arturo; Germano, Guido

    2004-01-01

    The aim of this study was the evaluation of septal wall motion, perfusion and wall thickening after CABG in two groups of consecutive patients, one with grafted left anterior coronary artery and no history of myocardial infarction, and the other with previous anteroseptal myocardial infarction and impaired septal motion before surgery. The issue addressed was the ability of gated SPECT to differentiate between true paradoxical septal motion, characterised by paradoxical wall motion, depressed ejection fraction (EF), poor viability and compromised wall thickening, and pseudo-paradoxical motion, characterised by abnormal wall motion and regional EF but preserved perfusion and wall thickening. One hundred and thirty-two patients with previous anterior myocardial infarction, 82 patients with left anterior descending coronary disease and no history of myocardial infarction and 27 normal subjects underwent rest gated SPECT after 99m Tc-sestamibi injection, according to the standard QGS protocol. Quantitative regional EF, regional perfusion, regional wall motion and regional wall thickening were determined using a 20-segment model. Despite the presence of similar regional wall motion impairment in patients with and patients without septal infarction, in terms of regional EF (2.5%±3% vs 1.9%±4.9% p=NS) and inward septal motion (3±4.9 mm vs 2.3±6.1 mm p=NS), significant differences were observed in both perfusion (74.7%±6.2% vs 63.3%±13%, p>0.0001) and regional wall thickening (17.2%±7.4% vs 12.6%±7.2%, p>0.0001). Gated SPECT with perfusion tracers can reliably differentiate pseudo-paradoxical from true paradoxical septal motion in patients with previous CABG, and it may be the method of choice for evaluating left ventricular performance in this patient population. (orig.)

  14. Value of gated SPECT in the analysis of regional wall motion of the interventricular septum after coronary artery bypass grafting.

    Science.gov (United States)

    Giubbini, Raffaele; Rossini, Pierluigi; Bertagna, Francesco; Bosio, Giovanni; Paghera, Barbara; Pizzocaro, Claudio; Canclini, Silvana; Terzi, Arturo; Germano, Guido

    2004-10-01

    The aim of this study was the evaluation of septal wall motion, perfusion and wall thickening after CABG in two groups of consecutive patients, one with grafted left anterior coronary artery and no history of myocardial infarction, and the other with previous anteroseptal myocardial infarction and impaired septal motion before surgery. The issue addressed was the ability of gated SPECT to differentiate between true paradoxical septal motion, characterised by paradoxical wall motion, depressed ejection fraction (EF), poor viability and compromised wall thickening, and pseudo-paradoxical motion, characterised by abnormal wall motion and regional EF but preserved perfusion and wall thickening. One hundred and thirty-two patients with previous anterior myocardial infarction, 82 patients with left anterior descending coronary disease and no history of myocardial infarction and 27 normal subjects underwent rest gated SPECT after 99mTc-sestamibi injection, according to the standard QGS protocol. Quantitative regional EF, regional perfusion, regional wall motion and regional wall thickening were determined using a 20-segment model. Despite the presence of similar regional wall motion impairment in patients with and patients without septal infarction, in terms of regional EF (2.5%+/-3% vs 1.9%+/-4.9% p=NS) and inward septal motion (3+/-4.9 mm vs 2.3+/-6.1 mm p=NS), significant differences were observed in both perfusion (74.7%+/-6.2% vs 63.3%+/-13%, p>0.0001) and regional wall thickening (17.2%+/-7.4% vs 12.6%+/-7.2%, p>0.0001). Gated SPECT with perfusion tracers can reliably differentiate pseudo-paradoxical from true paradoxical septal motion in patients with previous CABG, and it may be the method of choice for evaluating left ventricular performance in this patient population.

  15. Value of gated SPECT in the analysis of regional wall motion of the interventricular septum after coronary artery bypass grafting

    Energy Technology Data Exchange (ETDEWEB)

    Giubbini, Raffaele; Rossini, Pierluigi; Bertagna, Francesco; Bosio, Giovanni; Paghera, Barbara; Pizzocaro, Claudio; Canclini, Silvana; Terzi, Arturo [Spedali Civili di Brescia, Department of Nuclear Medicine, Brescia (Italy); Germano, Guido [Cedars-Sinai Medical Center, Artificial Intelligence Program, Department of Medicine, Los Angeles, CA (United States)

    2004-10-01

    The aim of this study was the evaluation of septal wall motion, perfusion and wall thickening after CABG in two groups of consecutive patients, one with grafted left anterior coronary artery and no history of myocardial infarction, and the other with previous anteroseptal myocardial infarction and impaired septal motion before surgery. The issue addressed was the ability of gated SPECT to differentiate between true paradoxical septal motion, characterised by paradoxical wall motion, depressed ejection fraction (EF), poor viability and compromised wall thickening, and pseudo-paradoxical motion, characterised by abnormal wall motion and regional EF but preserved perfusion and wall thickening. One hundred and thirty-two patients with previous anterior myocardial infarction, 82 patients with left anterior descending coronary disease and no history of myocardial infarction and 27 normal subjects underwent rest gated SPECT after {sup 99m}Tc-sestamibi injection, according to the standard QGS protocol. Quantitative regional EF, regional perfusion, regional wall motion and regional wall thickening were determined using a 20-segment model. Despite the presence of similar regional wall motion impairment in patients with and patients without septal infarction, in terms of regional EF (2.5%{+-}3% vs 1.9%{+-}4.9% p=NS) and inward septal motion (3{+-}4.9 mm vs 2.3{+-}6.1 mm p=NS), significant differences were observed in both perfusion (74.7%{+-}6.2% vs 63.3%{+-}13%, p>0.0001) and regional wall thickening (17.2%{+-}7.4% vs 12.6%{+-}7.2%, p>0.0001). Gated SPECT with perfusion tracers can reliably differentiate pseudo-paradoxical from true paradoxical septal motion in patients with previous CABG, and it may be the method of choice for evaluating left ventricular performance in this patient population. (orig.)

  16. Reproducibility of an automatic quantitation of regional myocardial wall motion and systolic thickening on gated Tc-99m-MIBI myocardial SPECT

    International Nuclear Information System (INIS)

    Paeng, Jin Chul; Lee, Dong Soo; Cheon, Gi Jeong; Kim, Yu Kyeong; Chung, June Key; Lee, Myung Chul

    2000-01-01

    The aim of this study is to investigate the reproducibility of the quantitative assessment of segmental wall motion and systolic thickening provided by an automatic quantitation algorithm. Tc-99m-MIBI gated myocardial SPECT with dipyridamole stress was performed in 31 patients with known or suspected coronary artery disease (4 with single, 6 with two, 11 with triple vessel disease; ejection fraction 51±14%) twice consecutively in the same position. Myocardium was divided into 20 segments. Segmental wall motion and systolic thickening were calculated and expressed in mm and % increase respectively, using AutoQUANT TM software. The reproducibility of this quantitative measurement of wall motion and thickening was tested. Correlations between repeated measurements on consecutive gated SPECT were excellent for wall motion (r=0.95) and systolic thickening (r=0.88). On Bland-Altman analysis, two standard deviation was 2 mm for repeated measurement of segmental wall motion, and 20% for that of systolic thickening. The weighted kappa values of repeated measurements were 0.807 for wall motion and 0.708 for systolic thickening. Sex, perfusion, or segmental location had no influence on reproducibility. Segmental wall motion and systolic thickening quantified using AutoQUANT TM software on gated myocardial SPECT offers good reproducibility and is significantly different when the change is more than 2 mm for wall motion and more than 20% for systolic thickening

  17. Limited diagnostic accuracy of gated myocardial perfusion SPECT for wall motion analysis in patients with asymmetric septal hypertrophy

    International Nuclear Information System (INIS)

    Seo, J.H.; Ahn, B.C.; Bae, J.H.; Jeong, S.Y.; Lee, J.; Lee, K.B.

    2004-01-01

    Objective: Although gated SPECT(G-SPECT) using Tc-99m MIBI is well-known diagnostic modality in the evaluation of myocardial perfusion and wall motion analysis, there were limited reports for subjects with asymmetric septal hypertrophy (ASH). This study was performed to evaluate the clinical usefulness of G-SPECT for assessments of myocardial perfusion and wall motion analysis in patients with ASH on 2D-echocardiography(Echo). Methods: Thirty patients (male 18, 59 12 years) with ASH on Echo (septal wall thickness 13 mm and 1.3 times as thick as that of posterior wall) underwent Tc-99m MIBI G-SPECT. Two studies were performed within one month. No patient had experienced any significant cardiac event, nor had changed medical and surgical therapy during the studies. Functional parameters of the left ventricle were acquired with QGS software(AutoQUANTTM). Three experts performed visual interpretation for the presence of septal thickening and perfusion abnormalities on G-SPECT and two experienced cardiologists measured dimension, thickness and wall motion of the left ventricle on Echo. Results: Mean septum thickness measured by Echo was 1.90 0.50 cm, and the septum/posterior wall thickness ratio was 1.85 0.51. On visual SPECT analysis, 14 patients (46.7%) were interpreted as with thickened septum and 17 patients (57%) as with abnormal perfusion. All 3 patients who underwent coronary angiography showed significant luminal stenosis and also had perfusion abnormalities on SPECT. On Echo, only one patient showed septal hypokinesia, who showed anteroseptal infarction on SPECT, and the others showed normal septal wall motion. But 13 patients (54%) among 24 patients showed septal hypokinesia on G-SPECT. Patients with thickened septum on SPECT had thicker septum (2.3 vs 1.6 cm) and higher septum/posterior wall thickness ratio (2.2 vs 1.6) on Echo, compared with patients without septal thickening on SPECT. Conclusions: Although G-SPECT could proffer diagnostic accuracy for

  18. Internal friction due to domain-wall motion in martensitically transformed A15 compounds

    International Nuclear Information System (INIS)

    Snead, C.L. Jr.; Welch, D.O.

    1985-01-01

    A lattice instability in A15 materials in some cases leads to a cubic-to-tetragonal martensitic transformation at low temperatures. The transformed material orients in lamellae with c axes alternately aligned along the directions producing domain walls between the lamellae. An internal-friction (delta) feature below T/sub m/ is attributed to stress-induced domain-wall motion. The magnitude of the friction increases as temperature is lowered below T/sub m/ as (1-c/a) increases, and behaves as (1-c/a) 2 from T/sub m/ down to the superconducting critical temperature where the increasing tetragonality is inhibited. The effect of strain in the lattice is to decrease the domain-wall internal friction, but not affect T/sub m/. Neutron-induced disorder and the addition of some third-elements in alloying decrease both delta and T/sub m/, with some elements reducing only the former. Less than 1 at. % H is seen to completely suppress both delta and T/sub m. Martensitically transformed V 2 Zr demonstrates low-temperature internal-friction and modulus behavior consists with easy β/m wall motion relative to the easy m/m motion of the A15's. For the V 2 Zr, a peak in delta is observed, qualitatively in agreement with expected β/m wall motion

  19. Domain Wall Motion in Magnetic Nanostrips under the Influence of Rashba Field

    Directory of Open Access Journals (Sweden)

    Vito Puliafito

    2012-01-01

    Full Text Available Spin-orbit Rashba effect applies a torque on the magnetization of a ferromagnetic nanostrip in the case of structural inversion asymmetry, also affecting the steady domain wall motion induced by a spin-polarized current. This influence is here analytically studied in the framework of the extended Landau-Lifshitz-Gilbert equation, including the Rashba effect as an additive term of the effective field. Results of previous micromagnetic simulations and experiments have shown that this field yields an increased value of the Walker breakdown current together with an enlargement of the domain wall width. In order to analytically describe these results, the standard travelling wave ansatz for the steady domain wall motion is here adopted. Results of our investigations reveal the impossibility to reproduce, at the same time, the previous features and suggest the need of a more sophisticated model whose development requires, in turn, additional information to be extracted from ad hoc micromagnetic simulations.

  20. ECG-gated blood pool tomography in the determination of left ventricular volume, ejection fraction, and wall motion

    International Nuclear Information System (INIS)

    Underwood, S.R.; Ell, P.J.; Jarritt, P.H.; Emanuel, R.W.; Swanton, R.H.

    1984-01-01

    ECG-gated blood pool tomography promises to provide a ''gold standard'' for noninvasive measurement of left ventricular volume, ejection fraction, and wall motion. This study compares these measurements with those from planar radionuclide imaging and contrast ventriculography. End diastolic and end systolic blood pool images were acquired tomographically using an IGE400A rotating gamma camera and Star computer, and slices were reconstructed orthogonal to the long axis of the heart. Left ventricular volume was determined by summing the areas of the slices, and wall motion was determined by comparison of end diastolic and end systolic contours. In phantom experiments this provided an accurate measurement of volume (r=0.98). In 32 subjects who were either normal or who had coronary artery disease left ventricular volume (r=0.83) and ejection fraction (r=0.89) correlated well with those using a counts based planar technique. In 16 of 18 subjects who underwent right anterior oblique X-ray contrast ventriculography, tomographic wall motion agreed for anterior, apical, and inferior walls, but abnormal septal motion which was not apparent by contrast ventriculography, was seen in 12 subjects tomographically. All 12 had disease of the left anterior descending coronary artery and might have been expected to have abnormal septal motion. ECG-gated blood pool tomography can thus determine left ventricular volume and ejection fraction accurately, and provides a global description of wall motion in a way that is not possible from any single planar image

  1. Fractional Brownian motion with a reflecting wall

    Science.gov (United States)

    Wada, Alexander H. O.; Vojta, Thomas

    2018-02-01

    Fractional Brownian motion, a stochastic process with long-time correlations between its increments, is a prototypical model for anomalous diffusion. We analyze fractional Brownian motion in the presence of a reflecting wall by means of Monte Carlo simulations. Whereas the mean-square displacement of the particle shows the expected anomalous diffusion behavior ˜tα , the interplay between the geometric confinement and the long-time memory leads to a highly non-Gaussian probability density function with a power-law singularity at the barrier. In the superdiffusive case α >1 , the particles accumulate at the barrier leading to a divergence of the probability density. For subdiffusion α implications of these findings, in particular, for applications that are dominated by rare events.

  2. Influence of temperature on current-induced domain wall motion and its Walker breakdown

    International Nuclear Information System (INIS)

    Fan, Lvchao; Hu, Jingguo; Su, Yuanchang; Zhu, Jinrong

    2016-01-01

    The current-driven domain wall propagation along a thin ferromagnetic strip with thermal field is studied by means of micromagnetic simulations. The results show that the velocity of domain wall is almost independent of temperature until Walker breakdown happened. However the thermal field can suppress Walker breakdown and makes domain wall move faster. Further analysis indicates that the thermal field tends to keep the out-of-plane magnetic moment of the domain wall stay in high value, which can promote domain wall motion and suppress the Walker breakdown by breaking the period of domain wall transformation. - Highlights: • Influences of temperature on the displacement and the velocity of DW are shown. • The suppression of Walker breakdown by temperature is given. • The reason for suppressing Walker breakdown is analyzed. • The breaking transformation period of Walker breakdown by temperature is given.

  3. Domain wall motions in perpendicularly magnetized CoFe/Pd multilayer nanowire

    DEFF Research Database (Denmark)

    Meng, Zhaoliang; Kumar, Manoj; Qiu, Jinjun

    2014-01-01

    Current-induced domain wall (DW) motion is investigated in a 600nm wide nanowire using multilayer film with a structure of Ta(5nm)/Pd(5nm)/[CoFe(0.4nm)/Pd(1.2nm)]15/Ta(5nm) in terms of anomalous Hall effect measurements. It is found that motion of DWs can be driven by a current density as low as 1...

  4. Radial motion of the carotid artery wall: A block matching algorithm approach

    Directory of Open Access Journals (Sweden)

    Effat Soleimani

    2012-06-01

    Full Text Available Introduction: During recent years, evaluating the relation between mechanical properties of the arterialwall and cardiovascular diseases has been of great importance. On the other hand, motion estimation of thearterial wall using a sequence of noninvasive ultrasonic images and convenient processing methods mightprovide useful information related to biomechanical indexes and elastic properties of the arteries and assistdoctors to discriminate between healthy and diseased arteries. In the present study, a block matching basedalgorithm was introduced to extract radial motion of the carotid artery wall during cardiac cycles.Materials and Methods: The program was implemented to the consecutive ultrasonic images of thecommon carotid artery of 10 healthy men and maximum and mean radial movement of the posterior wall ofthe artery was extracted. Manual measurements were carried out to validate the automatic method andresults of two methods were compared.Results: Paired t-test analysis showed no significant differences between the automatic and manualmethods (P>0.05. There was significant correlation between the changes in the instantaneous radialmovement of the common carotid artery measured with the manual and automatic methods (withcorrelation coefficient 0.935 and P<0.05.Conclusion: Results of the present study showed that by using a semi automated computer analysismethod, with minimizing the user interfere and no attention to the user experience or skill, arterial wallmotion in the radial direction can be extracted from consecutive ultrasonic frames

  5. Damping of the domain walls motion in Co-based amorphous ribbons with helical magnetic anisotropy: Part III

    International Nuclear Information System (INIS)

    Zhmetko, D.N.; Zhmetko, S.D.

    2009-01-01

    The damping of the motion of domain walls of a sandwich domain structure by the eddy currents magnetic fields, the stray fields and the hysteresis friction fields is investigated. The blocking of the motion of domain walls by the eddy currents magnetic fields is discovered.

  6. Motion control in double-walled carbon nanotube systems using a Stone-Thrower-Wales defect cluster

    International Nuclear Information System (INIS)

    Liu Ping; Zhang Yongwei

    2010-01-01

    The ability to control the motion of a single molecule will have an important impact in nano-mechanical systems. Multi-walled carbon nanotube systems, which have extremely low intertube friction and strong motion confinement, can form the basis for mechanically based motion control. We devise two molecular motion control units based on double-walled carbon nanotubes embedded with a Stone-Thrower-Wales defect cluster, and perform molecular dynamics simulations to determine the characteristics of these two control units. We show that one of the molecular control units is able to perform a logic operation on one logic input and produce three logic outputs, while the other is able to produce two logic outputs. Potential applications of the motion control units include molecular switches, shuttles and mechanically based logic devices.

  7. Acute myocarditis with normal wall motion detected with 2D speckle tracking echocardiography

    Directory of Open Access Journals (Sweden)

    Thomas Sturmberger

    2016-05-01

    Full Text Available We present the case of a 26-year-old male with acute tonsillitis who was referred for coronary angiography because of chest pain, elevated cardiac biomarkers, and biphasic T waves. The patient had no cardiovascular risk factors. Echocardiography showed no wall motion abnormalities and no pericardial effusion. 2D speckle tracking revealed distinct decreased regional peak longitudinal systolic strain in the lateral and posterior walls. Ischemic disease was extremely unlikely in view of his young age, negative family history regarding coronary artery disease, and lack of regional wall motion abnormalities on the conventional 2D echocardiogram. Coronary angiography was deferred as myocarditis was suspected. To confirm the diagnosis, cardiac magnetic resonance tomography (MRT was performed, showing subepicardial delayed hyperenhancement in the lateral and posterior walls correlating closely with the strain pattern obtained by 2D speckle tracking echocardiography. With a working diagnosis of acute myocarditis associated with acute tonsillitis, we prescribed antibiotics and nonsteroidal anti-inflammatory drugs. The patient’s clinical signs resolved along with normalization of serum creatine kinase (CK levels, and the patient was discharged on the third day after admission. Learning points: • Acute myocarditis can mimic acute coronary syndromes. • Conventional 2D echocardiography lacks specific features for detection of subtle regional wall motion abnormalities. • 2D speckle tracking expands the scope of echocardiography in identifying myocardial dysfunction derived from edema in acute myocarditis.

  8. Quantification of wall motion and phase of contraction in tomographic gated blood pool studies using length-based Fourier analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Kenichi; Bunko, Hisashi; Taki, Junichi; Nambu, Ichiro; Shiire, Yasushi; Tonami, Norihisa; Hisada, Kinichi; Tada, Akira; Kojima, Kazuhkio

    1985-03-01

    Length-based Fourier analysis, a new method for quantification of wall motion and timing of contraction, was applied to tomographic gated blood pool study. Two parameters, percent-length shortening (%LS) and length-based phase were calculated based on the time-length curves from a center to ventricular edges, and compared with the count-based method. In mathematical models for tomographic gated blood pool images, the severity of asynergy was easily determined by length-based method, and the accuracy of the parameters was good. As to the setting of the center, fixed center provided more reliable parameters than the method using movable center, i.e., when a center of gravity was determined in each frame. By length-based Fourier analysis, quantification of wall motion was easily performed, and the initial inward movement caused by the accessory conduction pathway was assessed in patients with Wolff-Parkinson-White syndrome. Length-based approach was considered to be reasonable and effective because the movements of the ventricular edges are essential in tomographic gated blood pool images.

  9. Quantification of wall motion and phase of contraction in tomographic gated blood pool studies using length-based Fourier analysis

    International Nuclear Information System (INIS)

    Nakajima, Kenichi; Bunko, Hisashi; Taki, Junichi; Nambu, Ichiro; Shiire, Yasushi; Tonami, Norihisa; Hisada, Kinichi; Tada, Akira; Kojima, Kazuhiko.

    1985-01-01

    Length-based Fourier analysis, a new method for quantification of wall motion and timing of contraction, was applied to tomographic gated blood pool study. Two parameters, percent-length shortening (%LS) and length-based phase were calculated based on the time-length curves from a center to ventricular edges, and compared with the count-based method. In mathematical models for tomographic gated blood pool images, the severity of asynergy was easily determined by length-based method, and the accuracy of the parameters was good. As to the setting of the center, fixed center provided more reliable parameters than the method using movable center, i.e., when a center of gravity was determined in each frame. By length-based Fourier analysis, quantification of wall motion was easily performed, and the initial inward movement caused by the accessory conduction pathway was assessed in patients with Wolff-Parkinson-White syndrome. Length-based approach was considered to be reasonable and effective because the movements of the ventricular edges are essential in tomographic gated blood pool images. (author)

  10. Left ventricular wall motion abnormalities evaluated by factor analysis as compared with Fourier analysis

    International Nuclear Information System (INIS)

    Hirota, Kazuyoshi; Ikuno, Yoshiyasu; Nishikimi, Toshio

    1986-01-01

    Factor analysis was applied to multigated cardiac pool scintigraphy to evaluate its ability to detect left ventricular wall motion abnormalities in 35 patients with old myocardial infarction (MI), and in 12 control cases with normal left ventriculography. All cases were also evaluated by conventional Fourier analysis. In most cases with normal left ventriculography, the ventricular and atrial factors were extracted by factor analysis. In cases with MI, the third factor was obtained in the left ventricle corresponding to wall motion abnormality. Each case was scored according to the coincidence of findings of ventriculography and those of factor analysis or Fourier analysis. Scores were recorded for three items; the existence, location, and degree of asynergy. In cases of MI, the detection rate of asynergy was 94 % by factor analysis, 83 % by Fourier analysis, and the agreement in respect to location was 71 % and 66 %, respectively. Factor analysis had higher scores than Fourier analysis, but this was not significant. The interobserver error of factor analysis was less than that of Fourier analysis. Factor analysis can display locations and dynamic motion curves of asynergy, and it is regarded as a useful method for detecting and evaluating left ventricular wall motion abnormalities. (author)

  11. Enhancement of spin Hall effect induced torques for current-driven magnetic domain wall motion: Inner interface effect

    KAUST Repository

    Bang, Do; Yu, Jiawei; Qiu, Xuepeng; Wang, Yi; Awano, Hiroyuki; Manchon, Aurelien; Yang, Hyunsoo

    2016-01-01

    We investigate the current-induced domain wall motion in perpendicular magnetized Tb/Co wires with structure inversion asymmetry and different layered structures. We find that the critical current density to drive domain wall motion strongly depends on the layered structure. The lowest critical current density ∼15MA/cm2 and the highest slope of domain wall velocity curve are obtained for the wire having thin Co sublayers and more inner Tb/Co interfaces, while the largest critical current density ∼26MA/cm2 required to drive domain walls is observed in the Tb-Co alloy magnetic wire. It is found that the Co/Tb interface contributes negligibly to Dzyaloshinskii-Moriya interaction, while the effective spin-orbit torque strongly depends on the number of Tb/Co inner interfaces (n). An enhancement of the antidamping torques by extrinsic spin Hall effect due to Tb rare-earth impurity-induced skew scattering is suggested to explain the high efficiency of current-induced domain wall motion.

  12. Enhancement of spin Hall effect induced torques for current-driven magnetic domain wall motion: Inner interface effect

    KAUST Repository

    Bang, Do

    2016-05-23

    We investigate the current-induced domain wall motion in perpendicular magnetized Tb/Co wires with structure inversion asymmetry and different layered structures. We find that the critical current density to drive domain wall motion strongly depends on the layered structure. The lowest critical current density ∼15MA/cm2 and the highest slope of domain wall velocity curve are obtained for the wire having thin Co sublayers and more inner Tb/Co interfaces, while the largest critical current density ∼26MA/cm2 required to drive domain walls is observed in the Tb-Co alloy magnetic wire. It is found that the Co/Tb interface contributes negligibly to Dzyaloshinskii-Moriya interaction, while the effective spin-orbit torque strongly depends on the number of Tb/Co inner interfaces (n). An enhancement of the antidamping torques by extrinsic spin Hall effect due to Tb rare-earth impurity-induced skew scattering is suggested to explain the high efficiency of current-induced domain wall motion.

  13. Spatio-temporal characteristics of large scale motions in a turbulent boundary layer from direct wall shear stress measurement

    Science.gov (United States)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2016-11-01

    Particle image velocimetry (PIV) and fluctuating wall shear stress experiments were performed on a flat plate turbulent boundary layer (TBL) under zero pressure gradient conditions. The fluctuating wall shear stress was measured using a microelectromechanical 1mm × 1mm floating element capacitive shear stress sensor (CSSS) developed at the University of Florida. The experiments elucidated the imprint of the organized motions in a TBL on the wall shear stress through its direct measurement. Spatial autocorrelation of the streamwise velocity from the PIV snapshots revealed large scale motions that scale on the order of boundary layer thickness. However, the captured inclination angle was lower than that determined using the classic method by means of wall shear stress and hot-wire anemometry (HWA) temporal cross-correlations and a frozen field hypothesis using a convection velocity. The current study suggests the large size of these motions begins to degrade the applicability of the frozen field hypothesis for the time resolved HWA experiments. The simultaneous PIV and CSSS measurements are also used for spatial reconstruction of the velocity field during conditionally sampled intense wall shear stress events. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  14. Strain-encoded cardiac MRI as an adjunct for dobutamine stress testing: incremental value to conventional wall motion analysis.

    Science.gov (United States)

    Korosoglou, Grigorios; Lossnitzer, Dirk; Schellberg, Dieter; Lewien, Antje; Wochele, Angela; Schaeufele, Tim; Neizel, Mirja; Steen, Henning; Giannitsis, Evangelos; Katus, Hugo A; Osman, Nael F

    2009-03-01

    High-dose dobutamine stress MRI is safe and feasible for the diagnosis of coronary artery disease (CAD) in humans. However, the assessment of cine scans relies on the visual interpretation of regional wall motion, which is subjective. Recently, strain-encoded MRI (SENC) has been proposed for the direct color-coded visualization of myocardial strain. The purpose of our study was to compare the diagnostic value of SENC with that provided by conventional wall motion analysis for the detection of inducible ischemia during dobutamine stress MRI. Stress-induced ischemia was assessed by wall motion analysis and by SENC in 101 patients with suspected or known CAD and in 17 healthy volunteers who underwent dobutamine stress MRI in a clinical 1.5-T scanner. Quantitative coronary angiography deemed as the standard reference for the presence or absence of significant CAD (> or =50% diameter stenosis). On a coronary vessel level, SENC detected inducible ischemia in 86 of 101 versus 71 of 101 diseased coronary vessels (P or =50% stenosis (area under the curve, 0.96; SE, 0.01; 95% CI, 0.94 to 0.98; P<0.001). The direct color-coded visualization of strain on MR images is a useful adjunct for dobutamine stress MRI, which provides incremental value for the detection of CAD compared with conventional wall motion readings on cine images.

  15. Current-driven vortex domain wall motion in wire-tube nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Espejo, A. P. [Departamento de Física, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago (Chile); Institute of Nanostructure and Solid State Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Vidal-Silva, N. [Departamento de Física, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago (Chile); López-López, J. A. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Goerlitz, D.; Nielsch, K. [Institute of Nanostructure and Solid State Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Escrig, J. [Departamento de Física, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Av. Ecuador 3493, 9170124 Santiago (Chile)

    2015-03-30

    We have investigated the current-driven domain wall motion in nanostructures comprised of a pair of nanotube and nanowire segments. Under certain values of external magnetic fields, it is possible to pin a vortex domain wall in the transition zone between the wire and tube segments. We explored the behavior of this domain wall under the action of an electron flow applied in the opposite direction to the magnetic field. Thus, for a fixed magnetic field, it is possible to release a domain wall pinned simply by increasing the intensity of the current density, or conversely, for a fixed current density, it is possible to release the domain wall simply decreasing the magnetic external field. When the domain wall remains pinned due to the competition between the current density and the magnetic external field, it exhibits a oscillation frequency close to 8 GHz. The amplitude of the oscillations increases with the current density and decreases over time. On the other hand, when the domain wall is released and propagated through the tube segment, this shows the standard separation between a steady and a precessional regime. The ability to pin and release a domain wall by varying the geometric parameters, the current density, or the magnetic field transforms these wire-tube nanostructures in an interesting alternative as an on/off switch nano-transistor.

  16. A method to quantitate regional wall motion in left ventriculography using Hildreth algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Mikio [Hyogo Red Cross Blood Center (Japan); Naito, Hiroaki; Sato, Yoshinobu; Tamura, Shinichi; Kurosawa, Tsutomu

    1998-06-01

    Quantitative measurement of ventricular wall motion is indispensable for objective evaluation of cardiac function associated with coronary artery disease. We have modified the Hildreth`s algorithm to estimate excursions of the ventricular wall on left ventricular images yielded by various imaging techniques. Tagging cine-MRI was carried out on 7 healthy volunteers. The original Hildreth method, the modified Hildreth method and the centerline method were applied to the outlines of the images obtained, to estimate excursion of the left ventricular wall and regional shortening and to evaluate the accuracy of these methods when measuring these parameters, compared to the values of these parameters measured actually using the attached tags. The accuracy of the original Hildreth method was comparable to that of the centerline method, while the modified Hildreth method was significantly more accurate than the centerline method (P<0.05). Regional shortening as estimated using the modified Hildreth method differed less from the actually measured regional shortening than did the shortening estimated using the centerline method (P<0.05). The modified Hildreth method allowed reasonable estimation of left ventricular wall excursion in all cases where it was applied. These results indicate that when applied to left ventriculograms for ventricular wall motion analysis, the modified Hildreth method is more useful than the original Hildreth method. (author)

  17. Influence of exchange coupling on current-driven domain wall motion in a nanowire

    International Nuclear Information System (INIS)

    Komine, Takashi; Takahashi, Kota; Murakami, Hiroshi; Sugita, Ryuji

    2010-01-01

    In this study, the effect of exchange stiffness constant on current-driven domain wall motion in nanowires with in-plane magnetic anisotropy (IMA) and perpendicular magnetic anisotropy (PMA) has been investigated using micromagnetic simulation. The critical current density in a nanowire with IMA decreases as the exchange stiffness constant decreases because the domain wall width at the upper edge of the nanowire narrows according to the decrease of the exchange stiffness constant. On the other hand, the critical current density in a nanowire with PMA slightly decreases contrary to that of IMA although the domain wall width reasonably decreases as the exchange stiffness constant decreases. The slight reduction rate of the critical current density is due to the increase of the effective hard-axis anisotropy of PMA nanowire.

  18. Analysis of Human's Motions Based on Local Mean Decomposition in Through-wall Radar Detection

    Science.gov (United States)

    Lu, Qi; Liu, Cai; Zeng, Zhaofa; Li, Jing; Zhang, Xuebing

    2016-04-01

    Observation of human motions through a wall is an important issue in security applications and search-and rescue. Radar has advantages in looking through walls where other sensors give low performance or cannot be used at all. Ultrawideband (UWB) radar has high spatial resolution as a result of employment of ultranarrow pulses. It has abilities to distinguish the closely positioned targets and provide time-lapse information of targets. Moreover, the UWB radar shows good performance in wall penetration when the inherently short pulses spread their energy over a broad frequency range. Human's motions show periodic features including respiration, swing arms and legs, fluctuations of the torso. Detection of human targets is based on the fact that there is always periodic motion due to breathing or other body movements like walking. The radar can gain the reflections from each human body parts and add the reflections at each time sample. The periodic movements will cause micro-Doppler modulation in the reflected radar signals. Time-frequency analysis methods are consider as the effective tools to analysis and extract micro-Doppler effects caused by the periodic movements in the reflected radar signal, such as short-time Fourier transform (STFT), wavelet transform (WT), and Hilbert-Huang transform (HHT).The local mean decomposition (LMD), initially developed by Smith (2005), is to decomposed amplitude and frequency modulated signals into a small set of product functions (PFs), each of which is the product of an envelope signal and a frequency modulated signal from which a time-vary instantaneous phase and instantaneous frequency can be derived. As bypassing the Hilbert transform, the LMD has no demodulation error coming from window effect and involves no negative frequency without physical sense. Also, the instantaneous attributes obtained by LMD are more stable and precise than those obtained by the empirical mode decomposition (EMD) because LMD uses smoothed local

  19. Identification and Assessment of Paradoxical Ventricular Wall Motion Using ECG Gated Blood Pool Scan - Comparison of cine Loop , Phase Analysis and Paradox Image -

    International Nuclear Information System (INIS)

    Lee, Jae Tae; Kim, Gwang Weon; Lee, Kyu Bo; Chung, Byung Chun; Whang, Kee Suk; Chae, Sung Chul; Paek, Wee Hyun; Cheon, Jae Eun; Lee, Hyong Woo; Chung, Jin Hong

    1990-01-01

    Sixty-four patients with paradoxical ventricular wall motion noticed both in angiocardiography or 2-dimensional echocardiography were assessed by ECG gated blood pool scan (GBPS). Endless cine loop image, phase and amplitude images and paradox image obtained by visual inspection of each cardiac beat or Fourier transformation of acquired raw data were investigated to determine the incremental value of GBPS with these processing methods for identification of paradoxical ventricular wall motion. The results were as follows:1) Paradoxical wall motions were observed on interventricular septum in 34 cases, left ventricular free wall in 26 and right ventricular wall in 24. Underlying heart diseases were is chemic (23 cases) valvular(9), congenital heart disease (12), cardiomyopathy (5), pericardial effusion(5), post cardiac surgery(3), corpulmonale (2), endocarditis (l) and right ventricular tumor(l). 2) Left ventricular ejection fractions of patients with paradoxical left ventricular wall motion were significantly lower than those with paradoxical septal motion (p <0.005). 3) The sensitivity of each processing methods for detecting paradoxical wall motion was 76.9% by phase analysis, 74.6% by endless cine loop mapping and 68.4% by paradox image manipulation respectively. Paradoxial motions visualized only in phase, paradox or both images were appeared as hypokinesia or akinesia in cine loop image. 4) All events could be identified by at least one of above three processing methods, however only 34 cases (48.4%) showed the paradoxical motions in all of the three images. By these findings, we concluded that simultaneous inspection of all above three processing methods-endless cine loop, phase analysis and paradox image is necessary for accurate identification and assessment of paradoxical ventricular wall motion when performing GBPS.

  20. Identification and Assessment of Paradoxical Ventricular Wall Motion Using ECG Gated Blood Pool Scan - Comparison of cine Loop , Phase Analysis and Paradox Image -

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Tae; Kim, Gwang Weon; Lee, Kyu Bo; Chung, Byung Chun; Whang, Kee Suk; Chae, Sung Chul; Paek, Wee Hyun; Cheon, Jae Eun [Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Lee, Hyong Woo; Chung, Jin Hong [Yeongnam National University College of Medicine, Daegu (Korea, Republic of)

    1990-07-15

    Sixty-four patients with paradoxical ventricular wall motion noticed both in angiocardiography or 2-dimensional echocardiography were assessed by ECG gated blood pool scan (GBPS). Endless cine loop image, phase and amplitude images and paradox image obtained by visual inspection of each cardiac beat or Fourier transformation of acquired raw data were investigated to determine the incremental value of GBPS with these processing methods for identification of paradoxical ventricular wall motion. The results were as follows:1) Paradoxical wall motions were observed on interventricular septum in 34 cases, left ventricular free wall in 26 and right ventricular wall in 24. Underlying heart diseases were is chemic (23 cases) valvular(9), congenital heart disease (12), cardiomyopathy (5), pericardial effusion(5), post cardiac surgery(3), corpulmonale (2), endocarditis (l) and right ventricular tumor(l). 2) Left ventricular ejection fractions of patients with paradoxical left ventricular wall motion were significantly lower than those with paradoxical septal motion (p <0.005). 3) The sensitivity of each processing methods for detecting paradoxical wall motion was 76.9% by phase analysis, 74.6% by endless cine loop mapping and 68.4% by paradox image manipulation respectively. Paradoxial motions visualized only in phase, paradox or both images were appeared as hypokinesia or akinesia in cine loop image. 4) All events could be identified by at least one of above three processing methods, however only 34 cases (48.4%) showed the paradoxical motions in all of the three images. By these findings, we concluded that simultaneous inspection of all above three processing methods-endless cine loop, phase analysis and paradox image is necessary for accurate identification and assessment of paradoxical ventricular wall motion when performing GBPS.

  1. Prediction of wall motion improvement after coronary revascularization in patients with postmyocardial infarction. Diagnostic value of dobutamine stress echocardiography and myocardial contrast echocardiography

    International Nuclear Information System (INIS)

    Waku, Sachiko; Ohkubo, Tomoyuki; Takada, Kiyoshi; Ishihara, Tadashi; Ohsawa, Nakaaki; Adachi, Itaru; Narabayashi, Isamu

    1997-01-01

    The diagnostic value of dobutamine stress echocardiography, myocardial contrast echocardiography and dipyridamole stress thallium-201 single photon emission computed tomography (SPECT) for predicting recovery of wall motion abnormality after revascularization was evaluated in 13 patients with postmyocardial infarction. Seventeen segments showed severe wall motion abnormalities before revascularization. Nine segments which had relatively good Tl uptake on delayed SPECT images despite severely abnormal wall motion were opacified during myocardial contrast echocardiography, and showed improved wall motion after revascularization. In contrast, three segments which had poor Tl uptake and severely abnormal wall motion were not opacified during myocardial contrast echocardiography, and showed no improvement in wall motion during dobutamine stress echocardiography and after revascularization. The following three findings were assumed to be signs of myocardial viability: good Tl uptake on delayed SPECT images, improved wall motion by dobutamine stress echocardiography, and positive opacification of the myocardium by myocardiai contrast echocardiography. Myocardial contrast echocardiography had the highest sensitivity (100%) and negative predictive value (100%). Delayed SPECT images had the highest specificity (100%) and positive predictive value (100%). Dobutamine stress echocardiography had a sensitivity of 83.0%, specificity of 80.0%, positive predictive value of 90.9%, and negative predictive value of 66.7%, respectively. Myocardial contrast echocardiography showed the lowest specificity (60.0%). The techniques of dobutamine stress echocardiography and SPECT, though noninvasive, may underestimate wall motion improvement after revascularization. Further examination by myocardial contrast echocardiography is recommended to assess myocardial viability for determining the indications for coronary revascularization in spite of its invasiveness. (author)

  2. Current-induced domain wall motion in nanoscale ferromagnetic elements

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, G [Laboratoire de Physique des Solides, CNRS, Universite Paris-sud 11, 91405 Orsay Cedex (France); Boulle, O [SPINTEC, CEA/CNRS/UJF/GINP, INAC, 38054 Grenoble Cedex 9 (France); Klaeui, M, E-mail: Klaeui@uni-mainz.de [SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Laboratory of Nanomagnetism and Spin Dynamics, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2011-09-28

    We review the details of domain wall (DW) propagation due to spin-polarized currents that could potentially be used in magnetic data storage devices based on domains and DWs. We discuss briefly the basics of the underlying spin torque effect and show how the two torques arising from the interaction between the spin-polarized charge carriers and the magnetization lead to complex dynamics of a spin texture such as a DW. By direct imaging we show how confined DWs in nanowires can be displaced using currents in in-plane soft-magnetic materials, and that when using short pulses, fast velocities can be attained. For high-anisotropy out-of-plane magnetized wires with narrow DWs we present approaches to deducing the torque terms and show that in these materials potentially more efficient domain wall motion could be achieved.

  3. In-vivo quantification of wall motion in cerebral aneurysms from 2D cine phase contrast magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Karmonik, C. [The Methodist Hospital Research Inst., Houston (United States); Diaz, O.; Klucznik, R. [The Methodist Hospital, Houston (United States); Grossman, R. [The Methodist Hospital, Houston (United States). Neurosurgery

    2010-02-15

    Purpose: The quantification of wall motion in cerebral aneurysms is of interest for the assessment of aneurysmal rupture risk, for providing boundary conditions for computational simulations and as a validation tool for theoretical models. Materials and Methods: 2D cine phase contrast magnetic resonance imaging (2D pcMRI) in combination with quantitative magnetic resonance angiography (QMRA) was evaluated for measuring wall motion in 7 intracranial aneurysms. In each aneurysm, 2 (in one case 3) cross sections, oriented approximately perpendicular to each other, were measured. Results: The maximum aneurysmal wall distention ranged from 0.16 mm to 1.6 mm (mean 0.67 mm), the maximum aneurysmal wall contraction was -1.91 mm to -0.34 mm (mean 0.94 mm), and the average wall displacement ranged from 0.04 mm to 0.31 mm (mean 0.15 mm). Statistically significant correlations between average wall displacement and the shape of inflow curves (p-value < 0.05) were found in 7 of 15 cross sections; statistically significant correlations between the displacement of the luminal boundary center point and the shape of inflow curves (p-value < 0.05) were found in 6 of 15 cross sections. Conclusion: 2D pcMRI in combination with QMRA is capable of visualizing and quantifying wall motion in cerebral aneurysms. However, application of this technique is currently restricted by its limited spatial resolution. (orig.)

  4. Processive motions of MreB micro-filaments coordinate cell wall growth

    Science.gov (United States)

    Garner, Ethan

    2012-02-01

    Rod-shaped bacteria elongate by the action of cell-wall synthesis complexes linked to underlying dynamic MreB filaments, but how these proteins function to allow continued elongation as a rod remains unknown. To understand how the movement of these filaments relates to cell wall synthesis, we characterized the dynamics of MreB and the cell wall elongation machinery using high-resolution particle tracking in Bacillus subtilis. We found that both MreB and the elongation machinery move in linear paths across the cell, moving at similar rates (˜20nm / second) and angles to the cell body, suggesting they function as single complexes. These proteins move circumferentially around the cell, principally perpendicular to its length. We find that the motions of these complexes are independent, as they can pause and reverse,and also as nearby complexes move independently in both directions across one surface of the cell. Inhibition of cell wall synthesis with antibiotics or depletions in the cell wall synthesis machinery blocked MreB movement, suggesting that the cell wall synthetic machinery is the motor in this system. We propose that bacteria elongate by the uncoordinated, circumferential movements of synthetic complexes that span the plasma membrane and insert radial hoops of new peptidoglycan during their transit.

  5. Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets

    KAUST Repository

    Akosa, Collins Ashu; Kim, Won-Seok; Bisig, André ; Klä ui, Mathias; Lee, Kyung-Jin; Manchon, Aurelien

    2015-01-01

    Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ∼∇2[m×(u⋅∇)m]+ξ∇2[(u⋅∇)m], where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.

  6. Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets

    KAUST Repository

    Akosa, Collins Ashu

    2015-03-12

    Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ∼∇2[m×(u⋅∇)m]+ξ∇2[(u⋅∇)m], where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.

  7. Relation of external surface to internal tumor motion studied with cine CT

    International Nuclear Information System (INIS)

    Chi, P.-C.M.; Balter, Peter; Luo Dershan; Mohan, Radhe; Pan Tinsu

    2006-01-01

    The accuracy of delivering gated-radiation therapy to lung tumors using an external respiratory surrogate relies on not only interfractional and intrafractional reproducibility, but also a strong correlation between external motion and internal tumor motion. The purpose of this work was to use the cine images acquired by four-dimensional computed tomography acquisition protocol to study the relation between external surface motion and internal tumor motion. The respiratory phase information of tumor motion and chest wall motion was measured on the cine images using a proposed region-of-interest (ROI) method and compared to measurement of an external respiratory monitoring device. On eight lung patient data sets, the phase shifts were measured between (1) the signal of a real-time positioning-management (RPM) respiratory monitoring device placed in the abdominal region and four surface locations on the chest wall (2) the RPM signal in the abdominal region and tumor motions, and (3) chest wall surface motions and tumor motions. Respiratory waveforms measured at different surface locations during the same respiratory cycle often varied and had significant phase shifts. Seven of the 8 patients showed the abdominal motion leading chest wall motion. The best correlation (smallest phase shift) was found between the abdominal motion and the superior-inferior (S-I) tumor motion. A wide range of phase shifts was observed between external surface motion and tumor anterior-posterior (A-P)/lateral motion. The result supported the placement of the RPM block in the abdominal region and suggested that during a gated therapy utilizing the RPM system, it is necessary to place the RPM block at the same location as it is during treatment simulation in order to reduce potential errors introduced by the position of the RPM block. Correlations between external motions and lateral/A-P tumor motions were inconclusive due to a combination of patient selection and the limitation of the ROI

  8. Steady motion of skyrmions and domains walls under diffusive spin torques

    KAUST Repository

    Elías, Ricardo Gabriel

    2017-03-09

    We explore the role of the spin diffusion of conducting electrons in two-dimensional magnetic textures (domain walls and skyrmions) with spatial variation of the order of the spin precession length λex. The effect of diffusion reflects in four additional torques that are third order in spatial derivatives of magnetization and bilinear in λex and in the nonadiabatic parameter β′. In order to study the dynamics of the solitons when these diffusive torques are present, we derive the Thiele equation in the limit of steady motion and we compare the results with the nondiffusive limit. When considering a homogenous current these torques increase the longitudinal velocity of transverse domain walls of width Δ by a factor (λex/Δ)2(α/3), α being the magnetic damping constant. In the case of single skyrmions with core radius r0 these new contributions tend to increase the Magnus effect in an amount proportional to (λex/r0)2(1+2αβ′).

  9. Steady motion of skyrmions and domains walls under diffusive spin torques

    KAUST Repository

    Elí as, Ricardo Gabriel; Vidal-Silva, Nicolas; Manchon, Aurelien

    2017-01-01

    We explore the role of the spin diffusion of conducting electrons in two-dimensional magnetic textures (domain walls and skyrmions) with spatial variation of the order of the spin precession length λex. The effect of diffusion reflects in four additional torques that are third order in spatial derivatives of magnetization and bilinear in λex and in the nonadiabatic parameter β′. In order to study the dynamics of the solitons when these diffusive torques are present, we derive the Thiele equation in the limit of steady motion and we compare the results with the nondiffusive limit. When considering a homogenous current these torques increase the longitudinal velocity of transverse domain walls of width Δ by a factor (λex/Δ)2(α/3), α being the magnetic damping constant. In the case of single skyrmions with core radius r0 these new contributions tend to increase the Magnus effect in an amount proportional to (λex/r0)2(1+2αβ′).

  10. Predictive values of early rest/24 hour delay Tl-201 perfusion SPECT for wall motion improvement in patients with acute myocardial infarction after reperfusion

    International Nuclear Information System (INIS)

    Hyun, In Young; Kwan, June

    1998-01-01

    We studied early rest/24 hour delay Tl-201 perfusion SPECT for prediction of wall motion improvement after reperfusion in patients with acute myocardial infarction. Among 17 patients (male/female=11/6, age: 59±13) with acute myocardial infarction, 15 patients were treated with percutaneous transcoronary angioplasty (direct:2, delay:11) and intravenous urokinase (2). Spontaneous resolution occurred in infarct related arteries of 2 patients. We confirmed TIMI 3 flow of infarct-related artery after reperfusion in all patients with coronary angiography. We performed rest Tl-201 perfusion SPECT less then 6 hours after reperfusion and delay Tl-201 perfusion SPECT next day. Tl-201 uptake was visually graded as 4 point score from normal (0) to severe defect (3). Rest Tl-201 uptake ≤2 or combination of rest Tl-201 uptake ≤2 or late reversibility were considered to be viable. Myocardial wall motion was graded as 5 point score from normal (1) to dyskinesia (5). Myocardial wall motion was considered to be improved when a segment showed an improvement ≥1 grade in follow up echo compared with the baseline values. Among 98 segments with wall motion abnormality, the severity of myocardial wall motion decrease was as follow: mild hypokinesia: 18/98 (18%), severe hypokinesia: 28/98 (29%), akinesia: 51/98 (52%), dyskinesia: 1/98 (1%). The wall motion improved in 85%. Redistribution (13%), and reverse redistribution (4%) were observed in 24 hour delay SPECT. Positive predictive value (PPV) and negative predictive value (NPV) of combination of late reversibility and rest Tl-201uptake were 99%, and 54%.PPV and NPV of rest Tl-201 uptake were 100% and 52% respectively. Predictive values of comibination of rest Tl-201 uptake and late reversibility were not significantly different compared with predictive values of rest Tl-201 uptake only. We conclude that early Tl-201 perfusion SPECT predict myocardial wall motion improvement with excellent positive but relatively low negative

  11. Incremental value of regional wall motion analysis immediately after exercise for the detection of single-vessel coronary artery disease. Study by separate acquisition, dual-isotope ECG-gated single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Yoda, Shunichi; Sato, Yuichi; Matsumoto, Naoya; Tani, Shigemasa; Takayama, Tadateru; Uchiyama, Takahisa; Saito, Satoshi

    2005-01-01

    Although the detection of wall motion abnormalities gives incremental value to myocardial perfusion single-photon emission computed tomography (SPECT) in the diagnosis of extensive coronary artery disease (CAD) and high-grade single-vessel CAD, whether or not it is useful in the diagnosis of mild, single-vessel CAD has not been studied previously. Separate acquisition, dual isotope electrocardiogram (ECG)-gated SPECT was performed in 97 patients with a low likelihood of CAD (Group 1) and 46 patients with single-vessel CAD (Group 2). Mild CAD was defined by stenosis of 50-75% (Group 2a, n=22) and moderate to severe CAD was defined by stenosis ≥76% (Group 2b, n=24). Myocardial perfusion and wall motion were graded by a 5 point-scale, 20-segment model. The sensitivity of myocardial perfusion alone was 50% for Group 2a, 83% for Group 2b and 67% for Group 2 as a whole. The overall specificity was 90%. When the wall motion analysis was combined, the sensitivity was increased to 82% in Group 2a and 92% in Group 2b. The ability to detect a wall motion abnormality immediately after exercise gives incremental diagnostic value to myocardial perfusion SPECT in the identification of mild, single-vessel CAD. (author)

  12. Geometric Control Over the Motion of Magnetic Domain Walls

    International Nuclear Information System (INIS)

    N.A. Sinitsyn; V.V. Dobrovitski; S. urazhdin; Avadh Saxena

    2008-01-01

    We propose a method that enables a precise control of magnetic patterns and relies only on the fundamental properties of the wire as well as on the choice of the path in the controlled parameter space but not on the rate of motion along this path. Possible experimental realizations of this mechanism are discussed. In particular, we show that the domain walls in magnetic nanowires can be translated by rotation of the magnetic easy axis or by applying pulses of magnetic field directed transverse to the magnetic easy axis

  13. Magneto-optical study of domain wall dynamics and giant Barkhausen jump in magnetic microwires

    International Nuclear Information System (INIS)

    Chizhik, A.; Zhukov, A.; Blanco, J.M.; Gonzalez, J.

    2012-01-01

    Investigation of surface domain walls motion in Co-rich magnetic microwires has been performed in circular and axial magnetic fields. The dc axial magnetic field acceleration of the domain wall motion related to the influence of the axial field on the structure of the moving domain wall has been discovered. Pulsed axial magnetic field induced unidirectional motion of surface domain wall also has been found.

  14. Controlled motion of domain walls in submicron amorphous wires

    Energy Technology Data Exchange (ETDEWEB)

    Ţibu, Mihai; Lostun, Mihaela; Rotărescu, Cristian; Atiţoaie, Alexandru; Lupu, Nicoleta; Óvári, Tibor-Adrian, E-mail: taovari@phys-iasi.ro; Chiriac, Horia [Department of Magnetic Materials and Devices, National Institute of Research and Development for Technical Physics, Iaşi, 700050 (Romania); Allwood, Dan A. [Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD (United Kingdom)

    2016-05-15

    Results on the control of the domain wall displacement in cylindrical Fe{sub 77.5}Si{sub 7.5}B{sub 15} amorphous glass-coated submicron wires prepared by rapid quenching from the melt are reported. The control methods have relied on conical notches with various depths, up to a few tens of nm, made in the glass coating and in the metallic nucleus using a focused ion beam (FIB) system, and on the use of small nucleation coils at one of the sample ends in order to apply magnetic field pulses aimed to enhance the nucleation of reverse domains. The notch-based method is used for the first time in the case of cylindrical ultrathin wires. The results show that the most efficient technique of controlling the domain wall motion in this type of samples is the simultaneous use of notches and nucleation coils. Their effect depends on wire diameter, notch depth, its position on the wire length, and characteristics of the applied pulse.

  15. Magnet fall inside a conductive pipe: motion and the role of the pipe wall thickness

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, G; Ladera, C L; Martin, P [Departamento de Fisica, Universidad Simon BolIvar, Apdo. 89000, Caracas 1080 (Venezuela, Bolivarian Republic of)], E-mail: clladera@usb.ve, E-mail: pmartin@usb.ve

    2009-07-15

    Theoretical models and experimental results are presented for the retarded fall of a strong magnet inside a vertical conductive non-magnetic tube. Predictions and experimental results are in good agreement modelling the magnet as a simple magnetic dipole. The effect of varying the pipe wall thickness on the retarding magnetic drag is studied for pipes of different materials. Conductive pipes of thinner walls produce less dragging force and the retarded fall of the magnet is seen to consist of an initial transient accelerated regime followed by a stage of uniform motion. Alternative models of the magnet field are also presented that improve the agreement between theory and experiments.

  16. Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories

    KAUST Repository

    Ivanov, Yurii P.; Chuvilin, Andrey; Lopatin, Sergei; Kosel, Jü rgen

    2016-01-01

    Cylindrical magnetic nanowires are attractive materials for next generation data storage devices owing to the theoretically achievable high domain wall velocity and their efficient fabrication in highly dense arrays. In order to obtain control over domain wall motion, reliable and well-defined pinning sites are required. Here, we show that modulated nanowires consisting of alternating nickel and cobalt sections facilitate efficient domain wall pinning at the interfaces of those sections. By combining electron holography with micromagnetic simulations, the pinning effect can be explained by the interaction of the stray fields generated at the interface and the domain wall. Utilizing a modified differential phase contrast imaging, we visualized the pinned domain wall with a high resolution, revealing its three-dimensional vortex structure with the previously predicted Bloch point at its center. These findings suggest the potential of modulated nanowires for the development of high-density, three-dimensional data storage devices. © 2016 American Chemical Society.

  17. Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories

    KAUST Repository

    Ivanov, Yurii P.

    2016-05-03

    Cylindrical magnetic nanowires are attractive materials for next generation data storage devices owing to the theoretically achievable high domain wall velocity and their efficient fabrication in highly dense arrays. In order to obtain control over domain wall motion, reliable and well-defined pinning sites are required. Here, we show that modulated nanowires consisting of alternating nickel and cobalt sections facilitate efficient domain wall pinning at the interfaces of those sections. By combining electron holography with micromagnetic simulations, the pinning effect can be explained by the interaction of the stray fields generated at the interface and the domain wall. Utilizing a modified differential phase contrast imaging, we visualized the pinned domain wall with a high resolution, revealing its three-dimensional vortex structure with the previously predicted Bloch point at its center. These findings suggest the potential of modulated nanowires for the development of high-density, three-dimensional data storage devices. © 2016 American Chemical Society.

  18. Temporal Fourier transform of digital angiograms for left ventricular regional wall motion analysis

    International Nuclear Information System (INIS)

    Katayama, Kazuhiro; Guth, B.D.; Widmann, T.F.; Lee, Jong-Dae; Seitelberger, R.; Peterson, K.L.

    1988-01-01

    To determine whether or not the first harmonic of a temporal Fourier transform, applied pixel-by-pixel on time-intensity curves, can detect the subtle wall motion abnormalities due to ischemia, 6 dogs were instrumented with a micromanometer in the left ventricles, a hydraulic cuff occluder around the circumflex coronary artery, and sonomicrometers on the inferior (ischemic) and anterior (non-ischemic) walls. Left ventricular images, obtained after contrast injection via the pulmonary artery, were compared with dimension signals in control and 3 progressive levels of coronary stenosis (Stenosis I, II and III). Normalized, digital functional images (512 x 512 matrix, 256 shades of gray/pixel) were divided into anterior, apical, and inferior areas to acquire regional mean phase (degrees) and amplitude (intensity units) values. After inducing stenosis, phase in ischemic region significantly increased at all 3 levels of stenosis, whereas amplitude significantly decreased at Stenosis II and III. However, amplitude images showed clearly the topographic site of ischemia. There was a progressive increase in phase and decrease in amplitude in ischemic areas as the percent wall thickening (%WTh) fell (phase vs. %WTh: r = -0.55, p < 0.005; amplitude vs. %WTh: r = 0.71, p < 0.001). Heart rate and peak systolic pressure showed no significant changes during stenoses. We conclude that quantitative functional images, generated from a temporal Fourier transform, are sensitive to the detection of left ventricular regional wall motion abnormalities during mild, moderate, and severe degrees of ischemia. (author)

  19. Energy-imbalance mechanism of domain wall motion induced by propagation spin waves in finite magnetic nanostripe

    International Nuclear Information System (INIS)

    Zhu, Jinrong; Han, Zhaoyan; Su, Yuanchang; Hu, Jingguo

    2014-01-01

    The mechanism of the domain wall (DW) motions induced by spin wave in finite magnetic nanostripe is studied by micromagnetic simulations. We find that the spin-wave induced DM motions are always accompanied by an energy imbalance between two sides of the DW. The DW motion can be attributed to the expansion of the low-energy-density area and the contraction of the high-energy-density area. The energy imbalance strongly depends on whether the spin wave passes through the DW or is reflected by the DW. In the area of the spin wave propagation, the energy density increases with the time. However, in the superposition area of the incident spin wave and the reflected spin wave, the energy density decreases with the increasing of the time. It shows that this energy imbalance can be controlled by tuning the frequency of the spin wave. Finally, the effect of the damping parameter value is discussed. - Highlights: • The mechanism of the spin-wave induced DW motions is studied. • The spin-wave induced DW motions and the energy imbalance mechanism are given. • The DW motion with the same direction to that of SW is explained. • The DW motion with the opposite direction to that of SW is explained

  20. Evaluation of regional wall motion abnormalities of the heart. Comparison with Doppler tissue echocardiography, MR-tagging and levocardiography

    International Nuclear Information System (INIS)

    Kivelitz, D.E.; Enzweiler, C.N.H.; Hamm, B.; Borges, A.C.; Walde, T.; Rutsch, W.; Baumann, G.

    2004-01-01

    Purpose: To compare the visual analysis of magnetic resonance imaging (MRI) with the tagging technique and Doppler tissue echocardiography with invasive ventriculography in detecting and quantifying regional left ventricular wall motion abnormalities. Materials and Methods: Sixteen patients with coronary artery disease and a history of prior myocardial infarction underwent invasive ventriculography. Doppler tissue echocardiography and MR-tagging within one week. Regional wall motion abnormalities (WMA) were detected in all patients. WMA were graded as normal=1; hypokinetic=2; akinetic=3; or dyskinetic=4. For agreement between MRI, echocardiography, and ventriculography the kappa coefficient (κ) according to Cohen was calculated. Results: The kappa coefficient (κ) was 0.962 for agreement between MRI and echocardiography and 0.602 for agreement between MRI and ventriculography as well as between echocardiography and ventriculography. Conclusion: Reliable analysis of regional left ventricular wall motion abnormalities is feasible using visual analysis of MR-tagging. MRI and Doppler tissue echocardiography detect more WMA than invasive ventriculography and grade them as more severe. (orig.)

  1. Reversible wall motion abnormality on adenosine stress/rest thallium-201 gated myocardial SPECT is an independent predictor of coronary artery disease

    International Nuclear Information System (INIS)

    Park, Eun Kyung; Lee, Won Woo; So, Young; Eo, Jae Seon; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun; Kim, Cheol Ho; Lee, Sang Woo

    2004-01-01

    As early as 10 minutes after adenosine stress, immediate post-stress wall motion (ipsWM) can be evaluated on adenosine stress/rest TI-201 gated SPECT (gSPECT). To widen application of TI-201 in gated SPECT, we investigated image quality, LV parameters (EF, EDV, and ESV) reproducibility, and diagnostic competency of gSPECT regarding ipsWM evaluation Myocardial perfusion and wall motion were evaluated by 5-point scoring system in 20-segment model. Image quality was assessed using weighted Kappa (Kw) for inter-and intra-observer agreements of wall motion scores (n=49). Reproducibility was examined through repeated acquisition (n=31). Diagnostic competency was evaluated versus coronary angiography (CAG) and multivariate logistic regression analysis was performed to identify significant predictors of coronary artery disease (CAD) among stress abnormal perfusion (SSSp), stress abnormal wall motion (SSSwm), and reversible abnormal wall motion (SDSwm) (n=60). Kw for ipsWM was significantly better than that for rest regarding inter- (0.717 vs 0.489) and intra-observer agreements (0.792 vs 0.688) (p<0.05). 2SD for ipsWM was smaller than that for rest at EF (8.6% vs 10.7%) and ESV (6.0ml vs 8.4ml). Sensitivities of SSSp, SSSwm, and SDSwm were 63.3% (19/30), 63.3% (19/30), and 43.3% (13/30) and specificities 83.3% (25/30), 83.3% (25/30), and 86.7% (26/30), respectively. By multivariate analysis, SSSp (p=0.013) and SDSwm (p=0.039) remained significant predictors. Additionally, SSSwm or SDSwm could find undetected CAD in 54.5% (6/11) of patients with normal perfusion. TI-201 can be successfully applied to gated SPECT for ipsWM evaluation. Moreover, reversible wall motion abnormality on gSPECT is an independent predictor of significant CAD

  2. Interventional heart wall motion analysis with cardiac C-arm CT systems

    International Nuclear Information System (INIS)

    Müller, Kerstin; Maier, Andreas K; Schwemmer, Chris; Hornegger, Joachim; Zheng, Yefeng; Wang, Yang; Lauritsch, Günter; Rohkohl, Christopher; Fahrig, Rebecca

    2014-01-01

    Today, quantitative analysis of three-dimensional (3D) dynamics of the left ventricle (LV) cannot be performed directly in the catheter lab using a current angiographic C-arm system, which is the workhorse imaging modality for cardiac interventions. Therefore, myocardial wall analysis is completely based on the 2D angiographic images or pre-interventional 3D/4D imaging. In this paper, we present a complete framework to study the ventricular wall motion in 4D (3D+t) directly in the catheter lab. From the acquired 2D projection images, a dynamic 3D surface model of the LV is generated, which is then used to detect ventricular dyssynchrony. Different quantitative features to evaluate LV dynamics known from other modalities (ultrasound, magnetic resonance imaging) are transferred to the C-arm CT data. We use the ejection fraction, the systolic dyssynchrony index a 3D fractional shortening and the phase to maximal contraction (ϕ i, max ) to determine an indicator of LV dyssynchrony and to discriminate regionally pathological from normal myocardium. The proposed analysis tool was evaluated on simulated phantom LV data with and without pathological wall dysfunctions. The LV data used is publicly available online at https://conrad.stanford.edu/data/heart. In addition, the presented framework was tested on eight clinical patient data sets. The first clinical results demonstrate promising performance of the proposed analysis tool and encourage the application of the presented framework to a larger study in clinical practice. (paper)

  3. Carotid artery wall motion analysis from B-mode ultrasound using adaptive block matching: in silico evaluation and in vivo application

    International Nuclear Information System (INIS)

    Gastounioti, A; Stoitsis, J S; Nikita, K S; Golemati, S

    2013-01-01

    Valid risk stratification for carotid atherosclerotic plaques represents a crucial public health issue toward preventing fatal cerebrovascular events. Although motion analysis (MA) provides useful information about arterial wall dynamics, the identification of motion-based risk markers remains a significant challenge. Considering that the ability of a motion estimator (ME) to handle changes in the appearance of motion targets has a major effect on accuracy in MA, we investigated the potential of adaptive block matching (ABM) MEs, which consider changes in image intensities over time. To assure the validity in MA, we optimized and evaluated the ABM MEs in the context of a specially designed in silico framework. ABM FIRF2 , which takes advantage of the periodicity characterizing the arterial wall motion, was the most effective ABM algorithm, yielding a 47% accuracy increase with respect to the conventional block matching. The in vivo application of ABM FIRF2 revealed five potential risk markers: low movement amplitude of the normal part of the wall adjacent to the plaques in the radial (RMA PWL ) and longitudinal (LMA PWL ) directions, high radial motion amplitude of the plaque top surface (RMA PTS ), and high relative movement, expressed in terms of radial strain (RSI PL ) and longitudinal shear strain (LSSI PL ), between plaque top and bottom surfaces. The in vivo results were reproduced by OF LK(WLS) and ABM KF-K2 , MEs previously proposed by the authors and with remarkable in silico performances, thereby reinforcing the clinical values of the markers and the potential of those MEs. Future in vivo studies will elucidate with confidence the full potential of the markers. (paper)

  4. Both semiquantitative degree of rest Tl-201 uptake and reversibility at 24 hour-delay were needed to predict wall motion improvement after bypass surgery

    International Nuclear Information System (INIS)

    Lee, D. S.; Yoon, S. N.; Kim, K. B.; Jeong, Z. K.; Lee, M. C.; Ko, C. S.

    1997-01-01

    Controversy still exists about how to use the uptake at rest and 24 hour delay in rest redistribution Tl-201 SPECT to predict improvement of wall motion abnormality after bypass surgery. To find the best way to combine diagnostic efficacy of Tl-201 SPECT to predict myocardial viability, we studied the predictive values (positive: PPV, negative: NPV) of rest and 24 hour-delay Tl-201 SPECT in 21 patients. Wall motion was assessed comparing preoperative post-stress gated Tc-99m-MIBI SPECT with that of 3 months after surgery. Four point scoring system was used for 17 myocardial segments to asses uptakes ( 0 to 3 for normal to defect) at rest and 24 hour-delay and wall motion ( 0 to 3 for normal to dyskinesia). Ejection fraction improved after surgery (5011% vs 4313%). Intra-observer and inter-observer reproducibility of EF was 7 and 9% respectively when we used 3D Perfusion-Motion Map. Sixty seven segments showed wall motion abnormality before surgery. Predictive values of rest Tl-201 uptake decrease were as follows: 0: 15/15(100%), 1: 30/34(88%), 2: 6/11 (55%), 3: 3/7(43%). So PPV of mild decrease was 88%, and NPV of severe decrease was 50%. Delayed reversibility was evaluated in 37 segments (15 patients). Twenty seven segment had persistence or aggravation, but the other 10 segments improved at 24 hour delay. PPV of reversible 10 segments was 80%, and NPV of reversibility was only 46%. PPV of combination of rest Tl-201 uptake of mild degree and 24 hour reversibility was 86% (38/44) and NPV of neither one was 88%. We concluded that both semi-quantitative degree of Tl-201 uptake at rest and reversibility at 24 hour delay was the best to warrant or abandon postoperative improvement of abnormal wall motion found at preoperative post-stress gated myocardial SPECT

  5. Quantification of the relative contribution of the different right ventricular wall motion components to right ventricular ejection fraction: the ReVISION method.

    Science.gov (United States)

    Lakatos, Bálint; Tősér, Zoltán; Tokodi, Márton; Doronina, Alexandra; Kosztin, Annamária; Muraru, Denisa; Badano, Luigi P; Kovács, Attila; Merkely, Béla

    2017-03-27

    Three major mechanisms contribute to right ventricular (RV) pump function: (i) shortening of the longitudinal axis with traction of the tricuspid annulus towards the apex; (ii) inward movement of the RV free wall; (iii) bulging of the interventricular septum into the RV and stretching the free wall over the septum. The relative contribution of the aforementioned mechanisms to RV pump function may change in different pathological conditions.Our aim was to develop a custom method to separately assess the extent of longitudinal, radial and anteroposterior displacement of the RV walls and to quantify their relative contribution to global RV ejection fraction using 3D data sets obtained by echocardiography.Accordingly, we decomposed the movement of the exported RV beutel wall in a vertex based manner. The volumes of the beutels accounting for the RV wall motion in only one direction (either longitudinal, radial, or anteroposterior) were calculated at each time frame using the signed tetrahedron method. Then, the relative contribution of the RV wall motion along the three different directions to global RV ejection fraction was calculated either as the ratio of the given direction's ejection fraction to global ejection fraction and as the frame-by-frame RV volume change (∆V/∆t) along the three motion directions.The ReVISION (Right VentrIcular Separate wall motIon quantificatiON) method may contribute to a better understanding of the pathophysiology of RV mechanical adaptations to different loading conditions and diseases.

  6. Changes in dynamic embryonic heart wall motion in response to outflow tract banding measured using video densitometry

    Science.gov (United States)

    Stovall, Stephanie; Midgett, Madeline; Thornburg, Kent; Rugonyi, Sandra

    2016-11-01

    Abnormal blood flow during early cardiovascular development has been identified as a key factor in the pathogenesis of congenital heart disease; however, the mechanisms by which altered hemodynamics induce cardiac malformations are poorly understood. This study used outflow tract (OFT) banding to model increased afterload, pressure, and blood flow velocities at tubular stages of heart development and characterized the immediate changes in cardiac wall motion due to banding in chicken embryo models with light microscopy-based video densitometry. Optical videos were used to acquire two-dimensional heart image sequences over the cardiac cycle, from which intensity data were extracted along the heart centerline at several locations in the heart ventricle and OFT. While no changes were observed in the synchronous contraction of the ventricle with banding, the peristaltic-like wall motion in the OFT was significantly affected. Our data provide valuable insight into early cardiac biomechanics and its characterization using a simple light microscopy-based imaging modality.

  7. Controlling magnetic domain wall motion in the creep regime in He+-irradiated CoFeB/MgO films with perpendicular anisotropy

    International Nuclear Information System (INIS)

    Herrera Diez, L.; García-Sánchez, F.; Adam, J.-P.; Devolder, T.; Eimer, S.; El Hadri, M. S.; Ravelosona, D.; Lamperti, A.; Mantovan, R.; Ocker, B.

    2015-01-01

    This study presents the effective tuning of perpendicular magnetic anisotropy in CoFeB/MgO thin films by He + ion irradiation and its effect on domain wall motion in a low field regime. Magnetic anisotropy and saturation magnetisation are found to decrease as a function of the irradiation dose which can be related to the observed irradiation-induced changes in stoichiometry at the CoFeB/MgO interface. These changes in the magnetic intrinsic properties of the film are reflected in the domain wall dynamics at low magnetic fields (H) where irradiation is found to induce a significant decrease in domain wall velocity (v). For all irradiation doses, domain wall velocities at low fields are well described by a creep law, where Ln(v) vs. H −1∕4 behaves linearly, up to a maximum field H*, which has been considered as an approximation to the value of the depinning field H dep . In turn, H* ≈ H dep is seen to increase as a function of the irradiation dose, indicating an irradiation-induced extension of the creep regime of domain wall motion

  8. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, N., E-mail: izumi2@llnl.gov; Meezan, N. B.; Divol, L.; Hall, G. N.; Barrios, M. A.; Jones, O.; Landen, O. L.; Kroll, J. J.; Vonhof, S. A.; Nikroo, A.; Bailey, C. G.; Hardy, C. M.; Ehrlich, R. B.; Town, R. P. J.; Bradley, D. K.; Hinkel, D. E.; Moody, J. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Jaquez, J. [General Atomics, San Diego, California 9212 (United States)

    2016-11-15

    The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the technique of spectrally selective x-ray imaging are discussed.

  9. Prognostic value of high-dose dobutamine stress magnetic resonance imaging in 1,493 consecutive patients: assessment of myocardial wall motion and perfusion.

    Science.gov (United States)

    Korosoglou, Grigorios; Elhmidi, Yacine; Steen, Henning; Schellberg, Dieter; Riedle, Nina; Ahrens, Johannes; Lehrke, Stephanie; Merten, Constanze; Lossnitzer, Dirk; Radeleff, Jannis; Zugck, Christian; Giannitsis, Evangelos; Katus, Hugo A

    2010-10-05

    This study sought to determine the prognostic value of wall motion and perfusion assessment during high-dose dobutamine stress (DS) cardiac magnetic resonance imaging (MRI) in a large patient cohort. DS-MRI offers the possibility to integrate myocardial perfusion and wall motion analysis in a single examination for the detection of coronary artery disease (CAD). A total of 1,493 consecutive patients with suspected or known CAD underwent DS-MRI, using a standard protocol in a 1.5-T magnetic resonance scanner. Wall motion and perfusion were assessed at baseline and during stress, and outcome data including cardiac death, nonfatal myocardial infarction ("hard events"), and "late" revascularization performed >90 days after the MR scans were collected during a 2 ± 1 year follow-up period. Fifty-three hard events, including 14 cardiac deaths and 39 nonfatal infarctions, occurred during the follow-up period, whereas 85 patients underwent "late" revascularization. Using multivariable regression analysis, an abnormal result for wall motion or perfusion during stress yielded the strongest independent prognostic value for both hard events and late revascularization, clearly surpassing that of clinical and baseline magnetic resonance parameters (for wall motion: adjusted hazard ratio [HR] of 5.9 [95% confidence interval (CI): 2.5 to 13.6] for hard events and of 3.1 [95% CI: 1.7 to 5.6] for late revascularization, and for perfusion: adjusted HR of 5.4 [95% CI: 2.3 to 12.9] for hard events and of 6.2 [95% CI: 3.3 to 11.3] for late revascularization, p < 0.001 for all). DS-MRI can accurately identify patients who are at increased risk for cardiac death and myocardial infarction, separating them from those with normal findings, who have very low risk for future cardiac events. (Prognostic Value of High Dose Dobutamine Stress Magnetic Resonance Imaging; NCT00837005). Copyright © 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  10. Myocardial metabolism, perfusion, wall motion and electrical activity in Duchenne muscular dystrophy

    International Nuclear Information System (INIS)

    Perloff, J.K.; Henze, E.; Schelbert, H.R.

    1982-01-01

    The cardiomyopathy of Duchenne's muscular dystrophy originates in the posterobasal left ventricle and extends chiefly to the contiguous lateral wall. Ultrastructural abnormalities in these regions precede connective tissue replacement. We postulated that a metabolic fault coincided with or antedated the subcellular abnormality. Accordingly, regional left ventricular metabolism, perfusion and wall motion were studied using positron computed tomography and metabolic isotopes supplemented by thallium perfusion scans, equilibrium radionuclide angiography and M-mode and two-dimensional echocardiography. To complete the assessment, electrocardiograms, vectorcardiograms, 24 hour taped electrocardiograms and chest x-rays were analyzed. Positron computed tomography utilizing F-18 2-fluoro 2-deoxyglucose (FDG) provided the first conclusive evidence supporting the hypothesis of a premorphologic regional metabolic fault. Thus, cardiac involvement in duchenne dystrophy emerges as a unique form of heart disease, genetically targeting specific regions of ventricular myocardium for initial metabolic and subcellular changes. Reported ultrastructural abnormalities of the impulse and conduction systems provide, at least in part, a basis for the clinically observed sinus node, intraatrial, internodal, AV nodal and infranodal disorders

  11. Controlling magnetic domain wall motion in the creep regime in He{sup +}-irradiated CoFeB/MgO films with perpendicular anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Herrera Diez, L., E-mail: liza.herrera-diez@ief.u-psud.fr; García-Sánchez, F.; Adam, J.-P.; Devolder, T.; Eimer, S.; El Hadri, M. S.; Ravelosona, D. [Institut d' Electronique Fondamentale, Université Paris-Sud, UMR CNRS 8622, 91405 Orsay (France); Lamperti, A.; Mantovan, R. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate (MB) (Italy); Ocker, B. [Singulus Technology AG, Hanauer Landstrasse 103, 63796 Kahl am Main (Germany)

    2015-07-20

    This study presents the effective tuning of perpendicular magnetic anisotropy in CoFeB/MgO thin films by He{sup +} ion irradiation and its effect on domain wall motion in a low field regime. Magnetic anisotropy and saturation magnetisation are found to decrease as a function of the irradiation dose which can be related to the observed irradiation-induced changes in stoichiometry at the CoFeB/MgO interface. These changes in the magnetic intrinsic properties of the film are reflected in the domain wall dynamics at low magnetic fields (H) where irradiation is found to induce a significant decrease in domain wall velocity (v). For all irradiation doses, domain wall velocities at low fields are well described by a creep law, where Ln(v) vs. H{sup −1∕4} behaves linearly, up to a maximum field H*, which has been considered as an approximation to the value of the depinning field H{sub dep}. In turn, H* ≈ H{sub dep} is seen to increase as a function of the irradiation dose, indicating an irradiation-induced extension of the creep regime of domain wall motion.

  12. Direct observation of current-induced motion of a 3D vortex domain wall in cylindrical nanowires

    KAUST Repository

    Ivanov, Yurii P.

    2017-05-08

    The current-induced dynamics of 3D magnetic vortex domain walls in cylindrical Co/Ni nanowires are revealed experimentally using Lorentz microscopy and theoretically using micromagnetic simulations. We demonstrate that a spin-polarized electric current can control the reversible motion of 3D vortex domain walls, which travel with a velocity of a few hundred meters per second. This finding is a key step in establishing fast, high-density memory devices based on vertical arrays of cylindrical magnetic nanowires.

  13. Direct observation of current-induced motion of a 3D vortex domain wall in cylindrical nanowires

    KAUST Repository

    Ivanov, Yurii P.; Chuvilin, Andrey; Lopatin, Sergei; Mohammed, Hanan; Kosel, Jü rgen

    2017-01-01

    The current-induced dynamics of 3D magnetic vortex domain walls in cylindrical Co/Ni nanowires are revealed experimentally using Lorentz microscopy and theoretically using micromagnetic simulations. We demonstrate that a spin-polarized electric current can control the reversible motion of 3D vortex domain walls, which travel with a velocity of a few hundred meters per second. This finding is a key step in establishing fast, high-density memory devices based on vertical arrays of cylindrical magnetic nanowires.

  14. Evaluation of right ventricular regional wall motion in inferior myocardial infarction by cine MRI

    International Nuclear Information System (INIS)

    Nishino, Masami; Ohnishi, Shusaku; Hasegawa, Shinji

    1991-01-01

    The purpose of this study is to evaluate right ventricular regional wall motion in inferior myocardial infarction by cine MRI. Thirteen patients with inferior myocardial infarction were investigated by cine MRI and were divided into proximal group which consisted of seven patients: >90% stenosis in segment 1 or 2 of right coronary artery and distal group which consisted of six patients: >90% stenosis in segment 3 or 4 of right coronary artery. Cine MRI was performed by 1.5 tesla magnet system (Signa, GE). To depict the regional asynergy, right ventricular wall was divided into 6 segments as follows: Segments 1 and 2 were upper and lower segments in transverse planes, respectively. Segments 3 and 4 were free wall and diaphragmatic segments of outflow tract, and segments 5 and 6 were of inflow tract in sagittal planes. Our results were as follows: (1) In proximal group, right ventricular asynergy was detected in six patients but in distal group it was detected in only one patient; (2) Right ventricular asynergy was detected most frequently at diaphragmatic segments in sagittal planes; (3) All the patients who had shown the hemodynamic deterioration of right ventricle on acute phase of inferior myocardial infarction presented the broad asynergy in right ventricle; (4) Cine MRI is clinically useful in evaluating right ventricular regional wall movement and diagnosing right ventricular infarction. (author)

  15. Strain-Encoded Cardiac Magnetic Resonance Imaging as an Adjunct for Dobutamine Stress Testing. Incremental Value to Conventional Wall Motion Analysis

    Science.gov (United States)

    Korosoglou, Grigorios; Lossnitzer, Dirk; Schellberg, Dieter; Lewien, Antje; Wochele, Angela; Schaeufele, Tim; Neizel, Mirja; Steen, Henning; Giannitsis, Evangelos; Katus, Hugo A.; Osman, Nael F.

    2009-01-01

    Background High-dose dobutamine stress magnetic resonance imaging (DS-MRI) is safe and feasible for the diagnosis of coronary artery disease (CAD) in humans. However, the assessment of cine scans relies on the visual interpretation of regional wall motion, which is subjective. Recently, Strain-Encoded MRI (SENC) has been proposed for the direct color-coded visualization of myocardial strain. The purpose of our study was to compare the diagnostic value of SENC to that provided by conventional wall motion analysis for the detection of inducible ischemia during DS-MRI. Methods and Results Stress induced ischemia was assessed by wall motion analysis and by SENC in 101 patients with suspected or known CAD and in 17 healthy volunteers who underwent DS-MRI in a clinical 1.5T scanner. Quantitative coronary angiography deemed as the standard reference for the presence or absence of significant CAD (≥50% diameter stenosis). On a coronary vessel level, SENC detected inducible ischemia in 86/101 versus 71/101 diseased coronary vessels (p<0.01 versus cine), and showed normal strain response in 189/202 versus 194/202 vessels with <50% stenosis (p=NS versus cine). On a patient level, SENC detected inducible ischemia in 63/64 versus 55/64 patients with CAD (p<0.05 versus cine), and showed normal strain response in 32/37 versus 34/37 patients without CAD (p=NS versus cine).Quantification analysis demonstrated a significant correlation between strain rate reserve (SRreserve) and coronary artery stenosis severity (r²=0.56, p<0.001), and a cut-off value of SRreserve=1.64 deemed as a highly accurate marker for the detection of stenosis≥50% (AUC=0.96, SE=0.01, 95% CI = 0.94–0.98, p<0.001). Conclusions The direct color-coded visualization of strain on MR-images is a useful adjunct for DS-MRI, which provides incremental value for the detection of CAD compared to conventional wall motion readings on cine images. PMID:19808579

  16. Rapid estimation of left ventricular ejection fraction in acute myocardial infarction by echocardiographic wall motion analysis

    DEFF Research Database (Denmark)

    Berning, J; Rokkedal Nielsen, J; Launbjerg, J

    1992-01-01

    Echocardiographic estimates of left ventricular ejection fraction (ECHO-LVEF) in acute myocardial infarction (AMI) were obtained by a new approach, using visual analysis of left ventricular wall motion in a nine-segment model. The method was validated in 41 patients using radionuclide...

  17. Hydrodynamics of ultra-relativistic bubble walls

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Leonardo, E-mail: lleitao@mdp.edu.ar; Mégevand, Ariel, E-mail: megevand@mdp.edu.ar

    2016-04-15

    In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  18. Fluids in micropores. V. Effects of thermal motion in the walls of a slit-micropore

    International Nuclear Information System (INIS)

    Diestler, D.J.; Schoen, M.

    1996-01-01

    Previous articles in this series have concerned the prototypal slit-pore with rigid walls, in which a Lennard-Jones (12,6) monatomic film is constrained between two plane-parallel walls comprising like atoms fixed in the face-centered-cubic (fcc) (100) configuration. The behavior of molecularly thin films in the rigid-wall prototype is governed by the template effect, whereby solid films can form epitaxially when the walls are properly aligned in the lateral directions. In this article the influence of thermal motion of the wall atoms on the template effect is investigated. The walls are treated as Einstein solids, the atoms moving independently in harmonic potentials centered on rigidly fixed equilibrium positions in the fcc (100) configuration. The force constant f c is a measure of the stiffness of the walls, the rigid-wall limit being f c =∞. Formal thermodynamic and statistical mechanical analyses of the system are carried out. The results of grand canonical ensemble Monte Carlo simulations indicate that for values of f c characteristic of a soft (e.g., noble-gas) crystal dynamic coupling between wall and film has a substantial influence on such equilibrium properties as normal stress (load) and interfacial tensions. In general, the softer the walls (i.e., the smaller the value of f c ), the weaker the template effect and hence the softer and more disordered the confined film. copyright 1996 American Institute of Physics

  19. Recovery of BMIPP uptake and regional wall motion in insulin resistant patients following angioplasty for acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Fujino, Takayuki; Ishii, Yoshinao; Hirasawa, Kunihiko; Tateda, Kunihiko [Asahikawa City Hospital, Hokkaido (Japan); Takeuchi, Toshiharu; Kikuchi, Kenjiro; Hasebe, Naoyuki [Asahikawa Medical Coll., Hokkaido (Japan)

    2003-09-01

    The effect of insulin resistance (IR) on the fatty acid metabolism of myocardium, and therefore on the recovery of left ventricular (LV) wall motion, has not been established in patients with acute myocardial infarction (AMI). A total of consecutive 58 non-diabetic AMI patients who had successfully undergone emergency coronary angioplasty were analyzed retrospectively. They were categorized into 2 groups, normal glucose tolerance (NGT) and impaired glucose tolerance (IGT), based on a 75-g oral glucose tolerance test (OGTT). The parameters of OGTT, myocardial scintigraphy (n=58) (thallium-201 (Tl) and iodine-123-{beta}-methyl-iodophenylpentadecanoic acid (BMIPP)) and left ventriculography (n=24) were compared in the 2 groups after reperfusion (acute phase) and 3-4 weeks after the AMI (chronic phase). The IR, estimated by the serum concentration of insulin at 120 min (IRI 120') of the OGTT and by the HOMA (the homeostasis model assessment) index, was higher in the IGT group than in NGT group. An inverse correlation was found between the recovery of regional LV wall motion in the ischemic lesion and the IRI 120' and HOMA index. Although the recovery of BMIPP uptake from the acute to the chronic phase was higher in the IGT group, it was only correlated with the degree of IRI 120', not with the HOMA. IR accompanied by IGT can negatively influence the recovery of regional LV wall motion. (author)

  20. Recovery of BMIPP uptake and regional wall motion in insulin resistant patients following angioplasty for acute myocardial infarction

    International Nuclear Information System (INIS)

    Fujino, Takayuki; Ishii, Yoshinao; Hirasawa, Kunihiko; Tateda, Kunihiko; Takeuchi, Toshiharu; Kikuchi, Kenjiro; Hasebe, Naoyuki

    2003-01-01

    The effect of insulin resistance (IR) on the fatty acid metabolism of myocardium, and therefore on the recovery of left ventricular (LV) wall motion, has not been established in patients with acute myocardial infarction (AMI). A total of consecutive 58 non-diabetic AMI patients who had successfully undergone emergency coronary angioplasty were analyzed retrospectively. They were categorized into 2 groups, normal glucose tolerance (NGT) and impaired glucose tolerance (IGT), based on a 75-g oral glucose tolerance test (OGTT). The parameters of OGTT, myocardial scintigraphy (n=58) (thallium-201 (Tl) and iodine-123-β-methyl-iodophenylpentadecanoic acid (BMIPP)) and left ventriculography (n=24) were compared in the 2 groups after reperfusion (acute phase) and 3-4 weeks after the AMI (chronic phase). The IR, estimated by the serum concentration of insulin at 120 min (IRI 120') of the OGTT and by the HOMA (the homeostasis model assessment) index, was higher in the IGT group than in NGT group. An inverse correlation was found between the recovery of regional LV wall motion in the ischemic lesion and the IRI 120' and HOMA index. Although the recovery of BMIPP uptake from the acute to the chronic phase was higher in the IGT group, it was only correlated with the degree of IRI 120', not with the HOMA. IR accompanied by IGT can negatively influence the recovery of regional LV wall motion. (author)

  1. Recovery of BMIPP uptake and regional wall motion in insulin resistant patients following angioplasty for acute myocardial infarction.

    Science.gov (United States)

    Fujino, Takayuki; Ishii, Yoshinao; Takeuchi, Toshiharu; Hirasawa, Kunihiko; Tateda, Kunihiko; Kikuchi, Kenjiro; Hasebe, Naoyuki

    2003-09-01

    The effect of insulin resistance (IR) on the fatty acid metabolism of myocardium, and therefore on the recovery of left ventricular (LV) wall motion, has not been established in patients with acute myocardial infarction (AMI). A total of consecutive 58 non-diabetic AMI patients who had successfully undergone emergency coronary angioplasty were analyzed retrospectively. They were categorized into 2 groups, normal glucose tolerance (NGT) and impaired glucose tolerance (IGT), based on a 75-g oral glucose tolerance test (OGTT). The parameters of OGTT, myocardial scintigraphy (n=58) (thallium-201 (Tl) and iodine-123-beta-methyl-iodophenylpentadecanoic acid (BMIPP)) and left ventriculography (n=24) were compared in the 2 groups after reperfusion (acute phase) and 3-4 weeks after the AMI (chronic phase). The insulin resistance (IR), estimated by the serum concentration of insulin at 120 min (IRI 120') of the OGTT and by the HOMA (the homeostasis model assessment) index, was higher in the IGT group than in NGT group. An inverse correlation was found between the recovery of regional LV wall motion in the ischemic lesion and the IRI 120' and HOMA index. Although the recovery of BMIPP uptake from the acute to the chronic phase was higher in the IGT group, it was only correlated with the degree of IRI 120', not with the HOMA. IR accompanied by IGT can negatively influence the recovery of regional LV wall motion.

  2. Hydrodynamics of ultra-relativistic bubble walls

    Directory of Open Access Journals (Sweden)

    Leonardo Leitao

    2016-04-01

    Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  3. Color structured light system of chest wall motion measurement for respiratory volume evaluation

    Science.gov (United States)

    Chen, Huijun; Cheng, Yuan; Liu, Dongdong; Zhang, Xiaodong; Zhang, Jue; Que, Chengli; Wang, Guangfa; Fang, Jing

    2010-03-01

    We present a structured light system to dynamically measure human chest wall motion for respiratory volume estimation. Based on a projection of an encoded color pattern and a few active markers attached to the trunk, respiratory volumes are obtained by evaluating the 3-D topographic changes of the chest wall in an anatomically consistent measuring region during respiration. Three measuring setups are established: a single-sided illuminating-recording setup for standing posture, an inclined single-sided setup for supine posture, and a double-sided setup for standing posture. Results are compared with the pneumotachography and show good agreement in volume estimations [correlation coefficient: R>0.99 (Pvolume during the isovolume maneuver (standard deviationpulmonary functional differences between the diseased and the contralateral sides of the thorax, and subsequent improvement of this imbalance after drainage. These results demonstrate the proposed optical method is capable of not only whole respiratory volume evaluation with high accuracy, but also regional pulmonary function assessment in different chest wall behaviors, with the advantage of whole-field measurement.

  4. Identification of acute myocardial infarction with MR imaging by using combined assessment of regional wall motion and Gd-DTPA uptake

    International Nuclear Information System (INIS)

    Roos, A. de; Matheijssen, N.A.A.; Doornbos, J.; van Dijkman, P.; Pattynama, P.; van der Wall, E.

    1990-01-01

    This paper evaluates the usefulness of MR imaging for identification of acute myocardial infarction (AMI) in clinical patients, based on the assessment of regional wall motion abnormalities in conjunction with local uptake of Gd-DTPA. Fourteen patients with proved AMI and 12 normal volunteers underwent multisection-multiphase MR imaging in the short-axis plane encompassing the entire left ventricle. Gd-DTPA (0.2 mmol/kg) was injected in all patients to enhance the infarcted region. MR cine loops of the patients and volunteers were blinded and displayed. Three experienced observers scored the cine loops in consensus as to the presence or absence of AMI, noting wall motion abnormalities and/or increased Gd-DTPA uptake

  5. Motional Effect on Wall Shear Stresses

    DEFF Research Database (Denmark)

    Kock, Samuel Alberg; Torben Fründ, Ernst; Yong Kim, Won

    Atherosclerosis is the leading cause of death and severe disability. Wall Shear Stress (WSS), the stress exerted on vessel walls by the flowing blood is a key factor in the development of atherosclerosis. Computational Fluid Dynamics (CFD) is widely used for WSS estimations. Most CFD simulations...... are based on static models to ease computational burden leading to inaccurate estimations. The aim of this work was to estimate the effect of vessel wall deformations (expansion and bending) on WSS levels....

  6. Current induced domain wall motion and tilting in Pt/Co/Ta structures with perpendicular magnetic anisotropy in the presence of the Dyzaloshinskii–Moriya interaction

    Science.gov (United States)

    Yun, Jijun; Li, Dong; Cui, Baoshan; Guo, Xiaobin; Wu, Kai; Zhang, Xu; Wang, Yupei; Mao, Jian; Zuo, Yalu; Xi, Li

    2018-04-01

    Current induced domain wall motion (CIDWM) was studied in Pt/Co/Ta structures with perpendicular magnetic anisotropy and the Dyzaloshinskii–Moriya interaction (DMI) by the spin-orbit torque (SOT). We measured the strength of DMI and SOT efficiency in Pt/Co/Ta with the variation of the thickness of Ta using a current induced hysteresis loop shift method. The results indicate that the DMI stabilizes a chiral Néel-type domain wall (DW), and the DW motion can be driven by the enhanced large SOT generated from Pt and Ta with opposite signs of spin Hall angle in Pt/Co/Ta stacks. The CIDWM velocity, which is 104 times larger than the field driven DW velocity, obeys a creep law, and reaches around tens of meters per second with current density of ~106 A cm‑2. We also found that the Joule heating accompanied with current also accelerates the DW motion. Meanwhile, a domain wall tilting was observed, which increases with current density increasing. These results can be explained by the spin Hall effect generated from both heavy metals Pt and Ta, inherent DMI, and the current accompanying Joule heating effect. Our results could provide some new designing prospects to move multiple DWs by SOT for achieving racetrack memories.

  7. Domain wall and interphase boundary motion in (1−x)Bi(Mg{sub 0.5}Ti{sub 0.5})O{sub 3}–xPbTiO{sub 3} near the morphotropic phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Tutuncu, Goknur [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Chen, Jun; Fan, Longlong [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Fancher, Chris M.; Zhao, Jianwei [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Forrester, Jennifer S.; Jones, Jacob L., E-mail: JacobJones@ncsu.edu [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-07-28

    Electric field-induced changes in the domain wall motion of (1−x)Bi(Mg{sub 0.5}Ti{sub 0.5})O{sub 3}–xPbTiO{sub 3} (BMT-xPT) near the morphotropic phase boundary (MPB) where x = 0.37 (BMT-37PT) and x = 0.38 (BMT-38PT), are studied by means of synchrotron x-ray diffraction. Through Rietveld analysis and profile fitting, a mixture of coexisting monoclinic (Cm) and tetragonal (P4mm) phases is identified at room temperature. Extrinsic contributions to the property coefficients are evident from electric-field-induced domain wall motion in both the tetragonal and monoclinic phases, as well as through the interphase boundary motion between the two phases. Domain wall motion in the tetragonal and monoclinic phases for BMT-37PT is larger than that of BMT-38PT, possibly due to this composition's closer proximity to the MPB. Increased interphase boundary motion was also observed in BMT-37PT. Lattice strain, which is a function of both intrinsic piezoelectric strain and elastic interactions of the grains (the latter originating from domain wall and interphase boundary motion), is similar for the respective tetragonal and monoclinic phases.

  8. Improved stage of infarction wall motion in AMI. Association between the presence or absence of mismatch in myocardial scintigrams of Tl and BMIPP and CK release pattern

    International Nuclear Information System (INIS)

    Kurihara, Masato; Abe, Masahiro; Abe, Toshihiro; Nagai, Yoshikazu; Ibukiyama, Chiharu

    1998-01-01

    Binuclear myocardial scintigraphy with BMIPP and 201 TlCl was conducted on 40 patients with myocardial infarction. In all of 40 patients, reperfusion therapy in the acute stage succeeded. The relationship between serum CK release pattern and timing of improvement of wall motion at infarct-related area in the chronic stage was investigated. The patients were divided into 3 groups according to the early or late appearance of peak CK, and the presence or absence of B type mismatch in dual myocardial scintigraphy with BMIPP and 201 TlCl obtained one month after acute onset of myocardial infarction. Infarct size obtained from 201 TlCl scintigraphy and wall motion related to infarction were also investigated immediately after reperfusion and one month thereafter, respectively. No differences were recognized between Group I, in which the infarct area had B type mismatch with early appearance of CK peak, and Group II, in which the infarct area also had B type mismatch with the late appearance of CK peak. Although the wall motion did not change at all in Group I, it improved in Group II one month after reperfusion. Group III did not demonstrate B type mismatch with late appearance of CK peak and smaller infarct size compared to those in Group I and Group II. The wall motion in Group III had a tendency to improve immediately after reperfusion and maintain that level one month later. The timing of improvement of wall motion after successful reperfusion in the area with B type mismatch was not uniform. This suggests that the nonuniformity of the timing of improvement of wall motion in the area with B type mismatch is partly attributable to some kinds of injury to myocardium caused by reperfusion. (author)

  9. Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating

    International Nuclear Information System (INIS)

    Hayat, T.; Nisar, Z.; Ahmad, B.; Yasmin, H.

    2015-01-01

    This paper is devoted to the magnetohydrodynamic (MHD) peristaltic transport of nanofluid in a channel with wall properties. Flow analysis is addressed in the presence of viscous dissipation, partial slip and Joule heating effects. Mathematical modelling also includes the salient features of Brownian motion and thermophoresis. Both analytic and numerical solutions are provided. Comparison between the solutions is shown in a very good agreement. Attention is focused to the Brownian motion parameter, thermophoresis parameter, Hartman number, Eckert number and Prandtl number. Influences of various parameters on skin friction coefficient, Nusselt and Sherwood numbers are also investigated. It is found that both the temperature and nanoparticles concentration are increasing functions of Brownian motion and thermophoresis parameters. - Highlights: • Temperature rises when Brownian motion and thermophoresis effects intensify. • Temperature profile increases when thermal slip parameter increases. • Concentration field is a decreasing function of concentration slip parameter. • Temperature decreases whereas concentration increases for Hartman number

  10. Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia); Nisar, Z. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Ahmad, B. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia); Yasmin, H., E-mail: qau2011@gmail.com [Department of Mathematics, COMSATS Institute of Information Technology, G.T. Road, Wah Cantt 47040 (Pakistan)

    2015-12-01

    This paper is devoted to the magnetohydrodynamic (MHD) peristaltic transport of nanofluid in a channel with wall properties. Flow analysis is addressed in the presence of viscous dissipation, partial slip and Joule heating effects. Mathematical modelling also includes the salient features of Brownian motion and thermophoresis. Both analytic and numerical solutions are provided. Comparison between the solutions is shown in a very good agreement. Attention is focused to the Brownian motion parameter, thermophoresis parameter, Hartman number, Eckert number and Prandtl number. Influences of various parameters on skin friction coefficient, Nusselt and Sherwood numbers are also investigated. It is found that both the temperature and nanoparticles concentration are increasing functions of Brownian motion and thermophoresis parameters. - Highlights: • Temperature rises when Brownian motion and thermophoresis effects intensify. • Temperature profile increases when thermal slip parameter increases. • Concentration field is a decreasing function of concentration slip parameter. • Temperature decreases whereas concentration increases for Hartman number.

  11. Cardiac functional mapping for thallium-201 myocardial perfusion, washout, wall motion and phase using single-photon emission computed tomography (SPECT)

    International Nuclear Information System (INIS)

    Nakajima, Kenichi; Bunko, Hisashi; Taniguchi, Mitsuru; Taki, Junichi; Tonami, Norihisa; Hisada, Kinichi; Hirano, Takako; Wani, Hidenobu.

    1986-01-01

    A method for three-dimensional functional mapping of Tl-201 myocardial uptake, washout, wall motion and phase was developed using SPECT. Each parameter was mapped using polar display in the same format. Normal values were determined in Tl-201 exercise study in 16 patients. Myocardial counts were lower in the septum and inferior wall and the difference of counts between anterior and inferior walls were greater in man compared with the perfusion pattern in woman. Washout was slower at septum and inferior wall in man, and slightly slower at inferior wall in woman. In gated blood-pool tomography, length-based and count-based Fourier analyses were applied to calculate the parameters of contraction and phase. The results of both Fourier analyses generally agreed; however, the area of abnormality was slightly different. Phase maps were useful for the assessment of asynergy as well as in patients with conduction disorders. These cardiac functional maps using SPECT were considered to be effective for the understanding of three-dimensional informations of cardiac function. (author)

  12. Comparison of Quantitative Wall Motion Analysis and Strain For Detection Of Coronary Stenosis With Three-Dimensional Dobutamine Stress Echocardiography

    Science.gov (United States)

    Parker, Katherine M.; Clark, Alexander P.; Goodman, Norman C.; Glover, David K.; Holmes, Jeffrey W.

    2015-01-01

    Background Quantitative analysis of wall motion from three-dimensional (3D) dobutamine stress echocardiography (DSE) could provide additional diagnostic information not available from qualitative analysis. In this study we compare the effectiveness of 3D fractional shortening (3DFS), a measure of wall motion computed from 3D echocardiography (3DE), to strain and strain rate measured with sonomicrometry for detecting critical stenoses during DSE. Methods Eleven open-chest dogs underwent DSE both with and without a critical stenosis. 3DFS was measured from 3DE images acquired at peak stress. 3DFS was normalized by subtracting average 3DFS during control peak stress (Δ3DFS). Strains in the perfusion defect (PD) were measured from sonomicrometry, and PD size and location were measured with microspheres. Results A Δ3DFS abnormality indicated the presence of a critical stenosis with high sensitivity and specificity (88% and 100%, respectively), and Δ3DFS abnormality size correlated with PD size (R2=0.54). The sensitivity and specificity for Δ3DFS was similar to that for area strain (88%, 100%) and circumferential strain and strain rate (88%, 92% and 88%, 86%, respectively), while longitudinal strain and strain rate were less specific. Δ3DFS correlated significantly with both coronary flow reserve (R2=0.71) and PD size (R2=0.97), while area strain correlated with PD size only (R2=0.67), and other measures were not significantly correlated with flow reserve or PD size. Conclusion Quantitative wall motion analysis using Δ3DFS is effective for detecting critical stenoses during DSE, performing similarly to 3D strain, and provides potentially useful information on the size and location of a perfusion defect. PMID:24815588

  13. Assessment of ventricular wall motion with focused echocardiography during cardiac arrest to predict survival

    Directory of Open Access Journals (Sweden)

    Can Ozen

    2016-03-01

    Full Text Available Objectives: Our primary goal is to investigate the hypothesis that in patients with a detectable ventricular wall motion (VWM in cardiac ultrasonography (US during cardiopulmonary resuscitation (CPR, survival rate is significantly more than in patients without VWM in US. Material and methods: In our prospective, single center study, 129 adult cardiac arrest (CA patients were enrolled. Cardiac US according to Focus Assessed Transthoracic Echo (FATE protocol was performed before CPR. Presence of VWM was recorded on forms along with demographic data, initial rhythm, CA location, presence of return of spontaneous circulation (ROSC and time until ROSC was obtained. Results: 129 patients were included. ROSC was obtained in 56/77 (72.7% patients with VWM and 3/52 (5.8% patients without VWM which is statistically significant (p > 0.001. Presence of VWM is 95% (95% CI: 0.95–0.99 sensitive and 70% (95% CI: 0.58–0.80 specific for ROSC. 43/77 (55.8% patients with VWM and 1 (1.9% of 52 patients without VWM survived to hospital admission which was statistically significant (p < 0.001. Presence of VWM was 100% (95% CI: 0.87–1.00 sensitive and 54% (95% CI: 0.43–0.64 specific for survival to hospital admission. Conclusion: No patient without VWM in US survived to hospital discharge. Only 3 had ROSC in emergency department and only 1 survived to hospital admission. This data suggests no patient without VWM before the onset of CPR survived to hospital discharge and this may be an indication to end resuscitative efforts early in these patients. Keywords: Cardiopulmonary resuscitation, Ultrasonography, Echocardiography, Ventricular wall motion

  14. Validation of a novel modified wall motion score for estimation of left ventricular ejection fraction in ischemic and non-ischemic cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, David, E-mail: David.Scholl@utoronto.ca [Imaging Research Laboratories, Robarts Research Institute, London, Ontario (Canada); Kim, Han W., E-mail: hanwkim@gmail.com [Duke Cardiovascular Magnetic Resonance Center, Division of Cardiology, Duke University, NC (United States); Shah, Dipan, E-mail: djshah@tmhs.org [The Methodist DeBakey Heart Center, Houston, TX (United States); Fine, Nowell M., E-mail: nowellfine@gmail.com [Division of Cardiology, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario (Canada); Tandon, Shruti, E-mail: standon4@uwo.ca [Division of Cardiology, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario (Canada); Thompson, Terry, E-mail: thompson@lawsonimaging.ca [Lawson Health Research Institute, London, Ontario (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario (Canada); Drangova, Maria, E-mail: mdrangov@imaging.robarts.ca [Imaging Research Laboratories, Robarts Research Institute, London, Ontario (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario (Canada); White, James A., E-mail: jwhite@imaging.robarts.ca [Division of Cardiology, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario (Canada); Lawson Health Research Institute, London, Ontario (Canada); Imaging Research Laboratories, Robarts Research Institute, London, Ontario (Canada)

    2012-08-15

    Background: Visual determination of left ventricular ejection fraction (LVEF) by segmental scoring may be a practical alternative to volumetric analysis of cine magnetic resonance imaging (MRI). The accuracy and reproducibility of this approach for has not been described. The purpose of this study was to validate a novel segmental visual scoring method for LVEF estimation using cine MRI. Methods: 362 patients with known or suspected cardiomyopathy were studied. A modified wall motion score (mWMS) was used to blindly score the wall motion of all cardiac segments from cine MRI imaging. The same datasets were subjected to blinded volumetric analysis using endocardial contour tracing. The population was then separated into a model cohort (N = 181) and validation cohort (N = 181), with the former used to derive a regression equation of mWMS versus true volumetric LVEF. The validation cohort was then used to test the accuracy of this regression model to estimate the true LVEF from a visually determined mWMS. Reproducibility testing of mWMS scoring was performed upon a randomly selected sample of 20 cases. Results: The regression equation relating mWMS to true LVEF in the model cohort was: LVEF = 54.23 - 0.5761 Multiplication-Sign mWMS. In the validation cohort this equation produced a strong correlation between mWMS-derived LVEF and true volumetric LVEF (r = 0.89). Bland and Altman analysis showed no systematic bias in the LVEF estimated using the mWMS (-0.3231%, 95% limits of agreement -12.22% to 11.58%). Inter-observer and intra-observer reproducibility was excellent (r = 0.93 and 0.97, respectively). Conclusion: The mWMS is a practical tool for reporting regional wall motion and provides reproducible estimates of LVEF from cine MRI.

  15. The value of regional wall motion abnormalities on 99Tcm-MIBI gated cardiac SPECT in predicting angiographic stenoses of coronary artery

    International Nuclear Information System (INIS)

    Li Dianfu; Huang Jun; Zhu Tiebing; Wang Liansheng; Yang Zhijian; Feng Jianlin; Li Jianhua; Chen Jianwei; Chang Guojun

    2004-01-01

    Objective: To determine the magnitude of angiographic stenoses of coronary artery in reversible regional wall motion abnormalities (RWMA) present in exercise stress 99 Tc m -methoxyisobutylisonitrile (MIBI) gated SPECT myocardial perfusion imaging (MPI). Methods: One hundred and sixteen patients undergoing coronary angiography two weeks before and after the exercise stress 99 Tc m -MIBI gated SPECT MPI. Images were acquired 15 to 20 min after stress. A five grades and twenty segments marking system was introduced to assess the RWMA and thickening of left ventricles. Results: The sensitivity of reversible RWMA for detecting ≥75% angiographic stenoses was 65%, with a specificity of 97%. Reversible RWMA has a high positive predictive value (98%) for stratification between severe angiographic stenoses of 75% and non-severe stenoses (less than 75%). Multivariate analysis showed that the post-stress wall motion (SSSWM), exercise wall motion differentiation value (SDSWM) and summed stress score (SSS) were the independent risk factor of coronary artery jeopardy score. Conclusions: Reversible RWMA, as shown by exercise stress 99 Tc m -MIBI gated SPECT MPI, is a significant predictor of angiographic disease with very high specificity and positive predictive values. Exercise reversible RWMA can rise the assessment value of angiographic severity in MPI

  16. Collective coordinate models of domain wall motion in perpendicularly magnetized systems under the spin hall effect and longitudinal fields

    Energy Technology Data Exchange (ETDEWEB)

    Nasseri, S. Ali, E-mail: ali.nasseri@isi.it [ISI Foundation - Via Alassio 11/c –10126 Torino (Italy); Politecnico di Torino - Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Moretti, Simone; Martinez, Eduardo [University of Salamanca - Cardenal Plá y Deniel, 22, 37008 Salamanca (Spain); Serpico, Claudio [ISI Foundation - Via Alassio 11/c –10126 Torino (Italy); University of Naples Federico II - Via Claudio 21, 80125 Napoli (Italy); Durin, Gianfranco [ISI Foundation - Via Alassio 11/c –10126 Torino (Italy); Istituto Nazionale di Ricerca Metrologica (INRIM) - Strada delle Cacce 91, 10135 Torino (Italy)

    2017-03-15

    Recent studies on heterostructures of ultrathin ferromagnets sandwiched between a heavy metal layer and an oxide have highlighted the importance of spin-orbit coupling (SOC) and broken inversion symmetry in domain wall (DW) motion. Specifically, chiral DWs are stabilized in these systems due to the Dzyaloshinskii-Moriya interaction (DMI). SOC can also lead to enhanced current induced DW motion, with the Spin Hall effect (SHE) suggested as the dominant mechanism for this observation. The efficiency of SHE driven DW motion depends on the internal magnetic structure of the DW, which could be controlled using externally applied longitudinal in-plane fields. In this work, micromagnetic simulations and collective coordinate models are used to study current-driven DW motion under longitudinal in-plane fields in perpendicularly magnetized samples with strong DMI. Several extended collective coordinate models are developed to reproduce the micromagnetic results. While these extended models show improvements over traditional models of this kind, there are still discrepancies between them and micromagnetic simulations which require further work. - Highlights: • Moving DWs in PMA material maintain their structure under longitudinal in-plane fields. • As a result of longitudinal fields, magnetization in the domains becomes canted. • A critical longitudinal field was identified and correlated with the DMI strength. • A canted collective coordinate model was developed for DW motion under in-plane fields.

  17. Reasons for the lack of benefit of immediate angioplasty during recombinant tissue plasminogen activator therapy for acute myocardial infarction: a regional wall motion analysis. European Cooperative Study Group

    NARCIS (Netherlands)

    Arnold, A. E.; Serruys, P. W.; Rutsch, W.; Simoons, M. L.; de Bono, D. P.; Tijssen, J. G.; Lubsen, J.; Verstraete, M.

    1991-01-01

    Regional ventricular wall motion analysis utilizing three different methods was performed on predischarge left ventriculograms from 291 of 367 patients enrolled in a randomized trial of single chain recombinant tissue-type plasminogen activator (rt-PA), aspirin and heparin with and without immediate

  18. Effects of non-invasive ventilation and posture on chest wall volumes and motion in patients with amyotrophic lateral sclerosis: a case series.

    Science.gov (United States)

    Magalhães, Cristiana M; Fregonezi, Guilherme A; Vidigal-Lopes, Mauro; Vieira, Bruna S P P; Vieira, Danielle S R; Parreira, Verônica F

    2016-01-01

    The effects of non-invasive ventilation (NIV) on the breathing pattern and thoracoabdominal motion of patients with amyotrophic lateral sclerosis (ALS) are unknown. 1) To analyze the influence of NIV on chest wall volumes and motion assessed by optoelectronic plethysmography in ALS patients and 2) to compare these parameters in the supine and sitting positions to those of healthy individuals (without NIV). Nine ALS patients were evaluated in the supine position using NIV. In addition, the ALS patients and nine healthy individuals were evaluated in both sitting and supine positions. Statistical analysis was performed using the paired Student t-test or Wilcoxon test and the Student t-test for independent samples or Mann-Whitney U test. Chest wall volume increased significantly with NIV, mean volume=0.43 (SD=0.16)L versus 0.57 (SD=0.19)L (p=0.04). No significant changes were observed for the pulmonary rib cage, abdominal rib cage, or abdominal contribution. The index of the shortening velocity of the diaphragmatic muscle, mean=0.15 (SD=0.05)L/s versus 0.21 (SD=0.05)L/s (pNIV. Comparisons between the supine and sitting positions showed similar changes in chest wall motion in both groups. However, the ALS patients presented a significantly lower contribution of the abdomen in the supine position compared with the controls, mean=56 (SD=13) versus 69 (SD=10) (p=0.02). NIV improved chest wall volumes without changing the contribution of the chest wall compartment in ALS patients. In the supine position, ALS patients had a lower contribution of the abdomen, which may indicate early diaphragmatic dysfunction.

  19. Evaluation of regional wall motion in myocardial infarction using animation ECG gated cardiac computed tomography

    International Nuclear Information System (INIS)

    Shimizu, Takahiko; Hyodo, Haruo; Hayashi, Terumi; Yamamoto, Hideo; Yagi, Shigeru

    1984-01-01

    Regional wall motion of the left ventricle was evaluated in 21 patients with myocardial infarction using an animation system of gated cardiac computed tomographic (CT) images (animation gated CCT). The results obtained were compared with data by two-dimensional echocardiography (2-DE). 1. Evaluation of the asynergic area by animation gated CCT and 2-DE: Animation gated CCT detected the following specific regions with asynergy established by 2-DE; 10/10 cases (100%) at the anterior wall of the left ventricle, 14/14 cases (100%) at the interventricular septum, and 9/11 cases (81.8%) at the infero-posterior wall. In addition, one false positive case and one negative case were observed at the lateral wall and the apex, respectively. Of 37 instances with asynergic areas established by 2-DE, 21 cases or 89.2% were detected by animation gated CCT; the sensitivity was 91.9%. 2. Evaluation of severity of asynergy by animation gated CCT and 2-DE: The degree of asynergy evaluated by both methods was compared with each other, and the agreement was as follows: 10/10 cases (100%) at the left-ventricular anterior wall, 13/13 cases (100%) at the interventricular septum, and 7/9 cases (77.8%) at the infero-posterior wall. 3. Evaluation of the asynergic area by nonanimation gated CCT and 2-DE: Nonanimation gated CCT detected asynergic areas ascertained by 2-DE at the following areas; 8/10 cases (80%) at the left-ventricular anterior wall, 12/14 cases (85.7%) at the interventricular septum, and 4/11 cases (36.4%) at the infero-posterior wall. The difference between animation and nonanimation gated CCT was statistically significant (p<0.05). The severity of asynergy could not be evaluated by nonanimation gated CCT. (J.P.N.)

  20. Aging near the wall in colloidal glasses

    Science.gov (United States)

    Cao, Cong; Huang, Xinru; Weeks, Eric

    In a colloidal glass system, particles move slower as sample ages. In addition, their motions may be affected by their local structure, and this structure will be different near a wall. We examine how the aging process near a wall differs from that in the bulk of the sample. In particular, we use a confocal microscope to observe 3D motion in a bidisperse colloidal glass sample. We find that flat walls induce the particles to organize into layers. The aging process behaves differently near the boundary, especially within the first three layers. Particle motion near the wall is noticeably slower but also changes less dramatically with age. We compare and contrast aging seen in samples with flat and rough walls.

  1. Effects of non-invasive ventilation and posture on chest wall volumes and motion in patients with amyotrophic lateral sclerosis: a case series

    Directory of Open Access Journals (Sweden)

    Cristiana M. Magalhães

    2016-01-01

    Full Text Available ABSTRACT Background The effects of non-invasive ventilation (NIV on the breathing pattern and thoracoabdominal motion of patients with amyotrophic lateral sclerosis (ALS are unknown. Objectives 1 To analyze the influence of NIV on chest wall volumes and motion assessed by optoelectronic plethysmography in ALS patients and 2 to compare these parameters in the supine and sitting positions to those of healthy individuals (without NIV. Method Nine ALS patients were evaluated in the supine position using NIV. In addition, the ALS patients and nine healthy individuals were evaluated in both sitting and supine positions. Statistical analysis was performed using the paired Student t-test or Wilcoxon test and the Student t-test for independent samples or Mann-Whitney U test. Results Chest wall volume increased significantly with NIV, mean volume=0.43 (SD=0.16L versus 0.57 (SD=0.19L (p=0.04. No significant changes were observed for the pulmonary rib cage, abdominal rib cage, or abdominal contribution. The index of the shortening velocity of the diaphragmatic muscle, mean=0.15 (SD=0.05L/s versus 0.21 (SD=0.05L/s (p<0.01, and abdominal muscles, mean=0.09 (SD=0.02L/s versus 0.14 (SD=0.06L/s (p<0.01, increased during NIV. Comparisons between the supine and sitting positions showed similar changes in chest wall motion in both groups. However, the ALS patients presented a significantly lower contribution of the abdomen in the supine position compared with the controls, mean=56 (SD=13 versus 69 (SD=10 (p=0.02. Conclusions NIV improved chest wall volumes without changing the contribution of the chest wall compartment in ALS patients. In the supine position, ALS patients had a lower contribution of the abdomen, which may indicate early diaphragmatic dysfunction.

  2. Gravitational field of spherical domain wall in higher dimension

    Indian Academy of Sciences (India)

    An exact solution of Einstein's equations is found describing the gravitational field of a spherical domain wall with nonvanishing stress component in the direction perpendicular to the plane of the wall. Also we have studied the motion of test particle around the domain wall.

  3. Paradoxical motion of interventricular septum on Tc-99m MIBI gated SPECT study

    International Nuclear Information System (INIS)

    Ergun, E.L.; Erbas, B.; Beylergil, V.; Demirturk, O.S.; Pasaoglu, I.

    2004-01-01

    After uncomplicated cardiac surgery, abnormal motion of the interventricular septum is frequently observed. The interventricular septum has often been found to display dyskinetic, or paradoxical motion by echocardiographic studies. This study was undertaken to describe instances of paradoxical motion of interventricular septum on Tc-99m MIBI gated SPECT studies in patients after coronary artery by pass graft surgery. Tc-99m MIBI gated SPECT in conjunction with stress myocardial perfusion SPECT was performed in 18 patients who had history of cardiac bypass graft surgery. Paradoxical motion of the interventricular septum was defined visually from Tc-99m MIBI gated SPECT. Perfusion of the interventricular septum was examined from myocardial perfusion images in the same study. Paradoxical motion of the interventricular septum was observed in 4 patients (22%). The interventricular septum was normally perfused in all patients. It was concluded that paradoxical motion of the interventricular septum in patients who had a history of cardiac by-pass graft surgery is not an uncommon finding and it can be observed with gated SPECT. The exact mechanism of this phenomenon is not well-known. A normal perfusion in interventricular wall helps to discriminate this situation from a real abnormality. (author)

  4. Sci-Fri PM: Radiation Therapy, Planning, Imaging, and Special Techniques - 11: Quantification of chest wall motion during deep inspiration breast hold treatments using cine EPID images and a physics based algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Alpuche Aviles, Jorge E.; VanBeek, Timothy [CancerCare Manitoba, Winnipeg (Canada); Sasaki, David; Rivest, Ryan; Akra, Mohamed [CancerCare Manitoba, Winnipeg (Canada); University of Manitoba, Winnipeg (Canada)

    2016-08-15

    Purpose: This work presents an algorithm used to quantify intra-fraction motion for patients treated using deep inspiration breath hold (DIBH). The algorithm quantifies the position of the chest wall in breast tangent fields using electronic portal images. Methods: The algorithm assumes that image profiles, taken along a direction perpendicular to the medial border of the field, follow a monotonically and smooth decreasing function. This assumption is invalid in the presence of lung and can be used to calculate chest wall position. The algorithm was validated by determining the position of the chest wall for varying field edge positions in portal images of a thoracic phantom. The algorithm was used to quantify intra-fraction motion in cine images for 7 patients treated with DIBH. Results: Phantom results show that changes in the distance between chest wall and field edge were accurate within 0.1 mm on average. For a fixed field edge, the algorithm calculates the position of the chest wall with a 0.2 mm standard deviation. Intra-fraction motion for DIBH patients was within 1 mm 91.4% of the time and within 1.5 mm 97.9% of the time. The maximum intra-fraction motion was 3.0 mm. Conclusions: A physics based algorithm was developed and can be used to quantify the position of chest wall irradiated in tangent portal images with an accuracy of 0.1 mm and precision of 0.6 mm. Intra-fraction motion for patients treated with DIBH at our clinic is less than 3 mm.

  5. Thin walls in regions with vacuum energy

    Energy Technology Data Exchange (ETDEWEB)

    Garfinkle, D [Florida Univ., Gainesville, FL (USA). Dept. of Physics; Vuille, C [Embry-Riddle Aeronautical Univ., Prescott, AZ (USA). Dept. of Math/Physical Science

    1989-12-01

    The motion of a thin wall is treated in the case where the regions on either side of the wall have vacuum energy. This treatment generalises previous results involving domain walls in vacuum and also previous results involving the properties of false vacuum bubbles. The equation of state for a domain wall is{tau} = {sigma} where {tau} is the tension in the wall and {sigma} is the energy density. We consider the motion of a more general class of walls having equation of state {tau}{Gamma}{sigma} with 0{le}{Gamma}{le}1. Spherically symmetric and planar symmetric walls are examined. We also find the global structure of the wall spacetime. (author).

  6. Serial thallium-201 myocardial imaging after dipyridamole infusion: diagnostic utility in detecting coronary stenoses and relationship to regional wall motion

    International Nuclear Information System (INIS)

    Leppo, J.; Boucher, C.A.; Okada, R.D.; Newell, J.B.; Strauss, H.W.; Pohost, G.M.

    1982-01-01

    After a 4-minute i.v. dipyridamole infusion, 0.14 mg/kg/min, serial thallium-201 scans were obtained in 60 patients undergoing cardia catheterization. Forty patients had significant (greater than or equal to50% stenosis) coronary artery disease (CAD), and 20 patients had normal coronary arteries or trivial lesions. The images were graded qualitatively for thallium activity by three observers. Sensitivity was 93% (37 of 40) and specificity was 80% (16 of 20). The sensitivity and specificity of the thallium-201 study were not affected by the extent of CAD, the presence of Q waves, or propranolol therapy. Twenty-seven of 37 patients who had initial defects (73%) had complete thallium redistribution of one or more defects. Patient-by-patient anlaysis using a regression model of all patients showed that the fate of a segmental thallium defect predicted abnormal wall motion by angiography better than ECG Q waves. The presence of propranolol therapy or collaterals did not significantly affect the thallium redistribution results. It is concluded that qualitative interpretation by multiple observers of thallium images after dipyridamole infusion is a highly sensitive and specific test for CAD. After dipyridamole, as with exercise stress, the extent of thallium redistribution is related to the degree of myocardial wall motion abnormality

  7. Free-breathing black-blood CINE fast-spin echo imaging for measuring abdominal aortic wall distensibility: a feasibility study

    Science.gov (United States)

    Lin, Jyh-Miin; Patterson, Andrew J.; Chao, Tzu-Cheng; Zhu, Chengcheng; Chang, Hing-Chiu; Mendes, Jason; Chung, Hsiao-Wen; Gillard, Jonathan H.; Graves, Martin J.

    2017-05-01

    The paper reports a free-breathing black-blood CINE fast-spin echo (FSE) technique for measuring abdominal aortic wall motion. The free-breathing CINE FSE includes the following MR techniques: (1) variable-density sampling with fast iterative reconstruction; (2) inner-volume imaging; and (3) a blood-suppression preparation pulse. The proposed technique was evaluated in eight healthy subjects. The inner-volume imaging significantly reduced the intraluminal artifacts of respiratory motion (p  =  0.015). The quantitative measurements were a diameter of 16.3  ±  2.8 mm and wall distensibility of 2.0  ±  0.4 mm (12.5  ±  3.4%) and 0.7  ±  0.3 mm (4.1  ±  1.0%) for the anterior and posterior walls, respectively. The cyclic cross-sectional distensibility was 35  ±  15% greater in the systolic phase than in the diastolic phase. In conclusion, we developed a feasible CINE FSE method to measure the motion of the abdominal aortic wall, which will enable clinical scientists to study the elasticity of the abdominal aorta.

  8. Cartan frames for heart wall fiber motion

    NARCIS (Netherlands)

    Samari, Babak; Aumentado-Armstrong, Tristan; Strijkers, Gustav J.; Froeling, Martijn; Siddiqi, Kaleem

    2017-01-01

    Current understanding of heart wall fiber geometry is based on ex vivo static data obtained through diffusion imaging or histology. Thus, little is known about the manner in which fibers rotate as the heart beats. Yet, the geometric organization of moving fibers in the heart wall is key to its

  9. Effects of non-invasive ventilation and posture on chest wall volumes and motion in patients with amyotrophic lateral sclerosis: a case series

    OpenAIRE

    Magalh?es, Cristiana M.; Fregonezi, Guilherme A.; Vidigal-Lopes, Mauro; Vieira, Bruna S. P. P.; Vieira, Danielle S. R.; Parreira, Ver?nica F.

    2016-01-01

    ABSTRACT Background The effects of non-invasive ventilation (NIV) on the breathing pattern and thoracoabdominal motion of patients with amyotrophic lateral sclerosis (ALS) are unknown. Objectives 1) To analyze the influence of NIV on chest wall volumes and motion assessed by optoelectronic plethysmography in ALS patients and 2) to compare these parameters in the supine and sitting positions to those of healthy individuals (without NIV). Method Nine ALS patients were evaluated in the supine...

  10. Investigation of domain wall motion in RE-TM magnetic wire towards a current driven memory and logic

    Energy Technology Data Exchange (ETDEWEB)

    Awano, Hiroyuki

    2015-06-01

    Current driven magnetic domain wall (DW) motions of ferri-magnetic TbFeCo wires have been investigated. In the case of a Si substrate, the critical current density (Jc) of DW motion was successfully reduced to 3×10{sup 6} A/cm{sup 2}. Moreover, by using a polycarbonate (PC) substrate with a molding groove of 600 nm width, the Jc was decreased to 6×10{sup 5} A/cm{sup 2}. In order to fabricate a logic in memory, a current driven spin logics (AND, OR, NOT) have been proposed and successfully demonstrated under the condition of low Jc. These results indicate that TbFeCo nanowire is an excellent candidate for next generation power saving memory and logic.

  11. Prediction of improvement of myocardial wall motion after coronary artery bypass surgery using rest Tl-201/dipyridamole stress gated Tc-99m-MIBI/24 hour delay Tl-201 SPECT

    International Nuclear Information System (INIS)

    Lee, Dong Soo; Lee, Won Woo; Yeo, Jeong Yeo; Kim, Seok Ki; Kim, Ki Bong; Chung, June Key; Lee, Myung Chul

    1998-01-01

    Using rest Tl-201/ dipyridamole stress gated Tc-99m-MIBI/24 hour delay Tl-201 SPECT, we investigated the predictive values of the markers of the stress-rest reversibility (Rev), Tl-201 rest perfusion (Rest), Tl-201 24 hour redistribution (Del) and Tc-99m-MIBI gated systolic thickening (Thk) for wall motion improvement after coronary artery bypass surgery. In 39 patients (M:F=34:5, age 58±8), preoperative and postoperative (3 months) SPECT were compared. 24 hour delayed SPECT was done in 16 patients having perfusion defects at rest. Perfusion or wall motion was scored from 0 to 3 (0: normal to 3: defect or dyskinesia). Wall motion was abnormal in 142 segments among 585 segments of 99 artery territories which were surgically revascularized. After bypass surgery, ejection fraction increased from 37.8±9.0% to 45.5±12.3% in 22 patients who had decreased ejectin fraction preoperatively. Wall motion improved in 103 (72.5%) segments among 142 dysfunctional segments. Positive predictive values (PPV) of Rev, Rest, Del, and Thk were 83%, 76%, 43%, and 69% respectively. Negative predictive values (NPV) of Rev, Rest, Del, and Thk were 48%, 44%, 58%, and 21%, respectively. Rest/gated stress/delay SPECT had PPV of 74% and NPV of 46%. Through univariate logistic regression analysis revealed Rev( p=0.0008) and Rest (p=0.024) as significant predictors, stepwise multivariate test found Rev as the only good predictor (p=0.0008). Among independent predictors obtained by rest Tl-201/stress gated Tc-99m-MIBI/delayed Tl-201 myocardial SPECT for wall motion improvement after bypass surgery, stress-rest reversibility was the single most useful predictor

  12. Study on Combustion Characteristics and Propelling Projectile Motion Process of Bulk-Loaded Liquid Propellant

    Science.gov (United States)

    Xue, Xiaochun; Yu, Yonggang; Mang, Shanshan

    2017-07-01

    Data are presented showing that the problem of gas-liquid interaction instability is an important subject in the combustion and the propellant projectile motion process of a bulk-loaded liquid propellant gun (BLPG). The instabilities themselves arise from the sources, including fluid motion, to form a combustion gas cavity called Taylor cavity, fluid turbulence and breakup caused by liquid motion relative to the combustion chamber walls, and liquid surface breakup arising from a velocity mismatch on the gas-liquid interface. Typically, small disturbances that arise early in the BLPG combustion interior ballistic cycle can become amplified in the absence of burn rate limiting characteristics. Herein, significant attention has been given to developing and emphasizing the need for better combustion repeatability in the BLPG. Based on this goal, the concept of using different geometries of the combustion chamber is introduced and the concept of using a stepped-wall structure on the combustion chamber itself as a useful means of exerting boundary control on the combustion evolution to thus restrain the combustion instability has been verified experimentally in this work. Moreover, based on this background, the numerical simulation is devoted to a special combustion issue under transient high-pressure and high-temperature conditions, namely, studying the combustion mechanism in a stepped-wall combustion chamber with full monopropellant on one end that is stationary and the other end can move at high speed. The numerical results also show that the burning surface of the liquid propellant can be defined geometrically and combustion is well behaved as ignition and combustion progressivity are in a suitable range during each stage in this combustion chamber with a stepped-wall structure.

  13. Analysis of particle-wall interaction

    International Nuclear Information System (INIS)

    Raszillier, H.; Durst, F.

    1988-01-01

    The vertical motion of a rigid sphere in a quiescent viscous fluid towards a horizontal plane wall is analized by a simplified equation of motion, which takes into account as the only wall correction that to the Stokes drag force. The phase space analysis for this equation is sketched; it has been motivated by measurements performed at the LSTM-Erlangen. A more detailed exposition is given in the Erlangen report LSTM 222/T/87. (orig.)

  14. PREFACE: Domain wall dynamics in nanostructures Domain wall dynamics in nanostructures

    Science.gov (United States)

    Marrows, C. H.; Meier, G.

    2012-01-01

    forms of ordered phases such as antiferromagnetism and ferroelectricity. We would like to thank the scientists from all over the world who happily agreed to contribute their latest results to this special issue, and the Journal of Physics: Condensed Matter staff for their help, patience and professionalism. In such a fast-moving field it is not possible to give a definitive account, and this special issue can be no more than a snapshot of the current state of knowledge regarding this topic. Nevertheless, we hope that this collection of papers is a useful resource for experienced workers in the field, forms a useful introduction to researchers early in their careers and inspires others in related areas of nanotechnology to enter into the study of domain dynamics in nanostructures. Domain wall dynamics in nanostructures contents Temperature estimation in a ferromagnetic Fe-Ni nanowire involving a current-driven domain wall motionA Yamaguchi, A Hirohata, T Ono and H Miyajima Magnetization reversal in magnetic nanostripes via Bloch wall formation M Zeisberger and R Mattheis Magnetic soft x-ray microscopy of the domain wall depinning process in permalloy magnetic nanowiresMi-Young Im, Lars Bocklage, Guido Meier and Peter Fischer Domain wall propagation in meso- and nanoscale ferroelectrics R G P McQuaid, M McMillen, L-W Chang, A Gruverman and J M Gregg Transverse and vortex domain wall structure in magnetic nanowires with uniaxial in-plane anisotropyM T Bryan, S Bance, J Dean, T Schrefl and D A Allwood The stochastic nature of the domain wall motion along high perpendicular anisotropy strips with surface roughness Eduardo Martinez Temperature-dependent dynamics of stochastic domain-wall depinning in nanowiresClemens Wuth, Peter Lendecke and Guido Meier Controlled pinning and depinning of domain walls in nanowires with perpendicular magnetic anisotropyTheo Gerhardt, André Drews and Guido Meier The interaction of transverse domain wallsBenjamin Krüger The increase of the

  15. Large-scale influences in near-wall turbulence.

    Science.gov (United States)

    Hutchins, Nicholas; Marusic, Ivan

    2007-03-15

    Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.

  16. A programmable motion phantom for quality assurance of motion management in radiotherapy

    International Nuclear Information System (INIS)

    Dunn, L.; Franich, R.D.; Kron, T.; Taylor, M.L.; Johnston, P.N.; McDermott, L.N.; Callahan, J.

    2012-01-01

    A commercially available motion phantom (QUASAR, Modus Medical) was modified for programmable motion control with the aim of reproducing patient respiratory motion in one dimension in both the anterior–posterior and superior–inferior directions, as well as, providing controllable breath-hold and sinusoidal patterns for the testing of radiotherapy gating systems. In order to simulate realistic patient motion, the DC motor was replaced by a stepper motor. A separate 'chest-wall' motion platform was also designed to accommodate a variety of surrogate marker systems. The platform employs a second stepper motor that allows for the decoupling of the chest-wall and insert motion. The platform's accuracy was tested by replicating patient traces recorded with the Varian real-time position management (RPM) system and comparing the motion platform's recorded motion trace with the original patient data. Six lung cancer patient traces recorded with the RPM system were uploaded to the motion platform's in-house control software and subsequently replicated through the phantom motion platform. The phantom's motion profile was recorded with the RPM system and compared to the original patient data. Sinusoidal and breath-hold patterns were simulated with the motion platform and recorded with the RPM system to verify the systems potential for routine quality assurance of commercial radiotherapy gating systems. There was good correlation between replicated and actual patient data (P 0.003). Mean differences between the location of maxima in replicated and patient data-sets for six patients amounted to 0.034 cm with the corresponding minima mean equal to 0.010 cm. The upgraded motion phantom was found to replicate patient motion accurately as well as provide useful test patterns to aid in the quality assurance of motion management methods and technologies.

  17. Motion of a Janus particle very near a wall

    Science.gov (United States)

    Rashidi, Aidin; Wirth, Christopher L.

    2017-12-01

    This article describes the simulated Brownian motion of a sphere comprising hemispheres of unequal zeta potential (i.e., "Janus" particle) very near a wall. The simulation tool was developed and used to assist in the methodology development for applying Total Internal Reflection Microscopy (TIRM) to anisotropic particles. Simulations of the trajectory of a Janus sphere with cap density matching that of the base particle very near a boundary were used to construct 3D potential energy landscapes that were subsequently used to infer particle and solution properties, as would be done in a TIRM measurement. Results showed that the potential energy landscape of a Janus sphere has a transition region at the location of the boundary between the two Janus halves, which depended on the relative zeta potential magnitude. The potential energy landscape was fit to accurately obtain the zeta potential of each hemisphere, particle size, minimum potential energy position and electrolyte concentration, or Debye length. We also determined the appropriate orientation bin size and regimes over which the potential energy landscape should be fit to obtain system properties. Our simulations showed that an experiment may require more than 106 observations to obtain a suitable potential energy landscape as a consequence of the multivariable nature of observations for an anisotropic particle. These results illustrate important considerations for conducting TIRM for anisotropic particles.

  18. Roughness Effects on Organized Motions in a Wall Shear Layer Flow

    Science.gov (United States)

    Haigermoser, Christian; Vesely, Lukas; Lapolla, Massimillano; Onorato, Michele

    2006-11-01

    Turbulent boundary layer measurements on a zero-pressure gradient flat plate with two different roughness, a 2D and a 3D roughness, were carried out. The main object of the study was to investigate the impact of the wall roughness on the turbulent flow structures. The momentum thickness Reynolds number for the smooth wall was Reθ˜ 1900. PIV measurements were taken in the streamwise wall-normal plane. The PIV images covered the whole logarithmic region and the major part of the outer layer. The instant flow images for the two roughness show features similar to the one expected in a smooth wall turbulent boundary layer, as described by Adrian et al. (JFM 2000). Statistical analysis was performed to enlighten quantitative differences between the different flow fields. For instance, two point streamwise velocity correlations show that the major effect of the roughness is to tilt the inclination of the hairpin vortex packets towards the wall normal direction; being the 3D roughness more effective in producing this displacement. Full results will be shown and discussed during the presentation.

  19. Noninvasive detection of coronary artery wall thickening with age in healthy subjects using high resolution MRI with beat-to-beat respiratory motion correction.

    Science.gov (United States)

    Scott, Andrew D; Keegan, Jennifer; Mohiaddin, Raad H; Firmin, David N

    2011-10-01

    To demonstrate coronary artery wall thickening with age in a small healthy cohort using a highly efficient, reliable, and reproducible high-resolution MR technique. A 3D cross-sectional MR vessel wall images (0.7 × 0.7 × 3 mm resolution) with retrospective beat-to-beat respiratory motion correction (B2B-RMC) were obtained in the proximal right coronary artery of 21 healthy subjects (age, 22-62 years) with no known cardiovascular disease. Lumen and outer wall (lumen + vessel wall) areas were measured in one central slice from each subject and average wall thickness and wall area/outer wall area ratio (W/OW) calculated. Imaging was successful in 18 (86%) subjects with average respiratory efficiency 99.3 ± 1.7%. Coronary vessel wall thickness and W/OW significantly correlate with subject age, increasing by 0.088 mm and 0.031 per decade respectively (R = 0.53, P = 0.024 and R = 0.48, P = 0.046). No relationship was found between lumen area and vessel wall thickness (P = NS), but outer wall area increased significantly with vessel wall thickness at 19 mm(2) per mm (P = 0.046). This is consistent with outward vessel wall remodeling. Despite the small size of our healthy cohort, using high-resolution MR imaging and B2B-RMC, we have demonstrated increasing coronary vessel wall thickness and W/OW with age. The results obtained are consistent with outward vessel wall remodeling. Copyright © 2011 Wiley-Liss, Inc.

  20. The predictive value of 201Tl rest-redistribution and 18F-fluorodeoxyglucose SPECT for wall motion recovery after recent reperfused myocardial infarction.

    Science.gov (United States)

    González, Patricio; Massardo, Teresa; Coll, Claudia; Humeres, Pamela; Sierralta, Paulina; Jofré, M Josefina; Yovanovich, Jorge; Aramburu, Ivonne; Brugère, Solange; Chamorro, Hernán

    2004-04-01

    201Tl and 18F-FDG are useful for acute myocardial infarction (MI) assessment. The goal of this study was to compare their predictive value for wall motion recovery in the culprit area after a recent reperfused MI using SPECT technique. Forty-one patients (mean age: 56 +/- 12 years) were included, 81% of them male; all were studied within 1-24 days post MI. They underwent angioplasty in 27 cases (12 primary); bypass grafting in 10 cases and successful thrombolysis in 4. SPECT 201Tl injected at rest and redistribution (R-R) and also 18F-FDG, were performed on different days. Processed tomograms were interpreted blinded to clinical or angiographic data. Segmental wall motion assessed with echocardiography at baseline was compared with the 3 month follow up. Sensitivity [Confidence Interval] for 201Tl R-R was 74.6% [60.5-84.5], for FDG it was 82.1% [70.8-90.4]; specificities were 73% [64.3-80.5] and 54.8% [45.6-63.7], respectively. 18F-FDG tended to be more sensitive than 201Tl R-R, but the latter was more specific (p < 0.0004). Both 201Tl RR and 18F-FDG presented high negative predictive value (p: ns). In recent MI, SPECT 201Tl R-R is a valuable and widely available technique for viability detection, with similar sensitivity and significant better specificity than SPECT 18F-FDG.

  1. Swimming trajectories of a three-sphere microswimmer near a wall

    Science.gov (United States)

    Daddi-Moussa-Ider, Abdallah; Lisicki, Maciej; Hoell, Christian; Löwen, Hartmut

    2018-04-01

    The hydrodynamic flow field generated by self-propelled active particles and swimming microorganisms is strongly altered by the presence of nearby boundaries in a viscous flow. Using a simple model three-linked sphere swimmer, we show that the swimming trajectories near a no-slip wall reveal various scenarios of motion depending on the initial orientation and the distance separating the swimmer from the wall. We find that the swimmer can either be trapped by the wall, completely escape, or perform an oscillatory gliding motion at a constant mean height above the wall. Using a far-field approximation, we find that, at leading order, the wall-induced correction has a source-dipolar or quadrupolar flow structure where the translational and angular velocities of the swimmer decay as inverse third and fourth powers with distance from the wall, respectively. The resulting equations of motion for the trajectories and the relevant order parameters fully characterize the transition between the states and allow for an accurate description of the swimming behavior near a wall. We demonstrate that the transition between the trapping and oscillatory gliding states is first order discontinuous, whereas the transition between the trapping and escaping states is continuous, characterized by non-trivial scaling exponents of the order parameters. In order to model the circular motion of flagellated bacteria near solid interfaces, we further assume that the spheres can undergo rotational motion around the swimming axis. We show that the general three-dimensional motion can be mapped onto a quasi-two-dimensional representational model by an appropriate redefinition of the order parameters governing the transition between the swimming states.

  2. Unidirectional effect in domain wall propagation observed in bistable glass-coated microwire

    Energy Technology Data Exchange (ETDEWEB)

    Onufer, J., E-mail: jozef.onufer@tuke.sk; Ziman, J., E-mail: jan.ziman@tuke.sk; Kladivová, M., E-mail: maria.kladivova@tuke.sk

    2015-12-15

    Systematic study of domain wall velocity versus applied magnetic field dependences in glass-coated amorphous Fe{sub 77.5}Si{sub 7.5}B{sub 15} wire was carried out, revealing the existence of a very interesting phenomenon. Domain wall mobility can be significantly different in cases when magnetization reversal caused by domain wall motion results in different orientation of magnetization. The magnitude and sign of this so-called unidirectional effect can change along the wire. There are also samples with weak unidirectional effect in which it is possible, in regions of higher values of applied magnetic field, to observe the highest wall velocities. It is very probable that damping of domain wall motion is responsible for this effect. As a hypothesis a mechanism based on eddy current damping of domain wall motion was proposed for interpretation of this effect. In the framework of this mechanism asymmetric and non-linear volt-ampere characteristics of the metal–glass interface might be responsible for the unidirectional effect. - Highlights: • Unidirectional effect in domain wall propagation was observed. • The magnitude and sign of the unidirectional effect can change along the wire. • A hypothesis for interpretation of the unidirectional effect is proposed.

  3. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.

    Science.gov (United States)

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun

    2015-06-21

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.

  4. 3-D simulation of hanging wall effect at dam site

    Science.gov (United States)

    Zhang, L.; Xu, Y.

    2017-12-01

    Hanging wall effect is one of the near fault effects. This paper focuses on the difference of the ground motions on the hanging wall side between the footwall side of the fault at dam site considering the key factors, such as actual topography, the rupture process. For this purpose, 3-D ground motions are numerically simulated by the spectrum element method (SEM), which takes into account the physical mechanism of generation and propagation of seismic waves. With the SEM model of 548 million DOFs, excitation and propagation of seismic waves are simulated to compare the difference between the ground motion on the hanging wall side and that on the footwall side. Take Dagangshan region located in China as an example, several seismogenic finite faults with different dip angle are simulated to investigate the hanging wall effect. Furthermore, by comparing the ground motions of the receiving points, the influence of several factors on hanging wall effect is investigated, such as the dip of the fault and the fault type (strike slip fault or dip-slip fault). The peak acceleration on the hanging wall side is obviously larger than those on the footwall side, which numerically evidences the hanging wall effect. Besides, the simulation shows that only when the dip is less than 70° does the hanging wall effect deserve attention.

  5. Wall-motion tracking in fetal echocardiography-Influence of frame rate on longitudinal strain analysis assessed by two-dimensional speckle tracking.

    Science.gov (United States)

    Enzensberger, Christian; Achterberg, Friederike; Graupner, Oliver; Wolter, Aline; Herrmann, Johannes; Axt-Fliedner, Roland

    2017-06-01

    Frame rates (FR) used for strain analysis assessed by speckle tracking in fetal echocardiography show a considerable variation. The aim of this study was to investigate the influence of the FR on strain analysis in 2D speckle tracking. Fetal echocardiography was performed prospectively on a Toshiba Aplio 500 system and a Toshiba Artida system, respectively. Based on an apical or basal four-chamber view of the fetal heart, cine loops were stored with a FR of 30 fps (Aplio 500) and 60 fps (Artida/Aplio 500). For both groups (30fps and 60fps), global and segmental longitudinal peak systolic strain (LPSS) values of both, left (LV) and right ventricle (RV), were assessed by 2D wall-motion tracking. A total of 101 fetuses, distributed to three study groups, were included. The mean gestational age was 25.2±5.0 weeks. Mean global LPSS values for RV in the 30 fps group and in the 60 fps group were -16.07% and -16.47%, respectively. Mean global LPSS values for LV in the 30 fps group and in the 60 fps group were -17.54% and -17.06%, respectively. Comparing global and segmental LPSS values of both, the RV and LV, did not show any statistically significant differences within the two groups. Performance of myocardial 2D strain analysis by wall-motion tracking was feasible with 30 and 60 fps. Obtained global and segmental LPSS values of both ventricles were relatively independent from acquisition rate. © 2017, Wiley Periodicals, Inc.

  6. Quantitative assessment of regional left ventricular motion using endocardial landmarks

    NARCIS (Netherlands)

    C.J. Slager (Cornelis); T.E.H. Hooghoudt (Ton); P.W.J.C. Serruys (Patrick); J.C.H. Schuurbiers (Johan); J.H.C. Reiber (Johan); G.T. Meester (Geert); P.D. Verdouw (Pieter); P.G. Hugenholtz (Paul)

    1986-01-01

    textabstractIn this study the hypothesis is tested that the motion pattern of small anatomic landmarks, recognizable at the left ventricular endocardial border in the contrast angiocardiogram, reflects the motion of the endocardial wall. To verify this, minute metal markers were inserted in the

  7. Comparison of Kalman-filter-based approaches for block matching in arterial wall motion analysis from B-mode ultrasound

    International Nuclear Information System (INIS)

    Gastounioti, A; Stoitsis, J; Nikita, K S; Golemati, S

    2011-01-01

    Block matching (BM) has been previously used to estimate motion of the carotid artery from B-mode ultrasound image sequences. In this paper, Kalman filtering (KF) was incorporated in this conventional method in two distinct scenarios: (a) as an adaptive strategy, by renewing the reference block and (b) by renewing the displacements estimated by BM or adaptive BM. All methods resulting from combinations of BM and KF with the two scenarios were evaluated on synthetic image sequences by computing the warping index, defined as the mean squared error between the real and estimated displacements. Adaptive BM, followed by an update through the second scenario at the end of tracking, ABM K F-K2, minimized the warping index and yielded average displacement error reductions of 24% with respect to BM. The same method decreased estimation bias and jitter over varying center frequencies by 30% and 64%, respectively, with respect to BM. These results demonstrated the increased accuracy and robustness of ABM K F-K2 in motion tracking of the arterial wall from B-mode ultrasound images, which is crucial in the study of mechanical properties of normal and diseased arterial segments

  8. Assessment of cardiac performance with quantitative radionuclide angiocardiography: sequential left ventricular ejection fraction, normalized left ventricular ejection rate, and regional wall motion

    International Nuclear Information System (INIS)

    Marshall, R.C.; Berger, H.J.; Costin, J.C.; Freedman, G.S.; Wolberg, J.; Cohen, L.S.; Gotischalk, A.; Zaret, B.L.

    1977-01-01

    Sequential quantitative first pass radionuclide angiocardiograms (RA) were used to measure left ventricular ejection fraction (LVEF) and left ventricular ejection rate (LVER), and to assess regional wall motion (RWM) in the anterior (ANT) and left anterior oblique (LAO) positions. Studies were obtained with a computerized multicrystal scintillation camera suitable for acquiring high count-rate data. Background was determined in a new fashion by selecting frames temporally from the left ventricular region of interest time-activity curve. A ''representative'' cardiac cycle was formed by summing together counts over three to six cardiac cycles. From this background corrected, high count-rate ''representative''cardiac cycle, LVEF, LVER, and RWM were determined. In 22 patients with normal sinus rhythm in the absence of significant valvular regurgitation, RA LVEF correlated well with that measured by contrast angiography (r = 0.95). LVER correlated well with LVEF measured at contrast angiography (r = 0.90) and allowed complete separation of those with normal (LVER = 3.4 +- 0.17 sec -1 ) and abnormal (LVER = 1.22 +- 0.11 sec -1 ) (P < 0.001) left ventricular performance. This separation was independent of background. Isoproterenol infusion in five normal subjects caused LVER to increase by 81 +- 17% while LVEF increased by 10 +- 2.0%. RWM was correctly defined in 21/22 patients and 89% of left ventricular segments with abnormal wall motion

  9. Evaluation of a Thermoplastic Immobilization System for Breast and Chest Wall Radiation Therapy

    International Nuclear Information System (INIS)

    Strydhorst, Jared H.; Caudrelier, Jean-Michel; Clark, Brenda G.; Montgomery, Lynn A.; Fox, Greg; MacPherson, Miller S.

    2011-01-01

    We report on the impact of a thermoplastic immobilization system on intra- and interfraction motion for patients undergoing breast or chest wall radiation therapy. Patients for this study were treated using helical tomotherapy. All patients were immobilized using a thermoplastic shell extending from the shoulders to the ribcage. Intrafraction motion was assessed by measuring maximum displacement of the skin, heart, and chest wall on a pretreatment 4D computed tomography, while inter-fraction motion was inferred from patient shift data arising from daily image guidance procedures on tomotherapy. Using thermoplastic immobilization, the average maximum motion of the external contour was 1.3 ± 1.6 mm, whereas the chest wall was found to be 1.6 ± 1.9 mm. The day-to-day setup variation was found to be large, with random errors of 4.0, 12.0, and 4.5 mm in the left-right, superior-inferior, and anterior-posterior directions, respectively, and the standard deviations of the systematic errors were found to be 2.7, 9.8, and 4.1 mm. These errors would be expected to dominate any respiratory motion but can be mitigated by daily online image guidance. Using thermoplastic immobilization can effectively reduce respiratory motion of the chest wall and external contour, but these gains can only be realized if daily image guidance is used.

  10. Current-induced domain wall motion in Ni{sub 80}Fe{sub 20} nanowires with low depinning fields

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, Gregory; Loerincz, Andreas; Krzyk, Stephen; Moehrke, Philipp; Bedau, Daniel; Boulle, Olivier; Rhensius, Jan; Klaeui, Mathias [Fachbereich Physik, Universitaet Konstanz, Universitaetsstrasse 10, D-78457 (Germany); Heyderman, Laura J [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Cho, Young Jin; Seo, Sunae, E-mail: gregory.malinowski@uni-konstanz.d [Samsung Electronics, San 14-1 Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do (Korea, Republic of)

    2010-02-03

    In this paper, we report on domain wall (DW) motion induced by current pulses at variable temperature in 900 nm wide and 25 nm thick Ni{sub 80}Fe{sub 20} wires with low pinning fields. By using Ar ion milling to pattern our wires rather than the conventional lift-off technique, a depinning field as low as {approx}2-3 Oe at room temperature is obtained. Comparison with previous results acquired on similar wires with much higher pinning shows that the critical current density scales with the depinning field, leading to a critical current density of {approx}2.5 x 10{sup 11} A m{sup -2} at 250 K. Moreover, when a current pulse with a current density larger than the critical current density is injected, the DW is not necessarily depinned but it can undergo a modification of its spin structure which hinders current-induced DW motion. Hence, reliable propagation of the DW requires an accurate adjustment of the pulsed current density.

  11. Dominance of free wall radial motion in global right ventricular function of heart transplant recipients.

    Science.gov (United States)

    Lakatos, Bálint Károly; Tokodi, Márton; Assabiny, Alexandra; Tősér, Zoltán; Kosztin, Annamária; Doronina, Alexandra; Rácz, Kristóf; Koritsánszky, Kinga Bianka; Berzsenyi, Viktor; Németh, Endre; Sax, Balázs; Kovács, Attila; Merkely, Béla

    2018-03-01

    Assessment of right ventricular (RV) function using conventional echocardiography might be inadequate as the radial motion of the RV free wall is often neglected. Our aim was to quantify the longitudinal and the radial components of RV function using three-dimensional (3D) echocardiography in heart transplant (HTX) recipients. Fifty-one HTX patients in stable cardiovascular condition without history of relevant rejection episode or chronic allograft vasculopathy and 30 healthy volunteers were enrolled. RV end-diastolic (EDV) volume and total ejection fraction (TEF) were measured by 3D echocardiography. Furthermore, we quantified longitudinal (LEF) and radial ejection fraction (REF) by decomposing the motion of the RV using the ReVISION method. RV EDV did not differ between groups (HTX vs control; 96 ± 27 vs 97 ± 2 mL). In HTX patients, TEF was lower, however, tricuspid annular plane systolic excursion (TAPSE) decreased to a greater extent (TEF: 47 ± 7 vs 54 ± 4% [-13%], TAPSE: 11 ± 5 vs 21 ± 4 mm [-48%], P < .0001). In HTX patients, REF/TEF ratio was significantly higher compared to LEF/TEF (REF/TEF vs LEF/TEF: 0.58 ± 0.10 vs 0.27 ± 0.08, P < .0001), while in controls the REF/TEF and LEF/TEF ratio was similar (0.45 ± 0.07 vs 0.47 ± 0.07). Current results confirm the superiority of radial motion in determining RV function in HTX patients. Parameters incorporating the radial motion are recommended to assess RV function in HTX recipients. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Reversible Stress Cardiomyopathy Presenting as Acute Coronary Syndrome with Elevated Troponin in the Absence of Regional Wall Motion Abnormalities: A Forme Fruste of Stress Cardiomyopathy?

    Directory of Open Access Journals (Sweden)

    Mahesh Anantha Narayanan

    2014-01-01

    Full Text Available We present a case of reversible stress cardiomyopathy in a surgical patient, described here as a forme fruste due to its atypical features. It is important to recognize such unusual presentation of stress cardiomyopathy that mimics acute coronary syndrome. Stress cardiomyopathy commonly presents as acute coronary syndrome and is characterized by typical or atypical variants of regional wall motion abnormalities. We report a 60-year-old Caucasian male with reversible stress cardiomyopathy following a sternal fracture fixation. Although the patient had several typical features of stress cardiomyopathy including physical stress, ST-segment elevation, elevated cardiac biomarkers and normal epicardial coronaries, there were few features that were atypical, including unusual age, gender, absence of regional wall motion abnormalities, high lateral ST elevation, and high troponin-ejection fraction product. In conclusion, this could represent a forme fruste of stress cardiomyopathy.

  13. Dynamics of domain wall driven by spin-transfer torque

    International Nuclear Information System (INIS)

    Chureemart, P.; Evans, R. F. L.; Chantrell, R. W.

    2011-01-01

    Spin-torque switching of magnetic devices offers new technological possibilities for data storage and integrated circuits. We have investigated domain-wall motion in a ferromagnetic thin film driven by a spin-polarized current using an atomistic spin model with a modified Landau-Lifshitz-Gilbert equation including the effect of the spin-transfer torque. The presence of the spin-transfer torque is shown to create an out-of-plane domain wall, in contrast to the external-field-driven case where an in-plane wall is found. We have investigated the effect of the spin torque on domain-wall displacement, domain-wall velocity, and domain-wall width, as well as the equilibration time in the presence of the spin-transfer torque. We have shown that the minimum spin-current density, regarded as the critical value for domain-wall motion, decreases with increasing temperature.

  14. Study of droplet flow in a T-shape microchannel with bottom wall fluctuation

    Science.gov (United States)

    Pang, Yan; Wang, Xiang; Liu, Zhaomiao

    2018-03-01

    Droplet generation in a T-shape microchannel, with a main channel width of 50 μm , side channel width of 25 μm, and height of 50 μm, is simulated to study the effects of the forced fluctuation of the bottom wall. The periodic fluctuations of the bottom wall are applied on the near junction part of the main channel in the T-shape microchannel. Effects of bottom wall's shape, fluctuation periods, and amplitudes on the droplet generation are covered in the research of this protocol. In the simulation, the average size is affected a little by the fluctuations, but significantly by the fixed shape of the deformed bottom wall, while the droplet size range is expanded by the fluctuations under most of the conditions. Droplet sizes are distributed in a periodic pattern with small amplitude along the relative time when the fluctuation is forced on the bottom wall near the T-junction, while the droplet emerging frequency is not varied by the fluctuation. The droplet velocity is varied by the bottom wall motion, especially under the shorter period and the larger amplitude. When the fluctuation period is similar to the droplet emerging period, the droplet size is as stable as the non-fluctuation case after a development stage at the beginning of flow, while the droplet velocity is varied by the moving wall with the scope up to 80% of the average velocity under the conditions of this investigation.

  15. Experimental motion behavior of submerged fuel racks

    International Nuclear Information System (INIS)

    Ellingson, F.J.; Wachter, W.; Moscardini, R.L.

    1989-01-01

    The design of submerged nuclear storage racks for light water reactor nuclear fuel has undergone a change from fixed position to a free-standing arrangement. Seismic analysis of the motion of the free-standing racks requires three-dimensional computer modeling that uses past studies of hydrodynamic mass and hydraulic coupling for rigid flat plates. This paper describes the results of experiments that show a reduced value for hydrodynamic mass and coupling forces when flexible elements are involved. To support this work, experiments were run with two full-scale welded box sections submerged in a water tank. The preliminary results indicate reduction in hydrodynamic mass due to box wall flexibility, a lack of impacting of box wall to box wall over the entire frequency range, and large hydrodynamic coupling forces under all test conditions. It is hypothesized that the coupling forces are sufficiently strong to prevent rotational motion of one rack when surrounded by adjacent racks

  16. Impact of patient motion on myocardial perfusion SPECT

    International Nuclear Information System (INIS)

    Huang Kemin; Feng Yanlin; He Xiaohong; Wen Guanghua; Yu Fengwen; Liu Shusheng; Liu Dejun; Yuan Jianwei; Yang Ming

    2008-01-01

    Objective: It is well known that patient motion may cause artifacts in myocardial SPECT images and affect clinical diagnosis. The aim of the study was to evaluate the effects of motion on quality and semi-quantitative results of myocardial perfusion images. Methods: Six healthy volunteers un- derwent myocardial perfusion SPECT. The raw data in each case was manually shifted 1-6 frames and 1 4 pixels, respectively by using the motion correction software. The shifted raw data were then reconstructed. A semi-quantitative software was used to assess the myocardial perfusion of left ventricle. The quality and semi-quantitative results of the tomographic images reconstructed from the raw data with and without motion were compared and analyzed. SPSS 12.0 was used for data analysis. Results: There was no visible artifact and semi-quantitative difference on the data with 1 frame and (or) 1 pixel shift when compared with the original data without shift. The image artifacts became significantly deteriorated when the number of flame and (or) pixel shift was increased. In general, the image artifact of inferior and posterior wall was related to the upward shift, and that of anterior and infero-posterior wall was related to the downward shift, that of septal, anterior, infero-postefior wall and apex was related to right-ward shift, and the septal and infero-posterior wall was related to the left-ward shift. The differences along the x-axis shift were more prominent than that of the y-axis (t=2.848, P<0.01), and the differences in the downward and rightward shift were more severe than the upward and leftward shift (t=2.941, 6.598; all P<0.01), respectively. Conclusions: Image artifacts became significant when there was motion induced by manual shift of more than one flame and (or) one pixel. Different motion directions were closely related to different segments of left ventricle. (authors)

  17. Wall Street: money never sleeps : Motion picture (2010)

    OpenAIRE

    Lauri Lucente, Gloria; Buhagiar, Celaine

    2011-01-01

    The Social Network : Harvard student Mark Zuckerberg creates the social networking site that would become known as Facebook, but is later sued by two brothers who claimed he stole their idea, and the cofounder who was later squeezed out of the business. Wall Street: money never sleeps : Now out of prison but still disgraced by his peers, Gordon Gekko works his future son-in-law, an idealistic stock broker, when he sees an opportunity to take down a Wall Street enemy and rebuild his empire.

  18. Evaluation of cardiac motion and function by cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kondo, Takeshi; Kurokawa, Hiroshi; Anno, Hirofumi

    1992-01-01

    Cardiac cine magnetic resonance imaging (MRI) was studied to evaluate the cardiac motion and function, and a water-stream phantom study was performed to clarify whether it was possible to quantitatively assess the valvular regurgitation flow by the size of the flow void. In normal subjects, the left ventricular (LV) epicardial apex swung up to the base only a few millimeters, and the mitral annulus ring moved about 14 mm as mean value toward the apex during systole. Those motions of mitral annulus ring may contribute to the left atrial filling. The LV longitudinal shortening and torsions were shown by the tagging method. This tagging method was the best method for estimating cardiac motions. Cardiac cine MRI using software including a modified Simpson's method program and a wall motion analysis program was useful for routine LV volumetry and wall motion analysis because it was a simple and reliable method. Our water-stream phantom studies demonstrated that it might be difficult to perform quantitative evaluation of valvular regurgitation flow by using only the size of the flow void without acquiring information relating to the orifice area. (author)

  19. Brownian motion of tethered nanowires.

    Science.gov (United States)

    Ota, Sadao; Li, Tongcang; Li, Yimin; Ye, Ziliang; Labno, Anna; Yin, Xiaobo; Alam, Mohammad-Reza; Zhang, Xiang

    2014-05-01

    Brownian motion of slender particles near a boundary is ubiquitous in biological systems and in nanomaterial assembly, but the complex hydrodynamic interaction in those systems is still poorly understood. Here, we report experimental and computational studies of the Brownian motion of silicon nanowires tethered on a substrate. An optical interference method enabled direct observation of microscopic rotations of the slender bodies in three dimensions with high angular and temporal resolutions. This quantitative observation revealed anisotropic and angle-dependent hydrodynamic wall effects: rotational diffusivity in inclined and azimuth directions follows different power laws as a function of the length, ∼ L(-2.5) and ∼ L(-3), respectively, and is more hindered for smaller inclined angles. In parallel, we developed an implicit simulation technique that takes the complex wire-wall hydrodynamic interactions into account efficiently, the result of which agreed well with the experimentally observed angle-dependent diffusion. The demonstrated techniques provide a platform for studying the microrheology of soft condensed matters, such as colloidal and biological systems near interfaces, and exploring the optimal self-assembly conditions of nanostructures.

  20. Abnormal Motion of the Interventricular Septum after Coronary Artery Bypass Graft Surgery: Comprehensive Evaluation with MR Imaging

    International Nuclear Information System (INIS)

    Choi, Seong Hoon; Choi, Sang Il; Chun, Eun Ju; Chang, Huk Jae; Park, Kay Hyun; Lim, Cheong; Kim, Shin Jae; Kang, Joon Won; Lim, Tae Hwan

    2010-01-01

    To define the mechanism associated with abnormal septal motion (ASM) after coronary artery bypass graft surgery (CABG) using comprehensive MR imaging techniques. Eighteen patients (mean age, 58 ± 12 years; 15 males) were studied with comprehensive MR imaging using rest/stress perfusion, rest cine, and delayed enhancement (DE)-MR techniques before and after CABG. Myocardial tagging was also performed following CABG. Septal wall motion was compared in the ASM and non-ASM groups. Preoperative and postoperative results with regard to septal wall motion in the ASM group were also compared. We then analyzed circumferential strain after CABG in both the septal and lateral walls in the ASM group. All patients had normal septal wall motion and perfusion without evidence of non-viable myocardium prior to surgery. Postoperatively, ASM at rest and/or stress state was documented in 10 patients (56%). However, all of these had normal rest/stress perfusion and DE findings at the septum. Septal wall motion after CABG in the ASM group was significantly lower than that in the non- ASM group (2.1±5.3 mm vs. 14.9±4.7 mm in the non-ASM group; p < 0.001). In the ASM group, the degree of septal wall motion showed a significant decrease after CABG (preoperative vs. postoperative = 15.8±4.5 mm vs. 2.1±5.3 mm; p = 0.007). In the ASM group after CABG, circumferential shortening of the septum was even larger than that of the lateral wall (-20.89±5.41 vs. -15.41±3.7, p < 0.05) Abnormal septal motion might not be caused by ischemic insult. We suggest that ASM might occur due to an increase in anterior cardiac mobility after incision of the pericardium

  1. Trajectory of coronary motion and its significance in robotic motion cancellation.

    Science.gov (United States)

    Cattin, Philippe; Dave, Hitendu; Grünenfelder, Jürg; Szekely, Gabor; Turina, Marko; Zünd, Gregor

    2004-05-01

    To characterize remaining coronary artery motion of beating pig hearts after stabilization with an 'Octopus' using an optical remote analysis technique. Three pigs (40, 60 and 65 kg) underwent full sternotomy after receiving general anesthesia. An 8-bit high speed black and white video camera (50 frames/s) coupled with a laser sensor (60 microm resolution) were used to capture heart wall motion in all three dimensions. Dopamine infusion was used to deliberately modulate cardiac contractility. Synchronized ECG, blood pressure, airway pressure and video data of the region around the first branching point of the left anterior descending (LAD) coronary artery after Octopus stabilization were captured for stretches of 8 s each. Several sequences of the same region were captured over a period of several minutes. Computerized off-line analysis allowed us to perform minute characterization of the heart wall motion. The movement of the points of interest on the LAD ranged from 0.22 to 0.81 mm in the lateral plane (x/y-axis) and 0.5-2.6 mm out of the plane (z-axis). Fast excursions (>50 microm/s in the lateral plane) occurred corresponding to the QRS complex and the T wave; while slow excursion phases (movement of the coronary artery after stabilization appears to be still significant. Minute characterization of the trajectory of motion could provide the substrate for achieving motion cancellation for existing robotic systems. Velocity plots could also help improve gated cardiac imaging.

  2. Rotational Response of Toe-Restrained Retaining Walls to Earthquake Ground Motions

    National Research Council Canada - National Science Library

    Ebeling, Robert M; White, Barry C

    2006-01-01

    .... The PC software CorpsWallRotate (sometimes referred to as CWRotate) was developed to perform an analysis of permanent wall rotation for each proposed retaining wall section to a user-specified earthquake acceleration time-history...

  3. Assessment of Bladder Motion for Clinical Radiotherapy Practice Using Cine-Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    McBain, Catherine A.; Khoo, Vincent S.; Buckley, David L.; Sykes, Jonathan S.; Green, Melanie M.; Cowan, Richard A.; Hutchinson, Charles E.; Moore, Christopher J.; Price, Patricia M.

    2009-01-01

    Purpose: Organ motion is recognized as the principal source of inaccuracy in bladder radiotherapy (RT), but there is currently little information on intrafraction bladder motion. Methods and Materials: We used cine-magnetic resonance imaging (cine-MRI) to study bladder motion relevant to intrafraction RT delivery. On two occasions, a 28 minute cine-MRI sequence was acquired from 10 bladder cancer patients and 5 control participants immediately after bladder emptying, after abstinence from drinking for the preceding hour. From the resulting cine sequences, bladder motion was subjectively assessed. To quantify bladder motion, the bladder was contoured in imaging volume sets at 0, 14, and 28 min to measure changes to bladder volumes, wall displacements, and center of gravity (COG) over time. Results: The dominant source of bladder motion during imaging was bladder filling (up to 101% volume increase); rectal and small bowel movements were transient, with minimal impact. Bladder volume changes were similar for all participants. However for bladder cancer patients, wall displacements were larger (up to 58 mm), less symmetrical, and more variable compared with nondiseased control bladders. Conclusions: Significant and individualized intrafraction bladder wall displacements may occur during bladder RT delivery. This important source of inaccuracy should be incorporated into treatment planning and verification.

  4. Setup error and motion during deep inspiration breath-hold breast radiotherapy measured with continuous portal imaging

    DEFF Research Database (Denmark)

    Lutz, Christina Maria; Poulsen, Per Rugaard; Fledelius, Walther

    2016-01-01

    BACKGROUND: The position and residual motion of the chest wall of breast cancer patients during treatment in deep inspiration breath-hold (DIBH) were investigated. MATERIAL AND METHODS: The study included 58 left-sided breast cancer patients treated with DIBH three-dimensional (3D) conformal......). At every third treatment fraction, continuous portal images were acquired. The time-resolved chest wall position during treatment was compared with the planned position to determine the inter-fraction setup errors and the intra-fraction motion of the chest wall. RESULTS: The DIBH compliance was 95% during...

  5. A study of coronary artery rotational motion with dense scale-space optical flow in intravascular ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Danilouchkine, M G; Mastik, F; Steen, A F W van der [Department of Biomedical Engineering, Erasmus Medical Center, Ee2302, PO Box 2040, 3000 CA, Rotterdam (Netherlands)], E-mail: m.danilouchkine@ErasmusMC.nl, E-mail: f.mastik@ErasmusMC.nl, E-mail: a.vandersteen@ErasmusMC.nl

    2009-03-21

    This paper describes a novel method for estimating tissue motion in two-dimensional intravascular ultrasound (IVUS) images of a coronary artery. It is based on the classical Lukas-Kanade (LK) algorithm for optical flow (OF). The OF vector field quantifies the amount of misalignment between two consecutive frames in a sequence of images. From the theoretical standpoint, two fundamental improvements are proposed in this paper. First, using a simplified representation of the vessel wall as a medium with randomly distributed scatterers, it was shown that the OF equation satisfies the integral brightness conservation law. Second, a scale-space embedding for the OF equation was derived under the assumption of spatial consistency in IVUS acquisitions. The spatial coherence is equivalent to a locally affine motion model. The latter effectively captures and appropriately describes a complex deformation pattern of the coronary vessel wall under the varying physiological conditions (i.e. pulsatile blood pressure). The accuracy of OF tracking was estimated on the tissue-mimicking phantoms subjected to the controlled amount of angular deviation. Moreover, the performance of the classical LK and proposed approach was compared using the simulated IVUS images with an atherosclerotic lesion. The experimental results showed robust and reliable performance of up to 5{sup 0} of rotation, which is within the plausible range of circumferential displacement of the coronary arteries. Subsequently, the algorithm was used to analyze vessel wall motion in 18 IVUS pullbacks from 16 patients. The in vivo experiments revealed that the motion of coronary arteries is primarily determined by the cardiac contraction.

  6. Multi-level nonlinear modeling verification scheme of RC high-rise wall buildings

    OpenAIRE

    Alwaeli, W.; Mwafy, A.; Pilakoutas, K.; Guadagnini, M.

    2017-01-01

    Earthquake-resistant reinforced concrete (RC) high-rise wall buildings are designed and detailed to respond well beyond the elastic range under the expected earthquake ground motions. However, despite their considerable section depth, in terms of analysis, RC walls are still often treated as linear elements, ignoring the effect of deformation compatibility. Due to the limited number of available comprehensive experimental studies on RC structural wall systems subjected to cycling loading, few...

  7. Effects of temperature gradient induced nanoparticle motion on conduction and convection of fluid

    International Nuclear Information System (INIS)

    Zhou Leping; Peterson, George P.; Yoda, Minani; Wang Buxuan

    2012-01-01

    The role of temperature gradient induced nanoparticle motion on conduction and convection was investigated. Possible mechanisms for variations resulting from variations in the thermophysical properties are theoretically and experimentally discussed. The effect of the nanoparticle motion on conduction is demonstrated through thermal conductivity measurement of deionized water with suspended CuO nanoparticles (50 nm in diameter) and correlated with the contributions of Brownian diffusion, thermophoresis, etc. The tendencies observed is that the magnitude of and the variation in the thermal conductivity increases with increasing volume fraction for a given temperature, which is due primarily to the Brownian diffusion of the nanoparticles. Using dimensional analysis, the thermal conductivity is correlated and both the interfacial thermal resistance and near-field radiation are found to be essentially negligible. A modification term that incorporates the contributions of Brownian motion and thermophoresis is proposed. The effect of nanoscale convection is illustrated through an experimental investigation that utilized fluorescent polystyrene nanoparticle tracers (200 nm in diameter) and multilayer nanoparticle image velocimetry. The results indicate that both the magnitude and the deviation of the fluid motion increased with increasing heat flux in the near-wall region. Meanwhile, the fluid motion tended to decrease with the off-wall distance for a given heating power. A corresponding numerical study of convection of pure deionized water shows that the velocity along the off-wall direction is several orders of magnitude lower than that of deionized water, which indicates that Brownian motion in the near-wall region is crucial for fluid with suspended nanoparticles in convection.

  8. Audiovisual biofeedback improves motion prediction accuracy.

    Science.gov (United States)

    Pollock, Sean; Lee, Danny; Keall, Paul; Kim, Taeho

    2013-04-01

    The accuracy of motion prediction, utilized to overcome the system latency of motion management radiotherapy systems, is hampered by irregularities present in the patients' respiratory pattern. Audiovisual (AV) biofeedback has been shown to reduce respiratory irregularities. The aim of this study was to test the hypothesis that AV biofeedback improves the accuracy of motion prediction. An AV biofeedback system combined with real-time respiratory data acquisition and MR images were implemented in this project. One-dimensional respiratory data from (1) the abdominal wall (30 Hz) and (2) the thoracic diaphragm (5 Hz) were obtained from 15 healthy human subjects across 30 studies. The subjects were required to breathe with and without the guidance of AV biofeedback during each study. The obtained respiratory signals were then implemented in a kernel density estimation prediction algorithm. For each of the 30 studies, five different prediction times ranging from 50 to 1400 ms were tested (150 predictions performed). Prediction error was quantified as the root mean square error (RMSE); the RMSE was calculated from the difference between the real and predicted respiratory data. The statistical significance of the prediction results was determined by the Student's t-test. Prediction accuracy was considerably improved by the implementation of AV biofeedback. Of the 150 respiratory predictions performed, prediction accuracy was improved 69% (103/150) of the time for abdominal wall data, and 78% (117/150) of the time for diaphragm data. The average reduction in RMSE due to AV biofeedback over unguided respiration was 26% (p biofeedback improves prediction accuracy. This would result in increased efficiency of motion management techniques affected by system latencies used in radiotherapy.

  9. Comparison of theoretical and test results on shear wall seismic response

    International Nuclear Information System (INIS)

    Gantenbein, F.; Wang, F.; Dalbera, J.

    1991-01-01

    As reinforced concrete shear walls are important resisting components of buildings in nuclear power facilities, it is important to study their ultimate behavior under dynamic loading. An experimental and analytical work has been undertaken on shear walls with and without openings, in order to develop and validate their model. This paper is related to the walls without openings. While pretest calculations have already been reported (Wang and al. 1989) and the test results are given in Gantenbein and al. 1991, this paper is mainly related to the comparison of test and calculation results on the wall initial stiffness and the time history of the wall motion

  10. Rectal Balloon for the Immobilization of the Prostate Internal Motion

    International Nuclear Information System (INIS)

    Lee, Sang Kyu; Beak, Jong Geal; Kim, Joo Ho; Jeon, Byong Chul; Cho, Jeong Hee; Kim, Dong Wook; Song, Tae Soo; Cho, Jae Ho; Na, Soo Kyong

    2005-01-01

    The using of endo-rectal balloon has proposed as optimal method that minimized the motion of prostate and the dose of rectum wall volume for treated prostate cancer patients, so we make the customized rectal balloon device. In this study, we analyzed the efficiency of the Self-customized rectal balloon in the aspects of its reproducibility. In 5 patients, for treatment planning, each patient was acquired CT slice images in state of with and without rectal balloon. Also they had CT scanning same repeated third times in during radiation treatment (IMRT). In each case, we analyzed the deviation of rectal balloon position and verified the isodose distribution of rectum wall at closed prostate. Using the rectal balloon, we minimized the planning target volume (PTV) by decreased the internal motion of prostate and overcome the dose limit of radiation therapy in prostate cancer by increased the gap between the rectum wall and high dose region. The using of rectal balloon, although, was reluctant to treat by patients. View a point of immobilization of prostate internal motion and dose escalation of GTV (gross tumor volume), its using consider large efficient for treated prostate cancer patients.

  11. Ground motion input in seismic evaluation studies

    International Nuclear Information System (INIS)

    Sewell, R.T.; Wu, S.C.

    1996-07-01

    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants

  12. Association between proximal internal carotid artery steno-occlusive disease and diffuse wall thickening in its petrous segment: a magnetic resonance vessel wall imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoyi; Li, Dongye [Capital Medical University and Beijing Institute for Brain Disorders, Center for Brain Disorders Research, Beijing (China); Tsinghua University School of Medicine, Center for Biomedical Imaging Research, Department of Biomedical Engineering, Beijing (China); Zhao, Huilin [Shanghai Jiao Tong University, Department of Radiology, Renji Hospital, School of Medicine, Shanghai (China); Chen, Zhensen; Qiao, Huiyu; He, Le; Li, Rui [Tsinghua University School of Medicine, Center for Biomedical Imaging Research, Department of Biomedical Engineering, Beijing (China); Cui, Yuanyuan [PLA General Hospital, Department of Radiology, Beijing (China); Zhou, Zechen [Philips Research China, Healthcare Department, Beijing (China); Yuan, Chun [Tsinghua University School of Medicine, Center for Biomedical Imaging Research, Department of Biomedical Engineering, Beijing (China); University of Washington, Department of Radiology, Seattle, WA (United States); Zhao, Xihai [Tsinghua University School of Medicine, Center for Biomedical Imaging Research, Department of Biomedical Engineering, Beijing (China); Beijing Institute for Brain Disorders, Center for Stroke, Beijing (China)

    2017-05-15

    Significant stenosis or occlusion in carotid arteries may lead to diffuse wall thickening (DWT) in the arterial wall of downstream. This study aimed to investigate the correlation between proximal internal carotid artery (ICA) steno-occlusive disease and DWT in ipsilateral petrous ICA. Symptomatic patients with atherosclerotic stenosis (>0%) in proximal ICA were recruited and underwent carotid MR vessel wall imaging. The 3D motion sensitized-driven equilibrium prepared rapid gradient-echo (3D-MERGE) was acquired for characterizing the wall thickness and longitudinal extent of the lesions in petrous ICA and the distance from proximal lesion to the petrous ICA. The stenosis degree in proximal ICA was measured on the time-of-flight (TOF) images. In total, 166 carotid arteries from 125 patients (mean age 61.0 ± 10.5 years, 99 males) were eligible for final analysis and 64 showed DWT in petrous ICAs. The prevalence of severe DWT in petrous ICA was 1.4%, 5.3%, 5.9%, and 80.4% in ipsilateral proximal ICAs with stenosis category of 1%-49%, 50%-69%, 70%-99%, and total occlusion, respectively. Proximal ICA stenosis was significantly correlated with the wall thickness in petrous ICA (r = 0.767, P < 0.001). Logistic regression analysis showed that proximal ICA stenosis was independently associated with DWT in ipsilateral petrous ICA (odds ratio (OR) = 2.459, 95% confidence interval (CI) 1.896-3.189, P < 0.001). Proximal ICA steno-occlusive disease is independently associated with DWT in ipsilateral petrous ICA. (orig.)

  13. Association between proximal internal carotid artery steno-occlusive disease and diffuse wall thickening in its petrous segment: a magnetic resonance vessel wall imaging study

    International Nuclear Information System (INIS)

    Chen, Xiaoyi; Li, Dongye; Zhao, Huilin; Chen, Zhensen; Qiao, Huiyu; He, Le; Li, Rui; Cui, Yuanyuan; Zhou, Zechen; Yuan, Chun; Zhao, Xihai

    2017-01-01

    Significant stenosis or occlusion in carotid arteries may lead to diffuse wall thickening (DWT) in the arterial wall of downstream. This study aimed to investigate the correlation between proximal internal carotid artery (ICA) steno-occlusive disease and DWT in ipsilateral petrous ICA. Symptomatic patients with atherosclerotic stenosis (>0%) in proximal ICA were recruited and underwent carotid MR vessel wall imaging. The 3D motion sensitized-driven equilibrium prepared rapid gradient-echo (3D-MERGE) was acquired for characterizing the wall thickness and longitudinal extent of the lesions in petrous ICA and the distance from proximal lesion to the petrous ICA. The stenosis degree in proximal ICA was measured on the time-of-flight (TOF) images. In total, 166 carotid arteries from 125 patients (mean age 61.0 ± 10.5 years, 99 males) were eligible for final analysis and 64 showed DWT in petrous ICAs. The prevalence of severe DWT in petrous ICA was 1.4%, 5.3%, 5.9%, and 80.4% in ipsilateral proximal ICAs with stenosis category of 1%-49%, 50%-69%, 70%-99%, and total occlusion, respectively. Proximal ICA stenosis was significantly correlated with the wall thickness in petrous ICA (r = 0.767, P < 0.001). Logistic regression analysis showed that proximal ICA stenosis was independently associated with DWT in ipsilateral petrous ICA (odds ratio (OR) = 2.459, 95% confidence interval (CI) 1.896-3.189, P < 0.001). Proximal ICA steno-occlusive disease is independently associated with DWT in ipsilateral petrous ICA. (orig.)

  14. Dynamics of plane-symmetric thin walls in general relativity

    International Nuclear Information System (INIS)

    Wang, A.

    1992-01-01

    Plane walls (including plane domain walls) without reflection symmetry are studied in the framework of Einstein's general relativity. Using the distribution theory, all the Einstein field equations and Bianchi identities are split into two groups: one holding in the regions outside of the wall and the other holding at the wall. The Einstein field equations at the wall are found to take a very simple form, and given explicitly in terms of the discontinuities of the metric coefficients and their derivatives. The Bianchi identities at the wall are also given explicitly. Using the latter, the interaction of a plane wall with gravitational waves and some specific matter fields is studied. In particular, it is found that, when a gravitational plane wave passes through a wall, if the wall has no reflection symmetry, the phenomena, such as reflection, stimulation, or absorption, in general, occur. It is also found that, unlike for gravitational waves, a massless scalar wave or an electromagnetic wave continuously passes through a wall without any reflection. The repulsion and attraction of a plane wall are also studied. It is found that the acceleration of an observer who is at rest relative to the wall usually consists of three parts: one is due to the force produced by the wall, the second is due to the force produced by the space-time curvature, which is zero if the wall has reflection symmetry, and the last is due to the accelerated motion of the wall. As a result, a repulsive (attractive) plane wall may not be repulsive (attractive) at all. Finally, the collision and interaction among the walls are studied

  15. Measurement of the near-wall velocity profile for a nanofluid flow inside a microchannel

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2015-11-01

    Hydrodynamics and anomalous heat transfer enhancements have been reported in the past for colloidal suspensions of nano-sized particles dispersed in a fluid (nanofluids). However, such augmentations may manifest itself by study of fluid flow characteristics near in the wall region. Present experimental study reports near-wall velocity profile for nanofluids (silicon dioxide nanoparticles in water) measured inside a microchannel. An objective-based nano-Particle Image Velocimetry (nPIV) technique is used to measure fluid velocity within three visible depths, O(100nm), from the wall. The near-wall fluid velocity profile is estimated after implementing the required corrections for optical properties and effects caused by hindered Brownian motion, wall-particle interactions, and non-uniform exponential illumination on the measurement technique. The fluid velocities of nanofluids at each of the three visible depths are observed to be higher than that of the base fluid resulting in a higher shear rate in this region. The relative increase in shear rates for nanofluids is believed to be the result of the near-wall shear-induced particle migration along with the Brownian motion of the nanoparticles. This research is funded by NPRP grant # 08-574-2-239 from the Qatar National Research Fund (a member of Qatar Foundation).

  16. Spin Hall driven domain wall motion in magnetic bilayers coupled by a magnetic oxide interlayer

    Science.gov (United States)

    Liu, Yang; Furuta, Masaki; Zhu, Jian-Gang Jimmy

    2018-05-01

    mCell, previously proposed by our group, is a four-terminal magnetoresistive device with isolated write- and read-paths for all-spin logic and memory applications. A mCell requires an electric-insulating magnetic layer to couple the spin Hall driven write-path to the magnetic free layer of the read-path. Both paths are magnetic layers with perpendicular anisotropy and their perpendicularly oriented magnetization needs to be maintained with this insertion layer. We have developed a magnetic oxide (FeOx) insertion layer to serve for these purposes. We show that the FeOx insertion layer provides sufficient magnetic coupling between adjacent perpendicular magnetic layers. Resistance measurement shows that this magnetic oxide layer can act as an electric-insulating layer. In addition, spin Hall driven domain wall motion in magnetic bi-layers coupled by the FeOx insertion layer is significantly enhanced compared to that in magnetic single layer; it also requires low voltage threshold that poses possibility for power-efficient device applications.

  17. Analysis of secondary motions in square duct flow

    Science.gov (United States)

    Modesti, Davide; Pirozzoli, Sergio; Orlandi, Paolo; Grasso, Francesco

    2018-04-01

    We carry out direct numerical simulations (DNS) of square duct flow spanning the friction Reynolds number range {Re}τ * =150-1055, to study the nature and the role of secondary motions. We preliminarily find that secondary motions are not the mere result of the time averaging procedure, but rather they are present in the instantaneous flow realizations, corresponding to large eddies persistent in both space and time. Numerical experiments have also been carried out whereby the secondary motions are suppressed, hence allowing to quantifying their effect on the mean flow field. At sufficiently high Reynolds number, secondary motions are found to increase the friction coefficient by about 3%, hence proportionally to their relative strength with respect to the bulk flow. Simulations without secondary motions are found to yield larger deviations on the mean velocity profiles from the standard law-of-the-wall, revealing that secondary motions act as a self-regulating mechanism of turbulence whereby the effect of the corners is mitigated.

  18. Dressed Domain Walls and holography

    International Nuclear Information System (INIS)

    Grisa, Luca; Pujolas, Oriol

    2008-01-01

    The cutoff version of the AdS/CFT correspondence states that the Randall Sundrum scenario is dual to a Conformal Field Theory (CFT) coupled to gravity in four dimensions. The gravitational field produced by relativistic Domain Walls can be exactly solved in both sides of the correspondence, and thus provides one further check of it. We show in the two sides that for the most symmetric case, the wall motion does not lead to particle production of the CFT fields. Still, there are nontrivial effects. Due to the trace anomaly, the CFT effectively renormalizes the Domain Wall tension. On the five dimensional side, the wall is a codimension 2 brane localized on the Randall-Sundrum brane, which pulls the wall in a uniform acceleration. This is perceived from the brane as a Domain Wall with a tension slightly larger than its bare value. In both cases, the deviation from General Relativity appears at nonlinear level in the source, and the leading corrections match to the numerical factors.

  19. An automated four-point scale scoring of segmental wall motion in echocardiography using quantified parametric images

    International Nuclear Information System (INIS)

    Kachenoura, N; Delouche, A; Ruiz Dominguez, C; Frouin, F; Diebold, B; Nardi, O

    2010-01-01

    The aim of this paper is to develop an automated method which operates on echocardiographic dynamic loops for classifying the left ventricular regional wall motion (RWM) in a four-point scale. A non-selected group of 37 patients (2 and 4 chamber views) was studied. Each view was segmented according to the standardized segmentation using three manually positioned anatomical landmarks (the apex and the angles of the mitral annulus). The segmented data were analyzed by two independent experienced echocardiographists and the consensual RWM scores were used as a reference for comparisons. A fast and automatic parametric imaging method was used to compute and display as static color-coded parametric images both temporal and motion information contained in left ventricular dynamic echocardiograms. The amplitude and time parametric images were provided to a cardiologist for visual analysis of RWM and used for RWM quantification. A cross-validation method was applied to the segmental quantitative indices for classifying RWM in a four-point scale. A total of 518 segments were analyzed. Comparison between visual interpretation of parametric images and the reference reading resulted in an absolute agreement (Aa) of 66% and a relative agreement (Ra) of 96% and kappa (κ) coefficient of 0.61. Comparison of the automated RWM scoring against the same reference provided Aa = 64%, Ra = 96% and κ = 0.64 on the validation subset. Finally, linear regression analysis between the global quantitative index and global reference scores as well as ejection fraction resulted in correlations of 0.85 and 0.79. A new automated four-point scale scoring of RWM was developed and tested in a non-selected database. Its comparison against a consensual visual reading of dynamic echocardiograms showed its ability to classify RWM abnormalities.

  20. Peculiarities of low-frequency dielectric spectra and domain wall motion in gadolinium molybdate

    International Nuclear Information System (INIS)

    Galiyarova, N.M.; Gorin, S.V.; Dontsova, L.I.; Shil'nikov, A.V.; Shuvalov, L.A.

    1994-01-01

    Low-frequency Debye dispersion of dielectric permeability in GMO with the low values of high-frequency limit ε ∞ was investigated in a wide temperature range as well as in fields of variable amplitude. The features of domain boundaries motion were studied at the partial repolarization in monopolar P-pulsed fields. The model of cooperationrelaxation motion brifing in parallel with positive to negative contribution to polarization that explained the low values of ε ∞ was suggested

  1. Cilia walls influence on peristaltically induced motion of magneto-fluid through a porous medium at moderate Reynolds number: Numerical study

    Directory of Open Access Journals (Sweden)

    R.E. Abo-Elkhair

    2017-04-01

    Full Text Available This article addresses, effects of a magneto-fluid through a Darcy flow model with oscillatory wavy walled whose inner surface is ciliated. The equations that governing the flow are modeled without using any approximations. Adomian Decomposition Method (ADM is used to evaluate the solution of our system of nonlinear partial differential equations. Stream function, velocity and pressure gradient components are obtained by using the vorticity formula. The effects for our arbitrary physical parameters on flow characteristics are analyzed by plotting diagrams and discussed in details. With the help of stream lines the trapping mechanism has also been discussed. The major outcomes for the ciliated channel walls are: The axial velocity is higher without a ciliated walls than that for a ciliated walls and an opposite behaviour is shown near the ciliated channel walls. The pressure gradients in both directions are higher for a ciliated channel walls. More numbers of the trapped bolus in the absent of the eccentricity of the cilia elliptic path.

  2. Linear modeling of turbulent skin-friction reduction due to spanwise wall motion

    Science.gov (United States)

    Duque-Daza, Carlos; Baig, Mirza; Lockerby, Duncan; Chernyshenko, Sergei; Davies, Christopher; University of Warwick Team; Imperial College Team; Cardiff University Team

    2012-11-01

    We present a study on the effect of streamwise-travelling waves of spanwise wall velocity on the growth of near-wall turbulent streaks using a linearized formulation of the Navier-Stokes equations. The changes in streak amplification due to the travelling waves induced by the wall velocity are compared to published results of direct numerical simulation (DNS) predictions of the turbulent skin-friction reduction over a range of parameters; a clear correlation between these two sets of results is observed. Additional linearized simulations but at a much higher Reynolds numbers, more relevant to aerospace applications, produce results that show no marked differences to those obtained at low Reynolds number. It is also observed that a close correlation exists between DNS data of drag reduction and a very simple characteristic of the ``generalized'' Stokes layer generated by the streamwise-travelling waves. Carlos.Duque-Daza@warwick.ac.uk - School of Engineering, University of Warwick, Coventry CV4 7AL, UK caduqued@unal.edu.co - Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia.

  3. Domain wall kinetics of lithium niobate single crystals near the hexagonal corner

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ju Won [Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Ko, Do-Kyeong [Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Advanced Photonics Research Institute, GIST, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Yu, Nan Ei, E-mail: neyu@gist.ac.kr, E-mail: jhro@pnu.edu [Advanced Photonics Research Institute, GIST, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kitamura, Kenji [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Ro, Jung Hoon, E-mail: neyu@gist.ac.kr, E-mail: jhro@pnu.edu [Department of Biomedical Engineering, School of Medicine, Pusan National University, Busan 602-739 (Korea, Republic of)

    2015-03-09

    A mesospheric approach based on a simple microscopic 2D Ising model in a hexagonal lattice plane is proposed to explain macroscopic “asymmetric in-out domain wall motion” observation in the (0001) plane of MgO-doped stoichiometric lithium niobate. Under application of an electric field that was higher than the conventional coercive field (E{sub c}) to the ferroelectric crystal, a natural hexagonal domain was obtained with walls that were parallel to the Y-axis of the crystal. When a fraction of the coercive field of around 0.1E{sub c} is applied in the reverse direction, this hexagonal domain is shrunk (moved inward) from the corner site into a shape with a corner angle of around 150° and 15° wall slopes to the Y-axis. A flipped electric field of 0.15E{sub c} is then applied to recover the natural hexagonal shape, and the 150° corner shape changes into a flat wall with 30° slope (moved outward). The differences in corner domain shapes between inward and outward domain motion were analyzed theoretically in terms of corner and wall site energies, which are described using the domain corner angle and wall slope with respect to the crystal Y-axis, respectively. In the inward domain wall motion case, the energy levels of the evolving 150° domain corner and 15° slope walls are most competitive, and could co-exist. In the outward case, the energy levels of corners with angles >180° are highly stable when compared with the possible domain walls; only a flat wall with 30° slope to the Y-axis is possible during outward motion.

  4. Characterization of Pancreatic Tumor Motion Using Cine MRI: Surrogates for Tumor Position Should Be Used With Caution

    International Nuclear Information System (INIS)

    Feng, Mary; Balter, James M.; Normolle, Daniel; Adusumilli, Saroja; Cao Yue; Chenevert, Thomas L.; Ben-Josef, Edgar

    2009-01-01

    Purpose: Our current understanding of intrafraction pancreatic tumor motion due to respiration is limited. In this study, we characterized pancreatic tumor motion and evaluated the application of several radiotherapy motion management strategies. Methods and Materials: Seventeen patients with unresectable pancreatic cancer were enrolled in a prospective internal review board-approved study and imaged during shallow free-breathing using cine MRI on a 3T scanner. Tumor borders were agreed on by a radiation oncologist and an abdominal MRI radiologist. Tumor motion and correlation with the potential surrogates of the diaphragm and abdominal wall were assessed. These data were also used to evaluate planning target volume margin construction, respiratory gating, and four-dimensional treatment planning for pancreatic tumors. Results: Tumor borders moved much more than expected. To provide 99% geometric coverage, margins of 20 mm inferiorly, 10 mm anteriorly, 7 mm superiorly, and 4 mm posteriorly are required. Tumor position correlated poorly with diaphragm and abdominal wall position, with patient-level Pearson correlation coefficients of -0.18-0.43. Sensitivity and specificity of gating with these surrogates was also poor, at 53%-68%, with overall error of 35%-38%, suggesting that the tumor may be underdosed and normal tissues overdosed. Conclusions: Motion of pancreatic tumor borders is highly variable between patients and larger than expected. There is substantial deformation with breathing, and tumor border position does not correlate well with abdominal wall or diaphragmatic position. Current motion management strategies may not account fully for tumor motion and should be used with caution.

  5. Walker-type velocity oscillations of magnetic domain walls

    International Nuclear Information System (INIS)

    Vella-Coleiro, G.P.

    1976-01-01

    We report stroboscopic observations of the radial motion of a magnetic bubble domain wall in an epitaxial LuGdAl iron garnet film. At high drive fields, initial velocities up to 9500 cm/sec were measured, and the domain wall was observed to move backwards during the field pulse, in agreement with calculations based on the Walker model

  6. Soil-structure Interaction in the Seismic Response of Coupled Wall-frame Structures on Pile Foundations

    International Nuclear Information System (INIS)

    Carbonari, S.; Dezi, F.; Leoni, G.

    2008-01-01

    This paper presents a study on the seismic response of coupled wall-frame structures founded on piles. A complete soil-structure interaction analysis is carried out with reference to a case study. Three different soils and seven real accelerograms are considered. Local site response analyses are performed in order to evaluate the incoming free-field motion at different depths and the ground motion amplifications. A numerical model, accounting for the pile-soil-pile interaction and for material and radiation damping, is used to evaluate the impedance matrix and the foundation input motion. The domain decomposition technique is adopted to perform time-domain seismic analyses introducing Lumped Parameter Models to take into account the impedance of the soil-structure system. Applications show that the rocking phenomena affect the behaviour of the structure by changing the base shear distribution within the wall and the frame and by increasing the structural displacements

  7. Impact of a drop onto a wetted wall: description of crown formation and propagation

    Science.gov (United States)

    Roisman, I. V.; Tropea, C.

    2002-12-01

    The impact of a drop onto a liquid film with a relatively high impact velocity, leading to the formation of a crown-like ejection, is studied theoretically. The motion of a kinematic discontinuity in the liquid film on the wall due to the drop impact, the formation of the upward jet at this kinematic discontinuity and its elevation are analysed. Four main regions of the drop and film are considered: the perturbed liquid film on the wall inside the crown, the unperturbed liquid film on the wall outside the crown, the upward jet forming a crown, and the free rim bounding this jet. The theory of Yarin & Weiss (1995) for the propagation of the kinematic discontinuity is generalized here for the case of arbitrary velocity vectors in the inner and outer liquid films on the wall. Next, the mass, momentum balance and Bernoulli equations at the base of the crown are considered in order to obtain the velocity and the thickness of the jet on the wall. Furthermore, the dynamic equations of motion of the crown are developed in the Lagrangian form. An analytical solution for the crown shape is obtained in the asymptotic case of such high impact velocities that the surface tension and the viscosity effects can be neglected in comparison to inertial effects. The edge of the crown is described by the motion of a rim, formed due to the surface tension.

  8. Myocardial imaging with 99mTc-Tetrofosmin: Influence of post-stress acquisition time, regional radiotracer uptake, and wall motion abnormalities on the clinical result.

    Science.gov (United States)

    Giorgetti, Assuero; Kusch, Annette; Casagranda, Mirta; Tagliavia, Irene D'Aragona; Marzullo, Paolo

    2010-04-01

    We previously demonstrated that early (15', T1) post-stress myocardial imaging with Tetrofosmin could be more accurate than standard acquisitions (45', T2) in identifying coronary artery disease. To clarify this phenomenon, 120 subjects (age 61 +/- 10 years) with both T1 and T2 scans were divided into Group 1 (53/120 pts) with more ischemia at T1 vs T2 imaging (T1-T2SDS > or = 3); Group 2 (67/120 pts) with similar results (T1-T2SDS statistic and semiquantitative wall motion/thickening values were obtained. Analysis of T1 and T2 post-stress myocardial counts demonstrated a significant Tetrofosmin wash-out rate that was higher in Group 1 control nonischemic regions (15 +/- 8% vs 13.6 +/- 9.6%, P stress wall thickening (T1-T2) was lower in Group 1 ischemic regions (-4.5 +/- 9.15% vs -1.90 +/- 7.0%, P stress acquisition time because of ischemic-induced regional wall thickening abnormalities and the existence of a differential radiotracer myocardial wash-out.

  9. Domain wall energy landscapes in amorphous magnetic films with asymmetric arrays of holes

    International Nuclear Information System (INIS)

    Alija, A; Perez-Junquera, A; RodrIguez-RodrIguez, G; Velez, M; Alameda, J M; MartIn, J I; Marconi, V I; Kolton, A B; Parrondo, J M R; Anguita, J V

    2009-01-01

    Arrays of asymmetric holes have been defined in amorphous Co-Si films by e-beam lithography in order to study domain wall motion across the array subject to the asymmetric pinning potential created by the holes. Experimental results on Kerr effect magnetooptical measurements and hysteresis loops are compared with micromagnetic simulations in films with arrays of triangular holes. These show that the potential asymmetry favours forward wall propagation for flat walls but, if the wall contains a kink, net backward wall propagation is preferred at low fields, in agreement with minor loop experiments. The difference between the fields needed for forward and backward flat wall propagation increases as the size of the triangular holes is reduced, becoming maximum for 1 μm triangles, which is the characteristic length scale set by domain wall width.

  10. Domain wall energy landscapes in amorphous magnetic films with asymmetric arrays of holes

    Science.gov (United States)

    Alija, A.; Pérez-Junquera, A.; Rodríguez-Rodríguez, G.; Vélez, M.; Marconi, V. I.; Kolton, A. B.; Anguita, J. V.; Alameda, J. M.; Parrondo, J. M. R.; Martín, J. I.

    2009-02-01

    Arrays of asymmetric holes have been defined in amorphous Co-Si films by e-beam lithography in order to study domain wall motion across the array subject to the asymmetric pinning potential created by the holes. Experimental results on Kerr effect magnetooptical measurements and hysteresis loops are compared with micromagnetic simulations in films with arrays of triangular holes. These show that the potential asymmetry favours forward wall propagation for flat walls but, if the wall contains a kink, net backward wall propagation is preferred at low fields, in agreement with minor loop experiments. The difference between the fields needed for forward and backward flat wall propagation increases as the size of the triangular holes is reduced, becoming maximum for 1 µm triangles, which is the characteristic length scale set by domain wall width.

  11. Molecular Dynamics Study of Thermally Augmented Nanodroplet Motion on Chemical Energy Induced Wettability Gradient Surfaces.

    Science.gov (United States)

    Chakraborty, Monojit; Chowdhury, Anamika; Bhusan, Richa; DasGupta, Sunando

    2015-10-20

    Droplet motion on a surface with chemical energy induced wettability gradient has been simulated using molecular dynamics (MD) simulation to highlight the underlying physics of molecular movement near the solid-liquid interface including the contact line friction. The simulations mimic experiments in a comprehensive manner wherein microsized droplets are propelled by the surface wettability gradient against forces opposed to motion. The liquid-wall Lennard-Jones interaction parameter and the substrate temperature are varied to explore their effects on the three-phase contact line friction coefficient. The contact line friction is observed to be a strong function of temperature at atomistic scales, confirming their experimentally observed inverse functionality. Additionally, the MD simulation results are successfully compared with those from an analytical model for self-propelled droplet motion on gradient surfaces.

  12. Plasma behavior and plasma-wall interaction in magnetic fusion divices

    International Nuclear Information System (INIS)

    Ohtsuka, Hideo

    1984-10-01

    To study the fundamental behavior of plasma in magnetic field is the main subject in the early stage of the magnetic fusion research. At the next stage, it is necessary to overcome some actual problems in order to attain reactor grade plasmas. One of them is to control impurities in the plasma. In these points of view, we carried out several experiments or theoretical analyses. Firstly, anomalous loss mechanisms in magnetic field were investigated in a toroidal multipole device JFT-1 and the role of motions of charged particles in the magnetic field was exhibited. Various measurements of plasma in the scrape-off layer were made in a divertor tokamak JFT-2a and in an ordinary tokamak JFT-2. The former study demonstrated the first successful divertor operation of the tokamak device and the latter one clarified the mechanism of arcing on the tokamak first wall. As to arcing, a new theory which describes the retrograde motion, the well known strange motion of arcs in a magnetic field, was proposed. Good agreement with the experimental results was shown. Finally, by considering a zero-dimensional sputtering model a self-consistent relation between light and metal impurities in tokamak plasmas was obtained. It was shown that the relation well describes some fundamental aspects of the plasma-wall interaction. As a conclusion, the importance of simple behavior of charged particles in magnetic fields was pointed out not only for the plasma confinement but also for the plasma-wall interaction. (author)

  13. Simultaneous measurement of instantaneous heart rate and chest wall plethysmography in short-term, metronome guided heart rate variability studies: suitability for assessment of autonomic dysfunction.

    Science.gov (United States)

    Perring, S; Jones, E

    2003-08-01

    Instantaneous heart rate and chest wall motion were measured using a 3-lead ECG and an air pressure chest wall plethysmography system. Chest wall plethysmography traces were found to accurately represent the breathing pattern as measured by spirometry (average correlation coefficient 0.944); though no attempt was made to calibrate plethysmography voltage output to tidal volume. Simultaneous measurements of heart rate and chest wall motion were made for short periods under metronome guided breathing at 6 breaths per minute. The average peak to trough heart rate change per breath cycle (AVEMAX) and maximum correlation between heart rate and breathing cycle (HRBRCORR) were measured. Studies of 44 normal volunteers indicated clear inverse correlation of heart rate variability parameters with age (AVEMAX R = -0.502, P < 0.001) but no significant change in HRBRCORR with age (R = -0.115). Comparison of normal volunteers with diabetics with no history of symptoms associated with autonomic failure indicated significant lower heart rate variability in diabetics (P = 0.005 for AVEMAX) and significantly worse correlation between heart rate and breathing (P < 0.001 for HRBRCORR). Simultaneous measurement of heart rate and breathing offers the possibility of more sensitive diagnosis of autonomic failure in a simple bedside test and gives further insight into the nature of cardio-ventilatory coupling.

  14. Organ motion study and dosimetric impact of respiratory gating radiotherapy for esophageal cancer

    International Nuclear Information System (INIS)

    Lorchel, F.

    2007-04-01

    Chemoradiotherapy is now the standard treatment for locally advanced or inoperable esophageal carcinoma. In this indication, conformal radiotherapy is generally used. However, prognosis remains poor for these patients. Respiratory gating radiotherapy can decrease healthy tissues irradiation and allows escalation dose in lung, liver and breast cancer. In order to improve radiotherapy technique, we propose to study the feasibility of respiratory gating for esophageal cancer. We will study the respiratory motions of esophageal cancer to optimize target volume delineation, especially the internal margin (I.M.). We will test the correlation between tumour and chest wall displacements to prove that esophageal cancer motions are induced by respiration. This is essential before using free breathing respiratory gating systems. We will work out the dosimetric impact of respiratory gating using various dosimetric analysis parameters. We will compare dosimetric plans at end expiration, end inspiration and deep inspiration with dosimetric plan in free-breathing condition. This will allow us to establish the best respiratory phase to irradiate for each gating system. This dosimetric study will be completed with linear quadratic equivalent uniform dose (E.U.D.) calculation for each volume of interest. Previously, we will do a theoretical study of histogram dose volume gradation to point up its use. (author)

  15. Direct flow/motion, coils, and field strength concerns in MRI

    International Nuclear Information System (INIS)

    Moran, P.R.

    1986-01-01

    Specific flow/motion bipolar phase-gradient encodings are interlaced into MR sequences for direct NMR imaging of motion quantities, velocity, acceleration, etc. This allows evaluation of the functional properties of tissue, blood flow, heart-wall velocity, vortical-eddies in vascular disease, and perfusion assessment. Attention to fundamentals and basics is important in designing successful flow/motion imaging sequences. 2 refs.; 5 figs

  16. A human motion model based on maps for navigation systems

    Directory of Open Access Journals (Sweden)

    Kaiser Susanna

    2011-01-01

    Full Text Available Abstract Foot-mounted indoor positioning systems work remarkably well when using additionally the knowledge of floor-plans in the localization algorithm. Walls and other structures naturally restrict the motion of pedestrians. No pedestrian can walk through walls or jump from one floor to another when considering a building with different floor-levels. By incorporating known floor-plans in sequential Bayesian estimation processes such as particle filters (PFs, long-term error stability can be achieved as long as the map is sufficiently accurate and the environment sufficiently constraints pedestrians' motion. In this article, a new motion model based on maps and floor-plans is introduced that is capable of weighting the possible headings of the pedestrian as a function of the local environment. The motion model is derived from a diffusion algorithm that makes use of the principle of a source effusing gas and is used in the weighting step of a PF implementation. The diffusion algorithm is capable of including floor-plans as well as maps with areas of different degrees of accessibility. The motion model more effectively represents the probability density function of possible headings that are restricted by maps and floor-plans than a simple binary weighting of particles (i.e., eliminating those that crossed walls and keeping the rest. We will show that the motion model will help for obtaining better performance in critical navigation scenarios where two or more modes may be competing for some of the time (multi-modal scenarios.

  17. Magnetic hysteresis and domain wall dynamics in single chain magnets with antiferromagnetic interchain coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bukharov, A A; Ovchinnikov, A S; Baranov, N V [Department of Physics, Ural State University, Ekaterinburg, 620083 (Russian Federation); Inoue, K [Institute for Advanced Materials Research, Hiroshima University, Hiroshima (Japan)

    2010-11-03

    Using Monte Carlo simulations we investigate magnetic hysteresis in two- and three-dimensional systems of weakly antiferromagnetically coupled spin chains based on a scenario of domain wall (kink) motion within the chains. By adapting the model of walkers to simulate the domain wall dynamics and using the Ising-like dipole-dipole model, we study the effects of interchain coupling, temperature and anisotropy axis direction on hysteresis curves.

  18. Effect of metallic walls on dynamos generated by laminar boundary-driven flow in a spherical domain.

    Science.gov (United States)

    Guervilly, Céline; Wood, Toby S; Brummell, Nicholas H

    2013-11-01

    We present a numerical study of dynamo action in a conducting fluid encased in a metallic spherical shell. Motions in the fluid are driven by differential rotation of the outer metallic shell, which we refer to as "the wall." The two hemispheres of the wall are held in counter-rotation, producing a steady, axisymmetric interior flow consisting of differential rotation and a two-cell meridional circulation with radial inflow in the equatorial plane. From previous studies, this type of flow is known to maintain a stationary equatorial dipole by dynamo action if the magnetic Reynolds number is larger than about 300 and if the outer boundary is electrically insulating. We vary independently the thickness, electrical conductivity, and magnetic permeability of the wall to determine their effect on the dynamo action. The main results are the following: (a) Increasing the conductivity of the wall hinders the dynamo by allowing eddy currents within the wall, which are induced by the relative motion of the equatorial dipole field and the wall. This processes can be viewed as a skin effect or, equivalently, as the tearing apart of the dipole by the differential rotation of the wall, to which the field lines are anchored by high conductivity. (b) Increasing the magnetic permeability of the wall favors dynamo action by constraining the magnetic field lines in the fluid to be normal to the wall, thereby decoupling the fluid from any induction in the wall. (c) Decreasing the wall thickness limits the amplitude of the eddy currents, and is therefore favorable for dynamo action, provided that the wall is thinner than the skin depth. We explicitly demonstrate these effects of the wall properties on the dynamo field by deriving an effective boundary condition in the limit of vanishing wall thickness.

  19. Segmental front line dynamics of randomly pinned ferroelastic domain walls

    Science.gov (United States)

    Puchberger, S.; Soprunyuk, V.; Schranz, W.; Carpenter, M. A.

    2018-01-01

    Dynamic mechanical analysis (DMA) measurements as a function of temperature, frequency, and dynamic force amplitude are used to perform a detailed study of the domain wall motion in LaAlO3. In previous DMA measurements Harrison et al. [Phys. Rev. B 69, 144101 (2004), 10.1103/PhysRevB.69.144101] found evidence for dynamic phase transitions of ferroelastic domain walls in LaAlO3. In the present work we focus on the creep-to-relaxation region of domain wall motion using two complementary methods. We determine, in addition to dynamic susceptibility data, waiting time distributions of strain jerks during slowly increasing stress. These strain jerks, which result from self-similar avalanches close to the depinning threshold, follow a power-law behavior with an energy exponent ɛ =1.7 ±0.1 . Also, the distribution of waiting times between events follows a power law N (tw) ∝tw-(n +1 ) with an exponent n =0.9 , which transforms to a power law of susceptibility S (ω ) ∝ω-n . The present dynamic susceptibility data can be well fitted with a power law, with the same exponent (n =0.9 ) up to a characteristic frequency ω ≈ω* , where a crossover from stochastic DW motion to the pinned regime is well described using the scaling function of Fedorenko et al. [Phys. Rev. B 70, 224104 (2004), 10.1103/PhysRevB.70.224104].

  20. Semi-automatic detection and correction of body organ motion, particularly cardiac motion in SPECT studies

    International Nuclear Information System (INIS)

    Quintana, J.C.; Caceres, F.; Vargas, P.

    2002-01-01

    Aim: Detect patient motion during SPECT imaging. Material and Method: SPECT study is carried out on a patient's body organ, such as the heart, and frame of image data are thereby acquired. The image data in these frames are subjected to a series of mappings and computations, from which frame containing a significant quantity of organ motion can be identified. Quantification of motion occurs by shifting some of the mapped data within a predetermined range, and selecting that data shift which minimizes the magnitude of a motion sensitive mathematical function. The sensitive mathematical function is constructed from all set of image frames using the pixel data within a region covering the body organ. Using cine display of planar image data, the operator defines the working region by marking two points, which define two horizontal lines covering the area of the body organ. This is the only operator intervention. The mathematical function integrates pixel data from all set of image frames and therefore does not use derivatives which may cause distortion in noisy data. Moreover, as a global function, this method is superior than that using frame-to-frame cross-correlation function to identify motion between adjacent frames. Using standard image processing software, the method was implemented computationally. Ten SPECT studies with movement (Sestamibi cardiac studies and 99m-ECD brain SPECT studies) were selected plus two others with no movement. The acquisition SPECT protocol for the cardiac study was as follow: Step and shoot mode, non-circular orbit, 64 stops 20s each, 64x64x16 matrix and LEHR colimator. For the brain SPECT, 128 stops over 360 0 were used. Artificial vertical displacements (±1-2 pixels) over several frames were introduced in those studies with no movement to simulate patient motion. Results: The method was successfully tested in all cases and was capable to recognize SPECT studies with no body motion as well as those with body motion (both from the

  1. Building a Lego wall: Sequential action selection.

    Science.gov (United States)

    Arnold, Amy; Wing, Alan M; Rotshtein, Pia

    2017-05-01

    The present study draws together two distinct lines of enquiry into the selection and control of sequential action: motor sequence production and action selection in everyday tasks. Participants were asked to build 2 different Lego walls. The walls were designed to have hierarchical structures with shared and dissociated colors and spatial components. Participants built 1 wall at a time, under low and high load cognitive states. Selection times for correctly completed trials were measured using 3-dimensional motion tracking. The paradigm enabled precise measurement of the timing of actions, while using real objects to create an end product. The experiment demonstrated that action selection was slowed at decision boundary points, relative to boundaries where no between-wall decision was required. Decision points also affected selection time prior to the actual selection window. Dual-task conditions increased selection errors. Errors mostly occurred at boundaries between chunks and especially when these required decisions. The data support hierarchical control of sequenced behavior. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Quantification of 3D myocardium motion in gated SPECT

    International Nuclear Information System (INIS)

    Gutierrez, Marco A.; Furuie, Sergio S.; Melo, Candido P.; Meneghetti, Jose C.; Moura, Lincoln

    1996-01-01

    A method to quantify 3 D left ventricle motion by the optical flow technique extended to the voxel space is described. The left ventricle wall motion is represented by a series of 3 D velocity vector which is computed automatically by the proposed method for each voxel on the sequence of cardiac volumes

  3. Coupled Dzyaloshinskii walls and their current-induced dynamics by the spin Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, Eduardo, E-mail: edumartinez@usal.es [Dpto. de Fisica Aplicada, Universidad de Salamanca, Plaza de los Caídos s/n, E-37008 Salamanca (Spain); Alejos, Óscar [Dpto. de Electricidad y Electrónica, Universidad de Valladolid, Paseo de Belén, 7, E-47011 Valladolid (Spain)

    2014-07-14

    The nucleation of domain walls in ultrathin ferromagnetic/heavy-metal bilayers is studied by means of micromagnetic simulations. In the presence of interfacial Dzyaloshinskii-Moriya interaction, the nucleated walls naturally adopt a homochiral configuration with internal magnetization pointing antiparallely. The interaction between these walls was analyzed and described in terms of a classical dipolar force between the magnetic moments of the walls, which couples their dynamics. Additionally, the current-induced motion of two homochiral walls in the presence of longitudinal fields was also studied by means of a simple one-dimensional model and micromagnetic modeling, considering both one free-defect strip and another one with random edge roughness. It is evidenced that in the presence of pinning due to edge roughness, the in-plane longitudinal field introduces an asymmetry in the current-induced depinning, in agreement with recent experimental results.

  4. Coupled Dzyaloshinskii walls and their current-induced dynamics by the spin Hall effect

    International Nuclear Information System (INIS)

    Martínez, Eduardo; Alejos, Óscar

    2014-01-01

    The nucleation of domain walls in ultrathin ferromagnetic/heavy-metal bilayers is studied by means of micromagnetic simulations. In the presence of interfacial Dzyaloshinskii-Moriya interaction, the nucleated walls naturally adopt a homochiral configuration with internal magnetization pointing antiparallely. The interaction between these walls was analyzed and described in terms of a classical dipolar force between the magnetic moments of the walls, which couples their dynamics. Additionally, the current-induced motion of two homochiral walls in the presence of longitudinal fields was also studied by means of a simple one-dimensional model and micromagnetic modeling, considering both one free-defect strip and another one with random edge roughness. It is evidenced that in the presence of pinning due to edge roughness, the in-plane longitudinal field introduces an asymmetry in the current-induced depinning, in agreement with recent experimental results.

  5. [Segmental wall movement of the left ventricle in healthy persons and myocardial infarct patients studied by a catheter-less nuclear medical method (camera-cinematography of the heart)].

    Science.gov (United States)

    Geffers, H; Sigel, H; Bitter, F; Kampmann, H; Stauch, M; Adam, W E

    1976-08-01

    Camera-Kinematography is a nearly noninvasive method to investigate regional motion of the myocard, and allows evaluation of the function of the heart. About 20 min after injection of 15-20 mCi of 99mTC-Human-Serum-Albumin, when the tracer is distributed homogenously within the bloodpool, data acquisition starts. Myocardial wall motion is represented in an appropriate quasi three-dimensional form. In this representation scars can be revealed as "silent" (akinetic) regions, aneurysms by asynchronic motion. Time activity curves for arbitrarily chosen regions can be calculated and give an equivalent for regional volume changes. 16 patients with an old infarction have been investigated. In fourteen cases the location and extent of regions with abnormal motion could be evaluated. Only two cases of a small posterior wall infarction did not show deviations from normal contraction pattern.

  6. The profile of the domain walls in amorphous glass-covered microwires

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F.; Rigue, J.N. [Universidade Federal de Santa Maria, Campus Cachoeira do Sul, RS (Brazil); Carara, M., E-mail: carara@smail.ufsm.br [Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2017-08-01

    Highlights: • Glass-covered microwires with positive magnetostriction were studied. • The single domain wall dynamics was studied under different conditions. • We have evaluated the profile and shape of the moving domain walls. • The domain wall evolves from a bell shape to a parabolic one when a current is applied. - Abstract: We have studied the domain wall dynamics in Joule-annealed amorphous glass-covered microwires with positive magnetostriction in the presence of an electric current, in order to evaluate the profile and shape of the moving domain wall. Such microwires are known to present magnetic bi-stability when axially magnetized. The single domain wall dynamics was evaluated under different conditions, under an axially applied stress and an electric current. We have observed the well known increasing of the domain wall damping with the applied stress due to the increase in the magnetoelastic anisotropy and, when the current is applied, depending on the current intensity and direction, a modification on the axial domain wall damping. When the orthogonal motion of the domain wall is considered, we have observed that the associated velocity present a smaller dependence on the applied current intensity. It was observed a modification on both the domain wall shape and length. In a general way, the domain wall evolves from a bell shape to a parabolic shape as the current intensity is increased. The results were explained in terms of the change in the magnetic energy promoted by the additional Oersted field.

  7. OSCILLATING LIGHT WALL ABOVE A SUNSPOT LIGHT BRIDGE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong; Zhang, Jun; Jiang, Fayu [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn [Fuxian Solar Observatory, Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2015-05-10

    With the high tempo-spatial Interface Region Imaging Spectrograph 1330 Å images, we find that many bright structures are rooted in the light bridge of NOAA 12192, forming a light wall. The light wall is brighter than the surrounding areas, and the wall top is much brighter than the wall body. The New Vacuum Solar Telescope Hα and the Solar Dynamics Observatory 171 and 131 Å images are also used to study the light-wall properties. In 1330, 171, and 131 Å, the top of the wall has a higher emission, while in the Hα line, the wall-top emission is very low. The wall body corresponds to bright areas in 1330 Å and dark areas in the other lines. The top of the light wall moves upward and downward successively, performing oscillations in height. The deprojected mean height, amplitude, oscillation velocity, and the dominant period are determined to be 3.6 Mm, 0.9 Mm, 15.4 km s{sup −1}, and 3.9 minutes, respectively. We interpret the oscillations of the light wall as the leakage of p-modes from below the photosphere. The constant brightness enhancement of the wall top implies the existence of some kind of atmospheric heating, e.g., via the persistent small-scale reconnection or the magneto-acoustic waves. In another series of 1330 Å images, we find that the wall top in the upward motion phase is significantly brighter than in the downward phase. This kind of oscillation may be powered by the energy released due to intermittent impulsive magnetic reconnection.

  8. Study of the motion and deposition of micro particles in a vertical tube containing uniform gas flow

    Science.gov (United States)

    Abolpour, Bahador; Afsahi, M. Mehdi; Soltani Goharrizi, Ataallah; Azizkarimi, Mehdi

    2017-12-01

    In this study, effects of a gaseous jet, formed in a vertical tube containing a uniform gas flow, on the injected micro particles have been investigated. A CFD model has been developed to simulate the particle motion in the tube. This simulation is very close to the experimental data. The results show that, increasing the flow rate of carrier gas or decreasing the flow rate of surrounding gas increases the effect of gaseous jet and also increases trapping rate of the particles by the tube wall. The minimum and maximum residence times of particles approach together with increasing the size of solid particles. Particles larger than 60 μm have a certain and fixed residence time at different flow rates of the carrier or surrounding gas. About 40 μm particle size has minimal trapping by the tube wall at various experimental conditions.

  9. Comparison of various quantization methods of segmental ventricular wall motion in ischemic heart disease

    International Nuclear Information System (INIS)

    Probst, P.; Moore, R.; Kim, S.W.; Zollikofer, C.; Amplatz, K.

    1981-01-01

    Numerous methods of measuring regional myocardial wall motion are in use. A critical comparison is needed to assess the strengths, weaknesses, accuracy, and precision of these methods. This paper reports the evaluation of five methods using computer-assisted interactive graphics. Fifty cines were selected: 16 from normal subjects, and 34 from patients with proven cardiovascular diseases. Tracings were made of the opacified left ventricle in end systole and dastole and digitized. All fifty cines were analyzed by five methods using computer-implemented graphic techniques. The reults included a display of the silhouettes, which were translated and rotated according to various methods. In addition, the percent contraction for eleven myocardial regions was tabulated and displayed. The sixteen cines from normal subjects were used to derive 1 range of 'house' normal values for region contraction patterns with which the measurements from the 34 abnormal patients were compared. The five methods were evaluated by comparing results from the computer-aided analysis with the visual assessment of two experienced radiologists. One method was found, the results from which agreed with the radiologists' visual impression for every case. This computer-aided method was quantitative and reproducible. Consequently, it can give information which supplements the visual impression. (orig.) [de

  10. Seismic proof test of shielding block walls

    International Nuclear Information System (INIS)

    Ohte, Yukio; Watanabe, Takahide; Watanabe, Hiroyuki; Maruyama, Kazuhide

    1989-01-01

    Most of the shielding block walls used for building nuclear facilities are built by dry process. When a nuclear facility is designed, seismic waves specific at each site are set as input seismic motions and they are adopted in the design. Therefore, it is necessary to assure safety of the shielding block walls for earthquake by performing anti-seismic experiments under the conditions at each site. In order to establish the normal form that can be applied to various seismic conditions in various areas, Shimizu Corp. made an actual-size test samples for the shielding block wall and confirmed the safety for earthquake and validity of normalization. (author)

  11. Fast switching and signature of efficient domain wall motion driven by spin-orbit torques in a perpendicular anisotropy magnetic insulator/Pt bilayer

    Science.gov (United States)

    Avci, Can Onur; Rosenberg, Ethan; Baumgartner, Manuel; Beran, Lukáš; Quindeau, Andy; Gambardella, Pietro; Ross, Caroline A.; Beach, Geoffrey S. D.

    2017-08-01

    We report fast and efficient current-induced switching of a perpendicular anisotropy magnetic insulator thulium iron garnet by using spin-orbit torques (SOT) from the Pt overlayer. We first show that, with quasi-DC (10 ms) current pulses, SOT-induced switching can be achieved with an external field as low as 2 Oe, making TmIG an outstanding candidate to realize efficient switching in heterostructures that produce moderate stray fields without requiring an external field. We then demonstrate deterministic switching with fast current pulses (≤20 ns) with an amplitude of ˜1012 A/m2, similar to all-metallic structures. We reveal that, in the presence of an initially nucleated domain, the critical switching current is reduced by up to a factor of five with respect to the fully saturated initial state, implying efficient current-driven domain wall motion in this system. Based on measurements with 2 ns-long pulses, we estimate the domain wall velocity of the order of ˜400 m/s per j = 1012 A/m2.

  12. Large-eddy simulation of heavy particle dispersion in wall-bounded turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Salvetti, M.V. [DICI, University of Pisa, I-56122 Pisa (Italy)

    2015-03-10

    Capabilities and accuracy issues in Lagrangian tracking of heavy particles in velocity fields obtained from large-eddy simulations (LES) of wall-bounded turbulent flows are reviewed. In particular, it is shown that, if no subgrid scale (SGS) model is added to the particle motion equations, particle preferential concentration and near-wall accumulation are significantly underestimated. Results obtained with SGS modeling for the particle motion equations based on approximate deconvolution are briefly recalled. Then, the error purely due to filtering in particle tracking in LES flow fields is singled out and analyzed. The statistical properties of filtering errors are characterized in turbulent channel flow both from an Eulerian and a Lagrangian viewpoint. Implications for stochastic SGS modeling in particle motion equations are briefly outlined.

  13. Characterization of Slow Orbit Motion in the SPEAR3

    International Nuclear Information System (INIS)

    Sunilkumar, Nikita

    2012-01-01

    SPEAR3 is a third-generation synchrotron light source storage ring. The beam stability requirements are ∼10% of the beam size, which is about 1 micron in the vertical plane. Hydrostatic level system (HLS) measurements show that the height of the SPEAR3 tunnel floor varies by tens of microns daily. We present analysis of the HLS data, including accounting for common-mode tidal motion. We discuss the results of experiments done to determine the primary driving source of ground motion. We painted the accelerator tunnel walls white; we temporarily installed Mylar over the asphalt in the center of the accelerator; and we put Mylar over a section of the tunnel walls.

  14. Oil Motion Control by an Extra Pinning Structure in Electro-Fluidic Display.

    Science.gov (United States)

    Dou, Yingying; Tang, Biao; Groenewold, Jan; Li, Fahong; Yue, Qiao; Zhou, Rui; Li, Hui; Shui, Lingling; Henzen, Alex; Zhou, Guofu

    2018-04-06

    Oil motion control is the key for the optical performance of electro-fluidic displays (EFD). In this paper, we introduced an extra pinning structure (EPS) into the EFD pixel to control the oil motion inside for the first time. The pinning structure canbe fabricated together with the pixel wall by a one-step lithography process. The effect of the relative location of the EPS in pixels on the oil motion was studied by a series of optoelectronic measurements. EPS showed good control of oil rupture position. The properly located EPS effectively guided the oil contraction direction, significantly accelerated switching on process, and suppressed oil overflow, without declining in aperture ratio. An asymmetrically designed EPS off the diagonal is recommended. This study provides a novel and facile way for oil motion control within an EFD pixel in both direction and timescale.

  15. Coupling between Current and Dynamic Magnetization : from Domain Walls to Spin Waves

    Science.gov (United States)

    Lucassen, M. E.

    2012-05-01

    So far, we have derived some general expressions for domain-wall motion and the spin motive force. We have seen that the β parameter plays a large role in both subjects. In all chapters of this thesis, there is an emphasis on the determination of this parameter. We also know how to incorporate thermal fluctuations for rigid domain walls, as shown above. In Chapter 2, we study a different kind of fluctuations: shot noise. This noise is caused by the fact that an electric current consists of electrons, and therefore has fluctuations. In the process, we also compute transmission and reflection coefficients for a rigid domain wall, and from them the linear momentum transfer. More work on fluctuations is done in Chapter 3. Here, we consider a (extrinsically pinned) rigid domain wall under the influence of thermal fluctuations that induces a current via spin motive force. We compute how the resulting noise in the current is related to the β parameter. In Chapter 4 we look into in more detail into the spin motive forces from field driven domain walls. Using micro magnetic simulations, we compute the spin motive force due to vortex domain walls explicitly. As mentioned before, this gives qualitatively different results than for a rigid domain wall. The final subject in Chapter 5 is the application of the general expression for spin motive forces to magnons. Although this might seem to be unrelated to domain-wall motion, this calculation allows us to relate the β parameter to macroscopic transport coefficients. This work was supported by Stichting voor Fundamenteel Onderzoek der Materie (FOM), the Netherlands Organization for Scientific Research (NWO), and by the European Research Council (ERC) under the Seventh Framework Program (FP7).

  16. Transmission of wave energy in curved ducts. [acoustic propagation within rigid walls

    Science.gov (United States)

    Rostafinski, W.

    1974-01-01

    Investigation of the ability of circular bends to transmit acoustic energy flux. A formulation of wave-energy flow is developed for motion in curved ducts. A parametric study over a range of frequencies shows the ability of circular bends to transmit energy in the case of perfectly rigid walls.

  17. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Chad R. R. N.; Kemp, Robert A. de, E-mail: RAdeKemp@ottawaheart.ca [Physics Department, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada and Cardiac Imaging, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7 (Canada); Klein, Ran [Department of Nuclear Medicine, Ottawa Hospital, Civic Campus, 1053 Carling Avenue, Ottawa, Ontario K1Y 4E9 (Canada); Beanlands, Rob S. [Cardiac Imaging, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7 (Canada)

    2016-04-15

    Purpose: Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET–CT misalignment. Methods: A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers was resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. Results: In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations

  18. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging

    International Nuclear Information System (INIS)

    Hunter, Chad R. R. N.; Kemp, Robert A. de; Klein, Ran; Beanlands, Rob S.

    2016-01-01

    Purpose: Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET–CT misalignment. Methods: A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers was resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. Results: In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations

  19. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging.

    Science.gov (United States)

    Hunter, Chad R R N; Klein, Ran; Beanlands, Rob S; deKemp, Robert A

    2016-04-01

    Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET-CT misalignment. A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers was resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations also indicated that the

  20. Algebraic motion of vertically displacing plasmas

    Science.gov (United States)

    Pfefferlé, D.; Bhattacharjee, A.

    2018-02-01

    The vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to come in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear "sinking" behaviour shown to be algebraic and decelerating. The acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.

  1. A Study of Aerodynamics in Kevlar-Wall Test Sections

    OpenAIRE

    Brown, Kenneth Alexander

    2014-01-01

    This study is undertaken to characterize the aerodynamic behavior of Kevlar-wall test sections and specifically those containing two-dimensional, lifting models. The performance of the Kevlar-wall test section can be evaluated against the standard of the hard-wall test section, which in the case of the Stability Wind Tunnel (SWT) at Virginia Tech can be alternately installed or replaced by the Kevlar-wall test section. As a first step towards the evaluation of the Kevlar-wall test section aer...

  2. Effect of historical earthquakes on pre-stressed anchor tie back diaphragm wall and on near-by building

    Directory of Open Access Journals (Sweden)

    Kamal Mohamed Hafez Ismail Ibrahim

    2013-04-01

    Full Text Available Pre-stressed tie back anchored diaphragm walls are considered one of the safest lateral supports which help in overall stability when there is a significant difference in land level between back and front of these walls. Permanent lateral supports to these walls are frequently represented by supporting it laterally with foundation and floor slabs of the building. In this paper a special study of one raw anchor diaphragm wall subjected to different earthquake dynamic loads will be presented. The wall retains an excavation of 9.5 m and supports laterally a near-by 5 floor building. Five historical strong motions with different fundamental frequencies are subjected on the wall. The wall displacement, straining actions, anchor extreme force and the influence of variation of anchor stiffness are calculated using a dynamic Plaxis finite element program. The soil is considered as elasto-plastic material and represented using Mohr–Coulomb criteria, the wall and the anchor are considered to behave elastically. Prescribed displacement at the lower bottom boundary represents the earthquake motion. Far left and right absorbent boundaries are assumed to prevent dynamic wave reflection. Four static phases representing construction procedure and one dynamic loading phase are considered. It is found that the straining actions of different historical earthquakes match in shape with each other, the only change is in the amplitude which is affected by earthquake fundamental frequency and its intensity. The maximum dynamic lateral displacement of the wall is at its free top. The near-by building shows a differential settlement towards the wall which causes a change in the sign and amplitude of the straining actions. Increasing the stiffness of anchor was also studied and it was found that it reduces too much the maximum dynamic top wall lateral displacement.

  3. Domain wall motion in magnetically frustrated nanorings

    Science.gov (United States)

    Lubarda, M. V.; Escobar, M. A.; Li, S.; Chang, R.; Fullerton, E. E.; Lomakin, V.

    2012-06-01

    We describe a magnetically frustrated nanoring (MFNR) configuration which is formed by introducing antiferromagnetic coupling across an interface orthogonal to the ring's circumferential direction. Such structures have the unique characteristic that only one itinerant domain wall (DW) can exist in the ring, which does not need to be nucleated or injected into the structure and can never escape making it analogous to a magnetic Möbius strip. Numerical simulations show that the DW in a MFNR can be driven consecutively around the ring with a prescribed cyclicity, and that the frequency of revolutions can be controlled by the applied field. The energy landscapes can be controlled to be flat allowing for low fields of operation or to have a barrier for thermal stability. Potential logic and memory applications of MFNRs are considered and discussed.

  4. Gravity-induced dynamics of a squirmer microswimmer in wall proximity

    Science.gov (United States)

    Rühle, Felix; Blaschke, Johannes; Kuhr, Jan-Timm; Stark, Holger

    2018-02-01

    We perform hydrodynamic simulations using the method of multi-particle collision dynamics and a theoretical analysis to study a single squirmer microswimmer at high Péclet number, which moves in a low Reynolds number fluid and under gravity. The relevant parameters are the ratio α of swimming to bulk sedimentation velocity and the squirmer type β. The combination of self-propulsion, gravitational force, hydrodynamic interactions with the wall, and thermal noise leads to a surprisingly diverse behavior. At α > 1 we observe cruising states, while for α < 1 the squirmer resides close to the bottom wall with the motional state determined by stable fixed points in height and orientation. They strongly depend on the squirmer type β. While neutral squirmers permanently float above the wall with upright orientation, pullers float for α larger than a threshold value {α }th} and are pinned to the wall below {α }th}. In contrast, pushers slide along the wall at lower heights, from which thermal orientational fluctuations drive them into a recurrent floating state with upright orientation, where they remain on the timescale of orientational persistence.

  5. Asymmetric driven dynamics of Dzyaloshinskii domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Tejerina, L. [Dpto. Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Alejos, Ó., E-mail: oscaral@ee.uva.es [Dpto. Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Martínez, E. [Dpto. Física Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37011 Salamanca (Spain); Muñoz, J.M. [Dpto. Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain)

    2016-07-01

    The dynamics of domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy is studied from both numerical and analytical micromagnetics. The influence of a moderate interfacial Dzyaloshinskii–Moriya interaction associated to a bi-layer strip arrangement has been considered, giving rise to the formation of Dzyaloshinskii domain walls. Such walls possess under equilibrium conditions an inner magnetization structure defined by a certain orientation angle that make them to be considered as intermediate configurations between Bloch and Néel walls. Two different dynamics are considered, a field-driven and a current-driven dynamics, in particular, the one promoted by the spin torque due to the spin-Hall effect. Results show an inherent asymmetry associated with the rotation of the domain wall magnetization orientation before reaching the stationary regime, characterized by a constant terminal speed. For a certain initial DW magnetization orientation at rest, the rotation determines whether the reorientation of the DW magnetization prior to reach stationary motion is smooth or abrupt. This asymmetry affects the DW motion, which can even reverse for a short period of time. Additionally, it is found that the terminal speed in the case of the current-driven dynamics may depend on either the initial DW magnetization orientation at rest or the sign of the longitudinally injected current. - Highlights: • The asymmetric response of domain walls in bilayer strips with PMA is studied. • Out-of-plane fields and SHE longitudinal currents are applied. • The response is associated to the rotation of the domain wall inner magnetization. • Clockwise and counter-clockwise magnetization rotations are not equivalent. • The asymmetry results in different travelled distances and/or terminal speeds.

  6. Asymmetric driven dynamics of Dzyaloshinskii domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy

    International Nuclear Information System (INIS)

    Sánchez-Tejerina, L.; Alejos, Ó.; Martínez, E.; Muñoz, J.M.

    2016-01-01

    The dynamics of domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy is studied from both numerical and analytical micromagnetics. The influence of a moderate interfacial Dzyaloshinskii–Moriya interaction associated to a bi-layer strip arrangement has been considered, giving rise to the formation of Dzyaloshinskii domain walls. Such walls possess under equilibrium conditions an inner magnetization structure defined by a certain orientation angle that make them to be considered as intermediate configurations between Bloch and Néel walls. Two different dynamics are considered, a field-driven and a current-driven dynamics, in particular, the one promoted by the spin torque due to the spin-Hall effect. Results show an inherent asymmetry associated with the rotation of the domain wall magnetization orientation before reaching the stationary regime, characterized by a constant terminal speed. For a certain initial DW magnetization orientation at rest, the rotation determines whether the reorientation of the DW magnetization prior to reach stationary motion is smooth or abrupt. This asymmetry affects the DW motion, which can even reverse for a short period of time. Additionally, it is found that the terminal speed in the case of the current-driven dynamics may depend on either the initial DW magnetization orientation at rest or the sign of the longitudinally injected current. - Highlights: • The asymmetric response of domain walls in bilayer strips with PMA is studied. • Out-of-plane fields and SHE longitudinal currents are applied. • The response is associated to the rotation of the domain wall inner magnetization. • Clockwise and counter-clockwise magnetization rotations are not equivalent. • The asymmetry results in different travelled distances and/or terminal speeds.

  7. The experimental study of sinal wall thickening on CT

    International Nuclear Information System (INIS)

    Kase, Yasuhiro; Iinuma, Tositaka; Oyama, Kazuyuki.

    1988-01-01

    In our previous report, we investigated several factors which cause apparent thickening of the walls of maxillary sinus. We confirmed, however, that the major factor for the sinal wall thickening is the artifact of CT. In present study, we report the results obtained by phantom models of isolated maxillary bone and egg shell. As the substance corresponding to the soft tissue density, solutions of CaCl 2 in various concentrations were used. In the maxillary bone studies, the thickness of the anterior sinus wall by CT was larger than the actual value even though only the air was contained. When solutions of CaCl 2 were contained and in touch with the anterior wall, the thickness by CT was larger than that of containing air. In the egg shell studies, the increase in thickness by CT correlated to the increase in percentage of solutions. The above results indicate that the apparent increased thickness of the sinal walls by CT is largely the artifact by CT and is dependent upon the soft tissue density or CT value (X-ray attenuation coefficient) of substances in touch with the sinal walls. In CT images obtained by clinical cases, the increased thickness of the sinal walls, in sinuses filled with soft tissue density, is more apparent than real. (author)

  8. A Motion Planning Approach to Studying Molecular Motions

    KAUST Repository

    Amato, Nancy M.

    2010-01-01

    While structurally very different, protein and RNA molecules share an important attribute. The motions they undergo are strongly related to the function they perform. For example, many diseases such as Mad Cow disease or Alzheimer\\'s disease are associated with protein misfolding and aggregation. Similarly, RNA folding velocity may regulate the plasmid copy number, and RNA folding kinetics can regulate gene expression at the translational level. Knowledge of the stability, folding, kinetics and detailed mechanics of the folding process may help provide insight into how proteins and RNAs fold. In this paper, we present an overview of our work with a computational method we have adapted from robotic motion planning to study molecular motions. We have validated against experimental data and have demonstrated that our method can capture biological results such as stochastic folding pathways, population kinetics of various conformations, and relative folding rates. Thus, our method provides both a detailed view (e.g., individual pathways) and a global view (e.g., population kinetics, relative folding rates, and reaction coordinates) of energy landscapes of both proteins and RNAs. We have validated these techniques by showing that we observe the same relative folding rates as shown in experiments for structurally similar protein molecules that exhibit different folding behaviors. Our analysis has also been able to predict the same relative gene expression rate for wild-type MS2 phage RNA and three of its mutants.

  9. Ratchet Effects and Domain Wall Energy Landscapes in Amorphous Magnetic Films with 2D Arrays of Asymmetric Holes

    Science.gov (United States)

    Martin, J. I.; Alija, A.; Sobrado, I.; Perez-Junquera, A.; Rodriguez-Rodriguez, G.; Velez, M.; Alameda, J. M.; Marconi, V. I.; Kolton, A. B.; Parrondo, J. M. R.

    2009-03-01

    The driven motion of domain walls in extended magnetic films patterned with 2D arrays of asymmetric holes has been found to be subject to two different crossed ratchet effects [1] which results in an inversion of the sign of domain wall motion rectification as a function of the applied magnetic field. This effect can be understood in terms of the competition between drive, elasticity and asymmetric pinning as revealed by a simple 4̂-model. In order to optimize the asymmetric hole design, the relevant energy landscapes for domain wall motion across the array of asymmetric holes have been calculated by micromagnetic simulations as a function of array geometrical characteristics. The effects of a transverse magnetic field on these two crossed ratchet effects will also be discussed in terms of the decrease in domain wall energy per unit area and of the modifications in the magnetostatic barriers for domain wall pinning at the asymmetric inclusions. Work supported by Spanish MICINN.[1] A. Perez-Junquera et al, Phys. Rev. Lett. 100 (2008) 037203

  10. Thermophoretic Motion of Water Nanodroplets confined inside Carbon Nanotubes

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Koumoutsakos, Petros

    2009-01-01

    We study the thermophoretic motion of water nanodroplets confined inside carbon nanotubes using molecular dynamics simulations. We find that the nanodroplets move in the direction opposite the imposed thermal gradient with a terminal velocity that is linearly proportional to the gradient....... The translational motion is associated with a solid body rotation of the water nanodroplet coinciding with the helical symmetry of the carbon nanotube. The thermal diffusion displays a weak dependence on the wetting of the water-carbon nanotube interface. We introduce the use of the Moment Scaling Spectrum (MSS......) in order to determine the characteristics of the motion of the nanoparticles inside the carbon nanotube. The MSS indicates that affinity of the nanodroplet with the walls of the carbon nanotubes is important for the isothermal diffusion, and hence for the Soret coefficient of the system....

  11. Structural domain walls in polar hexagonal manganites

    Science.gov (United States)

    Kumagai, Yu

    2014-03-01

    The domain structure in the multiferroic hexagonal manganites is currently intensely investigated, motivated by the observation of intriguing sixfold topological defects at their meeting points [Choi, T. et al,. Nature Mater. 9, 253 (2010).] and nanoscale electrical conductivity at the domain walls [Wu, W. et al., Phys. Rev. Lett. 108, 077203 (2012).; Meier, D. et al., Nature Mater. 11, 284 (2012).], as well as reports of coupling between ferroelectricity, magnetism and structural antiphase domains [Geng, Y. et al., Nano Lett. 12, 6055 (2012).]. The detailed structure of the domain walls, as well as the origin of such couplings, however, was previously not fully understood. In the present study, we have used first-principles density functional theory to calculate the structure and properties of the low-energy structural domain walls in the hexagonal manganites [Kumagai, Y. and Spaldin, N. A., Nature Commun. 4, 1540 (2013).]. We find that the lowest energy domain walls are atomically sharp, with {210}orientation, explaining the orientation of recently observed stripe domains and suggesting their topological protection [Chae, S. C. et al., Phys. Rev. Lett. 108, 167603 (2012).]. We also explain why ferroelectric domain walls are always simultaneously antiphase walls, propose a mechanism for ferroelectric switching through domain-wall motion, and suggest an atomistic structure for the cores of the sixfold topological defects. This work was supported by ETH Zurich, the European Research Council FP7 Advanced Grants program me (grant number 291151), the JSPS Postdoctoral Fellowships for Research Abroad, and the MEXT Elements Strategy Initiative to Form Core Research Center TIES.

  12. Hyperattenuating aortic wall on postmortem computed tomography (PMCT)

    Energy Technology Data Exchange (ETDEWEB)

    Shiotani, Seiji; Kohno, Mototsugu; Ohashi, Noriyoshi; Yamazaki, Kentaroh; Nakayama, Hidetsugu; Ito, Yoshiyuki; Kaga, Kazunori; Ebashi, Toshio [Tsukuba Medical Center Hospital, Ibaraki (Japan); Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2002-08-01

    The purpose of this study was to quantitatively evaluate the finding of hyperattenuating aortic wall on postmortem computed tomography (PMCT) and investigate its causes. Our subjects were 50 PMCT of non-traumatic deaths and 50 CT of living persons (live CT). The ascending aorta at the level of the carina was visually assessed regarding the presence or absence of hyperattenuating aortic wall and hematocrit effect on PMCT and live CT. The diameter, thickness of the aortic wall, and CT number (HU) of the aortic wall and the lumen were also measured. Hyperattenuating aortic wall was detected in 100% of PMCT and 2% of live CT. The diameter of the aortic wall was 2.9{+-}0.5 cm on PMCT and 3.5{+-}0.5 cm on live CT, showing a significant difference. The thickness of the aortic wall was 2 mm on PMCT. Hematocrit effect was observed in 46% of PMCT and in none of live CT. With PMCT, there was a significant difference between the CT numbers of the upper and lower half portions of the lumen (19.6{+-}11.7/30.9{+-}12.9), whereas, with live CT, there was no such significant difference (37.4{+-}7.6/38.9{+-}6.7), with the overall value of 38.2{+-}6.7. The CT number of the aortic wall was 49.9{+-}10.9 on PMCT. The causes of hyperattenuating aortic wall on PMCT are considered to be increased attenuation due to contraction of the aortic wall, a lack of motion artifact, and decreased attenuation of the lumen due to dilution of blood after massive infusion at the time of cardiopulmonary resuscitation. (author)

  13. Shock-tube study of fusion plasma-wall interactions

    International Nuclear Information System (INIS)

    Gross, R.A.; Tien, J.K.; Jensen, B.; Panayotou, N.F.; Feinberg, B.

    1977-01-01

    Theoretical and experimental studies have been made of phenomena which occur when a hot (T 1 approximately equal to 6 x 10 6 0 K), dense (n approximately equal to 10 16 cm -3 ), deuterium plasma containing a transverse magnetic field is brought into sudden contact with a cold metal wall. These studies are motivated by the need to understand plasma and metallurgical conditions at the first-wall of a fusion reactor. Experiments were carried out in the Columbia high energy electromagnetic shock tube. Computational simulation was used to investigate the detailed physics of the fusion plasma boundary layer which develops at the wall. The rate of energy transfer from the plasma to the wall was calculated and conditions under which surface melting occurs are estimated. Experimental measurements of plasma-wall heat transfer rates up to 3 x 10 5 watts/cm 2 were obtained and agreement with computed values are good. Fusion reactor first-wall materials have been exposed to 6.0 x 10 21 eV cm -2 (1,000 shots) of deuterium plasma bombardment. Scanning electron micrograph photographs show preferential erosion at grain boundaries, formation of deuterium surface blisters, and evidence of local surface melting. Some cracking is observed along grain boundaries, and a decrease in tensile ductiity is measured

  14. The importance of stimulus noise analysis for self-motion studies.

    Directory of Open Access Journals (Sweden)

    Alessandro Nesti

    Full Text Available Motion simulators are widely employed in basic and applied research to study the neural mechanisms of perception and action during inertial stimulation. In these studies, uncontrolled simulator-introduced noise inevitably leads to a disparity between the reproduced motion and the trajectories meticulously designed by the experimenter, possibly resulting in undesired motion cues to the investigated system. Understanding actual simulator responses to different motion commands is therefore a crucial yet often underestimated step towards the interpretation of experimental results. In this work, we developed analysis methods based on signal processing techniques to quantify the noise in the actual motion, and its deterministic and stochastic components. Our methods allow comparisons between commanded and actual motion as well as between different actual motion profiles. A specific practical example from one of our studies is used to illustrate the methodologies and their relevance, but this does not detract from its general applicability. Analyses of the simulator's inertial recordings show direction-dependent noise and nonlinearity related to the command amplitude. The Signal-to-Noise Ratio is one order of magnitude higher for the larger motion amplitudes we tested, compared to the smaller motion amplitudes. Simulator-introduced noise is found to be primarily of deterministic nature, particularly for the stronger motion intensities. The effect of simulator noise on quantification of animal/human motion sensitivity is discussed. We conclude that accurate recording and characterization of executed simulator motion are a crucial prerequisite for the investigation of uncertainty in self-motion perception.

  15. The stochastic nature of the domain wall motion along high perpendicular anisotropy strips with surface roughness

    International Nuclear Information System (INIS)

    Martinez, Eduardo

    2012-01-01

    The domain wall dynamics along thin ferromagnetic strips with high perpendicular magnetocrystalline anisotropy driven by either magnetic fields or spin-polarized currents is theoretically analyzed by means of full micromagnetic simulations and a one-dimensional model, including both surface roughness and thermal effects. At finite temperature, the results show a field dependence of the domain wall velocity in good qualitative agreement with available experimental measurements, indicating a low field, low velocity creep regime, and a high field, linear regime separated by a smeared depinning region. Similar behaviors were also observed under applied currents. In the low current creep regime the velocity-current characteristic does not depend significantly on the non-adiabaticity. At high currents, where the domain wall velocity becomes insensitive to surface pinning, the domain wall shows a precessional behavior even when the non-adiabatic parameter is equal to the Gilbert damping. These analyses confirm the relevance of both thermal fluctuations and surface roughness for the domain wall dynamics, and that complete micromagnetic modeling and one-dimensional studies taking into account these effects are required to interpret the experimental measurements in order to get a better understanding of the origin, the role and the magnitude of the non-adiabaticity. (paper)

  16. Studies on first wall and plasma wall interaction in JT-60

    International Nuclear Information System (INIS)

    Nakamura, Hiroo

    1988-12-01

    This paper describes studies on first wall and plasma wall interaction in JT-60. Main results are as follows; (1) To select JT-60 first wall material, various RandD were done in FY1975 ∼ 1976. Mo was selected as first wall materials of limiters and divertor plates because of its reliability under a high heat flux condition. (2) Development of low-Z material has been done to reduce impurity problem of Mo first wall. As a result, titanium carbide (TiC) was selected as a coating material on the Mo. High heat load testing has been done for TiC coated Mo limiter same as JT-60. This material can survive under the condition of 1 kW/cm 2 x 10 s, expected in JT-60 limiter design. (3) To reduce high heat load on the divertor plate, separatrix swing is proposed. Optimum frequency of the sweeping is evaluated to be 2 Hz in JT-60. For a discharge with heating power of 30 MW and duration time of 10 s, in addition to the separatrix swing, remote radiative cooling in the divertor region is necessary. Moreover, calculations of erosion thickness have been done for stainless steel, Mo, graphite, TiC and silicon caibide under high heat flux during plasma disruption. (4) In divertor experiments in JT-60, divertor functions on particle, heat load and impurity controls have been demonstrated. In elctron density of 6 x 10 19 m -3 , particle fueling rate of 20 MW NB heating (3 Pa m 3 /s) can be exhausted by divertor pumping system. Effectiveness of remote radiative cooling is demonstrated under the condition of 20 MW NB heating power. Also, separatrix swing is demonstrated to reduce heat load on the divertor plate. Total radiation in main plasma is 5 ∼ 10% of total absorbed power. (author) 120 refs

  17. Short TI inversion-recovery MR imaging of chest wall malignancies

    International Nuclear Information System (INIS)

    Dubinsky, T.J.; Porter, B.A.; Olson, D.O.

    1987-01-01

    Short-T1 inversion-recovery (STIR) sequences have greater constant, less motion sensitivity, and require shorter imaging times than conventional T2-weighted spin-echo (SE) sequences and are therefore particularly useful for staging chest wall malignancies. MR studies of 49 patients with possible chest wall malignancies were reviewed. Images were produced at 0.15 T with a variety of SE sequences. Forty-five also had STIR (repetition time, 1,400 - 2,100; echo time, 36 or 40; inversion time, 100 or 125). MR studies indicated chest wall involvement in 39 of 49 patients; 12 had obvious rib encasement, the most definitive finding. IN 13, lesions detected on STIR were either not visible or seen only in retrospect on T1 SE images. In five of five, STIR was clearly superior to T2 SE for delineation of tumor margins. The authors have discontinued using T2 SE sequences for chest neoplasms in favor of the higher contrast and sensitivity of STIR

  18. Speculation about near-wall turbulence scales

    International Nuclear Information System (INIS)

    Yurchenko, N F

    2008-01-01

    A strategy to control near-wall turbulence modifying scales of fluid motion is developed. The boundary-layer flow is shown to respond selectively to the scale of streamwise vortices initiated, e.g. with the spanwise regular temperature distribution over a model surface. It is used to generate sustainable streamwise vortices and thus to optimize integral flow characteristics.

  19. Effect of wall compliance on peristaltic transport of a Newtonian fluid in an asymmetric channel

    Directory of Open Access Journals (Sweden)

    Mohamed H. Haroun

    2006-01-01

    Full Text Available Peristaltic transport of an incompressible viscous fluid in an asymmetric compliant channel is studied. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phases. The fluid-solid interaction problem is investigated by considering equations of motion of both the fluid and the deformable boundaries. The driving mechanism of the muscle is represented by assuming the channel walls to be compliant. The phenomenon of the “mean flow reversal” is discussed. The effect of wave amplitude ratio, width of the channel, phase difference, wall elastance, wall tension, and wall damping on mean-velocity and reversal flow has been investigated. The results reveal that the reversal flow occurs near the boundaries which is not possible in the elastic symmetric channel case.

  20. Domain walls collision in Fe-rich and Co-rich glass covered microwires

    Directory of Open Access Journals (Sweden)

    Gonzalez J.

    2013-01-01

    Full Text Available We report the results of the investigation of domain walls propagation in Fe-rich and Co-rich microwires performed using Sixtus-Tonks and magneto-optical Kerr effect techniques. It was found that under certain experimental conditions we are able to create the regime of the motion of two domain walls moving to opposite directions which terminates by the collision of the domain walls. Also the domain walls collision was visualized using magneto-optical Kerr effect microscope when the surface giant Barkhausen jump induced by circular magnetic field has been observed.

  1. Model and experimental vizualisation of a bubble interacting with an inclined wall

    Science.gov (United States)

    Podvin, Berengere; Khoja, Suleman; Attinger, Daniel; Moraga, Francisco

    2006-11-01

    We describe the motion of an air bubble rising through water as it interacts with a wall of variable inclination. The bubble diameter varies about O(1) mm. We use lubrication theory to determine the modification of the bubble interface and compute the hydrodynamic force exerted by the wall. The present work is an extension of Moraga et al's model [Computers and Fluids 2006], which was devised for a horizontal wall. The predictions of the model are checked against experimental visualizations. The influence of the Weber number, Reynolds number and wall inclination is examined

  2. F2 phenomenological test on fuel motion (Interim report)

    International Nuclear Information System (INIS)

    Palm, R.G.; Fink, C.L.; Stewart, R.R.; Gehl, S.M.; Rothman, A.B.

    1976-09-01

    TREAT F-series tests are being conducted to provide data on fuel motion at accident power levels from one to about ten times design for use in development of fuel motion models. Test F2 was conducted to evaluate motion of high power fuel in a hypothetical LMFBR unprotected TUC (transient undercooling) accident. Fuel and fuel-boundary conditions following coolant boiling and dryout under TUC conditions are achieved in each F-series test with a single fuel element surrounded by a nuclear heated wall in a dry test capsule. Test F2 was conducted with a low burnup but restructured fuel element to investigate the effect of fuel vapor pressure on fuel motion. Results are presented and discussed

  3. Analysis of Dynamic Coupling Characteristics of the Slope Reinforced by Sheet Pile Wall

    Directory of Open Access Journals (Sweden)

    H. L. Qu

    2017-01-01

    Full Text Available Large deformation of slope caused by earthquake can lead to the loss of stability of slope and its retaining structures. At present, there have been some research achievements about the slope reinforcement of stabilizing piles. However, due to the complexity of the structural system, the coupling relationship between soil and pile is still not well understood. Hence it is of great necessity to study its dynamic characteristics further. In view of this, a numerical model was established by FLAC3D in this paper, and the deformation and stress nephogram of sheet pile wall in peak ground motion acceleration (PGA at 0.1 g, 0.2 g, and 0.4 g were obtained. Through the analysis, some conclusions were obtained. Firstly, based on the nephogram of motion characteristics and the positions of the slip surface and the retaining wall, the reinforced slope can be divided into 6 sections approximatively, namely, the sliding body parts of A, B, C, D, and E and the bedrock part F. Secondly, the deformation and stress distributions of slope reinforced by sheet pile wall were carefully studied. Based on the results of deformation calculation from time history analysis, the interaction force between structure and soil can be estimated by the difference of peak horizontal displacements, and the structure-soil coupling law under earthquake can be studied by this approach.

  4. Interaction of flexible surface hairs with near-wall turbulence.

    Science.gov (United States)

    Brücker, Ch

    2011-05-11

    The interaction of near-wall turbulence with hairy surfaces is investigated in a turbulent boundary layer flow along a flat plate in an oil channel at Re = 1.2 × 10⁶. The plate is covered locally with a dense carpet of elastomeric micro-hairs (length L = 1 mm, length in viscous units L( + ) = 30) which are arranged in a regular grid (60 × 30 hairs with a streamwise spacing Δx( + )≈15 and a spanwise spacing Δy( + )≈30). Instead of the micro-structures used in previous studies for sensory applications, the surface hairs are considerably larger and much more densely distributed with a spacing of S/D wall-normal directions. Near-wall high-frequency disturbances excited by the passage of turbulent sweeps are dampened over their course along the carpet. The cooperative action of the hairs leads to an energy transfer from small-scale motion to larger scales, thus increasing the coherence of the motion pattern in streamwise and spanwise directions. As a consequence of the specific arrangement of the micro-hairs in streamwise columns a reduced spanwise meandering and stabilization of the streamwise velocity streaks is achieved by promoting varicose waves and inhibiting sinusoidal waves. Streak stabilization is known to be a major contributor to turbulent drag reduction. Thus it is concluded that hairy surfaces may be of benefit for turbulent drag reduction as hypothesized by Bartenwerfer and Bechert (1991 Z. Flugwiss. Weltraumforsch. 15 19-26).

  5. Motion and shape change when using an endorectal balloon during prostate radiation therapy

    International Nuclear Information System (INIS)

    Court, Laurence E.; D'Amico, Anthony V.; Kadam, Dnyanesh; Cormack, Robert

    2006-01-01

    Purpose: To investigate motion and shape change when using an endorectal balloon (ERB) in patients receiving radiotherapy for prostate cancer. Methods: In nine patients treated for prostate cancer using an ERB, the anterior wall of the ERB was contoured on right lateral images taken immediately before irradiation, and on left lateral images taken immediately after irradiation. Changes in the contours were used to calculate inter-fraction shape change and inter-imaging motion and shape change. Inter-imaging motion describes changes that occur after the right lateral image is taken that are seen in the left lateral image. Results: Eighty-six percent of all inter-imaging shifts of the anterior wall of the ERB were in the posterior direction (mean: 1.8 mm, 1 SD: 1.8 mm, maximum posterior shift: 2.8-7.2 mm). The inter-fraction shape change (1 SD) of the anterior wall was equivalent to a change in the angle of the balloon of 2.5-5.7 deg., with a range of 8-20 deg., depending on the patient. Inter-imaging shape changes were similar in size. Conclusions: The inter-imaging motion and shape changes may be explained by the patient relaxing some time after insertion of the ERB, indicating that it could be reduced by a waiting period after insertion before irradiation. Development of image-guided localization strategies should consider intra-fraction motion and also inter- and intra-fraction shape change

  6. Colon wall motility: comparison of novel quantitative semi-automatic measurements using cine MRI.

    Science.gov (United States)

    Hoad, C L; Menys, A; Garsed, K; Marciani, L; Hamy, V; Murray, K; Costigan, C; Atkinson, D; Major, G; Spiller, R C; Taylor, S A; Gowland, P A

    2016-03-01

    Recently, cine magnetic resonance imaging (MRI) has shown promise for visualizing movement of the colonic wall, although assessment of data has been subjective and observer dependent. This study aimed to develop an objective and semi-automatic imaging metric of ascending colonic wall movement, using image registration techniques. Cine balanced turbo field echo MRI images of ascending colonic motility were acquired over 2 min from 23 healthy volunteers (HVs) at baseline and following two different macrogol stimulus drinks (11 HVs drank 1 L and 12 HVs drank 2 L). Motility metrics derived from large scale geometric and small scale pixel movement parameters following image registration were developed using the post ingestion data and compared to observer grading of wall motion. Inter and intra-observer variability in the highest correlating metric was assessed using Bland-Altman analysis calculated from two separate observations on a subset of data. All the metrics tested showed significant correlation with the observer rating scores. Line analysis (LA) produced the highest correlation coefficient of 0.74 (95% CI: 0.55-0.86), p cine MRI registered data provides a quick, accurate and non-invasive method to detect wall motion within the ascending colon following a colonic stimulus in the form of a macrogol drink. © 2015 John Wiley & Sons Ltd.

  7. Study on wall recycling behaviour in CPD spherical tokamak

    International Nuclear Information System (INIS)

    Bhattacharyay, R.; Zushi, H.; Hirooka, Y.; Sakamoto, M.; Yoshinaga, T.; Okamoto, K.; Kawasaki, S.; Hanada, K.; Sato, K.N.; Nakamura, K.; Idei, H.; Ryoukai, T.; Nakashima, H.; Higashijima, A.

    2008-01-01

    Experiments to study wall recycling behaviour have been performed in the small spherical tokamak compact plasma-wall interaction experimental device (CPD) from the viewpoint of global as well as local plasma wall interaction condition. Electron cyclotron resonance (ECR) plasma of typically ∼50 to 400 ms duration is produced using ∼40 to 80 kW RF power. In order to study the global wall recycling behaviour, pressure measurements are carried out just before and after the ECR plasma in the absence of any external pumping. The recycling behaviour is found to change from release to pumping beyond a certain level of pressure value which is again found to be a function of shot history. The real-time local wall behaviour is studied in similar RF plasma using a rotating tungsten limiter, actively coated with lithium. Measurement of H α light intensity in front of the rotating surface has indicated a clear reduction (∼10%) in the steady-state hydrogen recycling with continuous Li gettering of several minutes

  8. Reynolds number scaling of straining motions in turbulence

    Science.gov (United States)

    Elsinga, Gerrit; Ishihara, T.; Goudar, M. V.; da Silva, C. B.; Hunt, J. C. R.

    2017-11-01

    Strain is an important fluid motion in turbulence as it is associated with the kinetic energy dissipation rate, vorticity stretching, and the dispersion of passive scalars. The present study investigates the scaling of the turbulent straining motions by evaluating the flow in the eigenframe of the local strain-rate tensor. The analysis is based on DNS of homogeneous isotropic turbulence covering a Reynolds number range Reλ = 34.6 - 1131. The resulting flow pattern reveals a shear layer containing tube-like vortices and a dissipation sheet, which both scale on the Kolmogorov length scale, η. The vorticity stretching motions scale on the Taylor length scale, while the flow outside the shear layer scales on the integral length scale. These scaling results are consistent with those in wall-bounded flow, which suggests a quantitative universality between the different flows. The overall coherence length of the vorticity is 120 η in all directions, which is considerably larger than the typical size of individual vortices, and reflects the importance of spatial organization at the small scales. Transitions in flow structure are identified at Reλ 45 and 250. Below these respective Reynolds numbers, the small-scale motions and the vorticity stretching motions appear underdeveloped.

  9. Motion of a vortex line near the boundary of a semi-infinite uniform condensate

    International Nuclear Information System (INIS)

    Mason, Peter; Berloff, Natalia G.; Fetter, Alexander L.

    2006-01-01

    We consider the motion of a vortex in an asymptotically homogeneous condensate bounded by a solid wall where the wave function of the condensate vanishes. For a vortex parallel to the wall, the motion is essentially equivalent to that generated by an image vortex, but the depleted surface layer induces an effective shift in the position of the image compared to the case of a vortex pair in an otherwise uniform flow. Specifically, the velocity of the vortex can be approximated by U≅((ℎ/2π)/2m)(y 0 -√(2)ξ) -1 , where y 0 is the distance from the center of the vortex to the wall, ξ is the healing length of the condensate, and m is the mass of the boson

  10. Tumor motion and deformation during external radiotherapy of bladder cancer

    International Nuclear Information System (INIS)

    Lotz, Heidi T.; Pos, Floris J.; Hulshof, Maarten C.C.M.; Herk, Marcel van; Lebesque, Joos V.; Duppen, Joop C.; Remeijer, Peter

    2006-01-01

    Purpose: First, to quantify bladder-tumor motion in 3 dimensions during a 4-week to 5-week course of external radiotherapy. Second, to relate the motion to the tumor location on the bladder wall. Third, to extensively evaluate gross tumor volume (GTV) shape and volume changes during the course of the treatment. Methods and Materials: Multiple repeat computed tomography (CT) images were obtained for 21 bladder cancer patients. These scans were matched to the rigid bony anatomy. For each patient, the main direction and magnitude of the tumor movement was determined by use of principle-component analysis. To study GTV shape changes, all GTVs were registered to the GTV in the planning CT scan, and the residual shape errors were determined by measurement of edge variations perpendicular to the median surface. Results: Gross tumor volume translations were largest in cranial-caudal and anterior-posterior direction (SD, 0.1 to ∼0.9 cm). The translations were strongly correlated with the tumor location on the bladder wall. The average value of the local standard deviations of the GTV shape ranged from 0.1 to approximately 0.35 cm. Conclusions: Despite large differences in bladder filling, variations in GTV shape were small compared with variations in GTV position. Geometric uncertainties in the GTV position depended strongly on the tumor location on the bladder wall

  11. Tumor motion and deformation during external radiotherapy of bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lotz, Heidi T [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Department of Radiation Oncology, Academic Medical Centre, University of Amsterdam, Amsterdam (Netherlands); Pos, Floris J [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Hulshof, Maarten C.C.M. [Department of Radiation Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Department of Radiation Oncology, Academic Medical Centre, University of Amsterdam, Amsterdam (Netherlands); Herk, Marcel van [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Lebesque, Joos V [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Duppen, Joop C [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Remeijer, Peter [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2006-04-01

    Purpose: First, to quantify bladder-tumor motion in 3 dimensions during a 4-week to 5-week course of external radiotherapy. Second, to relate the motion to the tumor location on the bladder wall. Third, to extensively evaluate gross tumor volume (GTV) shape and volume changes during the course of the treatment. Methods and Materials: Multiple repeat computed tomography (CT) images were obtained for 21 bladder cancer patients. These scans were matched to the rigid bony anatomy. For each patient, the main direction and magnitude of the tumor movement was determined by use of principle-component analysis. To study GTV shape changes, all GTVs were registered to the GTV in the planning CT scan, and the residual shape errors were determined by measurement of edge variations perpendicular to the median surface. Results: Gross tumor volume translations were largest in cranial-caudal and anterior-posterior direction (SD, 0.1 to {approx}0.9 cm). The translations were strongly correlated with the tumor location on the bladder wall. The average value of the local standard deviations of the GTV shape ranged from 0.1 to approximately 0.35 cm. Conclusions: Despite large differences in bladder filling, variations in GTV shape were small compared with variations in GTV position. Geometric uncertainties in the GTV position depended strongly on the tumor location on the bladder wall.

  12. Cervical spine motion: radiographic study

    International Nuclear Information System (INIS)

    Morgan, J.P.; Miyabayashi, T.; Choy, S.

    1986-01-01

    Knowledge of the acceptable range of motion of the cervical spine of the dog is used in the radiographic diagnosis of both developmental and degenerative diseases. A series of radiographs of mature Beagle dogs was used to identify motion within sagittal and transverse planes. Positioning of the dog's head and neck was standardized, using a restraining board, and mimicked those thought to be of value in diagnostic radiology. The range of motion was greatest between C2 and C5. Reports of severe disk degeneration in the cervical spine of the Beagle describe the most severely involved disks to be C4 through C7. Thus, a high range of motion between vertebral segments does not seem to be the cause for the severe degenerative disk disease. Dorsoventral slippage between vertebral segments was seen, but was not accurately measured. Wedging of disks was clearly identified. At the atlantoaxio-occipital region, there was a high degree of motion within the sagittal plane at the atlantoaxial and atlanto-occipital joints; the measurement can be a guideline in the radiographic diagnosis of instability due to developmental anomalies in this region. Lateral motion within the transverse plane was detected at the 2 joints; however, motion was minimal, and the measurements seemed to be less accurate because of rotation of the cervical spine. Height of the vertebral canal was consistently noted to be greater at the caudal orifice, giving some warning to the possibility of overdiagnosis in suspected instances of cervical spondylopathy

  13. Breaking of chiral symmetry in vortex domain wall propagation in ferromagnetic nanotubes

    International Nuclear Information System (INIS)

    Otálora, J.A.; López-López, J.A.; Landeros, P.; Vargas, P.; Núñez, A.S.

    2013-01-01

    This paper is focused to the field-induced dynamics of vortex-like domain walls (VDWs) in magnetic nanotubes (MNTs). Based on a dissipative Lagrangian formalism that fully includes damping as well as exchange and dipole–dipole coupling, it is shown that VDW motion is very sensitive to the chirality, giving rise to a chiral asymmetry in the vortex wall propagation. As a consequence, the dynamics of the wall is fundamentally different to that of nanostripes and solid nanowires. Besides the well-known Walker breakdown that stands at the onset of the precessional wall motion, it is found an additional breakdown field (called here the chiral breakdown) that modifies the steady regime of VDWs. We also show outstanding VDWs dynamical properties at low applied fields, as low-field mobilities (∼10km/(sT)) and very short relaxation times (∼1ns), offering a reliable fast control of VDWs velocities (∼1000m/s at applied fields of 0.7 mT). - Highlights: • We model analytically the dynamics of vortex domain walls in magnetic nanotubes. • We fully include damping, exchange and dipole–dipole coupling. • The wall dynamics is fundamentally different to that of nanostripes. • We report and describe an extra dynamical instability, the Chiral Breakdown field. • We report outstanding dynamical properties at weak magnetic fields

  14. Breaking of chiral symmetry in vortex domain wall propagation in ferromagnetic nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Otálora, J.A., E-mail: jorge.otalora@usm.cl [Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso (Chile); López-López, J.A.; Landeros, P.; Vargas, P. [Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso (Chile); Núñez, A.S. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Santiago (Chile)

    2013-09-15

    This paper is focused to the field-induced dynamics of vortex-like domain walls (VDWs) in magnetic nanotubes (MNTs). Based on a dissipative Lagrangian formalism that fully includes damping as well as exchange and dipole–dipole coupling, it is shown that VDW motion is very sensitive to the chirality, giving rise to a chiral asymmetry in the vortex wall propagation. As a consequence, the dynamics of the wall is fundamentally different to that of nanostripes and solid nanowires. Besides the well-known Walker breakdown that stands at the onset of the precessional wall motion, it is found an additional breakdown field (called here the chiral breakdown) that modifies the steady regime of VDWs. We also show outstanding VDWs dynamical properties at low applied fields, as low-field mobilities (∼10km/(sT)) and very short relaxation times (∼1ns), offering a reliable fast control of VDWs velocities (∼1000m/s at applied fields of 0.7 mT). - Highlights: • We model analytically the dynamics of vortex domain walls in magnetic nanotubes. • We fully include damping, exchange and dipole–dipole coupling. • The wall dynamics is fundamentally different to that of nanostripes. • We report and describe an extra dynamical instability, the Chiral Breakdown field. • We report outstanding dynamical properties at weak magnetic fields.

  15. Coupled Cluster Studies of Ionization Potentials and Electron Affinities of Single-Walled Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Bo; Govind, Niranjan; Apra, Edoardo; Klemm, Michael; Hammond, Jeff R.; Kowalski, Karol

    2017-02-03

    In this paper we apply equation-of-motion coupled cluster (EOMCC) methods in studies of vertical ionization potentials (IP) and electron affinities (EA) for sin- gled walled carbon nanotubes. EOMCC formulations for ionization potentials and electron affinities employing excitation manifolds spanned by single and double ex- citations (IP/EA-EOMCCSD) are used to study IPs and EAs of nanotubes as a function of nanotube length. Several armchair nanotubes corresponding to C20nH20 models with n = 2 - 6 have been used in benchmark calculations. In agreement with previous studies, we demonstrate that the electronegativity of C20nH20 systems remains, to a large extent, independent of nanotube length. We also compare IP/EA- EOMCCSD results with those obtained with the coupled cluster models with single and double excitations corrected by perturbative triples, CCSD(T), and density func- tional theory (DFT) using global and range-separated hybrid exchange-correlation functionals.

  16. Large exchange-dominated domain wall velocities in antiferromagnetically coupled nanowires

    Science.gov (United States)

    Kuteifan, Majd; Lubarda, M. V.; Fu, S.; Chang, R.; Escobar, M. A.; Mangin, S.; Fullerton, E. E.; Lomakin, V.

    2016-04-01

    Magnetic nanowires supporting field- and current-driven domain wall motion are envisioned for methods of information storage and processing. A major obstacle for their practical use is the domain-wall velocity, which is traditionally limited for low fields and currents due to the Walker breakdown occurring when the driving component reaches a critical threshold value. We show through numerical and analytical modeling that the Walker breakdown limit can be extended or completely eliminated in antiferromagnetically coupled magnetic nanowires. These coupled nanowires allow for large domain-wall velocities driven by field and/or current as compared to conventional nanowires.

  17. Evaluation of Nonlinear Behavior of Dual Steel Frame-Shear Wall System by a Group of Real Earthquakes

    Directory of Open Access Journals (Sweden)

    Reza Bemanian

    2016-03-01

    Full Text Available Dual system of steel moment frame and steel plate shear wall has many advantages in comparison to the other systems. Since the last four decades the dual system has been used more frequently in new and existing structures. the steel shear wall has many advantages such as high ductility, strength, stiffness and it has light weight, it consequent reduce lateral forces and time efficiency in contracture procedure. The aim of this study is to evaluate the seismic performance of the dual steel frame steel plate shear wall system in comparison with the moment resisting frame using nonlinear dynamic analysis. A dual System of Steel Moment frame and steel Plate shear walls system and a moment resisting frame is chosen a frame of four stories building were designed by used existing code. The height of each floor is 3.5 m. Seismic behavior of frame evaluate using nonlinear dynamic analysis. For this purpose a set of seven earthquake ground motions were appropriately selected and applied to the systems. Interstory drift ratio, input energy, distribution frames responses in height were compared for the systems under two different hazard level of ground motion and the results were analyzed.

  18. Enhanced spin transfer torque effect for transverse domain walls in cylindrical nanowires

    Science.gov (United States)

    Franchin, Matteo; Knittel, Andreas; Albert, Maximilian; Chernyshenko, Dmitri S.; Fischbacher, Thomas; Prabhakar, Anil; Fangohr, Hans

    2011-09-01

    Recent studies have predicted extraordinary properties for transverse domain walls in cylindrical nanowires: zero depinning current, the absence of the Walker breakdown, and applications as domain wall oscillators. In order to reliably control the domain wall motion, it is important to understand how they interact with pinning centers, which may be engineered, for example, through modulations in the nanowire geometry (such as notches or extrusions) or in the magnetic properties of the material. In this paper we study the motion and depinning of transverse domain walls through pinning centers in ferromagnetic cylindrical nanowires. We use (i) magnetic fields and (ii) spin-polarized currents to drive the domain walls along the wire. The pinning centers are modelled as a section of the nanowire which exhibits a uniaxial crystal anisotropy where the anisotropy easy axis and the wire axis enclose a variable angle θP. Using (i) magnetic fields, we find that the minimum and the maximum fields required to push the domain wall through the pinning center differ by 30%. On the contrary, using (ii) spin-polarized currents, we find variations of a factor 130 between the minimum value of the depinning current density (observed for θP=0∘, i.e., anisotropy axis pointing parallel to the wire axis) and the maximum value (for θP=90∘, i.e., anisotropy axis perpendicular to the wire axis). We study the depinning current density as a function of the height of the energy barrier of the pinning center using numerical and analytical methods. We find that for an industry standard energy barrier of 40kBT, a depinning current of about 5μA (corresponding to a current density of 6×1010A/m2 in a nanowire of 10nm diameter) is sufficient to depin the domain wall. We reveal and explain the mechanism that leads to these unusually low depinning currents. One requirement for this depinning mechanism is for the domain wall to be able to rotate around its own axis. With the right barrier design

  19. Numerical analysis of the motion of a suspended charged particle in multi-phase flow. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    El-khalek, M M [Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The motion of a suspended charged particle in a two component viscous fluid through two infinite parallel plates was studied. The motion takes place under constant magnetic field normal to the plane of the motion. The effect of some parameters as particle volume, fluid density, viscosity of the fluid, and the magnetic force used on the motion were investigated. The particle is assumed moving initially from the midpoint of the channel with a velocity equal to the velocity of the fluid. The trajectory of solid spherical suspended charged particle is calculated by integrating the equations of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The differential equations of motion were numerically solved by Runge-Kutta method. Some conclusions about the path lines were deduced. 5 figs.

  20. Turbulence and secondary motions in square duct flow

    Science.gov (United States)

    Pirozzoli, Sergio; Modesti, Davide; Orlandi, Paolo; Grasso, Francesco

    2017-11-01

    We study turbulent flows in pressure-driven ducts with square cross-section through DNS up to Reτ 1050 . Numerical simulations are carried out over extremely long integration times to get adequate convergence of the flow statistics, and specifically high-fidelity representation of the secondary motions which arise. The intensity of the latter is found to be in the order of 1-2% of the bulk velocity, and unaffected by Reynolds number variations. The smallness of the mean convection terms in the streamwise vorticity equation points to a simple characterization of the secondary flows, which in the asymptotic high-Re regime are found to be approximated with good accuracy by eigenfunctions of the Laplace operator. Despite their effect of redistributing the wall shear stress along the duct perimeter, we find that secondary motions do not have large influence on the mean velocity field, which can be characterized with good accuracy as that resulting from the concurrent effect of four independent flat walls, each controlling a quarter of the flow domain. As a consequence, we find that parametrizations based on the hydraulic diameter concept, and modifications thereof, are successful in predicting the duct friction coefficient. This research was carried out using resources from PRACE EU Grants.

  1. Tissue motion in blood velocity estimation and its simulation

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Torp-Pedersen, Søren; Jensen, Jørgen Arendt

    1998-01-01

    to the improvement of color flow imaging. Optimization based on in-vivo data is difficult since the blood and tissue signals cannot be accurately distinguished and the correct extend of the vessel under investigation is often unknown. This study introduces a model for the simulation of blood velocity data in which...... tissue motion is included. Tissue motion from breathing, heart beat, and vessel pulsation were determined based on in-vivo RF-data obtained from 10 healthy volunteers. The measurements were taken at the carotid artery at one condition and in the liver at three conditions. Each measurement was repeated 10....... The motion due to the heart, when the volunteer was asked to hold his breath, gave a peak velocity of 4.2±1.7 mm/s. The movement of the carotid artery wall due to changing blood pressure had a peak velocity of 8.9±3.7 mm/s over the cardiac cycle. The variations are due to differences in heart rhythm...

  2. Autonomous Motion Learning for Intra-Vehicular Activity Space Robot

    Science.gov (United States)

    Watanabe, Yutaka; Yairi, Takehisa; Machida, Kazuo

    Space robots will be needed in the future space missions. So far, many types of space robots have been developed, but in particular, Intra-Vehicular Activity (IVA) space robots that support human activities should be developed to reduce human-risks in space. In this paper, we study the motion learning method of an IVA space robot with the multi-link mechanism. The advantage point is that this space robot moves using reaction force of the multi-link mechanism and contact forces from the wall as space walking of an astronaut, not to use a propulsion. The control approach is determined based on a reinforcement learning with the actor-critic algorithm. We demonstrate to clear effectiveness of this approach using a 5-link space robot model by simulation. First, we simulate that a space robot learn the motion control including contact phase in two dimensional case. Next, we simulate that a space robot learn the motion control changing base attitude in three dimensional case.

  3. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Darvill, Alan [Univ. of Georgia, Athens, GA (United States); Hahn, Michael G. [Univ. of Georgia, Athens, GA (United States); O' Neill, Malcolm A. [Univ. of Georgia, Athens, GA (United States); York, William S. [Univ. of Georgia, Athens, GA (United States)

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  4. Brain ventricular wall movement assessed by a gated cine MR trueFISP sequence in patients treated with endoscopic third ventriculostomy

    International Nuclear Information System (INIS)

    Hodel, Jerome; Decq, Philippe; Rahmouni, Alain; Bastuji-Garin, Sylvie; Maraval, Anne; Combes, Catherine; Gaston, Andre; Jarraya, Bechir; Le Guerinel, Caroline

    2009-01-01

    The purpose of this study was to investigate the value of brain ventricular wall movement assessment with a gated cine trueFISP MR sequence for the diagnosis of endoscopic third ventriculostomy (ETV) patency. Sixteen healthy volunteers and ten consecutive patients with noncommunicating hydrocephalus were explored with a MR scanner (Siemens, Avanto 1.5 T) before, 1 week and 3 months after ETV. TrueFISP was evaluated qualitatively (ventricular wall movement and CSF flow through ETV) and quantitatively [distance moved (DMLT) during a cardiac cycle by the lamina terminalis]. The third ventricle volume (TVV) was assessed. Statistical analysis was performed using nonparametric tests. There was no motion of the lamina terminalis (LT) detected on preoperative data. A pulsatile motion of the LT was found for patients with a patent ETV and for controls. DMLT and TVV were correlated (r = 0.79, P = 0.006). A transient dysfunction of ETV was successfully diagnosed on the trueFISP sequence with no motion of the LT or CSF flow observed. The trueFISP sequence appears reliable for the diagnosis of ETV patency and provides non-invasive assessment of the movement of the ventricular wall related to CSF pressure changes. (orig.)

  5. Brain ventricular wall movement assessed by a gated cine MR trueFISP sequence in patients treated with endoscopic third ventriculostomy

    Energy Technology Data Exchange (ETDEWEB)

    Hodel, Jerome [Unite Analyse et Restauration du mouvement, UMR-CNRS, Paris (France); Faculte de Medecine Paris XII, Paris (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri MONDOR, Department of Neuroradiology, Creteil (France); Hopital Henri Mondor, Creteil (France); Decq, Philippe [Unite Analyse et Restauration du mouvement, UMR-CNRS, Paris (France); Faculte de Medecine Paris XII, Paris (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri MONDOR, Department of Neurosurgery, Creteil (France); Rahmouni, Alain [Faculte de Medecine Paris XII, Paris (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri MONDOR, Department of Radiology, Creteil (France); Bastuji-Garin, Sylvie [Faculte de Medecine Paris XII, Paris (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri MONDOR, Department of Public Health, Creteil (France); Maraval, Anne; Combes, Catherine; Gaston, Andre [Faculte de Medecine Paris XII, Paris (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri MONDOR, Department of Neuroradiology, Creteil (France); Jarraya, Bechir [Faculte de Medecine Paris XII, Paris (France); Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri MONDOR, Department of Neurosurgery, Creteil (France); Le Guerinel, Caroline [Assistance Publique-Hopitaux de Paris, Paris (France); Hopital Henri MONDOR, Department of Neurosurgery, Creteil (France)

    2009-12-15

    The purpose of this study was to investigate the value of brain ventricular wall movement assessment with a gated cine trueFISP MR sequence for the diagnosis of endoscopic third ventriculostomy (ETV) patency. Sixteen healthy volunteers and ten consecutive patients with noncommunicating hydrocephalus were explored with a MR scanner (Siemens, Avanto 1.5 T) before, 1 week and 3 months after ETV. TrueFISP was evaluated qualitatively (ventricular wall movement and CSF flow through ETV) and quantitatively [distance moved (DMLT) during a cardiac cycle by the lamina terminalis]. The third ventricle volume (TVV) was assessed. Statistical analysis was performed using nonparametric tests. There was no motion of the lamina terminalis (LT) detected on preoperative data. A pulsatile motion of the LT was found for patients with a patent ETV and for controls. DMLT and TVV were correlated (r = 0.79, P = 0.006). A transient dysfunction of ETV was successfully diagnosed on the trueFISP sequence with no motion of the LT or CSF flow observed. The trueFISP sequence appears reliable for the diagnosis of ETV patency and provides non-invasive assessment of the movement of the ventricular wall related to CSF pressure changes. (orig.)

  6. Reproducibility of The Abdominal and Chest Wall Position by Voluntary Breath-Hold Technique Using a Laser-Based Monitoring and Visual Feedback System

    International Nuclear Information System (INIS)

    Nakamura, Katsumasa; Shioyama, Yoshiyuki; Nomoto, Satoru; Ohga, Saiji; Toba, Takashi; Yoshitake, Tadamasa; Anai, Shigeo; Terashima, Hiromi; Honda, Hiroshi

    2007-01-01

    Purpose: The voluntary breath-hold (BH) technique is a simple method to control the respiration-related motion of a tumor during irradiation. However, the abdominal and chest wall position may not be accurately reproduced using the BH technique. The purpose of this study was to examine whether visual feedback can reduce the fluctuation in wall motion during BH using a new respiratory monitoring device. Methods and Materials: We developed a laser-based BH monitoring and visual feedback system. For this study, five healthy volunteers were enrolled. The volunteers, practicing abdominal breathing, performed shallow end-expiration BH (SEBH), shallow end-inspiration BH (SIBH), and deep end-inspiration BH (DIBH) with or without visual feedback. The abdominal and chest wall positions were measured at 80-ms intervals during BHs. Results: The fluctuation in the chest wall position was smaller than that of the abdominal wall position. The reproducibility of the wall position was improved by visual feedback. With a monitoring device, visual feedback reduced the mean deviation of the abdominal wall from 2.1 ± 1.3 mm to 1.5 ± 0.5 mm, 2.5 ± 1.9 mm to 1.1 ± 0.4 mm, and 6.6 ± 2.4 mm to 2.6 ± 1.4 mm in SEBH, SIBH, and DIBH, respectively. Conclusions: Volunteers can perform the BH maneuver in a highly reproducible fashion when informed about the position of the wall, although in the case of DIBH, the deviation in the wall position remained substantial

  7. Motion detection and correction for dynamic 15O-water myocardial perfusion PET studies

    International Nuclear Information System (INIS)

    Naum, Alexandru; Laaksonen, Marko S.; Oikonen, Vesa; Teraes, Mika; Jaervisalo, Mikko J.; Knuuti, Juhani; Tuunanen, Helena; Nuutila, Pirjo; Kemppainen, Jukka

    2005-01-01

    Patient motion during dynamic PET studies is a well-documented source of errors. The purpose of this study was to investigate the incidence of frame-to-frame motion in dynamic 15 O-water myocardial perfusion PET studies, to test the efficacy of motion correction methods and to study whether implementation of motion correction would have an impact on the perfusion results. We developed a motion detection procedure using external radioactive skin markers and frame-to-frame alignment. To evaluate motion, marker coordinates inside the field of view were determined in each frame for each study. The highest number of frames with identical spatial coordinates during the study were defined as ''non-moved''. Movement was considered present if even one marker changed position, by one pixel/frame compared with reference, in one axis, and such frames were defined as ''moved''. We tested manual, in-house-developed motion correction software and an automatic motion correction using a rigid body point model implemented in MIPAV (Medical Image Processing, Analysis and Visualisation) software. After motion correction, remaining motion was re-analysed. Myocardial blood flow (MBF) values were calculated for both non-corrected and motion-corrected datasets. At rest, patient motion was found in 18% of the frames, but during pharmacological stress the fraction increased to 45% and during physical exercise it rose to 80%. Both motion correction algorithms significantly decreased (p<0.006) the number of moved frames and the amplitude of motion (p<0.04). Motion correction significantly increased MBF results during bicycle exercise (p<0.02). At rest or during adenosine infusion, the motion correction had no significant effects on MBF values. Significant motion is a common phenomenon in dynamic cardiac studies during adenosine infusion but especially during exercise. Applying motion correction for the data acquired during exercise clearly changed the MBF results, indicating that motion

  8. DEM study of granular flow around blocks attached to inclined walls

    Science.gov (United States)

    Samsu, Joel; Zhou, Zongyan; Pinson, David; Chew, Sheng

    2017-06-01

    Damage due to intense particle-wall contact in industrial applications can cause severe problems in industries such as mineral processing, mining and metallurgy. Studying the flow dynamics and forces on containing walls can provide valuable feedback for equipment design and optimising operations to prolong the equipment lifetime. Therefore, solids flow-wall interaction phenomena, i.e. induced wall stress and particle flow patterns should be well understood. In this work, discrete element method (DEM) is used to study steady state granular flow in a gravity-fed hopper like geometry with blocks attached to an inclined wall. The effects of different geometries, e.g. different wall angles and spacing between blocks are studied by means of a 3D DEM slot model with periodic boundary conditions. The findings of this work include (i) flow analysis in terms of flow patterns and particle velocities, (ii) force distributions within the model geometry, and (iii) wall stress vs. model height diagrams. The model enables easy transfer of the key findings to other industrial applications handling granular materials.

  9. DEM study of granular flow around blocks attached to inclined walls

    Directory of Open Access Journals (Sweden)

    Samsu Joel

    2017-01-01

    Full Text Available Damage due to intense particle-wall contact in industrial applications can cause severe problems in industries such as mineral processing, mining and metallurgy. Studying the flow dynamics and forces on containing walls can provide valuable feedback for equipment design and optimising operations to prolong the equipment lifetime. Therefore, solids flow-wall interaction phenomena, i.e. induced wall stress and particle flow patterns should be well understood. In this work, discrete element method (DEM is used to study steady state granular flow in a gravity-fed hopper like geometry with blocks attached to an inclined wall. The effects of different geometries, e.g. different wall angles and spacing between blocks are studied by means of a 3D DEM slot model with periodic boundary conditions. The findings of this work include (i flow analysis in terms of flow patterns and particle velocities, (ii force distributions within the model geometry, and (iii wall stress vs. model height diagrams. The model enables easy transfer of the key findings to other industrial applications handling granular materials.

  10. MHD peristaltic motion of Johnson-Segalman fluid in a channel with compliant walls

    International Nuclear Information System (INIS)

    Hayat, T.; Javed, Maryiam; Asghar, S.

    2008-01-01

    A mathematical model for magnetohydrodynamic (MHD) flow of a Johnson-Segalman fluid in a channel with compliant walls is analyzed. The flow is engendered due to sinusoidal waves on the channel walls. A series solution is developed for the case in which the amplitude ratio is small. Our computations show that the mean axial velocity of a Johnson-Segalman fluid is smaller than that of a viscous fluid. The variations of various interesting dimensionless parameters are graphed and discussed

  11. Avaliação quantitativa da movimentação parietal regional do ventrículo esquerdo na endomiocardiofibrose Quantitative assessment of left ventricular regional wall motion in endomyocardial fibrosis

    Directory of Open Access Journals (Sweden)

    Charles Mady

    2005-03-01

    motion in patients with endomyocardial fibrosis (EMF. METHODS: The study comprised 88 patients, 59 of the female sex, with a mean age of 39±13 years (range, 9 to 65 and with echocardiographic and angiographic evidence of left ventricular EMF. The intensity of fibrous tissue buildup on contrast cineventriculography was classified as mild, moderate, or severe. The overall left ventricular ejection fraction (LVEF was determined by using the area-length method on ventriculography. The motion was measured in 100 equidistant chords perpendicular to the centerline drawn in the middle of the final diastolic and systolic contours and normalized to cardiac size. Five left ventricular segments were analyzed: A - apical; AL - anterolateral; AB - anterobasal; IA - inferoapical; IB - inferobasal. Abnormality was expressed in units of standard deviation of the mean motion in a normal population of reference, comprised of 103 patients with normal LV according to clinical and electrocardiographic data, and angiographic standards. RESULTS: Mean LVEF was 0.47±0.12. Fibrous tissue buildup in the left ventricle was mild in 12 patients, moderate in 40, and severe in 36. The regions with the poorest ventricular wall motion were A (-1.4±1.6 standard deviation/chords and IA (-1.6±1.8 standard deviation/chords compared with that in AB (-0.3±1.9 standard deviation/chords, AL (-0.5±1.8 standard deviation/chords and IB (-0.9±1.3 standard deviation/chords. No relation was observed between the intensity of fibrous tissue buildup and regional ventricular wall motion. CONCLUSION: A change in LV regional wall motion exists in EMF, and it is independent of the intensity of fibrous tissue buildup qualitatively assessed. Nonuniform involvement of the LV should be considered when planning surgery for this disease.

  12. Hadronization at the AdS wall

    International Nuclear Information System (INIS)

    Evans, Nick; French, James; Threlfall, Ed; Jensen, Kristan

    2010-01-01

    We describe hadronization events, using the AdS/CFT Correspondence, which display many of the qualitative features expected in QCD. In particular we study the motion of strings with separating end points in a back-reacted hard wall geometry. The solutions show the development of a linear QCD-like string. The end points oscillate in the absence of string breaking. We introduce string breaking by hand and evolve the new state forward in time to observe the separation of two string segments. A kink associated with this breaking evolves to the end points of the string inducing rho meson production. We explicitly compute the rho meson production at the end point.

  13. Nonsingular walls in plane cholesteric layers

    International Nuclear Information System (INIS)

    Belyakov, V A; Osipov, M A; Stewart, I W

    2006-01-01

    The structure of a straight interface (wall) between regions with differing values of the pitch in planar cholesteric layers with finite strength of the surface anchoring is investigated theoretically. It is found that the shape and strength of the anchoring potential influences essentially the structure of the wall and a motionless wall between thermodynamically stable regions without a singularity in the director distribution in the layer can exist for sufficiently weak anchoring only. More specifically, for the existence of such a wall the dimensionless parameter S d = K 22 /Wd (where W is the depth of the anchoring potential, K 22 is the elastic twist modulus and d is the layer thickness) should exceed its critical value, which is dependent on the shape of the anchoring potential. General equations describing the director distribution in the wall are presented. Detailed analysis of these equations is carried out for the case of infinitely strong anchoring at one surface and finite anchoring strength at the second layer surface. It is shown that the wall width L is directly dependent upon the shape and strength of the anchoring potential and that its estimate ranges from d to (dL p ) 1/2 (where L p = K 22 /W is the penetration length), corresponding to different anchoring strengths and shape potentials. The dependence of the director distribution in the wall upon all three Frank elastic moduli is analytically found for some specific limiting cases of the model anchoring potentials. Motion of the wall is briefly investigated and the corresponding calculations performed under the assumption that the shape of a moving wall is the same as a motionless one. It is noted that experimental investigation of the walls in planar cholesteric layers can be used for the determination of the actual shape of surface anchoring potentials

  14. One-dimensional Fermi accelerator model with moving wall described by a nonlinear van der Pol oscillator.

    Science.gov (United States)

    Botari, Tiago; Leonel, Edson D

    2013-01-01

    A modification of the one-dimensional Fermi accelerator model is considered in this work. The dynamics of a classical particle of mass m, confined to bounce elastically between two rigid walls where one is described by a nonlinear van der Pol type oscillator while the other one is fixed, working as a reinjection mechanism of the particle for a next collision, is carefully made by the use of a two-dimensional nonlinear mapping. Two cases are considered: (i) the situation where the particle has mass negligible as compared to the mass of the moving wall and does not affect the motion of it; and (ii) the case where collisions of the particle do affect the movement of the moving wall. For case (i) the phase space is of mixed type leading us to observe a scaling of the average velocity as a function of the parameter (χ) controlling the nonlinearity of the moving wall. For large χ, a diffusion on the velocity is observed leading to the conclusion that Fermi acceleration is taking place. On the other hand, for case (ii), the motion of the moving wall is affected by collisions with the particle. However, due to the properties of the van der Pol oscillator, the moving wall relaxes again to a limit cycle. Such kind of motion absorbs part of the energy of the particle leading to a suppression of the unlimited energy gain as observed in case (i). The phase space shows a set of attractors of different periods whose basin of attraction has a complicated organization.

  15. Innovative Seismic Response-Controlled System with Shear Wall and Concentrated Dampers in Lower Stories

    Directory of Open Access Journals (Sweden)

    Tsubasa Tani

    2017-10-01

    Full Text Available A new structural control system using damper-installed shear walls in lower stories with reduced stiffness is proposed for vibration control of high-rise RC buildings. That system has some design variables, i.e., height of shear wall, degree of stiffness reduction at lower stories, and quantity of dampers. In this paper, some parametric studies on the shear-beam model with a stiff beam against two kinds of ground motion, a pulse-type sinusoidal wave and a resonant sinusoidal wave, are conducted to clarify the vibration characteristics of the proposed structural control system. It is shown that the optimal combination of design parameters depends on the input ground motion. It is also shown that it is possible to prevent from increasing the response under the one-cycle sinusoidal input resonant to the lowest mode and reduce the steady-state response under the harmonic input with the resonant fundamental period by reducing the stiffness in the lower structure and increasing the damper deformation.

  16. Experiment and Simulation Study on the Amorphous Silicon Photovoltaic Walls

    Directory of Open Access Journals (Sweden)

    Wenjie Zhang

    2014-01-01

    Full Text Available Based on comparative study on two amorphous silicon photovoltaic walls (a-Si PV walls, the temperature distribution and the instant power were tested; and with EnergyPlus software, similar models of the walls were built to simulate annual power generation and air conditioning load. On typical sunshine day, the corresponding position temperature of nonventilated PV wall was generally 0.5~1.5°C higher than that of ventilated one, while the power generation was 0.2%~0.4% lower, which was consistent with the simulation results with a difference of 0.41% in annual energy output. As simulation results, in summer, comparing the PV walls with normal wall, the heat per unit area of these two photovoltaic walls was 5.25 kWh/m2 (nonventilated and 0.67 kWh/m2 (ventilated higher, respectively. But in winter the heat loss of nonventilated one was smaller, while ventilated PV wall was similar to normal wall. To annual energy consumption of heating and cooling, the building with ventilated PV wall and normal wall was also similar but slightly better than nonventilated one. Therefore, it is inferred that, at low latitudes, such as Zhuhai, China, air gap ventilation is suitable, while the length to thickness ratio of the air gap needs to be taken into account.

  17. Comprehensive Study of Plasma-Wall Sheath Transport Phenomena

    Science.gov (United States)

    2016-10-26

    the floating potential of wall material samples immersed in a low-temperature plasma were studied. Hysteresis is found to be due to secondary electron...continued research into plasma sheath physics. Hysteresis effects observed in the floating potential of wall material samples immersed in a low... Journal of Applied Physics, Volume 119, March 2016, pp. 113305 1-5. DISTRIBUTION A: Distribution approved for public release. 8 Figure 2

  18. Vaporized wall material/plasma interaction during plasma disruption

    International Nuclear Information System (INIS)

    Merrill, B.J.; Carroll, M.C.; Jardin, S.C.

    1983-01-01

    The purpose of this paper is to discuss a new plasma disruption model that has been developed for analyzing the consequences to the limiter/first wall structures. This model accounts for: nonequilibrium surface vaporization for the ablating structure, nonequilibrium ionization of and radiation emitted from the ablated material in the plasma, plasma particle and energy transport, and plasma electromagnetic field evolution during the disruption event. Calculations were performed for a 5 ms disruption on a stainless steel flat limiter as part of a D-shaped first wall. These results indicated that the effectiveness of the ablated wall material to shield the exposed structure is greater than predicted by earlier models, and that the rate of redeposition of the ablated wall material ions is very dramatic. Impurity transport along magnetic field lines, global plasma motion, and radiation transport in an optically thick plasma are important factors that require additional modeling. Experimental measurements are needed to verify these models

  19. Subterranean ground motion studies for the Einstein Telescope

    International Nuclear Information System (INIS)

    Beker, M G; Brand, J F J van den; Rabeling, D S

    2015-01-01

    Seismic motion limits the low-frequency sensitivity of ground-based gravitational wave detectors. A conceptual design study into the feasibility of a future-generation gravitational wave observatory, coined the Einstein Telescope, has been completed. As part of this design phase, we performed a ground motion study to determine the seismic noise characteristics at various sites across the globe. This investigation focused on underground sites and encompassed a variety of geologies, including clay, salt, and hard rock, at 15 locations in nine European countries, the USA, and Japan. In addition, we analyzed data from the Virtual European Broadband Seismograph Network to characterize European seismic motion. We show that, in the region of interest for future-generation gravitational wave detectors (1–10 Hz), seismic motion is dominated by activity from anthropogenic sources. A number of sites were found that exhibited a reduction in seismic power of several orders of magnitude with respect to current detector sites, thus making it possible to set requirements for the Einstein Telescope seismic noise environment. (paper)

  20. Domain wall motion and electromechanical strain in lead-free piezoelectrics: Insight from the model system (1 − x)Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} using in situ high-energy X-ray diffraction during application of electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Tutuncu, Goknur [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Li, Binzhi [Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, California 95616 (United States); Bowman, Keith [Illinois Institute of Technology, Armour College of Engineering, Chicago, Illinois 60616 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Jones, Jacob L., E-mail: JacobJones@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-04-14

    The piezoelectric compositions (1 − x)Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} (BZT-xBCT) span a model lead-free morphotropic phase boundary (MPB) between room temperature rhombohedral and tetragonal phases at approximately x = 0.5. In the present work, in situ X-ray diffraction measurements during electric field application are used to elucidate the origin of electromechanical strain in several compositions spanning the tetragonal compositional range 0.6 ≤ x ≤ 0.9. As BCT concentration decreases towards the MPB, the tetragonal distortion (given by c/a-1) decreases concomitantly with an increase in 90° domain wall motion. The increase in observed macroscopic strain is predominantly attributed to the increased contribution from 90° domain wall motion. The results demonstrate that domain wall motion is a significant factor in achieving high strain and piezoelectric coefficients in lead-free polycrystalline piezoelectrics.

  1. Discontinuity Preserving Image Registration through Motion Segmentation: A Primal-Dual Approach

    Directory of Open Access Journals (Sweden)

    Silja Kiriyanthan

    2016-01-01

    Full Text Available Image registration is a powerful tool in medical image analysis and facilitates the clinical routine in several aspects. There are many well established elastic registration methods, but none of them can so far preserve discontinuities in the displacement field. These discontinuities appear in particular at organ boundaries during the breathing induced organ motion. In this paper, we exploit the fact that motion segmentation could play a guiding role during discontinuity preserving registration. The motion segmentation is embedded in a continuous cut framework guaranteeing convexity for motion segmentation. Furthermore we show that a primal-dual method can be used to estimate a solution to this challenging variational problem. Experimental results are presented for MR images with apparent breathing induced sliding motion of the liver along the abdominal wall.

  2. Inhomogeneous nucleation and domain wall motion with Barkhausen avalanches in epitaxial PbZr0.4Ti0.6O3 thin films

    International Nuclear Information System (INIS)

    Yang, Sang Mo; Kim, Hun Ho; Kim, Tae Heon; Kim, Ik Joo; Yoon, Jong Gul

    2012-01-01

    We investigated the ferroelectric (FE) domain nucleation and domain wall motion in epitaxial PbZr 0.4 Ti 0.6 O 3 capacitors by using modified piezoresponse force microscopy with the domain-tracing method. From time-dependent FE domain evolution images, we observed that defect-mediated inhomogeneous nucleation occurred with a stochastic nature. In addition, we found that the number of nuclei N(t) was linearly proportional to log t, where t is the accumulated time of the applied pulse fields. The time-dependence of N(t) suggests a distribution of energy barriers for nucleation, which may determine the stochastic nature of domain nucleation. We also observed that the domain grew with consecutive Barkhausen avalanches and that the growth direction became anisotropic when the domain radius was larger than a critical radius of about 100 nm.

  3. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    Arjen eAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  4. Fast Numerical Simulation of Focused Ultrasound Treatments During Respiratory Motion With Discontinuous Motion Boundaries.

    Science.gov (United States)

    Schwenke, Michael; Georgii, Joachim; Preusser, Tobias

    2017-07-01

    Focused ultrasound (FUS) is rapidly gaining clinical acceptance for several target tissues in the human body. Yet, treating liver targets is not clinically applied due to a high complexity of the procedure (noninvasiveness, target motion, complex anatomy, blood cooling effects, shielding by ribs, and limited image-based monitoring). To reduce the complexity, numerical FUS simulations can be utilized for both treatment planning and execution. These use-cases demand highly accurate and computationally efficient simulations. We propose a numerical method for the simulation of abdominal FUS treatments during respiratory motion of the organs and target. Especially, a novel approach is proposed to simulate the heating during motion by solving Pennes' bioheat equation in a computational reference space, i.e., the equation is mathematically transformed to the reference. The approach allows for motion discontinuities, e.g., the sliding of the liver along the abdominal wall. Implementing the solver completely on the graphics processing unit and combining it with an atlas-based ultrasound simulation approach yields a simulation performance faster than real time (less than 50-s computing time for 100 s of treatment time) on a modern off-the-shelf laptop. The simulation method is incorporated into a treatment planning demonstration application that allows to simulate real patient cases including respiratory motion. The high performance of the presented simulation method opens the door to clinical applications. The methods bear the potential to enable the application of FUS for moving organs.

  5. High-speed schlieren videography of vortex-ring impact on a wall

    Science.gov (United States)

    Kissner, Benjamin; Hargather, Michael; Settles, Gary

    2011-11-01

    Ring vortices of approximately 20 cm diameter are generated through the use of an Airzooka toy. To make the vortex visible, it is seeded with difluoroethane gas, producing a refractive-index difference with the air. A 1-meter-diameter, single-mirror, double-pass schlieren system is used to visualize the ring-vortex motion, and also to provide the wall with which the vortex collides. High-speed imaging is provided by a Photron SA-1 digital video camera. The Airzooka is fired toward the mirror almost along the optical axis of the schlieren system, so that the view of the vortex-mirror collision is normal to the path of vortex motion. Vortex-wall interactions similar to those first observed by Walker et al. (JFM 181, 1987) are recorded at high speed. The presentation will consist of a screening and discussion of these video results.

  6. Deriving the equations of motion of porous isotropic media

    International Nuclear Information System (INIS)

    Pride, S.R.; Gangi, A.F.; Morgan, F.D.

    1992-01-01

    The equations of motion and stress/strain relations for the linear dynamics of a two-phase, fluid/solid, isotropic, porous material have been derived by a direct volume averaging of the equations of motion and stress-strain relations known to apply in each phase. The equations thus obtained are shown to be consistent with Biot's equations of motion and stress/strain relations; however, the effective fluid density in the equation of relative flow has an unambiguous definition in terms of the tractions acting on the pore walls. The stress/strain relations of the theory correspond to 'quasistatic' stressing (i.e., inertial effects are ignored). It is demonstrated that using such quasistatic stress/strain relations in the equations of motion is justified whenever the wavelengths are greater than a length characteristic of the averaging volume size. 37 refs., 2 figs

  7. Effect of personalized external aortic root support on aortic root motion and distension in Marfan syndrome patients.

    Science.gov (United States)

    Izgi, Cemil; Nyktari, Evangelia; Alpendurada, Francisco; Bruengger, Annina Studer; Pepper, John; Treasure, Tom; Mohiaddin, Raad

    2015-10-15

    Personalized external aortic root support (PEARS) is a novel surgical approach with the aim of stabilizing the aortic root size and decreasing risk of dissection in Marfan syndrome patients. A bespoke polymer mesh tailored to each patient's individual aorta shape is produced by modeling and then surgically implanted. The aim of this study is to assess the mechanical effects of PEARS on the aortic root systolic downward motion (an important determinant of aortic wall stress), aortic root distension and on the left ventricle (LV). A cohort of 27 Marfan patients had a prophylactic PEARS surgery between 2004 and 2012 with 24 having preoperative and follow-up cardiovascular magnetic resonance imaging studies. Systolic downward aortic root motion, aortic root distension, LV volumes/mass and mitral annular systolic excursion before the operation and in the latest follow-up were measured randomly and blinded. After a median follow-up of 50.5 (IQR 25.5-72) months following implantation of PEARS, systolic downward motion of aortic root was significantly decreased (12.6±3.6mm pre-operation vs 7.9±2.9mm latest follow-up, p<0.00001). There was a tendency for a decrease in systolic aortic root distension but this was not significant (median 4.5% vs 2%, p=0.35). There was no significant change in LV volumes, ejection fraction, mass and mitral annular systolic excursion in follow-up. PEARS surgery decreases systolic downward aortic root motion which is an important determinant of longitudinal aortic wall stress. Aortic wall distension and Windkessel function are not significantly impaired in the follow-up after implantation of the mesh which is also supported by the lack of deterioration of LV volumes or mass. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Langevin equation of a fluid particle in wall-induced turbulence

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    2010-01-01

    We derive the Langevin equation describing the stochastic process of fluid particle motion in wall-inducedturbulence (turbulent flow in pipes, channels, and boundary layers including the atmospheric surface layer).The analysis is based on the asymptotic behavior at a large Reynolds number. We use

  9. MOTION STUDY OF A WHEELCHAIR PROTOTYPE FOR DISABLED PEOPLE

    Directory of Open Access Journals (Sweden)

    Ionut GEONEA

    2015-05-01

    Full Text Available In this paper is presented the design and experimental prototype of a wheelchair for disabled people. Design solution proposed to be implemented uses two reduction gears motors and a mechanical transmission with chains. The motion controller developed uses PWM technology (pulse wave modulation. The wheelchair has the ability of forward – backward motion and steering. The design solution is developed in Solid Works, and it’s implemented to a wheelchair prototype model. Wheelchair design and motion makes him suitable especially for indoor use. It is made a study of the wheelchair kinematics, first using a kinematic simulation in Adams. Are presented the wheelchair motion trajectory and kinematics parameters. The experimental prototype is tested with a motion analysis system based on ultra high speed video recording. The obtained results from simulation and experimentally tests, demonstrate the efficiency of wheelchair proposed solution.

  10. Small-scale deflagration cylinder test with velocimetry wall-motion diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Hooks, Daniel E [Los Alamos National Laboratory; Hill, Larry G [Los Alamos National Laboratory; Pierce, Timothy H [Los Alamos National Laboratory

    2010-01-01

    Predicting the likelihood and effects of outcomes resultant from thermal initiation of explosives remains a significant challenge. For certain explosive formulations, the general outcome can be broadly predicted given knowledge of certain conditions. However, there remain unexplained violent events, and increased statistical understanding of outcomes as a function of many variables, or 'violence categorization,' is needed. Additionally, the development of an equation of state equivalent for deflagration would be very useful in predicting possible detailed event consequences using traditional hydrodynamic detonation moders. For violence categorization, it is desirable that testing be efficient, such that it is possible to statistically define outcomes reliant on the processes of initiation of deflagration, steady state deflagration, and deflagration to detonation transitions. If the test simultaneously acquires information to inform models of violent deflagration events, overall predictive capabilities for event likelihood and consequence might improve remarkably. In this paper we describe an economical scaled deflagration cylinder test. The cyclotetramethylene tetranitramine (HMX) based explosive formu1lation PBX 9501 was tested using different temperature profiles in a thick-walled copper cylindrical confiner. This test is a scaled version of a recently demonstrated deflagration cylinder test, and is similar to several other thermal explosion tests. The primary difference is the passive velocimetry diagnostic, which enables measurement of confinement vessel wall velocities at failure, regardless of the timing and location of ignition.

  11. Normal left ventricular wall motion measured with two-dimensional myocardial tagging

    DEFF Research Database (Denmark)

    Qi, P; Thomsen, C; Ståhlberg, F

    1993-01-01

    contraction towards the center of the left ventricle, a motion of the base of the heart towards the apex, and a rotation of the left ventricle around its long axis. The direction of left ventricular rotation changed from early systole to late systole. The base and middle levels of the left ventricle rotated...

  12. Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker

    International Nuclear Information System (INIS)

    Vedam, S.S.; Kini, V.R.; Keall, P.J.; Ramakrishnan, V.; Mostafavi, H.; Mohan, R.

    2003-01-01

    The aim of this work was to quantify the ability to predict intrafraction diaphragm motion from an external respiration signal during a course of radiotherapy. The data obtained included diaphragm motion traces from 63 fluoroscopic lung procedures for 5 patients, acquired simultaneously with respiratory motion signals (an infrared camera-based system was used to track abdominal wall motion). During these sessions, the patients were asked to breathe either (i) without instruction, (ii) with audio prompting, or (iii) using visual feedback. A statistical general linear model was formulated to describe the relationship between the respiration signal and diaphragm motion over all sessions and for all breathing training types. The model parameters derived from the first session for each patient were then used to predict the diaphragm motion for subsequent sessions based on the respiration signal. Quantification of the difference between the predicted and actual motion during each session determined our ability to predict diaphragm motion during a course of radiotherapy. This measure of diaphragm motion was also used to estimate clinical target volume (CTV) to planning target volume (PTV) margins for conventional, gated, and proposed four-dimensional (4D) radiotherapy. Results from statistical analysis indicated a strong linear relationship between the respiration signal and diaphragm motion (p<0.001) over all sessions, irrespective of session number (p=0.98) and breathing training type (p=0.19). Using model parameters obtained from the first session, diaphragm motion was predicted in subsequent sessions to within 0.1 cm (1 σ) for gated and 4D radiotherapy. Assuming a 0.4 cm setup error, superior-inferior CTV-PTV margins of 1.1 cm for conventional radiotherapy could be reduced to 0.8 cm for gated and 4D radiotherapy. The diaphragm motion is strongly correlated with the respiration signal obtained from the abdominal wall. This correlation can be used to predict diaphragm

  13. Particle Trajectories in Rotating Wall Cell Culture Devices

    Science.gov (United States)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  14. Experimental Studies on Wave Interactions of Partially Perforated Wall under Obliquely Incident Waves

    Directory of Open Access Journals (Sweden)

    Jong-In Lee

    2014-01-01

    Full Text Available This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees, and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall.

  15. Domain Wall Formation in Ferromagnetic Layers: An Ab Initio Study

    Science.gov (United States)

    Herper, Heike C.

    Domain walls are an inherent feature of ferromagnetic (FM) films consisting of layers with different magnetic orientations. Since FM films are used in electrical devices the question of the influence of domain walls on, e.g., the magnetoresistance has attracted much interest. Besides discussing the resistance contribution of domain walls, it is appropriate to study different types of domain walls and their energy of formation. The behaviour of domain walls is usually discussed within model calculations. In the present paper it is done within an ab initio Green's function technique for layered systems, i.e., the fully relativistic, spin-polarized screened Korringa-Kohn Rostoker method. Results are presented for fcc Co layers covered by two semi-infinite fcc Pt(001) bulk systems or by bulk fcc Co(001), respectively. The resistance, which is caused by the different types of domain walls is discussed within a Kubo-Greenwood approach considering Co(001)/Co24/Co(001) as an example.

  16. Investigation of Plant Cell Wall Properties: A Study of Contributions from the Nanoscale to the Macroscale Impacting Cell Wall Recalcitrance

    Science.gov (United States)

    Crowe, Jacob Dillon

    Biochemical conversion of lignocellulosic biomass to fuel ethanol is one of a few challenging, yet opportune technologies that can reduce the consumption of petroleum-derived transportation fuels, while providing parallel reductions in greenhouse gas emissions. Biomass recalcitrance, or resistance to deconstruction, is a major technical challenge that limits effective conversion of biomass to fermentable sugars, often requiring a costly thermochemical pretreatment step to improve biomass deconstruction. Biomass recalcitrance is imparted largely by the secondary cell wall, a complex polymeric matrix of cell wall polysaccharides and aromatic heteropolymers, that provides structural stability to cells and enables plant upright growth. Polymers within the cell wall can vary both compositionally and structurally depending upon plant species and anatomical fraction, and have varied responses to thermochemical pretreatments. Cell wall properties impacting recalcitrance are still not well understood, and as a result, the goal of this dissertation is to investigate structural features of the cell wall contributing to recalcitrance (1) in diverse anatomical fractions of a single species, (2) in response to diverse pretreatments, and (3) resulting from genetic modification. In the first study, feedstock cell wall heterogeneity was investigated in anatomical (stem, leaf sheaths, and leaf blades) and internode fractions of switchgrass at varying tissue maturities. Lignin content was observed as the key contributor to recalcitrance in maturing stem tissues only, with non-cellulosic substituted glucuronoarabinoxylans and pectic polysaccharides contributing to cell wall recalcitrance in leaf sheath and leaf blades. Hydroxycinnamate (i.e., saponifiable p-coumarate and ferulate) content along with xylan and pectin extractability decreased with tissue maturity, suggesting lignification is only one component imparting maturity specific cell wall recalcitrance. In the second study

  17. Prediction of dynamic contact angle histories of a bubble growing at a wall

    International Nuclear Information System (INIS)

    Geld, Cees W.M. van der

    2004-01-01

    A fast growing boiling bubble at the verge of detaching from a plane wall is usually shaped as a truncated sphere, and experiences various hydrodynamic forces due to its expansion and the motion of its center of mass. In a homogeneous flow field, one of the forces is the so-called bubble growth force that is essentially due to inertia. This force is usually evaluated with the aid of approximate expressions [Int. J. Heat Mass Transfer 36 (1993) 651, Int. J. Heat Mass Transfer 38 (1995) 2075]. In the present study an exact expression for the expansion force is derived for the case of a truncated sphere attached to a plane, infinite wall. The Lagrange-Thomson formalism is applied. Two Euler-Lagrange equations are derived, one governing the motion of the center of mass, the other governing expansion a kind of extended Rayleigh-Plesset equation. If a constitutive equation for the gas-vapor content of the bubble is given, initial conditions and these two differential equations determine the dynamics of the growing truncated sphere that has its foot on a plane, infinite wall. Simulations are carried out for a given expansion rate to predict the history of the dynamic contact angle. The simulations increase the understanding of mechanisms controlling detachment, and yield realistic times of detachment

  18. The effect of wall geometry in particle-laden turbulent flow

    Science.gov (United States)

    Abdehkakha, Hoora; Iaccarino, Gianluca

    2016-11-01

    Particle-laden turbulent flow plays a significant role in various industrial applications, as turbulence alters the exchange of momentum and energy between particles and fluid flow. In wall-bounded flows, inhomogeneity in turbulent properties is the primary cause of turbophoresis that leads the particles toward the walls. Conversely, shear-induced lift force on the particles can become important if large scale vortical structures are present. The objective of this study is to understand the effects of geometry on fluid flows and consequently on particles transport and concentration. Direct numerical simulations combined with point particle Lagrangian tracking are performed for several geometries such as a pipe, channel, square duct, and squircle (rounded-corners duct). In non-circular ducts, anisotropic and inhomogeneous Reynolds stresses are the most influential phenomena that produce the secondary flows. It has been shown that these motions can have a significant impact on transporting momentum, vorticity, and energy from the core of the duct to the corners. The main focus of the present study is to explore the effects of near the wall structures and secondary flows on turbophoresis, lift, and particle concentration.

  19. Magnet Fall inside a Conductive Pipe: Motion and the Role of the Pipe Wall Thickness

    Science.gov (United States)

    Donoso, G.; Ladera, C. L.; Martin, P.

    2009-01-01

    Theoretical models and experimental results are presented for the retarded fall of a strong magnet inside a vertical conductive non-magnetic tube. Predictions and experimental results are in good agreement modelling the magnet as a simple magnetic dipole. The effect of varying the pipe wall thickness on the retarding magnetic drag is studied for…

  20. A comparative study of near-wall turbulence in high and low Reynolds number boundary layers

    International Nuclear Information System (INIS)

    Metzger, M.M.; Klewicki, J.C.

    2001-01-01

    The present study explores the effects of Reynolds number, over three orders of magnitude, in the viscous wall region of a turbulent boundary layer. Complementary experiments were conducted both in the boundary layer wind tunnel at the University of Utah and in the atmospheric surface layer which flows over the salt flats of the Great Salt Lake Desert in western Utah. The Reynolds numbers, based on momentum deficit thickness, of the two flows were R θ =2x10 3 and R θ ≅5x10 6 , respectively. High-resolution velocity measurements were obtained from a five-element vertical rake of hot-wires spanning the buffer region. In both the low and high R θ flows, the length of the hot-wires measured less than 6 viscous units. To facilitate reliable comparisons, both the laboratory and field experiments employed the same instrumentation and procedures. Data indicate that, even in the immediate vicinity of the surface, strong influences from low-frequency motions at high R θ produce noticeable Reynolds number differences in the streamwise velocity and velocity gradient statistics. In particular, the peak value in the root mean square streamwise velocity profile, when normalized by viscous scales, was found to exhibit a logarithmic dependence on Reynolds number. The mean streamwise velocity profile, on the other hand, appears to be essentially independent of Reynolds number. Spectra and spatial correlation data suggest that low-frequency motions at high Reynolds number engender intensified local convection velocities which affect the structure of both the velocity and velocity gradient fields. Implications for turbulent production mechanisms and coherent motions in the buffer layer are discussed

  1. Motion of the esophagus due to cardiac motion.

    Directory of Open Access Journals (Sweden)

    Jacob Palmer

    Full Text Available When imaging studies (e.g. CT are used to quantify morphological changes in an anatomical structure, it is necessary to understand the extent and source of motion which can give imaging artifacts (e.g. blurring or local distortion. The objective of this study was to assess the magnitude of esophageal motion due to cardiac motion. We used retrospective electrocardiogram-gated contrast-enhanced computed tomography angiography images for this study. The anatomic region from the carina to the bottom of the heart was taken at deep-inspiration breath hold with the patients' arms raised above their shoulders, in a position similar to that used for radiation therapy. The esophagus was delineated on the diastolic phase of cardiac motion, and deformable registration was used to sequentially deform the images in nearest-neighbor phases among the 10 cardiac phases, starting from the diastolic phase. Using the 10 deformation fields generated from the deformable registration, the magnitude of the extreme displacements was then calculated for each voxel, and the mean and maximum displacement was calculated for each computed tomography slice for each patient. The average maximum esophageal displacement due to cardiac motion for all patients was 5.8 mm (standard deviation: 1.6 mm, maximum: 10.0 mm in the transverse direction. For 21 of 26 patients, the largest esophageal motion was found in the inferior region of the heart; for the other patients, esophageal motion was approximately independent of superior-inferior position. The esophagus motion was larger at cardiac phases where the electrocardiogram R-wave occurs. In conclusion, the magnitude of esophageal motion near the heart due to cardiac motion is similar to that due to other sources of motion, including respiratory motion and intra-fraction motion. A larger cardiac motion will result into larger esophagus motion in a cardiac cycle.

  2. Influence of Joule heating on current-induced domain wall depinning

    Energy Technology Data Exchange (ETDEWEB)

    Moretti, Simone, E-mail: simone.moretti@usal.es; Raposo, Victor; Martinez, Eduardo [University of Salamanca, Plaza de los Caidos, 37008 Salamanca (Spain)

    2016-06-07

    The domain wall depinning from a notch in a Permalloy nanostrip on top of a SiO{sub 2}/Si substrate is studied theoretically under application of static magnetic fields and the injection of short current pulses. The influence of Joule heating on current-induced domain wall depinning is explored self-consistently by coupling the magnetization dynamics in the ferromagnetic strip to the heat transport throughout the system. Our results indicate that Joule heating plays a remarkable role in these processes, resulting in a reduction in the critical depinning field and/or in a temporary destruction of the ferromagnetic order for typically injected current pulses. In agreement with experimental observations, similar pinning-depinning phase diagrams can be deduced for both current polarities when the Joule heating is taken into account. These observations, which are incompatible with the sole contribution of spin transfer torques, provide a deeper understanding of the physics underlying these processes and establish the real scope of the spin transfer torque. They are also relevant for technological applications based on current-induced domain-wall motion along soft strips.

  3. Comparative study of diastolic filling under varying left ventricular wall stiffness

    Science.gov (United States)

    Mekala, Pritam; Santhanakrishnan, Arvind

    2014-11-01

    Pathological remodeling of the human cardiac left ventricle (LV) is observed in hypertensive heart failure as a result of pressure overload. Myocardial stiffening occurs in these patients prior to chronic maladaptive changes, resulting in increased LV wall stiffness. The goal of this study was to investigate the change in intraventricular filling fluid dynamics inside a physical model of the LV as a function of wall stiffness. Three LV models of varying wall stiffness were incorporated into an in vitro flow circuit driven by a programmable piston pump. Windkessel elements were used to tune the inflow and systemic pressure in the model with least stiffness to match healthy conditions. Models with stiffer walls were comparatively tested maintaining circuit compliance, resistance and pump amplitude constant. 2D phase-locked PIV measurements along the central plane showed that with increase in wall stiffness, the peak velocity and cardiac output inside the LV decreased. Further, inflow vortex ring propagation toward the LV apex was reduced with increasing stiffness. The above findings indicate the importance of considering LV wall relaxation characteristics in pathological studies of filling fluid dynamics.

  4. Multibunch resistive wall instability damping with feedback

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.; Korenev, I.L.; Yudin, L.A.

    1992-01-01

    The theory of multibunch transverse resistive wall instability damping with feedback is development. The system of coupling equations is obtained for description of bunched beam motion. The general solution and eigen frequencies are found. But for two bunches or multi bunches the tune splitting is found. The band of the tune splitting is calculated. The influence of the tune splitting on the damper system stability is discussed. 14 refs

  5. Current-induced domain wall motion: Separating spin torque and Oersted-field effects in Co/Pt nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Heinen, Jan; Boulle, Olivier; Rousseau, Kevin; Malinowski, Gregory; Klaeui, Mathias [Universitaet Konstanz, Fachbereich Physik, D-78457 Konstanz (Germany); Swagton, Henk J.; Koopmans, Bert [Eindhoven University of Technology, Department of Applied Physics, MB 5600 (Netherlands); Ulysse, Christian; Faini, Giancarlo [CNRS, Phynano team, Laboratoire de Photonique et de Nanostructures, 91460 Marcoussis (France)

    2010-07-01

    We report on magnetotransport studies on perpendicularly magnetized nanowires with narrow domain wall (DW) structures. Using Co/Pt multilayer nanowires, we have previously shown that Joule heating is concealing most of the current induced domain wall effects, but using a constant sample temperature a large non-adiabacity factor {beta} has been deduced. Here, we carry out experiments for both applied field directions and current polarities, starting from different DW configurations within a Hall cross. We clearly show, using the different symmetries of spin torque and Oersted-field, that the much debated Oersted-field does not contribute to the DW depinning significantly. This allows us to extract the spin torque contribution and the non-adiabacity factor {beta}, which turns out to be in line with previous measurements.

  6. Control of self-motion in dynamic fluids: fish do it differently from bees.

    Science.gov (United States)

    Scholtyssek, Christine; Dacke, Marie; Kröger, Ronald; Baird, Emily

    2014-05-01

    To detect and avoid collisions, animals need to perceive and control the distance and the speed with which they are moving relative to obstacles. This is especially challenging for swimming and flying animals that must control movement in a dynamic fluid without reference from physical contact to the ground. Flying animals primarily rely on optic flow to control flight speed and distance to obstacles. Here, we investigate whether swimming animals use similar strategies for self-motion control to flying animals by directly comparing the trajectories of zebrafish (Danio rerio) and bumblebees (Bombus terrestris) moving through the same experimental tunnel. While moving through the tunnel, black and white patterns produced (i) strong horizontal optic flow cues on both walls, (ii) weak horizontal optic flow cues on both walls and (iii) strong optic flow cues on one wall and weak optic flow cues on the other. We find that the mean speed of zebrafish does not depend on the amount of optic flow perceived from the walls. We further show that zebrafish, unlike bumblebees, move closer to the wall that provides the strongest visual feedback. This unexpected preference for strong optic flow cues may reflect an adaptation for self-motion control in water or in environments where visibility is limited. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. A Motion Planning Approach to Studying Molecular Motions

    KAUST Repository

    Amato, Nancy M.; Tapia, Lydia; Thomas, Shawna

    2010-01-01

    While structurally very different, protein and RNA molecules share an important attribute. The motions they undergo are strongly related to the function they perform. For example, many diseases such as Mad Cow disease or Alzheimer's disease

  8. Experimental study on the seismic performance of new sandwich masonry walls

    Science.gov (United States)

    Xiao, Jianzhuang; Pu, Jie; Hu, Yongzhong

    2013-03-01

    Sandwich masonry walls are widely used as energy-saving panels since the interlayer between the outer leaves can act as an insulation layer. New types of sandwich walls are continually being introduced in research and applications, and due to their unique bond patterns, experimental studies have been performed to investigate their mechanical properties, especially with regard to their seismic performance. In this study, three new types of sandwich masonry wall have been designed, and cyclic lateral loading tests were carried out on five specimens. The results showed that the specimens failed mainly due to slippage along the bottom cracks or the development of diagonal cracks, and the failure patterns were considerably influenced by the aspect ratio. Analysis was undertaken on the seismic response of the new walls, which included ductility, stiffness degradation and energy dissipation capacity, and no obvious difference was observed between the seismic performance of the new walls and traditional walls. Comparisons were made between the experimental results and the calculated results of the shear capacity. It is concluded that the formulas in the two Chinese codes (GB 50011 and GB 50003) are suitable for the calculation of the shear capacity for the new types of walls, and the formula in GB 50011 tends to be more conservative.

  9. Development of Vmax III. Magnetic wall climbing robot with holonomic and omni-directional mobility

    International Nuclear Information System (INIS)

    Tsuru, Kiyoshi; Hirose, Shigeo

    2012-01-01

    Wall-climbing robots having holonomic and omni-directional mobility would enhance the manipulation performance of the mounted arm and enable it to execute various tasks on the surface of large structures. This study focuses on the wall-climbing robots having permanent magnet attractive units to stick to the surface of iron structure such as atomic reactors and discuss the development of a specific holonomic and omni-directional wall-climbing mechanisms. Basic driving mechanism of the wall-climbing robot is based on our former invention named Omni Disk which consists of multiple rollers attached to one side of a rotating disk and having a mechanism to direct the rollers to the same direction. We firstly discuss about the mechanical improvements of the Omni Disk to make it lightweight and low cost. We next discusses about four types of methods to attach permanent magnets to the wall-climbing robot and generates attractive force on the iron wall and select the best type based on the motion experiments about the constructed models. As the result of these considerations, we developed a holonomic and omni-directional wall-climbing robot named Vmax III which consists of three Omni Disks having permanent magnet at their center having the function to change the magnetic attractive force. By using the Vmax III, we studied about the relation among the magnetic attractive force of three Omni Disks, posture of the Vmax III and inclination angle of the iron wall and clarified the optimized distribution of the magnetic attractive force of the Omni Disks in different inclination of the iron wall. (author)

  10. Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near a soft wall

    OpenAIRE

    Salez, Thomas; Mahadevan, L.

    2014-01-01

    We consider the motion of a fluid-immersed negatively buoyant particle in the vicinity of a thin compressible elastic wall, a situation that arises in a variety of technological and natural settings. We use scaling arguments to establish different regimes of sliding, and complement these estimates using thin-film lubrication dynamics to determine an asymptotic theory for the sedimentation, sliding, and spinning motions of a cylinder. The resulting theory takes the form of three coupled nonlin...

  11. From Boltzmann equations to steady wall velocities

    International Nuclear Information System (INIS)

    Konstandin, Thomas; Rues, Ingo; Nardini, Germano; California Univ., Santa Barbara, CA

    2014-07-01

    By means of a relativistic microscopic approach we calculate the expansion velocity of bubbles generated during a first-order electroweak phase transition. In particular, we use the gradient expansion of the Kadanoff-Baym equations to set up the fluid system. This turns out to be equivalent to the one found in the semi-classical approach in the non-relativistic limit. Finally, by including hydrodynamic deflagration effects and solving the Higgs equations of motion in the fluid, we determine velocity and thickness of the bubble walls. Our findings are compared with phenomenological models of wall velocities. As illustrative examples, we apply these results to three theories providing first-order phase transitions with a particle content in the thermal plasma that resembles the Standard Model.

  12. Novel instrumentation to detect sliding and erratic bed load motion

    CSIR Research Space (South Africa)

    Ilgner, HJ

    2014-09-01

    Full Text Available stationary beds on thick-walled pipes within a minute, only the 2 mm-thin spool pieces were able to detect erratic bed motions due to the sensors’ fast response capability. This required additional features to focus the sensing area directly onto the pipe...

  13. Study on characteristics of vertical strong motions

    International Nuclear Information System (INIS)

    Akao, Y.; Katukura, H.; Fukushima, S.; Mizutani, M.

    1993-01-01

    Statistic properties of vertical strong ground motions from near-field earthquakes are discussed in comparison with that of horizontal motions. It is a feature of this analysis that time history of each observed record is divided into direct P- and S-wave segments from a seismological viewpoint. Following results are obtained. Vertical motion energy excited by direct S-waves is about 0.6 times of horizontal ones at deep underground, and it approaches to 1.0 at shallow place. Horizontal motion energy excited by direct P-waves becomes 0.2 times (at deep) or more (at shallow) of vertical one. These results can be available in modeling of input motions for aseismic design. (author)

  14. Self-gated CINE MRI for combined contrast-enhanced imaging and wall-stiffness measurements of murine aortic atherosclerotic lesions

    NARCIS (Netherlands)

    den Adel, Brigit; van der Graaf, Linda M.; Strijkers, Gustav J.; Lamb, Hildo J.; Poelmann, Robert E.; van der Weerd, Louise

    2013-01-01

    High-resolution contrast-enhanced imaging of the murine atherosclerotic vessel wall is difficult due to unpredictable flow artifacts, motion of the thin artery wall and problems with flow suppression in the presence of a circulating contrast agent. We applied a 2D-FLASH retrospective-gated CINE MRI

  15. Fungi and mites on humid indoor walls : a laboratory study

    NARCIS (Netherlands)

    Koren, L.G.H.; Kort, H.S.M.; Siebers, Rob; Cunningham, M.; Fitzharris, P.

    2000-01-01

    The potential allergen source formed by mites and fungi developing on walls has been studied in a semi-natural model. Gypsum and wooden pieces, representing indoor walls, were artificially soiled with one of two different organic compounds, a yeast/vegetable mixture (Mannite) or a red currant juice

  16. Optical spin-transfer-torque-driven domain-wall motion in a ferromagnetic semiconductor

    Czech Academy of Sciences Publication Activity Database

    Ramsay, A.J.; Roy, P.E.; Haigh, J.A.; Otxoa, R.M.; Irvine, A.C.; Janda, T.; Campion, R. P.; Gallagher, B. L.; Wunderlich, Joerg

    2015-01-01

    Roč. 114, č. 6 (2015), "067202-1"-"067202-5" ISSN 0031-9007 R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : magnetic domain walls * magneto-optics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.645, year: 2015

  17. Interaction of flexible surface hairs with near-wall turbulence

    International Nuclear Information System (INIS)

    Bruecker, Ch

    2011-01-01

    The interaction of near-wall turbulence with hairy surfaces is investigated in a turbulent boundary layer flow along a flat plate in an oil channel at Re = 1.2 x 10 6 . The plate is covered locally with a dense carpet of elastomeric micro-hairs (length L = 1 mm, length in viscous units L + = 30) which are arranged in a regular grid (60 x 30 hairs with a streamwise spacing Δx + ∼15 and a spanwise spacing Δy + ∼30). Instead of the micro-structures used in previous studies for sensory applications, the surface hairs are considerably larger and much more densely distributed with a spacing of S/D < 5 such that they interact with each other by flow coupling. The non-fluctuating mean part of the flow forces a substantial pre-bending in the streamwise direction (reconfiguration). As a consequence, the hairs align with the streamwise direction, thus imposing anisotropic damping characteristics with regard to flow fluctuations in streamwise and spanwise or wall-normal directions. Near-wall high-frequency disturbances excited by the passage of turbulent sweeps are dampened over their course along the carpet. The cooperative action of the hairs leads to an energy transfer from small-scale motion to larger scales, thus increasing the coherence of the motion pattern in streamwise and spanwise directions. As a consequence of the specific arrangement of the micro-hairs in streamwise columns a reduced spanwise meandering and stabilization of the streamwise velocity streaks is achieved by promoting varicose waves and inhibiting sinusoidal waves. Streak stabilization is known to be a major contributor to turbulent drag reduction. Thus it is concluded that hairy surfaces may be of benefit for turbulent drag reduction as hypothesized by Bartenwerfer and Bechert (1991 Z. Flugwiss. Weltraumforsch. 15 19-26).

  18. Study on Seismic Behavior of Recycled Concrete Energy-efficient Homes Structure Wall

    Directory of Open Access Journals (Sweden)

    Dong Lan

    2016-01-01

    Full Text Available The main point is to study the seismic behavior of the lattice type recycled concrete energy saving wall under low-cyclic loading,to provide the basis for the seismic performance of application of recycled concrete lattice wall in energy-saving residential structure. Design two walls with the same structure measures, include Lattice type recycled concrete wall and natural concrete wall, they are tested under low-cycle repetitive loading, compared failure mode and seismic performance in different reinforcement conditions of side column. The bearing capacity and ductility of recycled aggregate concrete are better than natural aggregate concrete, The stiffness degradation curves and the skeleton curves of the walls are basically the same, both of them have better seismic energy dissipation capacity. Lattice type concrete wall is good at seismic performance, recycled aggregate concrete is good at plastic deformation ability, it is advantageous to seismic energy dissipation of wall, it can be applied in energy efficient residential structure wall.

  19. Magnetic properties, domain-wall creep motion, and the Dzyaloshinskii-Moriya interaction in Pt/Co/Ir thin films

    Science.gov (United States)

    Shepley, Philippa M.; Tunnicliffe, Harry; Shahbazi, Kowsar; Burnell, Gavin; Moore, Thomas A.

    2018-04-01

    We study the magnetic properties of perpendicularly magnetized Pt/Co/Ir thin films and investigate the domain-wall creep method of determining the interfacial Dzyaloshinskii-Moriya (DM) interaction in ultrathin films. Measurements of the Co layer thickness dependence of saturation magnetization, perpendicular magnetic anisotropy, and symmetric and antisymmetric (i.e., DM) exchange energies in Pt/Co/Ir thin films have been made to determine the relationship between these properties. We discuss the measurement of the DM interaction by the expansion of a reverse domain in the domain-wall creep regime. We show how the creep parameters behave as a function of in-plane bias field and discuss the effects of domain-wall roughness on the measurement of the DM interaction by domain expansion. Whereas modifications to the creep law with DM field and in-plane bias fields have taken into account changes in the energy barrier scaling parameter α , we find that both α and the velocity scaling parameter v0 change as a function of in-plane bias field.

  20. SU-F-J-119: Pilot Study On the Location-Based Lung Motion Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, TK [Procure Proton Therapy Center, Oklahoma City, OK (United States); Ewald, A [McLaren Cancer Institute, Flint, MI (United States)

    2016-06-15

    Purpose: In most of lung treatment cases with various radiotherapy beam modalities, 4DCT images are obtained in order to define ITV. ITV is defined with the signal from motion monitoring system, e.g. RPM. However, the signal is not consistent with tumor motion because it varies with location, its size, age, gender, etc. In the present study, the location-based motion assessment is presented. Methods: 4DCT images of 70 patients were reviewed: 28-left-lung and 42-right-lung patients; 36-female and 34-male patients; the age range of 51.2–89.9; tumor-size range of 0.75–9.50cm with 25% of these adherent to bony-anatomy. Philips Big-Bore Simulation CT and RPM systems were used. The study was performed as follows. First, RPM signal and tumor motion in superior-inferior direction was compared. Second, the tumor size and its motion amplitude in all directions were measured at multiple locations. Third, the average tumor motion was calculated to assess general motion amplitudes at various locations. Results: RPM amplitude is not consistent with lung tumor motion amplitude. The tumors of similar sizes at similar location present various motion amplitude up to 1.1cm difference, but in average, the standard deviation was <0.5cm. Almost regardless of tumor sizes, the tumor motion was greatest at lower lobe location (>=1.0cm), and the smallest at upper lobe location and when adherent to bony-anatomy (<=0.5cm). Conclusion: The tumor size affects the motion amplitude less than does the tumor location. However, as the study results indicate that tumor motion has noticeable variation and so further study with more patient cases is needed. Also, for the same patient, the RPM signal presents instability of breathing, and clinically the patient with the instability of RPM breathing of <=10% is selected for respiratory-gated radiotherapy and ∼25% of patients under current study was treated. Patient-specific motion-uncertainty margins are considered to be added following further

  1. The internal-external respiratory motion correlation is unaffected by audiovisual biofeedback.

    Science.gov (United States)

    Steel, Harry; Pollock, Sean; Lee, Danny; Keall, Paul; Kim, Taeho

    2014-03-01

    This study evaluated if an audiovisual (AV) biofeedback causes variation in the level of external and internal correlation due to its interactive intervention in natural breathing. The internal (diaphragm) and external (abdominal wall) respiratory motion signals of 15 healthy human subjects under AV biofeedback and free breathing (FB) were analyzed and measures of correlation and regularity taken. Regularity metrics (root mean square error and spectral power dispersion metric) were obtained and the correlation between these metrics and the internal and external correlation was investigated. For FB and AV biofeedback assisted breathing the mean correlations found between internal and external respiratory motion were 0.96±0.02 and 0.96±0.03, respectively. This means there is no evidence to suggest (p-value=0.88) any difference in the correlation between internal and external respiratory motion with the use of AV biofeedback. Our results confirmed the hypothesis that the internal-external correlation with AV biofeedback is the same as for free breathing. Should this correlation be maintained for patients, AV biofeedback can be implemented in the clinic with confidence as regularity improvements using AV biofeedback with an external signal will be reflected in increased internal motion regularity.

  2. Dynamical correlations for vicious random walk with a wall

    International Nuclear Information System (INIS)

    Nagao, Taro

    2003-01-01

    A one-dimensional system of nonintersecting Brownian particles is constructed as the diffusion scaling limit of Fisher's vicious random walk model. N Brownian particles start from the origin at time t=0 and undergo mutually avoiding motion until a finite time t=T. Dynamical correlation functions among the walkers are exactly evaluated in the case with a wall at the origin. Taking an asymptotic limit N→∞, we observe discontinuous transitions in the dynamical correlations. It is further shown that the vicious walk model with a wall is equivalent to a parametric random matrix model describing the crossover between the Bogoliubov-deGennes universality classes

  3. Ultrasonographic study of gallbladder wall thickness in acute viral hepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jin Sook; Kim, Kyung Jung; Park, Yang Hee; Kang, Ik Won; Yoon, Jong Sup [Hanyang Sacred Heart Hospital, Hallym University Medical Center, Seoul (Korea, Republic of)

    1984-09-15

    Prospective study of gallbladder wall thickness by ultrasonography was performed in 38 patients of acute viral hepatitis and 50 normal subjects as a control group from June 1983 to April 1984. The results were as follows; 1. In normal population, the range of gallbladder wall thickness is from 1 mm to 3 mm with peak incidence in 2 mm (66%, 33 case). Mean thickness of gallbladder wall is about 1.9 {+-} 0.6 mm. 2. In acute viral hepatitis, the range of gallbladder wall thickness is from 2 mm to 8 mm with peak incidence in 3 mm (34%, 13 case), second peak in 4 mm (29%, 11 case). Mean thickness of gallbladder wall is about 3.6 {+-} 1.6 mm, which is thicker than normal with statistical significance. (p<0.005) 3. In acute viral hepatitis, the mean thickness of gallbladder wall is about 4.4 {+-} 1.8 mm in the group of SGOT/SGPT level above 400 IU, and 2.8 {+-} 0.8 mm in the group of SGOT/ SGPT level below 400 IU. This difference is significant statistically. (p<0.05)

  4. Ultrasonographic study of gallbladder wall thickness in acute viral hepatitis

    International Nuclear Information System (INIS)

    Lim, Jin Sook; Kim, Kyung Jung; Park, Yang Hee; Kang, Ik Won; Yoon, Jong Sup

    1984-01-01

    Prospective study of gallbladder wall thickness by ultrasonography was performed in 38 patients of acute viral hepatitis and 50 normal subjects as a control group from June 1983 to April 1984. The results were as follows; 1. In normal population, the range of gallbladder wall thickness is from 1 mm to 3 mm with peak incidence in 2 mm (66%, 33 case). Mean thickness of gallbladder wall is about 1.9 ± 0.6 mm. 2. In acute viral hepatitis, the range of gallbladder wall thickness is from 2 mm to 8 mm with peak incidence in 3 mm (34%, 13 case), second peak in 4 mm (29%, 11 case). Mean thickness of gallbladder wall is about 3.6 ± 1.6 mm, which is thicker than normal with statistical significance. (p<0.005) 3. In acute viral hepatitis, the mean thickness of gallbladder wall is about 4.4 ± 1.8 mm in the group of SGOT/SGPT level above 400 IU, and 2.8 ± 0.8 mm in the group of SGOT/ SGPT level below 400 IU. This difference is significant statistically. (p<0.05)

  5. [Temporal Analysis of Body Sway during Reciprocator Motion Movie Viewing].

    Science.gov (United States)

    Sugiura, Akihiro; Tanaka, Kunihiko; Wakatabe, Shun; Matsumoto, Chika; Miyao, Masaru

    2016-01-01

    We aimed to investigate the effect of stereoscopic viewing and the degree of awareness of motion sickness on posture by measuring body sway during motion movie viewing. Nineteen students (12 men and 7 women; age range, 21-24 years) participated in this study. The movie, which showed several balls randomly positioned, was projected on a white wall 2 m in front of the subjects through a two-dimensional (2-D)/three-dimensional (3-D) convertible projector. To measure body sway during movie viewing, the subjects stood statically erect on a Wii balance board, with the toe opening at 18 degrees. The study protocol was as follows: The subjects watched (1) a nonmoving movie for 1 minute as the pretest and then (2) a round-trip sinusoidally moving-in-depth-direction movie for 3 minutes. (3) The initial static movie was shown again for 1 minute. Steps (2) and (3) were treated as one trial, after which two trials (2-D and 3-D movies) were performed in a random sequence. In this study, we found that posture changed according to the motion in the movie and that the longer the viewing time, the higher the synchronization accuracy. These tendencies depended on the level of awareness of motion sickness or the 3-D movie viewed. The mechanism of postural change in movie viewing was not vection but self-defense to resolve sensory conflict between visual information (spatial swing) and equilibrium sense (motionlessness).

  6. Magnetic domain wall motion in notch patterned permalloy nanowire devices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ting-Chieh; Kuo, Cheng-Yi; Mishra, Amit K.; Das, Bipul; Wu, Jong-Ching, E-mail: phjcwu@cc.ncue.edu.tw

    2015-11-01

    We report a study of magnetization reversal process of notch-patterned permalloy (Py) nanowires (NWs) by using an in-situ magnetic force microscopy (MFM). Three neighboring straight NWs and an individual straight NW with discs connected to the wires ends are fabricated by standard electron beam lithography through a lift-off technique. MFM images are taken in the presence of an in-plane magnetic field applied along the wires length. As a result, the nucleation, pinning and depinning of domain walls (DWs) along the NW are observed. The artificial constraints (notch) in such symmetrical geometry of NWs indeed serve as pinning sites to pin the DWs. The nature of magnetization reversal, pinning field and depinning field for the DWs that are observed in these permalloy NWs, indicate the key roles of notch depth, the terminal connection structure of NW end and the inter-wire interaction among the NWs. The in-situ MFM measurements are examined with the micromagnetic simulations. Consequently, good agreements are obtained for the DW structures and the effect of DWs pining/depinning, however a dissimilarity in experimental and simulation observations for the direction of propagation of DWs in NWs needs further investigation.

  7. Effect of perforation on the sound transmission through a double-walled cylindrical shell

    Science.gov (United States)

    Zhang, Qunlin; Mao, Yijun; Qi, Datong

    2017-12-01

    An analytical model is developed to study the sound transmission loss through a general double-walled cylindrical shell system with one or two walls perforated, which is excited by a plane wave in the presence of external mean flow. The shell motion is governed by the classical Donnell's thin shell theory, and the mean particle velocity model is employed to describe boundary conditions at interfaces between the shells and fluid media. In contrast to the conventional solid double-walled shell system, numerical results show that perforating the inner shell in the transmission side improves sound insulation performance over a wide frequency band, and removes fluctuation of sound transmission loss with frequency at mid-frequencies in the absence of external flow. Both the incidence and azimuthal angles have nearly negligible effect on the sound transmission loss over the low and middle frequency range when perforating the inner shell. Width of the frequency band with continuous sound transmission loss can be tuned by the perforation ratio.

  8. The local domain wall position in ferromagnetic thin wires: simultaneous measurement of resistive and transverse voltages at multiple points

    International Nuclear Information System (INIS)

    Hanada, R.; Sugawara, H.; Aoki, Y.; Sato, H.; Shigeto, K.; Shinjo, T.; Ono, T.; Miyajima, H.

    2002-01-01

    We have simultaneously measured the field dependences of voltages at multiple pairs of resistance and transverse voltage probes in ferromagnetic wires (with either magnetic or non-magnetic voltage probes). Both the resistive (through the giant magnetoresistance and anisotropic magnetoresistance) and transverse voltages (through the planar Hall effect) exhibit abrupt jumps, reflecting discrete motion of domain walls or rotations of magnetization. Voltage probes, even if non-magnetic, are found to affect the jump fields depending on the sample conditions. We demonstrate that the specific information on the domain (wall) motion along a thin ferromagnetic wire could be obtained from the jump fields. (author)

  9. Active Brownian particles near straight or curved walls: Pressure and boundary layers

    Science.gov (United States)

    Duzgun, Ayhan; Selinger, Jonathan V.

    2018-03-01

    Unlike equilibrium systems, active matter is not governed by the conventional laws of thermodynamics. Through a series of analytic calculations and Langevin dynamics simulations, we explore how systems cross over from equilibrium to active behavior as the activity is increased. In particular, we calculate the profiles of density and orientational order near straight or circular walls and show the characteristic width of the boundary layers. We find a simple relationship between the enhancements of density and pressure near a wall. Based on these results, we determine how the pressure depends on wall curvature and hence make approximate analytic predictions for the motion of curved tracers, as well as the rectification of active particles around small openings in confined geometries.

  10. The dynamics of the asymmetric motion of domain walls of sandwich domain structure in a Fe-based amorphous ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Zhmetko, D.N., E-mail: sergey.zhmetko@gmail.com [Department of Physics, Zaporizhzhya National University, 66 Zhukovsky Street, 69063 Zaporizhzhya (Ukraine); Zhmetko, S.D. [Department of Physics, Zaporizhzhya National University, 66 Zhukovsky Street, 69063 Zaporizhzhya (Ukraine); Troschenkov, Y.N. [Institute for Magnetism, 36-b Vernadsky Boulevard, 03142 Kyiv (Ukraine); Matsura, A.V. [Department of Physics, Zaporizhzhya National University, 66 Zhukovsky Street, 69063 Zaporizhzhya (Ukraine)

    2013-08-15

    The frequency dependence of asymmetry of the domain walls velocity relative to the middle plane of amorphous ribbon is investigated. An additional pressure of the same direction acting on each domain wall caused by dependence of eddy current damping on the coordinate of the domain wall is revealed. The microscopic mechanisms of this additional pressure are considered. - Highlights: ► Additional pressure on the domain wall, caused by inhomogeneity of its damping. ► Asymmetry of the coordinate of the nucleation of domain walls and their damping. ► Connection between the components of additional pressure and its direction. ► Interaction of domain walls with the surface defects of the amorphous ribbon.

  11. The dynamics of the asymmetric motion of domain walls of sandwich domain structure in a Fe-based amorphous ribbon

    International Nuclear Information System (INIS)

    Zhmetko, D.N.; Zhmetko, S.D.; Troschenkov, Y.N.; Matsura, A.V.

    2013-01-01

    The frequency dependence of asymmetry of the domain walls velocity relative to the middle plane of amorphous ribbon is investigated. An additional pressure of the same direction acting on each domain wall caused by dependence of eddy current damping on the coordinate of the domain wall is revealed. The microscopic mechanisms of this additional pressure are considered. - Highlights: ► Additional pressure on the domain wall, caused by inhomogeneity of its damping. ► Asymmetry of the coordinate of the nucleation of domain walls and their damping. ► Connection between the components of additional pressure and its direction. ► Interaction of domain walls with the surface defects of the amorphous ribbon

  12. Study on the Microwave Permittivity of Single-Walled Carbon Nanotube

    Science.gov (United States)

    Liu, Xiaolai; Zhao, Donglin

    2009-01-01

    In this article, we studied the microwave permittivity of the complex of the single-walled carbon nanotube and paraffin in 2-18GHz. In the range, the dielectric loss of single-walled carbon nanotube is higher, and the real part and the imaginary part of the dielectric constant decrease with the increase of frequency, and the dielectric constant…

  13. Study of noise reduction characteristics of double-wall panels

    Science.gov (United States)

    Navaneethan, R.; Quayle, B.; Stevenson, S.; Graham, M.

    1983-05-01

    The noise reduction characteristics of general aviation type, flat, double-wall structures were investigated. The experimental study was carried out on 20-by-20 inch panels with an exposed area of 18 by 18 inches. A frequency range from 20 to 5000 Hz was covered. The experimental results, in general, follow the expected trends. At low frequencies the double-wall structures are no better than the single-wall structures. However, for depths normally used in the general aviation industry, the double-wall panels are very attractive. The graphite-spoxy skin panels have higher noise reduction at very low frequencies ( 100 Hz) than the Kevlar skin panels. But the aluminum panels have higher noise reduction in the high frequency region, due to their greater mass. Use of fiberglass insulation is not effective in the low frequency region, and at times it is even negative. But the insulation is effective in the high-frequency region. The theoretical model for predicting the transmission loss of these multilayered panels is also discussed.

  14. Neural mechanisms underlying sound-induced visual motion perception: An fMRI study.

    Science.gov (United States)

    Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi

    2017-07-01

    Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Inertial Motion Capture Costume Design Study

    Directory of Open Access Journals (Sweden)

    Agnieszka Szczęsna

    2017-03-01

    Full Text Available The paper describes a scalable, wearable multi-sensor system for motion capture based on inertial measurement units (IMUs. Such a unit is composed of accelerometer, gyroscope and magnetometer. The final quality of an obtained motion arises from all the individual parts of the described system. The proposed system is a sequence of the following stages: sensor data acquisition, sensor orientation estimation, system calibration, pose estimation and data visualisation. The construction of the system’s architecture with the dataflow programming paradigm makes it easy to add, remove and replace the data processing steps. The modular architecture of the system allows an effortless introduction of a new sensor orientation estimation algorithms. The original contribution of the paper is the design study of the individual components used in the motion capture system. The two key steps of the system design are explored in this paper: the evaluation of sensors and algorithms for the orientation estimation. The three chosen algorithms have been implemented and investigated as part of the experiment. Due to the fact that the selection of the sensor has a significant impact on the final result, the sensor evaluation process is also explained and tested. The experimental results confirmed that the choice of sensor and orientation estimation algorithm affect the quality of the final results.

  16. [Myocardial imaging in acute myocardial infarction using beta-methyl-p-(123I)-iodophenylpentadecanoic acid: comparison with 201Tl imaging and wall motion].

    Science.gov (United States)

    Naruse, H; Itano, M; Kondo, T; Kogame, T; Yamamoto, J; Morita, M; Kawamoto, H; Fukutake, N; Ohyanagi, M; Iwasaki, T

    1992-01-01

    Myocardial imaging using beta-methyl-p-(123I)-iodophenylpentadecanoic acid (BMIPP) was performed in 11 patients with acute myocardial infarction. The left ventricular images were divided into 12 segments, and myocardial imagings with BMIPP were compared with coronary angiography (CAG), thallium-201 myocardial scintigraphy (TL) and wall motion obtained by two-dimensional echocardiography (WM). When the culprit lesion was at the proximal point of the left anterior descending artery (LAD), all segments showed depressed uptake. In 3 cases with single vessel disease of the LAD, inferior wall of the basis showed reduced uptake of BMIPP despite the location of the culprit lesion. In cases with discordant uptake between the two tracers, BMIPP frequently showed more severely depressed uptake than TL in the subacute phase, although the uptake of BMIPP correlated with that of TL (tau = 0.82, p less than 0.001). In such cases, the discordance was related to the improvement in WM from the acute phase to the convalescent phase. BMIPP uptake correlated with WM in the subacute phase (tau = 0.50, p less than 0.001). BMIPP showed more severely depressed uptake while WM showed mild asynergy in most cases in which discordance was found between the BMIPP and WM findings. However, there was no correlation between the change in WM from the acute to subacute phases, or the uptakes of BMIPP and TL alone. We concluded that the myocardial condition can be evaluated in detail in acute myocardial infarction by comparing the findings of BMIPP with those of TL and WM.

  17. A clinical evaluation of the RNCA study using Fourier filtering as a preprocessing method

    Energy Technology Data Exchange (ETDEWEB)

    Robeson, W.; Alcan, K.E.; Graham, M.C.; Palestro, C.; Oliver, F.H.; Benua, R.S.

    1984-06-01

    Forty-one patients (25 male, 16 female) were studied by Radionuclide Cardangiography (RNCA) in our institution. There were 42 rest studies and 24 stress studies (66 studies total). Sixteen patients were normal, 15 had ASHD, seven had a cardiomyopathy, and three had left-sided valvular regurgitation. Each study was preprocessed using both the standard nine-point smoothing method and Fourier filtering. Amplitude and phase images were also generated. Both preprocessing methods were compared with respect to image quality, border definition, reliability and reproducibility of the LVEF, and cine wall motion interpretation. Image quality and border definition were judged superior by the consensus of two independent observers in 65 of 66 studies (98%) using Fourier filtered data. The LVEF differed between the two processes by greater than .05 in 17 of 66 studies (26%) including five studies in which the LVEF could not be determined using nine-point smoothed data. LV wall motion was normal by both techniques in all control patients by cine analysis. However, cine wall motion analysis using Fourier filtered data demonstrated additional abnormalities in 17 of 25 studies (68%) in the ASHD group, including three uninterpretable studies using nine-point smoothed data. In the cardiomyopathy/valvular heart disease group, ten of 18 studies (56%) had additional wall motion abnormalities using Fourier filtered data (including four uninterpretable studies using nine-point smoothed data). We conclude that Fourier filtering is superior to the nine-point smooth preprocessing method now in general use in terms of image quality, border definition, generation of an LVEF, and cine wall motion analysis. The advent of the array processor makes routine preprocessing by Fourier filtering a feasible technologic advance in the development of the RNCA study.

  18. A clinical evaluation of the RNCA study using Fourier filtering as a preprocessing method

    International Nuclear Information System (INIS)

    Robeson, W.; Alcan, K.E.; Graham, M.C.; Palestro, C.; Oliver, F.H.; Benua, R.S.

    1984-01-01

    Forty-one patients (25 male, 16 female) were studied by Radionuclide Cardangiography (RNCA) in our institution. There were 42 rest studies and 24 stress studies (66 studies total). Sixteen patients were normal, 15 had ASHD, seven had a cardiomyopathy, and three had left-sided valvular regurgitation. Each study was preprocessed using both the standard nine-point smoothing method and Fourier filtering. Amplitude and phase images were also generated. Both preprocessing methods were compared with respect to image quality, border definition, reliability and reproducibility of the LVEF, and cine wall motion interpretation. Image quality and border definition were judged superior by the consensus of two independent observers in 65 of 66 studies (98%) using Fourier filtered data. The LVEF differed between the two processes by greater than .05 in 17 of 66 studies (26%) including five studies in which the LVEF could not be determined using nine-point smoothed data. LV wall motion was normal by both techniques in all control patients by cine analysis. However, cine wall motion analysis using Fourier filtered data demonstrated additional abnormalities in 17 of 25 studies (68%) in the ASHD group, including three uninterpretable studies using nine-point smoothed data. In the cardiomyopathy/valvular heart disease group, ten of 18 studies (56%) had additional wall motion abnormalities using Fourier filtered data (including four uninterpretable studies using nine-point smoothed data). We conclude that Fourier filtering is superior to the nine-point smooth preprocessing method now in general use in terms of image quality, border definition, generation of an LVEF, and cine wall motion analysis. The advent of the array processor makes routine preprocessing by Fourier filtering a feasible technologic advance in the development of the RNCA study

  19. Study of radial die-wall pressure changes during pharmaceutical powder compaction.

    Science.gov (United States)

    Abdel-Hamid, Sameh; Betz, Gabriele

    2011-04-01

    In tablet manufacturing, less attention is paid to the measurement of die-wall pressure than to force-displacement diagrams. Therefore, the aim of this study was to investigate radial stress change during pharmaceutical compaction. The Presster(TM), a tablet-press replicator, was used to characterize compaction behavior of microcrystalline cellulose (viscoelastic), calcium hydrogen phosphate dihydrate (brittle), direct compressible mannitol (plastic), pre-gelatinized starch (plastic/elastic), and spray dried lactose monohydrate (plastic/brittle) by measuring radial die-wall pressure; therefore powders were compacted at different (pre) compaction pressures as well as different speeds. Residual die-wall pressure (RDP) and maximum die-wall pressure (MDP) were measured. Various tablet physical properties were correlated to radial die-wall pressure. With increasing compaction pressure, RDP and MDP (P compaction behavior of materials and detecting friction phenomena in the early stage of development.

  20. Assessment of Respiration-Induced Motion and Its Impact on Treatment Outcome for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2013-01-01

    Full Text Available This study presented the analysis of free-breathing lung tumor motion characteristics using GE 4DCT and Varian RPM systems. Tumor respiratory movement was found to be associated with GTV size, the superior-inferior tumor location in the lung, and the attachment degree to rigid structure (e.g., chest wall, vertebrae, or mediastinum, with tumor location being the most important factor among the other two. Improved outcomes in survival and local control of 43 lung cancer patients were also reported. Consideration of respiration-induced motion based on 4DCT for lung cancer yields individualized margin and more accurate and safe target coverage and thus can potentially improve treatment outcome.

  1. A Wind Tunnel Investigation of the Influence of Solar-Induced Wall-Heating on the Flow Regime within a Simulated Urban Street Canyon

    International Nuclear Information System (INIS)

    Kovar-Panskus, A.; Moulinneuf, L.; Savory, E.; Abdelqari, A.; Sini, J.-F.; Rosant, J.-M.; Robins, A.; Toy, N.

    2002-01-01

    A wind tunnel study has been undertaken to assess the influence of solar-induced wall heating on the airflow pattern within a street canyon under low-speed wind conditions. This flow is normally dominated by large-scale vortical motion, such that the wind moves downwards at the downstream wall. In the present work the aim has been to examine whether the buoyancy forces generated at this wall by solar-induced heating are of sufficient strength to oppose the downward inertial forces and, thereby, change the canyon flow pattern. Such changes will also influence the dispersion of pollutants within the street. In the experiments the windward-facing wall of a canyon has been uniformly heated to simulate the effect of solar radiation.Four different test cases, representing different degrees of buoyancy (defined by a test Froude number, Fr), have been examined using a simple, 2-D, square-section canyon model in a wind tunnel. For reference purposes, the neutral case (no wall heating), has also been studied. The approach flow boundary layer conditions have been well defined, with the wind normal to the main canyon axis, and measurements have been taken of canyon wall and air temperatures and profiles of mean velocities and turbulence intensities.Analysis of the results shows clear differences in the flow patterns. As Fr decreases from the neutral case there are reductions of up to 50% in the magnitudes of the reverseflow velocities near the ground and in the upward motion near the upstream wall. A marked transition occurs at Fr ∼ 1, where the single dominant vortex, existing at higher Fr values, weakens and moves upwards whilst a lower region of relatively stagnant flow appears. This transition had previously been observed in numerical model predictions but at a Fr at least an order of magnitude higher

  2. An integrated bioimpedance—ECG gating technique for respiratory and cardiac motion compensation in cardiac PET

    International Nuclear Information System (INIS)

    Koivumäki, Tuomas; Nekolla, Stephan G; Fürst, Sebastian; Loher, Simone; Schwaiger, Markus; Vauhkonen, Marko; Hakulinen, Mikko A

    2014-01-01

    Respiratory motion may degrade image quality in cardiac PET imaging. Since cardiac PET studies often involve cardiac gating by ECG, a separate respiratory monitoring system is required increasing the logistic complexity of the examination, in case respiratory gating is also needed. Thus, we investigated the simultaneous acquisition of both respiratory and cardiac gating signals using II limb lead mimicking electrode configuration during cardiac PET scans of 11 patients. In addition to conventional static and ECG-gated images, bioimpedance technique was utilized to generate respiratory- and dual-gated images. The ability of the bioimpedance technique to monitor intrathoracic respiratory motion was assessed estimating cardiac displacement between end-inspiration and -expiration. The relevance of dual gating was evaluated in left ventricular volume and myocardial wall thickness measurements. An average 7.6  ±  3.3 mm respiratory motion was observed in the study population. Dual gating showed a small but significant increase (4 ml, p = 0.042) in left ventricular myocardial volume compared to plain cardiac gating. In addition, a thinner myocardial wall was observed in dual-gated images (9.3  ±  1.3 mm) compared to cardiac-gated images (11.3  ±  1.3 mm, p = 0.003). This study shows the feasibility of bioimpedance measurements for dual gating in a clinical setting. The method enables simultaneous acquisition of respiratory and cardiac gating signals using a single device with standard ECG electrodes. (paper)

  3. A proposal on restart rule of nuclear power plants with piping having local wall thinning subjected to an earthquake. Former part. Aiming at further application

    International Nuclear Information System (INIS)

    Urabe, Yoshio

    2011-01-01

    Restart rule of nuclear power plants (NPPs) with piping having local wall thinning subjected to an earthquake was proposed taking account of local wall thinning, seismic effects and restart of NPPs with applicability of 'Guidelines for NPP Response to an Earthquake (EPRI NP-6695)' in Japan. Japan Earthquake Damage Intensity Scale (JEDIS) and Earthquake Ground Motion Level (EGML) were introduced. JEDIS was classified into four scales obtained from damage level of components and structures of NPPs subjected to an earthquake, while EGML was divided into four levels by safe shutdown earthquake ground motion (So), elastic design earthquake ground motion (Sd) and design earthquake ground motion (Ss). Combination of JEDIS and EGML formulated 4 x 4 matrix and determined detailed conditions of restart of NPPs. As a response to an earthquake, operator walk inspections and evaluation of earthquake ground motion were conducted to know the level of JEDIS. JEDIS level requested respective allowable conditions of restart of NPP, which were scale level dependent and consisted of weighted combination of damage inspection (operator walk inspections, focused inspections/tests and expanded inspections), integrity evaluation and repair/replacement. If JEDIS were assigned greater than 3 with expanded inspections, inspection of piping with local wall thinning, its integrity evaluation and repair/replacement if necessary were requested. Inspection and evaluation of piping with local wall thinning was performed based on JSME or ASME codes. Detailed work flow charts were presented. Carbon steel piping and elbow was chosen for evaluation. (T. Tanaka)

  4. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    Science.gov (United States)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2009-04-01

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  5. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany)], E-mail: bazylev@ihm.fzk.de; Janeschitz, G. [Forschungszentrum Karlsruhe, Fusion, P.O. Box 3640, 76021 Karlsruhe (Germany); Landman, I.; Pestchanyi, S. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Loarte, A. [ITER Organisation, Cadarache, 13108 Saint Paul Lez Durance Cedex (France)

    2009-04-30

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  6. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    International Nuclear Information System (INIS)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2009-01-01

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  7. Charged domain-wall dynamics in doped antiferromagnets and spin fluctuations in cuprate superconductors

    International Nuclear Information System (INIS)

    Zaanen, J.; Horbach, M.L.; van Saarloos, W.

    1996-01-01

    Evidence is accumulating that the electron liquid in the cuprate superconductors is characterized by many-hole correlations of the charged magnetic domain-wall type. Here we focus on the strong-coupling limit where all holes are bound to domain walls. We assert that at high temperatures a classical domain-wall fluid is realized and show that the dynamics of such a fluid is characterized by spatial and temporal crossover scales set by temperature itself. The fundamental parameters of this fluid are such that the domain-wall motions dominate the low-frequency spin fluctuations and we derive predictions for the behavior of the dynamical magnetic susceptibility. We argue that a crossover occurs from a high-temperature classical to a low-temperature quantum regime, in direct analogy with helium. We discuss some general characteristics of the domain-wall quantum liquid, realized at low temperatures. copyright 1996 The American Physical Society

  8. Application of laser resonance scattering to the study of high-temperature plasma-wall interaction

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Muraoka, Katsunori; Hamamoto, Makoto; Akazaki, Masanori; Miyazoe, Yasushi

    1981-01-01

    Studies on laser resonance scattering and its application to the study of high-temperature plasma-wall interaction are reviewed. The application of dye laser beam to resonant scattering method has been developed. This method is able to detect low density atoms. The fluorescent photon counts can be estimated for a two-level system and a three-level system. The S/N ratio, Which is in close connection with the detection limit, has been estimated. The doppler effect due to the thermal motion of atoms is taken into consideration. The calibration of the absolute number of atoms is necessary. Tunable coherent light is used as the light source for resonance scattering method. This is able to excite atoms strongly and to increase the detection efficiency. As dye lasers, a N 2 laser, a YAG laser, and a KrF excimer laser have been studied. In VUV region, rare gas or rare gas halide lasers can be used. The strong output power can be expected when the resonance lines of atoms meet the synchronizing region of the excimer laser. The resonance scattering method is applied to the detection of impurity metal atoms in plasma. The studies of laser systems for the detection of hydrogen atoms are also in progress. (Kato, T.)

  9. Universal current-velocity relation of skyrmion motion in chiral magnets

    Science.gov (United States)

    Iwasaki, Junichi; Mochizuki, Masahito; Nagaosa, Naoto

    2013-03-01

    Current-driven motion of the magnetic domain wall requires large critical current density jc ~109 -1012 A/m2, at which the joule heating is a serious problem. The skyrmions recently discovered in chiral magnets, on the other hand, have much smaller critical current of jc ~105 -106 A/m2. We present a numerical simulation of the Landau-Lifshitz-Gilbert equation, which reveals a remarkably robust and universal current-velocity relation of the slyrmion motion driven by the spin transfer torque unaffected by either impurities or nonadiabatic effect in sharp contrast to the case of domain wall or spin helix (HL). Simulation results are analyzed using a theory based on Thiele's equation, and it is concluded that this surprising behavior is due to the Magnus force and flexible shape-deformation of individual skyrmions and skyrmion crystal (SkX), which enable them to avoid pinning centers and then weaken the net pinning force. Dynamical deformation of SkX leads to the fluctuation of Bragg peak with large amplitude, which can be detected by the recent neutron-scattering experiment.

  10. Domain wall manipulation in magnetic nanotubes induced by electric current pulses

    International Nuclear Information System (INIS)

    Otálora, J A; López-López, J A; Landeros, P; Núñez, A S

    2012-01-01

    We propose that the injection of electric currents can be used to independently manipulate the position and chirality of vortex-like domain walls in metallic ferromagnetic nanotubes. We support this proposal upon theoretical and numerical assessment of the magnetization dynamics driven by such currents. We show that proper interplay between the tube geometry, magnitude of the electric current and the duration of a current pulse, can be used to manipulate the position, velocity and chirality of a vortex domain wall. Our calculations suggest that domain wall velocities greater than 1 km s -1 can be achieved for tube diameters of the order of 30 nm and increasing with it. We also find that the transition from steady to precessional domain wall motion occurs for very high electric current densities, of the order of 10 13 A m -2 . Furthermore, the great stability displayed by such chiral magnetic configurations, and the reduced Ohmic loses provided by the current pulses, lead to highly reproducible and efficient domain wall reversal mechanisms.

  11. Self-similarity in the inertial region of wall turbulence.

    Science.gov (United States)

    Klewicki, J; Philip, J; Marusic, I; Chauhan, K; Morrill-Winter, C

    2014-12-01

    The inverse of the von Kármán constant κ is the leading coefficient in the equation describing the logarithmic mean velocity profile in wall bounded turbulent flows. Klewicki [J. Fluid Mech. 718, 596 (2013)] connects the asymptotic value of κ with an emerging condition of dynamic self-similarity on an interior inertial domain that contains a geometrically self-similar hierarchy of scaling layers. A number of properties associated with the asymptotic value of κ are revealed. This is accomplished using a framework that retains connection to invariance properties admitted by the mean statement of dynamics. The development leads toward, but terminates short of, analytically determining a value for κ. It is shown that if adjacent layers on the hierarchy (or their adjacent positions) adhere to the same self-similarity that is analytically shown to exist between any given layer and its position, then κ≡Φ(-2)=0.381966..., where Φ=(1+√5)/2 is the golden ratio. A number of measures, derived specifically from an analysis of the mean momentum equation, are subsequently used to empirically explore the veracity and implications of κ=Φ(-2). Consistent with the differential transformations underlying an invariant form admitted by the governing mean equation, it is demonstrated that the value of κ arises from two geometric features associated with the inertial turbulent motions responsible for momentum transport. One nominally pertains to the shape of the relevant motions as quantified by their area coverage in any given wall-parallel plane, and the other pertains to the changing size of these motions in the wall-normal direction. In accord with self-similar mean dynamics, these two features remain invariant across the inertial domain. Data from direct numerical simulations and higher Reynolds number experiments are presented and discussed relative to the self-similar geometric structure indicated by the analysis, and in particular the special form of self

  12. Neural Mechanisms of Illusory Motion: Evidence from ERP Study

    Directory of Open Access Journals (Sweden)

    Xu Y. A. N. Yun

    2011-05-01

    Full Text Available ERPs were used to examine the neural correlates of illusory motion, by presenting the Rice Wave illusion (CI, its two variants (WI and NI and a real motion video (RM. Results showed that: Firstly, RM elicited a more negative deflection than CI, NI and WI between 200–350ms. Secondly, between 500–600ms, CI elicited a more positive deflection than NI and WI, and RM elicited a more positive deflection than CI, what's more interesting was the sequential enhancement of brain activity with the corresponding motion strength. We inferred that the former component might reflect the successful encoding of the local motion signals in detectors at the lower stage; while the latter one might be involved in the intensive representations of visual input in real/illusory motion perception, this was the whole motion-signal organization in the later stage of motion perception. Finally, between 1185–1450 ms, a significant positive component was found between illusory/real motion tasks than NI (no motion. Overall, we demonstrated that there was a stronger deflection under the corresponding lager motion strength. These results reflected not only the different temporal patterns between illusory and real motion but also extending to their distinguishing working memory representation and storage.

  13. Study of magnetization reversal processes in a thin Co film

    International Nuclear Information System (INIS)

    Chowdhury, N.; Bedanta, S.; Babu, G.S.

    2013-01-01

    The magnetization reversal has been studied both along the easy- and hard- axes for an in plane magnetized thin Cobalt film using magneto-optical Kerr effect (MOKE) microscope. We observe that magnetization reversal is governed by domain wall motion accompanied by nucleation when measured along the easy axis. However coherent rotation is observed during magnetization reversal when measured along the hard axis. The relaxation of magnetization in constant dc magnetic field measured along the easy axis shows exponential behaviour which according to Fatuzzo–Labrune model indicates domain nucleated dominant process. Domain wall velocity plotted as a function of constant dc magnetic field shows creep and slide regime from which the depinning transition was extracted. - Highlights: ► Kerr microscopy was performed for different field orientation to the easy axis. ► Here we have measured domain wall velocity in constant dc fields. ► Creep, depinning and slide modes of domain wall motion have been observed. ► Magnetic relaxation data can be very well fitted to Fatuzzo–Labrune model. ► Magnetization reversal occurs via domain nucleation and wall motion

  14. Magnetic hysteresis scaling in thulium: Implication of irreversibility-related scaling for soliton wall motion in an Ising system

    International Nuclear Information System (INIS)

    Kobayashi, Satoru

    2013-01-01

    We report low-field magnetic hysteresis scaling in thulium with strong uniaxial anisotropy. A power-law hysteresis scaling with an exponent of 1.13±0.02 is found between hysteresis loss and remanent flux density of minor loops in the low-temperature ferrimagnetic phase. This exponent value is slightly lower than 1.25–1.4 observed previously for ferromagnets and helimagnets. Unlike spiral and/or Bloch walls with a finite transition width, typical for Dy, Tb, and Ho with planar anisotropy, a soliton wall with a sudden phase shift between neighboring domains may dominate in Tm due to its Ising-like character. The observations imply the presence of universality class of hysteresis scaling that depends on the type of magnetic anisotropy. - Highlights: ► We observe magnetic hysteresis scaling in thulium with a power law exponent of 1.13. ► Irreversibility of soliton walls dominates owing to its strong uniaxial anisotropy. ► The exponent is lower than those for Bloch wall and spiral wall. ► The results imply the presence of universality class that depends on the wall type.

  15. Apsidal Motion Study of Close Binary System CW Cephei

    Directory of Open Access Journals (Sweden)

    Wonyong Han

    2015-12-01

    Full Text Available New observations for the times of minimum lights of a well-known apsidal motion star CW Cephei were made using a 0.6 m wide field telescope at Jincheon station of Chungbuk National University Observatory, Korea during the 2015 observational season. We determined new times of minimum lights from these observations and analyzed O-C diagrams together with collected times of minima to study both the apsidal motion and the Light Time Effect (LTE suggested in the system. The new periods of the apsidal motion and the LTE were calculated as 46.6 and 39.3 years, respectively, which were similar but improved accuracy than earlier ones investigated by Han et al. (2002, Erdem et al. (2004 and Wolf et al. (2006.

  16. Experimental and theoretical study on natural circulation capacity under rolling motion condition

    International Nuclear Information System (INIS)

    Tan Sichao; Gao Puzhen

    2007-01-01

    Effect of rolling motion on natural circulation capacity was studied experimentally and theoretically. Experiments were conducted under the conditions of rolling and unrolling motions. The experimental results show that natural circulation capacity decreases under rolling motion condition. A mathematic model was developed to calculate the natural circulation capacity under rolling motion condition, considering the characteristics of natural circulation, the model was modified. The calculated results agree with experimental data well. Effect of rolling motion on natural circulation was analyzed through calculation and the following conclusions were obtained: (1) The increase of flow resistance coefficient is the main reason that the natural circulation capacity decreases under rolling motion condition; (2) Non-uniform distribution of fluid mass in the pipe has also influence on natural circulation capacity. (author)

  17. Cell adhesion during bullet motion in capillaries.

    Science.gov (United States)

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji

    2016-08-01

    A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. Copyright © 2016 the American Physiological Society.

  18. Radiation loads on the ITER first wall during massive gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Landman, I., E-mail: igor.landman@kit.edu [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Bazylev, B. [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Pitts, R.A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Saibene, G. [Fusion for Energy Joint Undertaking, Josep Pla no. 2 – Torres Diagonal Litoral Edificio B3 7/03, Barselona 08019 (Spain); Pestchanyi, S. [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Putvinski, S.; Sugihara, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: • The massive gas injection (neon) is simulated with the two-dimensional tokamak code TOKES assuming the toroidal symmetry. • The neon injection, assimilation and transport of impurities through the entire plasma volume are modelled. • The output of TOKES is used by the melt motion code MEMOS to assess beryllium wall temperature and the regime with melting. • Complete plasma cooling occurs in minimum time of 5.7 ms with avoiding Be melting at any point on the first wall. -- Abstract: Unmitigated disruptions in ITER can produce strong localized surface damage on the first wall (FW). Massive gas injection (MGI) systems are being designed to dissipate a large fraction of the plasma stored energy at the disruption thermal quench (TQ) and hence reduce the consequences for FW components. The stored energies can be high enough, however, for there to be potential for the photon flash at the MGI TQ to drive local melting of beryllium FW components. To estimate the poloidal distribution of FW surface temperatures, the MGI process is being simulated using the 2D code TOKES, assuming toroidal symmetry. High pressure neon injection, assimilation and transport of injected impurities through the entire plasma volume are modelled. The output of these simulations is used by the melt motion code MEMOS to assess the resulting maximum surface temperature and the regimes with melting on the FW surface.

  19. Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion

    International Nuclear Information System (INIS)

    Tomasello, R; Puliafito, V; Martinez, E; Manchon, A; Ricci, M; Carpentieri, M; Finocchio, G

    2017-01-01

    A storage scheme based on racetrack memory, where the information can be coded in a domain or a skyrmion, seems to be an alternative to conventional hard disk drive for high density storage. Here, we perform a full micromagnetic study of the performance of synthetic antiferromagnetic (SAF) racetrack memory in terms of velocity and sensitivity to defects by using experimental parameters. We find that, to stabilize a SAF skyrmion, the Dzyaloshinskii–Moriya interaction in the top and the bottom ferromagnet should have an opposite sign. The velocity of SAF skyrmions and SAF Néel domain walls are of the same order and can reach values larger than 1200 m s −1 if a spin–orbit torque from the spin-Hall effect with opposite sign is applied to both ferromagnets. The presence of disordered anisotropy in the form of randomly distributed grains introduces a threshold current for both SAF skyrmions and SAF domain walls motions. (paper)

  20. Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion

    KAUST Repository

    Tomasello, R

    2017-06-20

    A storage scheme based on racetrack memory, where the information can be coded in a domain or a skyrmion, seems to be an alternative to conventional hard disk drive for high density storage. Here, we perform a full micromagnetic study of the performance of synthetic antiferromagnetic (SAF) racetrack memory in terms of velocity and sensitivity to defects by using experimental parameters. We find that, to stabilize a SAF skyrmion, the Dzyaloshinskii–Moriya interaction in the top and the bottom ferromagnet should have an opposite sign. The velocity of SAF skyrmions and SAF Néel domain walls are of the same order and can reach values larger than 1200 m s−1 if a spin–orbit torque from the spin-Hall effect with opposite sign is applied to both ferromagnets. The presence of disordered anisotropy in the form of randomly distributed grains introduces a threshold current for both SAF skyrmions and SAF domain walls motions.

  1. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria.

    Science.gov (United States)

    Domínguez-Escobar, Julia; Chastanet, Arnaud; Crevenna, Alvaro H; Fromion, Vincent; Wedlich-Söldner, Roland; Carballido-López, Rut

    2011-07-08

    The peptidoglycan cell wall and the actin-like MreB cytoskeleton are major determinants of cell shape in rod-shaped bacteria. The prevailing model postulates that helical, membrane-associated MreB filaments organize elongation-specific peptidoglycan-synthesizing complexes along sidewalls. We used total internal reflection fluorescence microscopy to visualize the dynamic relation between MreB isoforms and cell wall synthesis in live Bacillus subtilis cells. During exponential growth, MreB proteins did not form helical structures. Instead, together with other morphogenetic factors, they assembled into discrete patches that moved processively along peripheral tracks perpendicular to the cell axis. Patch motility was largely powered by cell wall synthesis, and MreB polymers restricted diffusion of patch components in the membrane and oriented patch motion.

  2. A numerical study of external building walls containing phase change materials (PCM)

    International Nuclear Information System (INIS)

    Izquierdo-Barrientos, M.A.; Belmonte, J.F.; Rodríguez-Sánchez, D.; Molina, A.E.; Almendros-Ibáñez, J.A.

    2012-01-01

    Phase Change Materials (PCMs) have been receiving increased attention, due to their capacity to store large amounts of thermal energy in narrow temperature ranges. This property makes them ideal for passive heat storage in the envelopes of buildings. To study the influence of PCMs in external building walls, a one-dimensional transient heat transfer model has been developed and solved numerically using a finite difference technique. Different external building wall configurations were analyzed for a typical building wall by varying the location of the PCM layer, the orientation of the wall, the ambient conditions and the phase transition temperature of the PCM. The integration of a PCM layer into a building wall diminished the amplitude of the instantaneous heat flux through the wall when the melting temperature of the PCM was properly selected according to the season and wall orientation. Conversely, the results of the work show that there is no significant reduction in the total heat lost during winter regardless of the wall orientation or PCM transition temperature. Higher differences were observed in the heat gained during the summer period, due to the elevated solar radiation fluxes. The high thermal inertia of the wall implies that the inclusion of a PCM layer increases the thermal load during the day while decreasing the thermal load during the night. - Highlights: ► A comparative simulation of a building wall with and without PCMs has been conducted. ► PCM is selected according with the season, the wall orientation and the melting temperature. ► PCM in a building wall help to diminish the internal air temperature swings and to regulate the heat transfer.

  3. Markerless motion estimation for motion-compensated clinical brain imaging

    Science.gov (United States)

    Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.

    2018-05-01

    Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.

  4. Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI)

    International Nuclear Information System (INIS)

    Ghilezan, Michel J.; Jaffray, David A.; Siewerdsen, Jeffrey H.; Herk, Marcel van; Shetty, Anil; Sharpe, Michael B.; Zafar Jafri, Syed; Vicini, Frank A.; Matter, Richard C.; Brabbins, Donald S.; Martinez, Alvaro A.

    2005-01-01

    Purpose: To quantify prostate motion during a radiation therapy treatment using cine-magnetic resonance imaging (cine-MRI) for time frames comparable to that expected in an image-guided radiation therapy treatment session (20-30 min). Materials and Methods: Six patients undergoing radiation therapy for prostate cancer were imaged on 3 days, over the course of therapy (Weeks 1, 3, and 5). Four hundred images were acquired during the 1-h MRI session in 3 sagittal planes through the prostate at 6-s intervals. Eleven anatomic points of interest (POIs) have been used to characterize prostate/bony pelvis/abdominal wall displacement. Motion traces and standard deviation for each of the 11 POIs have been determined. The probability of displacement over time has also been calculated. Results: Patients were divided into 2 groups according to rectal filling status: full vs. empty rectum. The displacement of POIs (standard deviation) ranged from 0.98 to 1.72 mm for the full-rectum group and from 0.68 to 1.04 mm for the empty-rectum group. The low standard deviations in position (2 mm or less) would suggest that these excursions have a low frequency of occurrence. The most sensitive prostate POI to rectal wall motion was the midposterior with a standard deviation of 1.72 mm in the full-rectum group vs. 0.79 mm in the empty-rectum group (p 0.0001). This POI has a 10% probability of moving more than 3 mm in a time frame of ∼1 min if the rectum is full vs. ∼20 min if the rectum is empty. Conclusion: Motion of the prostate and seminal vesicles during a time frame similar to a standard treatment session is reduced compared to that reported in interfraction studies. The most significant predictor for intrafraction prostate motion is the status of rectal filling. A prostate displacement of <3 mm (90%) can be expected for the 20 min after the moment of initial imaging for patients with an empty rectum. This is not the case for patients presenting with full rectum. The determination

  5. Periodic motions and chaos for a damped mobile piston system in a high pressure gas cylinder with P control

    International Nuclear Information System (INIS)

    Wang, Donghua; Huang, Jianzhe

    2017-01-01

    In this paper, the complex motions for a moving piston in a closed gas cylinder will be analyzed using the discrete implicit maps method. The strong nonlinearity of such system will be observed due to the large quadratic and cubic stiffness. Period-1 motions which contain high order of harmonic components will be presented. The periodic motions will be discretized into multiple continuous mappings, and such mapping can be analyzed via Newton–Raphson iteration. The stability analysis will be given and the analytic conditions for the saddle-node and period-doubling bifurcation will be determined. From the semi-analytic solution route, the possible motions without considering the impact of the piston with the end wall of the cylinder will be obtained analytically. The scheme to reduce the vibration of the piston can be obtained through the parameter studies.

  6. An experimental study on compressive behavior of rubble stone walls retrofitted with BFRP grids

    Science.gov (United States)

    Huang, Hui; Jia, Bin; Li, Wenjing; Liu, Xiao; Yang, Dan; Deng, Chuanli

    2018-03-01

    An experimental study was conducted to investigate the compressive behavior of rubble stone walls retrofitted with BFRP grids. The experimental program consisted of four rubble stone walls: one unretrofitted rubble stone wall (reference wall) and three BFRP grids retrofitted rubble stone walls. The main purpose of the tests was to gain a better understanding of the compressive behavior of rubble stone walls retrofitted with different amount of BFRP grids. The experimental results showed that the reference wall failed with out-of-plane collapse due to poor connection between rubble stone blocks and the three BFRP grids retrofitted walls failed with BFRP grids rupture followed by out-of-plane collapse. The measured compressive strength of the BFRP grids retrofitted walls is about 1.4 to 2.5 times of that of the reference wall. Besides, the rubble stone wall retrofitted with the maximum amount of BFRP grids showed the minimum vertical and out-of-plane displacements under the same load.

  7. High-R Walls for Remodeling: Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  8. High-R Walls for Remodeling. Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Kochkin, V. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States)

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  9. Modeling and measurement of the motion of the DIII-D vacuum vessel during vertical instabilities

    International Nuclear Information System (INIS)

    Reis, E.; Blevins, R.D.; Jensen, T.H.; Luxon, J.L.; Petersen, P.I.; Strait, E.J.

    1991-11-01

    The motions of the D3-D vacuum vessel during vertical instabilities of elongated plasmas have been measured and studied over the past five years. The currents flowing in the vessel wall and the plasma scrapeoff layer were also measured and correlated to a physics model. These results provide a time history load distribution on the vessel which were input to a dynamic analysis for correlation to the measured motions. The structural model of the vessel using the loads developed from the measured vessel currents showed that the calculated displacement history correlated well with the measured values. The dynamic analysis provides a good estimate of the stresses and the maximum allowable deflection of the vessel. In addition, the vessel motions produce acoustic emissions at 21 Hertz that are sufficiently loud to be felt as well as heard by the D3-D operators. Time history measurements of the sounds were correlated to the vessel displacements. An analytical model of an oscillating sphere provided a reasonable correlation to the amplitude of the measured sounds. The correlation of the theoretical and measured vessel currents, the dynamic measurements and analysis, and the acoustic measurements and analysis show that: (1) The physics model can predict vessel forces for selected values of plasma resistivity. The model also predicts poloidal and toroidal wall currents which agree with measured values; (2) The force-time history from the above model, used in conjunction with an axisymmetric structural model of the vessel, predicts vessel motions which agree well with measured values; (3) The above results, input to a simple acoustic model predicts the magnitude of sounds emitted from the vessel during disruptions which agree with acoustic measurements; (4) Correlation of measured vessel motions with structural analysis shows that a maximum vertical motion of the vessel up to 0.24 in will not overstress the vessel or its supports. 11 refs., 10 figs., 1 tab

  10. Numerical simulation of the motion of charged suspended particle in multi-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Abd Elkhalek, M M [Nuclear Research Center-Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    A method for computing numerical simulation of the motion of charged suspended particle in multi-phase flow between two-long parallel plates is described in detail. The equation of motion of a suspended particle was suggested by closkin. The equations of motion are reduced to ordinary differential equations by similarity transformations and solved numerically by using Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. Numerical solutions of the resulting ordinary differential equations provide velocity distributions for both fluid and solid phases and density distributions for the solid. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically. 4 figs.

  11. Numerical Simulation of the Motion of Charged Suspended Particle in Multi-Phase Flow

    International Nuclear Information System (INIS)

    Abd-El Khalek, M.M.

    1998-01-01

    A method for computing Numerical simulation of the motion of charged suspended particle in multi-phase flow between two-long parallel plates is described in detail. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformations and solved numerically by using the Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. Numerical solutions of the resulting ordinary differential equations provide velocity distributions for both fluid and solid phases and density distributions for the solid. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically

  12. 3D ground‐motion simulations of Mw 7 earthquakes on the Salt Lake City segment of the Wasatch fault zone: Variability of long‐period (T≥1  s) ground motions and sensitivity to kinematic rupture parameters

    Science.gov (United States)

    Moschetti, Morgan P.; Hartzell, Stephen; Ramirez-Guzman, Leonardo; Frankel, Arthur; Angster, Stephen J.; Stephenson, William J.

    2017-01-01

    We examine the variability of long‐period (T≥1  s) earthquake ground motions from 3D simulations of Mw 7 earthquakes on the Salt Lake City segment of the Wasatch fault zone, Utah, from a set of 96 rupture models with varying slip distributions, rupture speeds, slip velocities, and hypocenter locations. Earthquake ruptures were prescribed on a 3D fault representation that satisfies geologic constraints and maintained distinct strands for the Warm Springs and for the East Bench and Cottonwood faults. Response spectral accelerations (SA; 1.5–10 s; 5% damping) were measured, and average distance scaling was well fit by a simple functional form that depends on the near‐source intensity level SA0(T) and a corner distance Rc:SA(R,T)=SA0(T)(1+(R/Rc))−1. Period‐dependent hanging‐wall effects manifested and increased the ground motions by factors of about 2–3, though the effects appeared partially attributable to differences in shallow site response for sites on the hanging wall and footwall of the fault. Comparisons with modern ground‐motion prediction equations (GMPEs) found that the simulated ground motions were generally consistent, except within deep sedimentary basins, where simulated ground motions were greatly underpredicted. Ground‐motion variability exhibited strong lateral variations and, at some sites, exceeded the ground‐motion variability indicated by GMPEs. The effects on the ground motions of changing the values of the five kinematic rupture parameters can largely be explained by three predominant factors: distance to high‐slip subevents, dynamic stress drop, and changes in the contributions from directivity. These results emphasize the need for further characterization of the underlying distributions and covariances of the kinematic rupture parameters used in 3D ground‐motion simulations employed in probabilistic seismic‐hazard analyses.

  13. Influence of strong perturbations on wall-bounded flows

    Science.gov (United States)

    Buxton, O. R. H.; Ewenz Rocher, M.; Rodríguez-López, E.

    2018-01-01

    Single-point hot-wire measurements are made downstream of a series of spanwise repeating obstacles that are used to generate an artificially thick turbulent boundary layer. The measurements are made in the near field, in which the turbulent boundary layer is beginning to develop from the wall-bounded wakes of the obstacles. The recent paper of Rodríguez-López et al. [E. Rodríguez-López et al., Phys. Rev. Fluids 1, 074401 (2016), 10.1103/PhysRevFluids.1.074401] broadly categorized the mechanisms by which canonical turbulent boundary layers eventually develop from wall-bounded wakes into two distinct mechanisms, the wall-driven and wake-driven mechanisms. In the present work we attempt to identify the geometric parameters of tripping arrays that trigger these two mechanisms by examining the spectra of the streamwise velocity fluctuations and the intermittent outer region of the flow. Using a definition reliant upon the magnitude of the velocity fluctuations, an intermittency function is devised that can discriminate between turbulent and nonturbulent flow. These results are presented along with the spectra in order to try to ascertain which aspects of a trip's geometry are more likely to favor the wall-driven or wake-driven mechanism. The geometrical aspects of the trips tested are the aspect ratio, the total blockage, and the blockage at the wall. The results indicate that the presence, or not, of perforations is the most significant factor in affecting the flow downstream. The bleed of fluid through the perforations reenergizes the mean recirculation and leads to a narrower intermittent region with a more regular turbulent-nonturbulent interface. The near-wall turbulent motions are found to recover quickly downstream of all of the trips with a wall blockage of 50%, but a clear influence of the outer fluctuations, generated by the tip vortices of the trips, is observed in the near-wall region for the high total blockage trips. The trip with 100% wall blockage is

  14. Motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Abd Elkhalek, M M [Nuclear Research Center-Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates is discussed. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformation and solved numerically by using Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The effect of solid particles on flow properties are discussed. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically. 4 figs.

  15. Motion of Charged Suspended Particle in a Non-Newtonian Fluid between Two Long Parallel Plated

    International Nuclear Information System (INIS)

    Abd-El Khalek, M.M.

    1998-01-01

    The motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates is discussed. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformations and solved numerically by using the Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The effects of solid particles on flow properties are discussed. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically

  16. Deposition pattern and tracer particle motion of evaporating multi-component sessile droplets.

    Science.gov (United States)

    Amjad, Muhammad; Yang, Yang; Raza, Ghulam; Gao, Hui; Zhang, Jun; Zhou, Leping; Du, Xiaoze; Wen, Dongsheng

    2017-11-15

    The understanding of near-wall motion, evaporation behavior and dry pattern of sessile nanofluid droplets is fundamental to a wide range of applications such as painting, spray drying, thin film coating, fuel injection and inkjet printing. However, a deep insight into the heat transfer, fluid flow, near-wall particle velocity and their effects on the resulting dry patterns is still much needed to take the full advantage of these nano-sized particles in the droplet. This work investigates the effect of direct absorptive silicon/silver (Si/Ag) hybrid nanofluids via two experiments. The first experiment identifies the motion of tracer particles near the triple line of a sessile nanofluid droplet on a super-hydrophilic substrate under ambient conditions by the multilayer nanoparticle image velocimetry (MnPIV) technique. The second experiment reveals the effect of light-sensitive Si/Ag composite nanoparticles on the droplet evaporation rate and subsequent drying patterns under different radiation intensities. The results show that the presence of nanoparticle in a very small proportion significantly affects the motion of tracer particles, leading to different drying patterns and evaporation rates, which can be very important for the applications such as spray coating and inkjet printing. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Experimental study of a shear wall with numerous small openings

    International Nuclear Information System (INIS)

    Sotomura, K.; Murazumi, Y.; Yoshizaki, S.; Ezaki, T.

    1981-01-01

    Many small openings for piping and ducts are usually required in the shear walls for PWR nuclear power plant. It is generally believed that such openings oadversely affect the strength and stiffness of shear walls. However, little information is available concerning the behavior of walls with numerous small openings. Therefore, tests using wall specimens and an analysis using an FEM program were carried out to investigate this behavior. Main findings are as follows: 1) The ultimate strength of a shear wall with numerous small openings may be obtained by using the effective area at the critical cross section of the shear wall. 2) Shear walls with openings can be restored to the same shear strength and stiffness as shear walls without openings by diagonal reinforcement. (orig./HP)

  18. Optimal piston motion for maximum net output work of Daniel cam engines with low heat rejection

    International Nuclear Information System (INIS)

    Badescu, Viorel

    2015-01-01

    Highlights: • The piston motion of low heat rejection compression ignition engines is optimized. • A realistic model taking into account the cooling system is developed. • The optimized cam is smaller for cylinders without thermal insulation. • The optimized cam size depends on ignition moment and cooling process intensity. - Abstract: Compression ignition engines based on classical tapper-crank systems cannot provide optimal piston motion. Cam engines are more appropriate for this purpose. In this paper the piston motion of a Daniel cam engine is optimized. Piston acceleration is taken as a control. The objective is to maximize the net output work during the compression and power strokes. A major research effort has been allocated in the last two decades for the development of low heat rejection engines. A thermally insulated cylinder is considered and a realistic model taking into account the cooling system is developed. The sinusoidal approximation of piston motion in the classical tapper-crank system overestimates the engine efficiency. The exact description of the piston motion in tapper-crank system is used here as a reference. The radiation process has negligible effects during the optimization. The approach with no constraint on piston acceleration is a reasonable approximation. The net output work is much larger (by 12–13%) for the optimized system than for the classical tapper-crank system, for similar thickness of cylinder walls and thermal insulation. Low heat rejection measures are not of significant importance for optimized cam engines. The optimized cam is smaller for a cylinder without thermal insulation than for an insulated cylinder (by up to 8%, depending on the local polar radius). The auto-ignition moment is not a parameter of significant importance for optimized cam engines. However, for given cylinder wall and insulation materials there is an optimum auto-ignition moment which maximizes the net output work. The optimum auto

  19. High-risk subgroup of inferior myocardial infarction. Importance of anterior wall motion and right ventricular function

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Tsunehiko; Yasuda, Tsunehiro; Gold, H K; Leinbach, R C; Boucher, C A; McKusick, K A; Strauss, H W

    1986-12-01

    To identify high-risk subgroups of inferior myocardial infarction, 75 patients presenting with their first inferior infarction were investigated by sequential gated blood pool scans. The patients were divided into four groups based on the right ventricular function (RVF) and anterior wall motion (AWM) of the left ventricle by scan at the time of admission. A second blood pool scan was performed at ten days to evaluate RV and LV function. Thirty-eight patients had cardiac catheterization before discharge and all patients were followed up for one year to determine their clinical outcome. Depressed RVF and reduced AWM were observed in 26 (35%) (Group A); depressed RVF and normal AWM were found in 20 (27%) (Group B); reduced AWM and normal RVE in 10 (13%) (Group C); and normal RVF and AWM in 19 (25%) (Group D). The mean values of biventricular function (LVEF, RVEF) in groups A, B, C, and D were (44.9 +- 8.4%, 32.5 +- 9.9%), (59.9 +- 8.6%, 34.5 +- 8.0%), (44.9 +- 15.7%, 48.2 +- 3.3%), and (60.4 +- 9.1%, 51.6 +- 10.6%), respectively, at admission. In serial measurements, LVEF did not change significantly in any group, however, RVEF improved nearly 10 points in groups A and B at 10 days. Group A also had the highest incidence (82 %) of left anterior descending coronary artery involvement, and the highest mean creatine phosphokinase levels (762 +- 318 U/1): Furthermore, group A had a high incidence of major complications during their hospital course and high mortality during the one-year follow-up. These data clearly identified group A as a high-risk subgroup of patients with inferior infarction.

  20. Experimental study of a turbulent boundary layer on a rough wall

    International Nuclear Information System (INIS)

    Trijoulet, Alexandre

    1999-01-01

    This research thesis reports the definition and results of an experimental study of a two-dimensional incompressible turbulent boundary layer on a rough wall in presence of pressure gradients. This study is motivated by problems met on pump blades by EDF. The author first reports a detailed bibliographical study on the current knowledge regarding the structure of turbulent boundary layers on smooth and rough walls, while more particularly focusing on the notion of wall law. Based on an analysis of Navier-Stokes equations, the author discusses the elaboration of a local partial similitude between two-dimensional flows obtained in wind tunnel and three-dimensional flows in presence of a uniform rotation for flows present within pumps. Thus, the author reproduces the main characteristics of boundary layers on pump walls in a simplified experimental arrangement in which detailed and reliable measurements are possible. In the next part, the author addresses the case of helical-centrifugal pumps. Based on calculation performed by other authors, the above-mentioned similitude parameters are assessed. Results are used to define experimental arrangements suitable for this study. An experimental installation is then presented, as well as the data processing scheme. Experimental results are presented and discussed for flows without pressure gradient, slowed down or accelerated on different surface conditions [fr

  1. Trochanteric fracture-implant motion during healing - A radiostereometry (RSA) study.

    Science.gov (United States)

    Bojan, Alicja J; Jönsson, Anders; Granhed, Hans; Ekholm, Carl; Kärrholm, Johan

    2018-03-01

    Cut-out complication remains a major unsolved problem in the treatment of trochanteric hip fractures. A better understanding of the three-dimensional fracture-implant motions is needed to enable further development of clinical strategies and countermeasures. The aim of this clinical study was to characterise and quantify three-dimensional motions between the implant and the bone and between the lag screw and nail of the Gamma nail. Radiostereometry Analysis (RSA) analysis was applied in 20 patients with trochanteric hip fractures treated with an intramedullary nail. The following three-dimensional motions were measured postoperatively, at 1 week, 3, 6 and 12 months: translations of the tip of the lag screw in the femoral head, motions of the lag screw in the nail, femoral head motions relative to the nail and nail movements in the femoral shaft. Cranial migration of the tip of the lag screw dominated over the other two translation components in the femoral head. In all fractures the lag screw slid laterally in the nail and the femoral head moved both laterally and inferiorly towards the nail. All femoral heads translated posteriorly relative to the nail, and rotations occurred in both directions with median values close to zero. The nail tended to retrovert in the femoral shaft. Adverse fracture-implant motions were detected in stable trochanteric hip fractures treated with intramedullary nails with high resolution. Therefore, RSA method can be used to evaluate new implant designs and clinical strategies, which aim to reduce cut-out complications. Future RSA studies should aim at more unstable fractures as these are more likely to fail with cut-out. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Realization of a Desktop Flight Simulation System for Motion-Cueing Studies

    Directory of Open Access Journals (Sweden)

    Berkay Volkaner

    2016-05-01

    Full Text Available Parallel robotic mechanisms are generally used in flight simulators with a motion-cueing algorithm to create an unlimited motion feeling of a simulated medium in a bounded workspace of the simulator. A major problem in flight simulators is that the simulation has an unbounded space and the manipulator has a limited one. Using a washout filter in the motion-cueing algorithm overcomes this. In this study, a low-cost six degrees of freedom (DoF desktop parallel manipulator is used to test a classical motion-cueing algorithm; the algorithm's functionality is confirmed with a Simulink real-time environment. Translational accelerations and angular velocities of the simulated medium obtained from FlightGear flight simulation software are processed through a generated washout filter algorithm and the simulated medium's motion information is transmitted to the desktop parallel robotic mechanism as a set point for each leg. The major issues of this paper are designing a desktop simulation system, controlling the parallel manipulator, communicating between the flight simulation and the platform, designing a motion-cueing algorithm and determining the parameters of the washout filters.

  3. A fundamental study of fission product deposition on the wall surface

    International Nuclear Information System (INIS)

    Ishiguro, R.; Sakashita, H.; Sugiyama, K.

    1987-01-01

    Deposition of soluble matters on wall surfaces is studied in the present report for the purpose to understand a mechanism of fission product deposition on the wall surface in a molten salt reactor. Calcium carbonate solution is used to observe the fundamental mechanism of deposition. The experiments are performed under conditions of turbulent flow of the solution over a heated wall. According to the experimental results a model is proposed to estimate deposition rate. The model consists of two parts, one is the initial nucleus formation on a clean wall surface and the other is the constant increase of deposition succeeding to the first stage. The model is assessed by comparing it with the experimental results. Both results coincide well in some parameters, but not so well in others. (author)

  4. Erosion simulation of first wall beryllium armour after ITER transient heat loads and runaway electrons action

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B., E-mail: boris.bazylev@kit.edu [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Igitkhanov, Yu.; Landman, I.; Pestchanyi, S. [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Loarte, A. [ITER Organisation, Cadarache, 13108 Saint Paul Lez Durance Cedex (France)

    2011-10-01

    Beryllium is foreseen as plasma facing armour for the first wall (FW) in ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) and runaway electrons impact are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting, evaporation, and melt motion, which determine the life-time of the plasma facing components. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the J x B forces are analyzed for bulk Be and different sizes of Be-brushes. The damage of the FW due to heat loads caused by runaway electrons is numerically simulated.

  5. Erosion simulation of first wall beryllium armour after ITER transient heat loads and runaway electrons action

    International Nuclear Information System (INIS)

    Bazylev, B.; Igitkhanov, Yu.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2011-01-01

    Beryllium is foreseen as plasma facing armour for the first wall (FW) in ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) and runaway electrons impact are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting, evaporation, and melt motion, which determine the life-time of the plasma facing components. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the J x B forces are analyzed for bulk Be and different sizes of Be-brushes. The damage of the FW due to heat loads caused by runaway electrons is numerically simulated.

  6. Elastohydrodynamics of a free cylinder near a soft wall

    Science.gov (United States)

    Mahadevan, L.; Salez, Thomas

    2015-11-01

    We consider the motion of a fluid-immersed negatively buoyant particle in the vicinity of a thin compressible elastic wall. We use scaling arguments to establish different regimes of settling, sliding, rolling and complement these estimates using thin-film lubrication dynamics to determine an asymptotic theory for the sedimentation, sliding, and spinning motions of a cylinder. Numerical integration of the resulting equations confirms our scaling relations and further yields a range of behaviours such as spontaneously oscillations when sliding, lift via a Magnus-like effect, a spin-induced reversal effect, and an unusual sedimentation singularity. Our description also allows us to address a sedimentation-sliding transition that can lead to the particle coasting over very long distances, similar to certain geophysical phenomena.

  7. Effects of cooking on the cell walls (dietary fiber) of 'Scarlet Warren' winter squash ( Cucurbita maxima ) studied by polysaccharide linkage analysis and solid-state (13)C NMR.

    Science.gov (United States)

    Ratnayake, R M Sunil; Sims, Ian M; Newman, Roger H; Melton, Laurence D

    2011-07-13

    Cell wall polysaccharides of 'Scarlet Warren' winter squash ( Cucurbita maxima ) were investigated before and after thermal processing. Linkage analysis of polysaccharides was done by gas chromatography coupled to mass spectrometry (GC-MS). The linkage analysis showed the cell wall polysaccharide compositions of raw and cooked squash were similar. The total pectic polysaccharides (galacturonan, rhamnogalacturonan, arabinan, and arabinogalactan) contents of the cell walls of both raw and cooked squash were 39 mol %. The amounts of pectic polysaccharides and xyloglucan in the cell walls of squash showed little alteration on heating. The cellulose content of the raw and cooked cell walls was relatively high at 47 mol %, whereas the xyloglucan content was low at 4 mol %. Solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy techniques were used to examine the molecular motion of the polysaccharides in the cell walls. The mobility of highly flexible galactan depends on the water content of the sample, but no difference was seen between raw and cooked samples. Likewise, the mobility of semimobile pectic polysaccharides was apparently unaltered by cooking. No change was detected in the rigid cellulose microfibrils on cooking.

  8. Influence of age on the prognostic importance of left ventricular dysfunction and congestive heart failure on long-term survival after acute myocardial infarction. TRACE Study Group

    DEFF Research Database (Denmark)

    Køber, L; Torp-Pedersen, C; Ottesen, M

    1996-01-01

    for entry into the TRAndolapril Cardiac Evaluation (TRACE) study. Medical history, echocardiographic estimation of LV systolic function determined as wall motion index, infarct complications, and survival were documented for all patients. To study the importance of congestive heart failure and wall motion...... dysfunction was more pronounced in the elderly than in the young....

  9. Development of a rocking R/C shear wall system implementing repairable structural fuses

    Science.gov (United States)

    Parsafar, Saeed; Moghadam, Abdolreza S.

    2017-09-01

    In the last decades, the concept of earthquake resilient structural systems is becoming popular in which the rocking structure is considered as a viable option for buildings in regions of high seismicity. To this end, a novel wall-base connection based on the " repairable structure" approach is proposed and evaluated. The proposed system is made of several steel plates and high strength bolts act as a friction connection. To achieve the desired rocking motion in the proposed system, short-slotted holes are used in vertical directions for connecting the steel plates to the shear wall (SW). The experimental and numerical studies were performed using a series of displacement control quasi-static cyclic tests on a reference model and four different configurations of the proposed connection installed at the wall corners. The seismic response of the proposed system is compared to the conventional SW in terms of energy dissipation and damage accumulation. In terms of energy dissipation, the proposed system depicted better performance with 95% more energy dissipation capability compared to conventional SW. In terms of damage accumulation, the proposed SW system is nearly undamaged compared to the conventional wall system, which was severely damaged at the wall-base region. Overall, the introduced concept presents a feasible solution for R/C structures when a low-damage design is targeted, which can improve the seismic performance of the structural system significantly.

  10. Near-Wall Turbulence Modelling of Rotating and Curved Shear Flows

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Bjoern Anders

    1997-12-31

    This thesis deals with verification and refinement of turbulence models within the framework of the Reynolds-averaged approach. It pays special attention to modelling the near-wall region, where the turbulence is strongly non-homogeneous and anisotropic. It also studies in detail the effects associated with an imposed rotation of the reference frame or streamline curvature. The objective with near-wall turbulence closure modelling is to formulate a set of equations governing single point turbulence statistics, which can be solved in the region of the flow which extends to the wall. This is in contrast to the commonly adopted wall-function approach in which the wall-boundary conditions are replaced by matching conditions in the logarithmic region. The near-wall models allow more flexibility by not requiring any such universal behaviour. Assessment of the novel elliptic relaxation approach to model the proximity of a solid boundary reveals an encouraging potential used in conjunction with second-moment and eddy-viscosity closures. The most natural level of closure modelling to predict flows affected by streamline curvatures or an imposed rotation of the reference frame is at the second-moment closure (SMC) level. Although SMCs naturally accounts for the effects of system rotation, the usual application of a scalar dissipation rate equation is shown to require ad hoc corrections in some cases in order to give good results. The elliptic relaxation approach is also used in conjunction with non-linear pressure-strain models and very encouraging results are obtained for rotating flows. Rotational induced secondary motions are vital to predicting the effects of system rotation. Some severe weaknesses of non-linear pressure-strain models are also indicated. Finally, a modelling methodology for anisotropic dissipation in nearly homogeneous turbulence are proposed. 84 refs., 56 figs., 16 tabs.

  11. Single-unit studies of visual motion processing in cat extrastriate areas

    NARCIS (Netherlands)

    Vajda, Ildiko

    2003-01-01

    Motion vision has high survival value and is a fundamental property of all visual systems. The old Greeks already studied motion vision, but the physiological basis of it first came under scrutiny in the late nineteenth century. Later, with the introduction of single-cell (single-unit)

  12. Distribution and spectrum of fluctuations of a Brownian particle in a potential well with reflecting walls

    International Nuclear Information System (INIS)

    Soskin, S.M.

    1987-01-01

    The authors examine Brownian motion in a square well with reflecting walls. An exact solution is obtained for the corresponding Einstein-Fokker-Planck equation, which is used to find the coordinate correlation function in explicit form. The correlation function, normalized to the square of the distance between the walls, typically exhibits a similarity property: its behavior as a function of time, friction, temperature, and wall separation reduces to a function of one simple combination of those four quantities. The limiting cases of low and high friction are investigated in detail, with explicit expressions being derived for the spectrum

  13. Analysis of domain wall dynamics based on skewness of magnetic Barkhausen noise for applied stress determination

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Song [College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, Jiangsu 211816 (China); School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Tian, GuiYun, E-mail: tian280@hotmail.com [School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); School of Electrical and Electronic Engineering, Merz Court, University of Newcastle upon Tyne, Newcastle NE1 7RU (United Kingdom); Dobmann, Gerd; Wang, Ping [School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China)

    2017-01-01

    Skewness of Magnetic Barkhausen Noise (MBN) signal is used as a new feature for applied stress determination. After experimental studies, skewness presents its ability for measuring applied tensile stress compared with conventional feature, meanwhile, a non-linear behavior of this new feature and an independence of the excitation conditions under compressive stress are found and discussed. Effective damping during domain wall motion influencing the asymmetric shape of the MBN statistical distribution function is discussed under compressive and tensile stress variation. Domain wall (DW) energy and distance between pinning edges of the DW are considered altering the characteristic relaxation time, which is the reason for the non-linear phenomenon of skewness. - Highlights: • The skewness of magnetic Barkhausen noise profile is proposed as a new feature for applied stress determination. • The skewness is sensitive to applied stress and independent to excitation frequency. • Domain wall energy and pinning distance influence the relaxation time of domain wall, which leads to a non-linear behavior of skewness under compressive stress.

  14. Streaming and particle motion in acoustically-actuated leaky systems

    Science.gov (United States)

    Nama, Nitesh; Barnkob, Rune; Jun Huang, Tony; Kahler, Christian; Costanzo, Francesco

    2017-11-01

    The integration of acoustics with microfluidics has shown great promise for applications within biology, chemistry, and medicine. A commonly employed system to achieve this integration consists of a fluid-filled, polymer-walled microchannel that is acoustically actuated via standing surface acoustic waves. However, despite significant experimental advancements, the precise physical understanding of such systems remains a work in progress. In this work, we investigate the nature of acoustic fields that are setup inside the microchannel as well as the fundamental driving mechanism governing the fluid and particle motion in these systems. We provide an experimental benchmark using state-of-art 3D measurements of fluid and particle motion and present a Lagrangian velocity based temporal multiscale numerical framework to explain the experimental observations. Following verification and validation, we employ our numerical model to reveal the presence of a pseudo-standing acoustic wave that drives the acoustic streaming and particle motion in these systems.

  15. High efficiency of the spin-orbit torques induced domain wall motion in asymmetric interfacial multilayered Tb/Co wires

    International Nuclear Information System (INIS)

    Bang, Do; Awano, Hiroyuki

    2015-01-01

    We investigated current-induced DW motion in asymmetric interfacial multilayered Tb/Co wires for various thicknesses of magnetic and Pt-capping layers. It is found that the driving mechanism for the DW motion changes from interfacial to bulk effects at much thick magnetic layer (up to 19.8 nm). In thin wires, linearly depinning field dependence of critical current density and in-plane field dependence of DW velocity suggest that the extrinsic pinning governs field-induced DW motion and injecting current can be regarded as an effective field. It is expected that the high efficiency of spin-orbit torques in thick magnetic multilayers would have important implication for future spintronic devices based on in-plane current induced-DW motion or switching

  16. High efficiency of the spin-orbit torques induced domain wall motion in asymmetric interfacial multilayered Tb/Co wires

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Do, E-mail: bang@spin.mp.es.osaka-u.ac.jp [Toyota Technological Institute, Tempaku, Nagoya 468-8511 (Japan); Institute of Materials Science, VAST, 18 Hoang Quoc Viet, Hanoi (Viet Nam); Awano, Hiroyuki [Toyota Technological Institute, Tempaku, Nagoya 468-8511 (Japan)

    2015-05-07

    We investigated current-induced DW motion in asymmetric interfacial multilayered Tb/Co wires for various thicknesses of magnetic and Pt-capping layers. It is found that the driving mechanism for the DW motion changes from interfacial to bulk effects at much thick magnetic layer (up to 19.8 nm). In thin wires, linearly depinning field dependence of critical current density and in-plane field dependence of DW velocity suggest that the extrinsic pinning governs field-induced DW motion and injecting current can be regarded as an effective field. It is expected that the high efficiency of spin-orbit torques in thick magnetic multilayers would have important implication for future spintronic devices based on in-plane current induced-DW motion or switching.

  17. Reinforcement mechanism of multi-anchor wall with double wall facing

    Science.gov (United States)

    Suzuki, Kouta; Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo

    2017-10-01

    The reinforced soil wall has high seismic performance as generally known. However, the seismic behavior has not been clarified accurately yet, especially on multi-anchor wall with double wall facing. Indefinite behavior of reinforced soil wall during earthquake make us complicated in case with adopting to the abutment, because of arrangement of anchor plate as reinforcement often different according to the width of roads. In this study, a series of centrifuge model tests were carried out to investigate the reinforcement mechanism of multi anchor wall with double wall facing from the perspective of the vertical earth pressure. Several types of reinforce arrangement and rigid wall were applied in order to verify the arch function in the reinforced regions. The test results show unique behavior of vertical earth pressure, which was affected by arch action. All the vertical earth pressure placed behind facing panel, are larger than that of middle part between facing panel despite of friction between backfill and facing panel. Similar results were obtained in case using rigid wall. On the other hands, the vertical earth pressure, which were measured at the 3cm high from bottom of model container, shows larger than that of bottom. This results show the existence of arch action between double walls. In addition, it implies that the wall facing of such soil structure confined the backfill as pseudo wall, which is very reason that the multi anchor wall with double wall facing has high seismic performance.

  18. Experimental Study of Multi-Walled Composite Shell Fragments under Thermal Force Effects

    Directory of Open Access Journals (Sweden)

    L. P. Tairova

    2015-01-01

    Full Text Available Multi-walled composite shells are a relatively new prospective type of load carrying structures for rocket and space engineering. These CFRP structures are produced by injection and infusion methods and have several advantages in comparison with common structures such as stringer-frame, grid and sandwich structures with a light core. In particular, those have more structural parameters, which enable one to control mechanical properties of the structure, and this is important in designing the load carrying structures of different purpose.Presently, there are few national and foreign publications on experimental investigations of mechanical properties of multi-walled shells. That is why the objective of the paper is to conduct the experimental study of deformation and failure processes of a multi-walled panel both under steady-state heating and under unsteady-state one.The paper presents the results of two tests: (1 the study of deformation and failure modes under compression and complete heating up to a specified temperature and (2 validation of working capability of multi-walled samples under single-side heating and compression simulating a start and flight version of the “ Proton” launch vehicle.Experimental results have shown that average elastic properties of multi-walled samples slightly depend on temperature for the studied range (from room temperature up to 195C while strength properties considerably decrease with increasing temperature, and this is typical for CFRP structures under compression. However, under unsteady-state short-term heating the structure has a strength that exceeds the minimal necessary strength of load carrying structures of the “Proton” launch vehicle (the samples satisfy simulated start conditions of the “Proton” launch vehicle. This is because of a low heat conductivity of the multi-walled core: an unheated sheet holds a low temperature and high load carrying capacity.Obtained results can be used in

  19. A method of meta-mechanism combination and replacement based on motion study

    Directory of Open Access Journals (Sweden)

    Yadong Fang

    2015-01-01

    Full Text Available Lacking the effective methods to reduce labor and cost, many small- and medium-sized assembly companies are facing with the problem of high cost for a long time. In order to reduce costs of manual operations, the method of meta-mechanism combination and replacement is studied. In this paper, we mainly discuss assembling motion analysis, workpieces position information acquisition, motion library construction, assembling motion analysis by Maynard’s operation sequence technique, meta-mechanism database establishment, and match of motion and mechanism. At the same time, the principle, process, and system realization framework of mechanism replacement are introduced. Lastly, problems for low-cost automation of the production line are basically resolved by operator motion analysis and meta-mechanism combination and match.

  20. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Science.gov (United States)

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    perception driven by a minority of subjects. There was no significant effect of illusory motion on self-motion perception for either translation or rotation (p>0.1 for both). Thus, although a true moving visual field can induce self-motion, results of this study show that illusory motion does not.

  1. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Directory of Open Access Journals (Sweden)

    Steven David Rosenblatt

    study show that illusory motion does not.

  2. Sloshing Simulation of Three Types Tank Ship on Pitching and Heaving Motion

    Directory of Open Access Journals (Sweden)

    Edi Djatmiko

    2017-06-01

    Full Text Available As an important part of a ship, tanker / cargo hold specifically designed to distribute the load to be maintained safely. In a related IMO classification of LNG carrier, there are a wide variety of types of LNG tanks on ships. Are generally divided into two types, namely tank (Independent Self Supporting Tank and (Non Self Supporting Tanks. The tank-type variation will affect the characteristics of fluid motion that is inside the tank. Need for simulation of sloshing and analysis of the structure of the tank due to the force created by the load when the heaving and pitching. Sloshing the effect of the free movement of the fluid in the tank with the striking motion wall tank walls that can damage the walls of the tank. Type 1 tank is a tank octagonal (octogonal for membrane-type LNG carrier with dimensions of length 38 m width 39.17 m 14.5 m high side of the tank. Type 2 tank is a tank-shaped capsule with the long dimension of 26.6 m and a diameter of 10.5 m. Type 3 tank is rectangular tank (rectanguler with dimensions of length of 49.68 m, width 46.92 and 32.23 m high. Simulations conducted using Computational Fluid Dynamic (CFD using ANSYS FLUENT software. From the simulation results concluded that the tank 1 to form (octogonal have a total pressure of 3013.99 Pa on the front wall with a height of 13.65 m from the base of the tank

  3. Discrete Element study of granular material - Bumpy wall interface behavior

    Science.gov (United States)

    El Cheikh, Khadija; Rémond, Sébastien; Pizette, Patrick; Vanhove, Yannick; Djelal, Chafika

    2016-09-01

    This paper presents a DEM study of a confined granular material sheared between two parallel bumpy walls. The granular material consists of packed dry spherical particles. The bumpiness is modeled by spheres of a given diameter glued on horizontal planes. Different bumpy surfaces are modeled by varying diameter or concentration of glued spheres. The material is sheared by moving the two bumpy walls at fixed velocity. During shear, the confining pressure applied on each bumpy wall is controlled. The effect of wall bumpiness on the effective friction coefficient and on the granular material behavior at the bumpy walls is reported for various shearing conditions. For given bumpiness and confining pressure that we have studied, it is found that the shear velocity does not affect the shear stress. However, the effective friction coefficient and the behavior of the granular material depend on the bumpiness. When the diameter of the glued spheres is larger than about the average grains diameter of the medium, the latter is uniformly sheared and the effective friction coefficient remains constant. For smaller diameters of the glued spheres, the effective friction coefficient increases with the diameter of glued spheres. The influence of glued spheres concentration is significant only for small glued spheres diameters, typically half of average particle diameter of the granular material. In this case, increasing the concentration of glued spheres leads to a decrease in effective friction coefficient and to shear localization at the interface. For different diameters and concentrations of glued spheres, we show that the effect of bumpiness on the effective friction coefficient can be characterized by the depth of interlocking.

  4. The Versatile Elastohydrodynamics of a Free Particle near a Thin Soft Wall

    Science.gov (United States)

    Salez, Thomas; Saintyves, Baudouin; Mahadevan, L.

    2015-03-01

    We address the free motion of a buoyant particle inside a viscous fluid, in the vicinity of a thin compressible elastic wall. After discussing the main scalings, we obtain analytically the dominant drag forces within the soft lubrication approximation. By including those into the equations of motion of the particle, we establish a general governing system of three coupled nonlinear and singular differential equations, that describe the three essential motions: sedimentation, hydroplaning, and hydrospinning, through four dimensionless control parameters. Numerical integration allows us to predict a wide zoology of exotic solutions - despite the low-Reynolds feature of the flow - including: spontaneous oscillation, Magnus-like effect, enhanced sedimentation, and boomerang-like effect. We compare these predictions to experiments. The presented elementary approach could be of interest in the description of a broad variety of elastohydrodynamical phenomena, including: landslides, ageing of cartilaginous joints, and motion of a cell in a microfluidic channel or in a blood vessel.

  5. Rocket-inspired tubular catalytic microjets with grating-structured walls as guiding empennages.

    Science.gov (United States)

    Huang, Gaoshan; Wang, Jiyuan; Liu, Zhaoqian; Zhou, Dekai; Tian, Ziao; Xu, Borui; Li, Longqiu; Mei, Yongfeng

    2017-12-07

    Controllable locomotion in the micro-/nanoscale is challenging and attracts increasing research interest. Tubular microjets self-propelled by microbubbles are intensively investigated due to their high energy conversion efficiency, but the imperfection of the tubular geometry makes it harder to realize linear motion. Inspired by the macro rocket, we designed a tubular microjet with a grating-structured wall which mimics the guiding empennage of the macro rocket, and we found that the fluid can be effectively guided by the grooves. Both theoretical simulation and experimental work have been carried out, and the obtained results demonstrate that the stability margin of the grating-structured microjet can be enhanced. Compared with microjets with smooth walls, the structured microjets show an enhanced ability of moving linearly. In 10% H 2 O 2 , only 20% of the smooth microjets demonstrate linear trajectories, while 80% of the grating-structured microjets keep moving straight. The grating-structured microjet can maintain linear motion under external disturbance. We further propose to increase the stability by introducing a helical grating structure.

  6. A PSF-Shape-Based Beamforming Strategy for Robust 2D Motion Estimation in Ultrafast Data

    OpenAIRE

    Anne E. C. M. Saris; Stein Fekkes; Maartje M. Nillesen; Hendrik H. G. Hansen; Chris L. de Korte

    2018-01-01

    This paper presents a framework for motion estimation in ultrafast ultrasound data. It describes a novel approach for determining the sampling grid for ultrafast data based on the system’s point-spread-function (PSF). As a consequence, the cross-correlation functions (CCF) used in the speckle tracking (ST) algorithm will have circular-shaped peaks, which can be interpolated using a 2D interpolation method to estimate subsample displacements. Carotid artery wall motion and parabolic blood flow...

  7. Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization.

    Science.gov (United States)

    Chiba, D; Kawaguchi, M; Fukami, S; Ishiwata, N; Shimamura, K; Kobayashi, K; Ono, T

    2012-06-06

    Controlling the displacement of a magnetic domain wall is potentially useful for information processing in magnetic non-volatile memories and logic devices. A magnetic domain wall can be moved by applying an external magnetic field and/or electric current, and its velocity depends on their magnitudes. Here we show that the applying an electric field can change the velocity of a magnetic domain wall significantly. A field-effect device, consisting of a top-gate electrode, a dielectric insulator layer, and a wire-shaped ferromagnetic Co/Pt thin layer with perpendicular anisotropy, was used to observe it in a finite magnetic field. We found that the application of the electric fields in the range of ± 2-3 MV cm(-1) can change the magnetic domain wall velocity in its creep regime (10(6)-10(3) m s(-1)) by more than an order of magnitude. This significant change is due to electrical modulation of the energy barrier for the magnetic domain wall motion.

  8. Calculating the shrapnel generation and subsequent damage to first wall and optics components for the National Ignition Facility

    International Nuclear Information System (INIS)

    Tokheim, R.E.; Seaman, L.; Cooper, T.; Lew, B.; Curran, D.R.; Sanchez, J.; Anderson, A.; Tobin, M.

    1996-01-01

    This study computationally assesses the threat from shrapnel generation on the National Ignition Facility (NIF) first wall, final optics, and ultimately other target chamber components. Motion of the shrapnel is determined both by particle velocities resulting from the neutron deposition and by x-ray and ionic debris loading arising from explosion of the hohlraum. Material responses of different target area components are computed from one-dimensional and two-dimensional stress wave propagation codes. Well developed rate-dependent spall computational models are used for stainless steel spall and splitting. Severe cell distortion is accounted for in shine-shield and hohlraum-loading computations. Resulting distributions of shrapnel particles are traced to the first wall and optics and damage is estimated for candidate materials. First wall and optical material damage from shrapnel includes crater formation and associated extended cracking. 5 refs., 10 figs

  9. Evaluation of composite shear walls behavior (parametric study

    Directory of Open Access Journals (Sweden)

    Ali Nikkhoo

    2017-11-01

    Full Text Available Composite shear walls which are made of a layer of steel plate with a concrete cover in one or both sides of the steel plate, are counted as the third generation of the shear walls. Nowadays, composite shear walls are widely utilized in building new resisting structures as well as rehabilitating of the existing structures in earthquake-prone countries. Despite of its advantages, use of the composite shear walls is not yet prevalent as it demands more detailed appropriate investigation. Serving higher strength, flexibility and better energy absorption, while being more economical are the main advantages of this system which has paved its path to be used in high-rise buildings, structural retrofit and reservoir tanks. In this research, channel shear connectors are utilized to connect the concrete cover to the steel plate. As a key parameter, variation in the distance of shear connectors and their arrangement on the behavior of composite shear walls has been scrutinized. In addition, the shear stiffness, flexibility, out of plane displacement and the energy absorption of the structural system has been explored. For this purpose, several structural models with different shear distances and arrangements have been investigated. The obtained results reveal that with increase in shear connectors’ distance, the wall stiffness would reduce while its lateral displacement increases up to eighty percent While the out of plane displacement of the steel plate will reduce up to three times.

  10. Inverse measurement of wall pressure field in flexible-wall wind tunnels using global wall deformation data

    Science.gov (United States)

    Brown, Kenneth; Brown, Julian; Patil, Mayuresh; Devenport, William

    2018-02-01

    The Kevlar-wall anechoic wind tunnel offers great value to the aeroacoustics research community, affording the capability to make simultaneous aeroacoustic and aerodynamic measurements. While the aeroacoustic potential of the Kevlar-wall test section is already being leveraged, the aerodynamic capability of these test sections is still to be fully realized. The flexibility of the Kevlar walls suggests the possibility that the internal test section flow may be characterized by precisely measuring small deflections of the flexible walls. Treating the Kevlar fabric walls as tensioned membranes with known pre-tension and material properties, an inverse stress problem arises where the pressure distribution over the wall is sought as a function of the measured wall deflection. Experimental wall deformations produced by the wind loading of an airfoil model are measured using digital image correlation and subsequently projected onto polynomial basis functions which have been formulated to mitigate the impact of measurement noise based on a finite-element study. Inserting analytic derivatives of the basis functions into the equilibrium relations for a membrane, full-field pressure distributions across the Kevlar walls are computed. These inversely calculated pressures, after being validated against an independent measurement technique, can then be integrated along the length of the test section to give the sectional lift of the airfoil. Notably, these first-time results are achieved with a non-contact technique and in an anechoic environment.

  11. Initial Ferritic Wall Mode studies on HBT-EP

    Science.gov (United States)

    Hughes, Paul; Bialek, J.; Boozer, A.; Mauel, M. E.; Levesque, J. P.; Navratil, G. A.

    2013-10-01

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective US component test facility and DEMO. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these experiments. Although the ferritic wall mode (FWM) was seen in a linear machine, the FWM was not observed in JFT-2M, probably due to eddy current stabilization. Using its high-resolution magnetic diagnostics and positionable walls, HBT-EP has begun exploring the dynamics and stability of plasma interacting with high-permeability ferritic materials tiled to reduce eddy currents. We summarize a simple model for plasma-wall interaction in the presence of ferromagnetic material, describe the design of a recently-installed set of ferritic shell segments, and report initial results. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  12. A kinematic approach for efficient and robust simulation of the cardiac beating motion.

    Directory of Open Access Journals (Sweden)

    Takashi Ijiri

    Full Text Available Computer simulation techniques for cardiac beating motions potentially have many applications and a broad audience. However, most existing methods require enormous computational costs and often show unstable behavior for extreme parameter sets, which interrupts smooth simulation study and make it difficult to apply them to interactive applications. To address this issue, we present an efficient and robust framework for simulating the cardiac beating motion. The global cardiac motion is generated by the accumulation of local myocardial fiber contractions. We compute such local-to-global deformations using a kinematic approach; we divide a heart mesh model into overlapping local regions, contract them independently according to fiber orientation, and compute a global shape that satisfies contracted shapes of all local regions as much as possible. A comparison between our method and a physics-based method showed that our method can generate motion very close to that of a physics-based simulation. Our kinematic method has high controllability; the simulated ventricle-wall-contraction speed can be easily adjusted to that of a real heart by controlling local contraction timing. We demonstrate that our method achieves a highly realistic beating motion of a whole heart in real time on a consumer-level computer. Our method provides an important step to bridge a gap between cardiac simulations and interactive applications.

  13. Wall shear stress characterization of a 3D bluff-body separated flow

    Science.gov (United States)

    Fourrié, Grégoire; Keirsbulck, Laurent; Labraga, Larbi

    2013-10-01

    Efficient flow control strategies aimed at reducing the aerodynamic drag of road vehicles require a detailed knowledge of the reference flow. In this work, the flow around the rear slanted window of a generic car model was experimentally studied through wall shear stress measurements using an electrochemical method. The mean and fluctuating wall shear stress within the wall impact regions of the recirculation bubble and the main longitudinal vortex structures which develop above the rear window are presented. Correlations allow a more detailed characterization of the recirculation phenomenon within the separation bubble. In the model symmetry plane the recirculation structure compares well with simpler 2D configurations; specific lengths, flapping motion and shedding of large-scale vortices are observed, these similarities diminish when leaving the middle plane due to the strong three-dimensionality of the flow. A specific attention is paid to the convection processes occurring within the recirculation: a downstream convection velocity is observed, in accordance with 2D recirculations from the literature, and an upstream convection is highlighted along the entire bubble length which has not been underlined in some previous canonical configurations.

  14. SU-E-J-181: Effect of Prostate Motion On Combined Brachytherapy and External Beam Dose Based On Daily Motion of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, V; McLaughlin, P [Providence Cancer Center, Southfield, MI (United States); University of Michigan, Ann Arbor, MI (United States); Ealbaj, J [University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Purpose: In this study, the adequacy of target expansions on the combined external beam and implant dose was examined based on the measured daily motion of the prostate. Methods: Thirty patients received an I–125 prostate implant prescribed to dose of 90Gy. This was followed by external beam to deliver a dose of 90Gyeq (external beam equivalent) to the prostate over 25 to 30 fractions. An ideal IMRT plan was developed by optimizing the external beam dose based on the delivered implant dose. The implant dose was converted to an equivalent external beam dose using the linear quadratic model. Patients were set up on the treatment table by daily orthogonal imaging and aligning the marker seeds in the prostate. Orthogonal images were obtained at the end of treatment to assess prostate intrafraction motion. Based on the observed motion of the markers between the initial and final images, 5 individual plans showing the actual dose delivered to the patient were calculated. A final true dose distribution was established based on summing the implant dose and the 5 external beam plans. Dose to the prostate, seminal vesicles, lymphnodes and normal tissues, rectal wall, urethra and lower sphincter were calculated and compared to ideal. On 18 patients who were sexually active, dose to the corpus cavernosum and internal pudendal artery was also calculated. Results: The average prostate motion in 3 orthogonal directions was less than 1 mm with a standard deviation of less than +2 mm. Dose and volume parameters showed that there was no decrease in dose to the targets and a marginal decrease in dose to in normal tissues. Conclusion: Dose delivered by seed implant moves with the prostate, decreasing the impact of intrafractions dose movement on actual dose delivered. Combined brachytherapy and external beam dose delivered to the prostate was not sensitive to prostate motion.

  15. Intrafractional Target Motions and Uncertainties of Treatment Setup Reference Systems in Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Yue, Ning J.; Goyal, Sharad; Zhou Jinghao; Khan, Atif J.; Haffty, Bruce G.

    2011-01-01

    Purpose: This study investigated the magnitude of intrafractional motion and level of accuracy of various setup strategies in accelerated partial breast irradiation (APBI) using three-dimensional conformal external beam radiotherapy. Methods and Materials: At lumpectomy, gold fiducial markers were strategically sutured to the surrounding walls of the cavity. Weekly fluoroscopy imaging was conducted at treatment to investigate the respiration-induced target motions. Daily pre- and post-RT kV imaging was performed, and images were matched to digitally reconstructed radiographs based on bony anatomy and fiducial markers, respectively, to determine the intrafractional motion magnitudes over the course of treatment. The positioning differences of the laser tattoo- and the bony anatomy-based setups compared with those of the marker-based setup (benchmark) were also determined. The study included 21 patients. Results: Although lung exhibited significant motion, the average marker motion amplitude on the fluoroscopic image was about 1 mm. Over a typical treatment time period, average intrafractional motion magnitude was 4.2 mm and 2.6 mm based on the marker and bony anatomy matching, respectively. The bony anatomy- and laser tattoo-based interfractional setup errors, with respect to the fiducial marker-based setup, were 7.1 and 9.0 mm, respectively. Conclusions: Respiration has limited effects on the target motion during APBI. Bony anatomy-based treatment setup improves the accuracy relative to that of the laser tattoo-based setup approach. Since fiducial markers are sutured directly to the surgical cavity, the marker-based approach can further improve the interfractional setup accuracy. On average, a seroma cavity exhibits intrafractional motion of more than 4 mm, a magnitude that is larger than that which is otherwise derived based on bony anatomy matching. A seroma-specific marker-based approach has the potential to improve treatment accuracy by taking the true inter

  16. Myocardial imaging in acute myocardial infarction using. beta. -methyl-p-( sup 123 I)-iodophenylpentadecanoic acid; Comparison with sup 201 Tl imaging and wall motion

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, Hitoshi; Itano, Midoriko; Kondo, Tomohiro (Hyogo College of Medicine, Nishinomiya (Japan)) (and others)

    1992-01-01

    Myocardial imaging using {beta}-methyl-p-({sup 123}I)-iodophenylpentadecanoic acid (BMIPP) was performed in 11 patients with acute myocardial infarction. The left ventricular images were divided into 12 segments, and myocardial images with BMIPP were compared with coronary angiography (CAG), thallium-201 myocardial scintigraphy (Tl) and wall motion obtained by two-dimensional echocardiography (WM). When the culprit lesion was at the proximal point of the left anterior descending artery (LAD), all segments showed depressed uptake. In 3 cases with single vessel disease of the LAD, inferior wall of the basis showed reduced uptake of BMIPP despite the location of the culprit lesion. In cases with discordant uptake between the two tracers, BMIPP frequently showed more severely depressed uptake than Tl in the subacute phase, although the uptake of BMIPP correlated with that of Tl ({tau}=0.82, p<0.001). In such cases, the discordance was related to the improvement in WM from the acute phase to the convalescent phase. BMIPP uptake correlated with WM in the subacute phase ({tau}=0.50, p<0.001). BMIPP showed more severely depressed uptake while WM showed mild asynergy in most cases in which discordance was found between the BMIPP and WM findings. However, there was no correlation between the change in WM from the acute to subacute phases, or the uptakes of BMIPP and Tl alone. We concluded that the myocardial condition can be evaluated in detail in acute myocardial infarction by comparing the findings of BMIPP with those of Tl and WM. (author).

  17. A randomised trial of Supine versus Prone breast radiotherapy (SuPr study): Comparing set-up errors and respiratory motion

    International Nuclear Information System (INIS)

    Kirby, Anna M.; Evans, Philip M.; Helyer, Sarah J.; Donovan, Ellen M.; Convery, Helen M.; Yarnold, John R.

    2011-01-01

    Purpose: To test a prone position against the international-standard supine position in women undergoing whole-breast-radiotherapy (WBRT) after wide-local-excision (WLE) of early breast cancer (BC) in terms of feasibility, set-up errors, and respiratory motion. Methods: Following WLE of BC with insertion of tumour-bed clips, patients underwent 4D-CT for WBRT-planning in supine and prone positions (the latter using an in-house-designed platform). Patients were randomised to undergo WBRT fractions 1-7 in one position, switching to the alternate position for fractions 8-15 (40 Gy/15-fractions total). Cone-beam CT-images (CBCT) were acquired prior to fractions 1, 4, 7, 8, 11 and 14. CBCT data were matched to planning-CT data using (i) chest-wall and (ii) clips. Systematic and random errors were calculated. Maximal displacement of chest-wall and clips with respiration was measured on 4D-CT. Clinical- to planning-target-volume (CTV-PTV) margins were calculated. Patient-comfort-scores and treatment-times were evaluated. Results: Twenty-five patients were randomized. 192/192 (100%) planned supine fractions and 173/192 (90%) prone fractions were completed. 3D population systematic errors were 1.3-1.9 mm (supine) and 3.1-4.3 mm (prone) (p = 0.02) and random errors 2.6-3.2 mm (supine) and 3.8-5.4 mm (prone) (p = 0.02). Prone positioning reduced chest-wall and clip motion (0.5 ± 0.2 mm (prone) versus 2.7 ± 0.5 mm (supine) (p < 0.001)) with respiration. Calculated CTV-PTV margins were greater for prone (12-16 mm) than for supine treatment (10 mm). Patient-comfort-scores and treatment times were comparable (p = 0.06). Conclusions: Set-up errors were greater using our prone technique than for our standard supine technique, resulting in the need for larger CTV-PTV margins in the prone position. Further work is required to optimize the prone treatment-platform and technique before it can become a standard treatment option at our institution.

  18. Multi-Sensor Methods for Mobile Radar Motion Capture and Compensation

    Science.gov (United States)

    Nakata, Robert

    Remote sensing has many applications, including surveying and mapping, geophysics exploration, military surveillance, search and rescue and counter-terrorism operations. Remote sensor systems typically use visible image, infrared or radar sensors. Camera based image sensors can provide high spatial resolution but are limited to line-of-sight capture during daylight. Infrared sensors have lower resolution but can operate during darkness. Radar sensors can provide high resolution motion measurements, even when obscured by weather, clouds and smoke and can penetrate walls and collapsed structures constructed with non-metallic materials up to 1 m to 2 m in depth depending on the wavelength and transmitter power level. However, any platform motion will degrade the target signal of interest. In this dissertation, we investigate alternative methodologies to capture platform motion, including a Body Area Network (BAN) that doesn't require external fixed location sensors, allowing full mobility of the user. We also investigated platform stabilization and motion compensation techniques to reduce and remove the signal distortion introduced by the platform motion. We evaluated secondary ultrasonic and radar sensors to stabilize the platform resulting in an average 5 dB of Signal to Interference Ratio (SIR) improvement. We also implemented a Digital Signal Processing (DSP) motion compensation algorithm that improved the SIR by 18 dB on average. These techniques could be deployed on a quadcopter platform and enable the detection of respiratory motion using an onboard radar sensor.

  19. Computation of fluid flow in distending tunnels with mass, momentum and energy exchange with the walls

    Energy Technology Data Exchange (ETDEWEB)

    Maw, J R [AWRE, Aldermaston (United Kingdom)

    1970-05-01

    When calculating the effects of an underground explosion it may be useful to be able to calculate the flow of the very hot gaseous products along pipes or tunnels. For example it might be possible to treat a fault in the surrounding rock as an idealised pipe forced open by the high pressure generated by the explosion. Another possibility might be the use of a specially constructed tunnel to channel the energy released in some preferred direction. In such cases the gas flow is complicated by several phenomena. The cross section of the pipe may vary with axial distance and also distend with time. Heat will be lost to the walls of the pipe which may be ablated leading to entrainment of wall material into the gas flow. In addition wall friction will tend to retard the flow. This paper describes a simple computer program, HAT, which was written to calculate such flows. The flow is assumed to be quasi-one-dimensional in that flow quantities such as pressure density and axial velocity do not vary across the pipe. However the radius of the pipe may vary both with axial distance and with time. Sources, or sinks of mass, momentum and energy are included in the governing equations which allow simulation of the phenomena described above. The governing equations are derived in Eulerian form and approximated using an extension of the finite difference scheme of Lax. A brief outline of the computational procedure is given. To demonstrate the capabilities and assess the accuracy of the program two simple problems are calculated using HAT (i) The motion of a shock along a converging pipe. (ii) The effect of mass addition through the walls on the motion of a shock along a uniform pipe. In both cases results obtained using HAT are compared with theoretical analyses of the motion.

  20. Modelling of masonry infill walls participation in the seismic behaviour of RC buildings using OpenSees

    Science.gov (United States)

    Furtado, André; Rodrigues, Hugo; Arêde, António

    2015-06-01

    Recent earthquakes show that masonry infill walls should be taken into account during the design and assessment process of structures, since this type of non-structural elements increase the in-plane stiffness of the structure and consequently the natural period. An overview of the past researches conducted on the modelling of masonry infilled frame issues has been done, with discussion of past analytical investigations and different modelling approaches that many authors have proposed, including micro- and macro-modelling strategies. After this, the present work presents an improved numerical model, based on the Rodrigues et al. (J Earthq Eng 14:390-416, 2010) approach, for simulating the masonry infill walls behaviour in the computer program OpenSees. The main results of the in-plane calibration analyses obtained with one experimental test are presented and discussed. For last, two reinforced concrete regular buildings were studied and subjected to several ground motions, with and without infills' walls.

  1. The dust motion inside the magnetized sheath - The effect of drag forces

    International Nuclear Information System (INIS)

    Pandey, B. P.; Samarian, A.; Vladimirov, S. V.

    2010-01-01

    The isolated charged dust inside the magnetized plasma sheath moves under the influence of the electron and ion drag force and the sheath electrostatic field. The charge on the dust is a function of its radius as well as the value of the ambient sheath potential. It is shown that the charge on the dust determines its trajectory and dust performs the spiraling motion inside the sheath. The location of the turning spiral is determined by the number of negative charge on the dust, which in turn is a function of the dust radius. The back and forth spiraling motion finally causes the dust to move in a small, narrow region of the sheath. For a bigger dust particle, the dust moves closer to the sheath presheath boundary suggesting that the bigger grains, owing to the strong repulsion between the wall and dust, will be unable to travel inside the sheath. Only small, micron-sized grains can travel closer to the wall before repulsion pushes it back toward the plasma-sheath boundary. The temporal behavior of the spiraling dust motion appears like a damped harmonic oscillation, suggesting that the plasma drag force causes dissipation of the electrostatic energy. However, after initial damping, the grain keeps oscillating although with much smaller amplitude. The possible application of the present results to the ongoing sheath experiments is discussed.

  2. Study on scaling law of PWR natural circulation with motion condition

    International Nuclear Information System (INIS)

    Lu Donghua; Xiao Zejun; Chen Bingde

    2009-01-01

    For some nuclear reactors installed on automobiles, boats or deep sea vehicles, it is an important way to investigate their system safety by performing natural circulation experiments under motion condition. This paper studied the natural circulation on moving plants based on work of static natural circulation scaling method. With rigid motion theory, acceleration at each point was obtained on primary system and introduced to momentum equation. Thus a set of motion similar criteria were obtained. Furthermore, equal and unequal height simulation were analyzed. As to the unequal one, non isochronous simulation was needed for displacement and angular acceleration. (authors)

  3. Fault Structural Control on Earthquake Strong Ground Motions: The 2008 Wenchuan Earthquake as an Example

    Science.gov (United States)

    Zhang, Yan; Zhang, Dongli; Li, Xiaojun; Huang, Bei; Zheng, Wenjun; Wang, Yuejun

    2018-02-01

    Continental thrust faulting earthquakes pose severe threats to megacities across the world. Recent events show the possible control of fault structures on strong ground motions. The seismogenic structure of the 2008 Wenchuan earthquake is associated with high-angle listric reverse fault zones. Its peak ground accelerations (PGAs) show a prominent feature of fault zone amplification: the values within the 30- to 40-km-wide fault zone block are significantly larger than those on both the hanging wall and the footwall. The PGA values attenuate asymmetrically: they decay much more rapidly in the footwall than in the hanging wall. The hanging wall effects can be seen on both the vertical and horizontal components of the PGAs, with the former significantly more prominent than the latter. All these characteristics can be adequately interpreted by upward extrusion of the high-angle listric reverse fault zone block. Through comparison with a low-angle planar thrust fault associated with the 1999 Chi-Chi earthquake, we conclude that different fault structures might have controlled different patterns of strong ground motion, which should be taken into account in seismic design and construction.

  4. Using Phun to Study "Perpetual Motion" Machines

    Science.gov (United States)

    Kores, Jaroslav

    2012-01-01

    The concept of "perpetual motion" has a long history. The Indian astronomer and mathematician Bhaskara II (12th century) was the first person to describe a perpetual motion (PM) machine. An example of a 13th-century PM machine is shown in Fig. 1. Although the law of conservation of energy clearly implies the impossibility of PM construction, over…

  5. Kinematic Earthquake Ground‐Motion Simulations on Listric Normal Faults

    KAUST Repository

    Passone, Luca

    2017-11-28

    Complex finite-faulting source processes have important consequences for near-source ground motions, but empirical ground-motion prediction equations still lack near-source data and hence cannot fully capture near-fault shaking effects. Using a simulation-based approach, we study the effects of specific source parameterizations on near-field ground motions where empirical data are limited. Here, we investigate the effects of fault listricity through near-field kinematic ground-motion simulations. Listric faults are defined as curved faults in which dip decreases with depth, resulting in a concave upward profile. The listric profiles used in this article are built by applying a specific shape function and varying the initial dip and the degree of listricity. Furthermore, we consider variable rupture speed and slip distribution to generate ensembles of kinematic source models. These ensembles are then used in a generalized 3D finite-difference method to compute synthetic seismograms; the corresponding shaking levels are then compared in terms of peak ground velocities (PGVs) to quantify the effects of breaking fault planarity. Our results show two general features: (1) as listricity increases, the PGVs decrease on the footwall and increase on the hanging wall, and (2) constructive interference of seismic waves emanated from the listric fault causes PGVs over two times higher than those observed for the planar fault. Our results are relevant for seismic hazard assessment for near-fault areas for which observations are scarce, such as in the listric Campotosto fault (Italy) located in an active seismic area under a dam.

  6. Kinematic Earthquake Ground‐Motion Simulations on Listric Normal Faults

    KAUST Repository

    Passone, Luca; Mai, Paul Martin

    2017-01-01

    Complex finite-faulting source processes have important consequences for near-source ground motions, but empirical ground-motion prediction equations still lack near-source data and hence cannot fully capture near-fault shaking effects. Using a simulation-based approach, we study the effects of specific source parameterizations on near-field ground motions where empirical data are limited. Here, we investigate the effects of fault listricity through near-field kinematic ground-motion simulations. Listric faults are defined as curved faults in which dip decreases with depth, resulting in a concave upward profile. The listric profiles used in this article are built by applying a specific shape function and varying the initial dip and the degree of listricity. Furthermore, we consider variable rupture speed and slip distribution to generate ensembles of kinematic source models. These ensembles are then used in a generalized 3D finite-difference method to compute synthetic seismograms; the corresponding shaking levels are then compared in terms of peak ground velocities (PGVs) to quantify the effects of breaking fault planarity. Our results show two general features: (1) as listricity increases, the PGVs decrease on the footwall and increase on the hanging wall, and (2) constructive interference of seismic waves emanated from the listric fault causes PGVs over two times higher than those observed for the planar fault. Our results are relevant for seismic hazard assessment for near-fault areas for which observations are scarce, such as in the listric Campotosto fault (Italy) located in an active seismic area under a dam.

  7. Study of domain wall propagation in nanostructured CoPt multilayers by using antisymmetric magnetoresistance

    International Nuclear Information System (INIS)

    Rodriguez-Rodriguez, G; Perez-Junquera, A; Hierro-Rodriguez, A; Montenegro, N; Alameda, J M; Velez, M; Menendez, J L; Ravelosona, D

    2010-01-01

    Domain wall propagation has been studied in perpendicular anisotropy CoPt multilayers patterned by e-beam lithography into 5 μm wide wires. Positive and negative peaks appear in time resolved magnetoresistance curves, associated to the different directions of domain wall propagation along the wires. The field dependence of domain wall velocity is well described by a creep model of a 1D wall in the presence of weak disorder with critical exponent μ=1/4.

  8. Deformation Measurements of Gabion Walls Using Image Based Modeling

    Directory of Open Access Journals (Sweden)

    Marek Fraštia

    2014-06-01

    Full Text Available The image based modeling finds use in applications where it is necessary to reconstructthe 3D surface of the observed object with a high level of detail. Previous experiments showrelatively high variability of the results depending on the camera type used, the processingsoftware, or the process evaluation. The authors tested the method of SFM (Structure fromMotion to determine the stability of gabion walls. The results of photogrammetricmeasurements were compared to precise geodetic point measurements.

  9. Dynamics of pairwise motions in the Cosmic Web

    Science.gov (United States)

    Hellwing, Wojciech A.

    2016-10-01

    We present results of analysis of the dark matter (DM) pairwise velocity statistics in different Cosmic Web environments. We use the DM velocity and density field from the Millennium 2 simulation together with the NEXUS+ algorithm to segment the simulation volume into voxels uniquely identifying one of the four possible environments: nodes, filaments, walls or cosmic voids. We show that the PDFs of the mean infall velocities v 12 as well as its spatial dependence together with the perpendicular and parallel velocity dispersions bear a significant signal of the large-scale structure environment in which DM particle pairs are embedded. The pairwise flows are notably colder and have smaller mean magnitude in wall and voids, when compared to much denser environments of filaments and nodes. We discuss on our results, indicating that they are consistent with a simple theoretical predictions for pairwise motions as induced by gravitational instability mechanism. Our results indicate that the Cosmic Web elements are coherent dynamical entities rather than just temporal geometrical associations. In addition it should be possible to observationally test various Cosmic Web finding algorithms by segmenting available peculiar velocity data and studying resulting pairwise velocity statistics.

  10. Electron spin echo studies of the internal motion of radicals in crystals: Phase memory vs correlation time

    International Nuclear Information System (INIS)

    Kispert, L.D.; Bowman, M.K.; Norris, J.R.; Brown, M.S.

    1982-01-01

    An electron spin echo (ESE) study of the internal motion of the CH 2 protons in irradiated zinc acetate dihydrate crystals shows that quantitative measurements of the motional correlation time can be obtained quite directly from pulsed measurements. In the slow motional limit, the motional correlation time is equal to the phase memory time determined by ESE. In the fast motional limit, the motional correlation time is proportional to the no motion spectral second moment divided by the ESE phase memory time. ESE offers a convenient method of studying motion, electron transfer, conductivity, etc. in a variety of systems too complicated for study by ordinary EPR. New systems for study by ESE include biological samples, organic polymers, liquid solutions of radicals with unresolved hyperfine, etc. When motion modulates large anisotropic hyperfine couplings, ESE measurements of the phase memory time are sensitive to modulation of pseudosecular hyperfine interactions

  11. Methods for determining the wall thickness variation of tubular heaters used in thermalhydraulic studies

    International Nuclear Information System (INIS)

    Cubizolles, G.; Garnier, J.; Groeneveld, D.; Tanase, A.

    2009-01-01

    Fuel bundle simulators used in thermalhydraulic studies typically consist of bundles of directly heated tubes. It is usually assumed that the heater tubes have a uniform circumferential heat flux distribution. In practice, this heat flux distribution is never exactly uniform because of wall thickness variations and bore eccentricity. Ignoring the non-uniformity in wall thickness can lead to under-estimating the local heat transfer coefficients. During nucleate boiling tests in a 5x5 PWR-type bundle subassembly at CEA-Grenoble, a sinusoidal temperature distribution was observed around the inside circumference of the heater rods. These heater rods were equipped with high-accuracy sliding thermocouple probes that permit the detailed measurement of the internal wall temperature distribution, both axially and circumferentially. The sinusoidal temperature distribution strongly suggests a variation in wall thickness. A methodology was subsequently derived to determine the circumferential wall thickness variation. The method is based on the principle that for directly heated fuel-element simulators, the nucleate boiling wall superheat at high pressures is nearly uniform around the heater rod circumference. The results show wall thickness variations of up to ±4% which was confirmed by subsequent ultrasonic wall-thickness measurements performed after bundle disassembly. Non-uniformities in circumferential temperature distributions were also observed during parallel thermalhydraulic tests at the University of Ottawa (UofO) on an electrically heated tube cooled internally by R-134a and equipped with fixed thermocouples on the outside. From the measured wall temperatures and knowledge of the inside heat transfer coefficient or wall temperature distribution, the variations in wall thickness and surface heat flux to the coolant were evaluated by solving conduction equations using three separate sets of data (1) single phase heat transfer data, (2) nucleate boiling data, and (3

  12. A Study on the Performance of Low Cost MEMS Sensors in Strong Motion Studies

    Science.gov (United States)

    Tanırcan, Gulum; Alçık, Hakan; Kaya, Yavuz; Beyen, Kemal

    2017-04-01

    Recent advances in sensors have helped the growth of local networks. In recent years, many Micro Electro Mechanical System (MEMS)-based accelerometers have been successfully used in seismology and earthquake engineering projects. This is basically due to the increased precision obtained in these downsized instruments. Moreover, they are cheaper alternatives to force-balance type accelerometers. In Turkey, though MEMS-based accelerometers have been used in various individual applications such as magnitude and location determination of earthquakes, structural health monitoring, earthquake early warning systems, MEMS-based strong motion networks are not currently available in other populated areas of the country. Motivation of this study comes from the fact that, if MEMS sensors are qualified to record strong motion parameters of large earthquakes, a dense network can be formed in an affordable price at highly populated areas. The goals of this study are 1) to test the performance of MEMS sensors, which are available in the inventory of the Institute through shake table tests, and 2) to setup a small scale network for observing online data transfer speed to a trusted in-house routine. In order to evaluate the suitability of sensors in strong motion related studies, MEMS sensors and a reference sensor are tested under excitations of sweeping waves as well as scaled earthquake recordings. Amplitude response and correlation coefficients versus frequencies are compared. As for earthquake recordings, comparisons are carried out in terms of strong motion(SM) parameters (PGA, PGV, AI, CAV) and elastic response of structures (Sa). Furthermore, this paper also focuses on sensitivity and selectivity for sensor performances in time-frequency domain to compare different sensing characteristics and analyzes the basic strong motion parameters that influence the design majors. Results show that the cheapest MEMS sensors under investigation are able to record the mid

  13. Numerical approximation of flow in a symmetric channel with vibrating walls

    Directory of Open Access Journals (Sweden)

    Sváček P.

    2010-12-01

    Full Text Available In this paper the numerical solution of two dimensional fluid-structure interaction problem is addressed. The fluid motion is modelled by the incompressible unsteady Navier-Stokes equations. The spatial discretization by stabilized finite element method is used. The motion of the computational domain is treated with the aid of Arbitrary Lagrangian Eulerian (ALE method. The time-space problem is solved with the aid of multigrid method. The method is applied onto a problem of interaction of channel flow with moving walls, which models the air flow in the glottal region of the human vocal tract. The pressure boundary conditions and the effects of the isotropic and anisotropic mesh refinement are discussed. The numerical results are presented.

  14. Identification of microscopic domain wall motion from temperature dependence of nonlinear dielectric response.

    Czech Academy of Sciences Publication Activity Database

    Mokrý, Pavel; Sluka, T.

    2017-01-01

    Roč. 110, č. 16 (2017), č. článku 162906. ISSN 0003-6951 R&D Projects: GA ČR(CZ) GA14-32228S Institutional support: RVO:61389021 Keywords : microscopic domain wall * electric fields * temperature dependence Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 3.411, year: 2016 http://dx.doi.org/10.1063/1.4981874

  15. Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion

    International Nuclear Information System (INIS)

    Kissick, Michael W.; Boswell, Sarah A.; Jeraj, Robert; Mackie, T. Rockwell

    2005-01-01

    The interplay between a constant scan speed and intrafraction oscillatory motion produces interesting fluence intensity modulations along the axis of motion that are sensitive to the motion function, as originally shown in a classic paper by Yu et al. [Phys. Med. Biol. 43, 91-104 (1998)]. The fluence intensity profiles are explored in this note for an intuitive understanding, then compared with Yu et al., and finally further explored for the effects of low scan speed and random components of both intrafraction and interfraction motion. At slow scan speeds typical of helical tomotherapy, these fluence intensity modulations are only a few percent. With the addition of only a small amount of cycle-to-cycle randomness in frequency and amplitude, the fluence intensity profiles change dramatically. It is further shown that after a typical 30-fraction treatment, the sensitivities displayed in the single fraction fluence intensity profiles greatly diminish

  16. Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB.

    Science.gov (United States)

    Schirner, Kathrin; Eun, Ye-Jin; Dion, Mike; Luo, Yun; Helmann, John D; Garner, Ethan C; Walker, Suzanne

    2015-01-01

    The bacterial actin homolog MreB, which is crucial for rod shape determination, forms filaments that rotate around the cell width on the inner surface of the cytoplasmic membrane. What determines filament association with the membranes or with other cell wall elongation proteins is not known. Using specific chemical and genetic perturbations while following MreB filament motion, we find that MreB membrane association is an actively regulated process that depends on the presence of lipid-linked peptidoglycan precursors. When precursors are depleted, MreB filaments disassemble into the cytoplasm, and peptidoglycan synthesis becomes disorganized. In cells that lack wall teichoic acids but continue to make peptidoglycan, dynamic MreB filaments are observed, although their presence is not sufficient to establish a rod shape. We propose that the cell regulates MreB filament association with the membrane, allowing rapid and reversible inactivation of cell wall enzyme complexes in response to the inhibition of cell wall synthesis.

  17. Visual motion influences the contingent auditory motion aftereffect

    NARCIS (Netherlands)

    Vroomen, J.; de Gelder, B.

    2003-01-01

    In this study, we show that the contingent auditory motion aftereffect is strongly influenced by visual motion information. During an induction phase, participants listened to rightward-moving sounds with falling pitch alternated with leftward-moving sounds with rising pitch (or vice versa).

  18. Influence of cold walls on PET image quantification and volume segmentation: A phantom study

    International Nuclear Information System (INIS)

    Berthon, B.; Marshall, C.; Edwards, A.; Spezi, E.; Evans, M.

    2013-01-01

    Purpose: Commercially available fillable plastic inserts used in positron emission tomography phantoms usually have thick plastic walls, separating their content from the background activity. These “cold” walls can modify the intensity values of neighboring active regions due to the partial volume effect, resulting in errors in the estimation of standardized uptake values. Numerous papers suggest that this is an issue for phantom work simulating tumor tissue, quality control, and calibration work. This study aims to investigate the influence of the cold plastic wall thickness on the quantification of 18F-fluorodeoxyglucose on the image activity recovery and on the performance of advanced automatic segmentation algorithms for the delineation of active regions delimited by plastic walls.Methods: A commercial set of six spheres of different diameters was replicated using a manufacturing technique which achieves a reduction in plastic walls thickness of up to 90%, while keeping the same internal volume. Both sets of thin- and thick-wall inserts were imaged simultaneously in a custom phantom for six different tumor-to-background ratios. Intensity values were compared in terms of mean and maximum standardized uptake values (SUVs) in the spheres and mean SUV of the hottest 1 ml region (SUV max , SUV mean , and SUV peak ). The recovery coefficient (RC) was also derived for each sphere. The results were compared against the values predicted by a theoretical model of the PET-intensity profiles for the same tumor-to-background ratios (TBRs), sphere sizes, and wall thicknesses. In addition, ten automatic segmentation methods, written in house, were applied to both thin- and thick-wall inserts. The contours obtained were compared to computed tomography derived gold standard (“ground truth”), using five different accuracy metrics.Results: The authors' results showed that thin-wall inserts achieved significantly higher SUV mean , SUV max , and RC values (up to 25%, 16

  19. The value of regional wall motion abnormalities on gated mycardiac perfusion imaging in perfusion imaging in predicting angiographic stenoses of coronary artery

    International Nuclear Information System (INIS)

    Yao Lixin; Liu Binbin

    2007-01-01

    Objective: To determine the possible level of angiographic stenoses of coronary artery at which reversible regional wall motion abnormalities (RWMA) are present on 99m Tc-sestamibi ( 99m Tc-MIBI)-gated myocardial perfusion imaging (MPI). Methods: ninty patients undergoing coronary angiography MPI within two weeks were recruited. A five grades and nine segments marking system was introduced to assess the RWMA and thickening of left ventricles. Results: The sensitivity of reversible RWMA for detecting ≥75% angiographic stenoses was 64%,with a specificity of 95% and positive predictive value of 97%. The presence of reversible RWMA was able to stratify patients with severe angiographic stenoses of 75% or more from those less than 75% with high positive predictive value. A good correlation was noted between the presence of reversible RWMA and the coronary artery jeopardy score. Multivariate analysis showed that the post-stress RWMA and reversible RWMA scores and positive dipyridamole-stress exercise electrocardiogram(ECG) were significant predictors of angiographic severity. Conclusions: Reversible RWMA, as shown by dipyridamole stress 99m Tc-MIBI MPI, is a significant predictor of angiographic disease with very high specificity and adds incremental value to MPI for the assessment of angiographic severity. (authors)

  20. MotionExplorer: exploratory search in human motion capture data based on hierarchical aggregation.

    Science.gov (United States)

    Bernard, Jürgen; Wilhelm, Nils; Krüger, Björn; May, Thorsten; Schreck, Tobias; Kohlhammer, Jörn

    2013-12-01

    We present MotionExplorer, an exploratory search and analysis system for sequences of human motion in large motion capture data collections. This special type of multivariate time series data is relevant in many research fields including medicine, sports and animation. Key tasks in working with motion data include analysis of motion states and transitions, and synthesis of motion vectors by interpolation and combination. In the practice of research and application of human motion data, challenges exist in providing visual summaries and drill-down functionality for handling large motion data collections. We find that this domain can benefit from appropriate visual retrieval and analysis support to handle these tasks in presence of large motion data. To address this need, we developed MotionExplorer together with domain experts as an exploratory search system based on interactive aggregation and visualization of motion states as a basis for data navigation, exploration, and search. Based on an overview-first type visualization, users are able to search for interesting sub-sequences of motion based on a query-by-example metaphor, and explore search results by details on demand. We developed MotionExplorer in close collaboration with the targeted users who are researchers working on human motion synthesis and analysis, including a summative field study. Additionally, we conducted a laboratory design study to substantially improve MotionExplorer towards an intuitive, usable and robust design. MotionExplorer enables the search in human motion capture data with only a few mouse clicks. The researchers unanimously confirm that the system can efficiently support their work.

  1. The plant cell wall integrity maintenance mechanism--a case study of a cell wall plasma membrane signaling network.

    Science.gov (United States)

    Hamann, Thorsten

    2015-04-01

    Some of the most important functions of plant cell walls are protection against biotic/abiotic stress and structural support during growth and development. A prerequisite for plant cell walls to perform these functions is the ability to perceive different types of stimuli in both qualitative and quantitative manners and initiate appropriate responses. The responses in turn involve adaptive changes in cellular and cell wall metabolism leading to modifications in the structures originally required for perception. While our knowledge about the underlying plant mechanisms is limited, results from Saccharomyces cerevisiae suggest the cell wall integrity maintenance mechanism represents an excellent example to illustrate how the molecular mechanisms responsible for stimulus perception, signal transduction and integration can function. Here I will review the available knowledge about the yeast cell wall integrity maintenance system for illustration purposes, summarize the limited knowledge available about the corresponding plant mechanism and discuss the relevance of the plant cell wall integrity maintenance mechanism in biotic stress responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Magneto-elastic resonant phenomena at the motion of the domain wall in weak ferromagnets

    International Nuclear Information System (INIS)

    Kuz'menko, A.P.; Zhukov, E.A.; Dobromyslov, M.B.; Kaminsky, A.V.

    2007-01-01

    Dynamics of domain walls (DWs) in transparent thin orthoferrite samples with weak ferromagnetic ordering is investigated at sub- and supersonic velocities. A resonant increase of Lamb waves and the formation of magnetoelastic solitons under resonant conditions in both an elastic and between a spin and elastic subsystems were observed

  3. Real-time ultrasound-tagging to track the 2D motion of the common carotid artery wall in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zahnd, Guillaume, E-mail: g.zahnd@erasmusmc.nl [Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam 3000 CA (Netherlands); Salles, Sébastien; Liebgott, Hervé; Vray, Didier [Université de Lyon, CREATIS, CNRS UMR 5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Lyon 69100 (France); Sérusclat, André [Department of Radiology, Louis Pradel Hospital, Lyon 69500 (France); Moulin, Philippe [Department of Endocrinology, Louis Pradel Hospital, Hospices Civils de Lyon, Université Lyon 1, Lyon 69100, France and INSERM UMR 1060, Lyon 69500 (France)

    2015-02-15

    Purpose: Tracking the motion of biological tissues represents an important issue in the field of medical ultrasound imaging. However, the longitudinal component of the motion (i.e., perpendicular to the beam axis) remains more challenging to extract due to the rather coarse resolution cell of ultrasound scanners along this direction. The aim of this study is to introduce a real-time beamforming strategy dedicated to acquire tagged images featuring a distinct pattern in the objective to ease the tracking. Methods: Under the conditions of the Fraunhofer approximation, a specific apodization function was applied to the received raw channel data, in real-time during image acquisition, in order to introduce a periodic oscillations pattern along the longitudinal direction of the radio frequency signal. Analytic signals were then extracted from the tagged images, and subpixel motion tracking of the intima–media complex was subsequently performed offline, by means of a previously introduced bidimensional analytic phase-based estimator. Results: The authors’ framework was applied in vivo on the common carotid artery from 20 young healthy volunteers and 6 elderly patients with high atherosclerosis risk. Cine-loops of tagged images were acquired during three cardiac cycles. Evaluated against reference trajectories manually generated by three experienced analysts, the mean absolute tracking error was 98 ± 84 μm and 55 ± 44 μm in the longitudinal and axial directions, respectively. These errors corresponded to 28% ± 23% and 13% ± 9% of the longitudinal and axial amplitude of the assessed motion, respectively. Conclusions: The proposed framework enables tagged ultrasound images of in vivo tissues to be acquired in real-time. Such unconventional beamforming strategy contributes to improve tracking accuracy and could potentially benefit to the interpretation and diagnosis of biomedical images.

  4. Inner-outer predictive wall model for wall-bounded turbulence in hypersonic flow

    Science.gov (United States)

    Martin, M. Pino; Helm, Clara M.

    2017-11-01

    The inner-outer predictive wall model of Mathis et al. is modified for hypersonic turbulent boundary layers. The model is based on a modulation of the energized motions in the inner layer by large scale momentum fluctuations in the logarithmic layer. Using direct numerical simulation (DNS) data of turbulent boundary layers with free stream Mach number 3 to 10, it is shown that the variation of the fluid properties in the compressible flows leads to large Reynolds number (Re) effects in the outer layer and facilitate the modulation observed in high Re incompressible flows. The modulation effect by the large scale increases with increasing free-stream Mach number. The model is extended to include spanwise and wall-normal velocity fluctuations and is generalized through Morkovin scaling. Temperature fluctuations are modeled using an appropriate Reynolds Analogy. Density fluctuations are calculated using an equation of state and a scaling with Mach number. DNS data are used to obtain the universal signal and parameters. The model is tested by using the universal signal to reproduce the flow conditions of Mach 3 and Mach 7 turbulent boundary layer DNS data and comparing turbulence statistics between the modeled flow and the DNS data. This work is supported by the Air Force Office of Scientific Research under Grant FA9550-17-1-0104.

  5. Ion mass dependence for low energy channeling in single-wall nanotubes

    International Nuclear Information System (INIS)

    Zheng Liping; Zhu Zhiyuan; Li Yong; Zhu Dezhang; Xia Huihao

    2008-01-01

    An Monte Carlo (MC) simulation program has been used to study ion mass dependence for the low energy channeling of natural- and pseudo-Ar ions in single-wall nanotubes. The MC simulations show that the channeling critical angle Ψ C obeys the (E) -1/2 and the (M 1 ) -1/2 rules, where E is the incident energy and M 1 is the ion mass. The reason for this may be that the motion of the channeled (or de-channeled) ions should be correlated with both the incident energy E and the incident momentum (2M 1 E) 1/2 , in order to obey the conservation of energy and momentum

  6. Interplay of domain walls and magnetization rotation on dynamic magnetization process in iron/polymer–matrix soft magnetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Dobák, Samuel, E-mail: samuel.dobak@student.upjs.sk [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 041 54 Košice (Slovakia); Füzer, Ján; Kollár, Peter [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 041 54 Košice (Slovakia); Fáberová, Mária; Bureš, Radovan [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 043 53 Košice (Slovakia)

    2017-03-15

    This study sheds light on the dynamic magnetization process in iron/resin soft magnetic composites from the viewpoint of quantitative decomposition of their complex permeability spectra into the viscous domain wall motion and magnetization rotation. We present a comprehensive view on this phenomenon over the broad family of samples with different average particles dimension and dielectric matrix content. The results reveal the pure relaxation nature of magnetization processes without observation of spin resonance. The smaller particles and higher amount of insulating resin result in the prevalence of rotations over domain wall movement. The findings are elucidated in terms of demagnetizing effects rising from the heterogeneity of composite materials. - Highlights: • A first decomposition of complex permeability into domain wall and rotation parts in soft magnetic composites. • A pure relaxation nature of dynamic magnetization processes. • A complete loss separation in soft magnetic composites. • The domain walls activity is considerably suppressed in composites with smaller iron particles and higher matrix content. • The demagnetizing field acts as a significant factor at the dynamic magnetization process.

  7. Prediction of functional recovery after revascularization using quantitative gated myocardial perfusion SPECT: a multi-center cohort study in Japan

    International Nuclear Information System (INIS)

    Nakajima, Kenichi; Tamaki, Nagara; Kuwabara, Yoichi; Kawano, Masaya; Matsunari, Ichiro; Taki, Junichi; Nishimura, Shigeyuki; Yamashina, Akira; Ishida, Yoshio; Tomoike, Hitonobu

    2008-01-01

    Prediction of left ventricular functional recovery is important after myocardial infarction. The impact of quantitative perfusion and motion analyses with gated single-photon emission computed tomography (SPECT) on predictive ability has not been clearly defined in multi-center studies. A total of 252 patients with recent myocardial infarction (n = 74) and old myocardial infarction (n = 175) were registered from 25 institutions. All patients underwent resting gated SPECT using 99m Tc-hexakis-2-methoxy-isobutyl isonitrile (MIBI) and repeated the study after revascularization after an average follow-up period of 132 ± 81 days. Visual and quantitative assessment of perfusion and wall motion were performed in 5,040 segments. Non-gated segmental percent uptake and end-systolic (ES) percent uptake were good predictors of wall motion recovery and significantly differed between improved and non-improved groups (66 ± 17% and 55 ± 18%, p 99m Tc-MIBI uptake provided a useful predictor of wall motion improvement. Application of quantitative approach with non-gated and ES percent uptake enhanced predictive accuracy over visual analysis particularly in a multi-center study. (orig.)

  8. Design studies of an aluminum first wall for INTOR

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.A.; Yu, W.S.; Hsieh, S.Y.; Pearlman, H.; Kramer, R.; Franz, E.; Craig, A.; Farrell, K.

    1980-01-01

    Besides the high erosion rates (including evaporation) expected for INTOR, there may also be high heat fluxes to the first wall, e.g., approx. 9 (Case I) to 24 (Case II) W/cm 2 , from two sources - radiation and charge exchange neutrals. There will also be internal heat generation by neutron and gamma deposition. An aluminum first wall design is analyzed, which substantially reduces concerns about survivability of the first wall during INTOR's operating life

  9. Earthquake strong ground motion studies at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wong, Ivan; Silva, W.; Darragh, R.; Stark, C.; Wright, D.; Jackson, S.; Carpenter, G.; Smith, R.; Anderson, D.; Gilbert, H.; Scott, D.

    1989-01-01

    Site-specific strong earthquake ground motions have been estimated for the Idaho National Engineering Laboratory assuming that an event similar to the 1983 M s 7.3 Borah Peak earthquake occurs at epicentral distances of 10 to 28 km. The strong ground motion parameters have been estimated based on a methodology incorporating the Band-Limited-White-Noise ground motion model coupled with Random Vibration Theory. A 16-station seismic attenuation and site response survey utilizing three-component portable digital seismographs was also performed for a five-month period in 1989. Based on the recordings of regional earthquakes, the effects of seismic attenuation in the shallow crust and along the propagation path and local site response were evaluated. This data combined with a detailed geologic profile developed for each site based principally on borehole data, was used in the estimation of the strong ground motion parameters. The preliminary peak horizontal ground accelerations for individual sites range from approximately 0.15 to 0.35 g. Based on the authors analysis, the thick sedimentary interbeds (greater than 20 m) in the basalt section attenuate ground motions as speculated upon in a number of previous studies

  10. Domain walls dynamics in the amorphous ribbon with a helical magnetic anisotropy

    International Nuclear Information System (INIS)

    Zhmetko, D.N.; Savin, V.V.; Lemish, P.V.; Troschenkov, Y.N.

    2006-01-01

    The damping mechanism for motion of domain walls, which form the sandwich structure and move from the middle plane of the ribbon to opposite surfaces during the dynamic magnetization reversal, have been investigated. The difference between the real and ideal sandwich domain structure, the actual distribution of the anisotropy easy directions through the ribbon thickness and the M-bar s deviation from local easy directions under the action of applied magnetic field have been taken into account. It was revealed that the maximum of the total damping coefficient β tot (x) near the half-way of the domain wall run is due to the influence of the magnetic stray fields. These fields have a character of irregular oscillations and are directed approximately perpendicular to the local easy direction of the ribbon layer through which the domain wall propagates. The damping coefficient β e.c. (x) determined by eddy-currents has the maximal value close to the ribbon middle and decreases linearly to zero when the domain wall approaches the ribbon surface

  11. Interventricular delay measurement using equilibrium radionuclide angiography before resynchronization therapy should be performed outside the area of segmental wall motion abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Courtehoux, Maxime [Service EFMP CHU Trousseau, Chambray les Tours (France); Zannad, Noura; Fauchier, Laurent; Babuty, Dominique [Service Cardiologie B CHU Trousseau, Tours (France); Eder, Veronique [Service EFMP CHU Trousseau, Chambray les Tours (France); EA3852 University Francois Rabelais, Tours (France)

    2011-02-15

    The aim of this study was to demonstrate that only mechanical dyssynchrony outside the area of segmental wall motion abnormalities (WMA) can be reduced by cardiac resynchronization therapy (CRT). Included in the study were 28 consecutive patients with nonischaemic cardiomyopathy selected for CRT. Equilibrium radionuclide angiography (ERNA) was carried out before and after implantation of a multisite pacemaker. Patients were separated into two groups depending on the presence or absence of segmental WMA. A reduction in QRS duration was observed in all patients after CRT. The interventricular delay (IVD) decreased significantly after CRT only in patients without WMA (homogeneous contraction, HG group; IVD 44 {+-} 11.4 vs. 17 {+-} 3.1 , p = 0.04). In contrast, no significant decrease was observed in patients with WMA (WMA group; IVD 51 {+-} 6 vs. 38 {+-} 6 , p NS). However, when dyssynchrony was considered outside the WMA area, a significant reduction in IVD was obtained, in the same range as in the HG group (IVD 32 {+-} 3 vs. 19 {+-} 3 , p = 0.04). In 9 of 15 patients (60%) with a reduction in IVD after CRT, the left ventricle ejection fraction (LVEF) increased by about +10%. In contrast, in 13 of 13 patients (100%) with no reduction in IVD, no modification of LVEF was obtained. In the presence of segmental WMA without significant delays outside the WMA area, no reduction in IVD was observed and LVEF did not increase (IVD 34 {+-} 5 before CRT vs. 37 {+-} 7 after CRT; LVEF 19 {+-} 4% before CRT vs. 22 {+-} 3% after CRT, p NS). ERNA can be used to predict good mechanical resynchronization (decrease in IVD) in patients after pacing. IVD has to be determined excluding the area of WMA in order to select patients who will show an increase in their left ventricle function after CRT. (orig.)

  12. A preliminary study on the local impact behavior of Steel-plate Concrete walls

    International Nuclear Information System (INIS)

    Kim, Kap-sun; Moon, Il-hwan; Choi, Hyung-jin; Nam, Deok-woo

    2017-01-01

    International regulations for nuclear power plants strictly prescribe the design requirements for local impact loads, such as aircraft engine impact, and internal and external missile impact. However, the local impact characteristics of Steel-plate Concrete (SC) walls are not easy to evaluate precisely because the dynamic impact behavior of SC walls which include external steel plate, internal concrete, tie-bars, and studs, is so complex. In this study, dynamic impact characteristics of SC walls subjected to local missile impact load are investigated via actual high-speed impact test and numerical simulation. Three velocity checkout tests and four SC wall tests were performed at the Energetic Materials Research and Testing Center (EMRTC) site in the USA. Initial and residual velocity of the missile, strain and acceleration of the back plate, local failure mode (penetration, bulging, splitting and perforation) and deformation size, etc. were measured to study the local behavior of the specimen using high speed cameras and various other instrumentation devices. In addition, a more advanced and applicable numerical simulation method using the finite element (FE) method is proposed and verified by the experimental results. Finally, the experimental results are compared with the local failure evaluation formula for SC walls recently proposed, and future research directions for the development of a refined design method for SC walls are reviewed.

  13. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.

    Science.gov (United States)

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI

  14. Morphologic study of three collagen materials for body wall repair.

    Science.gov (United States)

    Soiderer, Emily E; Lantz, Gary C; Kazacos, Evelyn A; Hodde, Jason P; Wiegand, Ryan E

    2004-05-15

    The search for ideal prostheses for body wall repair continues. Synthetic materials such as polypropylene mesh (PPM) are associated with healing complications. A porcine-derived collagen-based material (CBM), small intestinal submucosa (SIS), has been studied for body wall repair. Renal capsule matrix (RCM) and urinary bladder submucosa (UBS) are CBMs not previously evaluated in this application. This is the first implant study using RCM. Full-thickness muscle/fascia ventral abdominal wall defects were repaired with SIS, RCM, UBS, and PPM in rats with omentum and omentectomy. A random complete block design was used to allot implant type to each of 96 rats. Healing was evaluated at 4 and 8 weeks. Adhesion tenacity and surface area were scored. Implant site dimensions were measured at implantation and necropsy. Inflammation, vascularization, and fibrosis were histopathologically scored. Data were compared by analysis of variance (P response in contrast to the organized healing of CBM implants. CBM mean scores were lower than PPM scores for adhesion tenacity, surface area, and inflammation at each follow-up time for rats with omentums (P fibrotic response to PPM was unique and more intense compared to CBMs. These CBM implants appear morphologically acceptable and warrant continued investigation.

  15. Quantum chaos in nuclear single-particle motion and damping of giant resonances

    International Nuclear Information System (INIS)

    Pal, Santanu; Mukhopadhyay, Tapan

    1995-01-01

    The spectral statistics of single particle motion in deformed cavities with axial symmetry are presented. The single particle motion in the cavities considered are non-integrable and the systematics of the fluctuation measures of the spectra reveal a transition from regular to chaotic regime in the corresponding classical systems. Quantitative estimate of the degree of chaos enables us to introduce a correction factor to the one-body wall formula for the damping widths of isoscalar giant resonances. The damping widths calculated with this correction factor give much better agreement with experimental values than earlier calculations of one-body damping widths. (author). 21 refs., 5 figs

  16. Could quantitative longitudinal peak systolic strain help in the detection of left ventricular wall motion abnormalities in our daily echocardiographic practice?

    Science.gov (United States)

    Benyounes, Nadia; Lang, Sylvie; Gout, Olivier; Ancédy, Yann; Etienney, Arnaud; Cohen, Ariel

    2016-10-01

    Transthoracic echocardiography is the most commonly used tool for the detection of left ventricular wall motion (LVWM) abnormalities using "naked eye evaluation". This subjective and operator-dependent technique requires a high level of clinical training and experience. Two-dimensional speckle-tracking echocardiography (2D-STE), which is less operator-dependent, has been proposed for this purpose. However, the role of on-line segmental longitudinal peak systolic strain (LPSS) values in the prediction of LVWM has not been fully evaluated. To test segmental LPSS for predicting LVWM abnormalities in routine echocardiography laboratory practice. LVWM was evaluated by an experienced cardiologist, during routine practice, in 620 patients; segmental LPSS values were then calculated. In this work, reflecting real life, 99.6% of segments were successfully tracked. Mean (95% confidence interval [CI]) segmental LPSS values for normal basal (n=3409), mid (n=3468) and apical (n=3466) segments were -16.7% (-16.9% to -16.5%), -18.2% (-18.3% to -18.0%) and -21.1% (-21.3% to -20.9%), respectively. Mean (95% CI) segmental LPSS values for hypokinetic basal (n=114), mid (n=116) and apical (n=90) segments were -7.7% (-9.0% to -6.3%), -10.1% (-11.1% to -9.0%) and -9.3% (-10.5% to -8.1%), respectively. Mean (95% CI) segmental LPSS values for akinetic basal (n=128), mid (n=95) and apical (n=91) segments were -6.6% (-8.0% to -5.1%), -6.1% (-7.7% to -4.6%) and -4.2% (-5.4% to -3.0%), respectively. LPSS allowed the differentiation between normal and abnormal segments at basal, mid and apical levels. An LPSS value≥-12% detected abnormal segmental motion with a sensitivity of 78% for basal, 70% for mid and 82% for apical segments. Segmental LPSS values may help to differentiate between normal and abnormal left ventricular segments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Deficient Biological Motion Perception in Schizophrenia: Results from a Motion Noise Paradigm

    Directory of Open Access Journals (Sweden)

    Jejoong eKim

    2013-07-01

    Full Text Available Background: Schizophrenia patients exhibit deficient processing of perceptual and cognitive information. However, it is not well understood how basic perceptual deficits contribute to higher level cognitive problems in this mental disorder. Perception of biological motion, a motion-based cognitive recognition task, relies on both basic visual motion processing and social cognitive processing, thus providing a useful paradigm to evaluate the potentially hierarchical relationship between these two levels of information processing. Methods: In this study, we designed a biological motion paradigm in which basic visual motion signals were manipulated systematically by incorporating different levels of motion noise. We measured the performances of schizophrenia patients (n=21 and healthy controls (n=22 in this biological motion perception task, as well as in coherent motion detection, theory of mind, and a widely used biological motion recognition task. Results: Schizophrenia patients performed the biological motion perception task with significantly lower accuracy than healthy controls when perceptual signals were moderately degraded by noise. A more substantial degradation of perceptual signals, through using additional noise, impaired biological motion perception in both groups. Performance levels on biological motion recognition, coherent motion detection and theory of mind tasks were also reduced in patients. Conclusion: The results from the motion-noise biological motion paradigm indicate that in the presence of visual motion noise, the processing of biological motion information in schizophrenia is deficient. Combined with the results of poor basic visual motion perception (coherent motion task and biological motion recognition, the association between basic motion signals and biological motion perception suggests a need to incorporate the improvement of visual motion perception in social cognitive remediation.

  18. Flapping motion and force generation in a viscoelastic fluid

    Science.gov (United States)

    Normand, Thibaud; Lauga, Eric

    2008-12-01

    In a variety of biological situations, swimming cells have to move through complex fluids. Similarly, mucociliary clearance involves the transport of polymeric fluids by beating cilia. Here, we consider the extent to which complex fluids could be exploited for force generation on small scales. We consider a prototypical reciprocal motion (i.e., identical under time-reversal symmetry): the periodic flapping of a tethered semi-infinite plane. In the Newtonian limit, such motion cannot be used for force generation according to Purcell’s scallop theorem. In a polymeric fluid (Oldroyd-B, and its generalization), we show that this is not the case and calculate explicitly the forces on the flapper for small-amplitude sinusoidal motion. Three setups are considered: a flapper near a wall, a flapper in a wedge, and a two-dimensional scalloplike flapper. In all cases, we show that at quadratic order in the oscillation amplitude, the tethered flapping motion induces net forces, but no average flow. Our results demonstrate therefore that the scallop theorem is not valid in polymeric fluids. The reciprocal component of the movement of biological appendages such as cilia can thus generate nontrivial forces in polymeric fluid such as mucus, and normal-stress differences can be exploited as a pure viscoelastic force generation and propulsion method.

  19. A micromagnetic study of the oscillations of pinned domain walls in magnetic ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Alejos, Oscar [Dpto. Electricidad y Electronica, Universidad de Valladolid, 47071 Valladolid (Spain)]. E-mail: oscaral@ee.uva.es; Torres, Carlos [Dpto. Electricidad y Electronica, Universidad de Valladolid, 47071 Valladolid (Spain); Hernandez-Gomez, Pablo [Dpto. Electricidad y Electronica, Universidad de Valladolid, 47071 Valladolid (Spain); Lopez-Diaz, Luis [Dpto. Fisica Aplicada, Universidad de Salamanca, 37071 Salamanca (Spain); Torres, Luis [Dpto. Fisica Aplicada, Universidad de Salamanca, 37071 Salamanca (Spain); Martinez, Eduardo [Dpto. Ingenieria Electromecanica, Universidad de Burgos, 09001 Burgos (Spain)

    2007-09-15

    The work studies the dynamics of domain walls in magnetic ribbons with thicknesses of the order of magnitude of the permalloy exchange length (5.7 nm) by means of micromagnetic simulations. Two small defects are symmetrically placed on both edges of the ribbon, one on each edge, occupying the whole ribbon thickness. One transverse domain wall is pinned by the defects, in a head-to-head configuration. A free wall oscillation is forced by applying a static external magnetic field in the direction of the large axis until the wall reaches a new equilibrium position (elongation), and then removed. Three dynamic regimes are observed depending on the size of the cross ribbon section.

  20. A micromagnetic study of the oscillations of pinned domain walls in magnetic ribbons

    International Nuclear Information System (INIS)

    Alejos, Oscar; Torres, Carlos; Hernandez-Gomez, Pablo; Lopez-Diaz, Luis; Torres, Luis; Martinez, Eduardo

    2007-01-01

    The work studies the dynamics of domain walls in magnetic ribbons with thicknesses of the order of magnitude of the permalloy exchange length (5.7 nm) by means of micromagnetic simulations. Two small defects are symmetrically placed on both edges of the ribbon, one on each edge, occupying the whole ribbon thickness. One transverse domain wall is pinned by the defects, in a head-to-head configuration. A free wall oscillation is forced by applying a static external magnetic field in the direction of the large axis until the wall reaches a new equilibrium position (elongation), and then removed. Three dynamic regimes are observed depending on the size of the cross ribbon section

  1. Experimental Estimation Of Energy Damping During Free Rocking Of Unreinforced Masonry Walls. First Results

    International Nuclear Information System (INIS)

    Sorrentino, Luigi; Masiani, Renato; Benedetti, Stefano

    2008-01-01

    This paper presents an ongoing experimental program on unreinforced masonry walls undergoing free rocking. Aim of the laboratory campaign is the estimation of kinetic energy damping exhibited by walls released with non-zero initial conditions of motion. Such energy damping is necessary for dynamic modelling of unreinforced masonry local mechanisms. After a brief review of the literature on this topic, the main features of the laboratory tests are presented. The program involves the experimental investigation of several parameters: 1) unit material (brick or tuff), 2) wall aspect ratio (ranging between 14.5 and 7.1), 3) restraint condition (two-sided or one-sided rocking), and 4) depth of the contact surface between facade and transverse walls (one-sided rocking only). All walls are single wythe and the mortar is pozzuolanic. The campaign is still in progress. However, it is possible to present the results on most of the mechanical properties of mortar and bricks. Moreover, a few time histories are reported, already indicating the need to correct some of the assumptions frequent in the literature

  2. Implied motion because of instability in Hokusai Manga activates the human motion-sensitive extrastriate visual cortex: an fMRI study of the impact of visual art.

    Science.gov (United States)

    Osaka, Naoyuki; Matsuyoshi, Daisuke; Ikeda, Takashi; Osaka, Mariko

    2010-03-10

    The recent development of cognitive neuroscience has invited inference about the neurosensory events underlying the experience of visual arts involving implied motion. We report functional magnetic resonance imaging study demonstrating activation of the human extrastriate motion-sensitive cortex by static images showing implied motion because of instability. We used static line-drawing cartoons of humans by Hokusai Katsushika (called 'Hokusai Manga'), an outstanding Japanese cartoonist as well as famous Ukiyoe artist. We found 'Hokusai Manga' with implied motion by depicting human bodies that are engaged in challenging tonic posture significantly activated the motion-sensitive visual cortex including MT+ in the human extrastriate cortex, while an illustration that does not imply motion, for either humans or objects, did not activate these areas under the same tasks. We conclude that motion-sensitive extrastriate cortex would be a critical region for perception of implied motion in instability.

  3. Numerical investigation of the effects of large particles on wall-turbulence

    International Nuclear Information System (INIS)

    Pan, Y.; Banerjee, S.

    1997-01-01

    Particle-laden turbulent flows, at average volume fraction less than 4x10 -4 , in open channels are numerically simulated by using a pseudospectral method. The motion of particles, that are large compared with the dissipative length scale, is coupled to the fluid motion by a method that generates a open-quotes virtualclose quotes no-slip boundary on the particle surface by imposition of an external force field on the grid-points enclosed by the particle. Cases for both moving and stationary particles, lying on the wall, are simulated. The investigations focus on particle-turbulence interaction. It is found that particles increase turbulence intensities and Reynolds stress. By examining higher order turbulence statistics and doing a quadrant analysis of the Reynolds stress, it is found that the ejection-sweep cycle is affected emdash primarily through suppression of sweeps by the smaller particles and enhancement of sweep activity by the larger particles. An assessment of the impact of these findings on scalar transfer is made, as enhancement of wall heat/mass transfer rates is a motivation of the overall work on this subject. In the cases considered, comparison of the calculations with an existing experiment was possible, and shows good agreement. At present, due to limitations in available computational resources, this method cannot be used when the particle diameter is smaller than the smallest turbulence scale (e.g. the Kolmogorov length scale) and the volume fraction is of the same order as studied in this paper, i.e. between 10 -3 and 10 -4 . copyright 1997 American Institute of Physics

  4. Experimental and numerical study of heat transfer across insulation wall of a refrigerated integral panel van

    International Nuclear Information System (INIS)

    Glouannec, Patrick; Michel, Benoit; Delamarre, Guillaume; Grohens, Yves

    2014-01-01

    This paper presents an experimental and numerical design study of an insulation wall for refrigerated vans. The thermophysical properties of the insulating multilayer panel, the external environment impact (solar irradiation, temperature, etc.) and durability are taken into account. Different tools are used to characterize the thermal performances of the insulation walls and the thermal properties of the insulation materials are measured. In addition, an experiment at the wall scale is carried out and a 2D FEM model of heat and mass transfer within the wall is formulated. Three configurations are studied with this design approach. Multilayer insulation walls containing reflective multi-foil insulation, aerogel and phase change materials (PCM) are tested. Promising results are obtained with these materials, especially the reduction of peak heat transfer and energy consumption during the daytime period. Furthermore, the major influence of solar irradiation is highlighted as it can increase the peak heat transfer crossing the insulation wall by up to 43%. Nevertheless, we showed that the use of reflective multi-foil insulation and aerogel layers allowed decreasing this impact by 27%. - Highlights: • A design study of an insulation wall for a refrigerated van is carried out. • Experimental and numerical studies of multilayer insulation walls are performed. • The major influence of solar irradiation is highlighted. • New insulation materials (reflective multi-foil, aerogel and PCM) are tested

  5. Motion and time study analysis of wooden locally manufactured ...

    African Journals Online (AJOL)

    Studies were carried out on time-and-motion-economy of wooden locally manufactured duplicating machines. Two versions of the machine were used for the study, viz: standard version and semi-mechanized version. Working with both auxiliary and routine operations, the standard duplicator produced printed paper at an ...

  6. Active and passive kink mode studies in a tokamak with a movable ferromagnetic wall

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, J. P.; Hughes, P. E.; Bialek, J.; Byrne, P. J.; Mauel, M. E.; Navratil, G. A.; Peng, Q.; Rhodes, D. J.; Stoafer, C. C. [Department of Applied Physics and Applied Mathematics, Columbia University, 500 W. 120th Street, New York, New York 10027 (United States)

    2015-05-15

    High-resolution active and passive kink mode studies are conducted in a tokamak with an adjustable ferromagnetic wall near the plasma surface. Ferritic tiles made from 5.6 mm thick Hiperco{sup ®} 50 alloy have been mounted on the plasma-facing side of half of the in-vessel movable wall segments in the High Beta Tokamak-Extended Pulse device [D. A. Maurer et al., Plasma Phys. Controlled Fusion 53, 074016 (2011)] in order to explore ferritic resistive wall mode stability. Low-activation ferritic steels are a candidate for structural components of a fusion reactor, and these experiments examine MHD stability of plasmas with nearby ferromagnetic material. Plasma-wall separation for alternating ferritic and non-ferritic wall segments is adjusted between discharges without opening the vacuum vessel. Amplification of applied resonant magnetic perturbations and plasma disruptivity are observed to increase when the ferromagnetic wall is close to plasma surface instead of the standard stainless steel wall. Rapidly rotating m/n=3/1 external kink modes have higher growth rates with the nearby ferritic wall. Feedback suppression of kinks is still as effective as before the installation of ferritic material in vessel, in spite of increased mode growth rates.

  7. Measurement of shoulder motion fraction and motion ratio

    International Nuclear Information System (INIS)

    Kang, Yeong Han

    2006-01-01

    This study was to understand about the measurement of shoulder motion fraction and motion ratio. We proposed the radiological criterior of glenohumeral and scapulothoracic movement ratio. We measured the motion fraction of the glenohumeral and scapulothoracic movement using CR (computed radiological system) of arm elevation at neutral, 90 degree, full elevation. Central ray was 15 .deg., 19 .deg., 22 .deg. to the cephald for the parallel scapular spine, and the tilting of torso was external oblique 40 .deg., 36 .deg., 22 .deg. for perpendicular to glenohumeral surface. Healthful donor of 100 was divided 5 groups by age (20, 30, 40, 50, 60). The angle of glenohumeral motion and scapulothoracic motion could be taken from gross arm angle and radiological arm angle. We acquired 3 images at neutral, 90 .deg. and full elevation position and measured radiographic angle of glenoheumeral, scapulothoracic movement respectively. While the arm elevation was 90 .deg., the shoulder motion fraction was 1.22 (M), 1.70 (W) in right arm and 1.31, 1.54 in left. In full elevation, Right arm fraction was 1.63, 1.84 and left was 1.57, 1.32. In right dominant arm (78%), 90 .deg. and Full motion fraction was 1.58, 1.43, in left (22%) 1.82, 1.94. In generation 20, 90 .deg. and Full motion fraction was 1.56, 1.52, 30' was 1.82, 1.43, 40' was 1.23, 1.16, 50' was 1.80, 1.28,60' was 1.24, 1.75. There was not significantly by gender, dominant arm and age. The criteria of motion fraction was useful reference for clinical diagnosis the shoulder instability

  8. Ground motion improvements in SPEAR3

    Energy Technology Data Exchange (ETDEWEB)

    Safranek, James A.; Yan, Yiton T.; Dell’Orco, Domenico; Gassner, Georg; Sunilkumar, Nikita

    2016-09-01

    SPEAR3 is a third-generation synchrotron light source storage ring, about 234 meters in circumference. To meet the beam stability requirement, our goal is to ultimately achieve an orbit variation (relative to the photon beam lines) of less than 10% of the beam size, which is about 1 micron in the vertical plane. Hydrostatic leveling system (HLS) measurements show that the height of the SPEAR3 tunnel floor can vary by tens of microns daily without thermal insulation improvements. We present an analysis of the HLS data that shows that adding thermal insulation to the concrete walls of the storage ring tunnel dramatically decreased diurnal tunnel floor motion.

  9. The Importance of Spatiotemporal Information in Biological Motion Perception: White Noise Presented with a Step-like Motion Activates the Biological Motion Area.

    Science.gov (United States)

    Callan, Akiko; Callan, Daniel; Ando, Hiroshi

    2017-02-01

    Humans can easily recognize the motion of living creatures using only a handful of point-lights that describe the motion of the main joints (biological motion perception). This special ability to perceive the motion of animate objects signifies the importance of the spatiotemporal information in perceiving biological motion. The posterior STS (pSTS) and posterior middle temporal gyrus (pMTG) region have been established by many functional neuroimaging studies as a locus for biological motion perception. Because listening to a walking human also activates the pSTS/pMTG region, the region has been proposed to be supramodal in nature. In this study, we investigated whether the spatiotemporal information from simple auditory stimuli is sufficient to activate this biological motion area. We compared spatially moving white noise, having a running-like tempo that was consistent with biological motion, with stationary white noise. The moving-minus-stationary contrast showed significant differences in activation of the pSTS/pMTG region. Our results suggest that the spatiotemporal information of the auditory stimuli is sufficient to activate the biological motion area.

  10. A Study on the Bio-mimetic Motion of Reptiles

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hochelo; Kim, Changhoi; Eom, Heungseop; Jeong, Kyungmin; Jung, Seungjo

    2013-10-15

    After investigating the locomotion based on the biological characteristics about the from a literature search about the reptile, the locomotion of lizards is captured with marker based motion capture system. Tested lizards are Cuban anole, bearded dragon, domestic lizards such as a white-striped grass lizard and a leopard lizard, After analyzing the motion of the lizards with the measured data, a 25 DOF kinematics model of a lizard was proposed. A periodic gait of the lizard was modeled by defining gait parameters. The body structure of the lizard was analyzed with a bone specimen for the kinematics modeling. Dynamics parameters such as a mass and a inertia of a link are obtained by measuring the weight and the volume of each link. The crawl and the trot gait were simulated with the dynamics model. To control the poly-morphic motion of snake robot, various locomotions of snakes and the motion algorithm of snake robots were investigated. A test model of snake robot and a control system were developed to analyzed the motion and energy efficiency according to the gaits and to realize the poly-morphic motion control.

  11. A Study on the Bio-mimetic Motion of Reptiles

    International Nuclear Information System (INIS)

    Shin, Hochelo; Kim, Changhoi; Eom, Heungseop; Jeong, Kyungmin; Jung, Seungjo

    2013-10-01

    After investigating the locomotion based on the biological characteristics about the from a literature search about the reptile, the locomotion of lizards is captured with marker based motion capture system. Tested lizards are Cuban anole, bearded dragon, domestic lizards such as a white-striped grass lizard and a leopard lizard, After analyzing the motion of the lizards with the measured data, a 25 DOF kinematics model of a lizard was proposed. A periodic gait of the lizard was modeled by defining gait parameters. The body structure of the lizard was analyzed with a bone specimen for the kinematics modeling. Dynamics parameters such as a mass and a inertia of a link are obtained by measuring the weight and the volume of each link. The crawl and the trot gait were simulated with the dynamics model. To control the poly-morphic motion of snake robot, various locomotions of snakes and the motion algorithm of snake robots were investigated. A test model of snake robot and a control system were developed to analyzed the motion and energy efficiency according to the gaits and to realize the poly-morphic motion control

  12. Pebble-bed pebble motion: Simulation and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2011-11-01

    Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This report presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to

  13. Pebble-bed pebble motion: Simulation and Applications

    International Nuclear Information System (INIS)

    Cogliati, Joshua J.; Ougouag, Abderrafi M.

    2011-01-01

    Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This report presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to determine

  14. Pebble bed pebble motion: Simulation and Application

    Science.gov (United States)

    Cogliati, Joshua J.

    Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This dissertation presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to

  15. Can large-scale oblique undulations on a solid wall reduce the turbulent drag?

    Science.gov (United States)

    Ghebali, Sacha; Chernyshenko, Sergei I.; Leschziner, Michael A.

    2017-10-01

    Direct numerical simulations of fully developed turbulent channel flows with wavy walls are undertaken. The wavy walls, skewed with respect to the mean flow direction, are introduced as a means of emulating a Spatial Stokes Layer (SSL) induced by in-plane wall motion. The transverse shear strain above the wavy wall is shown to be similar to that of a SSL, thereby affecting the turbulent flow and leading to a reduction in the turbulent skin-friction drag. However, some important differences with respect to the SSL case are brought to light too. In particular, the phase variations of the turbulent properties are accentuated and, unlike in the SSL case, there is a region of increased turbulence production over a portion of the wall, above the leeward side of the wave, thus giving rise to a local increase in dissipation. The pressure- and friction-drag levels are carefully quantified for various flow configurations, exhibiting a combined maximum overall-drag reduction of about 0.6%. The friction-drag reduction is shown to behave approximately quadratically for small wave slopes and then linearly for higher slopes, whilst the pressure-drag penalty increases quadratically. The transverse shear-strain layer is shown to be approximately Reynolds-number independent when the wave geometry is scaled in wall units.

  16. An integrated study for mapping the moisture distribution in an ancient damaged wall painting.

    Science.gov (United States)

    Capitani, Donatella; Proietti, Noemi; Gobbino, Marco; Soroldoni, Luigi; Casellato, Umberto; Valentini, Massimo; Rosina, Elisabetta

    2009-12-01

    An integrated study of microclimate monitoring, IR thermography (IRT), gravimetric tests and portable unilateral nuclear magnetic resonance (NMR) was applied in the framework of planning emergency intervention on a very deteriorated wall painting in San Rocco church, Cornaredo (Milan, Italy). The IRT investigation supported by gravimetric tests showed that the worst damage, due to water infiltration, was localized on the wall painting of the northern wall. Unilateral NMR, a new non-destructive technique which measures the hydrogen signal of the moisture and that was applied directly to the wall, allowed a detailed map of the distribution of the moisture in the plaster underlying the wall panting to be obtained. With a proper calibration of the integral of the recorded signal with suitable specimens, each area of the map corresponded to an accurate amount of moisture. IRT, gravimetric tests and unilateral NMR applied to investigate the northern wall painting showed the presence of two wet areas separated by a dry area. The moisture found in the lower area was ascribed to the occurrence of rising damp at the bottom of the wall due to the slope of the garden soil towards the northern exterior. The moisture found in the upper area was ascribed to condensation phenomena associated with the presence of a considerable amount of soluble, hygroscopic salts. In the framework of this integrated study, IRT investigation and gravimetric methods validated portable unilateral NMR as a new analytical tool for measuring in situ and without any sampling of the distribution and amount of moisture in wall paintings.

  17. Reynolds stress analysis of EMHD-controlled wall turbulence. Part I. Streamwise forcing

    International Nuclear Information System (INIS)

    Crawford, C.H.; Karniadakis, G.E.

    1997-01-01

    In this work we investigate numerically turbulent flow of low electrical conductivity fluid subject to electro-magnetic (EMHD) forcing. The configuration is similar to the one considered in the experimental work of Henoch and Stace [Phys. Fluids 7, 1371 (1995)] but in a channel geometry. The lower wall of the channel is covered with alternating streamwise electrodes and magnets to create a Lorentz force in the positive streamwise direction. Two cases are considered in detail corresponding to interaction parameter values of 0.4 (case 1) and 0.1 (case 2). The effect of switching off and on the electrodes is also studied for the two cases. At the Reynolds number considered (Re τ ∼200), a drag increase was obtained for all cases, in agreement with the experiments of Henoch and Stace. A Reynolds stress analysis was performed based on a new decomposition of the gradients normal to the wall of the Reynolds stress -u'v'. It was found that the vortex stretching term w'w 2 ' and the spanwise variation of the stress component u'w' are responsible for the drag increase. More specifically, the term ∂(u'w')/∂x 3 is associated with secondary vortical motions in the near-wall and becomes large and positive for large shear stress in regions where fluid is moving toward the wall. In contrast, negative values are associated with regions of lower shear where fluid is being lifted away from the wall. Unlike the unperturbed flow, in the controlled flow high speed near-wall streamwise jets are present (case 1) even in the time-averaged fields. Other changes in turbulence structure are quantified using streak spacing, vortex lines, vorticity quadrant analysis, and plots of the rms value of the vorticity angle. copyright 1997 American Institute of Physics

  18. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  19. Elasto-plastic response of multi-story shear wall structures

    International Nuclear Information System (INIS)

    Mizutani, M.; Yamazaki, F.

    1987-01-01

    A Monte Carlo simulation study is carried out. The relationship between the elastoplastic and linear response for multi-DOF systems is developed based on the results of the simulation study. Several 6-story shear wall structures are considered as structural models which represent typical nuclear power plant buildings. A bilinear force-displacement relationship is assumed for each story. A number of artificial earthquakes based on the Kanai-Tajimi power spectrum and trapezoidal envelope function are used as the input ground motion. The least square method is introduced for the purpose of evaluating the median relationship between the ductility factor and linear response from the simulated data and also evaluating the deviation from this median relationship. This relationship derived for the 6-story buildings is compared with the currently used energy absorption factor and the simulation results for Zion auxiliary building model. (orig./HP)

  20. A computational fluid dynamics modeling study of guide walls for downstream fish passage

    Science.gov (United States)

    Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.

    2017-01-01

    A partial-depth, impermeable guidance structure (or guide wall) for downstream fish passage is typically constructed as a series of panels attached to a floating boom and anchored across a water body (e.g. river channel, reservoir, or power canal). The downstream terminus of the wall is generally located nearby to a fish bypass structure. If guidance is successful, the fish will avoid entrainment in a dangerous intake structure (i.e. turbine intakes) while passing from the headpond to the tailwater of a hydroelectric facility through a safer passage route (i.e. the bypass). The goal of this study is to determine the combination of guide wall design parameters that will most likely increase the chance of surface-oriented fish being successfully guided to the bypass. To evaluate the flow field immediately upstream of a guide wall, a parameterized computational fluid dynamics model of an idealized power canal was constructed in © ANSYS Fluent v 14.5 (ANSYS Inc., 2012). The design parameters investigated were the angle and depth of the guide wall and the average approach velocity in the power canal. Results call attention to the importance of the downward to sweeping flow ratio and demonstrate how a change in guide wall depth and angle can affect this important hydraulic cue to out-migrating fish. The key findings indicate that a guide wall set at a small angle (15° is the minimum in this study) and deep enough such that sweeping flow dominant conditions prevail within the expected vertical distribution of fish approaching the structure will produce hydraulic conditions that are more likely to result in effective passage.

  1. Operational Windows for Dry-Wall and Wetted-Wall IFE Chambers

    International Nuclear Information System (INIS)

    Najmabadi, F.; Raffray, A.R.; Bromberg, L.

    2004-01-01

    The ARIES-IFE study was an integrated study of inertial fusion energy (IFE) chambers and chamber interfaces with the driver and target systems. Detailed analysis of various subsystems was performed parametrically to uncover key physics/technology uncertainties and to identify constraints imposed by each subsystem. In this paper, these constraints (e.g., target injection and tracking, thermal response of the first wall, and driver propagation and focusing) were combined to understand the trade-offs, to develop operational windows for chamber concepts, and to identify high-leverage research and development directions for IFE research. Some conclusions drawn in this paper are (a) the detailed characterization of the target yield and spectrum has a major impact on the chamber; (b) it is prudent to use a thin armor instead of a monolithic first wall for dry-wall concepts; (c) for dry-wall concepts with direct-drive targets, the most stringent constraint is imposed by target survival during the injection process; (d) for relatively low yield targets (<250 MJ), an operational window with no buffer gas may exist; (e) for dry-wall concepts with indirect-drive targets, a high buffer gas pressure would be necessary that may preclude propagation of the laser driver and require assisted pinch transport for the heavy-ion driver; and (f) generation and transport of aerosols in the chamber is the key feasibility issue for wetted-wall concepts

  2. Experimental, numerical, and analytical studies on the seismic response of steel-plate concrete (SC) composite shear walls

    Science.gov (United States)

    Epackachi, Siamak

    The seismic performance of rectangular steel-plate concrete (SC) composite shear walls is assessed for application to buildings and mission-critical infrastructure. The SC walls considered in this study were composed of two steel faceplates and infill concrete. The steel faceplates were connected together and to the infill concrete using tie rods and headed studs, respectively. The research focused on the in-plane behavior of flexure- and flexure-shear-critical SC walls. An experimental program was executed in the NEES laboratory at the University at Buffalo and was followed by numerical and analytical studies. In the experimental program, four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure- and flexure-shear critical. The progression of damage in the four walls was identical, namely, cracking and crushing of the infill concrete at the toes of the walls, outward buckling and yielding of the steel faceplates near the base of the wall, and tearing of the faceplates at their junctions with the baseplate. A robust finite element model was developed in LS-DYNA for nonlinear cyclic analysis of the flexure- and flexure-shear-critical SC walls. The DYNA model was validated using the results of the cyclic tests of the four SC walls. The validated and benchmarked models were then used to conduct a parametric study, which investigated the effects of wall aspect ratio, reinforcement ratio, wall thickness, and uniaxial concrete compressive strength on the in-plane response of SC walls. Simplified analytical models, suitable for preliminary analysis and design of SC walls, were

  3. CFD Modeling of Wall Steam Condensation: Two-Phase Flow Approach versus Homogeneous Flow Approach

    International Nuclear Information System (INIS)

    Mimouni, S.; Mechitoua, N.; Foissac, A.; Hassanaly, M.; Ouraou, M.

    2011-01-01

    The present work is focused on the condensation heat transfer that plays a dominant role in many accident scenarios postulated to occur in the containment of nuclear reactors. The study compares a general multiphase approach implemented in NEPTUNE C FD with a homogeneous model, of widespread use for engineering studies, implemented in Code S aturne. The model implemented in NEPTUNE C FD assumes that liquid droplets form along the wall within nucleation sites. Vapor condensation on droplets makes them grow. Once the droplet diameter reaches a critical value, gravitational forces compensate surface tension force and then droplets slide over the wall and form a liquid film. This approach allows taking into account simultaneously the mechanical drift between the droplet and the gas, the heat and mass transfer on droplets in the core of the flow and the condensation/evaporation phenomena on the walls. As concern the homogeneous approach, the motion of the liquid film due to the gravitational forces is neglected, as well as the volume occupied by the liquid. Both condensation models and compressible procedures are validated and compared to experimental data provided by the TOSQAN ISP47 experiment (IRSN Saclay). Computational results compare favorably with experimental data, particularly for the Helium and steam volume fractions.

  4. Fractality and the law of the wall

    Science.gov (United States)

    Xu, Haosen H. A.; Yang, X. I. A.

    2018-05-01

    Fluid motions in the inertial range of isotropic turbulence are fractal, with their space-filling capacity slightly below regular three-dimensional objects, which is a consequence of the energy cascade. Besides the energy cascade, the other often encountered cascading process is the momentum cascade in wall-bounded flows. Despite the long-existing analogy between the two processes, many of the thoroughly investigated aspects of the energy cascade have so far received little attention in studies of the momentum counterpart, e.g., the possibility of the momentum-transferring scales in the logarithmic region being fractal has not been considered. In this work, this possibility is pursued, and we discuss one of its implications. Following the same dimensional arguments that lead to the D =2.33 fractal dimension of wrinkled surfaces in isotropic turbulence, we show that the large-scale momentum-carrying eddies may also be fractal and non-space-filling, which then leads to the power-law scaling of the mean velocity profile. The logarithmic law of the wall, on the other hand, corresponds to space-filling eddies, as suggested by Townsend [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1980)]. Because the space-filling capacity is an integral geometric quantity, the analysis presented in this work provides us with a low-order quantity, with which, one would be able to distinguish between the logarithmic law and the power law.

  5. Direct Contribution of Auditory Motion Information to Sound-Induced Visual Motion Perception

    Directory of Open Access Journals (Sweden)

    Souta Hidaka

    2011-10-01

    Full Text Available We have recently demonstrated that alternating left-right sound sources induce motion perception to static visual stimuli along the horizontal plane (SIVM: sound-induced visual motion perception, Hidaka et al., 2009. The aim of the current study was to elucidate whether auditory motion signals, rather than auditory positional signals, can directly contribute to the SIVM. We presented static visual flashes at retinal locations outside the fovea together with a lateral auditory motion provided by a virtual stereo noise source smoothly shifting in the horizontal plane. The flashes appeared to move in the situation where auditory positional information would have little influence on the perceived position of visual stimuli; the spatiotemporal position of the flashes was in the middle of the auditory motion trajectory. Furthermore, the auditory motion altered visual motion perception in a global motion display; in this display, different localized motion signals of multiple visual stimuli were combined to produce a coherent visual motion perception so that there was no clear one-to-one correspondence between the auditory stimuli and each visual stimulus. These findings suggest the existence of direct interactions between the auditory and visual modalities in motion processing and motion perception.

  6. Feasibility Study of Ex Ovo Chick Chorioallantoic Artery Model for Investigating Pulsatile Variation of Arterial Geometry.

    Directory of Open Access Journals (Sweden)

    Kweon-Ho Nam

    Full Text Available Despite considerable research efforts on the relationship between arterial geometry and cardiovascular pathology, information is lacking on the pulsatile geometrical variation caused by arterial distensibility and cardiomotility because of the lack of suitable in vivo experimental models and the methodological difficulties in examining the arterial dynamics. We aimed to investigate the feasibility of using a chick embryo system as an experimental model for basic research on the pulsatile variation of arterial geometry. Optical microscope video images of various arterial shapes in chick chorioallantoic circulation were recorded from different locations and different embryo samples. The high optical transparency of the chorioallantoic membrane (CAM allowed clear observation of tiny vessels and their movements. Systolic and diastolic changes in arterial geometry were visualized by detecting the wall boundaries from binary images. Several to hundreds of microns of wall displacement variations were recognized during a pulsatile cycle. The spatial maps of the wall motion harmonics and magnitude ratio of harmonic components were obtained by analyzing the temporal brightness variation at each pixel in sequential grayscale images using spectral analysis techniques. The local variations in the spectral characteristics of the arterial wall motion were reflected well in the analysis results. In addition, mapping the phase angle of the fundamental frequency identified the regional variations in the wall motion directivity and phase shift. Regional variations in wall motion phase angle and fundamental-to-second harmonic ratio were remarkable near the bifurcation area. In summary, wall motion in various arterial geometry including straight, curved and bifurcated shapes was well observed in the CAM artery model, and their local and cyclic variations could be characterized by Fourier and wavelet transforms of the acquired video images. The CAM artery model with

  7. A PSF-Shape-Based Beamforming Strategy for Robust 2D Motion Estimation in Ultrafast Data

    Directory of Open Access Journals (Sweden)

    Anne E. C. M. Saris

    2018-03-01

    Full Text Available This paper presents a framework for motion estimation in ultrafast ultrasound data. It describes a novel approach for determining the sampling grid for ultrafast data based on the system’s point-spread-function (PSF. As a consequence, the cross-correlation functions (CCF used in the speckle tracking (ST algorithm will have circular-shaped peaks, which can be interpolated using a 2D interpolation method to estimate subsample displacements. Carotid artery wall motion and parabolic blood flow simulations together with rotating disk experiments using a Verasonics Vantage 256 are used for performance evaluation. Zero-degree plane wave data were acquired using an ATL L5-12 (fc = 9 MHz transducer for a range of pulse repetition frequencies (PRFs, resulting in 0–600 µm inter-frame displacements. The proposed methodology was compared to data beamformed on a conventionally spaced grid, combined with the commonly used 1D parabolic interpolation. The PSF-shape-based beamforming grid combined with 2D cubic interpolation showed the most accurate and stable performance with respect to the full range of inter-frame displacements, both for the assessment of blood flow and vessel wall dynamics. The proposed methodology can be used as a protocolled way to beamform ultrafast data and obtain accurate estimates of tissue motion.

  8. Unmasking the mechanism of diffuse left ventricular wall motion abnormality in ischemic cardiomyopathy by resting-redistribution thallium-201 single photon computed tomography

    International Nuclear Information System (INIS)

    Namura, Hiroyuki; Yamabe, Hiroshi; Kakimoto, Tetsuya; Hashimoto, Yasunori; Yasaka, Yoshinori; Yoshida, Hiroaki; Itoh, Kazushi; Yokoyama, Mitsuhiro; Maeda, Kazumi.

    1992-01-01

    The study population comprised patients with ischemic cardiomyopathy (ICM) who had left ventricular wall motion (LVWM) abnormality in 5 or more segments (n=9), those with extensive myocardial infarction (EMI) having LVWM abnormality in 4 or less segments (n=12), and those with dilated left ventricle (DLV) having LVWM abnormality in all 7 segments (n=9). Defect scores (DS), obtained by initial and delayed Tl-201 myocardial single photon emission computed tomography at rest, were visually assessed to compare perfusion patterns in the three patient groups. The group of ICM patients had greater defect segments (DSeg) and % redistribution (Rd) index than the other two groups, although there was no difference in the number of angiographically proven infarct-related coronary vessels between EMI and ICM. In the group of ICM patients, there was inverse correlation not only between left ventricular ejection fraction and the sum of DS but also between left ventricular enddiastolic volume index and both the sum of DSeg and % Rd index. The group of DLV patients had small sum of DSeg and redistribution, compared with the other two groups. Although diffuse LVWM abnormality, as observed in the group of ICM patients, was considered attributable to potential decrease of coronary perfusion shown as defect on SPECT images, it did not always coincide with findings of coronary angiography. Both DSeg and redistribution phenomenon on SPECT images seemed to have the ability to evaluate the severity of ICM, as well as to differentiate ICM, EMI, and DLV. (N.K.)

  9. Use of numerical modeling in design for co-firing biomass in wall-fired burners

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen

    2004-01-01

    modification to the motion and reaction due to their non-sphericity. The simulation results show a big difference between the two cases and indicate it is very significant to take into account the non-sphericity of biomass particles in order to model biomass combustion more accurately. Methods to improve...... of numerical modeling. The models currently used to predict solid fuel combustion rely on a spherical particle shape assumption, which may deviate a lot from reality for big biomass particles. A sphere gives a minimum in terms of the surface-area-to-volume ratio, which impacts significantly both motion...... and reaction of a particle. To better understand biomass combustion and thus improve the design for co-firing biomass in wall-fired burners, non-sphericity of biomass particles is considered. To ease comparison, two cases are numerically studied in a 10m long gas/biomass co-fired burner model. (1) The biomass...

  10. Spin-motive Force Induced by Domain Wall Dynamics in the Antiferromagnetic Spin Valve

    Science.gov (United States)

    Sugano, Ryoko; Ichimura, Masahiko; Takahashi, Saburo; Maekawa, Sadamichi; Crest Collaboration

    2014-03-01

    In spite of no net magnetization in antiferromagnetic (AF) textures, the local magnetic properties (Neel magnetization) can be manipulated in a similar fashion to ferromagnetic (F) ones. It is expected that, even in AF metals, spin transfer torques (STTs) lead to the domain wall (DW) motion and that the DW motion induces spin-motive force (SMF). In order to study the Neel magnetization dynamics and the resultant SMF, we treat the nano-structured F1/AF/F2 junction. The F1 and F2 leads behave as a spin current injector and a detector, respectively. Each F lead is fixed in the different magnetization direction. Torsions (DW in AF) are introduced reflecting the fixed magnetization of two F leads. We simulated the STT-induced Neel magnetization dynamics with the injecting current from F1 to F2 and evaluate induced SMF. Based on the adiabatic electron dynamics in the AF texture, Langevin simulations are performed at finite temperature. This research was supported by JST, CREST, Japan.

  11. Experimental and numerical investigations of higher mode effects on seismic inelastic response of reinforced concrete shear walls

    Science.gov (United States)

    Ghorbanirenani, Iman

    This thesis presents two experimental programs together with companion numerical studies that were carried out on reinforced concrete shear walls: static tests and dynamic (shake table) tests. The first series of experiments were monotonic and cyclic quasi-static testing on ductile reinforced concrete shear wall specimens designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The tests were carried out on full-scale and 1:2.37 reduced scale wall specimens to evaluate the seismic design provisions and similitude law and determine the appropriate scaling factor that could be applied for further studies such as dynamic tests. The second series of experiments were shake table tests conducted on two identical 1:2.33 scaled, 8-storey moderately ductile reinforced concrete shear wall specimens to investigate the effects of higher modes on the inelastic response of slender walls under high frequency ground motions expected in Eastern North America. The walls were designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The objectives were to validate and understand the inelastic response and interaction of shear, flexure and axial loads in plastic hinge zones of the walls considering the higher mode effects and to investigate the formation of second hinge in upper part of the wall due to higher mode responses. Second mode response significantly affected the response of the walls. This caused inelastic flexural response to develop at the 6th level with approximately the same rotation ductility compared to that observed at the base. Dynamic amplification of the base shear forces was also observed in both walls. Numerical modeling of these two shake table tests was performed to evaluate the test results and validate current modeling approaches. Nonlinear time history analyses were carried out by the reinforced concrete fibre element (OpenSees program) and finite element (VecTor2 program

  12. A study of UGI series for improvement of diagnosis on the anterior wall of the stomach

    International Nuclear Information System (INIS)

    Lee, Won Hong; Son, Soon Yong; Kang, Hyoung Wook

    1997-01-01

    This paper is to investigate a more detailed method for the diagnosis of anterior wall of the stomach by making a comparative study with several hospitals. It has been true that there have been hospitals, that have not examined anterior wall of the stomach. However, it is very important for us to examine anterior wall of the stomach for an early detection of gastric carcinoma. The results of the study are as follows : 1. Frequency of occurrence of the early gastric carcinoma for the anterior wall were 50 cases and 34 cases for the posterior wall out of 84 cases. 2. Only a hospitals have examined the anterior wall of stomach. 3. In case of operation, only a hospitals have used two techniques at for same time single and double contrast studies. 4. Only one hospital used a compression pad and three hospitals had only filing state images taken. 5. In general, l chest of film was used and the number of exposures rouged from 1 to 2 times. Lesions on the anterior wall of the stomach can be shown by the combination of prone single compression and supine double contrast radiographs. Therefore, the conclusion came to the result that the prone single compression and supine double contract technique of the anterior wall are indispensable methods to the routine check of the stomach

  13. Influence of different breathing maneuvers on internal and external organ motion: Use of fiducial markers in dynamic MRI

    International Nuclear Information System (INIS)

    Plathow, Christian; Zimmermann, Hendrik; Fink, Christian; Umathum, Reiner; Schoebinger, Max; Huber, Peter; Zuna, Ivan; Debus, Juergen; Schlegel, Wolfgang; Meinzer, Hans-Peter; Semmler, Wolfhard; Kauczor, Hans-Ulrich; Bock, Michael

    2005-01-01

    Purpose: To investigate, with dynamic magnetic resonance imaging (dMRI) and a fiducial marker, the influence of different breathing maneuvers on internal organ and external chest wall motion. Methods and materials: Lung and chest wall motion of 16 healthy subjects (13 male, 3 female) were examined with real-time trueFISP (true fast imaging with steady-state precession) dMRI and a small inductively coupled marker coil on either the abdomen or thorax. Three different breathing maneuvers were performed (predominantly 'abdominal breathing,' 'thoracic breathing,' and unspecific 'normal breathing'). The craniocaudal (CC), anteroposterior (AP), and mediolateral (ML) lung distances were correlated (linear regression coefficient) with marker coil position during forced and quiet breathing. Results: Differences of the CC distance between maximum forced inspiration and expiration were significant between abdominal and thoracic breathing (p < 0.05). The correlation between CC distance and coil position was best for forced abdominal breathing and a marker coil in the abdominal position (r 0.89 ± 0.04); for AP and ML distance, forced thoracic breathing and a coil in the thoracic position was best (r = 0.84 ± 0.03 and 0.82 ± 0.03, respectively). In quiet breathing, a lower correlation was found. Conclusion: A fiducial marker coil external to the thorax in combination with dMRI is a new technique to yield quantitative information on the correlation of internal organ and external chest wall motion. Correlations are highly dependent on the breathing maneuver

  14. A SOFTWARE TOOL FOR EXPERIMENTAL STUDY LEAP MOTION

    OpenAIRE

    Georgi Krastev; Magdalena Andreeva

    2015-01-01

    The paper aims to present computer application that illustrates Leap Motion controller’s abilities. It is a peripheral and software for PC, which enables control by natural user interface based on gestures. The publication also describes how the controller works and its main advantages/disadvantages. Some apps using leap motion controller are discussed.

  15. Objects in Motion

    Science.gov (United States)

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  16. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement.

    Science.gov (United States)

    Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun

    2014-08-19

    Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.

  17. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement

    Directory of Open Access Journals (Sweden)

    Wanlin Cao

    2014-08-01

    Full Text Available Recycled concrete brick (RCB is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.

  18. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement

    Science.gov (United States)

    Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun

    2014-01-01

    Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied. PMID:28788170

  19. Chiral damping of magnetic domain walls

    KAUST Repository

    Jué, Emilie

    2015-12-21

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

  20. Chiral damping of magnetic domain walls

    KAUST Repository

    Jué , Emilie; Safeer, C.  K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2015-01-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).