WorldWideScience

Sample records for wall material cross-linking

  1. Cross-linking of polymeric materials

    International Nuclear Information System (INIS)

    Bloom, L.I.; Du Plessis, T.A.; Meij, G.O.

    1991-01-01

    The invention provides a method of producing a cured polymeric artifact from a polymeric thermoplastic starting material, the material of the artifact having reduced thermoplasticity relative to the starting material and exhibiting an enhanced degree of cross-linking relative to the starting material. The method includes subjecting a polymeric thermoplastic starting material, which is capable of being cross-linked by irradiation, to sufficient irradiation partially to cross-linked the starting material to produce a thermoplastic partially cross-linked intermediate material. The thermoplasticity of the intermediate material is then reduced by heating it to raise its melting point. The invention also provides a method of making a partially cross-linked feedstocks and a master batch for use in making such artifacts

  2. Preparation of Hydroxypropyl-β-cyclodextrin Cross-linked Multi-walled Carbon Nanotubes and Their Application in Enantioseparation of Clenbuterol

    Institute of Scientific and Technical Information of China (English)

    Yu Jingang; Huang Dushu; Huang Kelong; Hong Yong

    2011-01-01

    A method of cross-linking multi-walled carbon nanotubes by a nucleophilic substitution of brominated multi-walled carbon nanotubes using hydroxypropyl-β-cyclodextrin anions was studied. The modified multi-walled carbon nanotube samples were characterized using thermogravimetric analysis, energy-dispersive X-ray spectros-copy, transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and Fourier transform infrared spectroscopy. The hydroxypropyi-β-cyclodextrin modified multi-walled carbon nanotubes were used as a chiral stationary phase additive for thin-layer chromatography to separate clenbuterol enantiomers, and the chiral separation factor was increased.

  3. Germanium Does Not Substitute for Boron in Cross-Linking of Rhamnogalacturonan II in Pumpkin Cell Walls1

    Science.gov (United States)

    Ishii, Tadashi; Matsunaga, Toshiro; Iwai, Hiroaki; Satoh, Shinobu; Taoshita, Junji

    2002-01-01

    Boron (B)-deficient pumpkin (Cucurbita moschata Duchesne) plants exhibit reduced growth, and their tissues are brittle. The leaf cell walls of these plants contain less than one-half the amount of borate cross-linked rhamnogalacturonan II (RG-II) dimer than normal plants. Supplying germanium (Ge), which has been reported to substitute for B, to B-deficient plants does not restore growth or reduce tissue brittleness. Nevertheless, the leaf cell walls of the Ge-treated plants accumulated considerable amounts of Ge. Dimeric RG-II (dRG-II) accounted for between 20% and 35% of the total RG-II in the cell walls of the second to fourth leaves from Ge-treated plants, but only 2% to 7% of the RG-II was cross-linked by germanate (dRG-II-Ge). The ability of RG-II to form a dimer is not reduced by Ge treatment because approximately 95% of the monomeric RG-II generated from the walls of Ge-treated plants is converted to dRG-II-Ge in vitro in the presence of germanium oxide and lead acetate. However, dRG-II-Ge is unstable and is converted to monomeric RG-II when the Ge is removed. Therefore, the content of dRG-II-Ge and dRG-II-B described above may not reflect the actual ratio of these in muro. 10B-Enriched boric acid and Ge are incorporated into the cell wall within 10 min after their foliar application to B-deficient plants. Foliar application of 10B but not Ge results in an increase in the proportion of dRG-II in the leaf cell wall. Taken together, our results suggest that Ge does not restore the growth of B-deficient plants. PMID:12481079

  4. The cross linking of EPDM and NBR rubber

    Directory of Open Access Journals (Sweden)

    Samardžija-Jovanović Suzana

    2005-01-01

    Full Text Available In the process of macromolecule cross linking, the choice of type and quantity of the components and the experimental conditions are important to obtain the new cross linked materials with better mechanical and chemical characteristics. The cross linking method depends on the rubber type and structure. Intermolecular cross linking results in the formation elastomer network. The basis of the cross linking process, between ethylene propylene diene rubber (EPDM and acrylonitrile butadiene rubber (NBR, is a chemical reaction. Fillers and other additives are present in different mass ratios in the material. The exploitation properties of the cross linked materials depend on the quantity of additive in the cross linked systems.

  5. Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: Looking for cross-linking effects

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Basiuk, Vladimir A.; Meza-Laguna, Víctor; Contreras-Torres, Flavio F.; Martínez, Melchor; Rojas-Aguilar, Aarón; Salerno, Marco

    2012-01-01

    Highlights: ► Diamines were used for one-step functionalization of nanotubes and nanodiamond. ► We found experimental evidences of cross-linking effects in these nanomaterials. ► We found a strong orientation effect in the functionalized carbon nanotubes. - Abstract: The covalent functionalization of carbon nanomaterials with diamines is a way to enhance the mechanical strength of nanocomposites due to cross-linking effects, to form complex networks for nanotube-based electronic circuits, as well as is important for a number of biomedical applications. The main goal of the present work was to covalently functionalize pristine multi-walled carbon nanotubes and nanodiamond with three aliphatic diamines (1,8-diaminooctane, 1,10-diaminodecane and 1,12-diaminododecane) and one aromatic diamine (1,5-diaminonaphthalene), by employing a simple one-step solvent-free methodology, which is based on thermal instead of chemical activation. We looked for experimental evidences of cross-linking effects in the carbon nanomaterials synthesized by using solubility/dispersibility tests, atomic force microscopy, scanning and transmission electron microscopy, as well as Fourier-transform infrared spectroscopy and thermogravimetric analysis for additional characterization.

  6. Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: Looking for cross-linking effects

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Elena V., E-mail: elenagd@unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); Basiuk, Vladimir A. [Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos (Mexico); Meza-Laguna, Victor; Contreras-Torres, Flavio F.; Martinez, Melchor [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Rojas-Aguilar, Aaron [Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico); Salerno, Marco [Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); and others

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Diamines were used for one-step functionalization of nanotubes and nanodiamond. Black-Right-Pointing-Pointer We found experimental evidences of cross-linking effects in these nanomaterials. Black-Right-Pointing-Pointer We found a strong orientation effect in the functionalized carbon nanotubes. - Abstract: The covalent functionalization of carbon nanomaterials with diamines is a way to enhance the mechanical strength of nanocomposites due to cross-linking effects, to form complex networks for nanotube-based electronic circuits, as well as is important for a number of biomedical applications. The main goal of the present work was to covalently functionalize pristine multi-walled carbon nanotubes and nanodiamond with three aliphatic diamines (1,8-diaminooctane, 1,10-diaminodecane and 1,12-diaminododecane) and one aromatic diamine (1,5-diaminonaphthalene), by employing a simple one-step solvent-free methodology, which is based on thermal instead of chemical activation. We looked for experimental evidences of cross-linking effects in the carbon nanomaterials synthesized by using solubility/dispersibility tests, atomic force microscopy, scanning and transmission electron microscopy, as well as Fourier-transform infrared spectroscopy and thermogravimetric analysis for additional characterization.

  7. Procedure for the fabrication of a cross-linked polyester material

    International Nuclear Information System (INIS)

    D'Alelio, G.F.

    1972-01-01

    The procedures are described for the production of a cross-linked polyester material by means of the irradiation of a radiosensitive polyester with a dose of over 0.5 megarad and under 8 megarads high energy, ionising radiation, corresponding to at least 100,000 ev. The polyester is of the telomerised diacrylpolyester type, and may be in a mixture containing about 1% of a coplymerisable aliphatic monomer, or about 30-90% of an unsaturated aliphatic alkyd resin. (JIW)

  8. Wear of cross-linked polyethylene against itself: a material suitable for surface replacement of the finger joint.

    Science.gov (United States)

    Sibly, T F; Unsworth, A

    1991-05-01

    Cross-linking of polyethylene (XLPE) has dramatically improved its properties in industrial applications, and it may also have some application in the field of human joint replacement. Additionally it has the advantage of permitting a lower molecular weight base material to be used, so that components may be injection moulded rather than machined. This study therefore investigates the wear resistance of medical grade cross-linked polyethylene (XLPE), cross-linked by a silane-grafting process, with a molecular weight between cross links of 5430 g mol(-1). This first report investigates the wear resistance of XLPE against itself, because for certain joints, such as the metacarpo-phalangeal joint, the material may have a high enough wear resistance to allow both bearing surfaces to be made from it. Tests were carried out both on a reciprocating pin and plate machine with pins loaded at 10 and 40 N and also on a new finger joint simulator, which simulates the loads applied to and the movements of, the metacarpo-phalangeal joint. An average wear rate of 1.8 x 10(-6) mm3 N-1 m-1 was found (range 0.9-2.75 x 10(-6) mm3 N-1 m-1). This is about six times greater than the wear rate of non-cross-linked ultra high molecular weight polyethylene (UHMWPE) against stainless steel, but for applications with low loading, such as the metacarpo-phalangeal joint, this material is shown to have adequate wear resistance. The coefficient of friction was 0.1, which is similar to that of UHMWPE on stainless steel.

  9. A Case of “en bloc” Excision of a Chest Wall Leiomyosarcoma and Closure of the Defect with Non-Cross-Linked Collagen Matrix (Egis®

    Directory of Open Access Journals (Sweden)

    Marco Rastrelli

    2016-10-01

    Full Text Available Sarcomas arising from the chest wall account for less than 20% of all soft tissue sarcomas, and at this site, primitive tumors are the most frequent to occur. Leiomyosarcoma is a malignant smooth muscle tumor and the best outcomes are achieved with wide surgical excision. Although advancements have been made in treatment protocols, leiomyosarcoma remains one of the more difficult soft tissue sarcoma to treat. Currently, general local control is obtained with surgical treatment with wide negative margins. We describe the case of a 50-year-old man who underwent a chest wall resection involving a wide portion of the pectoralis major and minor muscle, the serratus and part of the second, third and fourth ribs of the left side. The full-thickness chest wall defect of 10 × 8 cm was closed using a non-cross-linked acellular dermal matrix (Egis® placed in two layers, beneath the rib plane and over it. A successful repair was achieved with no incisional herniation and with complete tissue regeneration, allowing natural respiratory movements. No complications were observed in the postoperative course. Biological non-cross-linked matrix, derived from porcine dermis, behaves like a scaffold supporting tissue regeneration; it can be successfully used as an alternative to synthetic mesh for chest wall reconstruction.

  10. A Case of “en bloc” Excision of a Chest Wall Leiomyosarcoma and Closure of the Defect with Non-Cross-Linked Collagen Matrix (Egis®)

    Science.gov (United States)

    Rastrelli, Marco; Tropea, Saveria; Spina, Romina; Costa, Alessandra; Stramare, Roberto; Mocellin, Simone; Bonavina, Maria Giuseppina; Rossi, Carlo Riccardo

    2016-01-01

    Sarcomas arising from the chest wall account for less than 20% of all soft tissue sarcomas, and at this site, primitive tumors are the most frequent to occur. Leiomyosarcoma is a malignant smooth muscle tumor and the best outcomes are achieved with wide surgical excision. Although advancements have been made in treatment protocols, leiomyosarcoma remains one of the more difficult soft tissue sarcoma to treat. Currently, general local control is obtained with surgical treatment with wide negative margins. We describe the case of a 50-year-old man who underwent a chest wall resection involving a wide portion of the pectoralis major and minor muscle, the serratus and part of the second, third and fourth ribs of the left side. The full-thickness chest wall defect of 10 × 8 cm was closed using a non-cross-linked acellular dermal matrix (Egis®) placed in two layers, beneath the rib plane and over it. A successful repair was achieved with no incisional herniation and with complete tissue regeneration, allowing natural respiratory movements. No complications were observed in the postoperative course. Biological non-cross-linked matrix, derived from porcine dermis, behaves like a scaffold supporting tissue regeneration; it can be successfully used as an alternative to synthetic mesh for chest wall reconstruction. PMID:27920698

  11. Studies on Cross-linking of succinic acid with chitosan/collagen

    Directory of Open Access Journals (Sweden)

    Tapas Mitra

    2013-01-01

    Full Text Available The present study summarizes the cross-linking property of succinic acid with chitosan /collagen. In detail, the chemistry behind the cross-linking and the improvement in mechanical and thermal properties of the cross-linked material were discussed with suitable instruments and bioinformatics tools. The concentration of succinic acid with reference to the chosen polymers was optimized. A 3D scaffold prepared using an optimized concentration of succinic acid (0.2% (w/v with chitosan (1.0% (w/v and similarly with collagen (0.5% (w/v, was subjected to surface morphology, FT-IR analysis, tensile strength assessment, thermal stability and biocompatibility. Results revealed, cross-linking with succinic acid impart appreciable mechanical strength to the scaffold material. In silico analysis suggested the prevalence of non-covalent interactions, which played a crucial role in improving the mechanical and thermal properties of the cross-linked scaffold. The resultant 3D scaffold may find application as wound dressing material, as an implant in clinical applications and as a tissue engineering material.

  12. In vivo oxidation in remelted highly cross-linked retrievals.

    Science.gov (United States)

    Currier, B H; Van Citters, D W; Currier, J H; Collier, J P

    2010-10-20

    Elimination of free radicals to prevent oxidation has played a major role in the development and product differentiation of the latest generation of highly cross-linked ultra-high molecular weight polyethylene bearing materials. In the current study, we (1) examined oxidation in a series of retrieved remelted highly cross-linked ultra-high molecular weight polyethylene bearings from a number of device manufacturers and (2) compared the retrieval results with findings for shelf-stored control specimens. The hypothesis was that radiation-cross-linked remelted ultra-high molecular weight polyethylene would maintain oxidative stability in vivo comparable with the stability during shelf storage and in published laboratory aging tests. Fifty remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners and nineteen remelted highly cross-linked ultra-high molecular weight polyethylene tibial inserts were received after retrieval from twenty-one surgeons from across the U.S. Thirty-two of the retrievals had been in vivo for two years or more. Each was measured for oxidation with use of Fourier transform infrared spectroscopy. A control series of remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners from three manufacturers was analyzed with electron paramagnetic resonance spectroscopy to measure free radical content and with Fourier transform infrared spectroscopy to measure oxidation initially and after eight to nine years of shelf storage in air. The never-implanted, shelf-aged controls had no measurable free-radical content initially or after eight to nine years of shelf storage. The never-implanted controls showed no increase in oxidation during shelf storage. Oxidation measurements showed measurable oxidation in 22% of the retrieved remelted highly cross-linked liners and inserts after an average of two years in vivo. Because never-implanted remelted highly cross-linked ultra-high molecular weight

  13. Light-induced cross-linking and post-cross-linking modification of polyglycidol.

    Science.gov (United States)

    Marquardt, F; Bruns, M; Keul, H; Yagci, Y; Möller, M

    2018-02-08

    The photoinduced radical generation process has received renewed interest due to its economic and ecological appeal. Herein the light-induced cross-linking of functional polyglycidol and its post-cross-linking modification are presented. Linear polyglycidol was first functionalized with a tertiary amine in a two-step reaction. Dimethylaminopropyl functional polyglycidol was cross-linked in a UV-light mediated reaction with camphorquinone as a type II photoinitiator. The cross-linked polyglycidol was further functionalized by quaternization with various organoiodine compounds. Aqueous dispersions of the cross-linked polymers were investigated by means of DLS and zeta potential measurements. Polymer films were evaluated by DSC and XPS.

  14. Development of new cross-linked polyethylene for atomic energy

    International Nuclear Information System (INIS)

    Fujimura, Shun-ichi; Ohya, Shingo; Kubo, Masaji; Tsutsumi, Yukihiro; Seguchi, Tadao.

    1988-01-01

    Cross-linked polyethylene is the material which is used most as the insulating material for electric wires and cables, but for the cables for nuclear power stations and the wiring materials within machinery and equipment, the cross-linked polyethylene which is hard to burn by mixing burning-retarding agent is frequently used as the disaster-preventing countermeasures. As the burning-retarding agent for cross-linked polyethylene, bromine system agent that gives high burning retardation, chlorine system agent that can prevent melting and dripping at the time of burning and so on have been used so as to meet the objective. However by the addition of burning-retarding agents, the electrical and mechanical characteristics of cross-linked polyethylene lower, therefore consideration must be given to the use. In this paper, the results of the examination on the application of condensed acenaphthylene bromide as a new burning-retarding agent to cross-linked polyethylene are reported. White lead was effective for catching HBr. It was confirmed that more than 30 parts of this agent ensured burning retardation. By mixing this agent, the tensile strength increased, but the elongation lowered. It was found that the good radiation resistance was obtained by adding this agent. (K.I.)

  15. Practical application of thermoreversibly Cross-linked rubber products

    Science.gov (United States)

    Polgar, L. M.; Picchioni, F.; de Ruiter, E.; van Duin, M.

    2017-07-01

    Currently, rubber products cannot simply be reprocessed after their product life, due to the irreversible cross-linking methods traditionally applied. The purpose of this work is to investigate how thermoreversible cross-linking of rubbers via Diels Alder chemistry can be used for the development of recyclable rubber products. Unfortunately, the applicability of the thermoreversible EPM-g-furan/BM system appears to be limited to room temperature applications, because of the rapid deterioration of the compression set at elevated temperatures compared to irreversibly cross-linked EPM. However, the use of EPM rubber modified with thiophene or cyclopentadiene moieties may extend the temperature application range and results in rubber products with acceptable properties. Finally, rubber products generally comprise fillers such as silica, carbon black or fibers. In this context, the reinforcing effect of short cut aramid fibers on the material properties of the newly developed thermoreversibly cross-linked EPM rubbers was also studied. The material properties of the resulting products were found to be comparable to those of a fiber reinforced, peroxide cured reference sample.

  16. Three-dimensional cross-linking composite of graphene, carbon nanotubes and Si nanoparticles for lithium ion battery anode

    Science.gov (United States)

    Tian, Suyun; Zhu, Guannan; Tang, Yanping; Xie, Xiaohua; Wang, Qian; Ma, Yufei; Ding, Guqiao; Xie, Xiaoming

    2018-03-01

    Various graphene-based Si nanocomposites have been reported to improve the performance of active materials in Li-ion batteries. However, these candidates still yield severe capacity fading due to the electrical disconnection and fractures caused by the huge volume changes over extended cycles. Therefore, we have designed a novel three-dimensional cross-linked graphene and single-wall carbon nanotube structure to encapsulate the Si nanoparticles. The synthesized three-dimensional structure is attributed to the excellent self-assembly of carbon nanotubes with graphene oxide as well as a thermal treatment process at 900 °C. This special structure provides sufficient void spaces for the volume expansion of Si nanoparticles and channels for the diffusion of ions and electrons. In addition, the cross-linking of the graphene and single-wall carbon nanotubes also strengthens the stability of the structure. As a result, the volume expansion of the Si nanoparticles is restrained. The specific capacity remains at 1450 mAh g-1 after 100 cycles at 200 mA g-1. This well-defined three-dimensional structure facilitates superior capacity and cycling stability in comparison with bare Si and a mechanically mixed composite electrode of graphene, single-wall carbon nanotubes and silicon nanoparticles.

  17. Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall

    Science.gov (United States)

    Orlean, Peter

    2012-01-01

    The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins. PMID:23135325

  18. Development of extremely low wear cross-link polyethylene for 30 years

    International Nuclear Information System (INIS)

    Oonishi, Hironobu; Fujita, Hiroshi; Kim, Seok-Cheol; Ito, Shigeru; Masuda, Shingo; Clarke, I.C.

    2003-01-01

    In this report we present our long-term developmental and clinical results with both highly cross-linked and extensively cross-linked polyethylene materials. Beginning in 1970s, we performed wear screening studies on ultra high molecular weight polyethylene (UHMWPE) (GUR412) sterilized by gamma-irradiation in air (range 0 to 10,000 kGy). From these scientific studies the 1,000 kGy dose (100 Mrad) appeared optimal, and so we began clinical use in 1971, and that continued into 1978. The radiographic wear-rates in patients with 1,000 kGy sockets, assessed by radiography, appeared 6-fold reduced compared to our standard UHMWPE sockets. Note also that we had not used any post-sterilization heat treatment for these pioneering extensively cross-linked polyethylene sockets. With clinical use now over 30 years, it was also clear that there was no adverse oxidation created by any free radicals present in our extensively cross-linked polyethylene sockets. With these encouraging clinical results, we further studied laboratory wear results with the modern UHMWPE resins, using the irradiation doses 1,000, 5,000, 10,000 and 15,000 kGy and with both saline and serum lubricants in hip simulators. These more recent studies demonstrated that the wear in extensively cross-linked polyethylene sockets was undetectable, less even than the measurement errors in the simulator techniques. It was unfortunate that the physical properties of such extensively cross-linked polyethylene sockets did not meet the current International Organization for Standardization (ISO) and American Society for Testing and Materials (ASTM) standards. Thus, despite the excellent wear performance of these materials, we decided to investigate also the properties of the 60 kGy irradiated UHMWPE. The polyethylene sheet (GUR1050) was first irradiated with 35 kGy under N2 and then heat treated to remove free radicals. The socket liners were then machined to shape and resterilized with 25 kGy under N2 gas. The

  19. The N-Linked Outer Chain Mannans and the Dfg5p and Dcw1p Endo-α-1,6-Mannanases Are Needed for Incorporation of Candida albicans Glycoproteins into the Cell Wall

    Science.gov (United States)

    Ao, Jie; Chinnici, Jennifer L.; Maddi, Abhiram

    2015-01-01

    A biochemical pathway for the incorporation of cell wall protein into the cell wall of Neurospora crassa was recently proposed. In this pathway, the DFG-5 and DCW-1 endo-α-1,6-mannanases function to covalently cross-link cell wall protein-associated N-linked galactomannans, which are structurally related to the yeast outer chain mannans, into the cell wall glucan-chitin matrix. In this report, we demonstrate that the mannosyltransferase enzyme Och1p, which is needed for the synthesis of the N-linked outer chain mannan, is essential for the incorporation of cell wall glycoproteins into the Candida albicans cell wall. Using endoglycosidases, we show that C. albicans cell wall proteins are cross-linked into the cell wall via their N-linked outer chain mannans. We further demonstrate that the Dfg5p and Dcw1p α-1,6-mannanases are needed for the incorporation of cell wall glycoproteins into the C. albicans cell wall. Our results support the hypothesis that the Dfg5p and Dcw1p α-1,6-mannanases incorporate cell wall glycoproteins into the C. albicans cell wall by cross-linking outer chain mannans into the cell wall glucan-chitin matrix. PMID:26048011

  20. Effects of Cross-Linking on the Hydrostatic Pressure Testing for HDPE Pipe Material using Electron Beam Machine

    International Nuclear Information System (INIS)

    Mohd Jamil Bin Hashim

    2011-01-01

    One of the most inventive, sustainable strategies used in engineering field is to improve the quality of material and minimize production cost of material for example in this paper is HDPE material. This is because HDPE is an oil base material. This paper proposes to improve its hydrostatic pressure performance for HDPE pipe. The burst test is the most direct measurement of a pipe materials resistance to hydrostatic pressure. Test will be conducted in accordance with ASTM standard for HDPE pipe that undergo electron beam irradiation cross-linking. Studies show the effect of electron beam irradiation will improve the mechanical properties of HDPE pipe. When cross-linking is induced, the mechanical properties such as tensile strength and young modulus is increase correspond to the radiation dose. This happen because the structure of HDPE, which is thermoplastic change to thermosetting. This will indicate the variability of irradiation dose which regard to the pipe pressure rating. Hence, the thickness ratio of pipe will be re-examining in order to make the production of HDPE pipe become more economical. This research review the effects of electron beam on HDPE pipe, as well as to reduce the cost of its production to improve key properties of selected plastic pipe products. (author)

  1. A novel strategy for preparing mechanically robust ionically cross-linked alginate hydrogels

    International Nuclear Information System (INIS)

    Jejurikar, Aparna; Lawrie, Gwen; Groendahl, Lisbeth; Martin, Darren

    2011-01-01

    The properties of alginate films modified using two cross-linker ions (Ca 2+ and Ba 2+ ), comparing two separate cross-linking techniques (the traditional immersion (IM) method and a new strategy in a pressure-assisted diffusion (PD) method), are evaluated. This was achieved through measuring metal ion content, water uptake and film stability in an ionic solution ([Ca 2+ ] = 2 mM). Characterization of the internal structure and mechanical properties of hydrated films were established by cryogenic scanning electron microscopy and tensile testing, respectively. It was found that gels formed by the PD technique possessed greater stability and did not exhibit any delamination after 21 day immersion as compared to gels formed by the IM technique. The Ba 2+ cross-linked gels possessed significantly higher cross-linking density as reflected in lower water content, a more dense internal structure and higher Young's modulus compared to Ca 2+ cross-linked gels. For the Ca 2+ cross-linked gels, a large improvement in the mechanical properties was observed in gels produced by the PD technique and this was attributed to thicker pore walls observed within the hydrogel structure. In contrast, for the Ba 2+ cross-linked gels, the PD technique resulted in gels that had lower tensile strength and strain energy density and this was attributed to phase separation and larger macropores in this gel.

  2. Characterization of solid UV cross-linked PEGDA for biological applications

    KAUST Repository

    Castro, David

    2013-10-20

    This paper reports on solid UV cross-linked Poly(ethylene)-glycol-diacrylate (PEGDA) as a material for microfluidic devices for biological applications. We have evaluated biocompatibility of PEGDA through two separate means: 1) by examining cell viability and attachment on cross-linked PEGDA surfaces for cell culture applications, and 2) by determining if cross-linked PEGDA inhibits the polymerase chain reaction (PCR) processes for on-chip PCR. Through these studies a correlation has been found between degree of curing and cell viability, attachment, as well as on PCR outcome.

  3. Radiation cross-linked collagen/dextran dermal scaffolds: effects of dextran on cross-linking and degradation.

    Science.gov (United States)

    Zhang, Yaqing; Zhang, Xiangmei; Xu, Ling; Wei, Shicheng; Zhai, Maolin

    2015-01-01

    Ionizing radiation effectively cross-links collagen into network with enhanced anti-degradability and biocompatibility, while radiation-cross-linked collagen scaffold lacks flexibility, satisfactory surface appearance, and performs poor in cell penetration and ingrowth. To make the radiation-cross-linked collagen scaffold to serve as an ideal artificial dermis, dextran was incorporated into collagen. Scaffolds with the collagen/dextran (Col/Dex) ratios of 10/0, 7/3, and 5/5 were fabricated via (60)Co γ-irradiation cross-linking, followed by lyophilization. The morphology, microstructure, physicochemical, and biological properties were investigated. Compared with pure collagen, scaffolds with dextran demonstrated more porous appearance, enhanced hydrophilicity while the cross-linking density was lower with the consequence of larger pore size, higher water uptake, as well as reduced stiffness. Accelerated degradation was observed when dextran was incorporated in both the in vitro and in vivo assays, which led to earlier integration with cell and host tissue. The effect of dextran on degradation was ascribed to the decreased cross-linking density, looser microstructure, more porous and hydrophilic surface. Considering the better appearance, softness, moderate degradation rate due to controllable cross-linking degree and good biocompatibility as well, radiation-cross-linked collagen/dextran scaffolds are expected to serve as promising artificial dermal substitutes.

  4. CrossWork: Software-assisted identification of cross-linked peptides

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Refsgaard, Jan; Peng, Li

    2011-01-01

    Work searches batches of tandem mass-spectrometric data, and identifies cross-linked and non-cross-linked peptides using a standard PC. We tested CrossWork by searching mass-spectrometric datasets of cross-linked complement factor C3 against small (1 protein) and large (1000 proteins) search spaces, and show...

  5. Radiation cross-linked PVC and its applications

    International Nuclear Information System (INIS)

    Lan Junming; Chen Ruyan; Jia Chaoxing; Li Min; Li Chengxin

    1990-04-01

    The radiation cross-linking technique is adopted for improving the polyvinyl chloride (PVC) heat-resistance and reducing its thermocontractibility. For examining its properties a small insulation sheath made from modified PVC material has been tested at 260 0 5 seconds. The results obtained were satisfactory

  6. Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative

    Directory of Open Access Journals (Sweden)

    Domenico Sagnelli

    2017-09-01

    Full Text Available Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO, an engineered barley starch with 99% amylose, was tested to produce cross-linked all-natural bioplastic using normal barley starch as a control. Glycerol was used as plasticizer and citrate cross-linking was used to improve the mechanical properties of cross-linked AO starch extrudates. Extrusion converted the control starch from A-type to Vh- and B-type crystals, showing a complete melting of the starch crystals in the raw starch granules. The cross-linked AO and control starch specimens displayed an additional wide-angle diffraction reflection. Phospholipids complexed with Vh-type single helices constituted an integrated part of the AO starch specimens. Gas permeability tests of selected starch-based prototypes demonstrated properties comparable to that of commercial Mater-Bi© plastic. The cross-linked AO prototypes had composting characteristics not different from the control, indicating that the modified starch behaves the same as normal starch. The data shows the feasibility of producing all-natural bioplastic using designer starch as raw material.

  7. Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative

    Science.gov (United States)

    Sagnelli, Domenico; Kemmer, Gerdi Christine; Holse, Mette; Hebelstrup, Kim H.; Bao, Jinsong; Stelte, Wolfgang; Bjerre, Anne-Belinda; Blennow, Andreas

    2017-01-01

    Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO), an engineered barley starch with 99% amylose, was tested to produce cross-linked all-natural bioplastic using normal barley starch as a control. Glycerol was used as plasticizer and citrate cross-linking was used to improve the mechanical properties of cross-linked AO starch extrudates. Extrusion converted the control starch from A-type to Vh- and B-type crystals, showing a complete melting of the starch crystals in the raw starch granules. The cross-linked AO and control starch specimens displayed an additional wide-angle diffraction reflection. Phospholipids complexed with Vh-type single helices constituted an integrated part of the AO starch specimens. Gas permeability tests of selected starch-based prototypes demonstrated properties comparable to that of commercial Mater-Bi© plastic. The cross-linked AO prototypes had composting characteristics not different from the control, indicating that the modified starch behaves the same as normal starch. The data shows the feasibility of producing all-natural bioplastic using designer starch as raw material. PMID:28973963

  8. Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative.

    Science.gov (United States)

    Sagnelli, Domenico; Hooshmand, Kourosh; Kemmer, Gerdi Christine; Kirkensgaard, Jacob J K; Mortensen, Kell; Giosafatto, Concetta Valeria L; Holse, Mette; Hebelstrup, Kim H; Bao, Jinsong; Stelte, Wolfgang; Bjerre, Anne-Belinda; Blennow, Andreas

    2017-09-30

    Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO), an engineered barley starch with 99% amylose, was tested to produce cross-linked all-natural bioplastic using normal barley starch as a control. Glycerol was used as plasticizer and citrate cross-linking was used to improve the mechanical properties of cross-linked AO starch extrudates. Extrusion converted the control starch from A-type to Vh- and B-type crystals, showing a complete melting of the starch crystals in the raw starch granules. The cross-linked AO and control starch specimens displayed an additional wide-angle diffraction reflection. Phospholipids complexed with Vh-type single helices constituted an integrated part of the AO starch specimens. Gas permeability tests of selected starch-based prototypes demonstrated properties comparable to that of commercial Mater-Bi © plastic. The cross-linked AO prototypes had composting characteristics not different from the control, indicating that the modified starch behaves the same as normal starch. The data shows the feasibility of producing all-natural bioplastic using designer starch as raw material.

  9. Roles of tyrosine-rich precursor glycoproteins and dityrosine- and 3,4-dihydroxyphenylalanine-mediated protein cross-linking in development of the oocyst wall in the coccidian parasite Eimeria maxima

    DEFF Research Database (Denmark)

    Belli, Sabina I; Wallach, Michael G; Luxford, Catherine

    2003-01-01

    infection by several organisms of medical and veterinary importance such as Eimeria, Plasmodium, Toxoplasma, Cyclospora, and Neospora could be developed. Here, we show that two tyrosine-rich precursor glycoproteins, gam56 and gam82, found in specialized organelles (wall-forming bodies) in the sexual stage...... (macrogamete) of Eimeria maxima are proteolytically processed into smaller glycoproteins, which are then incorporated into the developing oocyst wall. The identification of high concentrations of dityrosine and 3,4-dihydroxyphenylalanine (DOPA) in oocyst extracts by high-pressure liquid chromatography......-mediated cross-linking might be an enzyme-catalyzed event. As such, the mechanism of oocyst wall formation in Eimeria, is analogous to the underlying mechanisms involved in the stabilization of extracellular matrices in a number of organisms, widely distributed in nature, including insect resilin, nematode...

  10. Characterization of the degree of cross-linking in radiation cross-linked low and high density polyethylenes

    International Nuclear Information System (INIS)

    Posselt, K.; Haedrich, W.

    1986-01-01

    In practice the cross-linking of irradiated polyethylene is mostly characterized by solubility and thermomechanical data. The irradiation of samples of a LDPE and a HDPE yields very different gel-dose curves. But for a quantitative comparison the complicated connection between the gel values and the corresponding densities of cross-links, especially the dependence on the initial molecular size distribution, has to take into consideration. The analysis of the solubility data according to the statistical theory of cross-linking developed by Inokuti and Saito shows that at equal doses in both investigated PE types in spite of the different gel values nearly the same densities of cross-links are present. That result is confirmed by the densities of cross-links determined from stress-strain measurements at 423 K. (author)

  11. Evaluation of cross-linked gelatin membranes as delivery carriers for retinal sheets

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jui-Yang, E-mail: jylai@mail.cgu.edu.tw [Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, 33302 Taiwan (China); Biomedical Engineering Research Center, Chang Gung University, Taoyuan, 33302 Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Taoyuan, 33302 Taiwan (China); Li, Ya-Ting [Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, 33302 Taiwan (China)

    2010-06-15

    The delivery of intact sheet transplants to the subretinal space can prevent cell loss that is generally associated with the injection of cell suspensions or cell aggregates. The aim of this study was to develop chemically modified gelatin matrices that enhance the delivery efficiency and analyze whether the gelatin membranes cross-linked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) can be considered as potential carriers for retinal sheets. The characteristics of EDC cross-linked gelatin membranes were determined by mechanical and in vitro degradation tests, melting point measurements, cell proliferation assays, cytokine expression analyses, and tissue delivery studies. Gelatin membranes without cross-linking and glutaraldehyde cross-linked gelatin samples were used for comparison. Results of this study indicated that introduction of cross-links is capable of rendering the gelatin network more stable against mechanical stresses and deformations as well as rapid hydrolysis during intraocular delivery of delicate tissue sheets. In comparison with the glutaraldehyde treated samples, the EDC cross-linked gelatin membranes showed a better degradation profile and a relatively higher cytocompatibility. In addition, after EDC cross-linking, the gelatin matrices having an acceptable melting point could be used for the fabrication of a sandwich-like carrier with a high transfer and encapsulation efficiency. These findings suggest that the cross-linking agent type gives an influence on delivery functionality of gelatin membranes. In summary, the EDC cross-linked gelatin is an ideal candidate for use as a carrier material in retinal sheet delivery applications.

  12. Cross-link guided molecular modeling with ROSETTA.

    Directory of Open Access Journals (Sweden)

    Abdullah Kahraman

    Full Text Available Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass spectrometry into ROSETTA protocols for comparative and de novo modeling and protein-protein docking. We demonstrate that the cross-link validation and visualization software Xwalk facilitates successful cross-link data integration. Besides the protocols we introduce XLdb, a database of chemical cross-links from 14 different publications with 506 intra-protein and 62 inter-protein cross-links, where each cross-link can be mapped on an experimental structure from the Protein Data Bank. Finally, we demonstrate on a protein-protein docking reference data set the impact of virtual cross-links on protein docking calculations and show that an inter-protein cross-link can reduce on average the RMSD of a docking prediction by 5.0 Å. The methods and results presented here provide guidelines for the effective integration of chemical cross-link data in molecular modeling calculations and should advance the structural analysis of particularly large and transient protein complexes via hybrid structural biology methods.

  13. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials

    International Nuclear Information System (INIS)

    Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang; Ma, David Hui-Kang

    2017-01-01

    Due to their ability to mimic the structure of extracellular matrix, electrospun gelatin nanofibers are promising cell scaffolding materials for tissue engineering applications. However, the hydrophilic gelatin molecules usually need stabilization before use in aqueous physiological environment. Considering that biomaterials cross-linked via film immersion technique may have a more homogeneous cross-linked structure than vapor phase cross-linking, this work aims to investigate the chemical modification of electrospun gelatin nanofibrous membranes by liquid phase carbodiimide in the presence of ethanol/water co-solvents with varying ethanol concentrations ranging from 80 to 99.5 vol%. The results of characterization showed that increasing water content in the binary reaction solvent system increases the extent of cross-linking of gelatin nanofibers, but simultaneously promotes the effect of biopolymer swelling and distortion in fiber mat structure. As compared to non-cross-linked counterparts, carbodiimide treated gelatin nanofibrous mats exhibited better thermal and biological stability where the shrinkage temperature and resistance to enzymatic degradation varied in response to ethanol/water solvent composition-mediated generation of cross-links. Irrespective of their cross-linking density, all studied membrane samples did not induce any responses in ocular epithelial cell cultures derived from cornea, lens, and retina. Unlike many other cross-linking agents and/or methods (e.g., excessive vapor phase cross-linking) that may pose a risk of toxicity, our study demonstrated that these nanofibrous materials are well tolerated by anterior segment tissues. These findings also indicate the safety of using ethanol/water co-solvents for chemical cross-linking of gelatin to engineer nanofibrous materials with negligible biological effects. In summary, the present results suggest the importance of solvent-mediated carbodiimide cross-linking in modulating structure

  14. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Shih-Feng [Department of Mechanical Engineering, University of Texas at Tyler, Tyler, TX 75799 (United States); Luo, Li-Jyuan [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China); Lai, Jui-Yang, E-mail: jylai@mail.cgu.edu.tw [Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China); Biomedical Engineering Research Center, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China); Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC (China); Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC (China); Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China); Ma, David Hui-Kang [Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC (China); Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC (China); Department of Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China)

    2017-02-01

    Due to their ability to mimic the structure of extracellular matrix, electrospun gelatin nanofibers are promising cell scaffolding materials for tissue engineering applications. However, the hydrophilic gelatin molecules usually need stabilization before use in aqueous physiological environment. Considering that biomaterials cross-linked via film immersion technique may have a more homogeneous cross-linked structure than vapor phase cross-linking, this work aims to investigate the chemical modification of electrospun gelatin nanofibrous membranes by liquid phase carbodiimide in the presence of ethanol/water co-solvents with varying ethanol concentrations ranging from 80 to 99.5 vol%. The results of characterization showed that increasing water content in the binary reaction solvent system increases the extent of cross-linking of gelatin nanofibers, but simultaneously promotes the effect of biopolymer swelling and distortion in fiber mat structure. As compared to non-cross-linked counterparts, carbodiimide treated gelatin nanofibrous mats exhibited better thermal and biological stability where the shrinkage temperature and resistance to enzymatic degradation varied in response to ethanol/water solvent composition-mediated generation of cross-links. Irrespective of their cross-linking density, all studied membrane samples did not induce any responses in ocular epithelial cell cultures derived from cornea, lens, and retina. Unlike many other cross-linking agents and/or methods (e.g., excessive vapor phase cross-linking) that may pose a risk of toxicity, our study demonstrated that these nanofibrous materials are well tolerated by anterior segment tissues. These findings also indicate the safety of using ethanol/water co-solvents for chemical cross-linking of gelatin to engineer nanofibrous materials with negligible biological effects. In summary, the present results suggest the importance of solvent-mediated carbodiimide cross-linking in modulating structure

  15. Comprehensive protein profiling by multiplexed capillary zone electrophoresis using cross-linked polyacrylamide coated capillaries.

    Science.gov (United States)

    Liu, Shaorong; Gao, Lin; Pu, Qiaosheng; Lu, Joann J; Wang, Xingjia

    2006-02-01

    We have recently developed a new process to create cross-linked polyacrylamide (CPA) coatings on capillary walls to suppress protein-wall interactions. Here, we demonstrate CPA-coated capillaries for high-efficiency (>2 x 10(6) plates per meter) protein separations by capillary zone electrophoresis (CZE). Because CPA virtually eliminates electroosmotic flow, positive and negative proteins cannot be analyzed in a single run. A "one-sample-two-separation" approach is developed to achieve a comprehensive protein analysis. High throughput is achieved through a multiplexed CZE system.

  16. Self-generated covalent cross-links in the cell-surface adhesins of Gram-positive bacteria.

    Science.gov (United States)

    Baker, Edward N; Squire, Christopher J; Young, Paul G

    2015-10-01

    The ability of bacteria to adhere to other cells or to surfaces depends on long, thin adhesive structures that are anchored to their cell walls. These structures include extended protein oligomers known as pili and single, multi-domain polypeptides, mostly based on multiple tandem Ig-like domains. Recent structural studies have revealed the widespread presence of covalent cross-links, not previously seen within proteins, which stabilize these domains. The cross-links discovered so far are either isopeptide bonds that link lysine side chains to the side chains of asparagine or aspartic acid residues or ester bonds between threonine and glutamine side chains. These bonds appear to be formed by spontaneous intramolecular reactions as the proteins fold and are strategically placed so as to impart considerable mechanical strength. © 2015 Authors; published by Portland Press Limited.

  17. Impact of styrenic polymer one-step hyper-cross-linking on volatile organic compound adsorption and desorption performance.

    Science.gov (United States)

    Ghafari, Mohsen; Atkinson, John D

    2018-06-05

    A novel one-step hyper-cross-linking method, using 1,2-dichloroethane (DCE) and 1,6-dichlorohexane (DCH) cross-linkers, expands the micropore volume of commercial styrenic polymers. Performance of virgin and modified polymers was evaluated by measuring hexane, toluene, and methyl-ethyl-ketone (MEK) adsorption capacity, adsorption/desorption kinetics, and desorption efficiency. Hyper-cross-linked polymers have up to 128% higher adsorption capacity than virgin polymers at P/P 0  = 0.05 due to micropore volume increases up to 330%. Improvements are most pronounced with the DCE cross-linker. Hyper-cross-linking has minimal impact on hexane adsorption kinetics, but adsorption rates for toluene and MEK decrease by 6-41%. Desorption rates decreased (3-36%) for all materials after hyper-cross-linking, with larger decreases for DCE hyper-cross-linked polymers due to smaller average pore widths. For room temperature desorption, 20-220% more adsorbate remains in hyper-cross-linked polymers after regeneration compared to virgin materials. DCE hyper-cross-linked polymers have 13-92% more residual adsorbate than DCH counterparts. Higher temperatures were required for DCE hyper-cross-linked polymers to completely desorb VOCs compared to the DCH hyper-cross-linked and virgin counterparts. Results show that the one-step hyper-cross-linking method for modifying styrenic polymers improves adsorption capacity because of added micropores, but decreases adsorption/desorption kinetics and desorption efficiency for large VOCs due to a decrease in average pore width. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. New composite materials prepared by calcium phosphate precipitation in chitosan/collagen/hyaluronic acid sponge cross-linked by EDC/NHS.

    Science.gov (United States)

    Kaczmarek, B; Sionkowska, A; Kozlowska, J; Osyczka, A M

    2018-02-01

    Nowadays, fabrication of composite materials based on biopolymers is a rising field due to potential for bone repair and tissue engineering application. Blending of different biopolymers and incorporation of inorganic particles in the blend can lead to new materials with improved physicochemical properties and biocompatibility. In this work 3D porous structures called scaffolds based on chitosan, collagen and hyaluronic acid were obtained through the lyophilization process. Scaffolds were cross-linked by EDC/NHS. Infrared spectra for the materials were made, the percentage of swelling, scaffolds porosity and density, mechanical parameters, thermal stability were studied. Moreover, the scaffolds were used as matrixes for the calcium phosphate in situ precipitation. SEM images were taken and EDX analysis was carried out for calcium and phosphorous content determination in the scaffold. In addition, the adhesion and proliferation of human osteosarcoma SaOS-2 cells was examined on obtained scaffolds. The results showed that the properties of 3D composites cross-linked by EDC/NHS were altered after the addition of 1, 2 and 5% hyaluronic acid. Mechanical parameters, thermal stability and porosity of scaffolds were improved. Moreover, calcium and phosphorous were found in each kind of scaffold. SEM images showed that the precipitation was homogeneously carried in the whole volume of samples. Attachment of SaOS-2 cells to all modified materials was better compared to unmodified control and proliferation of these cells was markedly increased on scaffolds with precipitated calcium phosphate. Obtained materials can provide the support useful in tissue engineering and regenerative medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Mechanocatalytic polymerization and cross-linking in a polymeric matrix

    NARCIS (Netherlands)

    Jakobs, R.T.M.; Ma, Shuang; Sijbesma, R.P.

    2013-01-01

    A latent olefin metathesis catalyst, bearing two polymeric NHC ligands, was embedded in a semicrystalline polymer matrix containing cyclic olefins. The catalyst was activated by straining the solid material under compression, resulting in polymerization and cross-linking reactions of the monomers in

  20. Identifying Genes Controlling Ferulate Cross-Linking Formation in Grass Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    de O. Buanafina, Marcia Maria [Pennsylvania State Univ., University Park, PA (United States)

    2013-10-16

    This proposal focuses on cell wall feruloylation and our long term goal is to identify and isolate novel genes controlling feruloylation and to characterize the phenotype of mutants in this pathway, with a spotlight on cell wall properties.

  1. Studies in cross-linking PVC footwear soling compounds using gamma-irradiation

    International Nuclear Information System (INIS)

    Bloom, L.I.

    1983-01-01

    Irradiation cross-linking of polymeric materials has been known for some time, but it is only in recent years that it has been put to commercial advantage. Well known uses are the modification of PVC for higher temperature applications. Fundamental studies were carried out on amongst other materials, plasticised PVC compounds for use in cable applications. The results of this work, encouraged the author to investigate cross-linkable PVC in areas such as footwear soling

  2. Radiation cross-linked plastics: a versatile material solution for packaging, automotive, Electrotechnic and Electronics

    International Nuclear Information System (INIS)

    Rouif, Sophie

    2004-01-01

    Used since the beginning of the 1970s for the production of halogen-free and heat-resistant cables and wires, for conditioning polyethylene hot-water pipes or for the manufacture of heat shrinkable tubes and of tyres, radiation cross-linking is developing fastly today on the scale of plastic-moulded parts, and not only by the mean of EB, but also under gamma rays. Indeed, it improves considerably the performances of a great number of plastics among thermoplastics, elastomers and thermoplastic elastomers (TPE). Radiation cross-linking reinforces the dimensional stability of polymers in chemically aggressive and high-temperature conditions. Radiation cross-linked-based engineering plastics offers OEM and end users in many branches of industry both technical and economical advantages in comparison with high-performances plastics. They constitute a technical and economical compromise between engineering plastics that failed and high-performances plastic, often over-tailored and expensive. This modern industrial technology gives way to new applications and perspectives in various sectors (packaging, automotive, electrotechnic and electronics, including connectors, surface-mounted devices, integrated circuits, 3D-MID, etc.) that are described in the paper

  3. Photo-degradation of poly(neopentyl isophthalate). Part II: Mechanism of cross-linking.

    NARCIS (Netherlands)

    Malanowski, P.; Benthem, van R.A.T.M.; Ven, van der L.G.J.; Laven, J.; Kisin, S.; With, de G.

    2011-01-01

    The mechanism of cross-linking of poly(neopentyl isophthalate) (PNI) by photo-degradation in nitrogen atmosphere was investigated. The exposure of PNI to UV light resulted in gel (insoluble material) formation. The gel material was collected and the morphology of the gel material was characterized

  4. Characterization of solid UV cross-linked PEGDA for biological applications

    KAUST Repository

    Castro, David; Ingram, Patrick; Kodzius, Rimantas; Conchouso Gonzalez, David; Yoon, Euisik; Foulds, Ian G.

    2013-01-01

    This paper reports on solid UV cross-linked Poly(ethylene)-glycol-diacrylate (PEGDA) as a material for microfluidic devices for biological applications. We have evaluated biocompatibility of PEGDA through two separate means: 1) by examining cell

  5. Controlled swollen and drug release from urea-cross-linked polyether/siloxane hybrids

    International Nuclear Information System (INIS)

    Santilli, Celso V.; Lopes, Leandro; Pulcinelli, Sandra H.; Chiavacci, Leila A.; Oliveira, Anselmo G.

    2009-01-01

    From a simple synthesis method we produced transparent ureasil cross-linked polyether (poly(ethylene oxide), PEO, or poly (propylene oxide), PPO) networks, whose designed inter cross-linking distance and tunable swell ability was assessed by small angle X-ray scattering on the D11A-SAXS1 beamline of the LNLS, we demonstrated that the controlled drug release from swell able hydrophilic ureasil-PEO materials can be sustained during some days, while from the unswell able ureasil-PPO ones, during some weeks. This outstanding feature conjugated with the bio medically safe formulation of the ureasil cross-linked polyether/siloxane hybrid widen their scope of application to include the domain of soft and implantable drug delivery devices. (author)

  6. Lithium polymer cell assembled by in situ chemical cross-linking of ionic liquid electrolyte with phosphazene-based cross-linking agent

    International Nuclear Information System (INIS)

    Choi, Ji-Ae; Kang, Yongku; Kim, Dong-Won

    2013-01-01

    Highlights: ► Ionic liquid-based cross-linked gel polymer electrolytes were synthesized and their electrochemical properties were investigated. ► Lithium polymer cells with in situ cross-linked gel polymer electrolytes exhibited reversible cycling behavior with good capacity retention. ► The use of ionic liquid-based cross-linked gel polymer electrolytes significantly improved the thermal stability of the cells. -- Abstract: Ionic liquid-based cross-linked gel polymer electrolytes were prepared with a phosphazene-based cross-linking agent, and their electrochemical properties were investigated. Lithium polymer cells composed of lithium anode and LiCoO 2 cathode were assembled with ionic liquid-based cross-linked gel polymer electrolyte and their cycling performance was evaluated. The interfacial adhesion between the electrodes and the electrolyte by in situ chemical cross-linking resulted in stable capacity retention of the cell. A reduction in the ionic mobility in both the electrolyte and the electrode adversely affected discharge capacity and high rate performance of the cell. DSC studies demonstrated that the use of ionic liquid-based cross-linked gel polymer electrolytes provided a significant improvement in the thermal stability of the cell

  7. Low-Temperature Cross-Linking of PEDOT:PSS Films Using Divinylsulfone.

    Science.gov (United States)

    Mantione, Daniele; Del Agua, Isabel; Schaafsma, Wandert; ElMahmoudy, Mohammed; Uguz, Ilke; Sanchez-Sanchez, Ana; Sardon, Haritz; Castro, Begoña; Malliaras, George G; Mecerreyes, David

    2017-05-31

    Recent interest in bioelectronics has prompted the exploration of properties of conducting polymer films at the interface with biological milieus. Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) from a commercially available source has been used as a model system for these studies. Different cross-linking schemes have been used to stabilize films of this material against delamination and redispersion, but the cost is a decrease in the electrical conductivity and/or additional heat treatment. Here we introduce divinylsulfone (DVS) as a new cross-linker for PEDOT:PSS. Thanks to the higher reactiveness of the vinyl groups of DVS, the cross-linking can be performed at room temperature. In addition, DVS does not reduce electronic conductivity of PEDOT:PSS but rather increases it by acting as a secondary dopant. Cell culture studies show that PEDOT:PSS:DVS films are cytocompatible and support neuroregeneration. As an example, we showed that this material improved the transconductance value and stability of an organic electrochemical transistor (OECT) device. These results open the way for the utilization of DVS as an effective cross-linker for PEDOT:PSS in bioelectronics applications.

  8. Wall-crossing, Rogers dilogarithm, and the QK/HK correspondence

    CERN Document Server

    Alexandrov, Sergei; Pioline, Boris

    2011-01-01

    When formulated in twistor space, the D-instanton corrected hypermultiplet moduli space in N=2 string vacua and the Coulomb branch of rigid N=2 gauge theories on $R^3 \\times S^1$ are strikingly similar and, to a large extent, dictated by consistency with wall-crossing. We elucidate this similarity by showing that these two spaces are related under a general duality between, on one hand, quaternion-Kahler manifolds with a quaternionic isometry and, on the other hand, hyperkahler manifolds with a rotational isometry, further equipped with a hyperholomorphic circle bundle with a connection. We show that the transition functions of the hyperholomorphic circle bundle relevant for the hypermultiplet moduli space are given by the Rogers dilogarithm function, and that consistency across walls of marginal stability is ensured by the motivic wall-crossing formula of Kontsevich and Soibelman. We illustrate the construction on some simple examples of wall-crossing related to cluster algebras for rank 2 Dynkin quivers. In...

  9. Chemical cross-linking of Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Birkelund, Svend; Lundemose, AG; Christiansen, Gunna

    1988-01-01

    Purified elementary bodies (EBs) of Chlamydia trachomatis serovar L2 were analyzed by chemical cross-linking with disuccinimidyl selenodipropionate. The effect of the cross-linking was analyzed by immunoblotting sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated components which...

  10. Investigation of a novel approach for the cross-linking characterization of SU-8 photoresist materials by means of optical dispersion measurements

    Science.gov (United States)

    Taudt, Ch.; Baselt, T.; Koch, E.; Hartmann, P.

    2014-03-01

    The increase in efficiency and precision in the production of semiconductor structures under the use of polymeric materials like SU-8 is crucial in securing the technological innovation within this industry. The manufacturing of structures on wafers demands a high quality of materials, tools and production processes. In particular, deviations in the materials' parameters (e.g. cross-linking state, density or mechanical properties) could lead to subsequent problems such as a reduced lifetime of structures and systems. In particular problems during the soft and post-exposure bake process can lead to an inhomogeneous distribution of material properties. This paper describes a novel approach for the characterization of SU-8 material properties in relation to a second epoxy-based material of different cross-linking by the measurement of optical dispersion within the material. A white-light interferometer was used. In particular the setup consisted of a white-light source, a Michelson-type interferometer and a spectrometer. The investigation of the dispersion characteristics was carried out by the detection of the equalization wavelength for different positions of the reference arm in a range from 400 to 900 nm. The measured time delay due to dispersion ranges from 850 to 1050 ps/m. For evaluation purposes a 200μm SU-8 sample was characterized in the described setup regarding its dispersion characteristics in relation to bulk epoxy material. The novel measurement approach allowed a fast and high-resolution material characterization for SU-8 micro structures which was suitable for integration in production lines. The outlook takes modifications of the experimental setup regarding on-wafer measurements into account.

  11. Solvent Composition is Critical for Carbodiimide Cross-Linking of Hyaluronic Acid as an Ophthalmic Biomaterial

    Directory of Open Access Journals (Sweden)

    Jui-Yang Lai

    2012-10-01

    Full Text Available Hyaluronic acid (HA is one of the most important ophthalmic biomaterials, while also being used for tissue engineering and drug delivery. Although chemical cross-linking is an effective way to improve the material performance, it may as a consequence be detrimental to the living cells/tissues. Given that the cross-linking efficiency is mediated by the solvent composition during the chemical modification, this study aims to explore the stability and biocompatibility of carbodiimide cross-linked HA in relation to material processing conditions by varying the acetone/water volume ratio (from 70:30 to 95:5 at a constant 1-ethyl-3-(3-dimethyl aminopropyl carbodiimide (EDC concentration of 100 mM. Our results indicated that after the EDC treatment in the presence of an acetone/water mixture (85:15, v/v, the HA hydrogel membranes have the lowest equilibrium water content, the highest stress at break and the greatest resistance to hyaluronidase digestion. Live/Dead assays and pro-inflammatory cytokine expression analyses showed that the cross-linked HA hydrogel membranes, irrespective of the solvent composition, are compatible with human RPE cell lines without causing toxicity and inflammation. However, it should be noted that the test samples prepared by the cross-linking in the presence of acetone/water mixtures containing 70, 75, and 95 vol % of acetone slightly inhibit the metabolic activity of viable ARPE-19 cultures, probably due to the alteration in the ionic interaction between the medium nutrients and polysaccharide biomaterials. In summary, the water content, mechanical strength and RPE cell proliferative capacity strongly depends on the solvent composition for carbodiimide cross-linking of HA materials.

  12. Fundamental vortices, wall-crossing, and particle-vortex duality

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Chiung; Yi, Piljin [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Yoshida, Yutaka [Research Institute for Mathematical Sciences, Kyoto University,Kyoto 606-8502 (Japan)

    2017-05-18

    We explore 1d vortex dynamics of 3d supersymmetric Yang-Mills theories, as inferred from factorization of exact partition functions. Under Seiberg-like dualities, the 3d partition function must remain invariant, yet it is not a priori clear what should happen to the vortex dynamics. We observe that the 1d quivers for the vortices remain the same, and the net effect of the 3d duality map manifests as 1d Wall-Crossing phenomenon; although the vortex number can shift along such duality maps, the ranks of the 1d quiver theory are unaffected, leading to a notion of fundamental vortices as basic building blocks for topological sectors. For Aharony-type duality, in particular, where one must supply extra chiral fields to couple with monopole operators on the dual side, 1d wall-crossings of an infinite number of vortex quiver theories are neatly and collectively encoded by 3d determinant of such extra chiral fields. As such, 1d wall-crossing of the vortex theory encodes the particle-vortex duality embedded in the 3d Seiberg-like duality. For N=4, the D-brane picture is used to motivate this 3d/1d connection, while, for N=2, this 3d/1d connection is used to fine-tune otherwise ambiguous vortex dynamics. We also prove some identities of 3d supersymmetric partition functions for the Aharony duality using this vortex wall-crossing interpretation.

  13. Recent advances in corneal collagen cross-linking

    Directory of Open Access Journals (Sweden)

    Gitansha Shreyas Sachdev

    2017-01-01

    Full Text Available Corneal collagen cross-linking has become the preferred modality of treatment for corneal ectasia since its inception in late 1990s. Numerous studies have demonstrated the safety and efficacy of the conventional protocol. Our understanding of the cross-linking process is ever evolving, with its wide implications in the form of accelerated and pulsed protocols. Newer advancements in technology include various riboflavin formulations and the ability to deliver higher fluence protocols with customised irradiation patterns. A greater degree of customisation is likely the path forward, which will aim at achieving refractive improvements along with disease stability. The use of cross-linking for myopic correction is another avenue under exploration. Combination of half fluence cross-linking with refractive correction for high errors to prevent post LASIK regression is gaining interest. This review aims to highlight the various advancements in the cross-linking technology and its clinical applications.

  14. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    Science.gov (United States)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  15. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid.

    Science.gov (United States)

    Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram

    2017-02-13

    Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80-100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials.

  16. Application of polymers cross-linked by electron beam irradiation to electric wire industry

    International Nuclear Information System (INIS)

    Oda, Eisuke

    1976-01-01

    Applications of the polymers cross-linked by electron beam irradiation to electric wire industry as an example of dully developed utilization are reviewed. The report is divided into five parts, namely 1) radiation sources and irradiation processes, 2) development of crosslinking materials, 3) accumulation of electric charge and accumulation of heat, 4) examples of application, and 5) future prospect. Such a phenomenon as discharge destruction pattern (Lichtenberg figure) must be solved, when cable insulation materials are cross-linked by electron beam irradiation. The measures for preventing the discharge destruction are required, especially when the layers of polyethylene insulation for high voltage cables are irradiated. The accumulation of heat causes the troubles in foaming, degeneration and wire running of high potential cables, when the layers of insulation are thick. Effective promoters for cross-linking must be studied to reduce the radiation dose. The irradiators capable of irradiating wires uniformly are desirable. Electron beam accelerators will be used, as far as the radiation dose of 10 or more Mrad is required for cross-linking irradiation. If the dose of one tenth or less of the above value is required, gamma-ray sources (RI) are rather easily applicable than focused strong beam. The utilization of spent nuclear fuel is desirable. (Iwakiri, K.)

  17. 壁材交联对相变微胶囊的性能调控%Performance regulation of phase change microcapsules by cross-linking of wall material

    Institute of Scientific and Technical Information of China (English)

    管羽; 张维; 刘金树

    2017-01-01

    In order to investigate the effect of wall material composition on the performance of phase change microcapsules,a mixture of solid and liquid paraffin is used as the core material and methyl methacrylate as the wall material to prepare phase change material microcapsules by suspension polymerization method.Pentaerythritol tetraacrylate and allyl methacrylate are crosslinked with methyl methacrylate to obtain phase change microcapsules with different wall materials,and then to achieve the regulation of microcapsule performance.The results of scanning electron microscopy (SEM) show that the addition of crosslinking agents can effectively improve the regularity and surface smoothness of phase change microcapsules,as well as the uniformity of particle size distribution.The results of thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) analysis show that the crosslinking agents can significantly reduce the mass loss rate of the microcapsules at high temperature,increase the decomposition temperature range,enhance the stability of the wall material and improve the coating efficiency of the wall material.Compared with the untreated microcapsules,the phase change enthalpy decreased.When adding 1.0 g pentaerythritol tetraacrylate,the obtained microcapsules have good dispersibility,regular spherical shap.e,smooth surface,particle size of 1.0~1.5 μm,good thermal stability,can withstand 155 ℃ high temperature,and the maximum enthalpy of phase change is 29.643 J/g.%为探讨壁材组成对相变微胶囊性能的调控作用,选用固液混合石蜡为芯材,甲基丙烯酸甲酯为壁材,利用悬浮聚合法制备相变材料微胶囊.加入季戊四醇四丙烯酸酯和甲基丙烯酸烯丙酯作为交联剂,

  18. Porous Cross-Linked Polyimide-Urea Networks

    Science.gov (United States)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)

    2015-01-01

    Porous cross-linked polyimide-urea networks are provided. The networks comprise a subunit comprising two anhydride end-capped polyamic acid oligomers in direct connection via a urea linkage. The oligomers (a) each comprise a repeating unit of a dianhydride and a diamine and a terminal anhydride group and (b) are formulated with 2 to 15 of the repeating units. The subunit was formed by reaction of the diamine and a diisocyanate to form a diamine-urea linkage-diamine group, followed by reaction of the diamine-urea linkage-diamine group with the dianhydride and the diamine to form the subunit. The subunit has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups. The subunit has been chemically imidized to yield the porous cross-linked polyimide-urea network. Also provided are wet gels, aerogels, and thin films comprising the networks, and methods of making the networks.

  19. Surface characteristics determining the cell compatibility of ionically cross-linked alginate gels

    International Nuclear Information System (INIS)

    Machida-Sano, Ikuko; Hirakawa, Makoto; Matsumoto, Hiroki; Kamada, Mitsuki; Ogawa, Sakito; Satoh, Nao; Namiki, Hideo

    2014-01-01

    In this study we investigated differences in the characteristics determining the suitability of five types of ion (Fe 3+ , Al 3+ , Ca 2+ , Ba 2+ and Sr 2+ )-cross-linked alginate films as culture substrates for cells. Human dermal fibroblasts were cultured on each alginate film to examine the cell affinity of the alginates. Since cell behavior on the surface of a material is dependent on the proteins adsorbed to it, we investigated the protein adsorption ability and surface features (wettability, morphology and charge) related to the protein adsorption abilities of alginate films. We observed that ferric, aluminum and barium ion-cross-linked alginate films supported better cell growth and adsorbed higher amounts of serum proteins than other types. Surface wettability analysis demonstrated that ferric and aluminum ion-cross-linked alginates had moderate hydrophilic surfaces, while other types showed highly hydrophilic surfaces. The roughness was exhibited only on barium ion-cross-linked alginate surface. Surface charge measurements revealed that alginate films had negatively charged surfaces, and showed little difference among the five types of gel. These results indicate that the critical factors of ionically cross-linked alginate films determining the protein adsorption ability required for their cell compatibility may be surface wettability and morphology. (paper)

  20. Nitric oxide-induced interstrand cross-links in DNA.

    Science.gov (United States)

    Caulfield, Jennifer L; Wishnok, John S; Tannenbaum, Steven R

    2003-05-01

    The DNA damaging effects of nitrous acid have been extensively studied, and the formation of interstrand cross-links have been observed. The potential for this cross-linking to occur through a common nitrosating intermediate derived from nitric oxide is investigated here. Using a HPLC laser-induced fluorescence (LIF) system, the amount of interstrand cross-link formed on nitric oxide treatment of the 5'-fluorescein-labeled oligomer ATATCGATCGATAT was determined. This self-complimentary sequence contains two 5'-CG sequences, which is the preferred site for nitrous acid-induced cross-linking. Nitric oxide was delivered to an 0.5 mM oligomer solution at 15 nmol/mL/min to give a final nitrite concentration of 652 microM. The resulting concentration of the deamination product, xanthine, in this sample was found to be 211 +/- 39 nM, using GC/MS, and the amount of interstrand cross-link was determined to be 13 +/- 2.5 nM. Therefore, upon nitric oxide treatment, the cross-link is found at approximately 6% of the amount of the deamination product. Using this system, detection of the cross-link is also possible for significantly lower doses of nitric oxide, as demonstrated by treatment of the same oligomer with NO at a rate of 18 nmol/mL/min resulting in a final nitrite concentration of 126 microM. The concentration of interstrand cross-link was determined to be 3.6 +/- 0.1 nM in this sample. Therefore, using the same dose rate, when the total nitric oxide concentration delivered drops by a factor of approximately 5, the concentration of cross-link drops by a factor of about 4-indicating a qausi-linear response. It may now be possible to predict the number of cross-links in a small genome based on the number of CpG sequences and the yield of xanthine derived from nitrosative deamination.

  1. In vitro calcification and in vivo biocompatibility of the cross-linked polypentapeptide of elastin

    International Nuclear Information System (INIS)

    Wood, S.A.; Lemons, J.E.; Prasad, K.U.; Urry, D.W.

    1986-01-01

    The in vitro calcifiability and molecular weight dependence of calcification of the polypentapeptide, (L X Val1-L X Pro2-Gly3-L X Val4-Gly5)n, which had been gamma-irradiation cross-linked have been determined when exposed to dialyzates of normal, nonaugmented fetal bovine serum. The material was found to calcify: calcifiability was found to be highly molecular weight dependent and to be most favored when the highest molecular weight polymers (n approximately equal to 240) had been used for cross-linking. The in vivo biocompatibility, biodegradability, and calcifiability of the gamma-irradiation cross-linked polypentapeptide were examined in rabbits in both soft and hard tissue sites. The material was found to be biocompatible irrespective of its physical form and to be biodegradable but with n of 200 or less it was not shown to calcify or ossify in the rabbit tibial nonunion model

  2. Cross-linking multiwall carbon nanotubes using PFPA to build robust, flexible and highly aligned large-scale sheets and yarns

    Czech Academy of Sciences Publication Activity Database

    Inoue, Y.; Nakamura, K.; Miyasaka, Y.; Nakano, T.; Kletetschka, Günther

    2016-01-01

    Roč. 27, č. 11 (2016) ISSN 0957-4484 Institutional support: RVO:67985831 Keywords : multi-walled carbon nanotube * nano-mechanical properties * cross-linking * PFPA * dry spinning * yarn Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.440, year: 2016

  3. Studies in cross-linking PVC footwear soling compounds using gamma-irradiation

    International Nuclear Information System (INIS)

    Bloom, L.I.

    1983-01-01

    Irradiation cross-linking of polymeric materials has been known for some time but it is only in recent years that it has been put to commercial advantage. Well known uses are the modification of PVC for high temperature applications such as under-bonnet wiring, stove wiring, post office telecommunication wire and shrink tubing. In South Africa interest in developing commercial applications for cross-linkable polymeric materials was initially stimulated through the work of the Atomic Energy Board at Pelindaba in late 1971 using a cobalt - 60 gamma radiation unit

  4. Behavior of thin-walled beams made of advanced composite materials and incorporating non-classical effects

    Science.gov (United States)

    Librescu, Liviu; Song, Ohseop

    1991-11-01

    Several results concerning the refined theory of thin-walled beams of arbitrary closed cross-section incorporating nonclassical effects are presented. These effects are related both with the exotic properties characterizing the advanced composite material structures and the nonuniform torsional model. A special case of the general equations is used to study several problems of cantilevered thin-walled beams and to assess the influence of the incorporated effects. The results presented in this paper could be useful toward a more rational design of aeronautical or aerospace constructions, as well as of helicopter or tilt rotor blades constructed of advanced composite materials.

  5. Characterization of cross-linked porous gelatin carriers and their interaction with corneal endothelium: biopolymer concentration effect.

    Directory of Open Access Journals (Sweden)

    Jui-Yang Lai

    Full Text Available Cell sheet-mediated tissue regeneration is a promising approach for corneal reconstruction. However, the fragility of bioengineered corneal endothelial cell (CEC monolayers allows us to take advantage of cross-linked porous gelatin hydrogels as cell sheet carriers for intraocular delivery. The aim of this study was to further investigate the effects of biopolymer concentrations (5-15 wt% on the characteristic and safety of hydrogel discs fabricated by a simple stirring process combined with freeze-drying method. Results of scanning electron microscopy, porosity measurements, and ninhydrin assays showed that, with increasing solid content, the pore size, porosity, and cross-linking index of carbodiimide treated samples significantly decreased from 508±30 to 292±42 µm, 59.8±1.1 to 33.2±1.9%, and 56.2±1.6 to 34.3±1.8%, respectively. The variation in biopolymer concentrations and degrees of cross-linking greatly affects the Young's modulus and swelling ratio of the gelatin carriers. Differential scanning calorimetry measurements and glucose permeation studies indicated that for the samples with a highest solid content, the highest pore wall thickness and the lowest fraction of mobile water may inhibit solute transport. When the biopolymer concentration is in the range of 5-10 wt%, the hydrogels have high freezable water content (0.89-0.93 and concentration of permeated glucose (591.3-615.5 µg/ml. These features are beneficial to the in vitro cultivation of CECs without limiting proliferation and changing expression of ion channel and pump genes such as ATP1A1, VDAC2, and AQP1. In vivo studies by analyzing the rabbit CEC morphology and count also demonstrate that the implanted gelatin discs with the highest solid content may cause unfavorable tissue-material interactions. It is concluded that the characteristics of cross-linked porous gelatin hydrogel carriers and their triggered biological responses are in relation to biopolymer

  6. Preparation and properties of silk sericin/cellulose cross-linking films

    Directory of Open Access Journals (Sweden)

    Wang Kunyan

    2017-01-01

    Full Text Available Silk sericin/cellulose cross-linked films were successfully prepared using glutaraldehyde as cross-linkinger. FTIR was applied to characterize the chemical structure of films. Cross-linked silk sericin film was found the peak intensity of FTIR for cross-linked film decreased markedly compared to pure silk sericin, which indicating cross-linking reaction has been occurred. The increasing value of swelling ratio also indicated the cross-linking has been happened. The cross-linking reaction increased the thermal decomposition temperature.

  7. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid

    Directory of Open Access Journals (Sweden)

    Pouria Falamarzpour

    2017-02-01

    Full Text Available Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80–100 °C as verified by Fourier transform infrared (FT-IR. The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured, chemically cross-linked (cured, and uncross-linked (prepared by acetic acid films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials.

  8. Cross-linked structure of network evolution

    International Nuclear Information System (INIS)

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.

    2014-01-01

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks

  9. Cross-linked structure of network evolution

    Energy Technology Data Exchange (ETDEWEB)

    Bassett, Danielle S., E-mail: dsb@seas.upenn.edu [Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Sage Center for the Study of the Mind, University of California, Santa Barbara, California 93106 (United States); Wymbs, Nicholas F.; Grafton, Scott T. [Department of Psychology and UCSB Brain Imaging Center, University of California, Santa Barbara, California 93106 (United States); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP (United Kingdom); Mucha, Peter J. [Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  10. Current status of accelerated corneal cross-linking

    Directory of Open Access Journals (Sweden)

    Michael Mrochen

    2013-01-01

    Full Text Available Corneal cross-linking with riboflavin is a technique to stabilize or reduce corneal ectasia, in diseases such as keratoconus and post-laser-assisted in situ keratomileusis (LASIK ectasia. There is an interest by patient as well as clinicians to reduce the overall treatment time. Especially, the introduction of corneal cross-linking in combination with corneal laser surgery demands a shorter treatment time to assure a sufficient patient flow. The principles and techniques of accelerated corneal cross-linking is discussed.

  11. Shaped articles of cross-linked fluorocarbon polymers

    International Nuclear Information System (INIS)

    Gotcher, A.J.; Germeraad, P.B.

    1981-01-01

    A process is described which comprises (1) contacting (a) a shaped article of a polymeric composition wherein the polymer is a fluorocarbon polymer having a melting point of at least 200 0 C, the article having a tensile strength of at least 3,000 psi, with (b) a fluid composition comprising a cross-linking agent, until the article contains at least 2.5% by weight of the cross-linking agent; and (2) irradiating the shaped article with ionising radiation to a dosage not exceeding 50 Mrads under conditions such that the composition is cross-linked sufficiently to impart thereto an M 100 value of at least 300 psi, while maintaining a tensile strength of at least 3000 psi, the shaped article containing a specified proportion of the cross-linking agent. (author)

  12. Organic, cross-linking, and shape-stabilized solar thermal energy storage materials: A reversible phase transition driven by broadband visible light

    International Nuclear Information System (INIS)

    Wang, Yunming; Tang, Bingtao; Zhang, Shufen

    2014-01-01

    Graphical abstract: Organic shape-stabilized solar thermal energy storage materials (OCSPCMs) with broadband harvesting for visible light were obtained by crosslinking and color matching, which provided a new platform for improving the efficiency of solar radiation utilization. - Highlights: • Novel phase change materials (OCSPCMs) were obtained by crosslinking and color matching. • The η of the OCSPCM was higher than 0.74 (visible light from 400 nm to 700 nm). • The phase change latent heats of the OCSPCMs were more than 120 J/g. • The OCSPCM has excellent form-stable effect during phase change process. - Abstract: Broadband visible sunlight usage and shape-stabilized effect were achieved using organic, cross-linking, and shape-stabilized phase-changed materials (OCSPCMs) with broadband visible light absorption, which were obtained by cross-linking reticulation and color matching (yellow, red, and blue) according to solar irradiation energy density. The obtained OCSPCMs exhibited excellent form-stable phase-change energy storage and broadband visible light-harvesting. Under broadband irradiation (from 400 nm to 700 nm), the light-to-heat conversion and the thermal energy storage efficiency (η > 0.74) of the OCSPCMs were significantly improved upon solar irradiation by color matching compared with those of OCSPCMs with single-band selective absorption of visible light (yellow, red, or blue). Differential scanning calorimetric results indicated that the phase change temperatures and latent heats of OCSPCMs ranged from 32.6 °C to 60.2 °C and from 120.1 J/g to 132.7 J/g, respectively. The novel materials show a reversible (more than 200 cycles) phase transition via ON/OFF switching of visible light irradiation

  13. A geometric derivation of the dyon wall-crossing group

    NARCIS (Netherlands)

    Cheng, M.C.N.; Hollands, L.

    2009-01-01

    Recently, using supergravity analysis, a hyperbolic reflection group was found to underlie the structure of wall-crossing, or the discontinuous moduli dependence of the supersymmetric index due to the presence of walls of marginal stability, of the BPS dyons in the N = 4, d = 4 compactification. In

  14. Cross-linked compared with historical polyethylene in THA: an 8-year clinical study.

    Science.gov (United States)

    Geerdink, Carel H; Grimm, Bernd; Vencken, Wendy; Heyligers, Ide C; Tonino, Alphons J

    2009-04-01

    Wear particle-induced osteolysis is a major cause of aseptic loosening in THA. Increasing wear resistance of polyethylene (PE) occurs by increasing the cross-link density and early reports document low wear rates with such implants. To confirm longer-term reductions in wear we compared cross-linked polyethylene (irradiation in nitrogen, annealing) with historical polyethylene (irradiation in air) in a prospective, randomized clinical study involving 48 patients who underwent THAs with a minimum followup of 7 years (mean, 8 years; range, 7-9 years). The insert material was the only variable. The Harris hip score, radiographic signs of osteolysis, and polyethylene wear were recorded annually. Twenty-three historical and 17 moderately cross-linked polyethylene inserts were analyzed (five patients died, three were lost to followup). At 8 years, the wear rate was lower for cross-linked polyethylene (0.088 +/- 0.03 mm/year) than for the historical polyethylene (0.142 +/- 0.07 mm/year). This reduction (38%) did not diminish with time (33% at 5 years). Acetabular cyst formation was less frequent (39% versus 12%), affected fewer DeLee and Charnley zones (17% versus 4%), and was less severe for the cross-linked polyethylene. The only revision was for an aseptically loose cup in the historical polyethylene group. Moderately cross-linked polyethylene maintained its wear advantage with time and produced less osteolysis, showing no signs of aging at mid-term followup. Level I, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  15. Donor cross-linking for keratoplasty: a laboratory evaluation.

    Science.gov (United States)

    Mukherjee, Achyut; Hayes, Sally; Aslanides, Ioannis; Lanchares, Elena; Meek, Keith M

    2015-12-01

    This laboratory-based investigation compares the topographic outcomes of conventional penetrating keratoplasty with that of a novel procedure in which donor corneas are cross-linked prior to keratoplasty. Penetrating keratoplasty procedures with continuous running sutures were carried out in a porcine whole globe model. Sixty eyes were randomly paired as 'donor' and 'host' tissue before being assigned to one of two groups. In the cross-linked group, donor corneas underwent riboflavin/UVA cross-linking prior to being trephined and sutured to untreated hosts. In the conventional keratoplasty group, both host and donor corneas remained untreated prior to keratoplasty. Topographic and corneal wavefront measurements were performed following surgery, and technical aspects of the procedure evaluated. Mean keratometric astigmatism was significantly lower in the cross-linked donor group at 3.67D (SD 1.8 D), vs. 8.43 D (SD 2.4 D) in the conventional keratoplasty group (p < 0.005). Mean wavefront astigmatism was also significantly reduced in the cross-linked donor group 4.71 D (SD 2.1) vs. 8.29D (SD 3.6) in the conventional keratoplasty group (p < 0.005). Mean RMS higher order aberration was significantly lower in the cross-linked donor group at 1.79 um (SD 0.98), vs. 3.05 um (SD 1.9) in the conventional keratoplasty group (P = 0.02). Qualitative analysis revealed less tissue distortion at the graft-host junction in the cross-linked group. Cross-linking of donor corneas prior to keratoplasty reduces intraoperative induced astigmatism and aberrations in an animal model. Further studies are indicated to evaluate the implications of this potential modification of keratoplasty surgery.

  16. Biocatalytic cross-linking of pectic polysaccharides for designed food functionality

    DEFF Research Database (Denmark)

    Zaidel, Dayang Norulfairuz Abang; Meyer, Anne S.

    2012-01-01

    the mechanisms of formation of functional pectic polysaccharide cross-links, including covalent cross-links (notably phenolic esters and uronyl ester linkages) and non-covalent, ionic cross-links (which involve calcium and borate ester links). The treatise examines how such cross-links can be designed via......Recent research has demonstrated how cross-linking of pectic polysaccharides to obtain gel formation can be promoted by enzymatic catalysis reactions, and provide opportunities for functional upgrading of pectic polysaccharides present in agro-industrial sidestreams. This review highlights...... specific enzymatic reactions, and highlights the most recent data concerning enzyme catalyzed engineering of cross-links for in situ structural design of functional properties of foods....

  17. Enzymatic cross-linking of human recombinant elastin (HELP) as biomimetic approach in vascular tissue engineering.

    Science.gov (United States)

    Bozzini, Sabrina; Giuliano, Liliana; Altomare, Lina; Petrini, Paola; Bandiera, Antonella; Conconi, Maria Teresa; Farè, Silvia; Tanzi, Maria Cristina

    2011-12-01

    The use of polymers naturally occurring in the extracellular matrix (ECM) is a promising strategy in regenerative medicine. If compared to natural ECM proteins, proteins obtained by recombinant DNA technology have intrinsic advantages including reproducible macromolecular composition, sequence and molecular mass, and overcoming the potential pathogens transmission related to polymers of animal origin. Among ECM-mimicking materials, the family of recombinant elastin-like polymers is proposed for drug delivery applications and for the repair of damaged elastic tissues. This work aims to evaluate the potentiality of a recombinant human elastin-like polypeptide (HELP) as a base material of cross-linked matrices for regenerative medicine. The cross-linking of HELP was accomplished by the insertion of cross-linking sites, glutamine and lysine, in the recombinant polymer and generating ε-(γ-glutamyl) lysine links through the enzyme transglutaminase. The cross-linking efficacy was estimated by infrared spectroscopy. Freeze-dried cross-linked matrices showed swelling ratios in deionized water (≈2500%) with good structural stability up to 24 h. Mechanical compression tests, performed at 37°C in wet conditions, in a frequency sweep mode, indicated a storage modulus of 2/3 kPa, with no significant changes when increasing number of cycles or frequency. These results demonstrate the possibility to obtain mechanically resistant hydrogels via enzymatic crosslinking of HELP. Cytotoxicity tests of cross-linked HELP were performed with human umbilical vein endothelial cells, by use of transwell filter chambers for 1-7 days, or with its extracts in the opportune culture medium for 24 h. In both cases no cytotoxic effects were observed in comparison with the control cultures. On the whole, the results suggest the potentiality of this genetically engineered HELP for regenerative medicine applications, particularly for vascular tissue regeneration.

  18. [Biophysical principles of collagen cross-linking].

    Science.gov (United States)

    Spörl, E; Raiskup-Wolf, F; Pillunat, L E

    2008-02-01

    The reduced mechanical stability of the cornea in keratoconus or in keratectasia after Lasik may be increased by photooxidative cross-linking of corneal collagen. The biophysical principles are compiled for the safe and effective application of this new treatment method. The setting of the therapy parameters should be elucidated from the absorption behaviour of the cornea. The safety of the method for the endothelium cells and the lens will be discussed. The induced cross-links are shown to be the result of changes in the physico-chemical properties of the cornea. To reach a high absorption of the irradiation energy in the cornea, riboflavin of a concentration of 0.1% and UV light of a wavelength of 370 nm, corresponding to the relative maximum of absorption of riboflavin, were used. An irradiance of 3 mW/cm(2) and an irradiation time of 30 min lead to an increase of the mechanical stiffness. The endothelium cells will be protected due to the high absorption within the cornea, that means the damaging threshold of the endothelium cells will not be reached in a 400 microm thick stroma. As evidence for cross-links we can consider the increase of the biomechanical stiffness, the increased resistance against enzymatic degradation, a higher shrinkage temperature, a lower swelling rate and an increased diameter of collagen fibres. The therapy parameters were tested experimentally and have been proven clinically in the corneal collagen cross-linking. These parameters should be respected to reach a safe cross-linking effect without damage of the adjacent tissues.

  19. An atomistic model for cross-linked HNBR elastomers used in seals

    Science.gov (United States)

    Molinari, Nicola; Sutton, Adrian; Stevens, John; Mostofi, Arash

    2015-03-01

    Hydrogenated nitrile butadiene rubber (HNBR) is one of the most common elastomeric materials used for seals in the oil and gas industry. These seals sometimes suffer ``explosive decompression,'' a costly problem in which gases permeate a seal at the elevated temperatures and pressures pertaining in oil and gas wells, leading to rupture when the seal is brought back to the surface. The experimental evidence that HNBR and its unsaturated parent NBR have markedly different swelling properties suggests that cross-linking may occur during hydrogenation of NBR to produce HNBR. We have developed a code compatible with the LAMMPS molecular dynamics package to generate fully atomistic HNBR configurations by hydrogenating initial NBR structures. This can be done with any desired degree of cross-linking. The code uses a model of atomic interactions based on the OPLS-AA force-field. We present calculations of the dependence of a number of bulk properties on the degree of cross-linking. Using our atomistic representations of HNBR and NBR, we hope to develop a better molecular understanding of the mechanisms that result in explosive decompression.

  20. Structure of the Dispase Autolysis-inducing Protein from Streptomyces mobaraensis and Glutamine Cross-linking Sites for Transglutaminase.

    Science.gov (United States)

    Fiebig, David; Schmelz, Stefan; Zindel, Stephan; Ehret, Vera; Beck, Jan; Ebenig, Aileen; Ehret, Marina; Fröls, Sabrina; Pfeifer, Felicitas; Kolmar, Harald; Fuchsbauer, Hans-Lothar; Scrima, Andrea

    2016-09-23

    Transglutaminase from Streptomyces mobaraensis (MTG) is an important enzyme for cross-linking and modifying proteins. An intrinsic substrate of MTG is the dispase autolysis-inducing protein (DAIP). The amino acid sequence of DAIP contains 5 potential glutamines and 10 lysines for MTG-mediated cross-linking. The aim of the study was to determine the structure and glutamine cross-linking sites of the first physiological MTG substrate. A production procedure was established in Escherichia coli BL21 (DE3) to obtain high yields of recombinant DAIP. DAIP variants were prepared by replacing four of five glutamines for asparagines in various combinations via site-directed mutagenesis. Incorporation of biotin cadaverine revealed a preference of MTG for the DAIP glutamines in the order of Gln-39 ≫ Gln-298 > Gln-345 ∼ Gln-65 ≫ Gln-144. In the structure of DAIP the preferred glutamines do cluster at the top of the seven-bladed β-propeller. This suggests a targeted cross-linking of DAIP by MTG that may occur after self-assembly in the bacterial cell wall. Based on our biochemical and structural data of the first physiological MTG substrate, we further provide novel insight into determinants of MTG-mediated modification, specificity, and efficiency. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Synthesis and characterisation of cross-linked chitosan composites functionalised with silver and gold nanoparticles for antimicrobial applications

    Science.gov (United States)

    Ryan, Catherine; Alcock, Emma; Buttimer, Finbarr; Schmidt, Michael; Clarke, David; Pemble, Martyn; Bardosova, Maria

    2017-12-01

    We present a study of a range of cross-linked chitosan composites with potential antimicrobial applications. They were formed by cross-linking chitosan and siloxane networks and by introducing silver and gold nanoparticles (NPs). The aim was to investigate whether adding the metal NPs to the chitosan-siloxane composite would lead to a material with enhanced antimicrobial ability as compared to chitosan itself. The composites were synthesised in hydrogel form with the metal NPs embedded in the cross-linked chitosan network. Spectroscopic and microscopic techniques were employed to investigate the structural properties of the composite and the tensile strength of the structures was measured. It was found that the addition of metal NPs did not influence the mechanical strength of the composite. A crystal violet attachment assay results displayed a significant reduction in the attachment of E. coli to the cross-linked chitosan surfaces. Release profile tests suggest that the metal NPs do not contribute to the overall antimicrobial activity under neutral conditions. The contribution to the mechanical and antimicrobial properties from cross-linking with siloxane is significant, giving rise to a versatile, durable, antimicrobial material suitable for thin film formation, wound dressings or the coating of various surfaces where robustness and antimicrobial control are required.

  2. Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices

    Directory of Open Access Journals (Sweden)

    Fernanda M. Carbinatto

    2014-02-01

    Full Text Available Cross-linked pectin/high amylose mixtures were evaluated as a new excipient for matrix tablets formulations, since the mixing of polymers and cross-linking reaction represent rational tools to reach materials with modulated and specific properties that meet specific therapeutic needs. Objective: In this work the influence of polymer ratio and cross-linking process on the swelling and the mechanism driving the drug release from swellable matrix tablets prepared with this excipient was investigated. Methods: Cross-linked samples were characterized by their micromeritic properties (size and shape, density, angle of repose and flow rate and liquid uptake ability. Matrix tablets were evaluated according their physical properties and the drug release rates and mechanisms were also investigated. Results: Cross-linked samples demonstrated size homogeneity and irregular shape, with liquid uptake ability insensible to pH. Cross-linking process of samples allowed the control of drug release rates and the drug release mechanism was influenced by both polymer ratio and cross-linking process. The drug release of samples with minor proportion of pectin was driven by an anomalous transport and the increase of the pectin proportion contributed to the erosion of the matrix. Conclusion: The cross-linked mixtures of high amylose and pectin showed a suitable excipient for slowing the drug release rates.

  3. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    Science.gov (United States)

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Hydrogels Prepared from Cross-Linked Nanofibrillated Cellulose

    Science.gov (United States)

    Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas

    2014-01-01

    Nanocomposite hydrogels were developed by cross-linking nanofibrillated cellulose with poly(methyl vinyl ether-co-maleic acid) and polyethylene glycol. The cross-linked hydrogels showed enhanced water absorption and gel content with the addition of nanocellulose. In addition, the thermal stability, mechanical strength, and modulus increased with an increase in the...

  5. DNA cross-linking by dehydromonocrotaline lacks apparent base sequence preference.

    Science.gov (United States)

    Rieben, W Kurt; Coulombe, Roger A

    2004-12-01

    Pyrrolizidine alkaloids (PAs) are ubiquitous plant toxins, many of which, upon oxidation by hepatic mixed-function oxidases, become reactive bifunctional pyrrolic electrophiles that form DNA-DNA and DNA-protein cross-links. The anti-mitotic, toxic, and carcinogenic action of PAs is thought to be caused, at least in part, by these cross-links. We wished to determine whether the activated PA pyrrole dehydromonocrotaline (DHMO) exhibits base sequence preferences when cross-linked to a set of model duplex poly A-T 14-mer oligonucleotides with varying internal and/or end 5'-d(CG), 5'-d(GC), 5'-d(TA), 5'-d(CGCG), or 5'-d(GCGC) sequences. DHMO-DNA cross-links were assessed by electrophoretic mobility shift assay (EMSA) of 32P endlabeled oligonucleotides and by HPLC analysis of cross-linked DNAs enzymatically digested to their constituent deoxynucleosides. The degree of DNA cross-links depended upon the concentration of the pyrrole, but not on the base sequence of the oligonucleotide target. Likewise, HPLC chromatograms of cross-linked and digested DNAs showed no discernible sequence preference for any nucleotide. Added glutathione, tyrosine, cysteine, and aspartic acid, but not phenylalanine, threonine, serine, lysine, or methionine competed with DNA as alternate nucleophiles for cross-linking by DHMO. From these data it appears that DHMO exhibits no strong base preference when forming cross-links with DNA, and that some cellular nucleophiles can inhibit DNA cross-link formation.

  6. Reactive electrospinning and biodegradation of cross-linked methacrylated polycarbonate nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Wu Ruizhi; Zhang Jianfeng; Fan Yuwei; Xu Xiaoming [Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, 1100 Florida Avenue, Box 137, New Orleans, LA 70119 (United States); Stoute, Diana; Lallier, Thomas, E-mail: xxu@lsuhsc.edu [Department of Cell Biology and Anatomy, Louisiana State University Health Science Center, 1100 Florida Avenue, Box 137, New Orleans, LA 70119 (United States)

    2011-06-15

    The objectives of this study were to fabricate cross-linked biodegradable polycarbonate nanofibers and to investigate their biodegradability by different enzymes. Poly(2,3-dihydroxycarbonate) was synthesized from naturally occurring l-tartaric acid. The hydroxyl groups on the functional polycarbonate were converted to methacrylate groups to enable the polymer to cross-link under UV irradiation. Smooth cross-linked methacrylated polycarbonate nanofibers (300-1800 nm) were fabricated by a reactive electrospinning process with in situ UV radiation from a mixed solution of linear methacrylated polycarbonate (MPC) and poly(ethylene oxide) (PEO) (MPC:PEO = 9:1) in methanol/chloroform (50/50). These cross-linked nanofibers have shown excellent solvent resistance and their solubility decreases with increasing degree of cross-linking. The thermal properties of linear and cross-linked polycarbonate nanofibers were investigated by differential scanning calorimetry and thermogravimetric analysis. The cross-linked polycarbonate nanofibers show no melting point below 200 {sup 0}C and their decomposition temperature increases with increasing cross-linking degree. Their biodegradation products by five different enzymes were analyzed using liquid chromatography-mass spectrometry (LC-MS). The biodegradability of the polycarbonate nanofibers decreases with increasing cross-linking degree. These nanofibers were found to support human fibroblast survival and to promote cell attachment. This study demonstrates that cross-linked biodegradable polycarbonate nanofibers with different chemical properties and biodegradability can be fabricated using the novel reactive electrospinning technology to meet the needs of different biomedical applications.

  7. Manufacture of polyethylene foam by electron beam cross-linking

    International Nuclear Information System (INIS)

    Tamai, Isamu

    1976-01-01

    The manufacturing process of polyethylene foam, comparison between electron beam cross-linking process and chemical cross-linking process, the electron beam irradiation technique for continuous sheets, the characteristics and uses of polyethylene foam are reviewed. The pore diameter can be controlled by selecting the dose rate, because there is strong relationship between the pore diameter and the dose rate. As the dose if higher, the foam becomes finer. The electron accelerators having large capacity show the lowest cost as the radiation source, and are applicable industrially. If the production capacity exceeds about 200 tons per month, the costs of electron beam irradiation process may be more advantageous than that of chemical process according to the circumstances. It is difficult to obtain the uniform distribution of absorption dose in the direction of thickness. General characteristics of cross-linked polyethylene foam are listed. The special feature of electron beam process is that the degree of cross-linking can be controlled arbitrarily before foaming. The products obtained by the electron beam cross-linking process have finer foams and smoother surfaces than those obtained by the chemical process, because the separation of the decomposition of foaming agents from that of cross-linking agents in the chemical cross-linking is difficult. (Iwakiri, K.)

  8. Composition of cross-linked 125I-follitropin-receptor complexes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, J.; Ji, T.H.

    1985-10-15

    Both of the alpha and beta subunits of intact human follitropin (FSH) were radioiodinated with SVI-sodium iodide and chloramine-T and could be resolved on sodium dodecyl sulfate-polyacrylamide gels. Radioiodinated FSH was affinity-cross-linked with a cleavable (nondisulfide) homobifunctional reagent to its membrane receptor on the porcine granulosa cell surface as well as to a Triton X-100-solubilized form of the receptor. Cross-linked samples revealed three additional bands of slower electrophoretic mobility, corresponding to 65, 83, and 117 kDa, in addition to the hormone bands. The hormone alpha beta dimer band corresponded to 43 kDa. Formation of the three bands requires the SVI-hormone to bind specifically to the receptor with subsequent cross-linking. Binding was prevented by an excess of the native hormone but not by other hormones. A monofunctional analog of the cross-linking reagent failed to produce the three bands. Reagent concentration-dependent cross-linking revealed that their formation was sequential; smaller complexes formed first and then larger ones. When gels of cross-linked complexes were treated to cleave covalent cross-links and then electrophoresed in a second dimension, 18-, 22-, and 34-kDa components were released, in addition to the alpha and beta subunits of the hormone.

  9. UV laser-induced cross-linking in peptides

    Science.gov (United States)

    Leo, Gabriella; Altucci, Carlo; Bourgoin-Voillard, Sandrine; Gravagnuolo, Alfredo M.; Esposito, Rosario; Marino, Gennaro; Costello, Catherine E.; Velotta, Raffaele; Birolo, Leila

    2013-01-01

    RATIONALE The aim of this study was to demonstrate, and to characterize by high resolution mass spectrometry, that it is possible to preferentially induce covalent cross-links in peptides by using high energy femtosecond UV laser pulses. The cross-link is readily formed only when aromatic amino acids are present in the peptide sequence. METHODS Three peptides, xenopsin, angiotensin I, interleukin, individually or in combination, were exposed to high energy femtosecond UV laser pulses, either alone or in the presence of spin trapping molecules, the reaction products being characterized by high resolution mass spectrometry. RESULTS High resolution mass spectrometry and spin trapping strategies showed that cross-linking occurs readily, proceeds via a radical mechanism, and is the highly dominant reaction, proceeding without causing significant photo-damage in the investigated range of experimental parameters. CONCLUSIONS High energy femtosecond UV laser pulses can be used to induce covalent cross-links between aromatic amino acids in peptides, overcoming photo-oxidation processes, that predominate as the mean laser pulse intensity approaches illumination conditions achievable with conventional UV light sources. PMID:23754800

  10. Sub- T g Cross-Linking of a Polyimide Membrane for Enhanced CO 2 Plasticization Resistance for Natural Gas Separation

    KAUST Repository

    Qiu, Wulin

    2011-08-09

    Decarboxylation-induced thermal cross-linking occurs at elevated temperatures (∼15 °C above glass transition temperature) for 6FDA-DAM:DABA polyimides, which can stabilize membranes against swelling and plasticization in aggressive feed streams. Despite this advantage, such a high temperature might result in collapse of substructure and transition layers in the asymmetric structure of a hollow fibers based on such a material. In this work, the thermal cross-linking of the 6FDA-DAM:DABA at temperatures much below the glass transition temperature (∼387 °C by DSC) was demonstrated. This sub-Tg cross-linking capability enables extension to asymmetric structures useful for large scale membranes. The resulting polymer membranes were characterized by swelling in known solvents for the un-cross-linked materials, TGA analysis, and permeation tests of aggressive gas feed stream at higher pressure. The annealing temperature and time clearly influence the degree of cross-linking of the membranes, and results in a slight difference in selectivity for membranes under various cross-linking conditions. Results indicate that the sub-Tg thermal cross-linking of 6FDA-DAM:DABA dense film membrane can be carried out completely even at a temperature as low as 330 °C. Permeabilities were tested for the polyimide membranes using both pure gases (He, O2, N2, CH4, CO2) and mixed gases (CO2/CH4). The selectivity of the cross-linked membrane can be maintained even under very aggressive CO2 operating conditions that are not possible without cross-linking. Moreover, the plasticization resistance was demonstrated up to 700 psia for pure CO 2 gas or 1000 psia for 50% CO2 mixed gas feeds. © 2011 American Chemical Society.

  11. Nanomechanics of layer-by-layer polyelectrolyte complexes: a manifestation of ionic cross-links and fixed charges.

    Science.gov (United States)

    Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin

    2016-01-28

    This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further

  12. Vaporized wall material/plasma interaction during plasma disruption

    International Nuclear Information System (INIS)

    Merrill, B.J.; Carroll, M.C.; Jardin, S.C.

    1983-01-01

    The purpose of this paper is to discuss a new plasma disruption model that has been developed for analyzing the consequences to the limiter/first wall structures. This model accounts for: nonequilibrium surface vaporization for the ablating structure, nonequilibrium ionization of and radiation emitted from the ablated material in the plasma, plasma particle and energy transport, and plasma electromagnetic field evolution during the disruption event. Calculations were performed for a 5 ms disruption on a stainless steel flat limiter as part of a D-shaped first wall. These results indicated that the effectiveness of the ablated wall material to shield the exposed structure is greater than predicted by earlier models, and that the rate of redeposition of the ablated wall material ions is very dramatic. Impurity transport along magnetic field lines, global plasma motion, and radiation transport in an optically thick plasma are important factors that require additional modeling. Experimental measurements are needed to verify these models

  13. Archaeologies of landscape : excavating the materialities of Hadrian's Wall.

    OpenAIRE

    Witcher, R. E.; Tolia-Kelly, Divya P.; Hingley, R.

    2010-01-01

    This article interrogates the materiality of Hadrian’s Wall beyond its widespread perception as a monument of/to Ancient Rome. Encounters with this monument have generated multitudinous materialities: hegemonic, conflicting and ambiguous. These trajectories have their own material circulations in both solid and narrative forms. Here, we consider materiality through the cultures inspired by/of the Wall. Through the formulation of an interdisciplinary methodology and praxis, we contribute to la...

  14. Conservation of RNA sequence and cross-linking ability in ribosomes from a higher eukaryote: photochemical cross-linking of the anticodon of P site bound tRNA to the penultimate cytidine of the UACACACG sequence in Artemia salina 18S rRNA

    International Nuclear Information System (INIS)

    Ciesiolka, J.; Nurse, K.; Klein, J.; Ofengand, J.

    1985-01-01

    The complex of Artemia salina ribosomes and Escherichia coli acetylvalyl-tRNA could be cross-linked by irradiation with near-UV light. Cross-linking required the presence of the codon GUU, GUA being ineffective. The acetylvalyl group could be released from the cross-linked tRNA by treatment with puromycin, demonstrating that cross-linking had occurred at the P site. This was true both for pGUU- and also for poly(U2,G)-dependent cross-linking. All of the cross-linking was to the 18S rRNA of the small ribosomal subunit. Photolysis of the cross-link at 254 nm occurred with the same kinetics as that for the known cyclobutane dimer between this tRNA and Escherichia coli 16S rRNA. T1 RNase digestion of the cross-linked tRNA yielded an oligonucleotide larger in molecular weight than any from un-cross-linked rRNA or tRNA or from a prephotolyzed complex. Extended electrophoresis showed this material to consist of two oligomers of similar mobility, a faster one-third component and a slower two-thirds component. Each oligomer yielded two components on 254-nm photolysis. The slower band from each was the tRNA T1 oligomer CACCUCCCUVACAAGp, which includes the anticodon. The faster band was the rRNA 9-mer UACACACCGp and its derivative UACACACUG. Unexpectedly, the dephosphorylated and slower moving 9-mer was derived from the faster moving dimer. Deamination of the penultimate C to U is probably due to cyclobutane dimer formation and was evidence for that nucleotide being the site of cross-linking. Direct confirmation of the cross-linking site was obtained by Z-gel analysis

  15. Synthesis of naturally cross-linked polycrystalline ZrO2 hollow nanowires using butterfly as templates

    International Nuclear Information System (INIS)

    Chen Yu; Gu Jiajun; Zhu Shenmin; Su Huilan; Zhang Di; Feng Chuanliang; Zhuang Leyan

    2012-01-01

    Highlights: ► Naturally cross-linked ZrO 2 nanotubes with ∼2.4 μm in length, ∼35 nm in diameter and ∼12 nm in wall thickness was synthesized via the selection of suitable butterfly bio-templates followed by heat processing. ► The contractions, which are main defects of the former hard-template method based on butterflies, are well controlled with the help of the surface tension effect. ► The achieved hollow ZrO 2 nanowires suggest a new optional approach that uses bio-templates in fabricating and designing nano systems. - Abstract: Butterfly wing skeleton is a widely used hard-template in recent years for fabricating photonic crystal structures. However, the smallest construction units for the most species of butterflies are commonly larger than ∼50 nm, which greatly hinders their applications in designing much smaller functional parts down to real “nano scale”. This work indicates, however, that hollow ZrO 2 nanowires with ∼2.4 μm in length, ∼35 nm in diameter and ∼12 nm in wall thickness can be synthesized via the selection of suitable butterfly bio-templates followed by heat processing. Especially, the successful fabrication of these naturally cross-linked ZrO 2 nanotubes suggests a new optional approach in fabricating assembled nano systems.

  16. Study of the Conformational State of Non-Cross-Linked and Cross-Linked Poly(alkylmethyldiallylammonium chlorides) in Aqueous Solution by Fluorescence Probing

    NARCIS (Netherlands)

    Wang, Guang-Jia; Engberts, Jan B.F.N.

    The aggregation behaviour of novel non-cross-linked and cross-linked poly(alkylmethyldiallylammonium chlorides) in aqueous solutions has been investigated by fluorescence spectroscopy using pyrene as a probe. These copolymers were found to exhibit similar aggregate properties as the corresponding

  17. Materials for heat flux components of the first wall in fusion reactors

    International Nuclear Information System (INIS)

    Hoven, H.; Koizlik, K.; Linke, J.; Nickel, H.; Wallura, E.

    1985-08-01

    Materials of the First Wall in near-fusion plasma machines are subjected to a complex load system resulting from the plasma-wall interaction. The materials for their part also influence the plasma. Suitable materials must be available in order to ensure that the wall components achieve a sufficiently long dwell time and that their effects on the plasma remain small and controllable. The present report discusses relations between the plasma-wall interaction, the reactions of the materials and testing and examination methods for specific problems in developing and selecting suitable materials for highly stressed components on the First Wall of fusion reactors. (orig.)

  18. Radiation cross-linked polymers: Recent developments and new applications

    International Nuclear Information System (INIS)

    Rouif, Sophie

    2005-01-01

    The purpose of the present paper is to review the innovative and recent applications of radiation cross-linking of polymers that reinforces their dimensional stability in chemically aggressive and high temperature conditions. Radiation cross-linking can be applied to a great number of plastics: thermoplastics, elastomers and thermoplastic elastomers (TPE). Some of them can cross-link on their own, some others need to be formulated with a cross-linking agent (promoter) or to be modified during their polymerization. Some results of chemical and thermomechanical characterizations of radiation cross-linked plastics based on engineering polymers will be described, and their advantages will be emphasized in relation with their applications in various sectors: pipes and cables, packaging, automotive, electrical engineering and electronics, including connectors, surface mounted devices, integrated circuits, 3D-MID technology, etc. The paper will conclude with a short review of the industrial irradiation facilities (EB facilities and gamma plants) adapted to the treatment of such various products

  19. Material development for grade X80 heavy-wall hot induction bends

    International Nuclear Information System (INIS)

    Wang Xu; Xiao Furen; Fu Yanhong; Chen Xiaowei; Liao Bo

    2011-01-01

    Highlights: ► The new material for X80 heavy wall thickness hot induction bend was designed. ► The continuous cooling transformation (CCT) diagrams were determined. ► The steel adapts to manufacture of X80 heavy-wall thickness hot induction bend. ► The optimum manufactural processes were obtained. ► The bending temperature is about 990 °C, and tempering is about 600 °C. - Abstract: A new steel for grade X80 heavy wall thickness hot induction bends was designed based on the chemical compositions of commercial X80 steels in this work. Then, its continuous cooling transformation (CCT) diagram was determined with Gleeble-3500 thermo-mechanical simulator. Furthermore, the effects of heat treatment technology on its microstructure and mechanical property were investigated, and the technology parameters of the heat treatment were optimized. The results show that the acicular ferrite and/or bainite transformations are promoted, the polygonal ferrite and pearlite transformation are restrained, because proper amount of alloying elements were added into the new steel. Therefore, the strength of this new steel is improved markedly, even if the cooling rate is lower, which ensure the higher strength distribution along cross section of the heavy wall thickness. It is significant for the manufacture of grade X80 heavy wall thickness hot induction bends in the second West-to-East gas transportation pipeline project of China.

  20. Modified gum arabic cross-linked gelatin scaffold for biomedical applications

    International Nuclear Information System (INIS)

    Sarika, P.R.; Cinthya, Kuriakose; Jayakrishnan, A.; Anilkumar, P.R.; James, Nirmala Rachel

    2014-01-01

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. - Highlights: • Gum arabic cross-linked gelatin scaffold was developed for tissue engineering. • Cross-linking was achieved by Schiff's base reaction. • The scaffold is non-cytotoxic and non adherent to fibroblast and hepatocytes. • The scaffolds are potential candidates for spheroid cell culture

  1. Modified gum arabic cross-linked gelatin scaffold for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sarika, P.R. [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547 (India); Cinthya, Kuriakose [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012 (India); Jayakrishnan, A. [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036 (India); Anilkumar, P.R., E-mail: anilkumarpr@sctimst.ac.in [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012 (India); James, Nirmala Rachel, E-mail: nirmala@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547 (India)

    2014-10-01

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. - Highlights: • Gum arabic cross-linked gelatin scaffold was developed for tissue engineering. • Cross-linking was achieved by Schiff's base reaction. • The scaffold is non-cytotoxic and non adherent to fibroblast and hepatocytes. • The scaffolds are potential candidates for spheroid cell culture.

  2. Cross-linking of wheat gluten using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Tropini, V.; Lens, J.P.; Mulder, W.J.; Silvestre, F.

    2000-01-01

    Wheat gluten was cross-linked using water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (EDC). To enhance cross-linking, N-hydroxysuccinimide (NHS) was added to the reaction mixture. The cross-linking efficiency was evaluated by the decrease in the amount of amino groups, the solubility

  3. Flammability of radiation cross-linked low density polyethylene as an insulating material for wire and cable

    International Nuclear Information System (INIS)

    Basfar, A.A.

    2002-01-01

    Various formulations of low-density polyethylene blended with ethylene vinyl acetate were prepared to improve the flame retardancy for wire and cable applications. The prepared formulations were cross-linked by γ-rays to 50, 100, 150 and 200 kGy in the presence of trimethylolpropane triacrylate (TMPTA). The effect of thermal aging on mechanical properties of these formulations were investigated. In addition, the influence of various combinations of aluminum trihydroxide and zinc borate as flame retardant fillers on the flammability was explored. Limiting oxygen index (LOI) and average extent of burning were used to characterize the flammability of investigated formulations. An improved flame retardancy of low density polyethylene was achieved by various combinations of flame ratardant fillers and cross-linking by gamma radiation

  4. Structuring of Amide Cross-Linked Non-Bridged and Bridged Alkyl-Based Silsesquioxanes.

    Science.gov (United States)

    Nunes, S C; de Zea Bermudez, V

    2018-02-06

    The development of sophisticated organized materials exhibiting enhanced properties is a challenging topic of the domain of organic/inorganic hybrid materials. This review, composed of four sections, reports the work we have carried out over the last 10 years on the synthesis of amide cross-linked alkyl/siloxane hybrids by means of sol-gel chemistry and self-directed assembly/self-organization routes relying on weak interactions (hydrophobic interactions and hydrogen bonding). The various as-produced lamellar structures displaying a myriad of morphologies, often closely resembling those found in natural materials, are discussed. The major role played by the synthetic conditions (pH, water content, co-solvent(s) nature/concentration and dopant presence/concentration), the alkyl chains (length and presence of ramification or not) and the number of the amide cross-links present in the precursor, is evidenced. Examples of highly organized hybrids structures incorporating ionic species (alkali and alkaline earth metal salts) and optically-active centers (organic dyes and lanthanide ions) are described. A useful qualitative relationship deduced between the emission quantum yield of the ordered hybrid materials and the degree of order of the hydrogen-bonded network is highlighted. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Photoreactivities and thermal properties of psoralen cross-links

    International Nuclear Information System (INIS)

    Yeung, A.T.; Jones, B.K.; Chu, C.T.

    1988-01-01

    The authors have studied the photoreaction of 8-methoxypsoralen (8-MOP), 4,5',8-trimethylpsoralen (TMP), and 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) with a pair of 18-base-long oligonucleotides in which a 14-base region is complementary. Only one 5'TpA site, favored for both monoadduct and cross-link formation with psoralen, is present in this oligonucleotide pair. They have used this model system to demonstrate, for the first time, strand specificity in the photoreaction of psoralen with DNA. They found that the two types of cross-links which form at this site have large differences in thermal stabilities. In addition, the denaturation of each cross-links isomer duplex occurred in at least three stages, which can be visualized as three bands in thermal equilibrium under the conditions of a denaturing polyacrylamide gel. This novel observation suggests that there are several domains differing in thermal stability in a psoralen cross-link

  6. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    International Nuclear Information System (INIS)

    Khabaz, Fardin; Khare, Ketan S.; Khare, Rajesh

    2014-01-01

    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring the resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations

  7. Collagen cross-linking in thin corneas

    Directory of Open Access Journals (Sweden)

    Prema Padmanabhan

    2013-01-01

    Full Text Available Collagen cross-linking (CXL has become the standard of care for progressive keratoconus, after numerous clinical studies have established its efficacy and safety in suitably selected eyes. The standard protocol is applicable in eyes which have a minimum corneal thickness of 400 μm after epithelial debridement. This prerequisite was stipulated to protect the corneal endothelium and intraocular tissues from the deleterious effect of ultraviolet-A (UVA radiation. However, patients with keratoconus often present with corneal thickness of less than 400 μm and could have otherwise benefited from this procedure. A few modifications of the standard procedure have been suggested to benefit these patients without a compromise in safety. Transepithelial cross-linking, pachymetry-guided epithelial debridement before cross-linking, and the use of hypoosmolar riboflavin are some of the techniques that have been attempted. Although clinical data is limited at the present time, these techniques are worth considering in patients with thin corneas. Further studies are needed to scientifically establish their efficacy and safety.

  8. Strengthening of Unreinforced Masonry Walls with Composite Materials

    Directory of Open Access Journals (Sweden)

    Ioana-Sorina Enţuc

    2004-01-01

    Full Text Available Unreinforced masonry (URM is considered one of the oldest construction materials being until the end of XIXth century, the basic material for: foundations, walls, columns, volts, staircases, floor joints, roofs, retaining walls, drainage channels, barrages, etc. Construction with URM elements posses a series of advantages such as: fire resistance, thermal an acoustic insulations between interior and outside spaces, humidity resistance. However the URM elements have some significant inconveniences such as: large self weight (heaviness causes cracks in the other elements of structures, reduced mechanical strengths in comparison with other traditional materials (steel and concrete, low tenacity, great manual labor consumptions, and vulnerability to earthquakes. Various factors cause deteriorations which must be overcome by strengthening solutions. Some strengthening solutions based on fiber reinforced polymers (FRP products applied directly on URM brick walls are presented in the paper.

  9. Cross-linked polyelectrolyte multilayers for marine antifouling applications

    NARCIS (Netherlands)

    Zhu, X.; Janczewski, D.; Lee, S.S.C.; Teo, S.L-M.; Vancso, Gyula J.

    2013-01-01

    A polyionic multilayer film was fabricated by layer-by-layer (LbL) sequential deposition followed by cross-linking under mild conditions on a substrate surface to inhibit marine fouling. A novel polyanion, featuring methyl ester groups for an easy cross-linking was used as a generic solution for

  10. Fabrication and characterization of hydrothermal cross-linked chitosan porous scaffolds for cartilage tissue engineering applications.

    Science.gov (United States)

    Shamekhi, Mohammad Amin; Rabiee, Ahmad; Mirzadeh, Hamid; Mahdavi, Hamid; Mohebbi-Kalhori, Davod; Baghaban Eslaminejad, Mohamadreza

    2017-11-01

    The use of various chemical cross-linking agents for the improvement of scaffolds physical and mechanical properties is a common practical method, which is limited by cytotoxicity effects. Due to exerting contract type forces, chondrocytes are known to implement shrinkage on the tissue engineered constructs, which can be avoided by the scaffold cross-linking. In the this research, chitosan scaffolds are cross-linked with hydrothermal treatment with autoclave sterilization time of 0, 10, 20 and 30min, to avoid the application of the traditional chemical toxic materials. The optimization studies with gel content and crosslink density measurements indicate that for 20min sterilization time, the gel content approaches to ~80%. The scaffolds are fully characterized by the conventional techniques such as SEM, porosity and permeability, XRD, compression, thermal analysis and dynamic mechanical thermal analysis (DMTA). FT-IR studies shows that autoclave inter-chain cross-linking reduces the amine group absorption at 1560cm -1 and increase the absorption of N-acetylated groups at 1629cm -1 . It is anticipated, that this observation evidenced by chitosan scaffold browning upon autoclave cross-linking is an indication of the familiar maillard reaction between amine moieties and carbonyl groups. The biodegradation rate analysis shows that chitosan scaffolds with lower concentrations, possess suitable degradation rate for cartilage tissue engineering applications. In addition, cytotoxicity analysis shows that fabricated scaffolds are biocompatible. The human articular chondrocytes seeding into 3D cross-linked scaffolds shows a higher viability and proliferation in comparison with the uncross-linked samples and 2D controls. Investigation of cell morphology on the scaffolds by SEM, shows a more spherical morphology of chondrocytes on the cross-linked scaffolds for 21days of in vitro culture. Copyright © 2017. Published by Elsevier B.V.

  11. Enzymatic digestibility of peptides cross-linked by ionizing radiation

    International Nuclear Information System (INIS)

    Dizdaroglu, M.; Gajewski, E.; Simic, M.G.

    1984-01-01

    Digestibility by proteolytic enzymes of peptides cross-linked by ionizing radiation was investigated. Small peptides of alanine and phenylalanine were chosen as model compounds and aminopeptidases and carboxypeptidases were used as proteolytic enzymes. Peptides exposed to γ-radiation in aqueous solution were analysed by high-performance liquid chromatography before and after hydrolysis by aminopeptidase M, leucine aminopeptidase carboxypeptidase A and carboxypeptidase Y. The results obtained clearly demonstrate the different actions of these enzymes on cross-linked aliphatic and aromatic peptides. Peptide bonds of cross-linked dipeptides of alanine were completely resistant to enzymatic hydrolysis whereas the enzymes, except for carboxypeptidase Y, cleaved all peptide bonds of cross-linked peptides of phenylalanine. The actions of the enzymes on these particular compounds are discussed in detail. (author)

  12. Damage and fatigue in cross-linked rubbers

    Science.gov (United States)

    Melnikov, Alexei

    Damage and fatigue of elastomers have not been fundamentally understood because of the complex nature of these materials. All currently existing models are completely phenomenological. Therefore two problems have been investigated in this research to address those fundamental issues. The first problem was creating an innovative concept with a mathematical modeling, which would be able to describe the damage using molecular characteristics of elastomers. The second problem is developing new approaches to study fatigue, and especially impact fatigue of elastomers. The following results have been obtained in this research. A theoretical model of damage has been developed which involves the basic molecular characteristics of cross-linked elastomers and takes into account the effects of viscoelasticity and stress-induced crystallization. This model was found very reliable and successful in description of numerous quasi-static simple extension experiments for monotonous and repeating loadings. It also roughly predicts in molecular terms the failure of elastomers with various degrees of cross-linking. Quasi-impact fatigue tests with different geometry of an indenter have also been performed. Some microscopic features of rubber damage have been investigated using optical microscopy and SEM. In particular, the accumulation of a completely de-vulcanized, liquid-like substance was observed under intense, multi-cycle impacts. All the findings discovered in quasi-impact experiments are consistent with the damage model predictions.

  13. Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate

    Science.gov (United States)

    Geng, Guoqing; Myers, Rupert J.; Li, Jiaqi; Maboudian, Roya; Carraro, Carlo; Shapiro, David A.; Monteiro, Paulo J. M.

    2017-03-01

    The incorporation of Al and increased curing temperature promotes the crystallization and cross-linking of calcium (alumino)silicate hydrate (C-(A-)S-H), which is the primary binding phase in most contemporary concrete materials. However, the influence of Al-induced structural changes on the mechanical properties at atomistic scale is not well understood. Herein, synchrotron radiation-based high-pressure X-ray diffraction is used to quantify the influence of dreierketten chain cross-linking on the anisotropic mechanical behavior of C-(A-)S-H. We show that the ab-planar stiffness is independent of dreierketten chain defects, e.g. vacancies in bridging tetrahedra sites and Al for Si substitution. The c-axis of non-cross-linked C-(A-)S-H is more deformable due to the softer interlayer opening but stiffens with decreased spacing and/or increased zeolitic water and Ca2+ of the interlayer. Dreierketten chain cross-links act as ‘columns’ to resist compression, thus increasing the bulk modulus of C-(A-)S-H. We provide the first experimental evidence on the influence of the Al-induced atomistic configurational change on the mechanical properties of C-(A-)S-H. Our work advances the fundamental knowledge of C-(A-)S-H on the lowest level of its hierarchical structure, and thus can impact the way that innovative C-(A-)S-H-based cementitious materials are developed using a ‘bottom-up’ approach.

  14. Phosphoric acid doped polysulfone membranes with aminopyridine pendant groups and imidazole cross-links

    DEFF Research Database (Denmark)

    Hink, Steffen; Elsøe, Katrine; Cleemann, Lars Nilausen

    2015-01-01

    Udel polysulfone based membranes with 4-aminopyridine pendant groups and cross-linking imidazole units are synthesized in a simple two step reaction. The ratio of 4-aminopyridine and imidazole is varied and the materials are extensively characterized. The average phosphoric acid uptake (in 85 wt%...

  15. Heating tubes of cross-linked polyethylene

    International Nuclear Information System (INIS)

    Knoeppler, H.; Hoffmann, M.

    1981-01-01

    Oxygen permeability of plastic tubes for floor heating systems was measured as a function of the reduced oxygen content of water in plastic tubes at a flow rate of 0.5 m/s and a temperature of 30 0 C and as a function of oxygen uptake of low-oxygen water in floor heating tubes. Pipes of VEP, periodically cross-linked polyethylene (Engels process), polypropylene copolymeride, and polybutene were compared. The permeability of periodically cross-linked polyethylene is twice as high as that of VEP. Measurements, results, and consequences for floor heating systems are discussed. (KH) [de

  16. Synthesis and Catalytic Properties of Non-Cross-Linked and Cross-Linked Poly(alkylmethyldiallylammonium bromides) Having Decyl, Octyl, and Hexyl Side Chains

    NARCIS (Netherlands)

    Wang, G.J; Engberts, J.B.F.N.

    1995-01-01

    A family of non-cross-linked and cross-linked copolymers containing decyl, octyl, and hexyl groups as side chains ((CL)-CopolC1-10, (CL)-CopolC1-8, and (CL)-CopolC1-6, respectively) were synthesized by radical-initiated cyclocopolymerization of alkylmethyldiallylammonium bromide monomers without and

  17. Systematic Examination of Stardust Bulbous Track Wall Materials

    Science.gov (United States)

    Nakamura-Messenger, K.; Clemett, S. J.; Nguyen, A. N.; Berger, E. L.; Keller, L. P.; Messenger, S.

    2013-01-01

    Analyses of Comet Wild-2 samples returned by NASA's Stardust spacecraft have focused primarily on terminal particles (TPs) or well-preserved fine-grained materials along the track walls [1,2]. However much of the collected material was melted and mixed intimately with the aerogel by the hypervelocity impact [3,4]. We are performing systematic examinations of entire Stardust tracks to establish the mineralogy and origins of all comet Wild 2 components [7,8]. This report focuses on coordinated analyses of indigenous crystalline and amorphous/melt cometary materials along the aerogel track walls, their interaction with aerogel during collection and comparisons with their TPs.

  18. Synthesis of naturally cross-linked polycrystalline ZrO{sub 2} hollow nanowires using butterfly as templates

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yu, E-mail: chenyu_8323@csu.edu.cn [School of Physics Science and Electronics Central South University, Changsha, Hunan 410083 (China); Gu Jiajun, E-mail: gujiajun@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhu Shenmin; Su Huilan [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Di, E-mail: zhangdi@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Feng Chuanliang [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhuang Leyan [Measurement Center of Anti-Counterfeiting Technical Products, Shanghai (China)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Naturally cross-linked ZrO{sub 2} nanotubes with {approx}2.4 {mu}m in length, {approx}35 nm in diameter and {approx}12 nm in wall thickness was synthesized via the selection of suitable butterfly bio-templates followed by heat processing. Black-Right-Pointing-Pointer The contractions, which are main defects of the former hard-template method based on butterflies, are well controlled with the help of the surface tension effect. Black-Right-Pointing-Pointer The achieved hollow ZrO{sub 2} nanowires suggest a new optional approach that uses bio-templates in fabricating and designing nano systems. - Abstract: Butterfly wing skeleton is a widely used hard-template in recent years for fabricating photonic crystal structures. However, the smallest construction units for the most species of butterflies are commonly larger than {approx}50 nm, which greatly hinders their applications in designing much smaller functional parts down to real 'nano scale'. This work indicates, however, that hollow ZrO{sub 2} nanowires with {approx}2.4 {mu}m in length, {approx}35 nm in diameter and {approx}12 nm in wall thickness can be synthesized via the selection of suitable butterfly bio-templates followed by heat processing. Especially, the successful fabrication of these naturally cross-linked ZrO{sub 2} nanotubes suggests a new optional approach in fabricating assembled nano systems.

  19. Morphology, mechanical, cross-linking, thermal, and tribological properties of nitrile and hydrogenated nitrile rubber/multi-walled carbon nanotubes composites prepared by melt compounding: The effect of acrylonitrile content and hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Likozar, Blaz, E-mail: blaz.likozar@fkkt.uni-lj.si [Polymer Competence Center Leoben GmbH, Montanuniversitaet Leoben, Roseggerstrasse 12, A-8700 Leoben (Austria); Major, Zoltan, E-mail: zoltan.major@jku.at [Polymer Competence Center Leoben GmbH, Montanuniversitaet Leoben, Roseggerstrasse 12, A-8700 Leoben (Austria)

    2010-11-01

    The purpose of this work was to prepare nanocomposites by mixing multi-walled carbon nanotubes (MWCNT) with nitrile and hydrogenated nitrile elastomers (NBR and HNBR). Utilization of transmission electronic microscopy (TEM), scanning electron microscopy (SEM), and small- and wide-angle X-ray scattering techniques (SAXS and WAXS) for advanced morphology observation of conducting filler-reinforced nitrile and hydrogenated nitrile rubber composites is reported. Principal results were increases in hardness (maximally 97 Shore, type A), elastic modulus (maximally 981 MPa), tensile strength (maximally 27.7 MPa), elongation at break (maximally 216%), cross-link density (maximally 7.94 x 10{sup 28} m{sup -3}), density (maximally 1.16 g cm{sup -3}), and tear strength (11.2 kN m{sup -1}), which were clearly visible at particular acrylonitrile contents both for unhydrogenated and hydrogenated polymers due to enhanced distribution of carbon nanotubes (CNT) and their aggregated particles in the applied rubber matrix. Conclusion was that multi-walled carbon nanotubes improved the performance of nitrile and hydrogenated nitrile rubber nanocomposites prepared by melt compounding.

  20. Morphology, mechanical, cross-linking, thermal, and tribological properties of nitrile and hydrogenated nitrile rubber/multi-walled carbon nanotubes composites prepared by melt compounding: The effect of acrylonitrile content and hydrogenation

    Science.gov (United States)

    Likozar, Blaž; Major, Zoltan

    2010-11-01

    The purpose of this work was to prepare nanocomposites by mixing multi-walled carbon nanotubes (MWCNT) with nitrile and hydrogenated nitrile elastomers (NBR and HNBR). Utilization of transmission electronic microscopy (TEM), scanning electron microscopy (SEM), and small- and wide-angle X-ray scattering techniques (SAXS and WAXS) for advanced morphology observation of conducting filler-reinforced nitrile and hydrogenated nitrile rubber composites is reported. Principal results were increases in hardness (maximally 97 Shore, type A), elastic modulus (maximally 981 MPa), tensile strength (maximally 27.7 MPa), elongation at break (maximally 216%), cross-link density (maximally 7.94 × 1028 m-3), density (maximally 1.16 g cm-3), and tear strength (11.2 kN m-1), which were clearly visible at particular acrylonitrile contents both for unhydrogenated and hydrogenated polymers due to enhanced distribution of carbon nanotubes (CNT) and their aggregated particles in the applied rubber matrix. Conclusion was that multi-walled carbon nanotubes improved the performance of nitrile and hydrogenated nitrile rubber nanocomposites prepared by melt compounding.

  1. Morphology, mechanical, cross-linking, thermal, and tribological properties of nitrile and hydrogenated nitrile rubber/multi-walled carbon nanotubes composites prepared by melt compounding: The effect of acrylonitrile content and hydrogenation

    International Nuclear Information System (INIS)

    Likozar, Blaz; Major, Zoltan

    2010-01-01

    The purpose of this work was to prepare nanocomposites by mixing multi-walled carbon nanotubes (MWCNT) with nitrile and hydrogenated nitrile elastomers (NBR and HNBR). Utilization of transmission electronic microscopy (TEM), scanning electron microscopy (SEM), and small- and wide-angle X-ray scattering techniques (SAXS and WAXS) for advanced morphology observation of conducting filler-reinforced nitrile and hydrogenated nitrile rubber composites is reported. Principal results were increases in hardness (maximally 97 Shore, type A), elastic modulus (maximally 981 MPa), tensile strength (maximally 27.7 MPa), elongation at break (maximally 216%), cross-link density (maximally 7.94 x 10 28 m -3 ), density (maximally 1.16 g cm -3 ), and tear strength (11.2 kN m -1 ), which were clearly visible at particular acrylonitrile contents both for unhydrogenated and hydrogenated polymers due to enhanced distribution of carbon nanotubes (CNT) and their aggregated particles in the applied rubber matrix. Conclusion was that multi-walled carbon nanotubes improved the performance of nitrile and hydrogenated nitrile rubber nanocomposites prepared by melt compounding.

  2. Fabrication of chemically cross-linked porous gelatin matrices.

    Science.gov (United States)

    Bozzini, Sabrina; Petrini, Paola; Altomare, Lina; Tanzi, Maria Cristina

    2009-01-01

    The aim of this study was to chemically cross-link gelatin, by reacting its free amino groups with an aliphatic diisocyanate. To produce hydrogels with controllable properties, the number of reacting amino groups was carefully determined. Porosity was introduced into the gelatin-based hydrogels through the lyophilization process. Porous and non-porous matrices were characterized with respect to their chemical structure, morphology, water uptake and mechanical properties. The physical, chemical and mechanical properties of the porous matrices are related to the extent of their cross-linking, showing that they can be controlled by varying the reaction parameters. Water uptake values (24 hours) vary between 160% and 200% as the degree of cross-linking increases. The flexibility of the samples also decreases by changing the extent of cross-linking. Young's modulus shows values between 0.188 KPa, for the highest degree, and 0.142 KPa for the lowest degree. The matrices are potential candidates for use as tissue-engineering scaffolds by modulating their physical chemical properties according to the specific application.

  3. On the Reproducibility of Label-Free Quantitative Cross-Linking/Mass Spectrometry

    Science.gov (United States)

    Müller, Fränze; Fischer, Lutz; Chen, Zhuo Angel; Auchynnikava, Tania; Rappsilber, Juri

    2018-02-01

    Quantitative cross-linking/mass spectrometry (QCLMS) is an emerging approach to study conformational changes of proteins and multi-subunit complexes. Distinguishing protein conformations requires reproducibly identifying and quantifying cross-linked peptides. Here we analyzed the variation between multiple cross-linking reactions using bis[sulfosuccinimidyl] suberate (BS3)-cross-linked human serum albumin (HSA) and evaluated how reproducible cross-linked peptides can be identified and quantified by LC-MS analysis. To make QCLMS accessible to a broader research community, we developed a workflow that integrates the established software tools MaxQuant for spectra preprocessing, Xi for cross-linked peptide identification, and finally Skyline for quantification (MS1 filtering). Out of the 221 unique residue pairs identified in our sample, 124 were subsequently quantified across 10 analyses with coefficient of variation (CV) values of 14% (injection replica) and 32% (reaction replica). Thus our results demonstrate that the reproducibility of QCLMS is in line with the reproducibility of general quantitative proteomics and we establish a robust workflow for MS1-based quantitation of cross-linked peptides.

  4. Material development for grade X80 heavy-wall hot induction bends

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xu [Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); CNPC Bohai Petroleum Equipment Manufacture Co. Ltd., Qingxian 062658 (China); Xiao Furen, E-mail: frxiao@ysu.edu.cn [Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Fu Yanhong [CNPC Bohai Petroleum Equipment Manufacture Co. Ltd., Qingxian 062658 (China); Chen Xiaowei [Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); CNPC Bohai Petroleum Equipment Manufacture Co. Ltd., Qingxian 062658 (China); Liao Bo, E-mail: cyddjyjs@263.net [Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The new material for X80 heavy wall thickness hot induction bend was designed. Black-Right-Pointing-Pointer The continuous cooling transformation (CCT) diagrams were determined. Black-Right-Pointing-Pointer The steel adapts to manufacture of X80 heavy-wall thickness hot induction bend. Black-Right-Pointing-Pointer The optimum manufactural processes were obtained. Black-Right-Pointing-Pointer The bending temperature is about 990 Degree-Sign C, and tempering is about 600 Degree-Sign C. - Abstract: A new steel for grade X80 heavy wall thickness hot induction bends was designed based on the chemical compositions of commercial X80 steels in this work. Then, its continuous cooling transformation (CCT) diagram was determined with Gleeble-3500 thermo-mechanical simulator. Furthermore, the effects of heat treatment technology on its microstructure and mechanical property were investigated, and the technology parameters of the heat treatment were optimized. The results show that the acicular ferrite and/or bainite transformations are promoted, the polygonal ferrite and pearlite transformation are restrained, because proper amount of alloying elements were added into the new steel. Therefore, the strength of this new steel is improved markedly, even if the cooling rate is lower, which ensure the higher strength distribution along cross section of the heavy wall thickness. It is significant for the manufacture of grade X80 heavy wall thickness hot induction bends in the second West-to-East gas transportation pipeline project of China.

  5. Effects of Supercritical CO 2 Conditioning on Cross-Linked Polyimide Membranes

    KAUST Repository

    Kratochvil, Adam M.

    2010-05-25

    The effects of supercritical CO2 (scCO2) conditioning on high-performance cross-linked polyimide membranes is examined through gas permeation and sorption experiments. Under supercritical conditions, the cross-linked polymers do not exhibit a structural reorganization of the polymer matrix that was observed in the non-cross-linkable, free acid polymer. Pure gas permeation isotherms and mixed gas permeabilities and selectivities show the cross-linked polymers to be much more stable to scCO2 conditioning than the free acid polymer. In fact, following scCO2 conditioning, the mixed gas CO2 permeabilities of the cross-linked polymers increased while the CO2/CH4 separation factors remained relatively unchanged. This response highlights the stability and high performance of these cross-linked membranes in aggressive environments. In addition, this response reveals the potential for the preconditioning of cross-linked polymer membranes to enhance productivity without sacrificing efficiency in practical applications which, in effect, provides another tool to \\'tune\\' membrane properties for a given separation. Finally, the dual mode model accurately describes the sorption and dilation characteristics of the cross-linked polymers. The changes in the dual mode sorption model parameters before and after the scCO2 exposure also provide insights into the alterations in the different glassy samples due to the cross-linking and scCO2 exposure. © 2010 American Chemical Society.

  6. Wear of PEEK-OPTIMA® and PEEK-OPTIMA®-Wear Performance articulating against highly cross-linked polyethylene.

    Science.gov (United States)

    East, Rebecca H; Briscoe, Adam; Unsworth, Anthony

    2015-03-01

    The idea of all polymer artificial joints, particularly for the knee and finger, has been raised several times in the past 20 years. This is partly because of weight but also to reduce stress shielding in the bone when stiffer materials such as metals or ceramics are used. With this in mind, pin-on-plate studies of various polyetheretherketone preparations against highly cross-linked polyethylene were conducted to investigate the possibility of using such a combination in the design of a new generation of artificial joints. PEEK-OPTIMA(®) (no fibre) against highly cross-linked polyethylene gave very low wear factors of 0.0384 × 10(-6) mm(3)/N m for the polyetheretherketone pins and -0.025 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates. The carbon-fibre-reinforced polyetheretherketone (PEEK-OPTIMA(®)-Wear Performance) also produced very low wear rates in the polyetheretherketone pins but produced very high wear in the highly cross-linked polyethylene, as might have been predicted since the carbon fibres are quite abrasive. When the fibres were predominantly tangential to the sliding plane, the mean wear factor was 0.052 × 10(-6) mm(3)/N m for the pins and 49.3 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates; a half of that when the fibres ran axially in the pins (0.138 × 10(-6) mm(3)/N m for the pins and 97.5 × 10(-6) mm/ N m for the cross-linked polyethylene plates). PEEK-OPTIMA(®) against highly cross-linked polyethylene merits further investigation. © IMechE 2015.

  7. Polymeric redox-responsive delivery systems bearing ammonium salts cross-linked via disulfides

    Directory of Open Access Journals (Sweden)

    Christian Dollendorf

    2013-08-01

    Full Text Available A redox-responsive polycationic system was synthesized via copolymerization of N,N-diethylacrylamide (DEAAm and 2-(dimethylaminoethyl methacrylate (DMAEMA. N,N’-bis(4-chlorobutanoylcystamine was used as disulfide-containing cross-linker to form networks by the quaternization of tertiary amine groups. The insoluble cationic hydrogels become soluble by reduction of disulfide to mercaptanes by use of dithiothreitol (DTT, tris(2-carboxyethylphosphine (TCEP or cysteamine, respectively. The soluble polymeric system can be cross-linked again by using oxygen or hydrogen peroxide under basic conditions. The redox-responsive polymer networks can be used for molecular inclusion and controlled release. As an example, phenolphthalein, methylene blue and reactive orange 16 were included into the network. After treatment with DTT a release of the dye could be recognized. Physical properties of the cross-linked materials, e.g., glass transition temperature (Tg, swelling behavior and cloud points (Tc were investigated. Redox-responsive behavior was further analyzed by rheological measurements.

  8. UV cross-linking of polypeptides associated with 3'-terminal exons

    International Nuclear Information System (INIS)

    Stolow, D.T.; Berget, S.M.

    1990-01-01

    Association of nuclear proteins with chimeric vertebrate precursor RNAs containing both polyadenylation signals and an intron was examined by UV cross-linking. One major difference in cross-linking pattern was observed between this chimeric precursor RNA and precursors containing only polyadenylation or splicing signals. The heterogeneous nuclear ribonucleoprotein (hnRNP) polypeptide C cross-linked strongly to sequences downstream of the A addition site in polyadenylation precursor RNA containing only the polyadenylation signal from the simian virus 40 (SV40) late transcription unit. In contrast, the hnRNP C polypeptide cross-linked to chimeric RNA containing the same SV40 late poly(A) cassette very poorly, at a level less than 5% of that observed with the precursor RNA containing just the poly(A) site. Observation that cross-linking of the hnRNP C polypeptide to elements within the SV40 late poly(A) site was altered by the presence of an upstream intron suggests differences in the way nuclear factors associate with poly(A) sites in the presence and absence of an upstream intron. Cross-linking of C polypeptide to chimeric RNA increased with RNAs mutated for splicing or polyadenylation consensus sequences and under reaction conditions (high magnesium) that inhibited polyadenylation. Furthermore, cross-linking of hnRNP C polypeptide to precursors containing just the SV40 late poly(A) site was eliminated in the presence of competing poly(U); polyadenylation, however, was unaffected. Correlation of loss of activity with high levels of hnRNP C polypeptide cross-linking raises questions about the specificity of the interaction between the hnRNP C polypeptide and polyadenylation precursor RNAs in vitro

  9. Tailoring the properties of cholecyst-derived extracellular matrix using carbodiimide cross-linking.

    LENUS (Irish Health Repository)

    Burugapalli, Krishna

    2009-01-01

    Modulation of properties of extracellular matrix (ECM) based scaffolds is key for their application in the clinical setting. In the present study, cross-linking was used as a tool for tailoring the properties of cholecyst-derived extracellular matrix (CEM). CEM was cross-linked with varying cross-linking concentrations of N,N-(3-dimethyl aminopropyl)-N\\'-ethyl carbodiimide (EDC) in the presence of N-hydroxysuccinimide (NHS). Shrink temperature measurements and ATR-FT-IR spectra were used to determine the degree of cross-linking. The effect of cross-linking on degradation was tested using the collagenase assay. Uniaxial tensile properties and the ability to support fibroblasts were also evaluated as a function of cross-linking. Shrink temperature increased from 59 degrees C for non-cross-linked CEM to 78 degrees C for the highest EDC cross-linking concentration, while IR peak area ratios for the free -NH(2) group at 3290 cm(-1) to that of the amide I band at 1635 cm(-1) decreased with increasing EDC cross-linking concentration. Collagenase assay demonstrated that degradation rates for CEM can be tailored. EDC concentrations 0 to 0.0033 mmol\\/mg CEM were the cross-linking concentration range in which CEM showed varied susceptibility to collagenase degradation. Furthermore, cross-linking concentrations up to 0.1 mmol EDC\\/mg CEM did not have statistically significant effect on the uniaxial tensile strength, as well as morphology, viability and proliferation of fibroblasts on CEM. In conclusion, the degradation rates of CEM can be tailored using EDC-cross-linking, while maintaining the mechanical properties and the ability of CEM to support cells.

  10. Mussel-Inspired Self-Healing Double-Cross-Linked Hydrogels by Controlled Combination of Metal Coordination and Covalent Cross-Linking

    DEFF Research Database (Denmark)

    Andersen, Amanda; Krogsgaard, Marie; Birkedal, Henrik

    2018-01-01

    a catechol-based hydrogel design that allows for the degree of oxidative covalent cross-linking to be controlled. Double cross-linked hydrogels with tunable stiffness are constructed by adding the oxidizable catechol analogue, tannic acid, to an oxidation-resistant hydrogel construct held together...... by coordination of the dihydroxy functionality of 1-(2'-carboxyethyl)-2-methyl-3-hydroxy-4-pyridinone to trivalent metal ions. By varying the amount of tannic acid, the hydrogel stiffness can be customized to a given application while retaining the self-healing capabilities of the hydrogel's coordination chemical...

  11. The spectra character of photodegraded the pyridinoline cross-links by Hypocrellin B

    International Nuclear Information System (INIS)

    Zhang Jucheng; Chen Rui; Liu Wei; Chen Zhuo; Shu Lidan; Liu Yingji

    2011-01-01

    Pyridinoline cross-links is one of the cross-link formation in collagen which in cell matrix, many research shown that this cross-link cause the fibrosis. Hypocrellin B (HB) is one of the nature photosensitizers, this work investigated the pyridinoline cross-link in collagen was photodegraded by HB. The result shown HB can degrade the pyridinoline cross-link with photo. This is to say, HB may be use as the photodynamic reagent to study the fibrosis.

  12. Changes in cell wall properties coincide with overexpression of extensin fusion proteins in suspension cultured tobacco cells.

    Science.gov (United States)

    Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; Avci, Utku; Qian, Jin; Arter, Allison; Chen, Liwei; Hahn, Michael G; Ragauskas, Arthur J; Kieliszewski, Marcia J

    2014-01-01

    Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increased wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. These data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.

  13. Interactions of cross-linked and uncross-linked chitosan hydrogels ...

    African Journals Online (AJOL)

    The swelling equilibrium of Chitosan and sodium tripolyphosphate (NaTPP) cross-linked chitosan hydrogels in aqueous solutions of surfactants differing in structure and hydrophobicity at 250C is reported. Anionic surfactant sodium dodecylsulfate (SDS), the cationic surfactant hexadecyltrimethylammonium bromide (HTAB) ...

  14. Performance limits for fusion first-wall structural materials

    International Nuclear Information System (INIS)

    Smith, D.L.; Majumdar, S.; Billone, M.; Mattas, R.

    2000-01-01

    Key features of fusion energy relate primarily to potential advantages associated with safety and environmental considerations and the near endless supply of fuel. However, high-performance fusion power systems will be required in order to be an economically competitive energy option. As in most energy systems, the operating limits of structural materials pose a primary constraint to the performance of fusion power systems. In the case of fusion power, the first-wall/blanket system will have a dominant impact on both economic and safety/environmental attractiveness. This paper presents an assessment of the influence of key candidate structural material properties on performance limits for fusion first-wall blanket applications. Key issues associated with interactions of the structural materials with the candidate coolant/breeder materials are discussed

  15. Design of Self-Healing Supramolecular Rubbers by Introducing Ionic Cross-Links into Natural Rubber via a Controlled Vulcanization.

    Science.gov (United States)

    Xu, Chuanhui; Cao, Liming; Lin, Baofeng; Liang, Xingquan; Chen, Yukun

    2016-07-13

    Introducing ionic associations is one of the most effective approaches to realize a self-healing behavior for rubbers. However, most of commercial rubbers are nonpolar rubbers without now available functional groups to be converted into ionic groups. In this paper, our strategy was based on a controlled peroxide-induced vulcanization to generate massive ionic cross-links via polymerization of zinc dimethacrylate (ZDMA) in natural rubber (NR) and exploited it as a potential self-healable material. We controlled vulcanization process to retard the formation of covalent cross-link network, and successfully generated a reversible supramolecular network mainly constructed by ionic cross-links. Without the restriction of covalent cross-linkings, the NR chains in ionic supramolecular network had good flexibility and mobility. The nature that the ionic cross-links was easily reconstructed and rearranged facilitating the self-healing behavior, thereby enabling a fully cut sample to rejoin and retain to its original properties after a suitable self-healing process at ambient temperature. This study thus demonstrates a feasible approach to impart an ionic association induced self-healing function to commercial rubbers without ionic functional groups.

  16. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Damink, LHHO; Dijkstra, PJ; vanLuyn, MJA; vanWachem, PB; Nieuwenhuis, P; Feijen, J

    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  17. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Olde damink, L.H.H.; Olde Damink, L.H.H.; Dijkstra, Pieter J.; van Luyn, M.J.A.; van Wachem, P.B.; Nieuwenhuis, P.; Feijen, Jan

    1996-01-01

    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  18. Formaldehyde cross-linking and structural proteomics: Bridging the gap.

    Science.gov (United States)

    Srinivasa, Savita; Ding, Xuan; Kast, Juergen

    2015-11-01

    Proteins are dynamic entities constantly moving and altering their structures based on their functions and interactions inside and outside the cell. Formaldehyde cross-linking combined with mass spectrometry can accurately capture interactions of these rapidly changing biomolecules while maintaining their physiological surroundings. Even with its numerous established uses in biology and compatibility with mass spectrometry, formaldehyde has not yet been applied in structural proteomics. However, formaldehyde cross-linking is moving toward analyzing tertiary structure, which conventional cross-linkers have already accomplished. The purpose of this review is to describe the potential of formaldehyde cross-linking in structural proteomics by highlighting its applications, characteristics and current status in the field. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Glutaraldehyde cross-linking of amniotic membranes affects their nanofibrous structures and limbal epithelial cell culture characteristics.

    Science.gov (United States)

    Lai, Jui-Yang; Ma, David Hui-Kang

    2013-01-01

    Given that the cells can sense nanometer dimensions, the chemical cross-linking-mediated alteration in fibrillar structure of collagenous tissue scaffolds is critical to determining their cell culture performances. This article explores, for the first time, the effect of nanofibrous structure of glutaraldehyde (GTA) cross-linked amniotic membrane (AM) on limbal epithelial cell (LEC) cultivation. Results of ninhydrin assays demonstrated that the amount of new cross-links formed between the collagen chains is significantly increased with increasing the cross-linking time from 1 to 24 hours. By transmission electron microscopy, the AM treated with GTA for a longer duration exhibited a greater extent of molecular aggregation, thereby leading to a considerable increase in nanofiber diameter and resistance against collagenase degradation. In vitro biocompatibility studies showed that the samples cross-linked with GTA for 24 hours are not well-tolerated by the human corneal epithelial cell cultures. When the treatment duration is less than 6 hours, the biological tissues cross-linked with GTA for a longer time may cause slight reductions in 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt, and anti-inflammatory activities. Nevertheless, significant collagen molecular aggregation also enhances the stemness gene expression, indicating a high ability of these AM matrices to preserve the progenitors of LECs in vitro. It is concluded that GTA cross-linking of collagenous tissue materials may affect their nanofibrous structures and corneal epithelial stem cell culture characteristics. The AM treated with GTA for 6 hours holds promise for use as a niche for the expansion and transplantation of limbal epithelial progenitor cells.

  20. Small Strain Topological Effects of Biopolymer Networks with Rigid Cross-Links

    NARCIS (Netherlands)

    Zagar, G.; Onck, P. R.; Van der Giessen, E.; Garikipati, K; Arruda, EM

    2010-01-01

    Networks of cross-linked filamentous biopolymers form topological structures characterized by L, T and X cross-link types of connectivity 2, 3 and 4, respectively. The distribution of cross-links over these three types proofs to be very important for the initial elastic shear stiffness of isotropic

  1. Cross-linked polymeric membranes for carbon dioxide separation

    Science.gov (United States)

    Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon Mark; Long, Brian Keith; Jiang, De-en; Mays, Jimmy Wayne; Sokolov, Alexei P.; Saito, Tomonori

    2018-01-23

    A membrane useful in gas separation, the membrane comprising a cross-linked polysiloxane structure having a cross-link density of about 0.1.times.10.sup.-5 mol/cm.sup.3 to about 6.times.10.sup.-5 mol/cm.sup.3, where, in particular embodiments, the cross-linked polysiloxane structure has the following general structure: ##STR00001## wherein R.sup.1, R.sup.2, R.sup.3, R.sup.4, R.sup.5, and R.sup.6 are independently selected from hydrocarbon groups having at least 1 and up to 6 carbon atoms; A.sup.1 and A.sup.2 are independently selected from cyclic hydrocarbon groups; L.sup.1 and L.sup.2 are linking groups or covalent bonds; n is an integer of at least 1; r and s are independently selected from integers of at least 1; and p is an integer of at least 10. The invention also includes methods for making and using the above-described membranes for gas separation.

  2. A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Juan D Chavez

    Full Text Available Chemical cross-linking mass spectrometry (XL-MS provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.

  3. Collagen cross linking: Current perspectives

    Directory of Open Access Journals (Sweden)

    Srinivas K Rao

    2013-01-01

    Full Text Available Keratoconus is a common ectatic disorder occurring in more than 1 in 1,000 individuals. The condition typically starts in adolescence and early adulthood. It is a disease with an uncertain cause and its progression is unpredictable, but in extreme cases, vision deteriorates and can require corneal transplant surgery. Corneal collagen cross-linking (CCL with riboflavin (C3R is a recent treatment option that can enhance the rigidity of the cornea and prevent disease progression. Since its inception, the procedure has evolved with newer instrumentation, surgical techniques, and is also now performed for expanded indications other than keratoconus. With increasing experience, newer guidelines regarding optimization of patient selection, the spectrum of complications and their management, and combination procedures are being described. This article in conjunction with the others in this issue, will try and explore the uses of collagen cross-linking (CXL in its current form.

  4. Molecular Model for HNBR with Tunable Cross-Link Density.

    Science.gov (United States)

    Molinari, N; Khawaja, M; Sutton, A P; Mostofi, A A

    2016-12-15

    We introduce a chemically inspired, all-atom model of hydrogenated nitrile butadiene rubber (HNBR) and assess its performance by computing the mass density and glass-transition temperature as a function of cross-link density in the structure. Our HNBR structures are created by a procedure that mimics the real process used to produce HNBR, that is, saturation of the carbon-carbon double bonds in NBR, either by hydrogenation or by cross-linking. The atomic interactions are described by the all-atom "Optimized Potentials for Liquid Simulations" (OPLS-AA). In this paper, first, we assess the use of OPLS-AA in our models, especially using NBR bulk properties, and second, we evaluate the validity of the proposed model for HNBR by investigating mass density and glass transition as a function of the tunable cross-link density. Experimental densities are reproduced within 3% for both elastomers, and qualitatively correct trends in the glass-transition temperature as a function of monomer composition and cross-link density are obtained.

  5. MeV ion beam interaction with polymer films containing cross-linking agents

    International Nuclear Information System (INIS)

    Evelyn, A. L.

    1999-01-01

    Polymer films containing cross linking enhancers were irradiated with MeV alpha particles to determine the effects of MeV ion beam interaction on these materials. The contributed effects from the electronic and nuclear stopping powers were separated by irradiating stacked thin films of polyvinyl chloride (PVC), polystyrene (PS) and polyethersulfone (PES). This layered system allowed most of the effects of the electronic energy deposited to be experienced by the first layers and the last layers to receive most of the effects of the nuclear stopping power. RGA, Raman microprobe analysis, RBS and FTIR measured changes in the chemical structures of the irradiated films. The characterization resolved the effects of the stopping powers on the PVC, PS and PES and the results were compared with those from previously studied polymers that did not contain any cross linking agents

  6. Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking.

    Science.gov (United States)

    Chen, I-Wen Peter; Liang, Richard; Zhao, Haibo; Wang, Ben; Zhang, Chuck

    2011-12-02

    Carbon nanotube (CNT) sheets or buckypapers have demonstrated promising electrical conductivity and mechanical performance. However, their electrical conductivity is still far below the requirements for engineering applications, such as using as a substitute for copper mesh, which is currently used in composite aircraft structures for lightning strike protection. In this study, different CNT buckypapers were stretched to increase their alignment, and then subjected to conjugational cross-linking via chemical functionalization. The conjugationally cross-linked buckypapers (CCL-BPs) demonstrated higher electrical conductivity of up to 6200 S cm( - 1), which is more than one order increase compared to the pristine buckypapers. The CCL-BPs also showed excellent doping stability in over 300 h in atmosphere and were resistant to degradation at elevated temperatures. The tensile strength of the stretched CCL-BPs reached 220 MPa, which is about three times that of pristine buckypapers. We attribute these property improvements to the effective and stable conjugational cross-links of CNTs, which can simultaneously improve the electrical conductivity, doping stability and mechanical properties. Specifically, the electrical conductivity increase resulted from improving the CNT alignment and inter-tube electron transport capability. The conjugational cross-links provide effective 3D conductive paths to increase the mobility of electrons among individual nanotubes. The stable covalent bonding also enhances the thermal stability and load transfer. The significant electrical and mechanical property improvement renders buckypaper a multifunctional material for various applications, such as conducting composites, battery electrodes, capacitors, etc.

  7. Material options for a commercial fusion reactor first wall

    International Nuclear Information System (INIS)

    Dabiri, A.E.

    1986-05-01

    A study has been conducted to evaluate the potential of various materials for use as first walls in high-power-density commercial fusion reactors. Operating limits for each material were obtained based on a number of criteria, including maximum allowable structural temperatures, critical heat flux, ultimate tensile strength, and design-allowable stress. The results with water as a coolant indicate that a modified alloy similar to HT-9 may be a suitable candidate for low- and medium-power-density reactor first walls with neutron loads of up to 6 MW/m 2 . A vanadium or copper alloy must be used for high-power-density reactors. The neutron wall load limit for vanadium alloys is about 14 MW 2 , provided a suitable coating material is chosen. The extremely limited data base for radiation effects hinders any quantitative assessment of the limits for copper alloys

  8. Analysis of moderately thin-walled beam cross-sections by cubic isoparametric elements

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Krenk, Steen

    2014-01-01

    In technical beam theory the six equilibrium states associated with homogeneous tension, bending, shear and torsion are treated as individual load cases. This enables the formulation of weak form equations governing the warping from shear and torsion. These weak form equations are solved...... numerically by introducing a cubic-linear two-dimensional isoparametric element. The cubic interpolation of this element accurately represents quadratic shear stress variations along cross-section walls, and thus moderately thin-walled cross-sections are effectively discretized by these elements. The ability...

  9. Comparative Study of One-Step Cross-Linked Electrospun Chitosan-Based Membranes

    Directory of Open Access Journals (Sweden)

    Yanet E. Aguirre-Chagala

    2017-01-01

    Full Text Available Chitosan membranes are widely applied for tissue engineering; however, a major drawback is their low resistance in aqueous phases and therefore the structure collapses impeding their long-term use. Although there is extensive research, because of chitosan’s importance as a biomaterial, studies involving chitosan-based membranes are still needed. Herein, a detailed investigation of diverse chemical routes to cross-link fibers in situ by electrospinning process is described. In case of using genipin as cross-linker, a close relationship with the content and the mean diameter values is reported, suggesting a crucial effect over the design of nanostructures. Also, the physical resistance is enhanced for the combination of two types of methods, such as chemical and physical methods. Cross-linked fibers upon exposure to long wave ultraviolet A (UVA light change their morphology, but not their chemical composition. When they are incubated in aqueous phase for 70 days, they show an extensive improvement of their macrostructural integrity which makes them attractive candidates for tissue engineering application. As a result, the thermal properties of these materials reveal less crystallinity and higher temperature of degradation.

  10. Open BPS wall crossing and M-theory

    International Nuclear Information System (INIS)

    Aganagic, Mina; Yamazaki, Masahito

    2010-01-01

    Consider the degeneracies of BPS bound states of one D6-brane wrapping Calabi-Yau X with D0-branes and D2-branes. When we include D4-branes wrapping Lagrangian cycles in addition, D2-branes can end on them. These give rise to new bound states in the d=2, N=(2,2) theory of the D4-branes. We call these 'open' BPS states, in contrast to closed BPS states that arise from D-branes without boundaries. Lifting this to M-theory, we show that the generating function is captured by free Fock space spanned by M2-brane particles ending on M5-branes wrapping the Lagrangian. This implies that the open BPS bound states are counted by the square of the open topological string partition function on X, reduced to the corresponding chamber. Our results give new predictions for open BPS invariants and their wall crossing phenomena when we change the open and closed string moduli. We relate our results to the work of Cecotti and Vafa on wall crossing in the two-dimensional N=(2,2) theories. The findings from the crystal melting model for the open BPS invariants proposed recently fit well with the M-theory predictions.

  11. X-ray-mediated cross linking of protein and DNA

    International Nuclear Information System (INIS)

    Minsky, B.D.; Braun, A.

    1977-01-01

    Using a simple filter assay for the binding of BSA or lysozyme to DNA, two mechanisms of x-ray-mediated cross linking are shown to occur. One, a fast reaction, appears to involve a radical intermediate, is inhibited by high pH and salt, and seems to be enhanced by deoxygenation. The second mechanism, a slow time-dependent component, differs from the fast reaction in its stimulation by histidine, its inhibition by catalase, and the lack of an oxygen effect. Separate irradiation of DNA or water does not lead to cross linking. However, separate irradiation of protein leads to cross linking which proceeds with slow-component kinetics

  12. Characterization and effects of cross-linked potassium polyacrylate as soil amendment

    OpenAIRE

    Sanz Gómez, Jorge

    2016-01-01

    Falta palabras clave Cross-linked potassium polyacrylate (Luquasorb®1280R) is a granular anionic superabsorbent polymer with the ability to absorb large amounts of water. The objectives of this study were the physicochemical characterization of the material and its effects when used as soil amendment together with the evaluation of the impact on agronomical parameters when it was applied to processing varieties of tomato (Solanum lycopersicum L.) grown under Mediterranean climate condit...

  13. Glycoprotein of the wall of sycamore tissue-culture cells.

    Science.gov (United States)

    Heath, M F; Northcote, D H

    1971-12-01

    1. A glycoprotein containing a large amount of hydroxyproline is present in the cell walls of sycamore callus cells. This protein is insoluble and remained in the alpha-cellulose when a mild separation procedure was used to obtain the polysaccharide fractions of the wall. The glycoprotein contained a high proportion of arabinose and galactose. 2. Soluble glycopeptides were prepared from the alpha-cellulose fraction when peptide bonds were broken by hydrazinolysis. The soluble material was fractionated by gel filtration and one glycopeptide was further purified by electrophoresis; it had a composition of 10% hydroxyproline, 35% arabinose and 55% galactose, and each hydroxyproline residue carried a glycosyl radical so that the oligosaccharides on the glycopeptide had an average degree of polymerization of 9. 3. The extraction of the glycopeptides was achieved without cleavage of glycosyl bonds, so that the glycoprotein cannot act as a covalent cross-link between the major polysaccharides of the wall. 4. The wall protein approximates in conformation to polyhydroxyproline and therefore it probably has similar physicochemical properties to polyhydroxyproline. This is discussed in relation to the function of the glycoprotein and its effect on the physical and chemical nature of the wall.

  14. Stabilized Sulfonated Aromatic Polymers by in situ Solvothermal Cross-Linking

    Energy Technology Data Exchange (ETDEWEB)

    Di Vona, Maria Luisa, E-mail: divona@uniroma2.it; Sgreccia, Emanuela [Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome (Italy); Narducci, Riccardo; Pasquini, Luca [Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome (Italy); MAtériaux Divisés, Interfaces, Réactivité, ELectrochimie (MADIREL – UMR 7246), Aix Marseille Université, Marseille (France); Hou, Hongying [Faculty of Material and Engineering, Kunming University of Science and Technology, Kunming (China); Knauth, Philippe [MAtériaux Divisés, Interfaces, Réactivité, ELectrochimie (MADIREL – UMR 7246), Aix Marseille Université, Marseille (France)

    2014-10-10

    The cross-link reaction via sulfone bridges of sulfonated polyether ether ketone (SPEEK) by thermal treatment at 180°C in presence of dimethylsulfoxide is discussed. The modifications of properties subsequent to the cross-linking are presented. The mechanical strength as well as the hydrolytic stability increased with the thermal treatment time, i.e., with the degree of cross-linking. The proton conductivity was determined as function of temperature, IEC, degree of cross-linking, and hydration number. The memory effect, which is the membrane ability to “remember” the water uptake reached at high temperature also at lower temperature, is exploited in order to achieve high values of conductivity. Membranes swelled at 110°C can reach a conductivity of 0.14 S/cm at 80°C with a hydration number (λ) of 73.

  15. Hydroxyl radical induced cross-linking of cytosine and tyrosine in nucleohistone

    International Nuclear Information System (INIS)

    Gajewski, E.; Dizdaroglu, M.

    1990-01-01

    Hydroxyl radical induced formation of a DNA-protein cross-link involving cytosine and tyrosine in nucleohistone in buffered aqueous solution is reported. The technique of gas chromatography-mass spectrometry was used for this investigation. A γ-irradiated aqueous mixture of cytosine and tyrosine was first investigated in order to obtain gas chromatographic-mass spectrometric properties of possible cytosine-tyrosine cross-links. One cross-link was observed, and its structure was identified as the product from the formation of a covalent bond between carbon 6 of cytosine and carbon 3 of tyrosine. With the use of gas chromatography-mass spectrometry with selected-ion monitoring, this cytosine-tyrosine cross-link was identified in acidic hydrolysates of calf thymus nucleohistone γ-irradiated in N 2 O-saturated aqueous solution. The yield of this DNA-protein cross-link in nucleohistone was found to be a linear function of the radiation dose in the range of 100-500 Gy (J·kg -1 ). This yield amounted to 0.05 nmol·J -1 . Mechanisms underlying the formation of the cytosine-tyrosine cross-link in nucleohistone were proposed to involve radical-radical and/or radical addition reactions of hydroxyl adduct radicals of cytosine and tyrosine moieties, forming a covalent bond between carbon 6 of cytosine and carbon 3 of tyrosine. When oxygen was present in irradiated solutions, no cytosine-tyrosine cross-links were observed

  16. Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C-N Bonds.

    Science.gov (United States)

    Obadia, Mona M; Mudraboyina, Bhanu P; Serghei, Anatoli; Montarnal, Damien; Drockenmuller, Eric

    2015-05-13

    Exploiting exchangeable covalent bonds as dynamic cross-links recently afforded a new class of polymer materials coined as vitrimers. These permanent networks are insoluble and infusible, but the network topology can be reshuffled at high temperatures, thus enabling glasslike plastic deformation and reprocessing without depolymerization. We disclose herein the development of functional and high-value ion-conducting vitrimers that take inspiration from poly(ionic liquid)s. Tunable networks with high ionic content are obtained by the solvent- and catalyst-free polyaddition of an α-azide-ω-alkyne monomer and simultaneous alkylation of the resulting poly(1,2,3-triazole)s with a series of difunctional cross-linking agents. Temperature-induced transalkylation exchanges of C-N bonds between 1,2,3-triazolium cross-links and halide-functionalized dangling chains enable recycling and reprocessing of these highly cross-linked permanent networks. They can also be recycled by depolymerization with specific solvents able to displace the transalkylation equilibrium, and they display a great potential for applications that require solid electrolytes with excellent mechanical performances and facile processing such as supercapacitors, batteries, fuel cells, and separation membranes.

  17. Characterizing material properties of cement-stabilized rammed earth to construct sustainable insulated walls

    Directory of Open Access Journals (Sweden)

    Rishi Gupta

    2014-01-01

    Full Text Available Use of local materials can reduce the hauling of construction materials over long distances, thus reducing the greenhouse gas emissions associated with transporting such materials. Use of locally available soils (earth for construction of walls has been used in many parts of the world. Owing to the thermal mass of these walls and the potential to have insulation embedded in the wall section has brought this construction material/technology at the forefront in recent years. However, the mechanical properties of the rammed earth and the parameters required for design of steel reinforced walls are not fully understood. In this paper, the author presents a case study where full-scale walls were constructed using rammed earth to understand the effect of two different types of shear detailing on the structural performance of the walls. The mechanical properties of the material essential for design such as compressive strength of the material including effect of coring on the strength, pull out strength of different rebar diameters, flexural performance and out-of-plane bending on walls was studied. These results are presented in this case study.

  18. Effect of nordihydroguaiaretic acid cross-linking on fibrillar collagen: in vitro evaluation of fibroblast adhesion strength and migration

    Directory of Open Access Journals (Sweden)

    Ana Y. Rioja

    2017-04-01

    Full Text Available Fixation is required to reinforce reconstituted collagen for orthopedic bioprostheses such as tendon or ligament replacements. Previous studies have demonstrated that collagen fibers cross-linked by the biocompatible dicatechol nordihydroguaiaretic acid (NDGA have mechanical strength comparable to native tendons. This work focuses on investigating fibroblast behavior on fibrillar and NDGA cross-linked type I collagen to determine if NDGA modulates cell adhesion, morphology, and migration. A spinning disk device that applies a range of hydrodynamic forces under uniform chemical conditions was employed to sensitively quantify cell adhesion strength, and a radial barrier removal assay was used to measure cell migration on films suitable for these quantitative in vitro assays. The compaction of collagen films, mediated by the drying and cross-linking fabrication process, suggests a less open organization compared to native fibrillar collagen that likely allowed the collagen to form more inter-chain bonds and chemical links with NDGA polymers. Fibroblasts strongly adhered to and migrated on native and NDGA cross-linked fibrillar collagen; however, NDGA modestly reduced cell spreading, adhesion strength and migration rate. Thus, it is hypothesized that NDGA cross-linking masked some adhesion receptor binding sites either physically, chemically, or both, thereby modulating adhesion and migration. This alteration in the cell-material interface is considered a minimal trade-off for the superior mechanical and compatibility properties of NDGA cross-linked collagen compared to other fixation approaches.

  19. Stabilized sulfonated aromatic polymers by in situ solvothermal cross-linking

    Directory of Open Access Journals (Sweden)

    Maria Luisa eDi Vona

    2014-10-01

    Full Text Available The cross-link reaction via sulfone bridges of sulfonated polyetheretherketone (SPEEK by thermal treatment at 180 °C in presence of dimethylsulfoxide (DMSO is discussed. The modifications of properties subsequent to the cross-linking are presented. The mechanical strength as well as the hydrolytic stability increased with the thermal treatment time, i.e., with the degree of cross-linking. The proton conductivity was determined as function of temperature, IEC, degree of cross-linking and hydration number. The memory effect, which is the membrane ability to remember the water uptake reached at high temperature also at lower temperature, is exploited in order to achieve high values of conductivity. Membranes swelled at 110 °C can reach a conductivity of 0.14 S/cm at 80°C with a hydration number ( of 73.

  20. Transformation of metal-organic framework to polymer gel by cross-linking the organic ligands preorganized in metal-organic framework.

    Science.gov (United States)

    Ishiwata, Takumi; Furukawa, Yuki; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki

    2013-04-10

    Until now, seamless fusion of metal-organic frameworks (MOFs) and covalently cross-linked polymer gels (PG) at molecular level has been extremely rare, since these two matters have been regarded as opposite, that is, hard versus soft. In this report, we demonstrate transformation of cubic MOF crystals to PG via inner cross-linking of the organic linkers in the void space of MOF, followed by decomposition of the metal coordination. The obtained PG behaved as a polyelectrolyte gel, indicating the high content of ionic groups inside. Metal ions were well adsorbed in the PG due to its densely packed carboxylate groups. A chimera-type hybrid material consisting of MOF and PG was obtained by partial hydrolysis of resulting cross-linked MOF. The shape of resulting PG network well reflected the crystal structure of MOF employed as a template. Our results will connect the two different network materials that have been ever studied in the two different fields to provide new soft and hard hybrid materials, and the unique copolymerization in the large void space of the MOF will open a new horizon toward "ideal network polymers" never prepared before now.

  1. Discrete Element study of granular material - Bumpy wall interface behavior

    Science.gov (United States)

    El Cheikh, Khadija; Rémond, Sébastien; Pizette, Patrick; Vanhove, Yannick; Djelal, Chafika

    2016-09-01

    This paper presents a DEM study of a confined granular material sheared between two parallel bumpy walls. The granular material consists of packed dry spherical particles. The bumpiness is modeled by spheres of a given diameter glued on horizontal planes. Different bumpy surfaces are modeled by varying diameter or concentration of glued spheres. The material is sheared by moving the two bumpy walls at fixed velocity. During shear, the confining pressure applied on each bumpy wall is controlled. The effect of wall bumpiness on the effective friction coefficient and on the granular material behavior at the bumpy walls is reported for various shearing conditions. For given bumpiness and confining pressure that we have studied, it is found that the shear velocity does not affect the shear stress. However, the effective friction coefficient and the behavior of the granular material depend on the bumpiness. When the diameter of the glued spheres is larger than about the average grains diameter of the medium, the latter is uniformly sheared and the effective friction coefficient remains constant. For smaller diameters of the glued spheres, the effective friction coefficient increases with the diameter of glued spheres. The influence of glued spheres concentration is significant only for small glued spheres diameters, typically half of average particle diameter of the granular material. In this case, increasing the concentration of glued spheres leads to a decrease in effective friction coefficient and to shear localization at the interface. For different diameters and concentrations of glued spheres, we show that the effect of bumpiness on the effective friction coefficient can be characterized by the depth of interlocking.

  2. Mechanical Strength Improvements of Carbon Nanotube Threads through Epoxy Cross-Linking

    Directory of Open Access Journals (Sweden)

    Qingyue Yu

    2016-01-01

    Full Text Available Individual Carbon Nanotubes (CNTs have a great mechanical strength that needs to be transferred into macroscopic fiber assemblies. One approach to improve the mechanical strength of the CNT assemblies is by creating covalent bonding among their individual CNT building blocks. Chemical cross-linking of multiwall CNTs (MWCNTs within the fiber has significantly improved the strength of MWCNT thread. Results reported in this work show that the cross-linked thread had a tensile strength six times greater than the strength of its control counterpart, a pristine MWCNT thread (1192 MPa and 194 MPa, respectively. Additionally, electrical conductivity changes were observed, revealing 2123.40 S·cm−1 for cross-linked thread, and 3984.26 S·cm−1 for pristine CNT thread. Characterization suggests that the obtained high tensile strength is due to the cross-linking reaction of amine groups from ethylenediamine plasma-functionalized CNT with the epoxy groups of the cross-linking agent, 4,4-methylenebis(N,N-diglycidylaniline.

  3. Analytical characterisation of glutardialdehyde cross-linking products in gelatine-gum arabic complex coacervates

    Energy Technology Data Exchange (ETDEWEB)

    Fuguet, Elisabet [Advanced Measurement and Imaging, Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT Vlaardingen (Netherlands)], E-mail: eli.fuguet@gmail.com; Platerink, Chris van [Advanced Measurement and Imaging, Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT Vlaardingen (Netherlands); Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht (Netherlands); Janssen, Hans-Gerd [Advanced Measurement and Imaging, Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT Vlaardingen (Netherlands); van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (Netherlands)

    2007-11-26

    Encapsulates having shells of cross-linked mixtures of proteins and polysaccharides are widely used in the food and pharmaceutical industry for controlled release of actives and flavour compounds. In order to be able to predict the behaviour and the release characteristics of the microcapsules, a better understanding of the nature and extent of the cross-linking reaction is needed. Several analytical techniques were applied for the characterisation of glutardialdehyde (GDA) cross-linked encapsulates made of gelatine and gum arabic. To allow the use of sensitive, high-resolution methods such as chromatography and mass spectrometry, the sample first had to be hydrolysed. In this way, a mixture of amino acids, small peptides and the cross-link moieties was obtained. High-resolution liquid chromatography coupled to high-resolution mass spectrometry (HPLC-MS) was applied to detect possible cross-link markers through a comparison of HPLC-MS mass-chromatograms obtained for cross-linked and non-cross-linked coacervates. HPLC-MS/MS was used to identify the species responsible for the differences. Cross-linking occurred between GDA molecules and lysine and hydroxylysine {epsilon}-amino groups, and up to eight cross-link products of different nature could be identified. They included pyridinium ions and Schiff bases, and also unreacted GDA condensation products. Next, based on the insight gained in the possible chemical structures present in the cross-link markers, methods for selective labelling of these functionalities were employed to allow easier detection of related reaction products. Both liquid chromatography (LC) and gas chromatography (GC) were used in these experiments. Unfortunately, these approaches failed to detect new cross-link markers, most likely as a result of the low levels at which these are present.

  4. Analytical characterisation of glutardialdehyde cross-linking products in gelatine-gum arabic complex coacervates

    International Nuclear Information System (INIS)

    Fuguet, Elisabet; Platerink, Chris van; Janssen, Hans-Gerd

    2007-01-01

    Encapsulates having shells of cross-linked mixtures of proteins and polysaccharides are widely used in the food and pharmaceutical industry for controlled release of actives and flavour compounds. In order to be able to predict the behaviour and the release characteristics of the microcapsules, a better understanding of the nature and extent of the cross-linking reaction is needed. Several analytical techniques were applied for the characterisation of glutardialdehyde (GDA) cross-linked encapsulates made of gelatine and gum arabic. To allow the use of sensitive, high-resolution methods such as chromatography and mass spectrometry, the sample first had to be hydrolysed. In this way, a mixture of amino acids, small peptides and the cross-link moieties was obtained. High-resolution liquid chromatography coupled to high-resolution mass spectrometry (HPLC-MS) was applied to detect possible cross-link markers through a comparison of HPLC-MS mass-chromatograms obtained for cross-linked and non-cross-linked coacervates. HPLC-MS/MS was used to identify the species responsible for the differences. Cross-linking occurred between GDA molecules and lysine and hydroxylysine ε-amino groups, and up to eight cross-link products of different nature could be identified. They included pyridinium ions and Schiff bases, and also unreacted GDA condensation products. Next, based on the insight gained in the possible chemical structures present in the cross-link markers, methods for selective labelling of these functionalities were employed to allow easier detection of related reaction products. Both liquid chromatography (LC) and gas chromatography (GC) were used in these experiments. Unfortunately, these approaches failed to detect new cross-link markers, most likely as a result of the low levels at which these are present

  5. Performance of phase change materials on storage capacity of trombe wall

    International Nuclear Information System (INIS)

    Al-Karaghouli, A.A.; Mujally, L.

    2006-01-01

    Two types of phase change materials were used as storage media in a Trombe Wall; namely paraffin wax (N-Eicoseue C 20 H 42 ) and Glaubers Salt (Na 2 SO 4 10H 2 O). To investigate the performance of these materials, a theoretical model and a simulation programme were developed. The wall temperature, the amount of heat stored, and the optimum wall thickness were calculated for both types. The study found that using two sheets of glass on the outside wall increased the surface wall temperature by around 50 degree C. It also found that Glauber salt was a much better storage material than paraffin wax. For a selected winter day at a location of 32 o N latitude, the storage capacity of the salt was more than twice that of the paraffin wax. The salt storage capacity was 32816 kJ/m 3 at an optimum wall thickness of 16 cm. this value for paraffin was 14464 kJ/m 3 at 13 cm optimum thickness. The study also concluded that according to this high heating value the wall uses, Glauber salt as a storage medium could supply its heat to the surrounding for a much longer period at night

  6. First-wall/blanket materials selection for STARFIRE tokamak reactor

    International Nuclear Information System (INIS)

    Smith, D.L.; Mattas, R.F.; Clemmer, R.G.; Davis, J.W.

    1980-01-01

    The development of the reference STARFIRE first-wall/blanket design involved numerous trade-offs in the materials selection process for the breeding material, coolant structure, neutron multiplier, and reflector. The major parameters and properties that impact materials selection and design criteria are reviewed

  7. Recyclable cross-linked anion exchange membrane for alkaline fuel cell application

    Science.gov (United States)

    Hou, Jianqiu; Liu, Yazhi; Ge, Qianqian; Yang, Zhengjin; Wu, Liang; Xu, Tongwen

    2018-01-01

    Cross-linking can effectively solve the conductivity-swelling dilemma in anion exchange membranes (AEMs) but will generate solid wastes. To address this, we developed an AEM cross-linked via disulfide bonds, bearing quaternary ammonium groups, which can be easily recycled. The membrane (RC-QPPO) with IEC of 1.78 mmol g-1, when cross-linked, showed enhanced mechanical properties and good hydroxide conductivity (24.6 mS cm-1 at 30 °C). Even at higher IEC value (2.13 mmol g-1), it still has low water uptake, low swelling ratio and delivers a peak power density of 150 mW cm-2 at 65 °C. Exploiting the formation of disulfide bonds from -SH groups, the membrane can be readily cross-linked in alkaline condition and recycled by reversibly breaking disulfide bonds with dithiothreitol (DTT). The recycled membrane solution can be directly utilized to cast a brand-new AEM. By washing away the residual DTT with water and exposure to air, it can be cross-linked again and this process is repeatable. During the recycling and cross-linking processes, the membrane showed a slight IEC decrease of 5% due to functional group degradation. The strategy presented here is promising in enhancing AEM properties and reducing the impact of artificial polymers on the environment.

  8. Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics

    Science.gov (United States)

    Monk, Joshua D.; Lawson, John W.

    2016-01-01

    Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.

  9. Combination of supramolecular cross-linking with covalent cross-linking through epoxide ring-opening including gel studies

    NARCIS (Netherlands)

    Hofmeier, H.; El-Ghayoury, A.; Schubert, U.S.

    2003-01-01

    Terpolymers based on poly(methyl methacrylate), containing terpyridinemoieties as well as epoxide groups, were synthesized via free-radical polymerization. The products were cross-linked non-covalently with iron(II) ions and covalently by treatment with AlCl3. Both steps could be combined in

  10. Identification and characterization of glycosyltransferases involved in the synthesis of the side chains of the cell wall pectic polysaccharide rhamnogalacturonan II

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Malcolm [Univ. of Georgia, Athens, GA (United States)

    2015-08-31

    Our goal was to gain insight into the genes and proteins involved in the biosynthesis of rhamnogalacturonan II (RG-II), a borate cross-linked and structurally conserved pectic polysaccharide present in the primary cell walls of all vascular plants. The research conducted during the funding period established that (i) Avascular plants have the ability to synthesize UDP-apiose but lack the glycosyltransferase machinery required to synthesize RG-II or other apiose-containing cell wall glycans. (ii) RG-II structure is highly conserved in the Lemnaceae (duckweeds and relatives). However, the structures of other wall pectins and hemicellulose have changed substantial during the diversification of the Lemnaceae. This supports the notion that a precise structure of RG-II must be maintained to allow borate cross-linking to occur in a controlled manner. (iii) Enzymes involved in the conversion of UDP-GlcA to UDP-Api, UDP-Xyl, and UDP-Ara may have an important role in controlling the composition of duckweed cell walls. (iv) RG-II exists as the borate ester cross-linked dimer in the cell walls of soybean root hairs and roots. Thus, RG-II is present in the walls of plants cells that grow by tip or by expansive growth. (v) A reduction in RG-II cross-linking in the maize tls1 mutant, which lacks a borate channel protein, suggests that the growth defects observed in the mutant are, at least in part, due to defects in the cell wall.

  11. Borax cross-linked guar gum hydrogels as potential adsorbents for water purification.

    Science.gov (United States)

    Thombare, Nandkishore; Jha, Usha; Mishra, Sumit; Siddiqui, M Z

    2017-07-15

    With the aim to explore new adsorbents for water purification, guar gum based hydrogels were synthesized by cross-linking with borax at different percentage. The cross-linking was confirmed through characterization by FTIR spectroscopy, SEM morphology, thermal studies and water absorption capacity. To examine the adsorption/absorption performance of different grades of hydrogels, their flocculation efficiency was studied in kaolin suspension at different pH by standard jar test procedure. The flocculation efficiency of the test materials was compared with the commercially used coagulant, alum and also residues of Al and K left in the treated water were comparatively studied. The synthesized hydrogels were also tested for their efficiency of removing Aniline Blue dye by UV-vis spectrophotometer study. The best grade hydrogel outperformed alum, at extremely low concentration and also showed dye removing efficiency up to 94%. The single step synthesized green products thus exhibited great potential as water purifying agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Influence of the wall material on the H-mode performance

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.

    1994-06-01

    Theory on the influence of the wall material on the level of the enhanced confinement in H-mode is discussed. When the high-Z material is employed as the wall, the reflection of the neutral particles causes the higher neutral particle density in the plasma. The increased neutral particles lead to the loss of the ion momentum, decrease the radial electric field and degrade the confinement improvement. (author)

  13. Glutaraldehyde cross-linking of amniotic membranes affects their nanofibrous structures and limbal epithelial cell culture characteristics

    Directory of Open Access Journals (Sweden)

    Lai JY

    2013-10-01

    Full Text Available Jui-Yang Lai,1–3 David Hui-Kang Ma4,5 1Institute of Biochemical and Biomedical Engineering, 2Biomedical Engineering Research Center, 3Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; 4Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; 5Department of Chinese Medicine, Chang Gung University, Taoyuan, Taiwan Abstract: Given that the cells can sense nanometer dimensions, the chemical cross-linking-mediated alteration in fibrillar structure of collagenous tissue scaffolds is critical to determining their cell culture performances. This article explores, for the first time, the effect of nanofibrous structure of glutaraldehyde (GTA cross-linked amniotic membrane (AM on limbal epithelial cell (LEC cultivation. Results of ninhydrin assays demonstrated that the amount of new cross-links formed between the collagen chains is significantly increased with increasing the cross-linking time from 1 to 24 hours. By transmission electron microscopy, the AM treated with GTA for a longer duration exhibited a greater extent of molecular aggregation, thereby leading to a considerable increase in nanofiber diameter and resistance against collagenase degradation. In vitro biocompatibility studies showed that the samples cross-linked with GTA for 24 hours are not well-tolerated by the human corneal epithelial cell cultures. When the treatment duration is less than 6 hours, the biological tissues cross-linked with GTA for a longer time may cause slight reductions in 3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium, inner salt, and anti-inflammatory activities. Nevertheless, significant collagen molecular aggregation also enhances the stemness gene expression, indicating a high ability of these AM matrices to preserve the progenitors of LECs in vitro. It is concluded that GTA cross-linking of collagenous tissue materials may affect their nanofibrous

  14. A first wall material probe manipulator for the 'TEXTOR' tokamak

    International Nuclear Information System (INIS)

    Marmy, P.; Stiefel, U.

    1984-04-01

    Textor is a technology oriented tokamak of Euratom at the Kernforschungsanlage Juelich (KFA). Switzerland participates in its experimental program within the framework of the IEA agreement on Plasma Wall Interaction. A major task of EIR consists in the layout, construction and fabrication of a manipulator for the remote handling of up to 240 specimen candidate first wall materials. This operation has to be done without breaking the ultra high vacuum (UHV) and with wall temperatures up to 300 0 C. A great number of preexperiments involving different materials had to be carried out; the understanding of the tribology in ultra high vacuum could be improved. (Auth.)

  15. UV-induced cross-linking of abscisic acid to binding proteins

    International Nuclear Information System (INIS)

    Cornelussen, M.H.M.; Karssen, C.M.; Loon, L.C. van

    1995-01-01

    Conditions for UV-induced cross-linking of abscisic acid (ABA) through its enone chromophore to binding proteins were evaluated. The effects of a UV-light band between 260 and 530 nm on both unconjugated and protein-conjugated ABA, as well as on anti-ABA antibodies as models of ABA-binding proteins were determined. UV irradiation caused both isomerization and photolysis of ABA, but increasing the lower irradiation boundary to 345 nm strongly reduced photolysis and largely prevented isomerization. When conjugated to alkaline phosphatase (AP), ABA remained stable when using either a 320 or a 345 nm filter. At these wavelengths both binding of ABA to antibodies as well as AP enzymatic activity were maintained. UV-induced cross-linking of monoclonal anti-ABA antibodies to immobilized ABA was analysed by immunoassays. Optimal cross-linking was achieved after a 5 min irradiation period at 0°, using a long pass, cut-on filter to quench wavelengths below 290 nm. This cross-linking faithfully reflected cognate binding activity. (author)

  16. Plasma-wall interaction and plasma facing materials

    International Nuclear Information System (INIS)

    Tanabe, Tetsuo; Miyahara, Akira.

    1990-01-01

    The recognition that plasma-wall interaction plays the essential role from both standpoints of energy balance and particle balance for realizing nuclear fusion reactors has become to prevail. However, on how each elementary process acts and what competitive effect the synthetic action brings about, the stage of doing the qualitative discussion has just come, and the quantitative investigation is the problem for the future. In this paper, the plasma-wall interaction as seen from the research field of plasma-facing materials is discussed centering around graphite materials which have been mostly used at present, and the present status of the research and development on the problems of impurities, hydrogen recycling and heat resistance and radiation resistance is mentioned. Moreover, the problems are pointed out, and the course for the future is looked for. The recent experiment with large tokamaks adopted graphite or carbon as the plasma-facing materials, and the reduction of metallic impurities in plasma showed the clear improvement of plasma confinement characteristics. However, for the next device which requires forced cooling, the usability of graphite is doubtful. (K.I.) 51 refs

  17. Combination of supramolecular cross-linking with covalent cross-linking through epoxide ring-opening including gel studies

    NARCIS (Netherlands)

    Hofmeier, H.; El-Ghayoury, A.; Schubert, U.S.

    2003-01-01

    Terpolymers based on poly(methyl methacrylate), containing terpyridine-moieties as well as epoxide groups, were synthesized via free-radical polymeri-zation. The products were cross-linked non-covalently with iron(II) ions and cova-lently by treatment with AlCl3. Both steps could be combined in

  18. Structural and Functional Characterization of an Ancient Bacterial Transglutaminase Sheds Light on the Minimal Requirements for Protein Cross-Linking.

    Science.gov (United States)

    Fernandes, Catarina G; Plácido, Diana; Lousa, Diana; Brito, José A; Isidro, Anabela; Soares, Cláudio M; Pohl, Jan; Carrondo, Maria A; Archer, Margarida; Henriques, Adriano O

    2015-09-22

    Transglutaminases are best known for their ability to catalyze protein cross-linking reactions that impart chemical and physical resilience to cellular structures. Here, we report the crystal structure and characterization of Tgl, a transglutaminase from the bacterium Bacillus subtilis. Tgl is produced during sporulation and cross-links the surface of the highly resilient spore. Tgl-like proteins are found only in spore-forming bacteria of the Bacillus and Clostridia classes, indicating an ancient origin. Tgl is a single-domain protein, produced in active form, and the smallest transglutaminase characterized to date. We show that Tgl is structurally similar to bacterial cell wall endopeptidases and has an NlpC/P60 catalytic core, thought to represent the ancestral unit of the cysteine protease fold. We show that Tgl functions through a unique partially redundant catalytic dyad formed by Cys116 and Glu187 or Glu115. Strikingly, the catalytic Cys is insulated within a hydrophobic tunnel that traverses the molecule from side to side. The lack of similarity of Tgl to other transglutaminases together with its small size suggests that an NlpC/P60 catalytic core and insulation of the active site during catalysis may be essential requirements for protein cross-linking.

  19. Transparent, Superflexible Doubly Cross-Linked Polyvinylpolymethylsiloxane Aerogel Superinsulators via Ambient Pressure Drying.

    Science.gov (United States)

    Zu, Guoqing; Shimizu, Taiyo; Kanamori, Kazuyoshi; Zhu, Yang; Maeno, Ayaka; Kaji, Hironori; Shen, Jun; Nakanishi, Kazuki

    2018-01-23

    Aerogels have many attractive properties but are usually costly and mechanically brittle, which always limit their practical applications. While many efforts have been made to reinforce the aerogels, most of the reinforcement efforts sacrifice the transparency or superinsulating properties. Here we report superflexible polyvinylpolymethylsiloxane, (CH 2 CH(Si(CH 3 )O 2/2 )) n , aerogels that are facilely prepared from a single precursor vinylmethyldimethoxysilane or vinylmethyldiethoxysilane without organic cross-linkers. The method is based on consecutive processes involving radical polymerization and hydrolytic polycondensation, followed by ultralow-cost, highly scalable, ambient-pressure drying directly from alcohol as a drying medium without any modification or additional solvent exchange. The resulting aerogels and xerogels show a homogeneous, tunable, highly porous, doubly cross-linked nanostructure with the elastic polymethylsiloxane network cross-linked with flexible hydrocarbon chains. An outstanding combination of ultralow cost, high scalability, uniform pore size, high surface area, high transparency, high hydrophobicity, excellent machinability, superflexibility in compression, superflexibility in bending, and superinsulating properties has been achieved in a single aerogel or xerogel. This study represents a significant progress of porous materials and makes the practical applications of transparent flexible aerogel-based superinsulators realistic.

  20. General protein-protein cross-linking.

    Science.gov (United States)

    Alegria-Schaffer, Alice

    2014-01-01

    This protocol describes a general protein-to-protein cross-linking procedure using the water-soluble amine-reactive homobifunctional BS(3) (bis[sulfosuccinimidyl] suberate); however, the protocol can be easily adapted using other cross-linkers of similar properties. BS(3) is composed of two sulfo-NHS ester groups and an 11.4 Å linker. Sulfo-NHS ester groups react with primary amines in slightly alkaline conditions (pH 7.2-8.5) and yield stable amide bonds. The reaction releases N-hydroxysuccinimide (see an application of NHS esters on Labeling a protein with fluorophores using NHS ester derivitization). © 2014 Elsevier Inc. All rights reserved.

  1. Life cycle cost of different Walling material used for affordable housing in tropics

    Directory of Open Access Journals (Sweden)

    Chameera Udawattha

    2017-12-01

    The results show that mud concrete block is the most suitable walling material. The brick has the highest account for the embedded energy. The hollow cement block is the worse building materials in tropics and its carbon footprint is comparatively higher. Even though the brick has higher embedded energy and construction cost, in a long run brick is less expensive than hollow cement block and Cabook walling material. Concluding, mud concrete block is comparatively most sustainable walling material for building affordable housing in tropics.

  2. RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis.

    Science.gov (United States)

    Morgenstein, Randy M; Bratton, Benjamin P; Nguyen, Jeffrey P; Ouzounov, Nikolay; Shaevitz, Joshua W; Gitai, Zemer

    2015-10-06

    The rod shape of most bacteria requires the actin homolog, MreB. Whereas MreB was initially thought to statically define rod shape, recent studies found that MreB dynamically rotates around the cell circumference dependent on cell wall synthesis. However, the mechanism by which cytoplasmic MreB is linked to extracytoplasmic cell wall synthesis and the function of this linkage for morphogenesis has remained unclear. Here we demonstrate that the transmembrane protein RodZ mediates MreB rotation by directly or indirectly coupling MreB to cell wall synthesis enzymes. Furthermore, we map the RodZ domains that link MreB to cell wall synthesis and identify mreB mutants that suppress the shape defect of ΔrodZ without restoring rotation, uncoupling rotation from rod-like growth. Surprisingly, MreB rotation is dispensable for rod-like shape determination under standard laboratory conditions but is required for the robustness of rod shape and growth under conditions of cell wall stress.

  3. Novel magnetic cross-linked lipase aggregates for improving the resolution of (R, S)-2-octanol.

    Science.gov (United States)

    Liu, Ying; Guo, Chen; Liu, Chun-Zhao

    2015-03-01

    Novel magnetic cross-linked lipase aggregates were fabricated by immobilizing the cross-linked lipase aggregates onto magnetic particles with a high number of -NH2 terminal groups using p-benzoquinone as the cross-linking agent. At the optimal fabrication conditions, 100% of immobilization efficiency and 139% of activity recovery of the magnetic cross-linked lipase aggregates were achieved. The magnetic cross-linked lipase aggregates were able to efficiently resolve (R, S)-2-octanol, and retained 100% activity and 100% enantioselectivity after 10 cycles of reuse, whereas the cross-linked lipase aggregates only retained about 50% activity and 70% enantioselectivity due to insufficient cross-linking. These results provide a great potential for industrial applications of the magnetic cross-linked lipase aggregates. © 2014 Wiley Periodicals, Inc.

  4. In vitro studies on the effect of physical cross-linking on the biological performance of aliphatic poly(urethane urea) for blood contact applications.

    Science.gov (United States)

    Thomas, V; Kumari, T V; Jayabalan, M

    2001-01-01

    The effect of physical cross-linking in candidate cycloaliphatic and hydrophobic poly(urethane urea) (4,4'-methylenebis(cyclohexylisocyanate), H(12)MDI/hydroxy-terminated polybutadiene, HTPBD/hexamethylenediamine, HDA) and poly(ether urethane urea)s (H(12)MDI/HTPBD-PTMG/HDA) on the in vitro calcification and blood-material interaction was studied. All the candidate poly(urethane urea)s and poly(ether urethane urea)s elicit acceptable hemolytic activity, cytocompatibility, calcification, and blood compatibility in vitro. The studies on blood-material interaction reveal that the present poly(urethane urea)s are superior to polystyrene microtiter plates which were used for the studies on blood-material interaction. The present investigation reveals the influence of physical cross-link density on biological interaction differently with poly(urethane urea) and poly(ether urethane urea)s. The higher the physical cross-link density in the poly(urethane urea)s, the higher the calcification and consumption of WBC in whole blood. On the other hand, the higher the physical cross-link density in the poly(ether urethane urea)s, the lesser the calcification and consumption of WBC in whole blood. However a reverse of the above trend has been observed with the platelet consumption in the poly(urethane urea)s and poly(ether urethane urea)s.

  5. Shear localization and effective wall friction in a wall bounded granular flow

    Science.gov (United States)

    Artoni, Riccardo; Richard, Patrick

    2017-06-01

    In this work, granular flow rheology is investigated by means of discrete numerical simulations of a torsional, cylindrical shear cell. Firstly, we focus on azimuthal velocity profiles and study the effect of (i) the confining pressure, (ii) the particle-wall friction coefficient, (iii) the rotating velocity of the bottom wall and (iv) the cell diameter. For small cell diameters, azimuthal velocity profiles are nearly auto-similar, i.e. they are almost linear with the radial coordinate. Different strain localization regimes are observed : shear can be localized at the bottom, at the top of the shear cell, or it can be even quite distributed. This behavior originates from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. Then we study the effective friction at the cylindrical wall, and point out the strong link between wall friction, slip and fluctuations of forces and velocities. Even if the system is globally below the sliding threshold, force fluctuations trigger slip events, leading to a nonzero wall slip velocity and an effective wall friction coefficient different from the particle-wall one. A scaling law was found linking slip velocity, granular temperature in the main flow direction and effective friction. Our results suggest that fluctuations are an important ingredient for theories aiming to capture the interface rheology of granular materials.

  6. Cross-Linked Liquid Crystalline Systems From Rigid Polymer Networks to Elastomers

    CERN Document Server

    Broer, Dirk

    2011-01-01

    With rapidly expanding interest in liquid crystalline polymers and elastomers among the liquid crystal community, researchers are currently exploring the wide range of possible application areas for these unique materials, including optical elements on displays, tunable lasers, strain gauges, micro-structures, and artificial muscles. Written by respected scientists from academia and industry around the world, who are not only active in the field but also well-known in more traditional areas of research, "Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers&qu

  7. A Comparative Study of the Characteristics of Cross-Linked, Oxidized and Dual-Modified Rice Starches

    OpenAIRE

    Xiao, Hua-Xi; Lin, Qin-Lu; Liu, Gao-Qiang; Yu, Feng-Xiang

    2012-01-01

    Rice starch was cross-linked with epichlorohydrin (0.3%, w/w, on a dry starch basis) and oxidized with sodium hypochlorite (2.5% w/w), respectively. Two dual-modified rice starch samples (oxidized cross-linked rice starch and cross-linked oxidized rice starch) were obtained by the oxidation of cross-linked rice starch and the cross-linking of oxidized rice starch at the same level of reagents. The physicochemical properties of native rice starch, cross-linked rice starch and oxidized rice sta...

  8. Effects of Supercritical CO 2 Conditioning on Cross-Linked Polyimide Membranes

    KAUST Repository

    Kratochvil, Adam M.; Koros, William J.

    2010-01-01

    The effects of supercritical CO2 (scCO2) conditioning on high-performance cross-linked polyimide membranes is examined through gas permeation and sorption experiments. Under supercritical conditions, the cross-linked polymers do not exhibit a

  9. Edge-carboxylated graphene nanoflakes from nitric acid oxidised arc-discharge material

    OpenAIRE

    NICOLOSI, VALERIA

    2010-01-01

    PUBLISHED Graphene nanoflakes (GNFs) with average diameters of 30 nm have been prepared by a single-step oxidation procedure using single-wall carbon nanotube arc-discharge material and nitric acid. The GNFs are predominately single sheets containing a small number of internal defects. The edges are decorated with primarily carboxylic acid groups which allow facile chemical functionalisation and cross-linking of the fragments using multivalent cations

  10. Computer simulation of randomly cross-linked polymer networks

    International Nuclear Information System (INIS)

    Williams, Timothy Philip

    2002-01-01

    In this work, Monte Carlo and Stochastic Dynamics computer simulations of mesoscale model randomly cross-linked networks were undertaken. Task parallel implementations of the lattice Monte Carlo Bond Fluctuation model and Kremer-Grest Stochastic Dynamics bead-spring continuum model were designed and used for this purpose. Lattice and continuum precursor melt systems were prepared and then cross-linked to varying degrees. The resultant networks were used to study structural changes during deformation and relaxation dynamics. The effects of a random network topology featuring a polydisperse distribution of strand lengths and an abundance of pendant chain ends, were qualitatively compared to recent published work. A preliminary investigation into the effects of temperature on the structural and dynamical properties was also undertaken. Structural changes during isotropic swelling and uniaxial deformation, revealed a pronounced non-affine deformation dependant on the degree of cross-linking. Fractal heterogeneities were observed in the swollen model networks and were analysed by considering constituent substructures of varying size. The network connectivity determined the length scales at which the majority of the substructure unfolding process occurred. Simulated stress-strain curves and diffraction patterns for uniaxially deformed swollen networks, were found to be consistent with experimental findings. Analysis of the relaxation dynamics of various network components revealed a dramatic slowdown due to the network connectivity. The cross-link junction spatial fluctuations for networks close to the sol-gel threshold, were observed to be at least comparable with the phantom network prediction. The dangling chain ends were found to display the largest characteristic relaxation time. (author)

  11. Physico-chemical/biological properties of tripolyphosphate cross-linked chitosan based nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Soumi Dey [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur-721302 (India); Farrugia, Brooke L.; Dargaville, Tim R. [Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Groove, Queensland-4059 (Australia); Dhara, Santanu, E-mail: sdhara@smst.iitkgp.ernet.in [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur-721302 (India)

    2013-04-01

    In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (∼ 78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ∼ 300% in 1 h and ∼ 40% degradation during 30 day study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix. - Highlights: ► Chitosan based nanofiber fabrication through electrospinning. ► Roles of solution viscosity and yield stress on spinnability of chitosan evidenced. ► Tripolyphosphate (TPP) cross-linking rendered structural stability to nanofibers. ► TPP cross-linking also improved cellular response on chitosan based nanofibers. ► Thus, chitosan based nanofibers are suitable for tissue engineering application.

  12. Physico-chemical/biological properties of tripolyphosphate cross-linked chitosan based nanofibers

    International Nuclear Information System (INIS)

    Sarkar, Soumi Dey; Farrugia, Brooke L.; Dargaville, Tim R.; Dhara, Santanu

    2013-01-01

    In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (∼ 78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ∼ 300% in 1 h and ∼ 40% degradation during 30 day study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix. - Highlights: ► Chitosan based nanofiber fabrication through electrospinning. ► Roles of solution viscosity and yield stress on spinnability of chitosan evidenced. ► Tripolyphosphate (TPP) cross-linking rendered structural stability to nanofibers. ► TPP cross-linking also improved cellular response on chitosan based nanofibers. ► Thus, chitosan based nanofibers are suitable for tissue engineering application

  13. Permanent Set of Cross-Linking Networks: Comparison of Theory with Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Rottach, Dana R.; Curro, John G.; Budzien, Joanne

    2006-01-01

    The permanent set of cross-linking networks is studied by molecular dynamics. The uniaxial stress for a bead-spring polymer network is investigated as a function of strain and cross-link density history, where cross-links are introduced in unstrained and strained networks. The permanent set...

  14. Synthesis and characterization of biodegradable poly (ethylene glycol) and poly (caprolactone diol) end capped poly (propylene fumarate) cross linked amphiphilic hydrogel as tissue engineering scaffold material.

    Science.gov (United States)

    Krishna, Lekshmi; Jayabalan, Muthu

    2009-12-01

    Biodegradable poly (caprolactone diol-co-propylene fumarate-co-ethylene glycol) amphiphilic polymer with poly (ethylene glycol) and poly (caprolactone diol) chain ends (PCL-PPF-PEG) was prepared. PCL-PPF-PEG undergoes fast setting with acrylamide (aqueous solution) by free radical polymerization and produces a crosslinked hydrogel. The cross linked and freeze-dried amphiphilic material has porous and interconnected network. It undergoes higher degree of swelling and water absorption to form hydrogel with hydrophilic and hydrophobic domains at the surface and appreciable tensile strength. The present hydrogel is compatible with L929 fibroblast cells. PCL-PPF-PEG/acrylamide hydrogel is a candidate scaffold material for tissue engineering applications.

  15. Application of a fast sorting algorithm to the assignment of mass spectrometric cross-linking data.

    Science.gov (United States)

    Petrotchenko, Evgeniy V; Borchers, Christoph H

    2014-09-01

    Cross-linking combined with MS involves enzymatic digestion of cross-linked proteins and identifying cross-linked peptides. Assignment of cross-linked peptide masses requires a search of all possible binary combinations of peptides from the cross-linked proteins' sequences, which becomes impractical with increasing complexity of the protein system and/or if digestion enzyme specificity is relaxed. Here, we describe the application of a fast sorting algorithm to search large sequence databases for cross-linked peptide assignments based on mass. This same algorithm has been used previously for assigning disulfide-bridged peptides (Choi et al., ), but has not previously been applied to cross-linking studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electron bombardment cross-linking of coating materials

    International Nuclear Information System (INIS)

    Mileo, J.-C.

    1976-01-01

    The use of medium-power electron accelerators to cure paints and varnishes and to make them insoluble is described by making a special analysis of the physico-chemical aspect of the process. The following points in particular are examined: the effect of radiation on matter; general aspects of radiochemical polymerization, and the application of radiation polymerization to varnish drying. A quick review is then made of problems linked to the choice of radiation and to the influence of the oxygen in air. An electron accelerator and a method of calorimetric dosimetery are described [fr

  17. Effects of Surface Modification and Bulk Geometry on the Biotribological Behavior of Cross-Linked Polyethylene: Wear Testing and Finite Element Analysis.

    Science.gov (United States)

    Watanabe, Kenichi; Kyomoto, Masayuki; Saiga, Kenichi; Taketomi, Shuji; Inui, Hiroshi; Kadono, Yuho; Takatori, Yoshio; Tanaka, Sakae; Ishihara, Kazuhiko; Moro, Toru

    2015-01-01

    The wear and creep deformation resistances of polymeric orthopedic bearing materials are both important for extending their longevity. In this study, we evaluated the wear and creep deformation resistances, including backside damage, of different polyethylene (PE) materials, namely, conventional PE, cross-linked PE (CLPE), and poly(2-methacryloyloxyethyl phosphorylcholine)- (PMPC-) grafted CLPE, through wear tests and finite element analysis. The gravimetric and volumetric degrees of wear of disks (3 or 6 mm in thickness) of these materials against a cobalt-chromium-molybdenum alloy pin were examined using a multidirectional pin-on-disk tester. Cross-linking and PMPC grafting decreased the gravimetric wear of the PE disks significantly. The volumetric wear at the bearing surface and the volumetric penetration in the backside of the 3-mm thick PE disk were higher than those of the 6-mm thick PE disk, regardless of the bearing material. The geometrical changes induced in the PE disks consisted of creep, because the calculated internal von Mises stress at the bearing side of all disks and that at the backside of the 3-mm thick disks exceeded their actual yield strengths. A highly hydrated bearing surface layer, formed by PMPC grafting, and a cross-linking-strengthened substrate of adequate thickness are essential for increasing the wear and creep deformation resistances.

  18. The conformational stability and flexibility of insulin with an additional intramolecular cross-link

    International Nuclear Information System (INIS)

    Brems, D.N.; Brown, P.L.; Nakagawa, S.H.; Tager, H.S.

    1991-01-01

    The conformational stability and flexibility of insulin containing a cross-link between the alpha-amino group of the A-chain to the epsilon-amino group of Lys29 of the B-chain was examined. The cross-link varied in length from 2 to 12 carbon atoms. The conformational stability was determined by guanidine hydrochloride-induced equilibrium denaturation and flexibility was assessed by H2O/D2O amide exchange. The cross-link has substantial effects on both conformational stability and flexibility which depend on its length. In general, the addition of a cross-link enhances conformational stability and decreases flexibility. The optimal length for enhanced stability and decreased flexibility was the 6-carbon link. For the 6-carbon link the Gibbs free energy of unfolding was 8.0 kcal/mol compared to 4.5 kcal/mol for insulin, and the amide exchange rate decreased by at least 3-fold. A very short cross-link (i.e. the 2-carbon link) caused conformational strain that was detectable by a lack of stabilization in the Gibbs free energy of unfolding and enhancement in the amide exchange rate compared to insulin. The effect of the cross-link length on insulin hydrodynamic properties is discussed relative to previously obtained receptor binding results

  19. WICH, a member of WASP-interacting protein family, cross-links actin filaments

    International Nuclear Information System (INIS)

    Kato, Masayoshi; Takenawa, Tadaomi

    2005-01-01

    In yeast, Verprolin plays an important role in rearrangement of the actin cytoskeleton. There are three mammalian homologues of Verprolin, WIP, CR16, and WICH, and all of them bind actin and Wiskott-Aldrich syndrome protein (WASP) and/or neural-WASP. Here, we describe a novel function of WICH. In vitro co-sedimentation analysis revealed that WICH not only binds to actin filaments but also cross-links them. Fluorescence and electron microscopy detected that this cross-linking results in straight bundled actin filaments. Overexpression of WICH alone in cultured fibroblast caused the formation of thick actin fibers. This ability of WICH depended on its own actin cross-linking activity. Importantly, the actin cross-linking activity of WICH was modified through a direct association with N-WASP. Taken together, these data suggest that WICH induces a bundled form of actin filament with actin cross-linking activity and the association with N-WASP suppresses that activity. WICH thus appears to be a novel actin bundling protein

  20. Interactions between grape skin cell wall material and commercial enological tannins. Practical implications.

    Science.gov (United States)

    Bautista-Ortín, Ana Belén; Cano-Lechuga, Mario; Ruiz-García, Yolanda; Gómez-Plaza, Encarna

    2014-01-01

    Commercial enological tannins were used to investigate the role that cell wall material plays in proanthocyanidin adsorption. Insoluble cell wall material, prepared from the skin of Vitis vinifera L. cv. Monastrell berries, was combined with solutions containing six different commercial enological tannins (proanthocyanidin-type tannins). Analysis of the proanthocyanidins in the solution, after fining with cell wall material, using phloroglucinolysis and size exclusion chromatography, provided quantitative and qualitative information on the non-adsorbed compounds. Cell wall material showed strong affinity for the proanthocyanidins, one of the commercial tannins being bound up to 61% in the experiment. Comparison of the molecular mass distribution of the commercial enological tannins in solution, before and after fining, suggested that cell walls affinity for proanthocyanidins was more related with the proanthocyanidin molecular mass than with their percentage of galloylation. These interactions may have some enological implications, especially as regards the time of commercial tannins addition to the must/wine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Transglutaminase catalyzed cross-linking of sodium caseinate improves oxidative stability of flaxseed oil emulsion.

    Science.gov (United States)

    Ma, Hairan; Forssell, Pirkko; Kylli, Petri; Lampi, Anna-Maija; Buchert, Johanna; Boer, Harry; Partanen, Riitta

    2012-06-20

    Sodium caseinate was modified by transglutaminase catalyzed cross-linking reaction prior to the emulsification process in order to study the effect of cross-linking on the oxidative stability of protein stabilized emulsions. The extent of the cross-linking catalyzed by different dosages of transglutaminase was investigated by following the ammonia production during the reaction and using SDS-PAGE gel. O/W emulsions prepared with the cross-linked and non-cross-linked sodium caseinates were stored for 30 days under the same conditions. Peroxide value measurement, oxygen consumption measurement, and headspace gas chromatography analysis were used to study the oxidative stability of the emulsions. The emulsion made of the cross-linked sodium caseinate showed an improved oxidative stability with reduced formation of fatty acid hydroperoxides and volatiles and a longer period of low rate oxygen consumption. The improving effect of transglutaminase catalyzed cross-linking could be most likely attributed to the enhanced physical stability of the interfacial protein layer against competitive adsorption by oil oxidation products.

  2. Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications.

    Science.gov (United States)

    López de Dicastillo, Carol; Rodríguez, Francisco; Guarda, Abel; Galotto, Maria José

    2016-01-20

    Development of antioxidant and antimicrobial active food packaging materials based on biodegradable polymer and natural plant extracts has numerous advantages as reduction of synthetic additives into the food, reduction of plastic waste, and food protection against microorganisms and oxidation reactions. In this way, active films based on methylcellulose (MC) and maqui (Aristotelia chilensis) berry fruit extract, as a source of antioxidants agents, were studied. On the other hand, due to the high water affinity of MC, this polymer was firstly cross-linked with glutaraldehyde (GA) at different concentrations. The results showed that the addition of GA decreased water solubility, swelling, water vapor permeability of MC films, and the release of antioxidant substances from the active materials increased with the concentration of GA. Natural extract and active cross-linked films were characterized in order to obtain the optimal formulation with the highest antioxidant activity and the best physical properties for latter active food packaging application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Computational investigation of kinetics of cross-linking reactions in proteins: importance in structure prediction.

    Science.gov (United States)

    Bandyopadhyay, Pradipta; Kuntz, Irwin D

    2009-01-01

    The determination of protein structure using distance constraints is a new and promising field of study. One implementation involves attaching residues of a protein using a cross-linking agent, followed by protease digestion, analysis of the resulting peptides by mass spectroscopy, and finally sequence threading to detect the protein folds. In the present work, we carry out computational modeling of the kinetics of cross-linking reactions in proteins using the master equation approach. The rate constants of the cross-linking reactions are estimated using the pKas and the solvent-accessible surface areas of the residues involved. This model is tested with fibroblast growth factor (FGF) and cytochrome C. It is consistent with the initial experimental rate data for individual lysine residues for cytochrome C. Our model captures all observed cross-links for FGF and almost 90% of the observed cross-links for cytochrome C, although it also predicts cross-links that were not observed experimentally (false positives). However, the analysis of the false positive results is complicated by the fact that experimental detection of cross-links can be difficult and may depend on specific experimental conditions such as pH, ionic strength. Receiver operator characteristic plots showed that our model does a good job in predicting the observed cross-links. Molecular dynamics simulations showed that for cytochrome C, in general, the two lysines come closer for the observed cross-links as compared to the false positive ones. For FGF, no such clear pattern exists. The kinetic model and MD simulation can be used to study proposed cross-linking protocols.

  4. Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications

    International Nuclear Information System (INIS)

    Sell, Scott A; Garg, Koyal; McClure, Michael J; Bowlin, Gary L; Francis, Michael P; Simpson, David G

    2008-01-01

    The purpose of this study was to enhance the mechanical properties and slow the degradation of an electrospun fibrinogen scaffold, while maintaining the scaffold's high level of bioactivity. Three different cross-linkers were used to achieve this goal: glutaraldehyde vapour, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in ethanol and genipin in ethanol. Scaffolds with a fibrinogen concentration of 120 mg ml -1 were electrospun and cross-linked with one of the aforementioned cross-linkers. Mechanical properties were determined through uniaxial tensile testing performed on scaffolds incubated under standard culture conditions for 1 day, 7 days and 14 days. Cross-linked scaffolds were seeded with human foreskin fibroblasts (BJ-GFP-hTERT) and cultured for 7, 14 and 21 days, with histology and scanning electron microscopy performed upon completion of the time course. Mechanical testing revealed significantly increased peak stress and modulus values for the EDC and genipin cross-linked scaffolds, with significantly slowed degradation. However, cross-linking with EDC and genipin was shown to have some negative effect on the bioactivity of the scaffolds as cell migration throughout the thickness of the scaffold was slowed.

  5. Far SOL transport and main wall plasma interaction in DIII-D

    International Nuclear Information System (INIS)

    Rudakov, D.L.; Boedo, J.A.; Moyer, R.A.; Doerner, R.P.; Hollmann, E.M.; Krasheninnikov, S.I.; Pigarov, A.Yu.; Stangeby, P.C.; McLean, A.G.; Watkins, J.G.; Wampler, W.R.; Whyte, D.G.; McKee, G.R.; Zeng, L.; Wang, G.; Brooks, N.H.; Evans, T.E.; Leonard, A.W.; Mahdavi, M.A.; West, W.P.; Wong, C.P.C.; Fenstermacher, M.E.; Groth, M.; Lasnier, C.J.

    2005-01-01

    Far scrape-off layer (SOL) and near-wall plasma parameters in DIII-D depend strongly on the discharge parameters and confinement regime. In L-mode discharges cross-field transport increases with the average discharge density and flattens far SOL profiles, thus increasing plasma-wall contact. In H-mode between edge localized modes (ELMs), plasma-wall contact is generally weaker than in L-mode. During ELMs plasma fluxes to the wall increase to, or above the L-mode levels. Depending on the discharge conditions ELMs are responsible for 30-90% of the ion flux to the outboard chamber wall. Cross-field fluxes in far SOL are dominated by large amplitude intermittent transport events that may propagate all the way to the outer wall and cause sputtering. A Divertor Material Evaluation System (DiMES) probe containing samples of several ITER-relevant materials including carbon, beryllium and tungsten was exposed to a series of upper single null (USN) discharges as a proxy to measure the first wall erosion. (author)

  6. Failure evolution in granular material retained by rigid wall in active mode

    Science.gov (United States)

    Pietrzak, Magdalena; Leśniewska, Danuta

    2012-10-01

    This paper presents a detailed study of a selected small scale model test, performed on a sample of surrogate granular material, retained by a rigid wall (typical geotechnical problem of earth thrust on a retaining wall). The experimental data presented in this paper show that the deformation of granular sample behind retaining wall can undergo some cyclic changes. The nature of these cycles is not clear - it is probably related to some micromechanical features of granular materials, which are recently extensively studied in many research centers in the world. Employing very precise DIC (PIV) method can help to relate micro and macro-scale behavior of granular materials.

  7. Dehydration of an azeotrope of ethanol/water by sodium carboxymethylcellulose membranes cross-linked with organic or inorganic cross-linker

    Directory of Open Access Journals (Sweden)

    2010-11-01

    Full Text Available To control the swelling of sodium carboxymethylcellulose (CMCNa membranes, mixtures of CMCNa and glutaraldehyde (GA and mixtures of CMCNa as an organic component and tetraethoxysilane (TEOS as an inorganic component were prepared, and CMCNa/GA cross-linked membranes and CMCNa/TEOS hybrid membranes were formed. In the separation of an ethanol/water azeotrope by pervaporation (PV, the effects of the GA or TEOS content on the water/ethanol selectivity and permeability of these CMCNa/GA cross-linked and CMCNa/TEOS hybrid membranes were investigated. Cross-linked and hybrid membranes containing up to 10 wt% GA or 10 wt% TEOS exhibited higher water/ethanol selectivity than CMCNa membrane without any cross-linker. This resulted from both increased density and depressed swelling of the membranes by the formation of a cross-linked structure. The relationship between the structure of the CMCNa/GA cross-linked membranes and CMCNa/TEOS hybrid membranes and their permeation and separation characteristics for an ethanol/water azeotrope during PV is discussed in detail.

  8. Rheological properties of dispersions of enzymatically cross-linked apo-α-lactalbumin

    NARCIS (Netherlands)

    Saricay, Yunus; Wierenga, Peter A.; Vries, de Renko

    2016-01-01

    The enzymatic cross-linking of apo-α-lactalbumin (α-LA) with horseradish peroxidase (HRP) leads to the formation of hydrophilic protein aggregates with controlled size and architecture. We explore the rheological properties of dispersions of these HRP-cross-linked α-LA aggregates with a

  9. Models for stiffening in cross-linked biopolymer networks : A comparative study

    NARCIS (Netherlands)

    van Dillen, T.; Onck, P. R.; Van der Giessen, E.

    In a recent publication, we studied the mechanical stiffening behavior in two-dimensional (2D) cross-linked networks of semiflexible biopolymer filaments under simple shear [Onck, P.R., Koeman, T., Van Dillen, T., Van der Giessen, E., 2005. Alternative explanation of stiffening in cross-linked

  10. Riboflavin/UVA Collagen Cross-Linking-Induced Changes in Normal and Keratoconus Corneal Stroma

    Science.gov (United States)

    Hayes, Sally; Boote, Craig; Kamma-Lorger, Christina S.; Rajan, Madhavan S.; Harris, Jonathan; Dooley, Erin; Hawksworth, Nicholas; Hiller, Jennifer; Terill, Nick J.; Hafezi, Farhad; Brahma, Arun K.; Quantock, Andrew J.; Meek, Keith M.

    2011-01-01

    Purpose To determine the effect of Ultraviolet-A collagen cross-linking with hypo-osmolar and iso-osmolar riboflavin solutions on stromal collagen ultrastructure in normal and keratoconus ex vivo human corneas. Methods Using small-angle X-ray scattering, measurements of collagen D-periodicity, fibril diameter and interfibrillar spacing were made at 1 mm intervals across six normal post-mortem corneas (two above physiological hydration (swollen) and four below (unswollen)) and two post-transplant keratoconus corneal buttons (one swollen; one unswollen), before and after hypo-osmolar cross-linking. The same parameters were measured in three other unswollen normal corneas before and after iso-osmolar cross-linking and in three pairs of swollen normal corneas, in which only the left was cross-linked (with iso-osmolar riboflavin). Results Hypo-osmolar cross-linking resulted in an increase in corneal hydration in all corneas. In the keratoconus corneas and unswollen normal corneas, this was accompanied by an increase in collagen interfibrillar spacing (priboflavin solutions are more likely a consequence of treatment-induced changes in tissue hydration rather than cross-linking. PMID:21850225

  11. Wall-collision line broadening of molecular oxygen within nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Can T.; Lewander, Maerta; Andersson-Engels, Stefan; Svensson, Tomas; Svanberg, Sune [Department of Physics, Lund University, P. O. Box 118, SE-221 00 Lund (Sweden); Adolfsson, Erik [Ceramic Materials, SWEREA IVF, Box 104, SE-431 22 Moelndal (Sweden)

    2011-10-15

    Wall-collision broadening of near-infrared absorption lines of molecular oxygen confined in nanoporous zirconia is studied by employing high-resolution diode-laser spectroscopy. The broadening is studied for pores of different sizes under a range of pressures, providing new insights on how wall collisions and intermolecular collisions influence the total spectroscopic line profile. The pressure series show that wall-collision broadening is relatively more prominent under reduced pressures, enabling sensitive means to probe pore sizes of porous materials. In addition, we show that the total wall-collision-broadened profile strongly deviates from a Voigt profile and that wall-collision broadening exhibits an additive-like behavior to the pressure and Doppler broadening.

  12. Tightly sealed facility of excellent in durability

    International Nuclear Information System (INIS)

    Shirano, Kenji; Chatani, Michio; Ebe, Shinji; Shimizu, Masatoshi; Seguchi, Tadao; Fukushima, Susumu; Hirata, Masaru; Shiosawa, Ken-ichi.

    1992-01-01

    It is found that a cross linked methacryl resin using an appropriate amount of a cross linking monomer also has a useful characteristic of an excellent chemical resistance and excellent γ-ray resistance. Then in the present invention, a cross linked methacryl resin molding product comprising 60 to 98 % by weight of methyl methacrylate units and 2 to 40 % by weight of cross linking monomer units is used as a material for transparent partition walls. A tightly sealed facility having the transparent partition wall materials of excellent radiation resistance in addition to acid resistance can be attained. (T.M.)

  13. Design and Preparation of Cross-Linked Polystyrene Nanoparticles for Elastomer Reinforcement

    Directory of Open Access Journals (Sweden)

    Ming Lu

    2010-01-01

    Full Text Available Cross-linked polystyrene (PS particles in a latex form were synthesized by free radical emulsion polymerization. The nano-PS-filled elastomer composites were prepared by the energy-saving latex compounding method. Results showed that the PS particles took a spherical shape in the size of 40–60 nm with a narrow size distribution, and the glass-transition temperature of the PS nanoparticles increased with the cross-linking density. The outcomes from the mechanical properties demonstrated that when filled into styrene-butadiene rubber (SBR, nitrile-butadiene rubber (NBR, and natural rubber (NR, the cross-linked PS nano-particles exhibited excellent reinforcing capabilities in all the three matrices, and the best in the SBR matrix. In comparison with that of the carbon black filled composites, another distinguished advantage of the cross-linked PS particles filled elastomer composites was found to be light weight in density, which could help to save tremendous amount of energy when put into end products.

  14. Cross-linking of rubber in the presence of multi-functional cross-linking aids via thermoreversible Diels-Alder chemistry

    NARCIS (Netherlands)

    Polgar, L. M.; Fortunato, G.; Araya-Hermosilla, R.; van Duin, M.; Pucci, A.; Picchioni, F.

    Furan-functionalized polyketone (PK-FU) was added to a furan-functionalized ethylene-propylene rubber (EPM-FU). The mixture was subsequently cross-linked with a bismaleimide through Diels-Alder chemistry in order to improve the mechanical properties of the rubber. Infrared spectroscopy showed the

  15. Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB.

    Science.gov (United States)

    Schirner, Kathrin; Eun, Ye-Jin; Dion, Mike; Luo, Yun; Helmann, John D; Garner, Ethan C; Walker, Suzanne

    2015-01-01

    The bacterial actin homolog MreB, which is crucial for rod shape determination, forms filaments that rotate around the cell width on the inner surface of the cytoplasmic membrane. What determines filament association with the membranes or with other cell wall elongation proteins is not known. Using specific chemical and genetic perturbations while following MreB filament motion, we find that MreB membrane association is an actively regulated process that depends on the presence of lipid-linked peptidoglycan precursors. When precursors are depleted, MreB filaments disassemble into the cytoplasm, and peptidoglycan synthesis becomes disorganized. In cells that lack wall teichoic acids but continue to make peptidoglycan, dynamic MreB filaments are observed, although their presence is not sufficient to establish a rod shape. We propose that the cell regulates MreB filament association with the membrane, allowing rapid and reversible inactivation of cell wall enzyme complexes in response to the inhibition of cell wall synthesis.

  16. Solution processed organic light-emitting diodes using the plasma cross-linking technology

    Energy Technology Data Exchange (ETDEWEB)

    He, Kongduo [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Liu, Yang [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Shanghai 200433 (China); Gong, Junyi; Zeng, Pan; Kong, Xun; Yang, Xilu; Yang, Cheng; Yu, Yan [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Liang, Rongqing [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Shanghai 200433 (China); Ou, Qiongrong, E-mail: qrou@fudan.edu.cn [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Shanghai 200433 (China)

    2016-09-30

    Highlights: • Mixed acetylene and Ar plasma treatment makes the organic film surface cross-linked. • The plasma treatment for 30 s does not affect the performance of OLEDs. • Cross-linking surface can resist rinsing and corrosion of organic solvent. • The surface morphology is nearly unchanged after plasma treatment. • The plasma cross-linking method can realize solution processed multilayer OLEDs. - Abstract: Solution processed multilayer organic light-emitting diodes (OLEDs) present challenges, especially regarding dissolution of the first layer during deposition of a second layer. In this work, we first demonstrated a plasma cross-linking technology to produce a solution processed OLED. The surfaces of organic films can be cross-linked after mixed acetylene and Ar plasma treatment for several tens of seconds and resist corrosion of organic solvent. The film thickness and surface morphology of emissive layers (EMLs) with plasma treatment and subsequently spin-rinsed with chlorobenzene are nearly unchanged. The solution processed triple-layer OLED is successfully fabricated and the current efficiency increases 50% than that of the double-layer OLED. Fluorescent characteristics of EMLs are also observed to investigate factors influencing the efficiency of the triple-layer OLED. Plasma cross-linking technology may open up a new pathway towards fabrication of all-solution processed multilayer OLEDs and other soft electronic devices.

  17. Formulation and Characterization of Glutaraldehyde Cross-Linked ...

    African Journals Online (AJOL)

    ... drug/polymer ratio, volume of cross linking agent and volume of surfactant were ... The microspheres were characterized for entrapment efficiency, drug loading, ... size distribution (105 – 219 μm) and an entrapment efficiency of up to 73 %.

  18. NUMERICAL ANALYSIS OF THE CRITICAL STATE OF THIN-WALLED STRUCTURE WITH Z-PROFILE CROSS SECTION

    Directory of Open Access Journals (Sweden)

    Patryk Różyło

    2017-03-01

    Full Text Available The object of the study was the thin-walled profile with Z-shaped cross section made of the carbon-epoxy composite. Material model was prepared based on the implemented orthotropic properties. The purpose of study was to determine the value of the critical load at which buckling occurs, the form of buckling and operating characteristics in critical condition. In order to achieve this numerical analysis were carried out. Additionally, the effects of the modification in arrangement of layers of the laminate to the stability and strength of thin-walled composite structures was presented. Numerical studies were carried out using commercial simulation software - ABAQUS®. Within the FEM research, both forms of buckling and the associated critical load, dependent on the configuration the layers of the composite were achieved. Analysis of the obtained results, allowed the evaluation of the structure's work in relation to the level of energy consumption or rigidity estimation. In the paper only numerical simulations of the critical state were conducted.

  19. Vitamin C and Poly(ethylene glycol) Protect Concentrated Poly(vinyl alcohol) Solutions against Radiation Cross-linking

    International Nuclear Information System (INIS)

    Oral, E.

    2006-01-01

    There is a need for an injectable material to augment damaged cartilage. We propose to make such self-associating poly(vinyl alcohol) (PVA) hydrogels. Physical associations can be formed in PVA using a gellant such as polyethylene glycol (PEG). The injectability of PVA solutions is compromised when sterilized due to chemical cross-linking. We hypothesized that an anticross-linking agent could prevent cross-linking of irradiated PVA solutions. PVA (17.5 wt/v %, MW= 115,000 g/mol) was prepared in water at 90 degree. PEG (MW=400 g/mol) was added at a ratio of PEG unit to PVA unit of 17, 86, 290, and 639 mol/mol. PVA solutions (17.5 wt/v %, MW= 16,000, 61,000, 81,000 and 115,000 g/mol) were also prepared. Vitamin C was added at a molar ratio of vitamin C to PVA unit of 0.75-10.4. Solutions were poured into syringes and γ-irradiated. The viscosity of injectable solutions was determined by using the bubble tube. Gel content of cross-linked samples was measured by boiling gels in water for 6 hours, drying at 90 degree and calculating the ratio of dry weight to 'as is' weight

  20. An Investigation on Rheology of Peroxide Cross-linking of Low Density Polyethylene

    DEFF Research Database (Denmark)

    Ghasemi, Ismaeil; Rasmussen, Henrik K.; Szabo, Peter

    2005-01-01

    One of the most important post-reactor modifications of polyethylene is cross-linking. It improves some properties of polyethylene such as environmental stress cracking resistance, chemical and abrasion resistance, and service temperature. In this study, the effect of peroxide cross-linking on th......One of the most important post-reactor modifications of polyethylene is cross-linking. It improves some properties of polyethylene such as environmental stress cracking resistance, chemical and abrasion resistance, and service temperature. In this study, the effect of peroxide cross......-linking on the rheological behaviour of low density polyethylene was investigated by using a combination of creep test and differential scanning calorimeter (DSC) in isotherm condition. The used peroxide was di-cumyl peroxide and its concentration was 2 wt%. The experiments were carried out at 150,160, and 170 degrees C...

  1. Hot spot formation on different tokamak wall materials

    International Nuclear Information System (INIS)

    Nedospasov, A.V.; Bezlyudny, I.V.

    1998-01-01

    The thermal contraction phenomenon and generation of 'hot spots' due to thermoemission were described. The paper consider non-linear stages of heat contraction on the graphite, beryllium, tungsten and vanadium wall. It is shown that on the beryllium surface hot spot can't appear due to strong cooling by sublimation. For other materials the conditions of hot spot appearance due to local superheating of the wall have been calculated and their parameters were found: critical surface temperature, size of spots and their temperature profiles, heat fluxes from plasma to the spots. It have been calculated fluxes of sublimating materials from spots to the plasma. It is noticed that nominal temperature of the grafite divertor plate, accepted in ITER's project to being equal 1500 C, is lower then critical temperature of the development heat contraction due to thermoemission. (orig.)

  2. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    Science.gov (United States)

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  3. Fluorescence spectroscopic study of the aggregation behavior of non-cross-linked and cross-linked poly(alkylmethyldiallylammonium bromides) having decyl, octyl, and hexyl side chains in aqueous solution

    NARCIS (Netherlands)

    Wang, G.J; Engberts, J.B.F.N.

    1996-01-01

    The conformational state of a series of non-cross-linked and cross-linked poly(alkylmethyldiallylammonium bromides) bearing decyl, octyl, and hexyl side chains ((CL)-CopolC1-10, (CL)-CopolC1-8, and (CL)-CopolC1-6, respectively) in aqueous solutions were investigated by fluorescence spectroscopy

  4. Assessment of UVA-Riboflavin Corneal Cross-Linking Using Small Amplitude Oscillatory Shear Measurements.

    Science.gov (United States)

    Aslanides, Ioannis M; Dessi, Claudia; Georgoudis, Panagiotis; Charalambidis, Georgios; Vlassopoulos, Dimitris; Coutsolelos, Athanassios G; Kymionis, George; Mukherjee, Achyut; Kitsopoulos, Theofanis N

    2016-04-01

    The effect of ultraviolet (UV)-riboflavin cross-linking (CXL) has been measured primarily using the strip extensometry technique. We propose a simple and reliable methodology for the assessment of CXL treatment by using an established rheologic protocol based on small amplitude oscillatory shear (SAOS) measurements. It provides information on the average cross-link density and the elastic modulus of treated cornea samples. Three fresh postmortem porcine corneas were used to study the feasibility of the technique, one serving as control and two receiving corneal collagen cross-linking treatment. Subsequently, five pairs of fresh postmortem porcine corneas received corneal collagen cross-linking treatment with riboflavin and UVA-irradiation (370 nm; irradiance of 3 mW/cm2) for 30 minutes (Dresden protocol); the contralateral porcine corneas were used as control samples. After the treatment, the linear viscoelastic moduli of the corneal samples were measured using SAOS measurements and the average cross-linking densities extracted. For all cases investigated, the dynamic moduli of the cross-linked corneas were higher compared to those of the corresponding control samples. The increase of the elastic modulus of the treated samples was between 122% and 1750%. The difference was statistically significant for all tested samples (P = 0.018, 2-tailed t-test). We report a simple and accurate methodology for quantifying the effects of cross-linking on porcine corneas treated with the Dresden protocol by means of SAOS measurements in the linear regime. The measured dynamic moduli, elastic and viscous modulus, represent the energy storage and energy dissipation, respectively. Hence, they provide a means to assess the changing physical properties of the cross-linked collagen networks after CXL treatment.

  5. Carboxymethyl starch cross-linked by electron beam radiation in presence of acrylic acid sensitizer

    International Nuclear Information System (INIS)

    Doan Binh; Nguyen Thanh Duoc; Pham Thi Thu Hong

    2013-01-01

    Carboxymethyl starch (CMS) can be cross-linked by electron beam radiation to form a biocompatible and environment-friendly hydrogel at a high absorbed dose and a condensed CMS concentration. Acrylic acid (AAc) can be used as a sensitizer in order to reduce the absorbed doses to an acceptable certain level. At an absorbed dose of 3-4 kGy, the gel content of crosslinked CMS can be obtained about 50% with 5% (w/w) AAc concentration used. The compressive strength of CMS samples increased with increasing their cross-linked densities due to raising absorbed doses. The swelling ratio of cross-linked CMS was also attainable at a maximum of 50 times in the distilled water. The enzymatic degradation of cross-linked CMS was carried out in acetate buffer pH 4.6 with 0.1% α-amylase enzymatic solution incubated at 40℃ for 6 h. The crosslinked CMS samples were degraded slower than uncrosslinked CMS ones. The results indicated that the highly cross-linked CMS was almost fully degradable when the enzymatic hydrolysis was performed during 6 h. The FT IR spectra of cross-linked CMS in the presence of AAc were examined to observe the carboxyl group of AAc in the structure of cross-linked CMS. The hydrophilic of cross-linked CMS surface was determined by a contact-angle analysis. (authors)

  6. Cross-linked hyaluronic acid in pressure ulcer prevention.

    Science.gov (United States)

    Beniamino, P; Vadalà, M; Laurino, C

    2016-07-02

    Long-term bedridden patients are at high risk of acquring pressure ulcers (PUs). In this group of patients, prevention is necessary to cut the health costs, improve quality of life and reduce the mortality. Here, we evaluated the effectiveness of a cross-linked hyaluronic acid (HA) as plastic bulking-agent filling and remodelling the deep dermis and subcutaneous space of the skin areas exposed to the risk of necrosis. Our work hypothesis has been to inflate a sub-dermal elastic cushion, filled with a natural ECM component, with the aim to induce a stronger tissue background resistant to the ulcerative process. All the patients had an increased risk of PUs, at the sacral, ileum or heel skin. Patients were being nursed accordingly to the standard orthopaedic ward management with a pressure relieveing air mattress. The standard protocol consisted in body mobilisation every 3 hours, 24 hours a day and accurate cleaning of the skin with liquid soap and water without any towel friction and without adding any cream or lotion for the skin protection. Our filling protocol enclosed: accurate disinfection of the skin to be injected with povidone-iodine solution, followed by a local anaesthesia with 28G 13 mm needle, injecting 1.5 ml of 1% xylocaine. Then slow, deep, subcutaneous injection of cross-linked HA was performed with a 18G long needle, in order to deliver a homogeneous, soft gel layer underneath and around the whitish erythematous skin edges at risk of ulceration. Patients' tolerability of the compound and adverse events were also recorded. There were 15 patients (78-94 years old) who participated in the study. All tolerated the procedure very well and no serious side effects were declared. No skin pressure ulceration was detected in the four weeks follow-up Conclusion: We have demonstrated the safety and tolerability of a cross-linked HA subdermal injection in PUs prevention. The compound stratifies in a soft, elastic, interstitial bulk into the deep dermis, thus

  7. Improvement of the cycling performance of LiCoO2 with assistance of cross-linked PAN for lithium ion batteries

    International Nuclear Information System (INIS)

    Yang, Xinhe; Shen, Lanyao; Wu, Bin; Zuo, Zicheng; Mu, Daobin; Wu, Borong; Zhou, Henghui

    2015-01-01

    Highlights: • Cross-linked PAN coating was prepared without damaging the surface of LiCoO 2 . • The coating layer owns good electronic conductivity and mechanical strength. • The cross-linked PAN coating layer is more sufficient than Al 2 O 3 coating. • It shows much improved cyclability than that of bare and Al 2 O 3 coated LiCoO 2 . - Abstract: LiCoO 2 has been widely used in lithium ion batteries for digital electronic products. However, the limited cycling performance under high cut-off voltage hinders its commercial application. Many metal oxides and/or phosphorus coating have been reported to improve the cycling performance of LiCoO 2 . In this paper, we report on cross-linked PAN coated LiCoO 2 composite as a cathode material for lithium ion batteries. The coating layer was obtained by intermolecular crosslinking of PAN polymer chain by heat treatment at high temperature in air. The air heating process avoids the possible damage arising from the carbon thermal reduction to the surface structure of LiCoO 2 . Electrochemical test indicates that the LiCoO 2 with the cross-linked PAN coating layer shows much improved cycle performance compared with that of bare and Al 2 O 3 coated LiCoO 2 . These findings might also open new avenues to explore polymer coating for other cathode materials of lithium ion batteries

  8. First wall material damage induced by fusion-fission neutron environment

    Energy Technology Data Exchange (ETDEWEB)

    Khripunov, Vladimir, E-mail: Khripunov_VI@nrcki.ru

    2016-11-01

    Highlights: • The highest damage and gas production rates are experienced within the first wall materials of a hybrid fusion-fission system. • About ∼2 times higher dpa and 4–5 higher He appm are expected compared to the values distinctive for a pure fusion system at the same DT-neutron wall loading. • The specific nuclear heating may be increased by a factor of ∼8–9 due to fusion and fission neutrons radiation capture in metal components of the first wall. - Abstract: Neutronic performance and inventory analyses were conducted to quantify the damage and gas production rates in candidate materials when used in a fusion-fission hybrid system first wall (FW). The structural materials considered are austenitic SS, Cu-alloy and V- alloys. Plasma facing materials included Be, and CFC composite and W. It is shown that the highest damage rates and gas particles production in materials are experienced within the FW region of a hybrid similar to a pure fusion system. They are greatly influenced by a combined neutron energy spectrum formed by the two-component fusion-fission neutron source in front of the FW and in a subcritical fission blanket behind. These characteristics are non-linear functions of the fission neutron source intensity. Atomic displacement damage production rate in the FW materials of a subcritical system (at the safe subcriticality limit of ∼0.95 and the neutron multiplication factor of ∼20) is almost ∼2 times higher compared to the values distinctive for a pure fusion system at the same 14 MeV neutron FW loading. Both hydrogen (H) and helium (He) gas production rates are practically on the same level except of about ∼4–5 times higher He-production in austenitic and reduced activation ferritic martensitic steels. A proper simulation of the damage environment in hybrid systems is required to evaluate the expected material performance and the structural component residence times.

  9. UV induced DNA-protein cross links in vitro and in vivo

    International Nuclear Information System (INIS)

    Kornhauser, A.

    1976-01-01

    The review was not intended to cover all the past year's literature in this field; only selective material published in 1974 and 1975 has been surveyed. Covalent linkage of DNA and RNA to proteins induced by UV is considered, but DNA-membrade attachment, amino acids covalently bound to DNA as functions of growth conditions and protein non-covalently bound to DNA involved in cell regulation are excluded. Studies of DNA-protein cross-links upon UV irradiation in chemical model systems, bacteria and tissue culture systems, and an in vivo mammalian system are all surveyed. (U.K.)

  10. Role of special cross-links in structure formation of bacterial DNA polymer

    Science.gov (United States)

    Agarwal, Tejal; Manjunath, G. P.; Habib, Farhat; Lakshmi Vaddavalli, Pavana; Chatterji, Apratim

    2018-01-01

    Using data from contact maps of the DNA-polymer of Escherichia coli (E. Coli) (at kilobase pair resolution) as an input to our model, we introduce cross-links between monomers in a bead-spring model of a ring polymer at very specific points along the chain. Via suitable Monte Carlo simulations, we show that the presence of these cross-links leads to a particular organization of the chain at large (micron) length scales of the DNA. We also investigate the structure of a ring polymer with an equal number of cross-links at random positions along the chain. We find that though the polymer does get organized at the large length scales, the nature of the organization is quite different from the organization observed with cross-links at specific biologically determined positions. We used the contact map of E. Coli bacteria which has around 4.6 million base pairs in a single circular chromosome. In our coarse-grained flexible ring polymer model, we used 4642 monomer beads and observed that around 80 cross-links are enough to induce the large-scale organization of the molecule accounting for statistical fluctuations caused by thermal energy. The length of a DNA chain even of a simple bacterial cell such as E. Coli is much longer than typical proteins, hence we avoided methods used to tackle protein folding problems. We define new suitable quantities to identify the large scale structure of a polymer chain with a few cross-links.

  11. Comparative study of PBI Cross Linked Utilizing Agents of Varying Steric Configurations

    DEFF Research Database (Denmark)

    Kirkebcek, Andreas; Aili, David; Li, Qingfeng

    2016-01-01

    ionic or covalent cross linking. When considering such, little attention is devoted to explore the effect of the sterical configuration of the cross linking agent. In this contribution three different cross linking agents are utilized to evaluate how these affects final membrane properties.......The high thermal and chemical stability of poly[2,2'-(m-phenylene)-5,5' bibenzimidazole] (PBI) accounts for its wise spread use in high temperature polymer electrolyte membrane fuel cells (HT- PEMFC). By doping the membrane with phosphoric acid (PA) ionic conductivity is obtained. Thus conductivity...... is dependent on the amount of PA present within the membrane. However mechanical properties are reduced are significantly reduced due to the plasticizing effect shown by PA [1]. This effect is due to PBI chain displacement. This effect can be lessened by use of cross linking [2-4]. This can be obtained using...

  12. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering

    International Nuclear Information System (INIS)

    Mathapati, Santosh; Bishi, Dillip Kumar; Guhathakurta, Soma; Cherian, Kotturathu Mammen; Venugopal, Jayarama Reddy; Ramakrishna, Seeram; Verma, Rama Shanker

    2013-01-01

    Glutaraldehyde (GLUT) processing, cellular antigens, calcium ions in circulation, and phospholipids present in the native tissue are predominantly responsible for calcification, degeneration, and lack of natural microenvironment for host progenitor cell migration in tissue implants. The study presents an improved methodology for adhesion and proliferation of endothelial progenitor cells (EPCs) without significant changes in biomechanical and biodegradation properties of the processed acellular bovine pericardium. The anti-calcification potential of the processed tissue was enhanced by detoxification of GLUT-cross-linked bovine pericardium by decellularization, pretreating it with ethanol or removing the free aldehydes by citric acid treatment and lyophilization. The treated tissues were assessed for biomechanical properties, GLUT ligand quantification, adhesion, proliferation of EPCs, and biodegradability. The results indicate that there was no significant change in biomechanical properties and biodegradability when enzymatic hydrolysis (p > 0.05) is employed in detoxified acellular GLUT cross-linked tissue (DBP–G–CA–ET), compared with the native detoxified GLUT cross-linked bovine pericardium (NBP–G–CA–ET). DBP–G–CA–ET exhibited a significant (p > 0.05) increase in the viability of EPCs and cell adhesion as compared to acellular GLUT cross-linked bovine pericardium (p < 0.05). Lyophilized acellular detoxified GLUT cross-linked bovine pericardium, employed in our study as an alternative to conventional GLUT cross-linked bovine pericardium, might provide longer durability and better biocompatibility, and reduce calcification. The developed bovine pericardium patches could be used in cardiac reconstruction and repair, arteriotomy, soft tissue repair, and general surgical procedures with tissue regeneration dimensions. - Highlights: ► We improved the quality of patch biomaterial for cardiovascular surgical procedures. ► Bovine pericardium was

  13. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mathapati, Santosh; Bishi, Dillip Kumar [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India); Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Guhathakurta, Soma [Departmet of Engineering Design, Indian Institute of Technology Madras, Chennai (India); Cherian, Kotturathu Mammen [Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Venugopal, Jayarama Reddy; Ramakrishna, Seeram [Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Verma, Rama Shanker, E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India)

    2013-04-01

    Glutaraldehyde (GLUT) processing, cellular antigens, calcium ions in circulation, and phospholipids present in the native tissue are predominantly responsible for calcification, degeneration, and lack of natural microenvironment for host progenitor cell migration in tissue implants. The study presents an improved methodology for adhesion and proliferation of endothelial progenitor cells (EPCs) without significant changes in biomechanical and biodegradation properties of the processed acellular bovine pericardium. The anti-calcification potential of the processed tissue was enhanced by detoxification of GLUT-cross-linked bovine pericardium by decellularization, pretreating it with ethanol or removing the free aldehydes by citric acid treatment and lyophilization. The treated tissues were assessed for biomechanical properties, GLUT ligand quantification, adhesion, proliferation of EPCs, and biodegradability. The results indicate that there was no significant change in biomechanical properties and biodegradability when enzymatic hydrolysis (p > 0.05) is employed in detoxified acellular GLUT cross-linked tissue (DBP–G–CA–ET), compared with the native detoxified GLUT cross-linked bovine pericardium (NBP–G–CA–ET). DBP–G–CA–ET exhibited a significant (p > 0.05) increase in the viability of EPCs and cell adhesion as compared to acellular GLUT cross-linked bovine pericardium (p < 0.05). Lyophilized acellular detoxified GLUT cross-linked bovine pericardium, employed in our study as an alternative to conventional GLUT cross-linked bovine pericardium, might provide longer durability and better biocompatibility, and reduce calcification. The developed bovine pericardium patches could be used in cardiac reconstruction and repair, arteriotomy, soft tissue repair, and general surgical procedures with tissue regeneration dimensions. - Highlights: ► We improved the quality of patch biomaterial for cardiovascular surgical procedures. ► Bovine pericardium was

  14. Thermoreversible cross-linking of maleated ethylene/propylene copolymers with diamines and amino-alcohols

    NARCIS (Netherlands)

    Mee, van der M.A.J.; Goossens, J.G.P.; Duin, van M.

    2008-01-01

    Maleated ethylene/propylene copolymers (MAn-g-EPM) were thermoreversibly cross-linked using diamines and amino-alcohols. Covalent cross-links are formed via the equilibrium reaction of the grafted anhydride groups with di-functional cross-linkers containing combinations of primary (1°) and secondary

  15. Biomechanical findings in rats undergoing fascial reconstruction with graft materials suggested as an alternative to polypropylene.

    Science.gov (United States)

    Konstantinovic, M L; Ozog, Y; Spelzini, F; Pottier, C; De Ridder, D; Deprest, J

    2010-03-01

    Graft materials used for pelvic floor reinforcement should still be considered as investigational and, therefore, evaluated experimentally and within clinical trials. The present report describes our biomechanical findings in rats implanted with selected novel implant materials, which in recent years have been suggested as alternatives to plain polypropylene (PP) meshes. Full thickness abdominal wall defects were primarily repaired by the implant of interest. Experiments involved eight different implant materials: two partly degradable synthetic implants, that is, a hybrid of polyglactin 910 with PP (Vypro II) and collagen coated PP (Pelvitex); two non-cross linked (Surgisis, InteXēn LP) and two cross-linked materials (Pelvicol, Pelvisoft) and two porous modifications of InteXēn LP and Pelvicol implants. At different time points (7, 14, 30, and 90 days), the implants and surrounding host tissue (explant) were harvested and tensiometry was performed. Tensile strength and location of breakage were recorded. In general resorbable non-cross linked collagen matrices and porous materials were weaker after 90 days; similar behavior was seen for implant materials alone and their construction with the surrounding native tissue. Both non-porous and porous modification of InteXēn LP appeared at 90 days as a very thin layer of collagen that was two-thirds, respectively one-third of the initial thickness. In experimental conditions, sufficient strength was obtained only after 3 months, and PP containing constructs appeared as the strongest though reconstruction with Pelvicol showed comparable outcomes. Lower values for strength of non-cross linked and porous collagen materials are questioning their efficacy for pelvic floor reconstruction. (c) 2009 Wiley-Liss, Inc.

  16. SYNTHESIS AND CATALYTIC PROPERTIES OF CROSS-LINKED HYDROPHOBICALLY ASSOCIATING POLY(ALKYLMETHYLDIALLYLAMMONIUM BROMIDES)

    NARCIS (Netherlands)

    WANG, GJ; ENGBERTS, JBFN

    1994-01-01

    Cross-linked, hydrophobically associating homo- and copolymers were synthesized by free-radical cyclo(co)polymerization of alkylmethyldiallylammonium bromide monomers with a small amount of N,N'-methylenebisacrylamide in aqueous solution using ammonium persulfate as the initiator. The cross-linked

  17. Competition between dewetting and cross-linking in poly(N-vinylpyrrolidone)/polystyrene bilayer films.

    Science.gov (United States)

    Telford, Andrew M; Thickett, Stuart C; James, Michael; Neto, Chiara

    2011-12-06

    We investigated the dewetting of metastable poly(N-vinylpyrrolidone) (PNVP) thin films (45 nm) on top of polystyrene (PS) thin films (58 nm) as a function of annealing temperature and molecular weight of PS (96 and 6850 kg/mol). We focused on the competition between dewetting, occurring as a result of unfavorable intermolecular interactions at the PNVP/PS interface, and spontaneous cross-linking of PNVP, occurring during thermal annealing, as we recently reported (Telford, A. M.; James, M.; Meagher, L.; Neto, C. ACS Appl. Mater. Interfaces 2010, 2, 2399-2408). Using optical microscopy, we studied how the dewetting morphology and dynamics at different temperatures depended on the relative viscosity of the top PNVP film, which increased with cross-linking time, and of the bottom PS film. In the PNVP/PS96K system, cross-linking dominated over dewetting at temperatures below 180 °C, reducing drastically nucleated hole density and their maximum size, while above 180 °C the two processes reversed, with complete dewetting occurring at 200 °C. On the other hand, the PNVP/PS6850K system never achieved advanced dewetting stages as the dewetting was slower than cross-linking in the investigated temperature range. In both systems, dewetting of the PNVP films could be avoided altogether by thermally annealing the bilayers at temperatures where cross-linking dominated. The cross-linking was characterized quantitatively using neutron reflectometry, which indicated shrinkage and densification of the PNVP film, and qualitatively through selective removal of the bottom PS film. A simple model accounting for progressive cross-linking during the dewetting process predicted well the observed hole growth profiles and produced estimates of the PNVP cross-linking rate coefficients and of the activation energy of the process, in good agreement with literature values for similar systems. © 2011 American Chemical Society

  18. Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes

    International Nuclear Information System (INIS)

    Yang, Jingshuai; Xu, Yixin; Liu, Peipei; Gao, Liping; Che, Quantong; He, Ronghuan

    2015-01-01

    Covalently cross-linked hexafluoropropylidene polybenzimidazole (F 6 PBI) was prepared and used to fabricate high temperature proton exchange membranes with enhanced mechanical strength against thermoplastic distortion. Three different epoxides, i.e. bisphenol A diglycidyl ether (R 1 ), bisphenol A propoxylate diglycidyl ether (R 2 ) and poly(ethylene glycol) diglycidyl ether (R 3 ), were chosen as the cross-linkers to investigate the influence of their structures on the properties of the cross-linked F 6 PBI membranes. All the cross-linked F 6 PBI membranes displayed excellent stability towards the radical oxidation. Comparing with the pure F 6 PBI membrane, the cross-linked F 6 PBI membranes showed high acid doping level but less swelling after doping phosphoric acid at elevated temperatures. The mechanical strength at 130 °C was improved from 0.4 MPa for F 6 PBI membrane to a range of 0.8–2.0 MPa for the cross-linked F 6 PBI membranes with an acid doping level as high as around 14, especially for that crosslinking with the epoxide (R 3 ), which has a long linear structure of alkyl ether. The proton conductivity of the cross-linked membranes was increased accordingly due to the high acid doping levels. Fuel cell tests demonstrated the technical feasibility of the acid doped cross-linked F 6 PBI membranes for high temperature proton exchange membrane fuel cells

  19. Aging Mechanisms and Nondestructive Aging Indicator of Filled Cross-linked Polyethylene (XLPE) Exposed to Simultaneous Thermal and Gamma Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuaishuai; Fifield, Leonard S.; Bowler, Nicola

    2018-04-11

    Aging mechanisms and a nondestructive aging indicator of filled cross-linked polyethylene (XLPE) cable insulation material used in nuclear power plants (NPPs) are studied. Using various material characterization techniques, likely candidates and functions for the main additives in a commercial filled-XLPE insulation material have been identified. These include decabromodiphenyl ether and Sb2O3 as flame retardants, ZnS as white pigment and polymerized 1,2-dihydro-2,2,4-trimethylquinoline as antioxidant. Gas chromatography-mass spectrometry, differential scanning calorimetry, oxidation induction time and measurements of dielectric loss tangent are utilized to monitor property changes as a function of thermal and radiation exposure of the cable material. Small-molecular-weight hydrocarbons are evolve with gamma radiation aging at 90 °C. The level of antioxidant decreases with aging by volatilization and chemical reaction with free radicals. Thermal aging at 90 °C for 25 days or less causes no observable change to the cross-linked polymer structure. Gamma radiation causes damage to crystalline polymer regions and introduces defects. Dielectric loss tangent is shown to be an effective and reliable nondestructive indicator of the aging severity of the filled-XLPE insulation material.

  20. Electron beam disruption simulation of first wall material

    International Nuclear Information System (INIS)

    Quataert, D.; Brossa, F.; Moretto, P.; Rigon, G.

    1984-01-01

    The destructive effect of plasma disruptions on first wall material and limiters has been predicted and models have been made to study their behaviour under intensive pulsed energy deposition. The results presented here give a full description of qualitative and semi-quantitative results obtained for several materials (Mo, stainless steel, Cu, Al, Inconel, etc.) under various experimental conditions. Examples are given of specific defects such as: evaporation, melting, void and crack formation and recrystallization of the underlying material. Methods for the evaluation of deposited energy and beam dimensions are also presented. (author)

  1. THIN-WALLED CROSS SECTION SHAPE INFLUENCE ON STEEL MEMBER RESISTANCE

    Directory of Open Access Journals (Sweden)

    Elżbieta Urbańska-Galewska

    2016-03-01

    Full Text Available This work describes why trending thin-walled technology is achieving popularity in steel construction sector. A purpose of this article is to present the influence of the cold-formed element cross-section shape on an axial compression and a bending moment resistance. The authors have considered four different shapes assuming constant section area and thickness. Calculations were based on three different steel grades taking into account local, distortional and overall buckling. The results are presented in a tabular and a graphical way and clearly confirm that cross-section forming distinctly impact the cold-formed member resistance. The authors choose these cross-sections that work better in compression state and the other (those slender and high that function more efficiently are subjected to bending.

  2. Teaching Cross-Cultural Psychology: Providing the Missing Link.

    Science.gov (United States)

    Cushner, Kenneth H.

    1987-01-01

    This article describes the development and evaluation of materials designed to facilitate the teaching of cross-cultural psychology to students who are internationally and interculturally naive. The materials consist of 100 cross-cultural incidents contained in 18 essays. Two incidents are described and evaluative evidence is presented.…

  3. Biosorption of uranium by cross-linked and alginate immobilized residual biomass from distillery spent wash

    International Nuclear Information System (INIS)

    Bustard, M.; McHale, A.P.

    1997-01-01

    Residual biomass from a whiskey distillery was examined for its ability to function as a biosorbent for uranium. Biomass recovered and lyophilised exhibited a maximum biosorption capacity of 165-170 mg uranium/g dry weight biomass at 15 C. With a view towards the development of continuous or semi-continuous flow biosorption processes it was decided to immobilize the material by (1) cross-linking with formaldehyde and (2) introducing that material into alginate matrices. Cross-linking the recovered biomass resulted in the formation of a biosorbent preparation with a maximum biosorption capacity of 185-190 mg/g dry weight biomass at 15 C. Following immobilization of biomass in alginate matrices it was found that the total amount of uranium bound to the matrix did not change with increasing amounts of biomass immobilized. It was found however, that the proportion of uranium bound to the biomass within the alginate-biomass matrix increased with increasing biomass concentration. Further analysis of these preparations demonstrated that the alginate-biomass matrix had a maximum biosorption capacity of 220 mg uranium/g dry weight of the matrix, even at low concentrations of biomass. (orig.). With 3 figs., 1 tab

  4. Biosorption of uranium by cross-linked and alginate immobilized residual biomass from distillery spent wash

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, M. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine (United Kingdom); McHale, A.P. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine (United Kingdom)

    1997-08-01

    Residual biomass from a whiskey distillery was examined for its ability to function as a biosorbent for uranium. Biomass recovered and lyophilised exhibited a maximum biosorption capacity of 165-170 mg uranium/g dry weight biomass at 15 C. With a view towards the development of continuous or semi-continuous flow biosorption processes it was decided to immobilize the material by (1) cross-linking with formaldehyde and (2) introducing that material into alginate matrices. Cross-linking the recovered biomass resulted in the formation of a biosorbent preparation with a maximum biosorption capacity of 185-190 mg/g dry weight biomass at 15 C. Following immobilization of biomass in alginate matrices it was found that the total amount of uranium bound to the matrix did not change with increasing amounts of biomass immobilized. It was found however, that the proportion of uranium bound to the biomass within the alginate-biomass matrix increased with increasing biomass concentration. Further analysis of these preparations demonstrated that the alginate-biomass matrix had a maximum biosorption capacity of 220 mg uranium/g dry weight of the matrix, even at low concentrations of biomass. (orig.). With 3 figs., 1 tab.

  5. The Colibactin Genotoxin Generates DNA Interstrand Cross-Links in Infected Cells

    Directory of Open Access Journals (Sweden)

    Nadège Bossuet-Greif

    2018-03-01

    Full Text Available Colibactins are hybrid polyketide-nonribosomal peptides produced by Escherichia coli, Klebsiella pneumoniae, and other Enterobacteriaceae harboring the pks genomic island. These genotoxic metabolites are produced by pks-encoded peptide-polyketide synthases as inactive prodrugs called precolibactins, which are then converted to colibactins by deacylation for DNA-damaging effects. Colibactins are bona fide virulence factors and are suspected of promoting colorectal carcinogenesis when produced by intestinal E. coli. Natural active colibactins have not been isolated, and how they induce DNA damage in the eukaryotic host cell is poorly characterized. Here, we show that DNA strands are cross-linked covalently when exposed to enterobacteria producing colibactins. DNA cross-linking is abrogated in a clbP mutant unable to deacetylate precolibactins or by adding the colibactin self-resistance protein ClbS, confirming the involvement of the mature forms of colibactins. A similar DNA-damaging mechanism is observed in cellulo, where interstrand cross-links are detected in the genomic DNA of cultured human cells exposed to colibactin-producing bacteria. The intoxicated cells exhibit replication stress, activation of ataxia-telangiectasia and Rad3-related kinase (ATR, and recruitment of the DNA cross-link repair Fanconi anemia protein D2 (FANCD2 protein. In contrast, inhibition of ATR or knockdown of FANCD2 reduces the survival of cells exposed to colibactin-producing bacteria. These findings demonstrate that DNA interstrand cross-linking is the critical mechanism of colibactin-induced DNA damage in infected cells.

  6. Antibiofouling hybrid dendritic Boltorn/star PEG thiol-ene cross-linked networks.

    Science.gov (United States)

    Bartels, Jeremy W; Imbesi, Philip M; Finlay, John A; Fidge, Christopher; Ma, Jun; Seppala, Jonathan E; Nystrom, Andreas M; Mackay, Michael E; Callow, James A; Callow, Maureen E; Wooley, Karen L

    2011-06-01

    A series of thiol-ene generated amphiphilic cross-linked networks was prepared by reaction of alkene-modified Boltorn polyesters (Boltorn-ene) with varying weight percent of 4-armed poly(ethylene glycol) (PEG) tetrathiol (0-25 wt%) and varying equivalents of pentaerythritol tetrakis(3-mercaptopropionate) (PETMP) (0-64 wt%). These materials were designed to present complex surface topographies and morphologies, with heterogeneity of surface composition and properties and robust mechanical properties, to serve as nontoxic antibiofouling coatings that are amenable to large-scale production for application in the marine environment. Therefore, a two-dimensional matrix of materials compositions was prepared to study the physical and mechanical properties, over which the compositions spanned from 0 to 25 wt% PEG tetrathiol and 0-64 wt% PETMP (the overall thiol/alkene (SH/ene) ratios ranged from 0.00 to 1.00 equiv), with both cross-linker weight percentages calculated with respect to the weight of Boltorn-ene. The Boltorn-ene components were prepared through the esterification of commercially available Boltorn H30 with 3-butenoic acid. The subsequent cross-linking of the Boltorn-PEG-PETMP films was monitored using IR spectroscopy, where it was found that near-complete consumption of both thiol and alkene groups occurred when the stoichiometry was ca. 48 wt% PETMP (0.75 equiv SH/ene, independent of PEG amount). The thermal properties of the films showed an increase in T(g) with an increase in 4-armed PEG-tetrathiol wt%, regardless of the PETMP concentration. Investigation of the bulk mechanical properties in dry and wet states found that the Young's modulus was the greatest at 48 wt% PETMP (0.75 equiv of SH/ene). The ultimate tensile strength increased when PETMP was constant and the PEG concentration was increased. The Young's modulus was slightly lower for wet films at constant PEG or constant PETMP amounts, than for the dry samples. The nanoscopic surface features were

  7. Gamma-radiation induced cross-links in ethylene-propylene rubber studied by CP-MAS NMR

    International Nuclear Information System (INIS)

    Sohma, J.; Shiotani, M.; Murakami, S.

    1983-01-01

    A new technique of 13 C-NMR, the CP-MAS method, was applied to study a chemistry of cross-links induced by #betta#-irradiation of ethylene-propylene rubber. The chemical species of cross-linking points were specified with their relative concentrations by the analysis of the CP-MAS spectra obtained before and after the irradiation. It was found that the short branches were also formed by the irradiation. A comparison was made between the cross-links detected by the CP-MAS method and those obtained by the Charlesby-Pinner analysis of the gelation caused by the #betta#-irradiation. The conventional 13 C-NMR of the cross-linked and swollen EPR provided us an information on the sol parts of the sample but little information on the cross-links in the gel parts. (author)

  8. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Science.gov (United States)

    2010-04-01

    ... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1211 Cross-linked polyacrylate... shall be determined using size exclusion chromatography or an equivalent method. When conducting the...

  9. On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release

    International Nuclear Information System (INIS)

    Dang, Xugang; Yang, Mao; Shan, Zhihua; Mansouri, Shahnaz; May, Bee K; Chen, Xiaodong; Chen, Hui; Woo, Meng Wai

    2017-01-01

    Spray-dried gelatin/oxidized corn starch (G/OCS) microcapsules were produced for drug release application. The prepared microcapsules were characterized through a scanning electron microscope (SEM) picture and thermogravimetric analysis (TGA). The swelling characteristics of the G/OCS microcapsules and release properties of vitamin C were then investigated. The results from structural analysis indicated that the presence of miscibility and compatibility between oxidized corn starch and gelatin, and exhibits high thermal stability up to 326 °C. The swelling of G/OCS microcapsules increased with increasing pH and reduced with decreasing ionic strength, attributed to the cross-linking between gelatin and oxidized corn starch, ionization of functional groups. Vitamin C release characteristic revealed controlled release behavior in the first 3 h of contact with an aqueous medium. This release behavior was independent of the swelling behavior indicating the potential of the encapsulating matrix to produce controlled release across a spectrum of pH environment. - Highlights: • It's first time to prepare microencapsulation with gelatin and oxidized corn starch. • The microencapsulation material can be biodegradable completely. • The production technology of microcapsule is convenient. • This work explores the potential to use oxidized starch cross-linked gelatin. • The microencapsulation material can be used for drug release.

  10. On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Xugang; Yang, Mao; Shan, Zhihua [National Engineering Laboratory for Clean Technology Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065 (China); Mansouri, Shahnaz [Department of Chemical Engineering, Monash University, VIC 3800 (Australia); May, Bee K [School of Applied Science, RMIT University, 124 La Trobe St, Melbourne, VIC 3001 (Australia); Chen, Xiaodong [Department of Chemical Engineering, Monash University, VIC 3800 (Australia); School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University (China); Chen, Hui, E-mail: leather2088@sina.com [National Engineering Laboratory for Clean Technology Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065 (China); Department of Chemical Engineering, Monash University, VIC 3800 (Australia); Woo, Meng Wai, E-mail: meng.woo@monash.edu [Department of Chemical Engineering, Monash University, VIC 3800 (Australia)

    2017-05-01

    Spray-dried gelatin/oxidized corn starch (G/OCS) microcapsules were produced for drug release application. The prepared microcapsules were characterized through a scanning electron microscope (SEM) picture and thermogravimetric analysis (TGA). The swelling characteristics of the G/OCS microcapsules and release properties of vitamin C were then investigated. The results from structural analysis indicated that the presence of miscibility and compatibility between oxidized corn starch and gelatin, and exhibits high thermal stability up to 326 °C. The swelling of G/OCS microcapsules increased with increasing pH and reduced with decreasing ionic strength, attributed to the cross-linking between gelatin and oxidized corn starch, ionization of functional groups. Vitamin C release characteristic revealed controlled release behavior in the first 3 h of contact with an aqueous medium. This release behavior was independent of the swelling behavior indicating the potential of the encapsulating matrix to produce controlled release across a spectrum of pH environment. - Highlights: • It's first time to prepare microencapsulation with gelatin and oxidized corn starch. • The microencapsulation material can be biodegradable completely. • The production technology of microcapsule is convenient. • This work explores the potential to use oxidized starch cross-linked gelatin. • The microencapsulation material can be used for drug release.

  11. First wall and blanket module safety enhancement by material selection and design decision

    International Nuclear Information System (INIS)

    Merrill, B.J.

    1980-01-01

    A thermal/mechanical study has been performed which illustrates the behavior of a fusion reactor first wall and blanket module during a loss of coolant flow event. The relative safety advantages of various material and design options were determined. A generalized first wall-blanket concept was developed to provide the flexibility to vary the structural material (stainless steel vs titanium), coolant (helium vs water), and breeder material (liquid lithium vs solid lithium aluminate). In addition, independent vs common first wall-blanket cooling and coupled adjacent module cooling design options were included in the study. The comparative analyses were performed using a modified thermal analysis code to handle phase change problems

  12. Chitosan Cross-linked Reconstituted Amniotic Collagen Membrane ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Chitosan Cross-linked Reconstituted Amniotic Collagen Membrane – An Excellent Cell Substratum. The KERATINOCYTE proliferation and Differentiation into multiple layers is due to the presence of type - IV collagen in the amnion. Cultured FIBROBLASTS had good ...

  13. Assessment of left ventricular wall motion and function by cross-sectional echocardiography

    International Nuclear Information System (INIS)

    Ono, Akifumi; Hirata, Shunkichi; Ishikawa, Kyozo

    1982-01-01

    The clinical efficacy of cross-sectional echocardiography (CSE) was evaluated with M-mode echocardiography and radionuclide cardioangiography (RCG) in 50 cases including 30 patients with myocardial infarction. Segmental wall motion by CSE was highly correlated with segmental wall motion and left ventricular ejection fraction by RCG (r = 0.89 in the former, r = -0.84 in the latter). On the other hand, the left ventricular ejection fraction by M-mode echocardiography revealed a fairly well correlation with that by RCG ( r = 0.68). These results suggest that, as compared with RCG, CSE is quite useful in an evaluation of left ventricular function and in a detection of segmental wall motion abnormalities. (author)

  14. Optimization of Formaldehyde Cross-Linking for Protein Interaction Analysis of Non-Tagged Integrin β1

    Directory of Open Access Journals (Sweden)

    Cordula Klockenbusch

    2010-01-01

    Full Text Available Formaldehyde cross-linking of protein complexes combined with immunoprecipitation and mass spectrometry analysis is a promising technique for analysing protein-protein interactions, including those of transient nature. Here we used integrin β1 as a model to describe the application of formaldehyde cross-linking in detail, particularly focusing on the optimal parameters for cross-linking, the detection of formaldehyde cross-linked complexes, the utility of antibodies, and the identification of binding partners. Integrin β1 was found in a high molecular weight complex after formaldehyde cross-linking. Eight different anti-integrin β1 antibodies were used for pull-down experiments and no loss in precipitation efficiency after cross-linking was observed. However, two of the antibodies could not precipitate the complex, probably due to hidden epitopes. Formaldehyde cross-linked complexes, precipitated from Jurkat cells or human platelets and analyzed by mass spectrometry, were found to be composed of integrin β1, α4 and α6 or β1, α6, α2, and α5, respectively.

  15. Optimization of Formaldehyde Cross-Linking for Protein Interaction Analysis of Non-Tagged Integrin β1

    Science.gov (United States)

    Klockenbusch, Cordula; Kast, Juergen

    2010-01-01

    Formaldehyde cross-linking of protein complexes combined with immunoprecipitation and mass spectrometry analysis is a promising technique for analysing protein-protein interactions, including those of transient nature. Here we used integrin β1 as a model to describe the application of formaldehyde cross-linking in detail, particularly focusing on the optimal parameters for cross-linking, the detection of formaldehyde cross-linked complexes, the utility of antibodies, and the identification of binding partners. Integrin β1 was found in a high molecular weight complex after formaldehyde cross-linking. Eight different anti-integrin β1 antibodies were used for pull-down experiments and no loss in precipitation efficiency after cross-linking was observed. However, two of the antibodies could not precipitate the complex, probably due to hidden epitopes. Formaldehyde cross-linked complexes, precipitated from Jurkat cells or human platelets and analyzed by mass spectrometry, were found to be composed of integrin β1, α4 and α6 or β1, α6, α2, and α5, respectively. PMID:20634879

  16. Tungsten as First Wall Material in Fusion Devices

    International Nuclear Information System (INIS)

    Kaufmann, M.

    2006-01-01

    In the PLT tokamak with a tungsten limiter strong cooling of the central plasma was observed. Since then mostly graphite has been used as limiter or target plate material. Only a few tokamaks (limiter: FTU, TEXTOR; divertor: Alcator C-Mod, ASDEX Upgrade) gained experience with high-Z-materials. With the observed strong co- deposition of tritium together with carbon in JET and as a result of design studies of fusion reactors, it became clear that in the long run tungsten is the favourite for the first-wall material. Tungsten as a plasma facing material requires intensive research in all areas, i.e. in plasma physics, plasma wall-interaction and material development. Tungsten as an impurity in the confined plasma reveals considerable differences to carbon. Strong radiation at high temperatures, in connection with mostly a pronounced inward drift forms a particular challenge. Turbulent transport plays a beneficial role in this regard. The inward drift is an additional problem in the pedestal region of H-mode plasmas in ITER-like configurations. The erosion by low energy hydrogen atoms is in contrast to carbon small. However, erosion by fast particles from heating measures and impurity ions, accelerated in the sheath potential, play an important role in the case of tungsten. Radiation by carbon in the plasma boundary reduces the load to the target plates. Neon or Argon as substitutes will increase the erosion of tungsten. So far experiments have demonstrated that in most scenarios the tungsten content in the central plasma can be kept sufficiently small. The material development is directed to the specific needs of existing or future devices. In ASDEX Upgrade, which will soon be a divertor experiment with a complete tungsten first-wall, graphite tiles are coated with tungsten layers. In ITER, the solid tungsten armour of the target plates has to be castellated because of its difference in thermal expansion compared to the cooling structure. In a reactor the technical

  17. Novel thermoplastic vulcanizates (TPVs based on silicone rubber and polyamide exploring peroxide cross-linking

    Directory of Open Access Journals (Sweden)

    K. Naskar

    2014-04-01

    Full Text Available Novel thermoplastic vulcanizates (TPVs based on silicone rubber (PDMS and polyamide (PA12 have been prepared by dynamic vulcanization process. The effect of dynamic vulcanization and influence of various types of peroxides as cross-linking agents were studied in detail. All the TPVs were prepared at a ratio of 50/50 wt% of silicone rubber and polyamide. Three structurally different peroxides, namely dicumyl peroxide (DCP, 3,3,5,7,7-pentamethyl 1,2,4-trioxepane (PMTO and cumyl hydroperoxide (CHP were taken for investigation. Though DCP was the best option for curing the silicone rubber, at high temperature it suffers from scorch safety. An inhibitor 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO was added with DCP to stabilize the radicals in order to increase the scorch time. Though CHP (hydroperoxide had higher half life time than DCP at higher temperature, it has no significant effect on cross-linking of silicone rubber. PMTO showed prolonged scorch safety and better cross-linking efficiency rather than the other two. TPVs of DCP and PMTO were made up to 11 minutes of mixing. Increased values of tensile strength and elongation at break of PMTO cross-linked TPV indicate the superiority of PMTO. Scanning electron micrographs correlate with mechanical properties of the TPVs. High storage modulus (E' and lower loss tangent value of the PMTO cross-linked TPV indicate the higher degree of cross-linking which is also well supported by the overall cross-link density value. Thus PMTO was found to be the superior peroxide for cross-linking of silicone rubber at high temperature.

  18. Low-Z material for limiters and wall surfaces in JET: beryllium and carbon

    International Nuclear Information System (INIS)

    Rebut, P.H.; Hugon, M.; Booth, S.J.; Dean, J.R.; Dietz, K.J.; Sonnenberg, K.; Watkins, M.L.

    1985-01-01

    The relative merits of graphite and beryllium, as a low-Z material for limiters and wall surfaces in JET, are compared. A consideration of data on thermomechanical properties, retention of hydrogen and gettering action, indicates that beryllium offers the best prospects as a material for the JET belt limiters and walls. (U.K.)

  19. Polymeric micelles with ionic cores containing biodegradable cross-links for delivery of chemotherapeutic agents.

    Science.gov (United States)

    Kim, Jong Oh; Sahay, Gaurav; Kabanov, Alexander V; Bronich, Tatiana K

    2010-04-12

    Novel functional polymeric nanocarriers with ionic cores containing biodegradable cross-links were developed for delivery of chemotherapeutic agents. Block ionomer complexes (BIC) of poly(ethylene oxide)-b-poly(methacylic acid) (PEO-b-PMA) and divalent metal cations (Ca(2+)) were utilized as templates. Disulfide bonds were introduced into the ionic cores by using cystamine as a biodegradable cross-linker. The resulting cross-linked micelles with disulfide bonds represented soft, hydrogel-like nanospheres and demonstrated a time-dependent degradation in the conditions mimicking the intracellular reducing environment. The ionic character of the cores allowed to achieve a very high level of doxorubicin (DOX) loading (50% w/w) into the cross-linked micelles. DOX-loaded degradable cross-linked micelles exhibited more potent cytotoxicity against human A2780 ovarian carcinoma cells as compared to micellar formulations without disulfide linkages. These novel biodegradable cross-linked micelles are expected to be attractive candidates for delivery of anticancer drugs.

  20. Physical Characterization Of High Amylose/Pectin Mixtures Cross-Linked With Sodium Trimetaphosphate

    International Nuclear Information System (INIS)

    Carbinatto, F.M.; Cury, B.S.F.; Evangelista, R.C.

    2010-01-01

    Some researches have reported that pectin and high amylose mixtures presented superior mechanical properties in relation to those of the isolated polymers. In this work, mixtures at different ratios (1:4; 1:1) of pectin and high amylose were crosslinked with sodium trimetaphosphate at different degrees by varying reaction conditions. All samples were characterized by rheological and X-ray diffraction analyses. Samples without cross-linker were prepared as control. The oscillatory dynamic tests showed that all samples exhibited predominant elastic behavior, although cross-linked samples presented higher G' values, suggesting that crosslinking by phosphorylation resulted in more strength structures. The diffractograms showed that cross-linked samples underwent structural modifications that resulted in increase of crystallinity due to cross-linking process. (author)

  1. Damage of first wall materials in fusion reactors under nonstationary thermal effects

    International Nuclear Information System (INIS)

    Maslaev, S.A.; Platonov, Yu.M.; Pimenov, V.N.

    1991-01-01

    The temperature distribution in the first wall of a fusion reactor was calculated for nonstationary thermal effects of the type of plasma destruction or the flow of 'running electrons' taking into account the melting of the surface layer of the material. The thickness of the resultant damaged layer in which thermal stresses were higher than the tensile strength of the material is estimated. The results were obtained for corrosion-resisting steel, aluminium and vanadium. Flowing down of the molten layer of the material of the first wall is calculated. (author)

  2. Discovery of undefined protein cross-linking chemistry: a comprehensive methodology utilizing 18O-labeling and mass spectrometry.

    Science.gov (United States)

    Liu, Min; Zhang, Zhongqi; Zang, Tianzhu; Spahr, Chris; Cheetham, Janet; Ren, Da; Zhou, Zhaohui Sunny

    2013-06-18

    Characterization of protein cross-linking, particularly without prior knowledge of the chemical nature and site of cross-linking, poses a significant challenge, because of their intrinsic structural complexity and the lack of a comprehensive analytical approach. Toward this end, we have developed a generally applicable workflow-XChem-Finder-that involves four stages: (1) detection of cross-linked peptides via (18)O-labeling at C-termini; (2) determination of the putative partial sequences of each cross-linked peptide pair using a fragment ion mass database search against known protein sequences coupled with a de novo sequence tag search; (3) extension to full sequences based on protease specificity, the unique combination of mass, and other constraints; and (4) deduction of cross-linking chemistry and site. The mass difference between the sum of two putative full-length peptides and the cross-linked peptide provides the formulas (elemental composition analysis) for the functional groups involved in each cross-linking. Combined with sequence restraint from MS/MS data, plausible cross-linking chemistry and site were inferred, and ultimately confirmed, by matching with all data. Applying our approach to a stressed IgG2 antibody, 10 cross-linked peptides were discovered and found to be connected via thioethers originating from disulfides at locations that had not been previously recognized. Furthermore, once the cross-link chemistry was revealed, a targeted cross-link search yielded 4 additional cross-linked peptides that all contain the C-terminus of the light chain.

  3. Materials issues in the design of the ITER first wall, blanket, and divertor

    International Nuclear Information System (INIS)

    Mattas, R.F.; Smith, D.L.; Wu, C.H.; Shatalov, G.

    1992-01-01

    During the ITER conceptual design study, a property data base was assembled, the key issues were identified, and a comprehensive R ampersand D plan was formulated to resolve these issues. The desired properties of candidate ITER divertor, first wall, and blanket materials are briefly reviewed, and the major materials issues are presented. Estimates of the influence of materials properties on the performance limits of the first wall, blanket, and divertor are presented

  4. Concentration-dependent oligomerization of cross-linked complexes between ferredoxin and ferredoxin–NADP+ reductase

    International Nuclear Information System (INIS)

    Kimata-Ariga, Yoko; Kubota-Kawai, Hisako; Lee, Young-Ho; Muraki, Norifumi; Ikegami, Takahisa; Kurisu, Genji; Hase, Toshiharu

    2013-01-01

    Highlights: •Cross-linked complexes of ferredoxin (Fd) and Fd–NADP + reductase form oligomers. •In the crystal structures, Fd- and FNR moieties swap across the molecules. •The complexes exhibit concentration-dependent oligomerization at sub-milimolar order. -- Abstract: Ferredoxin–NADP + reductase (FNR) forms a 1:1 complex with ferredoxin (Fd), and catalyzes the electron transfer between Fd and NADP + . In our previous study, we prepared a series of site-specifically cross-linked complexes of Fd and FNR, which showed diverse electron transfer properties. Here, we show that X-ray crystal structures of the two different Fd–FNR cross-linked complexes form oligomers by swapping Fd and FNR moieties across the molecules; one complex is a dimer from, and the other is a successive multimeric form. In order to verify whether these oligomeric structures are formed only in crystal, we investigated the possibility of the oligomerization of these complexes in solution. The mean values of the particle size of these cross-linked complexes were shown to increase with the rise of protein concentration at sub-milimolar order, whereas the size of dissociable wild-type Fd:FNR complex was unchanged as analyzed by dynamic light scattering measurement. The oligomerization products were detected by SDS–PAGE after chemical cross-linking of these complexes at the sub-milimolar concentrations. The extent and concentration-dependent profile of the oligomerizaion were differentiated between the two cross-linked complexes. These results show that these Fd–FNR cross-linked complexes exhibit concentration-dependent oligomerization, possibly through swapping of Fd and FNR moieties also in solution. These findings lead to the possibility that some native multi-domain proteins may present similar phenomenon in vivo

  5. Deuterium behavior in first-wall materials for nuclear fusion

    International Nuclear Information System (INIS)

    Bernard, E.

    2012-01-01

    Plasma-wall interactions play an important part while choosing materials for the first wall in future fusion reactors. Moreover, the use of tritium as a fuel will impose safety limits regarding the total amount present in the tokamak. Previous analyses of first-wall samples exposed to fusion plasma highlighted an in-bulk migration of deuterium (as an analog to tritium) in carbon materials. Despite its limited value, this retention is problematic: contrary to co-deposited layers, it seems very unlikely to recover easily the deuterium retained in such a way. Because of the difficult access to in situ samples, most published studies on the subject were carried out using post-mortem sample analysis. In order to access to the dynamic of the phenomenon and come apart potential element redistribution during storage, we set up a bench intended for simultaneous low-energy ion implantation, reproducing the deuterium interaction with first-wall materials, and high-energy micro beam analysis. Nuclear reaction analysis performed at the micrometric scale (μNRA) allows to characterize deuterium repartition profiles in situ. This analysis technique was confirmed to be non-perturbative of the mechanisms studied. We observed on the experimental data set that the material surface (0-1 μm) display a high and nearly constant deuterium content, with a uniform distribution. On the contrary, in-bulk deuterium (1-11 μm) localizes in preferential trapping sites related to the material microstructure. In-bulk deuterium inventory seems to increase with the incident fluence, in spite of the wide data scattering attributed to the structure variation of studied areas. Deuterium saturation at the surface as well as in-depth migration are instantaneous; in-vacuum storage leads to a small deuterium global desorption. Observations made via μNRA were coupled with results from other characterization techniques. X-ray μtomography allowed to identify porosities as the preferential trapping sites

  6. CLMSVault: A Software Suite for Protein Cross-Linking Mass-Spectrometry Data Analysis and Visualization.

    Science.gov (United States)

    Courcelles, Mathieu; Coulombe-Huntington, Jasmin; Cossette, Émilie; Gingras, Anne-Claude; Thibault, Pierre; Tyers, Mike

    2017-07-07

    Protein cross-linking mass spectrometry (CL-MS) enables the sensitive detection of protein interactions and the inference of protein complex topology. The detection of chemical cross-links between protein residues can identify intra- and interprotein contact sites or provide physical constraints for molecular modeling of protein structure. Recent innovations in cross-linker design, sample preparation, mass spectrometry, and software tools have significantly improved CL-MS approaches. Although a number of algorithms now exist for the identification of cross-linked peptides from mass spectral data, a dearth of user-friendly analysis tools represent a practical bottleneck to the broad adoption of the approach. To facilitate the analysis of CL-MS data, we developed CLMSVault, a software suite designed to leverage existing CL-MS algorithms and provide intuitive and flexible tools for cross-platform data interpretation. CLMSVault stores and combines complementary information obtained from different cross-linkers and search algorithms. CLMSVault provides filtering, comparison, and visualization tools to support CL-MS analyses and includes a workflow for label-free quantification of cross-linked peptides. An embedded 3D viewer enables the visualization of quantitative data and the mapping of cross-linked sites onto PDB structural models. We demonstrate the application of CLMSVault for the analysis of a noncovalent Cdc34-ubiquitin protein complex cross-linked under different conditions. CLMSVault is open-source software (available at https://gitlab.com/courcelm/clmsvault.git ), and a live demo is available at http://democlmsvault.tyerslab.com/ .

  7. A general method for targeted quantitative cross-linking mass spectrometry

    Science.gov (United States)

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NM...

  8. CrossLink: a novel method for cross-condition classification of cancer subtypes.

    Science.gov (United States)

    Ma, Chifeng; Sastry, Konduru S; Flore, Mario; Gehani, Salah; Al-Bozom, Issam; Feng, Yusheng; Serpedin, Erchin; Chouchane, Lotfi; Chen, Yidong; Huang, Yufei

    2016-08-22

    We considered the prediction of cancer classes (e.g. subtypes) using patient gene expression profiles that contain both systematic and condition-specific biases when compared with the training reference dataset. The conventional normalization-based approaches cannot guarantee that the gene signatures in the reference and prediction datasets always have the same distribution for all different conditions as the class-specific gene signatures change with the condition. Therefore, the trained classifier would work well under one condition but not under another. To address the problem of current normalization approaches, we propose a novel algorithm called CrossLink (CL). CL recognizes that there is no universal, condition-independent normalization mapping of signatures. In contrast, it exploits the fact that the signature is unique to its associated class under any condition and thus employs an unsupervised clustering algorithm to discover this unique signature. We assessed the performance of CL for cross-condition predictions of PAM50 subtypes of breast cancer by using a simulated dataset modeled after TCGA BRCA tumor samples with a cross-validation scheme, and datasets with known and unknown PAM50 classification. CL achieved prediction accuracy >73 %, highest among other methods we evaluated. We also applied the algorithm to a set of breast cancer tumors derived from Arabic population to assign a PAM50 classification to each tumor based on their gene expression profiles. A novel algorithm CrossLink for cross-condition prediction of cancer classes was proposed. In all test datasets, CL showed robust and consistent improvement in prediction performance over other state-of-the-art normalization and classification algorithms.

  9. Physical and mechanical properties of gamma radiation cross-linked polyethylene

    International Nuclear Information System (INIS)

    Gonzalez, Maria E.; Romero, G.; Smolko, Eduardo E.

    1999-01-01

    Granulated LDPE 2003 polyethylene was extruded and irradiated under nitrogen with 150, 200 and 300 kGy gamma rays doses to produce cross-linking. The study of the physical and mechanical properties shows that the product has a high degree of molecular cross-linking, can be heated up to 200 C for 2 hours without deformation and that the mechanical properties improve. Preliminary aging tests indicate that after heating at 60 C for 4 weeks no physical or mechanical deterioration can be observed. (author)

  10. Materializing the web of linked data

    CERN Document Server

    Konstantinou, Nikolaos

    2015-01-01

    This book explains the Linked Data domain by adopting a bottom-up approach: it introduces the fundamental Semantic Web technologies and building blocks, which are then combined into methodologies and end-to-end examples for publishing datasets as Linked Data, and use cases that harness scholarly information and sensor data. It presents how Linked Data is used for web-scale data integration, information management and search. Special emphasis is given to the publication of Linked Data from relational databases as well as from real-time sensor data streams. The authors also trace the transformation from the document-based World Wide Web into a Web of Data. Materializing the Web of Linked Data is addressed to researchers and professionals studying software technologies, tools and approaches that drive the Linked Data ecosystem, and the Web in general.

  11. Covalent-ionically cross-linked polyetheretherketone proton exchange membrane for direct methanol fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2010-08-01

    Full Text Available cross-linked PEEK-WC membrane, this covalent-ionically cross-linked PEEK-WC membrane exhibits extremely reduced water uptake and methanol permeability, but just slightly sacrificed proton conductivity. The proton conductivity of the covalent...

  12. Laccase-Based CLEAs: Chitosan as a Novel Cross-Linking Agent

    Directory of Open Access Journals (Sweden)

    Alexandre Arsenault

    2011-01-01

    Full Text Available Laccase from Coriolopsis Polyzona was insolubilized as cross-linked enzyme aggregates (CLEAs for the first time with chitosan as the cross-linking agent. Concentrations between 0.01 and 1.867 g/L of chitosan were used and between 0.05 and 600 mM of 1-ethyl-3-(3-dimethylaminopropylcarbodiimide hydrochloride. The laccase was precipitated using ammonium sulphate and cross-linked simultaneously. Specific activity and thermal stability of these biocatalysts were measured. Activities of up to 737 U/g were obtained when 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid (ABTS was used as a substrate. Moreover, the stability of these biocatalysts was improved with regards to thermal degradation compared to free laccase when exposed to denaturing conditions of high temperature and low pH. The CLEAs stability against chemical denaturants was also tested but no significant improvement was detected. The total amount of ABTS to be oxidized during thermal degradation by CLEAs and free laccase was calculated and the insolubilized enzymes were reported to oxidize more substrate than free laccase. The formation conditions were analyzed by response surface methodology in order to determine an optimal environment for the production of efficient laccase-based CLEAs using chitosan as the cross-linking agent. After 24 hours of formation at pH 3 and at 4°C without agitation, the CLEAs exhibit the best specific activity.

  13. Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency.

    Science.gov (United States)

    Zhong, Ming; Liu, Yi-Tao; Liu, Xiao-Ying; Shi, Fu-Kuan; Zhang, Li-Qin; Zhu, Mei-Fang; Xie, Xu-Ming

    2016-06-28

    Poly(acrylic acid) (PAA) hydrogels with superior mechanical properties, based on a single network structure with dual cross-linking, are prepared by one-pot free radical polymerization. The network structure of the PAA hydrogels is composed of dual cross-linking: a dynamic and reversible ionic cross-linking among the PAA chains enabled by Fe(3+) ions, and a sparse covalent cross-linking enabled by a covalent cross-linker (Bis). Under deformation, the covalently cross-linked PAA chains remain intact to maintain their original configuration, while the Fe(3+)-enabled ionic cross-linking among the PAA chains is broken to dissipate energy and then recombined. It is found that the mechanical properties of the PAA hydrogels are significantly influenced by the contents of covalent cross-linkers, Fe(3+) ions and water, which can be adjusted within a substantial range and thus broaden the applications of the hydrogels. Meanwhile, the PAA hydrogels have excellent recoverability based on the dynamic and reversible ionic cross-linking enabled by Fe(3+) ions. Moreover, the swelling capacity of the PAA hydrogels is as high as 1800 times in deionized water due to the synergistic effects of ionic and covalent cross-linkings. The combination of balanced mechanical properties, efficient recoverability, high swelling capacity and facile preparation provides a new method to obtain high-performance hydrogels.

  14. Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells.

    Science.gov (United States)

    Nojima, Kuniharu; Hochegger, Helfrid; Saberi, Alihossein; Fukushima, Toru; Kikuchi, Koji; Yoshimura, Michio; Orelli, Brian J; Bishop, Douglas K; Hirano, Seiki; Ohzeki, Mioko; Ishiai, Masamichi; Yamamoto, Kazuhiko; Takata, Minoru; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Yamazoe, Mitsuyoshi; Kawamoto, Takuo; Araki, Kasumi; Takahashi, Jun A; Hashimoto, Nobuo; Takeda, Shunichi; Sonoda, Eiichiro

    2005-12-15

    Cross-linking agents that induce DNA interstrand cross-links (ICL) are widely used in anticancer chemotherapy. Yeast genetic studies show that nucleotide excision repair (NER), Rad6/Rad18-dependent postreplication repair, homologous recombination, and cell cycle checkpoint pathway are involved in ICL repair. To study the contribution of DNA damage response pathways in tolerance to cross-linking agents in vertebrates, we made a panel of gene-disrupted clones from chicken DT40 cells, each defective in a particular DNA repair or checkpoint pathway, and measured the sensitivities to cross-linking agents, including cis-diamminedichloroplatinum (II) (cisplatin), mitomycin C, and melphalan. We found that cells harboring defects in translesion DNA synthesis (TLS), Fanconi anemia complementation groups (FANC), or homologous recombination displayed marked hypersensitivity to all the cross-linking agents, whereas NER seemed to play only a minor role. This effect of replication-dependent repair pathways is distinctively different from the situation in yeast, where NER seems to play a major role in dealing with ICL. Cells deficient in Rev3, the catalytic subunit of TLS polymerase Polzeta, showed the highest sensitivity to cisplatin followed by fanc-c. Furthermore, epistasis analysis revealed that these two mutants work in the same pathway. Our genetic comprehensive study reveals a critical role for DNA repair pathways that release DNA replication block at ICLs in cellular tolerance to cross-linking agents and could be directly exploited in designing an effective chemotherapy.

  15. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    Science.gov (United States)

    Williams, Jarrod C.; Meador, Mary Ann; McCorkle, Linda

    2015-01-01

    We report the first synthesis of cross-linked polyamide aerogels through step growth polymerization using a combination of diamines, diacid chloride and triacid chloride. Polyamide oligomers endcapped with amines are prepared as stable solutions in N-methylpyrrolidinone from several different diamine precursors and 1,3-benzenedicarbonyl dichloride. Addition of 1,3,5-benzenetricarbonyl trichloride yields gels which form in under five minutes according to the scheme shown. Solvent exchange of the gels into ethanol, followed by drying using supercritical CO2 extraction gives colorless aerogels with densities around 0.1 to 0.2 gcm3. Thicker monolithes of the polyamide aerogels are stiff and strong, while thin films of certain formulations are highly flexible, durable, and even translucent. These materials may have use as insulation for deployable space structures, rovers, habitats or extravehicular activity suits as well as in many terrestrial applications. Strucure property relationships of the aerogels, including surface area, mechanical properties, and thermal conductivity will be discussed.

  16. Improved methods for binding acma-type protein anchor fusions yo cell-wall material of micro-organisms

    NARCIS (Netherlands)

    Leenhouts, Cornelis; Ramasamy, R.; Steen, Anton; Kok, Jan; Buist, Girbe; Kuipers, Oscar

    2002-01-01

    The invention provides a method for improving binding of a proteinaceous substance to cell-wall material of a Gram-positive bacterium, said substance comprising an AcmA cell wall binding domain or homolog or functional derivative thereof, said method comprising treating said cell-wall material with

  17. The Effect of Material and Side Walls on Hull Deflection during a Blast Event

    Science.gov (United States)

    2017-12-13

    ARL-CR-0822 ● DEC 2017 US Army Research Laboratory The Effect of Material and Side Walls on Hull Deflection during a Blast Event...Army Research Laboratory The Effect of Material and Side Walls on Hull Deflection during a Blast Event prepared by Danielle Abell SURVICE...Walls on Hull Deflection during a Blast Event 5a. CONTRACT NUMBER W911QX-16-D-0014 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  18. The mechanism of collagen cross-linking in diabetes: a puzzle nearing resolution.

    Science.gov (United States)

    Monnier, V M; Glomb, M; Elgawish, A; Sell, D R

    1996-07-01

    Considerable interest has been focused in recent years on the mechanism of collagen cross-linking by high glucose in vitro and in vivo. Experiments in both diabetic humans and in animals have shown that over time collagen becomes less soluble, less digestible by collagenase, more stable to heat-induced denaturation, and more glycated. In addition, collagen becomes more modified by advanced products of the Maillard reaction, i.e., immunoreactive advanced glycation end products and the glycoxidation markers carboxymethyllysine and pentosidine. Mechanistic studies have shown that collagen cross-linking in vitro can be uncoupled from glycation by the use of antioxidants and chelating agents. Experiments in the authors' laboratory revealed that approximately 50% of carboxymethyllysine formed in vitro originates from pathways other than oxidation of Amadori products, i.e., most likely the oxidation of Schiff base-linked glucose. In addition, the increase in thermal stability of rat tail tendons exposed to high glucose in vitro or in vivo was found to strongly depend on H2O2 formation. The final missing piece of the puzzle is that of the structure of the major cross-link. We speculate that it is a nonfluorescent nonultraviolet active cross-link between two lysine residues, which includes a fragmentation product of glucose linked in a nonreducible bond labile to both strong acids and bases.

  19. Electron and positron contributions to the displacement per atom profile in bulk multi-walled carbon nanotube material irradiated with gamma rays

    International Nuclear Information System (INIS)

    Leyva Fabelo, Antonio; Pinnera Hernandez, Ibrahin; Leyva Pernia, Diana

    2013-01-01

    The electron and positron contributions to the effective atom displacement cross-section in multi-walled carbon nanotube bulk materials exposed to gamma rays were calculated. The physical properties and the displacement threshold energy value reported in literature for this material were taken into account. Then, using the mathematical simulation of photon and particle transport in matter, the electron and positron energy flux distributions within the irradiated object were also calculated. Finally, considering both results, the atom displacement damage profiles inside the analyzed bulk carbon nanotube material were determined. The individual contribution from each type of secondary particles generated by the photon interactions was specified. An increasing behavior of the displacement cross-sections for all the studied particles energy range was observed. The particles minimum kinetic energy values that make probabilistically possible the single and multiple atom displacement processes were determined. The positrons contribution importance to the total number of point defects generated during the interaction of gamma rays with the studied materials was confirmed

  20. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA

    Science.gov (United States)

    Yang, Zhiyu; Price, Nathan E.; Johnson, Kevin M.

    2017-01-01

    Abstract Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3’ddR5p) at the 3’-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3’ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3’ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems. PMID:28531327

  1. CD24 cross-linking induces apoptosis in, and inhibits migration of, MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Kim, Jong Bin; Bae, Ji-Yeon; Jee, Hyeon-Gun; Noh, Dong-Young; Ko, Eunyoung; Han, Wonshik; Lee, Jeong Eon; Lee, Kyung-Min; Shin, Incheol; Kim, Sangmin; Lee, Jong Won; Cho, Jihyoung

    2008-01-01

    The biological effects of CD24 (FL-80) cross-linking on breast cancer cells have not yet been established. We examined the impact of CD24 cross-linking on human breast cancer cell line MCF-7. MCF-7 and MDA-MB-231 cells were treated with anti-rabbit polyclonal IgG or anti-human CD24 rabbit polyclonal antibodies to induce cross-linking, and then growth was studied. Changes in cell characteristics such as cell cycle modulation, cell death, survival in three-dimensional cultures, adhesion, and migration ability were assayed after CD24 cross-linking in MCF-7. Expression of CD24 was analyzed by flow cytometry in MDA-MB-231 and MCF-7 cells where 2% and 66% expression frequencies were observed, respectively. CD24 cross-linking resulted in time-dependent proliferation reduction in MCF-7 cells, but no reduction in MDA-MB-231 cells. MCF-7 cell survival was reduced by 15% in three-dimensional culture after CD24 cross-linking. Increased MCF-7 cell apoptosis was observed after CD24 cross-linking, but no cell cycle arrest was observed in that condition. The migration capacity of MCF-7 cells was diminished by 30% after CD24 cross-linking. Our results showed that CD24 cross-linking induced apoptosis and inhibited migration in MCF-7 breast cancer cells. We conclude that CD24 may be considered as a novel therapeutic target for breast cancer

  2. Full scale tests of moisture buffer capacity of wall materials

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Rode, Carsten; Peuhkuri, Ruut Hannele

    2005-01-01

    that are harmful such as growth of house dust mites, surface condensation and mould growth. Therefore a series of experiments has been carried out in a full scale test facility to determine the moisture buffer effect of interior walls of cellular concrete and plaster board constructions. For the cellular concrete......Moisture buffer capacity of hygroscopic materials can be used to moderate peaks in the relative humidity (RH) of indoor air as well as moisture content variations in building materials and furnishing. This can help to ensure healthier indoor environments by preventing many processes...... of the changes of moisture content in specimens of the wall composites exposed to the same environment. It was found that the finishes had a big impact on the buffer performance of the underlying materials. Even though the untreated cellular concrete had a very high buffer capacity, the effect was strongly...

  3. A structural and kinetic study on myofibrils prevented from shortening by chemical cross-linking.

    Science.gov (United States)

    Herrmann, C; Sleep, J; Chaussepied, P; Travers, F; Barman, T

    1993-07-20

    In previous work, we studied the early steps of the Mg(2+)-ATPase activity of Ca(2+)-activated myofibrils [Houadjeto, M., Travers, F., & Barman, T. (1992) Biochemistry 31, 1564-1569]. The myofibrils were free to contract, and the results obtained refer to the ATPase cycle of myofibrils contracting with no external load. Here we studied the ATPase of myofibrils contracting isometrically. To prevent shortening, we cross-linked them with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). SDS-PAGE and Western blot analyses showed that the myosin rods were extensively cross-linked and that 8% of the myosin heads were cross-linked to the thin filament. The transient kinetics of the cross-linked myofibrils were studied in 0.1 M potassium acetate, pH 7.4 and 4 degrees C, by the rapid-flow quench method. The ATP binding steps were studied by the cold ATP chase and the cleavage and release of products steps by the Pi burst method. In Pi burst experiments, the sizes of the bursts were equal within experimental error to the ATPase site concentrations (as determined by the cold ATP chase methods) for both cross-linked (isometric) and un-cross-linked (isotonic) myofibrils. This shows that in both cases the rate-limiting step is after the cleavage of ATP. When cross-linked, the kcat of Ca(2+)-activated myofibrils was reduced from 1.7 to 0.8 s-1. This is consistent with the observation that fibers shortening at moderate velocity have a higher ATPase activity than isometric fibers.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Condensation of ablated first-wall materials in the cascade inertial confinement fusion reactor

    International Nuclear Information System (INIS)

    Ladd, A.J.C.

    1985-01-01

    This report concerns problems involved in recondensing first-wall materials vaporized by x rays and pellet debris in the Cascade inertial confinement fusion reactor. It examines three proposed first-wall materials, beryllium oxide (BeO), silicon carbide (SiO), and pyrolytic graphite (C), paying particular attention to the chemical equilibrium and kinetics of the vaporized gases. The major results of this study are as follows. Ceramic materials composed of diatomic molecules, such as BeO and SiC, exist as highly dissociated species after vaporization. The low gas density precludes significant recombination during times of interest (i.e., less than 0.1 s). The dissociated species (Be, O, Si, and C) are, except for carbon, quite volatile and are thermodynamically stable as a vapor under the high temperature and low density found in Cascade. These materials are thus unsuitable as first-wall materials. This difficulty is avoided with pyrolytic graphite. Since the condensation coefficient of monatomic carbon vapor (approx. 0.5) is greater than that of the polyatomic vapor (<0.1), recondensation is assisted by the expected high degree of dissociation. The proposed 10-layer granular carbon bed is sufficient to condense all the carbon vapor before it penetrates to the BeO layer below. The effective condensation coefficient of the porous bed is about 50% greater than that of a smooth wall. An estimate of the mass flux leaving the chamber results in a condensation time for a carbon first wall of about 30 to 50 ms. An experiment to investigate condensation in a Cascade-like chamber is proposed

  5. Swelling of cross-linked polymers: interpretations and misinterpretations

    Czech Academy of Sciences Publication Activity Database

    Dušek, Karel; Dušková-Smrčková, Miroslava

    2017-01-01

    Roč. 254, 20 August (2017), s. 102 ISSN 0065-7727. [ACS National Meeting & Exposition /254./. 20.08.2017-24.08.2017, Washington] Institutional support: RVO:61389013 Keywords : swelling * cross-linked polymer Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science

  6. Cross Country MetroLink Segment I Business Plan

    Science.gov (United States)

    1997-12-02

    In the St. Louis, Missouri metropolitan area, the East-West Gateway Coordinating : Council decided the route for the first MetroLink extension in the Cross-County : Corridor in September 1997. The next phase, reflected in this paper is develop, : dur...

  7. Hyper-cross-linked, hybrid membranes via interfacial polymerization

    NARCIS (Netherlands)

    Raaijmakers, Michiel

    2015-01-01

    Hyper-cross-linked, hybrid membranes consist of covalent networks of alternating organic and inorganic, or biological groups. This thesis reports on the preparation of such hybrid networks via interfacial polymerization. The structure-property relationships of the hybrid networks depend strongly on

  8. Preparation and properties of new cross-linked polyurethane acrylate electrolytes for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, P.; Vasudevan, T.; Gopalan, A. [Department of Industrial Chemistry, Alagappa University, Karaikudi-630 003 (India); Lee, Kwang-Pill [Department of Chemistry Education, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2006-09-29

    A cross-linked polyurethane acrylate (PUA) is synthesized by end-capping a hexamethylene diisocyanate, hexamethylene diisocyanate/poly(ethylene glycol)-based prepolymer with hydroxy butyl methacrylate (HBMA). Significant interactions of lithium ions with the soft and hard segments of the host polymer are observed for the PUA complexed with lithium perchlorate (LiClO{sub 4}) by means of differential scanning calorimetry (DSC), and Fourier transform infra-red (FT-IR) spectroscopy measurements. The DSC results indicate the formation of transient cross-links with the ether oxygen of the soft segment and mixing of soft and hard phases induced by the Li{sup +} ions. The results of FT-IR spectroscopy and thermogravimetric analysis measurements support the formation of different types of complexes by interaction of Li{sup +} ions with different coordination sites of PUA. No detectable interactions are found between Li{sup +} ions and groups in HBMA. In addition, PUA follows the Arrhenius relationship for ion transport. Predominant formation of contact ion-pairs of LiClO{sub 4} is observed through a.c. conductivity and DSC measurements. The lithium stripping-plating process is reversible and this implies better electrochemical stability over the working voltage range. Also, the PUA electrolyte shows better compatibility with lithium metal as inferred from impedance measurements and has a good cationic transference number that is suitable for the material to be used as a solid polymer electrolyte. Addition of HBMA into the PU matrix improves the tensile strength of the cross-linked PUA. Swelling measurements of PUA with plasticizer indicate better dimensional stability. A cell is constructed with PUA as the electrolyte and its performance is evaluated. (author)

  9. Bypass of a psoralen DNA interstrand cross-link by DNA polymerases beta, iota, and kappa in vitro

    Science.gov (United States)

    Smith, Leigh A.; Makarova, Alena V.; Samson, Laura; Thiesen, Katherine E.; Dhar, Alok; Bessho, Tadayoshi

    2012-01-01

    Repair of DNA inter-strand cross-links in mammalian cells involves several biochemically distinctive processes, including the release of one of the cross-linked strands and translesion DNA synthesis (TLS). In this report, we investigated in vitro TLS activity of psoralen DNA inter-strand cross-link by three DNA repair polymerases, DNA polymerase beta, kappa and iota. DNA polymerase beta is capable of bypassing a psoralen cross-link with a low efficiency. Cell extracts prepared from DNA polymerase beta knockout mouse embryonic fibroblast showed a reduced bypass activity of the psoralen cross-link and purified DNA polymerase beta restored the bypass activity. In addition, DNA polymerase iota mis-incorporated thymine across the psoralen cross-link and DNA polymerase kappa extended these mis-paired primer ends, suggesting that DNA polymerase iota may serve as an inserter and DNA polymerase kappa may play a role as an extender in the repair of psoralen DNA inter-strand cross-links. The results demonstrated here indicate that multiple DNA polymerases could participate in TLS steps in mammalian DNA inter-strand cross-link repair. PMID:23106263

  10. Analysis of protein-nucleic acid interactions by photochemical cross-linking and mass spectrometry

    DEFF Research Database (Denmark)

    Steen, Hanno; Jensen, Ole Nørregaard

    2002-01-01

    . Mass spectrometry (MS) has emerged as a sensitive and efficient analytical technique for determination of such cross-linking sites in proteins. The present review of the field describes a number of MS-based approaches for the characterization of cross-linked protein-nucleic acid complexes...

  11. Effects of cross-linking modification with phosphoryl chloride (POCl3 on pysiochemical properties of barely starch

    Directory of Open Access Journals (Sweden)

    Zahra Malekpour

    2016-05-01

    Full Text Available Chemical methods are one of the comon method in starch modification. This study aimed at investigating of cross-link affection of phosphoryl chloride with two different levels 0.5 and 1g.kg-1 in order to enhance funciotnal proeprties and physiochemical changes on extracted starch from barely variety Bahman which cultivates in Chahr-Mahal Bakhtiari Province of Iran. Obtained results indicated that cross-linking leads to reduce sweeling power of strach granuls compred to natural starch and the amount of reduciton increase via the substitituin level. Powerfull cross-linkingnetween starch chains casue more resistance of granules to seweeling which is increased by means of cross-linking dgree. Additioally,  investigationresults from synersis revealed that releasing water percentage in cross-linked starches increase in comparison to natural starches and this amount depends onthe amount of cross-link surface with a significantly difference in (α <0.05. Gelatinization temperature in both levels negligibly increased by modification where in low level of cross-linking was more. Furthermoe evaluating gelation temperatures of both natural and cross-linked modified starches showed that addition of phosphate groups in starch and creating extra coovalent bonds make granues more compressed reulting in slight increase of To, Tp, Tcin barely starch. Icreasing of temperature observed more in less concentration of cross-links. Evaluation of viscosity changes also revealed that this modification depending on increasing the amount of Phosphoryl Chloride led to increasing peak temperature, diminish peak and setback viscosity. Result also exhibited that in morphological level, cross-link causes to incidence changes in particles' diameter size. The comparison of diameter average and frequency between natural starch and cross-links starch exhibited that in cross-linkd treatment with 0.5% phosphoryl chloride, increase in frequency of granules with diameter of 6 - 10µm

  12. Vitamin E-diffused highly cross-linked UHMWPE particles induce less osteolysis compared to highly cross-linked virgin UHMWPE particles in vivo

    DEFF Research Database (Denmark)

    Bichara, David A; Malchau, Erik; Sillesen, Nanna H

    2014-01-01

    when compared to virgin gamma irradiated cross-linked UHMWPE. Groups received equal amount of particulate debris overlaying the calvarium for 10 days. Calvarial bone was examined using high resolution micro-CT and histomorphometric analyses. There was a statistically significant difference between...

  13. Effect of cross-linkable polymer on the morphology and properties of transparent multi-walled carbon nanotube conductive films

    International Nuclear Information System (INIS)

    Huang, Yuan-Li; Tien, Hsi-Wen; Ma, Chen-Chi M.; Teng, Chih-Chun; Yu, Yi-Hsiuan; Yang, Shin-Yi; Wei, Ming-Hsiung; Wu, Sheng-Yen

    2011-01-01

    In this study, we fabricated optically transparent and electrically conductive multi-walled carbon nanotube (MWCNT) thin films using a spray-coating technique. The transparency and the electrical resistance of thin film are dependent on the nanotube content deposited on the polyethylene terephthalate (PET) substrate. Poly(acrylic acid) (PAA) and poly(N-vinyl pyrrolidone) (PVP) were used as adhesion promoters to improve MWCNT coating more significantly. The cross-linked polymer resulted in a superior bond between the MWCNTs and the substrates. The surface electrical resistance was significantly lower than the original sheet after nitric acid (HNO 3 ) treatment because of the removed surfactant and the increased interconnecting networks of MWCNT bundles, thus improving the electrical and optical properties of the films. Stronger interaction between the MWCNTs and the substrates resulted in lower decomposition of the polymer chain and less amounts of MWCNTs separated into the HNO 3 solution. The lower sheet electrical resistance of PVP/PAA-g-MWCNT conductive films on the PET substrate was because of a more complete conductive path with the cross-linked polymer than that without. Such an improved sheet of electrical resistance varied from 8.83 x 10 4 Ω/□ to 2.65 x 10 3 Ω/□ with 5.0 wt.% PVP/PAA-g-MWCNT sprayed on the PET after acid treatment.

  14. Effect of cross-linkable polymer on the morphology and properties of transparent multi-walled carbon nanotube conductive films

    Science.gov (United States)

    Huang, Yuan-Li; Tien, Hsi-Wen; Ma, Chen-Chi M.; Teng, Chih-Chun; Yu, Yi-Hsiuan; Yang, Shin-Yi; Wei, Ming-Hsiung; Wu, Sheng-Yen

    2011-10-01

    In this study, we fabricated optically transparent and electrically conductive multi-walled carbon nanotube (MWCNT) thin films using a spray-coating technique. The transparency and the electrical resistance of thin film are dependent on the nanotube content deposited on the polyethylene terephthalate (PET) substrate. Poly(acrylic acid) (PAA) and poly(N-vinyl pyrrolidone) (PVP) were used as adhesion promoters to improve MWCNT coating more significantly. The cross-linked polymer resulted in a superior bond between the MWCNTs and the substrates. The surface electrical resistance was significantly lower than the original sheet after nitric acid (HNO 3) treatment because of the removed surfactant and the increased interconnecting networks of MWCNT bundles, thus improving the electrical and optical properties of the films. Stronger interaction between the MWCNTs and the substrates resulted in lower decomposition of the polymer chain and less amounts of MWCNTs separated into the HNO 3 solution. The lower sheet electrical resistance of PVP/PAA-g-MWCNT conductive films on the PET substrate was because of a more complete conductive path with the cross-linked polymer than that without. Such an improved sheet of electrical resistance varied from 8.83 × 10 4 Ω/□ to 2.65 × 10 3 Ω/□ with 5.0 wt.% PVP/PAA-g-MWCNT sprayed on the PET after acid treatment.

  15. Molecular contacts for chlorosome envelope proteins revealed by cross-linking studies with chlorosomes from Chlorobium tepidum

    DEFF Research Database (Denmark)

    Li, Hui; Frigaard, Niels-Ulrik; Bryant, Donald A

    2006-01-01

    type and mutants lacking a single chlorosome protein were cross-linked with the zero-length cross-linker 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) and analyzed by gel electrophoresis. Similar cross-linking products were observed when the time and temperature were varied or when EDC...... was replaced with glutaraldehyde. Specific interactions between chlorosome proteins in cross-linked products were identified by immunoblotting with polyclonal antibodies raised against recombinant chlorosome proteins. We confirmed these interactions by demonstrating that these products were missing...... in appropriate mutants. Confirming the location of CsmA in the paracrystalline baseplate, cross-linking showed that CsmA forms dimers, trimers, and homomultimers as large as dodecamers and that CsmA directly interacts with the Fenna-Matthews-Olson protein. Cross-linking further suggests that the precursor form...

  16. Improvement on Physical Properties of Pullulan Films by Novel Cross-Linking Strategy.

    Science.gov (United States)

    Chen, Chieh-Ting; Chen, Kuan-I; Chiang, Hsin-Han; Chen, Yu-Kuo; Cheng, Kuan-Chen

    2017-01-01

    Pullulan based films possess several advantages, including high transparency, low toxicity, good biodegradability, good mechanical properties, and low oxygen permeability, are preferable for food packaging. The application of pullulan films on food packaging, however, has inherent disadvantage of high water solubility. In this study, glutaraldehyde and glycerol were used as the cross-linking reagent and the plasticizer respectively to improve water resistance and physical properties of the pullulan films. Effects of cross-linking degree on physical properties, including water absorptions, swelling behaviors, water vapor permeability and tensile strengths of films were evaluated. FTIR results demonstrated that the pullulan films were successfully cross-linked by glutaraldehyde. The tensile strength of pullulan films could be enhanced significantly (P permeability. © 2016 Institute of Food Technologists®.

  17. Wear resistant performance of highly cross-linked and annealed ultra-high molecular weight polyethylene against ceramic heads in total hip arthroplasty.

    Science.gov (United States)

    Sato, Taishi; Nakashima, Yasuharu; Akiyama, Mio; Yamamoto, Takuaki; Mawatari, Taro; Itokawa, Takashi; Ohishi, Masanobu; Motomura, Goro; Hirata, Masanobu; Iwamoto, Yukihide

    2012-12-01

    The purpose of this study was to examine the effects of ceramic femoral head material, size, and implantation periods on the wear of annealed, cross-linked ultra-high molecular weight polyethylene (UHMWPE) (XLPE) in total hip arthroplasty compared to non-cross-linked conventional UHMWPE (CPE). XLPE was fabricated by cross-linking with 60 kGy irradiation and annealing. Femoral heads made from zirconia and alumina ceramics and cobalt-chrome (CoCr) of 22 or 26 mm diameter were used. In this retrospective cohort study, the femoral head penetration into the cup was measured digitally on radiographs of 367 hips with XLPE and 64 hips with CPE. The average follow-up periods were 6.3 and 11.9 years, respectively. Both XLPE creep and wear rates were significantly lower than those of CPE (0.19 mm vs. 0.44 mm, 0.0001 mm/year vs. 0.09 mm/year, respectively). Zirconia displayed increased wear rates compared to alumina in CPE; however, there was no difference among head materials in XLPE (0.0008, 0.00007, and -0.009 mm/year for zirconia, alumina, and CoCr, respectively). Neither head size or implantation period impacted XLPE wear. In contrast to CPE, XLPE displayed low wear rates surpassing the effects of varying femoral head material, size, implantation period, and patient demographics. Further follow-up is required to determine the long-term clinical performance of the annealed XLPE. Copyright © 2012 Orthopaedic Research Society.

  18. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA.

    Science.gov (United States)

    Yang, Zhiyu; Price, Nathan E; Johnson, Kevin M; Wang, Yinsheng; Gates, Kent S

    2017-06-20

    Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3'ddR5p) at the 3'-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3'ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3'ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Through-the-wall high-resolution imaging of a human and experimental characterization of the transmission of wall materials

    Science.gov (United States)

    Nilsson, S.; Jänis, A.; Gustafsson, M.; Kjellgren, J.; Sume, Ain

    2008-10-01

    This paper describes the research efforts made at the Swedish Defence Research Agency (FOI) concerning through-the-wall imaging radar, as well as fundamental characterization of various wall materials. These activities are a part of two FOI-projects concerning security sensors in the aspects of Military Operations in Urban Terrain (MOUT) and Homeland Defence. Through-the-wall high resolution imaging of a human between 28-40 GHz has been performed at FOI. The UWB radar that was used is normally a member of the instrumentation of the FOI outdoor RCS test range Lilla Gåra. The armed test person was standing behind different kinds of walls. The radar images were generated by stepping the turntable in azimuth and elevation. The angular resolution in the near-field was improved by refocusing the parabolic antennas, which in combination with the large bandwidth (12 GHz) gave extremely high resolution radar images. A 3D visualization of the person even exposed the handgun tucked into one hip pocket. A qualitative comparison between the experimental results and simulation results (physical optics-based method) will also be presented. The second part of this paper describes results from activities at FOI concerning material characterization in the 2-110 GHz region. The transmission of building, packing and clothing materials has been experimentally determined. The wide-band measurements in free space were carried out with a scalar network analyzer. In this paper results from these characterizations will be presented. Furthermore, an experimental investigation will be reported of how the transmission properties for some moisted materials change as a function of water content and frequency. We will also show experimental results of how the transmission properties of a pine panel are affected when the surface is coated with a thin surface layer of water.

  20. Heat transfer characteristics of building walls using phase change material

    Science.gov (United States)

    Irsyad, M.; Pasek, A. D.; Indartono, Y. S.; Pratomo, A. W.

    2017-03-01

    Minimizing energy consumption in air conditioning system can be done with reducing the cooling load in a room. Heat from solar radiation which passes through the wall increases the cooling load. Utilization of phase change material on walls is expected to decrease the heat rate by storing energy when the phase change process takes place. The stored energy is released when the ambient temperature is low. Temperature differences at noon and evening can be utilized as discharging and charging cycles. This study examines the characteristics of heat transfer in walls using phase change material (PCM) in the form of encapsulation and using the sleeve as well. Heat transfer of bricks containing encapsulated PCM, tested the storage and released the heat on the walls of the building models were evaluated in this study. Experiments of heat transfer on brick consist of time that is needed for heat transfer and thermal conductivity test as well. Experiments were conducted on a wall coated by PCM which was exposed on a day and night cycle to analyze the heat storage and heat release. PCM used in these experiments was coconut oil. The measured parameter is the temperature at some points in the brick, walls and ambient temperature as well. The results showed that the use of encapsulation on an empty brick can increase the time for thermal heat transfer. Thermal conductivity values of a brick containing encapsulated PCM was lower than hollow bricks, where each value was 1.3 W/m.K and 1.6 W/m.K. While the process of heat absorption takes place from 7:00 am to 06:00 pm, and the release of heat runs from 10:00 pm to 7:00 am. The use of this PCM layer can reduce the surface temperature of the walls of an average of 2°C and slows the heat into the room.

  1. Ultrastructural changes of cell walls under intense mechanical treatment of selective plant raw material

    International Nuclear Information System (INIS)

    Bychkov, Aleksey L.; Ryabchikova, E.I.; Korolev, K.G.; Lomovsky, O.I.

    2012-01-01

    Structural changes of cell walls under intense mechanical treatment of corn straw and oil-palm fibers were studied by electron and light microscopy. Differences in the character of destruction of plant biomass were revealed, and the dependence of destruction mechanisms on the structure of cell walls and lignin content was demonstrated. We suggest that the high reactivity of the particles of corn straw (about 18% of lignin) after intense mechanical treatment is related to disordering of cell walls and an increase of the surface area, while in the case of oil palm (10% of lignin) the major contribution into an increase in the reactivity is made by an increase of surface area. -- Highlights: ► Structure of cell walls determines the processes of plant materials' destruction. ► Ultrastructure of highly lignified materials strongly disordering by mechanical action. ► Ultrastructure of low-lignified materials is not disordering by mechanical action.

  2. Cross-linked polyethylene does not reduce wear in total knee arthroplasty.

    Science.gov (United States)

    Lasurt-Bachs, S; Torner, P; Maculé, F; Prats, E; Menéndez-García, F; Ríos-Guillermo, J; Torrents, A

    To compare two different types of inserts: Ultra-high molecular weight polyethylene (UHMWPE) and cross-linked polyethylene with a quantitative and qualitative study of polyethylene wear particles in synovial fluid 3 years after total knee arthroplasty. A prospective, randomized, controlled cohort study with blinded evaluation was carried out on 25 patients undergoing staged bilateral total knee replacement, 6 months apart. Knee arthrocentesis was performed on 12 patients 3 years after surgery, and the polyethylene particles were analyzed. No significant differences were found in the number of particles generated by the two different types of inserts at 3 years from total knee arthroplasty (3,000×: x¯ cross-linked=849.7; x¯ UHMWPE=796.9; P=.63; 20,000×: x¯ cross-linked=66.3; x¯ UHMWPE=73.1; P=.76). Likewise, no differences in the probability of finding elongated (χ 2 =0.19; P=.66) or rounded (χ 2 =1.44; P=.23) particles in both types of inserts were observed. However, the probability of finding fibrillar particles is 3.08 times greater in UHMWPE. Cross-linked polyethylene does not significantly reduce the generation of polyethylene particles in patients with total knee arthroplasty, 3 years after the surgical procedure. Copyright © 2018 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia.

    Science.gov (United States)

    Mižíková, Ivana; Ruiz-Camp, Jordi; Steenbock, Heiko; Madurga, Alicia; Vadász, István; Herold, Susanne; Mayer, Konstantin; Seeger, Werner; Brinckmann, Jürgen; Morty, Rory E

    2015-06-01

    Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia. Copyright © 2015 the American Physiological Society.

  4. The effects of different cross-linking conditions on collagen-based nanocomposite scaffolds—an in vitro evaluation using mesenchymal stem cells

    International Nuclear Information System (INIS)

    Suchý, Tomáš; Šupová, Monika; Sucharda, Zbyněk; Rýglová, Šárka; Žaloudková, Margit; Sauerová, Pavla; Kalbáčová, Marie Hubálek; Verdánová, Martina; Sedláček, Radek

    2015-01-01

    Nanocomposite scaffolds which aimed to imitate a bone extracellular matrix were prepared for bone surgery applications. The scaffolds consisted of polylactide electrospun nano/sub-micron fibres, a natural collagen matrix supplemented with sodium hyaluronate and natural calcium phosphate nano-particles (bioapatite). The mechanical properties of the scaffolds were improved by means of three different cross-linking agents: N-(3-dimethylamino propyl)-N’-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide in an ethanol solution (EDC/NHS/EtOH), EDC/NHS in a phosphate buffer saline solution (EDC/NHS/PBS) and genipin. The effect of the various cross-linking conditions on the pore size, structure and mechanical properties of the scaffolds were subsequently studied. In addition, the mass loss, the swelling ratio and the pH of the scaffolds were determined following their immersion in a cell culture medium. Furthermore, the metabolic activity of human mesenchymal stem cells (hMSCs) cultivated in scaffold infusions for 2 and 7 days was assessed. Finally, studies were conducted of cell adhesion, proliferation and penetration into the scaffolds. With regard to the structural stability of the tested scaffolds, it was determined that EDC/NHS/PBS and genipin formed the most effectively cross-linked materials. Moreover, it was discovered that the genipin cross-linked scaffold also provided the best conditions for hMSC cultivation. In addition, the infusions from all the scaffolds were found to be non-cytotoxic. Thus, the genipin and EDC/NHS/PBS cross-linked scaffolds can be considered to be promising biomaterials for further in vivo testing and bone surgery applications. (paper)

  5. Lactoferrin binding to transglutaminase cross-linked casein micelles

    NARCIS (Netherlands)

    Anema, S.G.; de Kruif, C.G.|info:eu-repo/dai/nl/073609609

    2012-01-01

    Casein micelles in skim milk were either untreated (untreated milk) or were cross-linked using transglutaminase (TGA-milk). Added lactoferrin (LF) bound to the casein micelles and followed Langmuir adsorption isotherms. The adsorption level was the same in both milks and decreased the micellar zeta

  6. Wall-crossing between stable and co-stable ADHM data

    Science.gov (United States)

    Ohkawa, Ryo

    2018-06-01

    We prove formula between Nekrasov partition functions defined from stable and co-stable ADHM data for the plane following method by Nakajima and Yoshioka (Kyoto J Math 51(2):263-335, 2011) based on the theory of wall-crossing formula developed by Mochizuki (Donaldson type invariants for algebraic surfaces: transition of moduli stacks, Lecture notes in mathematics, vol 1972, Springer, Berlin, 2009). This formula is similar to conjectures by Ito et al. [J High Energy Phys 2013(5):045, 2013, (4.1), (4.2)] for A1 singularity.

  7. ECO-WALL SYSTEMS: USING RECYCLED MATERIAL IN THE DESIGN OF COMMERCIAL INTERIOR WALL SYSTEMS FOR BUILDINGS

    Science.gov (United States)

    This proposal describes an interdisciplinary project involving students from several academic departments at Miami University in the design of commercial wall systems to be manufactured from recycled materials. The goal of Phase I of the project is to develop and conduct prelimi...

  8. A Thermally Re-mendable Cross-Linked Polymeric Material

    Science.gov (United States)

    Chen, Xiangxu; Dam, Matheus A.; Ono, Kanji; Mal, Ajit; Shen, Hongbin; Nutt, Steven R.; Sheran, Kevin; Wudl, Fred

    2002-03-01

    We have developed a transparent organic polymeric material that can repeatedly mend or ``re-mend'' itself under mild conditions. The material is a tough solid at room temperature and below with mechanical properties equaling those of commercial epoxy resins. At temperatures above 120°C, approximately 30% (as determined by solid-state nuclear magnetic resonance spectroscopy) of ``intermonomer'' linkages disconnect but then reconnect upon cooling, This process is fully reversible and can be used to restore a fractured part of the polymer multiple times, and it does not require additional ingredients such as a catalyst, additional monomer, or special surface treatment of the fractured interface.

  9. Distortional Mechanics of Thin-Walled Structural Elements

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim

    In several industries such as civil, mechanical, and aerospace, thin-walled structures are often used due to the high strength and effective use of the materials. Because of the increased consumption there has been increasing focus on optimizing and more detailed calculations. However, finely...... number of degrees of freedom. This means that the classical Vlasov thin-walled beam theory for open and closed cross sections is generalized as part of a semi-discretization process by including distortional displacement fields. A novel finite-element-based displacement approach is used in combination...... by discretization of the cross section are now solved analytically and the formulation is valid without special attention and approximation also for closed single or multi-cell cross sections. Furthermore, the found eigenvalues have clear mechanical meaning, since they represent the attenuation of the distortional...

  10. Thermal Response Of An Aerated Concrete Wall With Micro-Encapsulated Phase Change Material

    Science.gov (United States)

    Halúzová, Dušana

    2015-06-01

    For many years Phase Change Materials (PCM) have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called "twin-boxes". The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.

  11. Collagen cross-linking: insights on the evolution of metazoan extracellular matrix.

    Science.gov (United States)

    Rodriguez-Pascual, Fernando; Slatter, David Anthony

    2016-11-23

    Collagens constitute a large family of extracellular matrix (ECM) proteins that play a fundamental role in supporting the structure of various tissues in multicellular animals. The mechanical strength of fibrillar collagens is highly dependent on the formation of covalent cross-links between individual fibrils, a process initiated by the enzymatic action of members of the lysyl oxidase (LOX) family. Fibrillar collagens are present in a wide variety of animals, therefore often being associated with metazoan evolution, where the emergence of an ancestral collagen chain has been proposed to lead to the formation of different clades. While LOX-generated collagen cross-linking metabolites have been detected in different metazoan families, there is limited information about when and how collagen acquired this particular modification. By analyzing telopeptide and helical sequences, we identified highly conserved, potential cross-linking sites throughout the metazoan tree of life. Based on this analysis, we propose that they have importantly contributed to the formation and further expansion of fibrillar collagens.

  12. Cross-modal links among vision, audition, and touch in complex environments.

    Science.gov (United States)

    Ferris, Thomas K; Sarter, Nadine B

    2008-02-01

    This study sought to determine whether performance effects of cross-modal spatial links that were observed in earlier laboratory studies scale to more complex environments and need to be considered in multimodal interface design. It also revisits the unresolved issue of cross-modal cuing asymmetries. Previous laboratory studies employing simple cues, tasks, and/or targets have demonstrated that the efficiency of processing visual, auditory, and tactile stimuli is affected by the modality, lateralization, and timing of surrounding cues. Very few studies have investigated these cross-modal constraints in the context of more complex environments to determine whether they scale and how complexity affects the nature of cross-modal cuing asymmetries. Amicroworld simulation of battlefield operations with a complex task set and meaningful visual, auditory, and tactile stimuli was used to investigate cuing effects for all cross-modal pairings. Significant asymmetric performance effects of cross-modal spatial links were observed. Auditory cues shortened response latencies for collocated visual targets but visual cues did not do the same for collocated auditory targets. Responses to contralateral (rather than ipsilateral) targets were faster for tactually cued auditory targets and each visual-tactile cue-target combination, suggesting an inhibition-of-return effect. The spatial relationships between multimodal cues and targets significantly affect target response times in complex environments. The performance effects of cross-modal links and the observed cross-modal cuing asymmetries need to be examined in more detail and considered in future interface design. The findings from this study have implications for the design of multimodal and adaptive interfaces and for supporting attention management in complex, data-rich domains.

  13. Cross-linked PAN-based thin-film composite membranes for non-aqueous nanofiltration

    KAUST Repository

    Pérez-Manríquez, Liliana

    2015-01-01

    A new approach on the development of cross-linked PAN based thin film composite (TFC) membranes for non-aqueous application is presented in this work. Polypropylene backed neat PAN membranes fabricated by phase inversion process were cross-linked with hydrazine to get excellent solvent stability toward dimethylformamide (DMF). By interfacial polymerization a selective polyamide active layer was coated over the cross-linked PAN using N,N′-diamino piperazine (DAP) and trimesoyl chloride (TMC) as monomers. Permeation and molecular weight cut off (MWCO) experiments using various dyes were done to evaluate the performance of the membranes. Membranes developed by such method show excellent solvent stability toward DMF with a permeance of 1.7 L/m2 h bar and a molecular weight cut-off of less than 600 Da.

  14. Cross-linked self-assembled micelle based nanosensor for intracellular pH measurements

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar; Søndergaard, Rikke Vicki; Windschiegl, Barbara

    2014-01-01

    A micelle based nanosensor was synthesized and investigated as a ratiometric pH sensor for use in measurements in living cells by fluorescent microscopy. The nanosensor synthesis was based on self-assembly of an amphiphilic triblock copolymer, which was chemically cross-linked after micelle......-linked by an amidation reaction using 3,6,9-trioxaundecandioic acid cross-linker. The cross-linked micelle was functionalized with two pH sensitive fluorophores and one reference fluorophore, which resulted in a highly uniform ratiometric pH nanosensor with a diameter of 29 nm. The use of two sensor fluorophores...... provided a sensor with a very broad measurement range that seems to be influenced by the chemical design of the sensor. Cell experiments show that the sensor is capable of monitoring the pH distributions in HeLa cells....

  15. Two-photon induced collagen cross-linking in bioartificial cardiac tissue

    Science.gov (United States)

    Kuetemeyer, Kai; Kensah, George; Heidrich, Marko; Meyer, Heiko; Martin, Ulrich; Gruh, Ina; Heisterkamp, Alexander

    2011-08-01

    Cardiac tissue engineering is a promising strategy for regenerative therapies to overcome the shortage of donor organs for transplantation. Besides contractile function, the stiffness of tissue engineered constructs is crucial to generate transplantable tissue surrogates with sufficient mechanical stability to withstand the high pressure present in the heart. Although several collagen cross-linking techniques have proven to be efficient in stabilizing biomaterials, they cannot be applied to cardiac tissue engineering, as cell death occurs in the treated area. Here, we present a novel method using femtosecond (fs) laser pulses to increase the stiffness of collagen-based tissue constructs without impairing cell viability. Raster scanning of the fs laser beam over riboflavin-treated tissue induced collagen cross-linking by two-photon photosensitized singlet oxygen production. One day post-irradiation, stress-strain measurements revealed increased tissue stiffness by around 40% being dependent on the fibroblast content in the tissue. At the same time, cells remained viable and fully functional as demonstrated by fluorescence imaging of cardiomyocyte mitochondrial activity and preservation of active contraction force. Our results indicate that two-photon induced collagen cross-linking has great potential for studying and improving artificially engineered tissue for regenerative therapies.

  16. Capacity of cognitive radio under imperfect secondary and cross link channel state information

    KAUST Repository

    Sboui, Lokman

    2011-09-01

    In this paper, we study the ergodic capacity of secondary user channel in a spectrum sharing scenario in which the secondary transmitter is instantaneously aware of estimated versions of the cross link (between the secondary transmitter and the primary receiver) and the secondary link Channel State Information (CSI). The secondary link optimal power profile along with the ergodic capacity are derived for a class of fading channels, under an average power constraint and an instantaneous interference outage constraint. We also show that our framework is rather general as it encompasses several previously studied spectrum sharing settings as special cases. In order to gain some insights on the capacity behavior, numerical results are shown for independent Rayleigh fading channels where it is found for instance, that at low SNR regime, only the secondary channel estimation matters and that the cross link CSI has no effect on the ergodic capacity; whereas at high SNR regime, the capacity is rather driven by the cross link CSI. © 2011 IEEE.

  17. Oxidative cross-linking of casein by horseradish peroxidase and its ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... The cross-linking of casein was demonstrated by capillary zone electrophoresis analysis. .... linking reaction was started by addition of 1.0 ml 3% (w/v) H2O2 and .... by Design Expert Software (Version 7.0), keeping one variable at its ... The emulsion was immediately transferred into a 250 ml capa-.

  18. Cross-linking for microbial keratitis

    Directory of Open Access Journals (Sweden)

    Jayesh Vazirani

    2013-01-01

    Full Text Available The success of collagen cross-linking as a clinical modality to modify the clinical course in keratoconus seems to have fueled the search for alternative applications for this treatment. Current clinical data on its efficacy is limited and laboratory data seems to indicate that it performs poorly against resistant strains of bacteria and against slow growing organisms. However, the biological plausibility of crosslinking and the lack of effective strategies in managing infections with these organisms continue to focus attention on this potential treatment. Well-conducted experimental and clinical studies with controls are required to answer the questions of its efficacy in future.

  19. Dehydration of an ethanol/water azeotrope through alginate-DNA membranes cross-linked with metal ions by pervaporation.

    Science.gov (United States)

    Uragami, Tadashi; Banno, Masashi; Miyata, Takashi

    2015-12-10

    To obtain high dehydration membranes for an ethanol/water azeotrope, dried blend membranes prepared from mixtures of sodium alginate (Alg-Na) and sodium deoxyribonucleate (DNA-Na) were cross-linked by immersing in a methanol solution of CaCl2 or MaCl2. In the dehydration of an ethanol/water azeotropic mixture by pervaporation, the effects of immersion time in methanol solution of CaCl2 or MaCl2 on the permeation rate and water/ethanol selectivity through Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes were investigated. Alg-DNA/Mg(2+) cross-linked membrane immersed for 12h in methanol solution of MaCl2 exhibited the highest water/ethanol selectivity. This results from depressed swelling of the membranes by formation of a cross-linked structure. However, excess immersion in solution containing cross-linker led to an increase in the hydrophobicity of cross-linked membrane. Therefore, the water/ethanol selectivity of Alg-DNA/Mg(2+) cross-linked membranes with an excess immersion in cross-linking solution was lowered. The relationship between the structure of Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotropic mixture is discussed in detail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. SECONDARY CYTOTOXICITY OF CROSS-LINKED DERMAL SHEEP COLLAGENS DURING REPEATED EXPOSURE TO HUMAN FIBROBLASTS

    NARCIS (Netherlands)

    VANLUYN, MJA; VANWACHEM, PB; DAMINK, LHHO; DIJKSTRA, PJ; FEIJEN, J; NIEUWENHUIS, P

    1992-01-01

    We investigated commercially available dermal sheep collagen either cross-linked with hexamethylenedlisocyanate, or cross-linked with glutaraldehyde. In previous in vitro studies we could discriminate primary, i.e. extractable, and secondary cytotoxicity, due to cell-biomaterial interactions, i.e.

  1. Morphologic study of three collagen materials for body wall repair.

    Science.gov (United States)

    Soiderer, Emily E; Lantz, Gary C; Kazacos, Evelyn A; Hodde, Jason P; Wiegand, Ryan E

    2004-05-15

    The search for ideal prostheses for body wall repair continues. Synthetic materials such as polypropylene mesh (PPM) are associated with healing complications. A porcine-derived collagen-based material (CBM), small intestinal submucosa (SIS), has been studied for body wall repair. Renal capsule matrix (RCM) and urinary bladder submucosa (UBS) are CBMs not previously evaluated in this application. This is the first implant study using RCM. Full-thickness muscle/fascia ventral abdominal wall defects were repaired with SIS, RCM, UBS, and PPM in rats with omentum and omentectomy. A random complete block design was used to allot implant type to each of 96 rats. Healing was evaluated at 4 and 8 weeks. Adhesion tenacity and surface area were scored. Implant site dimensions were measured at implantation and necropsy. Inflammation, vascularization, and fibrosis were histopathologically scored. Data were compared by analysis of variance (P response in contrast to the organized healing of CBM implants. CBM mean scores were lower than PPM scores for adhesion tenacity, surface area, and inflammation at each follow-up time for rats with omentums (P fibrotic response to PPM was unique and more intense compared to CBMs. These CBM implants appear morphologically acceptable and warrant continued investigation.

  2. Kinetics of enzyme-catalyzed cross-linking of feruloylated arabinan from sugar beet

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Arnous, Anis; Holck, Jesper

    2011-01-01

    the kinetics of HRP catalyzed cross-linking of FA esterified to α-(1,5)-linked arabinans are affected by the length of the arabinan chains carrying the feruloyl substitutions. The kinetics of the HRP-catalyzed cross-linking of four sets of arabinan samples from sugar beet pulp, having different molecular...... weights and hence different degrees of polymerization, were monitored by the disappearance of FA absorbance at 316 nm. MALDI-TOF/TOF-MS analysis confirmed that the sugar beet arabinans were feruloyl-substituted, and HPLC analysis verified that the amounts of diFAs increased when FA levels decreased...

  3. Synthesis of Cross-Linked Polymeric Micelle pH Nanosensors

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar; Jølck, Rasmus Irming; Andresen, Thomas Lars

    2015-01-01

    The design flexibility that polymeric micelles offer in the fabrication of optical nanosensors for ratiometric pH measurements is investigated. pH nanosensors based on polymeric micelles are synthesized either by a mixed-micellization approach or by a postmicelle modification strategy. In the mixed......-micellization approach, self-assembly of functionalized unimers followed by shell cross-linking by copper-catalyzed azide-alkyne cycloaddition (CuAAC) results in stabilized cRGD-functionalized micelle pH nanosensors. In the postmicelle modification strategy, simultaneous cross-linking and fluorophore conjugation...... at the micelle shell using CuAAC results in a stabilized micelle pH nanosensor. Compared to the postmicelle modification strategy, the mixed-micellization approach increases the control of the overall composition of the nanosensors.Both approaches provide stable nanosensors with similar pKa profiles and thereby...

  4. Domain wall magnetoresistance in nanowires: Dependence on geometrical factors and material parameters

    International Nuclear Information System (INIS)

    Allende, S.; Retamal, J.C.; Altbir, D.; D'Albuquerque e Castro, J.

    2014-01-01

    The magnetoresistance associated with the presence of domain walls in metallic nanowires is investigated as a function of geometrical parameters, corresponding to the wall thickness and the nanowire width, as well as of material parameters, such as the band filling and the exchange interaction. Transport across the structure is described within Landauer formalism. Both cases of saturated and non-saturated ferromagnets are considered, and in all of them the contributions from spin-flip and non-spin-flip are separately analyzed. It has been found that for certain range of parameters deviations in the normalized magnetoresistance as high as 20% may be achieved. In addition, it has been shown that the spin-flip process is dependent on the wall thickness. - Highlights: • We identify thickness regions within which transport across the wall is dominated by either spin-flip or non-spin-flip process. • We analyze the dependence of the magnetoresistance on both the material's band filling and strength of the exchange interaction. • We identify parameter ranges within which magnetoresistance ratios as high as 20% or even more might be achieved

  5. Domain wall magnetoresistance in nanowires: Dependence on geometrical factors and material parameters

    Energy Technology Data Exchange (ETDEWEB)

    Allende, S.; Retamal, J.C. [Departamento de Física, CEDENNA, Universidad de Santiago de Chile, USACH, Avenida Ecuador 3493, 917-0124 Santiago (Chile); Altbir, D., E-mail: dora.altbir@usach.cl [Departamento de Física, CEDENNA, Universidad de Santiago de Chile, USACH, Avenida Ecuador 3493, 917-0124 Santiago (Chile); D' Albuquerque e Castro, J. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro 21941-972 (Brazil)

    2014-04-15

    The magnetoresistance associated with the presence of domain walls in metallic nanowires is investigated as a function of geometrical parameters, corresponding to the wall thickness and the nanowire width, as well as of material parameters, such as the band filling and the exchange interaction. Transport across the structure is described within Landauer formalism. Both cases of saturated and non-saturated ferromagnets are considered, and in all of them the contributions from spin-flip and non-spin-flip are separately analyzed. It has been found that for certain range of parameters deviations in the normalized magnetoresistance as high as 20% may be achieved. In addition, it has been shown that the spin-flip process is dependent on the wall thickness. - Highlights: • We identify thickness regions within which transport across the wall is dominated by either spin-flip or non-spin-flip process. • We analyze the dependence of the magnetoresistance on both the material's band filling and strength of the exchange interaction. • We identify parameter ranges within which magnetoresistance ratios as high as 20% or even more might be achieved.

  6. Covalently Cross-Linked Sulfone Polybenzimidazole Membranes with Poly(Vinylbenzyl Chloride) for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Aili, David; Li, Qingfeng

    2013-01-01

    Covalently cross-linked polymer membranes were fabricated from poly(aryl sulfone benzimidazole) (SO(2) PBI) and poly(vinylbenzyl chloride) (PVBCl) as electrolytes for high-temperature proton-exchange-membrane fuel cells. The cross-linking imparted organo insolubility and chemical stability against...

  7. Dependences of the van der Waals atom-wall interaction on atomic and material properties

    International Nuclear Information System (INIS)

    Caride, A.O.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Zanette, S.I.

    2005-01-01

    The 1%-accurate calculations of the van der Waals interaction between an atom and a cavity wall are performed in the separation region from 3 nm to 150 nm. The cases of metastable He * and Na atoms near metal, semiconductor, and dielectric walls are considered. Different approximations to the description of wall material and atomic dynamic polarizability are carefully compared. The smooth transition to the Casimir-Polder interaction is verified. It is shown that to obtain accurate results for the atom-wall van der Waals interaction at short separations with an error less than 1% one should use the complete optical-tabulated data for the complex refractive index of the wall material and the accurate dynamic polarizability of an atom. The obtained results may be useful for the theoretical interpretation of recent experiments on quantum reflection and Bose-Einstein condensation of ultracold atoms on or near surfaces of different kinds

  8. Dependence of the Casimir-Polder interaction between an atom and a cavity wall on atomic and material properties

    International Nuclear Information System (INIS)

    Mostepanenko, V M; Babb, J F; Caride, A O; Klimchitskaya, G L; Zanette, S I

    2006-01-01

    The Casimir-Polder and van der Waals interactions between an atom and a flat cavity wall are investigated under the influence of real conditions including the dynamic polarizability of the atom, actual conductivity of the wall material and nonzero temperature of the wall. The cases of different atoms near metal and dielectric walls are considered. It is shown that to obtain accurate results for the atom-wall interaction at short separations, one should use the complete tabulated optical data for the complex refractive index of the wall material and the accurate dynamic polarizability of an atom. At relatively large separations in the case of a metal wall, one may use the plasma model dielectric function to describe the dielectric properties of the wall material. The obtained results are important for the theoretical interpretation of experiments on quantum reflection and Bose-Einstein condensation

  9. Cell protein cross-linking by erbstatin and related compounds | Center for Cancer Research

    Science.gov (United States)

    The scheme depicts a possible mechanism of cross-linking by erbstatin and related analogues. A mechanism of action is proposed which involves initial oxidation to reactive quinone intermediates that subsequently cross-link protein nucleophiles via multiple 1,4-Michael-type additions. Similar alkylation of protein by protein-tyrosine kinase inhibitors, such as herbimycin A, has

  10. Partnering for Discoverability: Knitting Archival Finding Aids to Digitized Material Using a Low Tech Digital Content Linking Process

    Directory of Open Access Journals (Sweden)

    Liz Woolcott

    2016-10-01

    Full Text Available As libraries continue to ramp up digitization efforts for unique archival and special collections material, the segregation of archival finding aids from their digitized counterparts presents an accumulating discoverability problem for both patrons and library staff. For Utah State University (USU Libraries, it became evident that a system was necessary to connect both new and legacy finding aids with their digitized content to improve use and discoverability. Following a cross-departmental workflow analysis involving the Special Collections, Cataloging and Metadata, and Digital Initiatives departments, a process was created for semi-automating the batch linking of item and folder level entries in EAD finding aids to the corresponding digitized material in CONTENTdm. In addition to the obvious benefit of linking content, this cross-departmental process also allowed for the implementation of persistent identifiers and the enhancement of finding aids using the more robust metadata that accompanies digitized material. This article will provide a detailed overview of the process, as well as describe how the three departments at USU have worked together to identify key stakeholders, develop the procedures, and address future developments.

  11. Fabrication of Si negative electrodes for Li-ion batteries (LIBs) using cross-linked polymer binders.

    Science.gov (United States)

    Jang, Suk-Yong; Han, Sien-Ho

    2016-12-19

    Currently, Si as an active material for LIBs has been attracting much attention due to its high theoretical specific capacity (3572 mAh g -1 ). However, a disadvantage when using a Si negative electrode for LIBs is the abrupt drop of its capabilities during the cycling process. Therefore, there have been a few studies of polymers such as poly(vinylidene fluoride) (PVdF), carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR) and polyacrylic acid (PAA) given that the robust structure of a polymeric binder to LIBs anodes is a promising means by which to enhance the performance of high-capacity anodes. These studies essentially focused mainly on modifying of the linear-polymer component or on copolymers dissolved in solvents. Cross-linking polymers as a binder may be preferred due to their good scratch resistance, excellent chemical resistance and high levels of adhesion and resilience. However, because these types of polymers (with a rigid structure and cross-linking points) are also insoluble in general organic solvents, applying these types in this capacity is virtually impossible.

  12. Cross-Linking Mast Cell Specific Gangliosides Stimulates the Release of Newly Formed Lipid Mediators and Newly Synthesized Cytokines

    Directory of Open Access Journals (Sweden)

    Edismauro Garcia Freitas Filho

    2016-01-01

    Full Text Available Mast cells are immunoregulatory cells that participate in inflammatory processes. Cross-linking mast cell specific GD1b derived gangliosides by mAbAA4 results in partial activation of mast cells without the release of preformed mediators. The present study examines the release of newly formed and newly synthesized mediators following ganglioside cross-linking. Cross-linking the gangliosides with mAbAA4 released the newly formed lipid mediators, prostaglandins D2 and E2, without release of leukotrienes B4 and C4. The effect of cross-linking these gangliosides on the activation of enzymes in the arachidonate cascade was then investigated. Ganglioside cross-linking resulted in phosphorylation of cytosolic phospholipase A2 and increased expression of cyclooxygenase-2. Translocation of 5-lipoxygenase from the cytosol to the nucleus was not induced by ganglioside cross-linking. Cross-linking of GD1b derived gangliosides also resulted in the release of the newly synthesized mediators, interleukin-4, interleukin-6, and TNF-α. The effect of cross-linking the gangliosides on the MAP kinase pathway was then investigated. Cross-linking the gangliosides induced the phosphorylation of ERK1/2, JNK1/2, and p38 as well as activating both NFκB and NFAT in a Syk-dependent manner. Therefore, cross-linking the mast cell specific GD1b derived gangliosides results in the activation of signaling pathways that culminate with the release of newly formed and newly synthesized mediators.

  13. Covalently cross-linked polyetheretherketone proton exchange membrane for DMFC

    CSIR Research Space (South Africa)

    Luo, H

    2009-05-01

    Full Text Available -7 cm2/s) and good electrochemical stability. The results suggested that cross-linked polyetheretherketone membrane is particularly promising to be used as proton exchange membrane for the direct methanol fuel cell application....

  14. Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture.

    Science.gov (United States)

    Turner, Robert D; Hurd, Alexander F; Cadby, Ashley; Hobbs, Jamie K; Foster, Simon J

    2013-01-01

    Cellular integrity and morphology of most bacteria is maintained by cell wall peptidoglycan, the target of antibiotics essential in modern healthcare. It consists of glycan strands, cross-linked by peptides, whose arrangement determines cell shape, prevents lysis due to turgor pressure and yet remains dynamic to allow insertion of new material, and hence growth. The cellular architecture and insertion pattern of peptidoglycan have remained elusive. Here we determine the peptidoglycan architecture and dynamics during growth in rod-shaped Gram-negative bacteria. Peptidoglycan is made up of circumferentially oriented bands of material interspersed with a more porous network. Super-resolution fluorescence microscopy reveals an unexpected discontinuous, patchy synthesis pattern. We present a consolidated model of growth via architecture-regulated insertion, where we propose only the more porous regions of the peptidoglycan network that are permissive for synthesis.

  15. Study of cross-linking reactions induced by gamma rays in hybrid membranes of Bisphenol-A-Polysulfone and precipitated silica

    International Nuclear Information System (INIS)

    Furtado Filho, Acacio Antonio M.; Gomes, Ailton de S.; Lopes, Lea; Benzi, Marcia R.

    2011-01-01

    In this work the bisphenol-A-polysulfone (PSF) was sulfonated using trimethyl silyl chlorosulfonate [(CH 3 ) 3 SiSO 3 Cl] as a mild sulfonating agent in a homogeneous solution of dichloroethane. The sulfonation reaction was confirmed by acid-base titration and FTIR-spectroscopy analysis. The hybrid membranes were obtained by casting the sulfonated bisphenol-A-polysulfone (SPSF) and precipitated silica Tixosil R 333 solutions in N-N-dimethylacetamide. Cross-linking in the hybrid membranes was obtained by irradiation, with doses ranging from 5 to 30 kGy using gamma ray from a 60 Co source. The water uptake and the swelling of the membranes were estimated by measuring the change in weight between dry and wet conditions. The conductivity of the membranes in acid form was measured with the ac impedance technique using a PGSTAT30 frequency response analyzer. The hybrid cross-linked membranes have conductivity close to 10-1 S.cm -1 at 100% RH and 80 deg C. Electrochemical performances, thermo-mechanical stability and low cost make this cross-linked SPSF hybrid membrane an attractive material for fuel cells using a proton exchange membrane. (author)

  16. The Preparation and Properties of Thermo-reversibly Cross-linked Rubber Via Diels-Alder Chemistry

    NARCIS (Netherlands)

    Polgar, Lorenzo Massimo; van Duin, Martin; Picchioni, Francesco

    2016-01-01

    A method for using Diels Alder thermo-reversible chemistry as cross-linking tool for rubber products is demonstrated. In this work, a commercial ethylene-propylene rubber, grafted with maleic anhydride, is thermo-reversibly cross-linked in two steps. The pending anhydride moieties are first modified

  17. Membrane-Based Separation of Phenol/Water Mixtures Using Ionically and Covalently Cross-Linked Ethylene-Methacrylic Acid Copolymers

    Directory of Open Access Journals (Sweden)

    Alexander Mixa

    2008-01-01

    Full Text Available Membrane-based separation of phenol/water mixtures with concentrations of phenol between 3 wt% and 8 wt% in the feed has been performed with nonmodified as well as cross-linked ethylene-methacrylic acid (E-MAA copolymers with different amounts of methacrylic acid. As cross-linking agents, aluminium acetyl acetonate, which leads to ionically cross-linked membranes, and 2,3,5,6-tetramethyl-1,4-phenylene diamine and glycerine digycidether, leading to covalently cross-linked membranes, have been used. Generally, it was found that with increasing phenol content in the feed, the total flux is increasing whereas the enrichment factor is decreasing. Using nonmodified membranes with higher methacrylic acid monomer content in the polymer, lower fluxes and higher enrichment factors were observed. Investigation of different cross-linked membranes showed that with high phenol concentration in the feed, ionic cross-linking seems to be very promising. Furthermore, variation of feed temperature shows that ionically cross-linked membranes reached higher fluxes as well as higher enrichment factors at elevated temperatures. The temperature-dependent data were fitted based on an Arrhenius-type equation, and activation energies for the permeation of phenol and water through the membrane were calculated.

  18. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.

    Science.gov (United States)

    Jang, Jinah; Seol, Young-Joon; Kim, Hyeon Ji; Kundu, Joydip; Kim, Sung Won; Cho, Dong-Woo

    2014-09-01

    An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Immobilization of cross-linked tannase enzyme on multiwalled carbon nanotubes and its catalytic behavior.

    Science.gov (United States)

    Ong, Chong-Boon; Annuar, Mohamad S M

    2018-02-07

    Immobilization of cross-linked tannase on pristine multiwalled carbon nanotubes (MWCNT) was successfully performed. Cross-linking of tannase molecules was made through glutaraldehyde. The immobilized tannase exhibited significantly improved pH, thermal, and recycling stability. The optimal pH for both free and immobilized tannase was observed at pH 5.0 with optimal operating temperature at 30°C. Moreover, immobilized enzyme retained greater biocatalytic activities upon 10 repeated uses compared to free enzyme in solution. Immobilization of tannase was accomplished by strong hydrophobic interaction most likely between hydrophobic amino acid moieties of the glutaraldehyde-cross-linked tannase to the MWCNT.

  20. Alkali reversal of psoralen cross-link for the targeted delivery of psoralen monoadduct lesion

    International Nuclear Information System (INIS)

    Yeung, A.T.; Dinehart, W.J.; Jones, B.K.

    1988-01-01

    Psoralen intercalates into double-stranded DNA and photoreacts mainly with thymines to form monoadducts and interstrand cross-links. The authors used an oligonucleotide model to demonstrate a novel mechanism: the reversal of psoralen cross-links by base-catalyzed rearrangement at 90 0 C (BCR). The BCR reaction is more efficient than the photoreversal reaction. They show that the BCR occurs predominantly on the furan side of a psoralen cross-link. The cleavage does not result in the breaking of the DNA backbone, and the thymine based freed from the cross-link by the cleavage reaction appears to be unmodified. Similarly, BCR of the furan-side monoadduct of psoralen removed the psoralen molecule and regenerated the unaltered native oligonucleotide. The pyrone-side psoralen monoadduct is relatively resistant to BCR. One can use BCR to perform efficient oligonucleotide-directed, site-specific delivery of a psoralen monoadduct. As a demonstration of this approach, they have hybridized a 19 base long oligonucleotide vehicle containing a furan-side psoralen monoadduct to a 56 base long complementary oligonucleotide target strand and formed a specific cross-link at the target site with 365-nm UV. Subsequent BCR released the oligonucleotide vehicle and deposited the psoralen at the target site

  1. Chemical cross-linking of polypropylenes towards new shape memory polymers.

    Science.gov (United States)

    Raidt, Thomas; Hoeher, Robin; Katzenberg, Frank; Tiller, Joerg C

    2015-04-01

    In this work, syndiotactic polypropylene (sPP) as well as isotactic polypropylene (iPP) are cross-linked to gain a shape memory effect. Both prepared PP networks exhibit maximum strains of 700%, stored strains of up to 680%, and recoveries of nearly 100%. While x-iPP is stable for many cycles, x-sPP ruptures after the first shape-memory cycle. It is shown by wide-angle X-ray scattering (WAXS) experiments that cross-linked iPP exhibits homoepitaxy in the temporary, stretched shape but in contrast to previous reports it contains a higher amount of daughter than mother crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Simulations of tensile failure in glassy polymers: effect of cross-link density

    International Nuclear Information System (INIS)

    Panico, M; Narayanan, S; Brinson, L C

    2010-01-01

    Molecular dynamics simulations are adopted to investigate the failure mechanisms of glassy polymers, particularly with respect to increasing density of cross-links. In our simulations thermosetting polymers, which are cross-linked, exhibit an embrittlement compared with uncross-linked thermoplastics in a similar fashion to several experimental investigations (Levita et al 1991 J. Mater. Sci. 26 2348; Sambasivam et al 1997 J. Appl. Polym. Sci. 65 1001; Iijima et al 1992 Eur. Polym. J. 28 573). We perform a detailed analysis of this phenomenon and propose an interpretation based on the predominance of chain scission process over disentanglement in thermosetting polymers. We also elucidate the brittle fracture response of the thermosetting polymers

  3. Effects of wall materials and lyophilization on the viability of ...

    African Journals Online (AJOL)

    SAM

    2014-06-16

    Jun 16, 2014 ... The protective effect of wall materials was ... successfully used in the preservation and protection of ... functional nutrient in drinks and ice cream (Martínez- ..... isolated from skin juice, gel juice and flower of Aloe vera Miller. J.

  4. Altered Cross-Linking of HSP27 by Zerumbone as a Novel Strategy for Overcoming HSP27-Mediated Radioresistance

    International Nuclear Information System (INIS)

    Choi, Seo-Hyun; Lee, Yoon-Jin; Seo, Woo Duck; Lee, Hae-June; Nam, Joo-Won; Lee, Yoo Jin; Kim, Joon; Seo, Eun-Kyoung; Lee, Yun-Sil

    2011-01-01

    Purpose: HSP27 or HSP25 negatively regulates apoptosis pathways after radiation or chemotherapeutic agents. Abrogation of HSP27 function may be a candidate target for overcoming radio- and chemoresistance. Methods and Materials: Zerumbone (ZER), a cytotoxic component isolated from Zingiber zerumbet smith. Clonogenic survival assay and flow cytometry after Annexin V staining were performed to determine in vitro sensitization effects of ZER with ionizing radiation. A nude mouse xenografting system was also applied to detect in vivo radiosensitizing effects of ZER. Results: ZER produced cross-linking of HSP27, which was dependent on inhibition of the monomeric form of HSP27. ZER was directly inserted between the disulfide bond in the HSP27 dimer and modified normal HSP27 dimerization. Pretreatment with ZER before radiation inhibited the binding affinity between HSP27 and apoptotic molecules, such as cytochrome c and PKCδ, and induced sensitization in vitro and in an in vivo xenografted nude mouse system. Structural analogs lacking only the carbonyl group in ZER, such as α-humulene (HUM) and 8-hydroxy-humulen (8-OH-HUM), did not affect normal cross-linking of HSP27 and did not induce radiosensitization. Conclusions: We suggest that altered cross-linking of HSP27 by ZER is a good strategy for abolishing HSP27-mediated resistance.

  5. Usefulness of Cross-Linked Human Acellular Dermal Matrix as an Implant for Dorsal Augmentation in Rhinoplasty.

    Science.gov (United States)

    Yang, Chae Eun; Kim, Soo Jung; Kim, Ji Hee; Lee, Ju Hee; Roh, Tai Suk; Lee, Won Jai

    2018-02-01

    Asian noses are relatively small and flat compared to Caucasians; therefore, rhinoplasty procedures often focus on dorsal augmentation and tip projection rather than reduction in the nasal framework. Various autologous and alloplastic implant materials have been used for dorsal augmentation. Recently, human acellular dermal matrices have been introduced as an implant material for dorsal augmentation, camouflaging autologous implants without an additional donor site. Here, we introduce a cross-linked human acellular dermal matrix as an implant material in augmentation rhinoplasty and share the clinical experiences. Eighteen patients who underwent augmentation rhinoplasty using acellular dermal matrix from April 2014 to November 2015 were reviewed retrospectively. Clinical outcomes and complications were assessed at the outpatient clinic during the follow-up period ranging from 8 to 38 months. Contour changes were assessed through comparison of preoperative and postoperative photographs by two independent plastic surgeons. Patient satisfaction was assessed at the outpatient clinic by six questions regarding aesthetic and functional aspects. Postoperative photographs demonstrated the height of the nasal dorsum did not decrease over time except two patients whose ADM was grafted into a subperiosteal pocket. Others who underwent supraperiosteal implantation showed acceptable maintenance of dorsal height. No major complication was reported. Overall, patient satisfaction scored 81.02 out of 100. Cross-linked human ADM has advantages of both autogenous and alloplastic materials. The surgical results remain stable without complications. Therefore, it is a suitable alternative implant material for dorsal augmentation in rhinoplasty. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  6. Location of DNA-protein cross-links in mammalian cell nuclei

    International Nuclear Information System (INIS)

    Oleinick, N.L.

    1985-01-01

    DNA-protein cross-links (DPCs) occur in 1-3% of the bulk DNA of unirradiated cells, and dose-dependent increases in DPCs with γ- or UV-radiation can be detected by filter-binding. DPCs may contribute to cell lethality, since their formation is prevented by radical scavengers. Since the environment of DNA varies within eukaryotic nuclei, we have probed the composition and sub-nuclear location of DPCs. Both before and after irradiation, the major proteins cross-linked to DNA have molecular weights similar to known proteins of the nuclear matrix. The DNA cross-linked to protein is enriched in sequences which hybridize to mRNA or rRNA transcripts; such sequences are also found preferentially in preparations of nuclear matrix. When histone-depleted, matrix-associated DNA is separated from the DNA of the supercoiled ''loops'' by digestion with EcoRI and assayed for DPCs by filter binding, the frequency of DPCs is greater in the matrix. During repair of DPCs, protein-associated DNA becomes depleted in actively transcribing DNA, followed by reconstitution of the active-gene-enriched nuclear matrix. These data are consistent with known properties of the matrix and suggest the hypothesis that in intact cells, radiation-induced DPCs are primarily a product of matrix-associated DNA sequences and matrix protein

  7. Hydrogel-embedded nanocrystalline hydroxyapatite granules (elastic blocks based on a cross-linked polyvinylpyrrolidone as bone grafting substitute in a rat tibia model

    Directory of Open Access Journals (Sweden)

    Dau M

    2017-10-01

    Full Text Available Michael Dau,1 Cornelia Ganz,2 Franziska Zaage,2 Bernhard Frerich,1 Thomas Gerber2 1Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Rostock, Rostock, Germany; 2Institute of Physics, Rostock University, Rostock, Germany Purpose: The aim of this study was to examine the in vivo characteristics and levels of integration and degradation of a ready-to-use bone grafting block with elastic properties (elastic block for the use in surgery. Materials and methods: Thirty-six male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. All created defects – one per animal – were filled with an unsintered nanocrystalline hydroxyapatite embedded either with a non-cross-linked hydrogel carrier (CONT, n=18 or a cross-linked hydrogel carrier (elastic block [EB], n=18 based on polyvinylpyrrolidone (PVP and silica sol, respectively. The animals were killed after 12 (n=12, 21 (n=12 and 63 days (n=12. The bone formation and defect healing were quantified by histomorphometric measurements made in paraffin sections. Additionally, immunohistochemical (tartrate-resistant acid phosphatase [TRAP] and alkaline phosphatase [aP], antibody-based examinations (CD68 and energy-dispersive x-ray scattering measurements of silica atom concentration were carried out. Results: A larger remaining bone defect area overall was observed in EB after 12 days and 21 days. After 63 days, similar areas of remaining bone defects were found. The amount of the remaining carrier material in EB overall was higher at all times. In CONT no residual carrier material was found at 12 days and later. CD68 analyses showed significantly lower level of CD68-positive marked cells after 21 days in CONT, and nonsignificant differences at 12 and 63 days, respectively. Additionally, a significantly higher level of aP-positive marked cells was observed in CONT after 12 days. Later on, the levels of aP-positive marked cells were slightly higher

  8. Genipin Cross-Linked Glucose Oxidase and Catalase Multi-enzyme for Gluconic Acid Synthesis.

    Science.gov (United States)

    Cui, Caixia; Chen, Haibin; Chen, Biqiang; Tan, Tianwei

    2017-02-01

    In this work, glucose oxidase (GOD) and catalase (CAT) were used simultaneously to produce gluconic acid from glucose. In order to reduce the distance between the two enzymes, and therefore improve efficiency, GOD and CAT were cross-linked together using genipin. Improvements in gluconic acid production were due to quick removal of harmful intermediate hydrogen peroxide by CAT. GOD activity was significantly affected by the proportion of CAT in the system, with GOD activity in the cross-linked multi-enzyme (CLME) being 10 times higher than that in an un-cross-linked GOD/CAT mixture. The glucose conversion rate after 15 h using 15 % glucose was also 10 % higher using the CLME than was measured using a GOD/CAT mixture.

  9. Cross-linking of streptomycin to the 16S ribosomal RNA of Escherichia coli

    International Nuclear Information System (INIS)

    Gravel, M.; Melancon, P.; Barkier-Gingras, L.

    1987-01-01

    [ 3 H]Dihydrostreptomycin was cross-linked to the 30S ribosomal subunit from Escherichia coli with the bifunctional reagent nitrogen mustard. The cross-linking primarily involved the 16S RNA. To localize the site of cross-linking of streptomycin to the 16S RNA, the authors hybridized RNA labeled with streptomycin to restriction fragments of the 16S RNA gene. Labeled RNA hybridized to DNA fragments corresponding to bases 892-917 and bases 1394-1415. These two segments of the ribosomal RNA must by juxtaposed in the ribosome, since there is a single binding site for streptomycin. This region has been implicated both in the decoding site and in the binding of initiation factor IF-3, indicating its functional importance

  10. Higher number of pentosidine cross-links induced by ribose does not alter tissue stiffness of cancellous bone

    Energy Technology Data Exchange (ETDEWEB)

    Willems, Nop M.B.K., E-mail: n.willems@acta.nl [Dept. of Orthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Langenbach, Geerling E.J. [Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Stoop, Reinout [Dept. of Metabolic Health Research, TNO, P.O. Box 2215, 2301 CE Leiden (Netherlands); Toonder, Jaap M.J. den [Dept. of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Mulder, Lars [Dept. of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Zentner, Andrej [Dept. of Orthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Everts, Vincent [Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands)

    2014-09-01

    The role of mature collagen cross-links, pentosidine (Pen) cross-links in particular, in the micromechanical properties of cancellous bone is unknown. The aim of this study was to examine nonenzymatic glycation effects on tissue stiffness of demineralized and non-demineralized cancellous bone. A total of 60 bone samples were derived from mandibular condyles of six pigs, and assigned to either control or experimental groups. Experimental handling included incubation in phosphate buffered saline alone or with 0.2 M ribose at 37 °C for 15 days and, in some of the samples, subsequent complete demineralization of the sample surface using 8% EDTA. Before and after experimental handling, bone microarchitecture and tissue mineral density were examined by means of microcomputed tomography. After experimental handling, the collagen content and the number of Pen, hydroxylysylpyridinoline (HP), and lysylpyridinoline (LP) cross-links were estimated using HPLC, and tissue stiffness was assessed by means of nanoindentation. Ribose treatment caused an up to 300-fold increase in the number of Pen cross-links compared to nonribose-incubated controls, but did not affect the number of HP and LP cross-links. This increase in the number of Pen cross-links had no influence on tissue stiffness of both demineralized and nondemineralized bone samples. These findings suggest that Pen cross-links do not play a significant role in bone tissue stiffness. - Highlights: • The assessment of effects of glycation in bone using HPLC, microCT, and nanoindentation • Ribose incubation: 300‐fold increase in the number of pentosidine cross-links • 300‐fold increase in the number of pentosidine cross-links: no changes in bone tissue stiffness.

  11. Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites: role of strengthening the interfacial interactions.

    Science.gov (United States)

    Khare, Ketan S; Khabaz, Fardin; Khare, Rajesh

    2014-05-14

    We have used amido-amine functionalized carbon nanotubes (CNTs) that form covalent bonds with cross-linked epoxy matrices to elucidate the role of the matrix-filler interphase in the enhancement of mechanical and thermal properties in these nanocomposites. For the base case of nanocomposites of cross-linked epoxy and pristine single-walled CNTs, our previous work (Khare, K. S.; Khare, R. J. Phys. Chem. B 2013, 117, 7444-7454) has shown that weak matrix-filler interactions cause the interphase region in the nanocomposite to be more compressible. Furthermore, because of the weak matrix-filler interactions, the nanocomposite containing dispersed pristine CNTs has a glass transition temperature (Tg) that is ∼66 K lower than the neat polymer. In this work, we demonstrate that in spite of the presence of stiff CNTs in the nanocomposite, the Young's modulus of the nanocomposite containing dispersed pristine CNTs is virtually unchanged compared to the neat cross-linked epoxy. This observation suggests that the compressibility of the matrix-filler interphase interferes with the ability of the CNTs to reinforce the matrix. Furthermore, when the compressibility of the interphase is reduced by the use of amido-amine functionalized CNTs, the mechanical reinforcement due to the filler is more effective, resulting in a ∼50% increase in the Young's modulus compared to the neat cross-linked epoxy. Correspondingly, the functionalization of the CNTs also led to a recovery in the Tg making it effectively the same as the neat polymer and also resulted in a ∼12% increase in the thermal conductivity of the nanocomposite containing functionalized CNTs compared to that containing pristine CNTs. These results demonstrate that the functionalization of the CNTs facilitates the transfer of both mechanical load and thermal energy across the matrix-filler interface.

  12. Collagen Cross-Linking: Current Status and Future Directions

    Directory of Open Access Journals (Sweden)

    Marine Hovakimyan

    2012-01-01

    Full Text Available Collagen cross-linking (CXL using UVA light and riboflavin (vitamin B2 was introduced as a clinical application to stabilize the cornea by inducing cross-links within and between collagen fibers. CXL has been investigated extensively and has been shown clinically to arrest the progression of keratoconic or post-LASIK ectasia. With its minimal cost, simplicity, and proven positive clinical outcome, CXL can be regarded as a useful approach to reduce the number of penetrating keratoplasties performed. Small case series have also indicated that CXL is beneficial in corneal edema by reducing stromal swelling behavior and in keratitis by inhibiting pathogen growth. Despite these encouraging results, CXL remains a relatively new method that is potentially associated with complications. Aspects such as side effects and recurrence rates have still to be elucidated. In light of the growing interest in CXL, our paper summarizes present knowledge about this promising approach. We have intentionally endeavored to include the more relevant studies from the recent literature to provide an overview of the current status of CXL.

  13. Cross-linking e segmento de anel corneano intraestromal

    Directory of Open Access Journals (Sweden)

    Adimara da Candelaria Renesto

    2011-02-01

    Full Text Available O cross-linking corneano é um procedimento usado para a estabilização mecânica e aumento da rigidez corneana em pacientes com ceratocone (reduzindo a possibilidade de progressão, e também em processos inflamatórios de afinamento corneano. Os segmentos de anéis corneanos intraestromais têm como princípio o aplanamento central da córnea. Inicialmente utilizados para correção de baixa miopia, a principal indicação atual é em pacientes com ceratocone, para melhorar a acuidade visual não corrigida, a acuidade visual corrigida e permitir uma melhor tolerância ao uso de lentes de contato como também retardar a necessidade de um transplante de córnea. O objetivo deste artigo é revisar algumas publicações relacionadas ao cross-linking corneano e à inserção do segmento de anel intraestromal, apresentando suas indicações, resultados e complicações relatadas até o momento.

  14. Effects of Surface Modification and Bulk Geometry on the Biotribological Behavior of Cross-Linked Polyethylene: Wear Testing and Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Kenichi Watanabe

    2015-01-01

    phosphorylcholine- (PMPC- grafted CLPE, through wear tests and finite element analysis. The gravimetric and volumetric degrees of wear of disks (3 or 6 mm in thickness of these materials against a cobalt-chromium-molybdenum alloy pin were examined using a multidirectional pin-on-disk tester. Cross-linking and PMPC grafting decreased the gravimetric wear of the PE disks significantly. The volumetric wear at the bearing surface and the volumetric penetration in the backside of the 3-mm thick PE disk were higher than those of the 6-mm thick PE disk, regardless of the bearing material. The geometrical changes induced in the PE disks consisted of creep, because the calculated internal von Mises stress at the bearing side of all disks and that at the backside of the 3-mm thick disks exceeded their actual yield strengths. A highly hydrated bearing surface layer, formed by PMPC grafting, and a cross-linking-strengthened substrate of adequate thickness are essential for increasing the wear and creep deformation resistances.

  15. In vitro cross-linking of elastin peptides and molecular characterization of the resultant biomaterials

    DEFF Research Database (Denmark)

    Heinz, Andrea; Ruttkies, Christoph K H; Jahreis, Günther

    2013-01-01

    -link desmosine or isodesmosine was unexpected, however, could be confirmed by tandem mass spectrometry and molecular dynamics simulations. CONCLUSIONS: The study demonstrated that it is possible to produce biopolymers containing polyfunctional cross-links characteristic of mature elastin from small elastin......BACKGROUND: Elastin is a vital protein and the major component of elastic fibers which provides resilience to many vertebrate tissues. Elastin's structure and function are influenced by extensive cross-linking, however, the cross-linking pattern is still unknown. METHODS: Small peptides containing...... and the insoluble polymers, after digestion with pancreatic elastase or trypsin, were furthermore comprehensively characterized on the molecular level using MALDI-TOF/TOF mass spectrometry. RESULTS: MS(2) data was used to develop the software PolyLinX, which is able to sequence not only linear and bifunctionally...

  16. Irradiation capsule for testing magnetic fusion reactor first-wall materials at 60 and 2000C

    International Nuclear Information System (INIS)

    Conlin, J.A.

    1985-08-01

    A new type of irradiation capsule has been designed, and a prototype has been tested in the Oak Ridge Research Reactor (ORR) for low-temperature irradiation of Magnetic Fusion Reactor first-wall materials. The capsule meets the requirements of the joint US/Japanese collaborative fusion reactor materials irradiation program for the irradiation of first-wall fusion reactor materials at 60 and 200 0 C. The design description and results of the prototype capsule performance are presented

  17. Sodium tripolyphosphate cross-linked chitosan based sensor for enhacing sensing properties towards acetone

    Science.gov (United States)

    Nasution, T. I.; Asrosa, R.; Nainggolan, I.; Balyan, M.; Indah, R.; Wahyudi, A.

    2018-02-01

    In this report, sensing properties of sodium tripolyphosphate (TPP) cross-linked chitosan based sensor has been successfully enhanced towards acetone. Chitosan solutions were cross-linked with sodium TPP in variation of 0.1%, 0.5%, 1% and 1.5% w/v, respectively. The sensors were fabricated in film form using an electrochemical deposition method. The sensing properties of the sensors were observed by exposing the pure chitosan and sodium TPP cross-linked chitosan sensors towards acetone concentrations of 5, 10, 50, 100 and 200 ppm. The measurement results revealed that the maximum response in output voltage value of pure chitosan sensor was 0.35 V while sodium TPP crosslinked chitosan sensors were above 0.35 V towards 5 ppm acetone concentration. When the sensors were exposed towards acetone concentration of 200 ppm, the maximum response of pure chitosan was 0.45 V while sodium TPP crosslinked chitosan sensors were above 0.45 V. Amongst the variation of sodium TPP, the maximum response of 1% sodium TPP was the highest since the maximum response was 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration, respectively. While the maximum responses of other sodium TPP concentrations were under 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration. Moreover, 1% sodium TPP cross-linked chitosan based sensor showed good reproducibility and outstanding lifetime. Therefore, 1% sodium TPP cross-linked chitosan based sensor has exhibited remarkable sensing properties as a novel acetone sensor.

  18. The effects of different cross-linking conditions on collagen-based nanocomposite scaffolds-an in vitro evaluation using mesenchymal stem cells

    Czech Academy of Sciences Publication Activity Database

    Suchý, Tomáš; Šupová, Monika; Sauerová, P.; Verdánová, M.; Sucharda, Zbyněk; Rýglová, Šárka; Žaloudková, Margit; Sedláček, R.; Hubálek Kalbáčová, M.

    2015-01-01

    Roč. 10, DEC (2015), č. článku 065008. ISSN 1748-6041 R&D Projects: GA MZd(CZ) NV15-25813A Institutional support: RVO:67985891 Keywords : cross-linking agents * nano-composite scaffolds * human mesenchymal stem cells * EDC/NHS * genipin Subject RIV: JI - Composite Materials Impact factor: 3.361, year: 2015

  19. Role of the plant cell wall in gravity resistance.

    Science.gov (United States)

    Hoson, Takayuki; Wakabayashi, Kazuyuki

    2015-04-01

    Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, comparable to gravitropism. The cell wall is responsible for the final step of gravity resistance. The gravity signal increases the rigidity of the cell wall via the accumulation of its constituents, polymerization of certain matrix polysaccharides due to the suppression of breakdown, stimulation of cross-link formation, and modifications to the wall environment, in a wide range of situations from microgravity in space to hypergravity. Plants thus develop a tough body to resist the gravitational force via an increase in cell wall rigidity and the modification of growth anisotropy. The development of gravity resistance mechanisms has played an important role in the acquisition of responses to various mechanical stresses and the evolution of land plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Genipin Cross-Linked Chitosan-Polyvinylpyrrolidone Hydrogels: Influence of Composition and Postsynthesis Treatment on pH Responsive Behaviour

    Directory of Open Access Journals (Sweden)

    Chinyelumndu Jennifer Nwosu

    2015-01-01

    Full Text Available Understanding the factors that influence the pH responsive behaviour of biocompatible cross-linked hydrogel networks is essential when aiming to synthesise a mechanically stable and yet stimuli responsive material suitable for various applications including drug delivery and tissue engineering. In this study the behaviour of intelligent chitosan-polyvinylpyrrolidone-genipin cross-linked hydrogels is examined as a function of their composition and postsynthesis treatment. Hydrogels are synthesised with varying amounts of each component (chitosan, polyvinylpyrrolidone, and genipin and their response in a pH 2 buffer is measured optically. The influence of postsynthesis treatment on stability and smart characteristics is assessed using selected hydrogel samples synthesised at 30, 40, and 50°C. After synthesis, samples are exposed to either continuous freezing or three freeze-thaw cycles resulting in increased mechanical stability for all samples. Further morphological and mechanical characterisations have aided the understanding of how postsynthesis continual freezing or freeze-thaw manipulation affects network attributes.

  1. Scleral lens tolerance after corneal cross-linking for keratoconus

    NARCIS (Netherlands)

    Visser, Esther Simone; Soeters, Nienke; Tahzib, Nayyirih G.

    2015-01-01

    Purpose. Subjective and objective evaluation of scleral lens tolerance and fitting before and after corneal cross-linking (CXL) for progressive keratoconus. Methods. In this prospective cohort, evaluations were made of 18 unilateral eyes in patients who underwent CXL and had been wearing scleral

  2. Functionalisation of cross-linked polyethylenimine for the removal of ...

    African Journals Online (AJOL)

    ... and describe the experimental data. The thermodynamic study of the adsorption process indicated high activation energies (55.91 kJ mol-1) which confirms chemisorption as a mechanism of interaction between As and PCPEI. Keywords: Adsorption; arsenic; phosphonated cross-linked polyethylenimine, functionalisation ...

  3. Analysis of glycation induced protein cross-linking inhibitory effects of some antidiabetic plants and spices.

    Science.gov (United States)

    Perera, Handunge Kumudu Irani; Handuwalage, Charith Sandaruwan

    2015-06-09

    Protein cross-linking which occurs towards the latter part of protein glycation is implicated in the development of chronic diabetic complications. Glycation induced protein cross-linking inhibitory effects of nine antidiabetic plants and three spices were evaluated in this study using a novel, simple, electrophoresis based method. Methanol extracts of thirteen plants including nine antidiabetic plants and three spices were used. Lysozyme and fructose were incubated at 37 °C in the presence or absence of different concentrations of plant extracts up to 31 days. Standard glycation inhibitor aminoguanidine and other appropriate controls were included. A recently established sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) method was used to detect the products of protein cross-linking in the incubation mixtures. High molecular weight protein products representing the dimer, trimer and tetramer of lysozyme were detected in the presence of fructose. Among the nine antidiabetic plants, seven showed glycation induced protein cross-linking inhibitory effects namely Ficus racemosa (FR) stem bark, Gymnema sylvestre (GS) leaves, Musa paradisiaca (MP) yam, Phyllanthus debilis (PD) whole plant, Phyllanthus emblica (PE) fruit, Pterocarpus marsupium (PM) latex and Tinospora cordifolia (TC) leaves. Inhibition observed with Coccinia grandis (CG) leaves and Strychnos potatorum (SP) seeds were much low. Leaves of Gymnema lactiferum (GL), the plant without known antidiabetic effects showed the lowest inhibition. All three spices namely Coriandrum sativum (CS) seeds, Cinnamomum zeylanicum (CZ) bark and Syzygium aromaticum (SA) flower buds showed cross-link inhibitory effects with higher effects in CS and SA. PD, PE, PM, CS and SA showed almost complete inhibition on the formation of cross-linking with 25 μg/ml extracts. Methanol extracts of PD, PE, PM, CS and SA have shown promising inhibitory effects on glycation induced protein cross-linking.

  4. Entropic benefit of a cross-link in protein association.

    Science.gov (United States)

    Zaman, Muhammad H; Berry, R Stephen; Sosnick, Tobin R

    2002-08-01

    We introduce a method to estimate the loss of configurational entropy upon insertion of a cross-link to a dimeric system. First, a clear distinction is established between the loss of entropy upon tethering and binding, two quantities that are often considered to be equivalent. By comparing the probability distribution of the center-to-center distances for untethered and cross-linked versions, we are able to calculate the loss of translational entropy upon cross-linking. The distribution function for the untethered helices is calculated from the probability that a given helix is closer to its partner than to all other helices, the "Nearest Neighbor" method. This method requires no assumptions about the nature of the solvent, and hence resolves difficulties normally associated with calculations for systems in liquids. Analysis of the restriction of angular freedom upon tethering indicates that the loss of rotational entropy is negligible. The method is applied in the context of the folding of a ten turn helical coiled coil with the tether modeled as a Gaussian chain or a flexible amino acid chain. After correcting for loop closure entropy in the docked state, we estimate the introduction of a six-residue tether in the coiled coil results in an effective concentration of the chain to be about 4 or 100 mM, depending upon whether the helices are denatured or pre-folded prior to their association. Thus, tethering results in significant stabilization for systems with millimolar or stronger dissociation constants. Copyright 2002 Wiley-Liss, Inc.

  5. Effect of pore size and cross-linking of a novel collagen-elastin dermal substitute on wound healing.

    Science.gov (United States)

    Boekema, Bouke K H L; Vlig, Marcel; Olde Damink, Leon; Middelkoop, Esther; Eummelen, Lizette; Bühren, Anne V; Ulrich, Magda M W

    2014-02-01

    Collagen-elastin (CE) scaffolds are frequently used for dermal replacement in the treatment of full-thickness skin defects such as burn wounds. But little is known about the optimal pore size and level of cross-linking. Different formulations of dermal substitutes with unidirectional pores were tested in porcine full-thickness wounds in combination with autologous split skin mesh grafts (SSG). Effect on wound healing was evaluated both macro- and microscopically. CE scaffolds with a pore size of 80 or 100 μm resulted in good wound healing after one-stage grafting. Application of scaffolds with a larger average pore size (120 μm) resulted in more myofibroblasts and more foreign body giant cells (FBGC). Moderate crosslinking impaired wound healing as it resulted in more wound contraction, more FBGC and increased epidermal thickness compared to no cross-linking. In addition, take rate and redness were negatively affected compared to SSG only. Vascularization and the number of myofibroblasts were not affected by cross-linking. Surprisingly, stability of cross-linked scaffolds was not increased in the wound environment, in contrast to in vitro results. Cross-linking reduced the proliferation of fibroblasts in vitro, which might explain the reduced clinical outcome. The non-cross-linked CE substitute with unidirectional pores allowed one-stage grafting of SSG, resulting in good wound healing. In addition, only a very mild foreign body reaction was observed. Cross-linking of CE scaffolds negatively affected wound healing on several important parameters. The optimal non-cross-linked CE substitute is a promising candidate for future clinical evaluation.

  6. Preparation and characterization of a magneto-polymeric nanocomposite: Fe 3O 4 nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix

    Science.gov (United States)

    Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.

    In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.

  7. A model to predict radon exhalation from walls to indoor air based on the exhalation from building material samples

    International Nuclear Information System (INIS)

    Sahoo, B.K.; Sapra, B.K.; Gaware, J.J.; Kanse, S.D.; Mayya, Y.S.

    2011-01-01

    In recognition of the fact that building materials are an important source of indoor radon, second only to soil, surface radon exhalation fluxes have been extensively measured from the samples of these materials. Based on this flux data, several researchers have attempted to predict the inhalation dose attributable to radon emitted from walls and ceilings made up of these materials. However, an important aspect not considered in this methodology is the enhancement of the radon flux from the wall or the ceiling constructed using the same building material. This enhancement occurs mainly because of the change in the radon diffusion process from the former to the latter configuration. To predict the true radon flux from the wall based on the flux data of building material samples, we now propose a semi-empirical model involving radon diffusion length and the physical dimensions of the samples as well as wall thickness as other input parameters. This model has been established by statistically fitting the ratio of the solution to radon diffusion equations for the cases of three-dimensional cuboidal shaped building materials (such as brick, concrete block) and one dimensional wall system to a simple mathematical function. The model predictions have been validated against the measurements made at a new construction site. This model provides an alternative tool (substitute to conventional 1-D model) to estimate radon flux from a wall without relying on 226 Ra content, radon emanation factor and bulk density of the samples. Moreover, it may be very useful in the context of developing building codes for radon regulation in new buildings. - Research highlights: → A model is proposed to predict radon flux from wall using flux of building material. → It is established based on the diffusion mechanism in building material and wall. → Study showed a large difference in radon flux from building material and wall. → Model has been validated against the measurements made at

  8. Rheological Behavior, Granule Size Distribution and Differential Scanning Calorimetry of Cross-Linked Banana (Musa paradisiaca) Starch.

    Science.gov (United States)

    Núñez-Santiago, María C.; Maristany-Cáceres, Amira J.; Suárez, Francisco J. García; Bello-Pérez, Arturo

    2008-07-01

    Rheological behavior at 60 °C, granule size distribution and Differential Scanning Calorimetry (DSC) tests were employed to study the effect of diverse reaction conditions: adipic acid concentration, pH and temperature during cross-linking of banana (Musa paradisiaca) starch. These properties were determined in native banana starch pastes for the purpose of comparison. Rheological behavior from pastes of cross-linked starch at 60 °C did not show hysteresis, probably due the cross-linkage of starch that avoided disruption of granules, elsewhere, native starch showed hysteresis in a thixotropic loop. All pastes exhibited non-Newtonian shear thinning behavior. In all cases, size distribution showed a decrease in the median diameter in cross-linked starches. This condition produces a decrease in swelling capacity of cross-linked starch. The median diameter decreased with an increase of acid adipic concentration; however, an increase of pH and Temperature produced an increase in this variable. Finally, an increase in gelatinization temperature and entalphy (ΔH) were observed as an effect of cross-linkage. An increase in acid adipic concentration produced an increase in Tonset and a decrease in ΔH. pH and temperature. The cross-linked of banana starch produced granules more resistant during the pasting procedure.

  9. An electron microscopic study of the photochemical cross-linking of DNA in guinea pig epidermis by psoralen derivatives

    International Nuclear Information System (INIS)

    Cech, T.; Pathak, M.A.; Biswas, R.K.

    1979-01-01

    Albino guinea pigs were treated with psoralen derivatives plus 320-400 nm ultraviolet radiation, and DNA was extracted from their epidermis. The DNA was assayed for the presence of interstrand cross-links by standard denaturation-renaturation assays and by a new technique, electron microscopy of the DNA under totally denaturing conditions. The latter method allows individual cross-links to be directly observed and counted. When either 4,5',8-trimethylpsoralen or 8-methoxypsoralen was applied topically to the skin (8-20 μg/cm 2 ) or administered orally (10-12 mg/kg body weight), followed by exposure to 320-400 nm ultraviolet radiation, most of the epidermal DNA was found to contain a high frequency of cross-links. For example, oral or topical trimethylpsoralen treatment gave an average of one cross-link per 250 nucleotide pairs or about 3 . 10 5 cross-links per guinea pig chromosome. When the dose of either drug was decreased 20-fold to the level used in the clinical treatment of psoriasis, however, no cross-links could be detected in the epidermal DNA. The electron microscopic assay is sensitive enough that one can put an upper limit of 1 cross-link per 10 6 nucleotide pairs (80 cross-links per chromosome) for the low dose studies. The significance of these findings to the understanding of the effectiveness of psoralens in psoriasis therapy is discussed. (Auth.)

  10. Calculation of atom displacement cross section for structure material

    International Nuclear Information System (INIS)

    Liu Ping; Xu Yiping

    2015-01-01

    The neutron radiation damage in material is an important consideration of the reactor design. The radiation damage of materials mainly comes from atom displacements of crystal structure materials. The reaction cross sections of charged particles, cross sections of displacements per atom (DPA) and KERMA are the basis of radiation damage calculation. In order to study the differences of DPA cross sections with different codes and different evaluated nuclear data libraries, the DPA cross sections for structure materials were calculated with UNF and NJOY codes, and the comparisons of results were given. The DPA cross sections from different evaluated nuclear data libraries were compared. And the comparison of DPA cross sections between NJOY and Monte Carlo codes was also done. The results show that the differences among these evaluated nuclear data libraries exist. (authors)

  11. Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner.

    Directory of Open Access Journals (Sweden)

    Daniel J Sobczynski

    Full Text Available The nanoscale plasma protein interaction with intravenously injected particulate carrier systems is known to modulate their organ distribution and clearance from the bloodstream. However, the role of this plasma protein interaction in prescribing the adhesion of carriers to the vascular wall remains relatively unknown. Here, we show that the adhesion of vascular-targeted poly(lactide-co-glycolic-acid (PLGA spheres to endothelial cells is significantly inhibited in human blood flow, with up to 90% reduction in adhesion observed relative to adhesion in simple buffer flow, depending on the particle size and the magnitude and pattern of blood flow. This reduced PLGA adhesion in blood flow is linked to the adsorption of certain high molecular weight plasma proteins on PLGA and is donor specific, where large reductions in particle adhesion in blood flow (>80% relative to buffer is seen with ∼60% of unique donor bloods while others exhibit moderate to no reductions. The depletion of high molecular weight immunoglobulins from plasma is shown to successfully restore PLGA vascular wall adhesion. The observed plasma protein effect on PLGA is likely due to material characteristics since the effect is not replicated with polystyrene or silica spheres. These particles effectively adhere to the endothelium at a higher level in blood over buffer flow. Overall, understanding how distinct plasma proteins modulate the vascular wall interaction of vascular-targeted carriers of different material characteristics would allow for the design of highly functional delivery vehicles for the treatment of many serious human diseases.

  12. Thermally Cross-Linkable Hole Transport Materials for Solution Processed Phosphorescent OLEDs

    Science.gov (United States)

    Kim, Beom Seok; Kim, Ohyoung; Chin, Byung Doo; Lee, Chil Won

    2018-04-01

    Materials for unique fabrication of a solution-processed, multi-layered organic light-emitting diode (OLED) were developed. Preparation of a hole transport layer with a thermally cross-linkable chemical structure, which can be processed to form a thin film and then transformed into an insoluble film by using an amine-alcohol condensation reaction with heat treatment, was investigated. Functional groups, such as triplenylamine linked with phenylcarbazole or biphenyl, were employed in the chemical structure of the hole transport layer in order to maintain high triplet energy properties. When phenylcarbazole or biphenyl compounds continuously react with triphenylamine under acid catalysis, a chemically stable thin film material with desirable energy-level properties for a blue OLED could be obtained. The prepared hole transport materials showed excellent surface roughness and thermal stability in comparison with the commercial reference material. On the solution-processed model hole transport layer, we fabricated a device with a blue phosphorescent OLED by using sequential vacuum deposition. The maximum external quantum, 19.3%, was improved by more than 40% over devices with the commercial reference material (11.4%).

  13. Irradiation creep lifetime analysis on first wall structure materials for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Bing; Peng, Lei, E-mail: penglei@ustc.edu.cn; Zhang, Xiansheng; Shi, Jingyi; Zhan, Jie

    2017-05-15

    Fusion reactor first wall services on the conditions of high surface heat flux and intense neutron irradiation. For China Fusion Engineering Test Reactor (CFETR) with high duty time factor, it is important to analyze the irradiation effect on the creep lifetime of the main candidate structure materials for first wall, i.e. ferritic/martensitic steel, austenite steel and oxide dispersion strengthened steel. The allowable irradiation creep lifetime was evaluated with Larson-Miller Parameter (LMP) model and finite element method. The results show that the allowable irradiation creep lifetime decreases with increasing of surface heat flux, first wall thickness and inlet coolant temperature. For the current CFETR conceptual design, the lifetime is not limited by thermal creep or irradiation creep, which indicated the room for design parameters optimization.

  14. Synthesis and characterization of a novel double cross-linked hydrogel based on Diels-Alder click reaction and coordination bonding.

    Science.gov (United States)

    Li, Shubin; Wang, Lu; Yu, Xuemei; Wang, Chengli; Wang, Zhenyu

    2018-01-01

    Hydrogels, promising biological materials, need to have both strong mechanical properties and also inherent self-healing properties. In this work a double cross-linked network (DN) hydrogel was designed and prepared by combining a Diels-Alder click reaction and coordination effects. This DN hydrogel had good thermodynamic properties, anti-EDTA performance and self-healing properties. In addition, the mechanical properties, swelling properties and surface morphology of DN hydrogels can be controlled by adjusting the ratio of Fe 3+ -catechol. The adjustment of pH value can change the color, crosslinking mode and mechanical properties of the DN hydrogel. This smart hydrogel created from DA click chemistry and coordination effects has significance for guiding the design of new hydrogels with good mechanical properties, self-healing properties and controlled cross-link density. Copyright © 2017. Published by Elsevier B.V.

  15. Location on chitin in the cyst wall of Entamoeba invadens with colloidal gold tracers.

    Science.gov (United States)

    Arroyo-Begovich, A; Cárabez-Trejo, A

    1982-04-01

    Chitin was located in the cyst wall of Entamoeba invadens with colloidal gold-linked wheat germ agglutinin. Cysts stained differentially from trophozoites when encysting cultures were treated with the gold tracer; cysts acquired a wine-red coloration while, in general trophozoites remained unstained. Observation of cells with the electron microscope revealed that the tracer particles were bound specifically to the walls of the surface of the cyst when cells were exposed in suspension, and to the cyst wall cross-section, when cells were exposed to the tracer in thin section, indicating that chitin fibers were distributed on the surface as well as throughout the matrix of the cyst wall.

  16. Hydrogen peroxide and ferulic acid-mediated oxidative cross-linking ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... G250 in a 4.5:4.5:1 (v/v) mixture of deionized water, methanol and glacial acetic ... mixture of 1:1:8 (v/v) methanol, glacial acetic acid and deionized water until the ..... Cross-linking of tyrosine-containing peptides by hydrogen.

  17. Synthesis and Characterization of Poly(maleic Anhydride)s Cross-linked Polyimide Aerogels

    Science.gov (United States)

    Guo, Haiquan; Meador, Mary Ann B.

    2015-01-01

    With the development of technology for aerospace applications, new thermal insulation materials are required to be flexible and capable of surviving high heat flux. For instance, flexible insulation is needed for inflatable aerodynamic decelerators which are used to slow spacecraft for entry, descent and landing (EDL) operations. Polyimide aerogels have low density, high porosity, high surface area, and better mechanical properties than silica aerogels and can be made into flexible thin films, thus they are potential candidates for aerospace needs. The previously reported cross-linkers such as octa(aminophenyl)silsesquioxane (OAPS) and 1,3,5-triaminophenoxybenzene (TAB) are either expensive or not commercially available. Here, we report the synthesis of a series of polyimide aerogels cross-linked using various commercially available poly(maleic anhydride)s, as seen in Figure 1. The amine end capped polyimide oligomers were made with 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA) and diamine combinations of dimethylbenzidine (DMBZ) and 4, 4-oxydianiline (ODA). The resulting aerogels have low density (0.12 gcm3 to 0.16 gcm3), high porosity (90) and high surface area (380-554 m2g). The effect of the different poly(maleic anhydride) cross-linkers and polyimide backbone structures on density, shrinkage, porosity, surface area, mechanical properties, moisture resistance and thermal properties will be discussed.

  18. Reorientational motion of a cross-link junction in a poly(dimethylsiloxane) network measured by time-resolved fluorescence depolarization

    International Nuclear Information System (INIS)

    Stein, A.D.; Hoffman, D.A.; Frank, C.W.; Fayer, M.D.

    1992-01-01

    The reorientational dynamics of a cross-link junction in poly(dimethylsiloxane) networks, measured by the fluorescence anisotropy decay of a chromophore tagged to the cross-link, have been investigated over a range of temperatures from T g +75 to T g +150. The probe chromophore, 1-dimethylamino-5-sulfonylnaphthalene amide (dansyl amide), is pendant to a trifunctional silane that acts as a cross-linking molecule. In cyclohexanol, the fluorescence anisotropy decay is in agreement with Debye--Stokes--Einstein hydrodynamic theory (rotational diffusion) demonstrating that the cross-linker can be used as a probe of orientational relaxation. The fluorescence anisotropy decays at a rapid rate in an end-linked poly(dimethyl siloxane) network reflecting fast reorientational motion of the cross-link junction. This reorientation appears diffusive and has a temperature dependence in accord with the Williams--Landel--Ferry equation. A model is proposed that suggests that reorientation and translational motion of the cross-link occur simultaneously and are both coupled to fluctuations of the polymer chain ends

  19. Wall-based identification of coherent structures in wall-bounded turbulence

    Science.gov (United States)

    Sanmiguel Vila, C.; Flores, O.

    2018-04-01

    During the last decades, a number of reduced order models based on coherent structures have been proposed to describe wall-bounded turbulence. Many of these models emphasize the importance of coherent wall-normal velocity eddies (ν-eddies), which drive the generation of the very long streamwise velocity structures observed in the logarithmic and outer region. In order to use these models to improve our ability to control wall-bounded turbulence in realistic applications, these ν-eddies need to be identified from the wall in a non-intrusive way. In this paper, the possibility of using the pressure signal at the wall to identify these ν-eddies is explored, analyzing the cross-correlation between the wall-normal velocity component and the pressure fluctuations at the wall in a DNS of a turbulent channel flow at Reτ = 939. The results show that the cross-correlation has a region of negative correlation upstream, and a region of positive correlation backwards. In the spanwise direction the correlation decays monotonously, except very close to the wall where a change of sign of the correlation coefficient is observed. Moreover, filtering the pressure fluctuations at the wall in space results in an increase of the region where the cross-correlation is strong, both for the positively and the negatively correlated regions. The use of a time filter for the pressure fluctuations at the wall yields different results, displacing the regions of strong correlation without changing much their sizes. The results suggest that space-filtering the pressure at the wall is a feasible way to identify ν-eddies of different sizes, which could be used to trigger turbulent control strategies.

  20. Physical and biological properties of a novel anti-adhesion material made of thermally cross-linked gelatin film: Investigation of the usefulness as anti-adhesion material.

    Science.gov (United States)

    Horii, Tsunehito; Tsujimoto, Hiroyuki; Miyamoto, Hiroe; Yamanaka, Koki; Tanaka, Shota; Torii, Hiroko; Ozamoto, Yuki; Takamori, Hideki; Nakamachi, Eiji; Ikada, Yoshito; Hagiwara, Akeo

    2018-02-01

    To create more useful, effective and safer anti-adhesion materials, we developed a thermally cross-linked gelatin film. In this study, we examined the physical properties of the film such as the physical strength and the adhesiveness to reveal the handling properties and biological properties, such as the anti-adhesion effect, the influence on cell proliferation, and the cytotoxicity to reveal the anti-adhesion mechanism, especially in comparison with the conventional hyaluronic acid and carboxymethylcellulose film (the conventional film). A tensile test under dry and wet conditions and shearing stress test showed that the gelatin film has significant higher maximum tensile stress and fracture strain than the conventional film. In the study using a rat model of cecum adhesion, the anti-adhesion effect of the gelatin film was significantly superior to that of the conventional film. In the cell proliferation test, the number of fibroblast cells on the gelatin film increased at each time point, while no cell proliferation was observed on the conventional film. Furthermore, in the cytotoxicity test using a colony assay and Live/Dead assay, the extract of the gelatin film had no cytotoxicity, while the extract of the conventional film had cytotoxicity considerably. These results suggest that the gelatin film provides better handling than the conventional film, due to better physical strength and ductility of the film. In addition, the gelatin film has a significantly greater anti-adhesion effect than the conventional film without any cytotoxicity. Therefore, the gelatin film is quite favorable as an anti-adhesion material. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 689-696, 2018. © 2017 Wiley Periodicals, Inc.

  1. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts

    International Nuclear Information System (INIS)

    Liang Miao; Liu Xia; Qi Wei; Su Rongxin; Huang Renliang; Yu Yanjun; He Zhimin; Wang Libing

    2013-01-01

    Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts. (paper)

  2. Two DD-carboxypeptidases from Mycobacterium smegmatis affect cell surface properties through regulation of peptidoglycan cross-linking and glycopeptidolipids.

    Science.gov (United States)

    Pandey, Satya Deo; Pal, Shilpa; Kumar N, Ganesh; Bansal, Ankita; Mallick, Sathi; Ghosh, Anindya S

    2018-05-07

    During the peptidoglycan (PG) maturation of mycobacteria, the glycan strands are interlinked by both 3-3 (between two meso-DAP) and 4-3 cross-links (between D-ala and meso-DAP), though there is a predominance (60-80%) of 3-3 cross-links. The DD-CPases act on pentapeptides to generate tetrapeptides that are used by LD-transpeptidases as substrates to form 3-3 cross-links. Therefore, DD-CPases play a crucial role in mycobacterial PG cross-link formation. However, the physiology of DD-CPases in mycobacteria is relatively unexplored. Here, we deleted two DD-CPase genes, msmeg_2433 , and msmeg_2432 , both individually and in combination, from Mycobacterium smegmatis mc 2 155. Though the single DD-CPase deletions had no significant impact on the mycobacterial physiology, many interesting functional alterations were observed in the double deletion mutant, viz. , a predominance in PG cross-link formation was shifted from 3-3 cross-links to 4-3, cell surface glycopeptidolipid (GPL) expression was reduced and susceptibility towards β-lactams and anti-tubercular agents was enhanced. Moreover, the existence of the double mutant within murine macrophages was better as compared to the parent. Interestingly, the complementation with any one of the DD-CPase genes could restore the wild-type phenotype. In a nutshell, we infer that the altered ratio of 4-3: 3-3 PG cross-links might have influenced the expression of surface GPLs, colony morphology, biofilm formation,, drug susceptibility and subsistence of the cells within macrophages. Importance The glycan strands in mycobacterial peptidoglycan (PG) are interlinked by both 3-3 and 4-3 cross-links. The DD-CPases generate tetrapeptides by acting on the pentapeptides, and LD-transpeptidases use tetrapeptides as substrates to form 3-3 cross-links. Here, we showed that simultaneous deletions of two DD-CPases alter the nature of PG cross-linking from 3-3 cross-links to 4-3 cross-links. The deletions subsequently decrease the expression

  3. The properties of water in swollen cross-linked polystyrene sulfo acids

    Science.gov (United States)

    Gagarin, A. N.; Tokmachev, M. G.; Kovaleva, S. S.; Ferapontov, N. B.

    2008-11-01

    The properties of water in polystyrene sulfo acid gels with various cross-linking degrees were studied by optical volumetry and dynamic desorption porosimetry. The isotherms of water desorption obtained by dynamic desorption porosimetry coincided with isopiestic isotherms, which allowed this method to be recommended for the determination of the amount of water in polymer gels. Joint optical volumetry and dynamic desorption porosimetry studies showed that the interphase boundary in the cross-liked hydrophilic polymer-water system did not coincide with the visible gel boundary, because gels were two-phase systems, which contained water of two types, “free” and “bound.” The influence of the degree of polymer cross-linking on the amounts and properties of water of the two types was studied. It was shown that constants of water distribution in the polymer could be calculated from the dynamic desorption porosimetry data.

  4. Analysis of the eukaryotic community and metabolites found in clay wall material used in the construction of traditional Japanese buildings.

    Science.gov (United States)

    Kitajima, Sakihito; Kamei, Kaeko; Nishitani, Maiko; Sato, Hiroyuki

    2010-01-01

    Clay wall (tsuchikabe in Japanese) material for Japanese traditional buildings is manufactured by fermenting a mixture of clay, sand, and rice straw. The aim of this study was to understand the fermentation process in order to gain insight into the ways waste biomass can be used to produce useful materials. In this study, in addition to Clostridium, we suggested that the family Nectriaceae and the Scutellinia sp. of fungi were important in degrading cell wall materials of rice straw, such as cellulose and/or lignin. The microorganisms in the clay wall material produced sulfur-containing inorganic compounds that may sulfurate minerals in clay particles, and polysaccharides that give viscosity to clay wall material, thus increasing workability for plastering, and possibly giving water-resistance to the dried clay wall.

  5. End States, Ladder Compounds, and Domain-Wall Fermions

    International Nuclear Information System (INIS)

    Creutz, M.

    1999-01-01

    A magnetic field applied to a cross-linked ladder compound can generate isolated electronic states bound to the ends of the chain. After exploring the interference phenomena responsible, I discuss a connection to the domain-wall approach to chiral fermions in lattice gauge theory. The robust nature of the states under small variations of the bond strengths is tied to chiral symmetry and the multiplicative renormalization of fermion masses. copyright 1999 The American Physical Society

  6. Decontamination efficiency of a sheet of vinyl wall paper as a surface material in radioisotope laboratory

    International Nuclear Information System (INIS)

    Furukawa, Kazuhiko; Funadera, Kanako

    1989-01-01

    It has long been desired to prevent surface materials from cracking in a radioisotope laboratory. We applied a sheet of nonflammable wall paper, vinyl cloth, as a surface material to cover concrete wall. It was sufficiently resistant to the reinforced concrete wall cracking. The efficiency of the decontamination of the vinyl cloth was compared with those of stainless steel, iron and painted plates. The contamination and decontamination indices were determined in these surface materials after contamination with [ 32 P]orthophosphate (pH 3, 7 and 11) for 0 to 48 h. Both of the indices of the vinyl cloth were higher than those of the other materials. Further, it was confirmed that the vinyl cloth was resistant to acid and alkaline conditions and radioisotopes could not be permeable. The wipe off efficiency was also investigated in these materials by use of several decontamination detergents. In any reagents tested, the wipe of efficiency of the vinyl cloth was more than 80%. Thus, the vinyl cloth could be used for the surface material and is one of good surface materials in a radioisotope laboratory. (author)

  7. Protein cross-linking by chlorinated polyamines and transglutamylation stabilizes neutrophil extracellular traps.

    Science.gov (United States)

    Csomós, Krisztián; Kristóf, Endre; Jakob, Bernadett; Csomós, István; Kovács, György; Rotem, Omri; Hodrea, Judit; Bagoly, Zsuzsa; Muszbek, Laszlo; Balajthy, Zoltán; Csősz, Éva; Fésüs, László

    2016-08-11

    Neutrophil extracellular trap (NET) ejected from activated dying neutrophils is a highly ordered structure of DNA and selected proteins capable to eliminate pathogenic microorganisms. Biochemical determinants of the non-randomly formed stable NETs have not been revealed so far. Studying the formation of human NETs we have observed that polyamines were incorporated into the NET. Inhibition of myeloperoxidase, which is essential for NET formation and can generate reactive chlorinated polyamines through hypochlorous acid, decreased polyamine incorporation. Addition of exogenous primary amines that similarly to polyamines inhibit reactions catalyzed by the protein cross-linker transglutaminases (TGases) has similar effect. Proteomic analysis of the highly reproducible pattern of NET components revealed cross-linking of NET proteins through chlorinated polyamines and ɛ(γ-glutamyl)lysine as well as bis-γ-glutamyl polyamine bonds catalyzed by the TGases detected in neutrophils. Competitive inhibition of protein cross-linking by monoamines disturbed the cross-linking pattern of NET proteins, which resulted in the loss of the ordered structure of the NET and significantly reduced capacity to trap bacteria. Our findings provide explanation of how NETs are formed in a reproducible and ordered manner to efficiently neutralize microorganisms at the first defense line of the innate immune system.

  8. Vitamin E diffused highly cross-linked polyethylene in total hip arthroplasty at five years

    DEFF Research Database (Denmark)

    Nebergall, Audrey K; Greene, M. E.; Laursen, M B

    2017-01-01

    Aims: The objective of this five-year prospective, blinded, randomised controlled trial (RCT) was to compare femoral head penetration into a Vitamin E diffused highly cross-linked polyethylene (HXLPE) liner with penetration into a medium cross-linked polyethylene control liner using......, ArComXL. This is the longest-term RCT comparing the wear performance and clinical outcome of Vitamin E diffused HXLPE with a previous generation of medium cross-linked polyethylene....... radiostereometric analysis. Patients and Methods: Patients scheduled for total hip arthroplasty (THA) were randomised to receive either the study E1 (32 patients) or the control ArComXL polyethylene (35 patients). The median age (range) of the overall cohort was 66 years (40 to 76). Results: The five-year median...

  9. Erosion and redeposition of divertor and wall materials during abnormal events

    International Nuclear Information System (INIS)

    Hassanein, A.

    1990-09-01

    High energy deposition to in-vessel components of fusion reactors is expected to occur during abnormal operating conditions. This high energy dump in short times may result in very high surface temperatures and can cause severe erosion as a result of melting and vaporization of these components. One abnormal operating condition results from plasma disruptions where the plasma loses confinement and dumps its energy on reactor components. Another abnormal condition occurs when a neutral beam used in heating the plasma shines through the vacuum vessel to parts of the wall with no plasma present in the chamber. A third abnormal event that results in high energy deposition is caused by the runaway electrons to chamber components following a disruption. The failure of these components under the expected high heat loads can severely limit the operation of the fusion device. The redeposition of the eroded materials from these abnormal events over the first wall and other components may cause additional problems. Such problems are associated with tritium accumulation in the freshly deposited materials, charge exchange sputtering and additional impurity sources, and material compatibility issues

  10. Stabilization of collagen nanofibers with l-lysine improves the ability of carbodiimide cross-linked amniotic membranes to preserve limbal epithelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Lai JY

    2014-11-01

    Full Text Available Jui-Yang Lai,1–3 Pei-Ran Wang,1 Li-Jyuan Luo,1 Si-Tan Chen1 1Institute of Biochemical and Biomedical Engineering, 2Biomedical Engineering Research Center, 3Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan, Republic of ChinaAbstract: To overcome the drawbacks associated with limited cross-linking efficiency of carbodiimide modified amniotic membrane, this study investigated the use of L-lysine as an additional amino acid bridge to enhance the stability of a nanofibrous tissue matrix for a limbal epithelial cell culture platform. Results of ninhydrin assays and zeta potential measurements showed that the amount of positively charged amino acid residues incorporated into the tissue collagen chains is highly correlated with the L-lysine -pretreated concentration. The cross-linked structure and hydrophilicity of amniotic membrane scaffolding materials affected by the lysine molecular bridging effects were determined. With an increase in the L-lysine-pretreated concentration from 1 to 30 mM, the cross-linking density was significantly increased and water content was markedly decreased. The variations in resistance to thermal denaturation and enzymatic degradation were in accordance with the number of cross-links per unit mass of amniotic membrane, indicating L-lysine-modulated stabilization of collagen molecules. It was also noteworthy that the carbodiimide cross-linked tissue samples prepared using a relatively high L-lysine-pretreated concentration (ie, 30 mM appeared to have decreased light transmittance and biocompatibility, probably due to the influence of a large nanofiber size and a high charge density. The rise in stemness gene and protein expression levels was dependent on improved cross-link formation, suggesting the crucial role of amino acid bridges in constructing suitable scaffolds to preserve limbal progenitor cells. It is concluded that mild to moderate pretreatment conditions (ie, 3–10 mM L-lysine can

  11. The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca2+ Signaling.

    Science.gov (United States)

    Feng, Wei; Kita, Daniel; Peaucelle, Alexis; Cartwright, Heather N; Doan, Vinh; Duan, Qiaohong; Liu, Ming-Che; Maman, Jacob; Steinhorst, Leonie; Schmitz-Thom, Ina; Yvon, Robert; Kudla, Jörg; Wu, Hen-Ming; Cheung, Alice Y; Dinneny, José R

    2018-03-05

    Cells maintain integrity despite changes in their mechanical properties elicited during growth and environmental stress. How cells sense their physical state and compensate for cell-wall damage is poorly understood, particularly in plants. Here we report that FERONIA (FER), a plasma-membrane-localized receptor kinase from Arabidopsis, is necessary for the recovery of root growth after exposure to high salinity, a widespread soil stress. The extracellular domain of FER displays tandem regions of homology with malectin, an animal protein known to bind di-glucose in vitro and important for protein quality control in the endoplasmic reticulum. The presence of malectin-like domains in FER and related receptor kinases has led to widespread speculation that they interact with cell-wall polysaccharides and can potentially serve a wall-sensing function. Results reported here show that salinity causes softening of the cell wall and that FER is necessary to sense these defects. When this function is disrupted in the fer mutant, root cells explode dramatically during growth recovery. Similar defects are observed in the mur1 mutant, which disrupts pectin cross-linking. Furthermore, fer cell-wall integrity defects can be rescued by treatment with calcium and borate, which also facilitate pectin cross-linking. Sensing of these salinity-induced wall defects might therefore be a direct consequence of physical interaction between the extracellular domain of FER and pectin. FER-dependent signaling elicits cell-specific calcium transients that maintain cell-wall integrity during salt stress. These results reveal a novel extracellular toxicity of salinity, and identify FER as a sensor of damage to the pectin-associated wall. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. The roles of thermal insulation and heat storage in the energy performance of the wall materials: a simulation study.

    Science.gov (United States)

    Long, Linshuang; Ye, Hong

    2016-04-07

    A high-performance envelope is the prerequisite and foundation to a zero energy building. The thermal conductivity and volumetric heat capacity of a wall are two thermophysical properties that strongly influence the energy performance. Although many case studies have been performed, the results failed to give a big picture of the roles of these properties in the energy performance of an active building. In this work, a traversal study on the energy performance of a standard room with all potential wall materials was performed for the first time. It was revealed that both heat storage materials and insulation materials are suitable for external walls. However, the importances of those materials are distinct in different situations: the heat storage plays a primary role when the thermal conductivity of the material is relatively high, but the effect of the thermal insulation is dominant when the conductivity is relatively low. Regarding internal walls, they are less significant to the energy performance than the external ones, and they need exclusively the heat storage materials with a high thermal conductivity. These requirements for materials are consistent under various climate conditions. This study may provide a roadmap for the material scientists interested in developing high-performance wall materials.

  13. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    International Nuclear Information System (INIS)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-01-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100–300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating–cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase. - Highlights: • Binary blends of HDPE/NBR have been irradiated with 5 MeV accelerated electrons. • Increase of NBR content and irradiation dose improves cross-linking efficiency. • Thermo-shrinkage and residual stresses are investigated for oriented specimens. • Cross-linked HDPE/NBR composites can be successfully used as thermos-shrinkable materials.

  14. A numerical study of external building walls containing phase change materials (PCM)

    International Nuclear Information System (INIS)

    Izquierdo-Barrientos, M.A.; Belmonte, J.F.; Rodríguez-Sánchez, D.; Molina, A.E.; Almendros-Ibáñez, J.A.

    2012-01-01

    Phase Change Materials (PCMs) have been receiving increased attention, due to their capacity to store large amounts of thermal energy in narrow temperature ranges. This property makes them ideal for passive heat storage in the envelopes of buildings. To study the influence of PCMs in external building walls, a one-dimensional transient heat transfer model has been developed and solved numerically using a finite difference technique. Different external building wall configurations were analyzed for a typical building wall by varying the location of the PCM layer, the orientation of the wall, the ambient conditions and the phase transition temperature of the PCM. The integration of a PCM layer into a building wall diminished the amplitude of the instantaneous heat flux through the wall when the melting temperature of the PCM was properly selected according to the season and wall orientation. Conversely, the results of the work show that there is no significant reduction in the total heat lost during winter regardless of the wall orientation or PCM transition temperature. Higher differences were observed in the heat gained during the summer period, due to the elevated solar radiation fluxes. The high thermal inertia of the wall implies that the inclusion of a PCM layer increases the thermal load during the day while decreasing the thermal load during the night. - Highlights: ► A comparative simulation of a building wall with and without PCMs has been conducted. ► PCM is selected according with the season, the wall orientation and the melting temperature. ► PCM in a building wall help to diminish the internal air temperature swings and to regulate the heat transfer.

  15. Development of TiC coated wall materials for JT-60

    International Nuclear Information System (INIS)

    Abe, T.; Murakami, Y.; Obara, K.; Hiroki, S.; Nakamura, K.; Inagawa, K.

    1985-01-01

    Development of titanium carbide (TiC, 20 μm thick) coated wall materials has been carried out for JT-60. Application of TiC coatings onto molybdenum and Inconel 625 substrates requires a deposition temperature below 950 0 C and 600 0 C respectively, because recrystallization of molybdenum and age hardening of Inconel 625 occur above these temperatures. Through this process of coating we develop a new type plasma CVD(TP-CVD method) for molybdenum and a new type PVD(HCD-ARE method) for Inconel 625 which could successfully reduce the deposition temperature to 900 0 C and 500 0 C, respectively. The TiC coated wall samples were characterized by AES, ESCA, X-ray diffractometer, EPMA, SEM, metalography, tensile tests, thermal shock tests, and other techniques. As a result of the above measurements, it was demonstrated that the characteristics of those TiC coated walls satisfy the requirements arising from JT-60 operation conditions. (orig.)

  16. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents

    International Nuclear Information System (INIS)

    Hoy, C.A.; Thompson, L.H.; Mooney, C.L.; Salazar, E.P.

    1985-01-01

    DNA repair-deficient mutants from five genetic complementation groups isolated previously from Chinese hamster cells were assayed for survival after exposure to the bifunctional alkylating agents mitomycin C or diepoxybutane. Groups 1, 3, and 5 exhibited 1.6- to 3-fold hypersensitivity compared to the wild-type cells, whereas Groups 2 and 4 exhibited extraordinary hypersensitivity. Mutants from Groups 1 and 2 were exposed to 22 other bifunctional alkylating agents in a rapid assay that compared cytotoxicity of the mutants to the wild-type parental strain, AA8. With all but two of the compounds, the Group 2 mutant (UV4) was 15- to 60-fold more sensitive than AA8 or the Group 1 mutant (UV5). UV4 showed only 6-fold hypersensitivity to quinacrine mustard. Alkaline elution measurements showed that this compound produced few DNA interstrand cross-links but numerous strand breaks. Therefore, the extreme hypersensitivity of mutants from Groups 2 and 4 appeared specific for compounds the main cytotoxic lesions of which were DNA cross-links. Mutant UV5 was only 1- to 4-fold hypersensitive to all the compounds. Although the initial number of cross-links was similar for the three cell lines, the efficiency of removal of cross-links was lowest in UV4 and intermediate in UV5. These results suggest that the different levels of sensitivity are specifically related to different efficiencies of DNA cross-link removal. The phenotype of hypersensitivity to both UV radiation and cross-link damage exhibited by the mutants in Groups 2 and 4 appears to differ from those of the known human DNA repair syndromes

  17. Reorientational motion of a cross-link junction in a poly(dimethylsiloxane) network measured by time-resolved fluorescence depolarization

    Energy Technology Data Exchange (ETDEWEB)

    Stein, A.D. (Department of Chemistry, Stanford University, Stanford, California 94305 (United States)); Hoffman, D.A. (Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)); Frank, C.W. (Department of Chemical Engineering, Stanford University, Stanford, California 94305 (United States)); Fayer, M.D. (Department of Chemistry, Stanford University, Stanford, California 94305 (United States))

    1992-02-15

    The reorientational dynamics of a cross-link junction in poly(dimethylsiloxane) networks, measured by the fluorescence anisotropy decay of a chromophore tagged to the cross-link, have been investigated over a range of temperatures from {ital T}{sub {ital g}}+75 to {ital T}{sub {ital g}}+150. The probe chromophore, 1-dimethylamino-5-sulfonylnaphthalene amide (dansyl amide), is pendant to a trifunctional silane that acts as a cross-linking molecule. In cyclohexanol, the fluorescence anisotropy decay is in agreement with Debye--Stokes--Einstein hydrodynamic theory (rotational diffusion) demonstrating that the cross-linker can be used as a probe of orientational relaxation. The fluorescence anisotropy decays at a rapid rate in an end-linked poly(dimethyl siloxane) network reflecting fast reorientational motion of the cross-link junction. This reorientation appears diffusive and has a temperature dependence in accord with the Williams--Landel--Ferry equation. A model is proposed that suggests that reorientation and translational motion of the cross-link occur simultaneously and are both coupled to fluctuations of the polymer chain ends.

  18. Efficiency analysis and assessment of interlocking PVC sheet piling walls

    International Nuclear Information System (INIS)

    Emam, A.A.

    2005-01-01

    The use of PVC sheet piling in marine environments offers a number of unique advantages that include weight saving, corrosion resistance and environmentally safe material. In this study, one of the widely used classical methods as well as a finite element analysis are used to analyze such sheet piling walls. The analysis focuses on the effect of some important parameters on the wall global behavior, bending moments, stresses and deflections. The parameters include wall cross-section, wall height, embedment depth, number and spacing of anchor rods, and type of soil and loading conditions. Furthermore, the effect of the shape of the wall cross-section and the location of the interlocking joints has been studied by using plane frame and arch-like models. Results indicate that the finite element modeling is an effective tool for numerical approximation of soil-structure interaction problems. The required theoretical embedment depth is nearly 30 % of the clear wall height. Also, the modulus of subgrade reaction has a minor effect on both cantilever wall and one anchor sheet-pile wall. Finally, lateral (horizontal) action shows that deep sections tend to behave like an arch under radial loading which might increase normal stresses at some critical sections

  19. Sharp kink of DNA at psoralen-cross-link site deduced from crystal structure of psoralen-thymine monoadduct

    International Nuclear Information System (INIS)

    Kim, S.H.; Peckler, S.; Graves, B.; Kanne, D.; Rapoport, H.; Hearst, J.E.

    1983-01-01

    Light-induced cross-linking of double-stranded nucleic acids by psoralens has been exploited to locate, in vivo or in vitro, those double-helical regions of DNA or RNA that can accommodate any structural changes caused by the psoralen cross-links. To determine three-dimensional structural parameters of the cross-link, we have solved the crystal structure of the psoralen-thymine monoadduct formed in photoreaction between calf thymus DNA and 8-methoxypsoralen (8MOP). There are eight possible configurations for psoralen-thymine monoadducts and 64 for diadducts. We describe here the structural details of a psoralen-thymine monoadduct obtained in a biological environment and the consequences of the photo-cross-link between 8MOP and double-helical DNA

  20. Wood Sawdust/Natural Rubber Ecocomposites Cross-Linked by Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Elena Manaila

    2016-06-01

    Full Text Available The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical properties such as hardness, modulus at 100% elongation and tensile strength, showed significant improvements. The presence of wood sawdust fibers has a reinforcing effect on natural rubber, similar or better than of mineral fillers. An increase in the irradiation dose leads to the increasing of cross-link density, which is reflected in the improvement of hardness, modulus at 100% elongation and tensile strength of blends. The cross-linking rates, appreciated using the Flory-Rehner equation, have increased with the amount of wood sawdust in blends and with the irradiation dose. Even if the gel fraction values have varied irregularly with the amount of wood sawdust and irradiation dose it was over 90% for all blends, except for the samples without wood sawdust irradiated with 75 kGy. The water uptake increased with increasing of fiber content and decreased with the irradiation dose.

  1. Setting of loose-fill insulation materials in walls; Saetningsfri indblaesning af loesfyldsisolering i vaegge

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, T.V.

    2001-07-01

    The report describes material behaviour, which significantly influences the settling of loose-fill insulation materials. The specific application presented here is loose-fill insulation material injected in walls as thermal insulation. The physical formulation of the issue to be discussed is that the mass is kept in position in the cavity by frictional forces, which counteracts the settling but complicates injection. The purpose of this study is to investigate whether there is a possibility that decreased friction will be able to release settling. Cellulose loose-fill material injected in a 0.1 m thick and 1 m wide gypsum wall with a minimum density of 48 kg/m3 was found not to settle if kept at a constant relative humidity, RH 50 %. A minimum density of 53 kg/m3 is necessary if the thickness of the wall is increased from 0.1 m to 0.3 m. If changing the constant environment from RH 50 % to RH 80 % a minimum density of 63 kg/m3 is necessary. Furthermore, results so far show that cellulose loose-fill material spread on the attic floor will have a density after settling of 48 kg /M3 for a constant RH 50 %, corresponding to 43 kg/m3 dry material. The results were found by using a model and tests. (au)

  2. Glutaraldehyde Cross-Linking of TendonMechanical Effects at the Level of the Tendon Fascicle and Fibril

    DEFF Research Database (Denmark)

    Hansen, P.; Svensson, R.B.; Aagaard, P.

    2009-01-01

    were examined by atomic force microscopy. Peak forces increased from 1379 to 2622 pN while an extended Hertz fit of force-indentation data showed a 24 fold increase in Young's modulus on indentation. The effect of glutaraldehyde cross-linking on the tensile properties of a single collagen fibril......Conclusive insight into the microscopic principles that govern the strength of tendon and related connective tissues is lacking and the importance of collagen cross-linking has not been firmly established. The combined application of whole-tissue mechanical testing and atomic force spectroscopy...... allowed for a detailed characterization of the effect of cross-linking in rat-tail tendon. The cross-link inducing agent glutaraldehyde augmented the tensile strength of tendon fascicles. Stress at failure increased from 8 MPa to 39 MPa. The mechanical effects of glutaraldehyde at the tendon fibril level...

  3. Effectiveness of trimethylopropane trimethacrylate for the electron-beam-irradiation-induced cross-linking of polylactic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Hon-Meng [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Bee, Soo-Tueen, E-mail: beest@utar.edu.my [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Ratnam, C.T. [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Sin, Lee Tin; Phang, Yee-Yao; Tee, Tiam-Ting [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Rahmat, A.R. [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2014-01-15

    Highlights: • Investigation of trimethylopropane trimethacrylate (TMPTMA) on electron beam irradiated PLA. • Irradiated PLA blends were weakened by incorporation of high amount of TMPTMA. • TMPTMA interacts with polymer free radicals to build crosslinking network. -- Abstract: The purpose of this research was to investigate the effects of various loading levels of trimethylopropane trimethacrylate (TMPTMA) on the properties of polylactic acid (PLA) cross-linked via electron-beam irradiation. PLA was compounded with 3–5 wt.% of TMPTMA to induce cross-linking upon subjection to electron-beam irradiation doses of 25–250 kGy. The physical properties of the PLA samples were characterised by means of X-ray diffraction, gel fraction and scanning electron microscopy analyses on fractured surfaces after tensile tests. The presence of TMPTMA in PLA was found to effectively increase the crystallite size and gel fraction. However, higher loading levels of TMPTMA could compromise the properties of the PLA/TMPTMA samples, indicating that a larger amount of monomer free radicals might promote degradation within the substantially cross-linked amorphous phase. Irradiation-induced cross-linking in the samples could improve the cross-linking density while decreasing the elongation and interfering with the crystallisation. These effects are caused by the intensive irradiation-induced chain scission that is responsible for the deterioration of the mechanical and crystalline properties of the samples.

  4. Effectiveness of trimethylopropane trimethacrylate for the electron-beam-irradiation-induced cross-linking of polylactic acid

    International Nuclear Information System (INIS)

    Ng, Hon-Meng; Bee, Soo-Tueen; Ratnam, C.T.; Sin, Lee Tin; Phang, Yee-Yao; Tee, Tiam-Ting; Rahmat, A.R.

    2014-01-01

    Highlights: • Investigation of trimethylopropane trimethacrylate (TMPTMA) on electron beam irradiated PLA. • Irradiated PLA blends were weakened by incorporation of high amount of TMPTMA. • TMPTMA interacts with polymer free radicals to build crosslinking network. -- Abstract: The purpose of this research was to investigate the effects of various loading levels of trimethylopropane trimethacrylate (TMPTMA) on the properties of polylactic acid (PLA) cross-linked via electron-beam irradiation. PLA was compounded with 3–5 wt.% of TMPTMA to induce cross-linking upon subjection to electron-beam irradiation doses of 25–250 kGy. The physical properties of the PLA samples were characterised by means of X-ray diffraction, gel fraction and scanning electron microscopy analyses on fractured surfaces after tensile tests. The presence of TMPTMA in PLA was found to effectively increase the crystallite size and gel fraction. However, higher loading levels of TMPTMA could compromise the properties of the PLA/TMPTMA samples, indicating that a larger amount of monomer free radicals might promote degradation within the substantially cross-linked amorphous phase. Irradiation-induced cross-linking in the samples could improve the cross-linking density while decreasing the elongation and interfering with the crystallisation. These effects are caused by the intensive irradiation-induced chain scission that is responsible for the deterioration of the mechanical and crystalline properties of the samples

  5. Recycling Roof Tile Waste Material for Wall Cover Tiles

    Directory of Open Access Journals (Sweden)

    Ambar Mulyono

    2014-02-01

    Full Text Available Prior research on roof tile waste treatment has attempted to find the appropriate technology to reuse old roof tile waste by  create  wall  cladding  materials  from  it.  Through  exploration  and  experimentation,  a  treatment  method  has  been discovered  to  transform  the  tile  fragments  into  artificial  stone  that  resembles  the  shape  of  coral.  This  baked  clay artificial stone material is then processed as a decorative element for vertical surfaces that are not load-bearing, such as on the interior and exterior walls of a building. Before applying the fragments as wall tiles, several steps must be taken: 1  Blunting,  which  changes  the  look  of  tile  fragments  using  a  machine  created  specifically  to  blunt  the  roof-tile fragment  edges,  2  Closing  the  pores  of  the  blunted  fragments  as  a  finishing  step  that  can  be  done  with  a  transparent coat or a solid color of paint, 3 Planting the transformed roof-tile fragments on a prepared tile body made of concrete. In this study, the second phase is done using the method of ceramics glazing at a temperature of 700 °C. The finishing step is the strength of this product because it produces a rich color artificial pebble.

  6. Chemical cross-linked polyvinyl alcohol/cellulose nanocrystal composite films with high structural stability by spraying Fenton reagent as initiator.

    Science.gov (United States)

    Song, Meili; Yu, Houyong; Gu, Jiping; Ye, Shounuan; Zhou, Yuwei

    2018-07-01

    Cross-linked polyvinyl alcohol (PVA) composite films with high structural stability were prepared by free radical copolymerization between cellulose nanocrystal (CNC) and maleic anhydride (MAH) modified PVA through spraying Fenton free radical as initiator. The influence of chemical cross-linked and physical network structure on mechanical, thermal and water absorption properties of the composite films were investigated. Compared to PVA and PVA/CNC composite film, significant improvements in the mechanical, thermal and water uptake properties of the cross-linked composite film were found. The tensile strength of the cross-linked composite film was enhanced from 23.1MPa (neat PVA film) and 32.6MPa (PVA/CNC-10%) to 42.5MPa, and the maximum thermal degradation temperature was increased from 266.8°C and 281.2°C to 366.7°C (cross-linked composite film). Besides, the water absorption was reduced from 385.9% and 220.6% to 175.7% for cross-linked composite film. It indicates that compared with physical network structure in PVA/CNC composite film, the multiple cross-linked networks showed excellent thermal stability, resistance of water swelling and structural stability at the same CNC loading level. Thus, the PVA/CNC composite film with the multiple cross-linked network shows greater property reinforcements. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Cross-Linked CoMoO4/rGO Nanosheets as Oxygen Reduction Catalyst

    Directory of Open Access Journals (Sweden)

    Jiaqi Fu

    2017-12-01

    Full Text Available Development of inexpensive and robust electrocatalysts towards oxygen reduction reaction (ORR is crucial for the cost-affordable manufacturing of metal-air batteries and fuel cells. Here we show that cross-linked CoMoO4 nanosheets and reduced graphene oxide (CoMoO4/rGO can be integrated in a hybrid material under one-pot hydrothermal conditions, yielding a composite material with promising catalytic activity for oxygen reduction reaction (ORR. Cyclic voltammetry (CV and linear sweep voltammetry (LSV were used to investigate the efficiency of the fabricated CoMoO4/rGO catalyst towards ORR in alkaline conditions. The CoMoO4/rGO composite revealed the main reduction peak and onset potential centered at 0.78 and 0.89 V (vs. RHE, respectively. This study shows that the CoMoO4/rGO composite is a highly promising catalyst for the ORR under alkaline conditions, and potential noble metal replacement cathode in fuel cells and metal-air batteries.

  8. Identification and characterization of a pituitary corticotropin-releasing factor binding protein by chemical cross-linking

    DEFF Research Database (Denmark)

    Nishimura, E; Billestrup, Nils; Perrin, M

    1987-01-01

    appeared to have a molecular weight of approximately 70,000. The cross-linking was specific since an excess (1 microM) of an unrelated peptide (insulin) did not affect the appearance of the Mr 75,000 band. The concentration of CRF required to inhibit cross-linking by 50% was found to be similar...

  9. Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing.

    Science.gov (United States)

    Markstedt, Kajsa; Escalante, Alfredo; Toriz, Guillermo; Gatenholm, Paul

    2017-11-22

    This paper presents a sustainable all-wood-based ink which can be used for 3D printing of constructs for a large variety of applications such as clothes, furniture, electronics, and health care products with a customized design and versatile gel properties. The 3D printing technologies where the material is dispensed in the form of liquids, so called inks, have proven suitable for 3D printing dispersions of cellulose nanofibrils (CNFs) because of their unique shear thinning properties. In this study, novel inks were developed with a biomimetic approach where the structural properties of cellulose and the cross-linking function of hemicelluloses that are found in the plant cell wall were utilized. The CNF was mixed with xylan, a hemicellulose extracted from spruce, to introduce cross-linking properties which are essential for the final stability of the printed ink. For xylan to be cross-linkable, it was functionalized with tyramine at different degrees. Evaluation of different ink compositions by rheology measurements and 3D printing tests showed that the degree of tyramine substitution and the ratio of CNFs to xylan-tyramine in the prepared inks influenced the printability and cross-linking density. Both two-layered gridded structures and more complex 3D constructs were printed. Similarly to conventional composites, the interactions between the components and their miscibility are important for the stability of the printed and cross-linked ink. Thus, the influence of tyramine on the adsorption of xylan to cellulose was studied with a quartz crystal microbalance to verify that the functionalization had little influence on xylan's adsorption to cellulose. Utilizing xylan-tyramine in the CNF dispersions resulted in all-wood-based inks which after 3D printing can be cross-linked to form freestanding gels while at the same time, the excellent printing properties of CNFs remain intact.

  10. Genipin Cross-Linked Polymeric Alginate-Chitosan Microcapsules for Oral Delivery: In-Vitro Analysis

    Directory of Open Access Journals (Sweden)

    Hongmei Chen

    2009-01-01

    Full Text Available We have previously reported the preparation of the genipin cross-linked alginate-chitosan (GCAC microcapsules composed of an alginate core with a genipin cross-linked chitosan membrane. This paper is the further investigation on their structural and physical characteristics. Results showed that the GCAC microcapsules had a smooth and dense surface and a networked interior. Cross-linking by genipin substantially reduced swelling and physical disintegration of microcapsules induced by nongelling ions and calcium sequestrants. Strong resistance to mechanical shear forces and enzymatic degradation was observed. Furthermore, the GCAC membranes were permeable to bovine serum albumin and maintained a molecular weight cutoff at 70 KD, analogous to the widely studied alginate-chitosan, and alginate-poly-L-lysine-alginate microcapsules. The release features and the tolerance of the GCAC microcapsules in the stimulated gastrointestinal environment were also investigated. This GCAC microcapsule formulation offers significant potential as a delivery vehicle for many biomedical applications.

  11. Thermal/chemical degradation of ceramic cross-flow filter materials

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  12. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene-divinylbenzene resins, cross-linked. 177.2710 Section 177.2710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended...

  13. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells

    International Nuclear Information System (INIS)

    Cheng, Jin; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Wang, Bin; Zhao, Jiqing; Sai, Yan; Zou, Zhongmin

    2016-01-01

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O 6 -methylguanine–DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1 h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24 h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair. - Highlights: • Nitrogen mustard-induced MGMT-DNA cross-linking was detected in a living cell. • Concentration- and time-dependent manners of MGMT-DNA cross-linking were revealed. • Proteolysis played an important role in protein (MGMT)-DNA cross-linking repair. • DVC1 acts as a proteolytic enzyme in cross-linking repair in a p

  14. Laser-induced corneal cross-linking upon photorefractive ablation with riboflavin

    Directory of Open Access Journals (Sweden)

    Kornilovskiy IM

    2016-04-01

    Full Text Available Igor M Kornilovskiy,1 Elmar M Kasimov,2 Ayten I Sultanova,2 Alexander A Burtsev1 1Department of Eye Diseases, Federal State Budgetary Institution “National Pirogov Medical Surgical Centre”, Ministry of Health, Moscow, Russia; 2Department of Eye Diseases, Zarifa Aliyeva National Ophthalmology Center, Ministry of Health, Baku, Azerbaijan Aim: To estimate the biomechanical effect of the laser-induced cross-linking resulting from photorefractive ablation of the cornea with riboflavin.Methods: Excimer laser ablation studies were performed ex vivo (32 eyes of 16 rabbits by phototherapeutic keratectomy (PTK and in vivo (24 eyes of 12 rabbits by transepithelial photorefractive keratectomy (TransPRK, with and without riboflavin saturation of the stroma. Then, we performed corneal optical coherence tomography on 36 eyes of 18 patients with varying degrees of myopia at different times after the TransPRK was performed with riboflavin saturation of the stroma.Results: Biomechanical testing of corneal samples saturated with riboflavin revealed cross-linking effect accompanied by the increase in tensile strength and maximum strength. PTK showed increase in tensile strength from 5.1±1.4 to 7.2±1.6 MPa (P=0.001, while TransPRK showed increase in tensile strength from 8.8±0.9 to 12.8±1.3 MPa (P=0.0004. Maximum strength increased from 8.7±2.5 to 12.0±2.8 N (P=0.005 in PTK and from 12.8±1.6 to 18.3±1.2 N (P=0.0004 in TransPRK. Clinical optical coherence tomography studies of the biomicroscopic transparent cornea at different times after TransPRK showed increased density in the surface layers of the stroma and membrane-like structure beneath the epithelium.Conclusion: Photorefractive ablation of the preliminary corneal stroma saturation with riboflavin causes the effect of laser-induced cross-linking, which is attended with an increase in corneal tensile strength, maximum strength, increased density in the surface layers of the stroma, and formation of

  15. In vitro cross-linking of bovine lens proteins photosensitized by promazines

    International Nuclear Information System (INIS)

    Merville, M.P.; Decuyper, J.; Piette, J.; Calberg-Bacq, C.M.; Van de Vorst, A.

    1984-01-01

    Promazine derivatives induce cross-linking of bovine lens crystallins in vitro by irradiation with near-ultraviolet (UV) light in the presence of O 2 , as revealed by electrophoresis after denaturation. With the five derivatives tested (promazine [PZ], chlorpromazine [CPZ], triflupromazine [TFPZ], methoxypromazine [MTPZ], and acepromazine [ACPZ]), single-hit kinetics are observed. Evidence implicating the cation radicals of the PZ derivatives as the causative agent of this in vitro effect is presented. Hydroxyl radicals do not appear to be involved in the photo-cross-linking reaction. Sodium ascorbate protects against damage induced either by PZ derivatives plus light or by PZ cation radicals in the dark. These findings are discussed with respect to development of cataracts induced by these drugs in vivo

  16. Photo-cross-linked small-molecule microarrays as chemical genomic tools for dissecting protein-ligand interactions.

    Science.gov (United States)

    Kanoh, Naoki; Asami, Aya; Kawatani, Makoto; Honda, Kaori; Kumashiro, Saori; Takayama, Hiroshi; Simizu, Siro; Amemiya, Tomoyuki; Kondoh, Yasumitsu; Hatakeyama, Satoru; Tsuganezawa, Keiko; Utata, Rei; Tanaka, Akiko; Yokoyama, Shigeyuki; Tashiro, Hideo; Osada, Hiroyuki

    2006-12-18

    We have developed a unique photo-cross-linking approach for immobilizing a variety of small molecules in a functional-group-independent manner. Our approach depends on the reactivity of the carbene species generated from trifluoromethylaryldiazirine upon UV irradiation. It was demonstrated in model experiments that the photogenerated carbenes were able to react with every small molecule tested, and they produced multiple conjugates in most cases. It was also found in on-array immobilization experiments that various small molecules were immobilized, and the immobilized small molecules retained their ability to interact with their binding proteins. With this approach, photo-cross-linked microarrays of about 2000 natural products and drugs were constructed. This photo-cross-linked microarray format was found to be useful not merely for ligand screening but also to study the structure-activity relationship, that is, the relationship between the structural motif (or pharmacophore) found in small molecules and its binding affinity toward a protein, by taking advantage of the nonselective nature of the photo-cross-linking process.

  17. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch.

    Science.gov (United States)

    Hazarika, Bidyut Jyoti; Sit, Nandan

    2016-04-20

    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Specific cross-linking of capsid proteins to virus RNA by ultraviolet irradiation of polio virus

    Energy Technology Data Exchange (ETDEWEB)

    Wetz, K.; Habermehl, K.O. (Freie Univ. Berlin (Germany, F.R.))

    1982-04-01

    Poliovirus was irradiated with u.v. light under conditions causing approx. 5% cross-linking of capsid protein to virus RNA. Cross-linked RNA-protein complexes, freed from unbound protein, were treated with nuclease, and then analysed on SDS-polyacrylamide gels. The smallest capsid polypeptide VP4 was found to be associated with the RNA to the greatest degree, followed by VP2 and VP1, while VP3 was attached only in trace amounts. Low radiation doses, which produced cross-linking of RNA to protein, did not cause breakdown of the virus particles or conformational changes of the capsid as examined physically and serologically. However, higher doses caused structural alterations of the virus capsid.

  19. Specific cross-linking of capsid proteins to virus RNA by ultraviolet irradiation of polio virus

    International Nuclear Information System (INIS)

    Wetz, K.; Habermehl, K.-O.

    1982-01-01

    Poliovirus was irradiated with u.v. light under conditions causing approx. 5% cross-linking of capsid protein to virus RNA. Cross-linked RNA-protein complexes, freed from unbound protein, were treated with nuclease, and then analysed on SDS-polyacrylamide gels. The smallest capsid polypeptide VP4 was found to be associated with the RNA to the greatest degree, followed by VP2 and VP1, while VP3 was attached only in trace amounts. Low radiation doses, which produced cross-linking of RNA to protein, did not cause breakdown of the virus particles or conformational changes of the capsid as examined physically and serologically. However, higher doses caused structural alterations of the virus capsid. (author)

  20. Rapid detection of DNA-interstrand and DNA-protein cross-links in mammalian cells by gravity-flow alkaline elution

    International Nuclear Information System (INIS)

    Hincks, J.R.; Coulombe, R.A. Jr.

    1989-01-01

    Alkaline elution is a sensitive and commonly used technique to detect cellular DNA damage in the form of DNA strand breaks and DNA cross-links. Conventional alkaline elution procedures have extensive equipment requirements and are tedious to perform. Our laboratory recently presented a rapid, simplified, and sensitive modification of the alkaline elution technique to detect carcinogen-induced DNA strand breaks. In the present study, we have further modified this technique to enable the rapid characterization of chemically induced DNA-interstrand and DNA-protein associated cross-links in cultured epithelial cells. Cells were exposed to three known DNA cross-linking agents, nitrogen mustard (HN 2 ), mitomycin C (MMC), or ultraviolet irradiation (UV). One hour exposures of HN 2 at 0.25, 1.0, and 4.0 microM or of MMC at 20, 40, and 60 microM produced a dose-dependent induction of total DNA cross-links by these agents. Digestion with proteinase K revealed that HN 2 and MMC induced both DNA-protein cross-links and DNA-interstrand cross-links. Ultraviolet irradiation induced both DNA cross-links and DNA strand breaks, the latter of which were either protein and nonprotein associated. The results demonstrate that gravity-flow alkaline elution is a sensitive and accurate method to characterize the molecular events of DNA cross-linking. Using this procedure, elution of DNA from treated cells is completed in 1 hr, and only three fractions per sample are analyzed. This method may be useful as a rapid screening assay for genotoxicity and/or as an adjunct to other predictive assays for potential mutagenic or carcinogenic agents

  1. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    Science.gov (United States)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  2. Effects of Thermal Cross-Linking on the Structure and Property of Asymmetric Membrane Prepared from the Polyacrylonitrile

    Directory of Open Access Journals (Sweden)

    Xin Jin

    2018-05-01

    Full Text Available Improving the thermal and chemical stabilities of classical polymer membranes will be beneficial to extend their applications in the high temperature or aggressive environment. In this work, the asymmetric ultrafiltration membranes prepared from the polyacrylonitrile (PAN were used to fabricate the cross-linking asymmetric (CLA PAN membranes via thermal cross-linking in air to improve their thermal and chemical stabilities. The effects of thermal cross-linking parameters such as temperature and holding time on the structure, gas separation performance, thermal and chemical stabilities of PAN membranes were investigated by Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, positron annihilation lifetime spectroscopy (PALS, scanning electron microscopy (SEM, thermogravimetic analysis (TGA and gas permeation test. The thermal cross-linking significantly influences the chemical structure, microstructure and pore structure of PAN membrane. During the thermal cross-linking, the shrinkage of membrane and coalescence or collapse of pore and microstructure make large pores diminish, small pores disappear and pore volumes reduce. The gas permeances of CLA-PAN membranes increase as the increasing of cross-linking temperature and holding time due to the volatilization of small molecules. The CLA-PAN membranes demonstrate excellent thermal and chemical stabilities and present good prospects for application in ultrafiltration for water treatment and for use as a substrate for nanofiltration or gas separation with an aggressive and demanding environment.

  3. Characterization of radiation-cross-linked, high-density polyethylene for thermal energy storage

    International Nuclear Information System (INIS)

    Whitaker, R.B.; Craven, S.M.; Etter, D.E.; Jendrek, E.F.; Nease, A.B.

    1983-01-01

    Electron beam cross-linked high-density polyethylene (HDPE) pellets (DuPont Alathon, 0.93 MI) have been characterized for potential utility in thermal energy storage applications, before and after up to 500 melt-freeze cycles in ethylene glycol. Up to 95% of the HDPE's initial DSC differential scanning calorimetry Δ H/sub f/ value (44.7 cal/g) (at 1.25 0 C/min cooling rates) was retained up to 9.0 Mrad radiation dosage. Form-stability after 500 melt-freeze cycles was very good at this dosage level. X-ray diffraction measurements showed little difference between irradiated HDPE's and the unirradiated control, indicating that cross-linking occurred primarily in the amorphous regions. FTIR spectroscopy showed the pellets to be uniformly reacted. The ratios of the 965-cm -1 absorption band (trans RCH=CRH') to the 909-cm -1 band (RCH=CH 2 ) increased with increasing radiation dosage, up to 18 Mrad. Gel contents reached a maximum of 75% at the 13.5 Mrad dosage, indicating that other reactions, in addition to cross-linking, occurred at the highest (18 Mrad) dosage level. 15 references, 5 figures, 4 tables

  4. Mapping protein structural changes by quantitative cross-linking

    Czech Academy of Sciences Publication Activity Database

    Kukačka, Zdeněk; Strohalm, Martin; Kavan, Daniel; Novák, Petr

    2015-01-01

    Roč. 89, NOV 2015 (2015), s. 112-120 ISSN 1046-2023 R&D Projects: GA MŠk(CZ) EE2.3.20.0055; GA MŠk(CZ) EE2.3.30.0003; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24023 Institutional support: RVO:61388971 Keywords : Chemical cross-linking * Proteolysis * Mass spectrometry Subject RIV: CE - Biochemistry Impact factor: 3.503, year: 2015

  5. Formulation and in vitro evaluation of sustained release matrix tablets using cross-linked natural gum.

    Science.gov (United States)

    Jamil, Qurratul Ain; Masood, Muhammad Irfan; Jamil, Muhammad Nauman; Masood, Imran; Iqbal, Shahid Muhammad

    2017-03-01

    Polysaccharide gums because of their biocompatibility, biodegradability and non-immunogenic properties are considered as the best choice for preparing sustained release tablets as compared to their synthetic counterpart. The cross linking of natural gums in matrix tablets increase the sustained release property of matrix tablets. Isoniazid is a first line therapy of tuberculosis, belongs to BCS I with half-life of 3-4 hours. These characteristics make isoniazid a good candidate for sustained release dosage form. Karaya gum crossed linked with trisodium tri metaphosphate was used as release rate retardant for preparing isoniazid cross-linked matrix tablet. Total 8 sustained release formulations were prepared. Both granules and tablets were evaluated under in vitro condition against different parameters. Dissolution studies were performed with all eight formulations for 12 hours using USP apparatus I. Four formulations designated as F1, F2, F3, F4 have drug and karaya gum while other four formulations F5, F6, F7, F8 have drug and crossed linked polymer in ratios of 1:1, 1:2, 1:3 and 1:4 respectively. Dissolution data was analyzed by using different kinetic models. Best fit model for most efficient formulation was zero order while release mechanism was super case I. Formulation 8 showed sufficiently slow release kinetics and about 83% of drug was released in 10 hours, indicating that cross-linked karaya gum proved efficient in preparing sustained release tablets.

  6. Grafted Cross-Linked Polyolefin Substrates for Peptide Synthesis and Assays

    DEFF Research Database (Denmark)

    1999-01-01

    suited for use in solid-phase biosystems, notably bioassays, such as immunoassays, DNA hybridization assays or PCR amplification. The grafted chains may bear substituents which are such that the polymer-grafted cross-linked polyolefin substrate is swellable by water or aqueous media, in other words...

  7. Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites: role of interfacial interactions.

    Science.gov (United States)

    Khare, Ketan S; Khare, Rajesh

    2013-06-20

    We have used atomistic molecular simulations to study the effect of nanofiller dispersion on the glass transition behavior of cross-linked epoxy-carbon nanotube (CNT) nanocomposites. Specific chemical interactions at the interface of CNTs and cross-linked epoxy create an interphase region, whose impact on the properties of their nanocomposites increases with an increasing extent of dispersion. To investigate this aspect, we have compared the volumetric, structural, and dynamical properties of three systems: neat cross-linked epoxy, cross-linked epoxy nanocomposite containing dispersed CNTs, and cross-linked epoxy nanocomposite containing aggregated CNTs. We find that the nanocomposite containing dispersed CNTs shows a depression in the glass transition temperature (Tg) by ~66 K as compared to the neat cross-linked epoxy, whereas such a large depression is absent in the nanocomposite containing aggregated CNTs. Our results suggest that the poor interfacial interactions between the CNTs and the cross-linked epoxy matrix lead to a more compressible interphase region between the CNTs and the bulk matrix. An analysis of the resulting dynamic heterogeneity shows that the probability of percolation of immobile domains becomes unity near the Tg calculated from volumetric properties. Our observations also lend support to the conceptual analogy between polymer nanocomposites and the nanoconfinement of polymer thin films.

  8. Determination of the displacement cross section in single-walled carbon nanotubes under gamma irradiation

    International Nuclear Information System (INIS)

    Leyva, A.; Pinnera, I.; Cruz, C.; Abreu, Y.; Leyva, D.

    2009-01-01

    Using the threshold energy value reported in literature for C atoms in single-walled carbon nanotube and taking into account the McKinley-Feshbach approach, the effective atomic displacement cross-section in nanotubes exposed to the gamma rays was estimated. In this calculation the Kinchin-Pease approximation for the damage function was considered. (Author)

  9. Induction of SCE by DNA cross-links in human fibroblasts exposed to 8-MOP and UVA irradiation

    International Nuclear Information System (INIS)

    Bredberg, A.; Lambert, B.

    1983-01-01

    To study the SCE-inducing effect of psoralen cross-links in the DNA of normal, human fibroblasts, cell cultures were exposed to PUVA (0.2-1 μg of 8-MOP per ml, followed by UVA irradiation at 0.04 J/cm 2 ) and carefully washed to remove non-covalently bound psoralen. Some cell cultures were then given a second dose of UVA (1.1 J/cm 2 ), either immediately after PUVA or 1-3 days later. By this type of treatment, cells with different proportions of DNA cross-links are obtained. The initial PUVA treatment will mainly give rise to psoralen monoadducts and only few cross-links in the DNA, and the second UVA irradiation will convert a number of the psoralen monoadducts into cross-links. (orig./AJ)

  10. Effect of cross-linking on properties and release characteristics of sodium salicylate-loaded electrospun poly(vinyl alcohol) fibre mats

    International Nuclear Information System (INIS)

    Taepaiboon, Pattama; Rungsardthong, Uracha; Supaphol, Pitt

    2007-01-01

    Cross-linking of electrospun (e-spun) fibre mats (beaded fibre morphology with the average diameter of the fibre segments between beads being ∼108 nm) of poly(vinyl alcohol) (PVA) containing sodium salicylate (SS), used as the model drug, was achieved by exposing the fibre mats to the vapour from 5.6 M aqueous solution of either glutaraldehyde or glyoxal for various exposure time intervals, followed by a heat treatment in a vacuum oven. With increasing the exposure time in the cross-linking chamber, the morphology of the e-spun fibre mats gradually changed from a porous to dense structure. Both the degree of swelling and the percentage of weight loss of the cross-linked fibre mats (i.e. ∼200-530% and ∼15-57%, respectively) were lower than those of the untreated ones (i.e. ∼610% and ∼67%, respectively). Cross-linking was also responsible for the monotonic increase in the storage moduli of the cross-linked SS-loaded e-spun PVA fibre mats with increasing exposure time in the cross-linking chamber. The release characteristic of the model drug from the SS-loaded e-spun PVA fibre mats both before and after cross-linking was assessed by the transdermal diffusion through a pig skin method. The cumulative release of the drug from these matrices could be divided into two stages: 0-4 and 4-72 h, in which the amount of SS released in the first stage increased very rapidly, while it was much slower in the second stage. Cross-linking slowed down the release of SS from the drug-loaded fibre mats appreciably and both the rate of release and the total amount of the drug released were decreasing functions of the exposure time interval in the cross-linking chamber. Lastly, the cross-linked SS-loaded e-spun PVA fibre mats were non-toxic to normal human dermal fibroblasts

  11. Level crossings, excess times, and transient plasma–wall interactions in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Theodorsen, A., E-mail: audun.theodorsen@uit.no; Garcia, O. E., E-mail: odd.erik.garcia@uit.no [Department of Physics and Technology, UiT The Arctic University of Norway, N-9037 Tromsø (Norway)

    2016-04-15

    Based on a stochastic model for intermittent fluctuations in the boundary region of magnetically confined plasmas, an expression for the level crossing rate is derived from the joint distribution of the process and its derivative. From this the average time spent by the process above a certain threshold level is obtained. This provides novel predictions of plasma–wall interactions due to transient transport events associated with a radial motion of blob-like structures in the scrape-off layer.

  12. Process and device for the polymerization and/or cross-linking by ionizing radiations of a resin component of a composite material part

    International Nuclear Information System (INIS)

    Beziers, D.

    1985-01-01

    An electron beam is directed on a target for the production of X-rays with adequate dose for resin cross-linking. Means are provided for relative motion between ionizing radiations and the irradiated object for partial or total exposure to radiations. The part can be polymerized by electron-beam or X-rays in function of its thickness [fr

  13. Cross-linked aromatic cationic polymer electrolytes with enhanced stability for high temperature fuel cell applications

    DEFF Research Database (Denmark)

    Ma, Wenjia; Zhao, Chengji; Yang, Jingshuai

    2012-01-01

    Diamine-cross-linked membranes were prepared from cross-linkable poly(arylene ether ketone) containing pendant cationic quaternary ammonium group (QPAEK) solution by a facile and general thermal curing method using 4,4′-diaminodiphenylmethane with rigid framework and 1,6-diaminohexane with flexible...... anchoring of the molecule. Combining the excellent thermal stability, the addition of a small amount of diamines enhanced both the chemical and mechanical stability and the phosphoric acid doping (PA) ability of membranes. Fuel cell performance based on impregnated cross-linked membranes have been...... successfully operated at temperatures up to 120 °C and 180 °C with unhumidified hydrogen and air under ambient pressure, the maximum performance of diamine-cross-linked membrane is observed at 180 °C with a current density of 1.06 A cm−2 and the peak power density of 323 mW cm−2. The results also indicate...

  14. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation

    KAUST Repository

    Du, Naiying

    2011-03-11

    Cross-linked polymers of intrinsic microporosity (PIM)s for gas separation membranes, were prepared by a nitrene reaction from a representative PIM in the presence of two different diazide cross-linkers. The reaction temperature was optimized using TGA. The homogenous membranes were cast from THF solutions of different ratios of PIM to azides. The resulting cross-linked structures of the PIMs membranes were formed at 175 °C after 7.5 h and confirmed by TGA, XPS, FT-IR spectroscopy and gel content analysis. These resulting cross-linked polymeric membranes showed excellent gas separation performance and can be used for O 2/N 2 and CO 2/N 2 gas pairs, as well as for condensable gases, such as CO 2/CH 4, propylene/propane separation. Most importantly, and differently from typical gas separation membranes derived from glassy polymers, the crosslinked PIMs showed no obvious CO 2 plasticization up to 20 atm pressure of pure CO 2 and CO 2/CH 4 mixtures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A novel sulfonated poly(ether ether ketone) and cross-linked membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Zhang, Gang; Wu, Jing; Zhao, Chengji; Zhang, Yang; Shao, Ke; Han, Miaomiao; Lin, Haidan; Zhu, Jing; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, Jilin (China)

    2010-10-01

    A novel poly(ether ether ketone) (PEEK) containing pendant carboxyl groups has been synthesized by a nucleophilic polycondensation reaction. Sulfonated polymers (SPEEKs) with different ion exchange capacity are then obtained by post-sulfonation process. The structures of PEEK and SPEEKs are characterized by both FT-IR and {sup 1}H NMR. The properties of SPEEKs as candidates for proton exchange membranes are studied. The cross-linking reaction is performed at 140 C using poly(vinyl alcohol) (PVA) as the cross-linker. In comparison with the non-cross-linked membranes, some properties of the cross-linked membranes are significantly improved, such as water uptake, methanol resistance, mechanical and oxidative stabilities, while the proton conductivity decreases. The effect of PVA content on proton conductivity, water uptake, swelling ratio, and methanol permeability is also investigated. Among all the membranes, SPEEK-C-8 shows the highest selectivity of 50.5 x 10{sup 4} S s cm{sup -3}, which indicates that it is a suitable candidate for applications in direct methanol fuel cells. (author)

  16. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation

    KAUST Repository

    Du, Naiying; Dal-Cin, Mauro M D; Pinnau, Ingo; Nicalek, Andrzej; Robertson, Gilles P.; Guiver, Michael D.

    2011-01-01

    Cross-linked polymers of intrinsic microporosity (PIM)s for gas separation membranes, were prepared by a nitrene reaction from a representative PIM in the presence of two different diazide cross-linkers. The reaction temperature was optimized using TGA. The homogenous membranes were cast from THF solutions of different ratios of PIM to azides. The resulting cross-linked structures of the PIMs membranes were formed at 175 °C after 7.5 h and confirmed by TGA, XPS, FT-IR spectroscopy and gel content analysis. These resulting cross-linked polymeric membranes showed excellent gas separation performance and can be used for O 2/N 2 and CO 2/N 2 gas pairs, as well as for condensable gases, such as CO 2/CH 4, propylene/propane separation. Most importantly, and differently from typical gas separation membranes derived from glassy polymers, the crosslinked PIMs showed no obvious CO 2 plasticization up to 20 atm pressure of pure CO 2 and CO 2/CH 4 mixtures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong; Xu, Guoguang; Wang, Xinghui [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2015-01-01

    A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1–5 μm in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220 ± 15 kPa and the slowest BSA delivery (67% release at 14 d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. - Highlights: • New self-reinforcing HA hydrogels with a dually cross-linked network were developed. • Self-reinforcing HA hydrogels greatly enhanced the mechanical properties. • Self-reinforcing HA hydrogels prolonged the sustained delivery of BSA. • The self-reinforcing mechanism and BSA diffusion mechanism were discussed. • Self-reinforcing HA hydrogels had no cytotoxicity to 3T3 fibroblast cells.

  18. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network

    International Nuclear Information System (INIS)

    Luo, Chunhong; Xu, Guoguang; Wang, Xinghui; Tu, Mei; Zeng, Rong; Rong, Jianhua; Zhao, Jianhao

    2015-01-01

    A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1–5 μm in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220 ± 15 kPa and the slowest BSA delivery (67% release at 14 d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. - Highlights: • New self-reinforcing HA hydrogels with a dually cross-linked network were developed. • Self-reinforcing HA hydrogels greatly enhanced the mechanical properties. • Self-reinforcing HA hydrogels prolonged the sustained delivery of BSA. • The self-reinforcing mechanism and BSA diffusion mechanism were discussed. • Self-reinforcing HA hydrogels had no cytotoxicity to 3T3 fibroblast cells

  19. Model experiments on the sensitization of polyethylene cross-linking of oligobutadienes

    International Nuclear Information System (INIS)

    Brede, O.; Beckert, D.; Hoesselbarth, B.; Specht, W.; Tannert, F.; Wunsch, K.

    1988-01-01

    In presence of ≥ 1 % of 1,2-oligobutadiene the efficiency of the radiation-induced cross-linking of polyethylene was found to be increased in comparison to the pure matrix. Model experiments with solutions of the sensitizer in long chain n-alkanes showed that after addition of alkyl radicals onto the oligobutadiene (reaction with the vinyl groups) the sensitizer forms an own network which is grafted by the alkyl groups. In comparison to this grafting reaction proceeding with G of about 5 the vinyl consumption happened with about the threefold of it indicating a short (intra- and intermolecular) vinyl reaction chain. Pulse radiolysis measurements in solutions of the 1,2-oligobutadiene in n-hexadecane and in molten PE blends resulted in the observation of radical transients of the cross-linking reaction. (author)

  20. Dialing in the Ratio of Covalent and Coordination Cross-links in Self-healing Hydrogels

    DEFF Research Database (Denmark)

    Andersen, Amanda; Krogsgaard, Marie; Birkedal, Henrik

    -linking and as these impacts the abovementioned properties, it is of great interest to control the degree of which these are present; i.e. controlling the degree of catechol oxidation. Until now, the catechols participating in the two cross-linking types have been the same. This way the actual ratio between the two types...... cannot be either predefined or controlled, as it is determined by the oxidation rate within the hydrogel. Here, we report hydrogels in which the catechols participating in reversible (oxidation resistant catechol) and irreversible (classical catechol) cross-links are separated, enabling one to predefine...... the ratio of the two by altering the composition....

  1. Scleral wound healing with cross-link technique using riboflavin and ultraviolet A on rabbit eyes

    Directory of Open Access Journals (Sweden)

    Damasceno NA

    2017-07-01

    Full Text Available Nadyr A Damasceno,1 Nadia C Miguel,2 Marcelo Palis Ventura,3 Miguel Burnier Jr,4 Marcos P Avila,5 Eduardo F Damasceno3 1Ophthalmology Department, Hospital Naval Marcílio Dias, 2Laboratory of Neurohistology and Cell Ultrastructure, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 3Ophthalmology Department, Universidade Federal Fluminense, Niterói, Brazil; 4Ophthalmology Department, McGill University, Montreal, QC, Canada; 5Ophthalmology Department, Universidade Federal de Goiás, Goiania, Brazil Purpose: The aim of study was to evaluate the cross-link using riboflavin and ultraviolet A (UVA for improving scleral wound healing.Materials and methods: This was an experimental study involving four New Zealand rabbits (eight eyes. Therapy procedure was chosen for the right eye and control procedure for the left one. UVA irradiation of 365 nm with a surface irradiance of 3 mW/cm2 and a photosensitizer of riboflavin drops were applied for 30 minutes on the right eye at 2 mm from the limbus. Sclerotomy incision was performed at 2 mm from the limbus in both right (on the cross-link-treated area and left eye. Then, 30 days after surgery, a morphological analysis and histological staining with hematoxylin–eosin and picrosirius red were performed, and the sclerotomy cicatrization of right and left eyes was compared. The variables investigated were as follows: sclerotomy incision pictures and measurements were made using the ImageJ Software. Scleral thickness was measured (employing the anterior optical coherence tomography and the digital caliper. Collagen fiber density stained with picrosirius red staining was measured using the Image Pro Plus software.Results: The morphological analysis showed that in all samples, the right eye presented sclerotomy closure, and in two eyes, among them, there were no visible edges of the sclerotomies incision. The left eye presented sclerotomy closure and incision edges

  2. Deuterium implantation in first wall candidate materials by exposure in the Princeton large torus

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.; Tobin, A. (Grumman Aerospace Corp., Bethpage, NY (USA). Research and Development Center); Manos, D. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    Titanium alloys are of interest as a first wall material in fusion reactors because of their excellent thermophysical and thermomechanical properties. A major concern with their application to the first wall is associated with the known affinity of titanium for hydrogen and the related consequences for fuel recycling, tritium inventory, and hydrogen embrittlement. Little information exists on trapping and release of hydrogen isotopes implanted at energies below 500 eV. This work was undertaken to measure hydrogen isotope trapping and release at the first wall of the Princeton Large Torus Tokamak (PLT).

  3. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA

    OpenAIRE

    Yang, Zhiyu; Price, Nathan E.; Johnson, Kevin M.; Wang, Yinsheng; Gates, Kent S.

    2017-01-01

    Abstract Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3?ddR5p) at the 3?-terminus of the strand break. Interestingly, this strand scission process leaves an electr...

  4. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes.

    Science.gov (United States)

    Chu, Chenyu; Deng, Jia; Man, Yi; Qu, Yili

    2017-09-01

    Collagen is the main component of extracellular matrix (ECM) with desirable biological activities and low antigenicity. Collagen materials have been widely utilized in guided bone regeneration (GBR) surgery due to its abilities to maintain space for hard tissue growth. However, pure collagen lacks optimal mechanical properties. In our previous study, epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes, with better biological activities and enhanced mechanical properties, may promote osteoblast proliferation, but their effect on osteoblast differentiation is not very significant. Nanohydroxyapatite (nano-HA) is the main component of mineral bone, which possesses exceptional bioactivity properties including good biocompatibility, high osteoconductivity and osteoinductivity, non-immunogenicity and non-inflammatory behavior. Herein, by analyzing the physical and chemical properties as well as the effects on promoting bone regeneration, we have attempted to present a novel EGCG-modified collagen membrane with nano-HA coating, and have found evidence that the novel collagen membrane may promote bone regeneration with a better surface morphology, without destroying collagen backbone. To evaluate the surface morphologies, chemical and mechanical properties of pure collagen membranes, epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes, nano-HA coated collagen membranes, nano-HA coated EGCG-collagen membranes, (ii) to evaluate the bone regeneration promoted by theses membranes. In the present study, collagen membranes were divided into 4 groups: (1) untreated collagen membranes (2) EGCG cross-linked collagen membranes (3) nano-HA modified collagen membranes (4) nano-HA modified EGCG-collagen membranes. Scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to evaluate surface morphologies and chemical properties, respectively. Mechanical properties were determined by differential scanning calorimeter (DSC

  5. Robust cross-links in molluscan adhesive gels: testing for contributions from hydrophobic and electrostatic interactions.

    Science.gov (United States)

    Smith, A M; Robinson, T M; Salt, M D; Hamilton, K S; Silvia, B E; Blasiak, R

    2009-02-01

    The cross-linking interactions that provide cohesive strength to molluscan adhesive gels were investigated. Metal-based interactions have been shown to play an important role in the glue of the slug Arion subfuscus (Draparnaud), but other types of interactions may also contribute to the glue's strength and their role has not been investigated. This study shows that treatments that normally disrupt hydrophobic or electrostatic interactions have little to no effect on the slug glue. High salt concentrations and non-ionic detergent do not affect the solubility of the proteins in the glue or the ability of the glue proteins to stiffen gels. In contrast, metal chelation markedly disrupts the gel. Experiments with gel filtration chromatography identify a 40 kDa protein that is a central component of the cross-links in the glue. This 40 kDa protein forms robust macromolecular aggregations that are stable even in the presence of high concentrations of salt, non-ionic detergent, urea or metal chelators. Metal chelation during glue secretion, however, may block some of these cross-links. Such robust, non-specific interactions in an aqueous environment are highly unusual for hydrogels and reflect an intriguing cross-linking mechanism.

  6. Application of cross-linked and hydrolyzed arabinoxylans in baking of model rye bread.

    Science.gov (United States)

    Buksa, Krzysztof; Nowotna, Anna; Ziobro, Rafał

    2016-02-01

    The role of water extractable arabinoxylan with varying molar mass and structure (cross-linked vs. hydrolyzed) in the structure formation of rye bread was examined using a model bread. Instead of the normal flour, the dough contained starch, arabinoxylan and protein, which were isolated from rye wholemeal. It was observed that the applied mixes of these constituents result in a product closely resembling typical rye bread, even if arabinoxylan was modified (by cross-linking or hydrolysis). The levels of arabinoxylan required for bread preparation depended on its modification and mix composition. At 3% protein, the maximum applicable level of poorly soluble cross-linked arabinoxylan was 3%, as higher amounts of this preparation resulted in an extensively viscous dough and diminished bread volume. On the other hand highly soluble, hydrolyzed arabinoxylan could be used at a higher level (6%) together with larger amounts of rye protein (3% or 6%). Further addition of arabinoxylan leads to excessive water absorption, resulting in a decreased viscosity of the dough during baking and insufficient gas retention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Glutaraldehyde cross-linking of tendon mechanical effects at the level of the tendon fascicle and fibril

    DEFF Research Database (Denmark)

    Hansen, Philip; Hassenkam, Tue; Svensson, Rene Bruggebusch

    2009-01-01

    at the tendon fibril level were examined by atomic force microscopy. Peak forces increased from approximately 1379 to approximately 2622 pN while an extended Hertz fit of force-indentation data showed a approximately 24 fold increase in Young's modulus on indentation. The effect of glutaraldehyde cross......Conclusive insight into the microscopic principles that govern the strength of tendon and related connective tissues is lacking and the importance of collagen cross-linking has not been firmly established. The combined application of whole-tissue mechanical testing and atomic force spectroscopy...... allowed for a detailed characterization of the effect of cross-linking in rat-tail tendon. The cross-link inducing agent glutaraldehyde augmented the tensile strength of tendon fascicles. Stress at failure increased from approximately 8 MPa to approximately 39 MPa. The mechanical effects of glutaraldehyde...

  8. Wind Turbine Cross-Sectional Stiffness Analysis Using Internally Layered Solid Elements

    DEFF Research Database (Denmark)

    Couturier, Philippe; Krenk, Steen

    2016-01-01

    An efficient finite element modeling approach is presented for analyzing the general cross-sectional stiffness properties and stress distribution of thin- and thick-walled sections with isotropic and general anisotropic materials. The procedure is based on discretizing the walls of the section...

  9. Highly stable ionic-covalent cross-linked sulfonated poly(ether ether ketone) for direct methanol fuel cells

    Science.gov (United States)

    Lei, Linfeng; Zhu, Xingye; Xu, Jianfeng; Qian, Huidong; Zou, Zhiqing; Yang, Hui

    2017-05-01

    A novel ionic cross-linked sulfonated poly(ether ether ketone) containing equal content of sulfonic acid and pendant tertiary amine groups (TA-SPEEK) has been initially synthesized for the application in direct methanol fuel cells (DMFCs). By adjusting the ratio of p-xylene dibromide to tertiary amine groups of TA-SPEEK, a series of ionic-covalent cross-linked membranes (C-SPEEK-x) with tunable degree of cross-linking are prepared. Compared with the pristine membrane, the ionic and ionic-covalent cross-linked proton exchange membranes (PEMs) exhibit reduced methanol permeability and improved mechanical properties, dimensional and oxidative stability. The proton conductivity and methanol selectivity of protonated TA-SPEEK and C-SPEEK-x at 25 °C is up to 0.109 S cm-1 and 3.88 × 105 S s cm-3, respectively, which are higher than that of Nafion 115. The DMFC incorporating C-SPEEK-25 exhibits a maximum power density as high as 35.3 mW cm-2 with 4 M MeOH at 25 °C (31.8 mW cm-2 for Nafion 115). Due to the highly oxidative stability of the membrane, no obvious performance degradation of the DMFC is observed after more than 400 h operation, indicating such cost-effective ionic-covalent cross-linked membranes have substantial potential as alternative PEMs for DMFC applications.

  10. An analog method of cross-talk compensation for a RGB wavelength division multiplexed optical link

    Science.gov (United States)

    Chisholm, George; Leveneur, Jérôme; Futter, John; Kennedy, John

    2018-06-01

    Pulse-width modulation (PWM) over optical fiber can be a very advantageous data transmission approach when an electrically isolated data link is required. The use of wavelength division multiplexing allows multiple data streams to be sent through a single fiber independently. The present investigation aims to demonstrate a novel approach to reduce cross-talk in a three-channel RGB optical link without the need for complex optical componentry. An op-amp circuit is developed to reduce the cross-talk so that the resolution of the PWM data is preserved. An iterative Monte-Carlo simulation approach is used to optimize the op-amp circuit. The approach is developed for a set of three PWM Hall effect magnetometers with 12-bit resolution and 128 Hz sampling rate. We show that, in these conditions, the loss of resolution due to cross-talk is prevented. We also show that the cross-talk compensation allows the RGB PWM link to outperform other transmission schemes.

  11. Photodissociative Cross-Linking of Non-covalent Peptide-Peptide Ion Complexes in the Gas Phase

    Science.gov (United States)

    Nguyen, Huong T. H.; Andrikopoulos, Prokopis C.; Rulíšek, Lubomír; Shaffer, Christopher J.; Tureček, František

    2018-05-01

    We report a gas-phase UV photodissociation study investigating non-covalent interactions between neutral hydrophobic pentapeptides and peptide ions incorporating a diazirine-tagged photoleucine residue. Phenylalanine (Phe) and proline (Pro) were chosen as the conformation-affecting residues that were incorporated into a small library of neutral pentapeptides. Gas-phase ion-molecule complexes of these peptides with photo-labeled pentapeptides were subjected to photodissociation. Selective photocleavage of the diazirine ring at 355 nm formed short-lived carbene intermediates that underwent cross-linking by insertion into H-X bonds of the target peptide. The cross-link positions were established from collision-induced dissociation tandem mass spectra (CID-MS3) providing sequence information on the covalent adducts. Effects of the amino acid residue (Pro or Phe) and its position in the target peptide sequence were evaluated. For proline-containing peptides, interactions resulting in covalent cross-links in these complexes became more prominent as proline was moved towards the C-terminus of the target peptide sequence. The photocross-linking yields of phenylalanine-containing peptides depended on the position of both phenylalanine and photoleucine. Density functional theory calculations were used to assign structures of low-energy conformers of the (GLPMG + GLL*LK + H)+ complex. Born-Oppenheimer molecular dynamics trajectory calculations were used to capture the thermal motion in the complexes within 100 ps and determine close contacts between the incipient carbene and the H-X bonds in the target peptide. This provided atomic-level resolution of potential cross-links that aided spectra interpretation and was in agreement with experimental data. [Figure not available: see fulltext.

  12. Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex

    Science.gov (United States)

    Truong, Quang Duc; Kakihana, Masato

    2012-06-01

    A facile and surfactant-free approach has been developed for the synthesis of cross-linked hyperbranched copper dendrites using copper oxalate complex as a precursor and oxalic acid as a reducing and structure-directing agent. The synthesized particles are composed of highly branched nanostructures with unusual cross-linked hierarchical networks. The formation of copper dendrites can be explained in view of both diffusion control and aggregation-based growth model accompanied by the chelation-assisted assembly. Oxalic acid was found to play dual roles as reducing and structure-directing agent based on the investigation results. The understanding on the crystal growth and the roles of oxalic acid provides clear insight into the formation mechanism of hyperbranched metal dendrites.

  13. Adsorption equilibrium studies of uranium (VI) onto cross-linked chitosan-citric acid

    International Nuclear Information System (INIS)

    Ho Thi Yeu Ly; Nguyen Van Suc; Vo Quang Mai; Nguyen Mong Sinh

    2011-01-01

    Investigation of U(VI) adsorption by the cross- linked chitosan with citric acid was conduced by bath method. Effect of parameters such as pH, contact time, adsorbent dosage and other metal cations was determined. The maximum adsorption capacity of U(VI) at pH 4 was found to be 71.43 mg U(VI) / g cross-linked chitosan - citric acid after 300 min of contact time. The Langmuir and Freundlich isotherm models were used to describe adsorption equilibrium. The correction values, R 2 of two models were found to be 0.991 and 0.997, respectively. Therefore, it could be concluded that the adsorption equilibrium for U(VI) was followed the Langmuir and the Freundlich isotherm models. (author)

  14. Dismountable earthquake-proof wall. Cloison demontable et resistant aux seismes

    Energy Technology Data Exchange (ETDEWEB)

    Bouchon, M; Gallois, C

    1987-10-02

    A removable closure for an opening in a vertical wall especially for a room containing radioactive materials is made of brick layers without mortar. Horizontal cross section of concrete bricks is parallelogram shaped except in the center where it is trapezoidal, this design requires no supporting structure.

  15. In-Culture Cross-Linking of Bacterial Cells Reveals Large-Scale Dynamic Protein-Protein Interactions at the Peptide Level.

    Science.gov (United States)

    de Jong, Luitzen; de Koning, Edward A; Roseboom, Winfried; Buncherd, Hansuk; Wanner, Martin J; Dapic, Irena; Jansen, Petra J; van Maarseveen, Jan H; Corthals, Garry L; Lewis, Peter J; Hamoen, Leendert W; de Koster, Chris G

    2017-07-07

    Identification of dynamic protein-protein interactions at the peptide level on a proteomic scale is a challenging approach that is still in its infancy. We have developed a system to cross-link cells directly in culture with the special lysine cross-linker bis(succinimidyl)-3-azidomethyl-glutarate (BAMG). We used the Gram-positive model bacterium Bacillus subtilis as an exemplar system. Within 5 min extensive intracellular cross-linking was detected, while intracellular cross-linking in a Gram-negative species, Escherichia coli, was still undetectable after 30 min, in agreement with the low permeability in this organism for lipophilic compounds like BAMG. We were able to identify 82 unique interprotein cross-linked peptides with cross-links occur in assemblies involved in transcription and translation. Several of these interactions are new, and we identified a binding site between the δ and β' subunit of RNA polymerase close to the downstream DNA channel, providing a clue into how δ might regulate promoter selectivity and promote RNA polymerase recycling. Our methodology opens new avenues to investigate the functional dynamic organization of complex protein assemblies involved in bacterial growth. Data are available via ProteomeXchange with identifier PXD006287.

  16. MCNP modelling of the wall effects observed in tissue-equivalent proportional counters.

    Science.gov (United States)

    Hoff, J L; Townsend, L W

    2002-01-01

    Tissue-equivalent proportional counters (TEPCs) utilise tissue-equivalent materials to depict homogeneous microscopic volumes of human tissue. Although both the walls and gas simulate the same medium, they respond to radiation differently. Density differences between the two materials cause distortions, or wall effects, in measurements, with the most dominant effect caused by delta rays. This study uses a Monte Carlo transport code, MCNP, to simulate the transport of secondary electrons within a TEPC. The Rudd model, a singly differential cross section with no dependence on electron direction, is used to describe the energy spectrum obtained by the impact of two iron beams on water. Based on the models used in this study, a wall-less TEPC had a higher lineal energy (keV.micron-1) as a function of impact parameter than a solid-wall TEPC for the iron beams under consideration. An important conclusion of this study is that MCNP has the ability to model the wall effects observed in TEPCs.

  17. Cross-Linked ZnO Nanowalls Immobilized onto Bamboo Surface and Their Use as Recyclable Photocatalysts

    Directory of Open Access Journals (Sweden)

    Chunde Jin

    2014-01-01

    Full Text Available A novel recyclable photocatalyst was fabricated by hydrothermal method to immobilize the cross-linked ZnO nanowalls on the bamboo surface. The resultant samples were characterized by using scanning electron microscopy (SEM, X-ray diffraction (XRD, energy dispersive spectroscopy (EDS, and Fourier transformation infrared (FTIR techniques. FTIR spectra demonstrated that the cross-linked wurtzite ZnO nanowalls and bamboo surface were interconnected with each other by hydrogen bonds. Meanwhile, the cross-linked ZnO nanowalls modified bamboo (CZNB presented a superior photocatalytic ability and could be recycled at least 3 times with a photocatalytic efficiency up to 70%. The current research provides a new opportunity for the development of a portable and recycled biomass-based photocatalysts which can be an efficiently degraded pollutant solution and reused several times.

  18. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae

    DEFF Research Database (Denmark)

    Mikkelsen, Maria Dalgaard; Harholt, Jesper; Ulvskov, Peter

    2014-01-01

    in CGA is currently unknown, as no genomes are available, so this study sought to give insight into the evolution of the biosynthetic machinery of CGA through an analysis of available transcriptomes. METHODS: Available CGA transcriptomes were mined for cell wall biosynthesis GTs and compared with GTs...... to colonize land. These cell walls provide support and protection, are a source of signalling molecules, and provide developmental cues for cell differentiation and elongation. The cell wall of land plants is a highly complex fibre composite, characterized by cellulose cross-linked by non......-cellulosic polysaccharides, such as xyloglucan, embedded in a matrix of pectic polysaccharides. How the land plant cell wall evolved is currently unknown: early-divergent chlorophyte and prasinophyte algae genomes contain a low number of glycosyl transferases (GTs), while land plants contain hundreds. The number of GTs...

  19. Cross-linked polybenzimidazole membranes for high temperature proton exchange membrane fuel cells with dichloromethyl phosphinic acid as a cross-linker

    DEFF Research Database (Denmark)

    Noye, Pernille; Li, Qingfeng; Pan, Chao

    2008-01-01

    Phosphoric acid doped polybenzimidazole (PBI) membranes have been covalently cross-linked with dichloromethyl phosphinic acid (DCMP). FT-IR measurements showed new bands originating from bonds between the hydrogen bearing nitrogen in the imidazole group of PBI and the CH2 group in DCMP. The produ......Phosphoric acid doped polybenzimidazole (PBI) membranes have been covalently cross-linked with dichloromethyl phosphinic acid (DCMP). FT-IR measurements showed new bands originating from bonds between the hydrogen bearing nitrogen in the imidazole group of PBI and the CH2 group in DCMP.......e. within the temperature range of operation of PBI-based fuel cells....

  20. Cross-linked sulfonated aromatic ionomers via SO2 bridges: Conductivity properties

    Science.gov (United States)

    Di Vona, M. L.; Pasquini, L.; Narducci, R.; Pelzer, K.; Donnadio, A.; Casciola, M.; Knauth, P.

    2013-12-01

    The proton conductivity of SPEEK membranes in situ cross-linked by thermal treatment at 180 °C for various times was investigated by impedance spectroscopy. The conductivity measurements were made on fully humidified membranes between 25 and 65 °C and on membranes exposed to different relative humidity between 80 and 140 °C. The Ionic Exchange Capacity (IEC) was determined by acid-base titration and the water uptake by gravimetry. The proton conductivity was determined as function of temperature, IEC, degree of cross-linking and hydration number. A curve of proton conductivity vs. hydration number allows predicting that in order to reach a value of 0.1 S/cm at 100 °C a hydration number above 20 is necessary. The measured conductivity at this temperature is 0.16 S/cm for a hydration number of 60.

  1. Biochemical properties of bioplastics made from wheat gliadins cross-linked with cinnamaldehyde.

    Science.gov (United States)

    Balaguer, M Pau; Gómez-Estaca, Joaquín; Gavara, Rafael; Hernandez-Munoz, Pilar

    2011-12-28

    The aim of this work has been to study the modification of gliadin films with cinnamaldehyde as a potential cross-linker agent. The molecular weight profile and cross-linking density showed that cinnamaldehyde increased reticulation in the resulting films. The participation of free amino groups of the protein in the newly created entanglements could be a possible mechanism of connection between the polypeptidic chains. The combination of a Schiff base and a Michael addition is a feasible approach to understanding this mechanism. The protein solubility in different media pointed to lower participation by both noncovalent and disulfide bonds in stabilizing the structure of the cross-linked films. The new covalent bonds formed by the cinnamaldehyde treatment hampered water absorption and weight loss, leading to more water-resistant matrices which had not disintegrated after 5 months. The properties of this novel bioplastic could be modified to suit the intended application by using cinnamaldehyde, a naturally occurring compound.

  2. Theta series, wall-crossing and quantum dilogarithm identities

    CERN Document Server

    Alexandrov, Sergei

    2016-01-01

    Motivated by mathematical structures which arise in string vacua and gauge theories with N=2 supersymmetry, we study the properties of certain generalized theta series which appear as Fourier coefficients of functions on a twisted torus. In Calabi-Yau string vacua, such theta series encode instanton corrections from $k$ Neveu-Schwarz five-branes. The theta series are determined by vector-valued wave-functions, and in this work we obtain the transformation of these wave-functions induced by Kontsevich-Soibelman symplectomorphisms. This effectively provides a quantum version of these transformations, where the quantization parameter is inversely proportional to the five-brane charge $k$. Consistency with wall-crossing implies a new five-term relation for Faddeev's quantum dilogarithm $\\Phi_b$ at $b=1$, which we prove. By allowing the torus to be non-commutative, we obtain a more general five-term relation valid for arbitrary $b$ and $k$, which may be relevant for the physics of five-branes at finite chemical po...

  3. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    Science.gov (United States)

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use. Copyright © 2016. Published by Elsevier Ltd.

  4. In situ growth of SnO2 nanoparticles in heteroatoms doped cross-linked carbon frameworks for lithium ion batteries anodes

    International Nuclear Information System (INIS)

    Zhou, Xiangyang; Xi, Lihua; Chen, Feng; Bai, Tao; Wang, Biao; Yang, Juan

    2016-01-01

    Highlights: • A facile hydrothermal method is proposed to prepare cross-linked NSG/CNTs@SnO 2 . • The graphene/CNTs anchored with untrasmall SnO 2 nanoparticles can be obtained. • The N, S are successfully incorporated into the carbon matrix. • The NSG/CNTs@SnO 2 presents enhanced cycling stability and good high-rate capacity. - Abstract: SnO 2 -based nanostructures have attracted considerable interest as a promising high-capacity anode materials for lithium ion batteries. We present herein a facile one step hydrothermal approach for in situ growth of SnO 2 nanoparticles in heteroatoms doped cross-linked carbon framework (NSG/CNTs@SnO 2 ). Thiourea is employed as a single source of nitrogen and sulfur in the cross-linked carbon framework (NSG/CNTs). Characterization shows that the SnO 2 nanoparticles with an average size of 6–10 nm are uniformly anchored on NSG/CNTs matrix. When evaluated for the electrochemical properties in lithium ion batteries, the obtained NSG/CNTs@SnO 2 composite with ultrasmall SnO 2 particle size (6–10 nm) delivers a high reversible capacity of 999 mAh g −1 at 200 mA g −1 after 120 cycles and excellent rate performance. Such outstanding electrochemical performance of the peculiar cross-linked NSG/CNTs@SnO 2 composite can be primarily attributed to the synergistic effect of the ultrasmall anchored SnO 2 nanoparticles and the dual-doped NSG/CNTs matrix. The uniformly distributed SnO 2 nanoparticles can deliver large capacity and the robust dual-doped NSG/CNTs matrix can guarantee the good structural integrity and high electrical conductivity during cycling. Besides, the porous structure can provide free space for the volume expansion of SnO 2 and accommodate the strain formed during repeated lithiation/delithiation processes.

  5. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid.

    Science.gov (United States)

    Olsson, Erik; Menzel, Carolin; Johansson, Caisa; Andersson, Roger; Koch, Kristine; Järnström, Lars

    2013-11-06

    Citric acid cross-linking of starch for e.g. food packaging applications has been intensely studied during the last decade as a method of producing water-insensitive renewable barrier coatings. We managed to improve a starch formulation containing citric acid as cross-linking agent for industrial paper coating applications by adjusting the pH of the starch solution. The described starch formulations exhibited both cross-linking of starch by citric acid as well as satisfactory barrier properties, e.g. fairly low OTR values at 50% RH that are comparable with EVOH. Furthermore, it has been shown that barrier properties of coated papers with different solution pH were correlated to molecular changes in starch showing both hydrolysis and cross-linking of starch molecules in the presence of citric acid. Hydrolysis was shown to be almost completely hindered at solution pH≥4 at curing temperatures≤105 °C and at pH≥5 at curing temperatures≤150 °C, whereas cross-linking still occurred to some extent at pH≤6.5 and drying temperatures as low as 70 °C. Coated papers showed a minimum in water vapor transmission rate at pH 4 of the starch coating solution, corresponding to the point where hydrolysis was effectively hindered but where a significant degree of cross-linking still occurred. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The effect of riboflavin/UVA cross-linking on anti-degeneration and promoting angiogenic capability of decellularized liver matrix.

    Science.gov (United States)

    Xiang, Junxi; Liu, Peng; Zheng, Xinglong; Dong, Dinghui; Fan, Shujuan; Dong, Jian; Zhang, Xufeng; Liu, Xuemin; Wang, Bo; Lv, Yi

    2017-10-01

    Weak mechanical property and unstable degradation rate limited the application of decellularized liver matrix in tissue engineering. The aim of this study was to explore a new method for improving the mechanical properties, anti-degeneration and angiogenic capability of decellularized liver matrix. This was achieved by a novel approach using riboflavin/ultraviolet A treatment to induce collagen cross-linking of decellularized matrix. Histological staining and scanning electron microscope showed that the diameter of cross-linked fibers significantly increased compared with the control group. The average peak load and Young's modulus of decellularized matrix were obviously improved after cross-linking. Then we implanted the modified matrix into the rat hepatic injury model to test the anti-degeneration and angiogenic capability of riboflavin/UVA cross-linked decellularized liver scaffolds in vivo. The results indicated that cross-linked scaffolds degrade more slowly than those in the control group. In the experiment group, average microvessel density in the implanted matrix was higher than that in the control group since the first week after implantation. In conclusion, we initiated the method to improve the biomechanical properties of decellularized liver scaffolds by riboflavin/UVA cross-linking, and more importantly, its improvement on anti-degeneration and angiogenesis was identified. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2662-2669, 2017. © 2017 Wiley Periodicals, Inc.

  7. Masonry calendar 1989. A handbook on masonry, wall construction materials, sound, thermal and moisture insulation. Mauerwerk-Kalender 1989. Taschenbuch fuer Mauerwerk, Wandbaustoffe, Schall-, Waerme- und Feuchtigkeitsschutz

    Energy Technology Data Exchange (ETDEWEB)

    Funk, P [ed.

    1989-01-01

    The 1989 Masonry Calendar comprises the following sections and contibutions: Harmonisation of technical rules for brickwork construction on a European scale; fundamentals for brickwork dimensioning according to DIN 1053, part 2; exemplary calculations for the dimensioning of brick walls under compressive and shearing loads according to DIN 1053, part 2; calculation aids for brickwork dimensioning according to DIN 1053, part 2; dimensioning tables for reinforced brickwork of rectangular cross section; characteristic data of brickwork, bricks, and mortar; thermal insulation of brickwork; moisture protection problems in brickwork construction; noise abatement in brickwork construction; novel materials and designs in brickwork construction; characteristic data for calculating the thermal conductivity of building materials; regulations on construction, bricks, binders; further construction materials, testing standards, constructional physics, further standards and technical regulations for brickwork construction, with supplements; DGfM codes; work scaffolding; dwelling on brickwork construction; experiments on the seismic response of brickwork; supporting strength of brick walls under simultaneous horizontal and vertical stress; masonry cost calculation in the framework of overall construction cost calculation; bibliography and important addresses. (BR).

  8. Glycoprotein component of plant cell walls

    International Nuclear Information System (INIS)

    Cooper, J.B.; Chen, J.A.; Varner, J.E.

    1984-01-01

    The primary wall surrounding most dicotyledonous plant cells contains a hydroxyproline-rich glycoprotein (HRGP) component named extensin. A small group of glycopeptides solubilized from isolated cell walls by proteolysis contained a repeated pentapeptide glycosylated by tri- and tetraarabinosides linked to hydroxyproline and, by galactose, linked to serine. Recently, two complementary approaches to this problem have provided results which greatly increase the understanding of wall extensin. In this paper the authors describe what is known about the structure of soluble extensin secreted into the walls of the carrot root cells

  9. Linking Data and Publications: Towards a Cross-Disciplinary Approach

    Directory of Open Access Journals (Sweden)

    Maarten Hoogerwerf

    2013-06-01

    Full Text Available In this paper, we tackle the challenge of linking scholarly information in multi-disciplinary research infrastructures. There is a trend towards linking publications with research data and other information, but, as it is still emerging, this is handled differently by various initiatives and disciplines. For OpenAIRE, a European cross-disciplinary publication infrastructure, this poses the challenge of supporting these heterogeneous practices. Hence, OpenAIRE wants to contribute to the development of a common approach for discipline-independent linking practices between publications, data, project information and researchers. To this end, we constructed two demonstrators to identify commonalities and differences. The results show the importance of stable and unique identifiers, and support a ‘by reference’ approach of interlinking research results. This approach allows discipline-specific research information to be managed independently in distributed systems and avoids redundant maintenance. Furthermore, it allows these disciplinary systems to manage the specialized structures of their contents themselves.

  10. Immunolocalization of 8-5' and 8-8' linked structures of lignin in cell walls of Chamaecyparis obtusa using monoclonal antibodies.

    Science.gov (United States)

    Kiyoto, Shingo; Yoshinaga, Arata; Tanaka, Naoyuki; Wada, Munehisa; Kamitakahara, Hiroshi; Takabe, Keiji

    2013-03-01

    Mouse monoclonal antibodies were generated against dehydrodiconiferyl alcohol- or pinoresinol-p-aminohippuric acid (pAHA)-bovine serum albumin (BSA) conjugate as probes that specifically react with 8-5' or 8-8' linked structure of lignin in plant cell walls. Hybridoma clones were selected that produced antibodies that positively reacted with dehydrodiconiferyl alcohol- or pinoresinol-pAHA-BSA and negatively reacted with pAHA-BSA and guaiacylglycerol-beta-guaiacyl ether-pAHA-BSA conjugates containing 8-O-4' linkage. Eight clones were established for each antigen and one of each clone that positively reacted with wood sections was selected. The specificity of these antibodies was examined by competitive ELISA tests using various lignin dimers with different linkages. The anti-dehydrodiconiferyl alcohol antibody reacted specifically with dehydrodiconiferyl alcohol and did not react with other model compounds containing 8-O-4', 8-8', or 5-5' linkages. The anti-pinoresinol antibody reacted specifically with pinoresinol and syringaresinol and did not react with the other model compounds containing 8-O-4', 8-5', or 5-5' linkages. The antibodies also did not react with dehydrodiconiferyl alcohol acetate or pinoresinol acetate, indicating that the presence of free phenolic or aliphatic hydroxyl group was an important factor in their reactivity. In sections of Japanese cypress (Chamaecyparis obtusa), labeling by the anti-dehydrodiconiferyl alcohol antibody was found in the secondary walls of phloem fibers and in the compound middle lamellae, and secondary walls of tracheids. Weak labeling by the anti-pinoresinol antibody was found in secondary walls of phloem fibers and secondary walls and compound middle lamellae of developed tracheids. These labelings show the localization of 8-5' and 8-8' linked structure of lignin in the cell walls.

  11. Cross-Linking GPVI-Fc by Anti-Fc Antibodies Potentiates Its Inhibition of Atherosclerotic Plaque- and Collagen-Induced Platelet Activation

    Directory of Open Access Journals (Sweden)

    Janina Jamasbi, RPh

    2016-04-01

    Full Text Available To enhance the antithrombotic properties of recombinant glycoprotein VI fragment crystallizable (GPVI-Fc, the authors incubated GPVI-Fc with anti-human Fc antibodies to cross-link the Fc tails of GPVI-Fc. Cross-linking potentiated the inhibition of human plaque- and collagen-induced platelet aggregation by GPVI-Fc under static and flow conditions without increasing bleeding time in vitro. Cross-linking with anti-human-Fc Fab2 was even superior to anti-human-Fc immunoglobulin G (IgG. Advanced optical imaging revealed a continuous sheath-like coverage of collagen fibers by cross-linked GPVI-Fc complexes. Cross-linking of GPVI into oligomeric complexes provides a new, highly effective, and probably safe antithrombotic treatment as it suppresses platelet GPVI-plaque interaction selectively at the site of acute atherothrombosis.

  12. Conventional Corneal Collagen Cross-Linking Versus Transepithelial Diluted Alcohol and Iontophoresis-Assisted Corneal Cross-Linking in Progressive Keratoconus.

    Science.gov (United States)

    Bilgihan, Kamil; Yesilirmak, Nilufer; Altay, Yesim; Yuvarlak, Armagan; Ozdemir, Huseyin Baran

    2017-12-01

    To compare clinical outcomes of conventional corneal cross-linking (C-CXL) and diluted alcohol and iontophoresis-assisted corneal cross-linking (DAI-CXL) for the treatment of progressive keratoconus (KC). Ninety-three eyes of 80 patients with KC were treated by C-CXL (n = 47) or DAI-CXL (n = 46). Visual acuity, keratometry, KC indexes, pachymetry, and aberrations were recorded before treatment and 1, 3, 6, and 12 months after treatment. The demarcation line was assessed 1 month after treatment. A significant improvement in visual acuity was observed at month 3 and month 6 after DAI-CXL and C-CXL, respectively. A significant decrease in maximum keratometry was observed in both groups at month 6. The front symmetry index significantly improved in both groups after 6 months, whereas the Baiocchi Calossi Versaci index significantly improved only after DAI-CXL at month 12 (P = 0.01). Average keratometry and other KC indexes were stable during 12 months of follow-up. Central corneal thickness decreased by 28.6 and 40.2 μm after DAI-CXL and C-CXL at month 1, respectively (P < 0.01), and it reached baseline at the 12th month (P = 0.14) only in the DAI-CXL group. Higher-order aberrations, coma, and spherical aberration significantly worsened at month 1 (P < 0.01) only after C-CXL; however, they improved significantly at month 12 compared with baseline (P < 0.05) in both groups. The demarcation line was visible in all cases at month 1 at a mean depth of 302 ± 56 μm and 311 ± 57 μm after DAI-CXL and C-CXL, respectively (P = 0.7). The DAI-CXL protocol seems as effective as the C-CXL protocol in halting KC progression after 1 year of follow-up.

  13. Corfu lectures on wall-crossing, multi-centered black holes, and quiver invariants

    CERN Document Server

    Pioline, Boris

    2013-01-01

    The BPS state spectrum in four-dimensional gauge theories or string vacua with N=2 supersymmetries is well known to depend on the values of the parameters or moduli at spatial infinity. The BPS index is locally constant, but discontinuous across real codimension-one walls where some of the BPS states decay. By postulating that BPS states are bound states of more elementary constituents carrying their own degrees of freedom and interacting via supersymmetric quantum mechanics, we provide a physically transparent derivation of the universal wall-crossing formula which governs the jump of the index. The same physical picture suggests that at any point in moduli space, the total index can be written as a sum of contributions from all possible bound states of elementary, absolutely stable constituents with the same total charge. For D-brane bound states described by quivers, this `Coulomb branch formula' predicts that the cohomology of quiver moduli spaces is uniquely determined by certain `pure-Higgs' invariants,...

  14. EKSTRAK RUMPUT LAUT (Kappaphycus alvarezii SEBAGAI CROSS LINKING AGENT PADA PEMBENTUKAN EDIBLE FILM GELATIN KULIT IKAN NILA HITAM (Oreochromis mossambicus

    Directory of Open Access Journals (Sweden)

    Doddy Sutono

    2016-02-01

    Full Text Available Black tilapia (Oreochromis mossambicus skin gelatin was potential material for edible film formation. However, it needs some modifications to improve the mechanical and barier properties. One of modification is by adding a cross linking agent. Seaweed extract Kappaphycus alvarezii containing phenol compounds was oxidized to be converted into quinone. It was expected to act as a cross linking agent. The purpose of this study was to determine the characteristics of edible film from black tilapia skin gelatin by adding with oxidized K. alvarezii extract. Edible film was made by addition of K. alvarezii extract (E at concentration of 0%(E0; 2%(E1; 4%(E2; 6%(E3; 8%(E4 (v/w for each gelatin concentratios (G were 3g(G1; 6g(G2; 9g(G3; 12g(G4 into 150 ml destilled water containing 10% glycerol (w/w of gelatin. Gelatin film solution was agitated at 50oC for 30 min and dehydrated in a cabinet dryer at 50oC. The addition of oxidized K. alvarezii extract increased tensile Strength (TS and elongation at break properties. The highest TS was 3.08 MPa, shown by G4E1. The lowest water vapor permeability (WVP was ontained by G4E1 (0.01 x 10-10 g. H2O/m.s.Pa. Microstructure observation and FTIR spectra (SEM also showed an increased cross linking bonds in the G4E1 rather than in G4E0. The G4E1 seemd to be more compact than G4E0. The highest TS values and the lowest WVP on G4E1 were possibly caused by optimization concentration of the addition of oxidized K. alvarezii extract that could be optimum interaction with amino acid residues of polypeptide bond to form an optimal cross linking reaction. Keywords: Edible film, cross linking agent, oxidized  K. alvarezii extract, quinone, gelatin, O. mossambicus   ABSTRAK Gelatin kulit ikan nila hitam (Oreochromis mossambicus berpotensi sebagai pembentuk edible film namun perlu modifikasi untuk meningkatkan sifat mekanik dan bariernya terhadap uap air. Salah satu modifikasi adalah dengan penambahan cross linking agent

  15. Characterization of Chemical and Physical Properties of Hydroxypropylated and Cross-linked Arrowroot (Marantha arundinacea Starch

    Directory of Open Access Journals (Sweden)

    Rijanti Rahaju Maulani

    2013-12-01

    Full Text Available The modern food industry and a variety of food products require tolerant starch as raw material for processing in a broad range of techniques, from preparation to storage and distribution. Dual modification of arrowroot starch using hydroxypropylation and cross-linking was carried out to overcome the lack of native arrowroot starch in food processing application. The modifications applied were: combined propylene oxide (8%, 10%, and 12%; sodium tri meta phosphate/STMP (1%, 2%, and 3%; and sodium tri poly phosphate/STPP (4%, 5%, and 6%. These modifications significantly affected the composition of the amylose and amylopectin and the amount of phosphorus in the granules. Higher amounts of phosphate salt gave a higher phosphorus content, which increased the degree of substitution (DS and the degree of cross-link. Arrowroot starch that was modified using a concentration of 8-10% propylene oxide and 1-2% STMP : 3-5% STPP produced a starch with < 0.4% phosphorus content. A higher concentration of propylene oxide provided a higher degree of hydroxypropyl. The changed physical properties of the modified granular arrowroot starch were examined through SEM testing, and its changed crystalline patterns through X-ray diffraction measurements. Especially, provision of a high concentration of propylene oxide (12% combined with 3% STMP : 6% STPP affected the granular morphology and the crystallinity.

  16. The therapeutic CD38 monoclonal antibody daratumumab induces programmed cell death via fcg receptor-mediated cross-linking

    DEFF Research Database (Denmark)

    Overdijk, Marije B.; Jansen, J. H. Marco; Nederend, Maaike

    2016-01-01

    RIIb as well as activating FcgRs induce DARA cross-linking-mediated PCD. In conclusion, our in vitro and in vivo data show that FcgRmediated cross-linking of DARA induces PCD of CD38-expressing multiple myeloma tumor cells, which potentially contributes to the depth of response observed in DARA......Emerging evidence suggests that FcgR-mediated cross-linking of tumor-bound mAbs may induce signaling in tumor cells that contributes to their therapeutic activity. In this study, we show that daratumumab (DARA), a therapeutic human CD38 mAb with a broad-spectrum killing activity, is able to induce...... programmed cell death (PCD) of CD38+ multiple myeloma tumor cell lines when cross-linked in vitro by secondary Abs or via an FcgR. By comparing DARA efficacy in a syngeneic in vivo tumor model using FcRg-chain knockout or NOTAM mice carrying a signaling-inactive FcRg-chain, we found that the inhibitory Fcg...

  17. Characterization of a bombesin receptor on Swiss mouse 3T3 cells by affinity cross-linking

    International Nuclear Information System (INIS)

    Sinnett-Smith, J.; Zachary, I.; Rozengurt, E.

    1988-01-01

    We have previously identified by chemical cross-linking a cell surface protein in Swiss 3T3 cells of apparent Mr 75,000-85,000, which may represent a major component of the receptor for peptides of the bombesin family in these cells. Because bombesin-like peptides may interact with other cell surface molecules, it was important to establish the correlation between receptor binding and functions of this complex and further characterize the Mr 75,000-85,000 cross-linked protein. Detailed time courses carried out at different temperatures demonstrated that the Mr 75,000-85,000 affinity-labelled band was the earliest cross-linked complex detected in Swiss 3T3 cells incubated with 125I-labelled gastrin-releasing peptide (125I-GRP). Furthermore, the ability of various nonradioactive bombesin agonists and antagonists to block the formation of the Mr 75,000-85,000 cross-linked complex correlated extremely well (r = 0.994) with the relative capacity of these peptides to inhibit 125I-GRP specific binding. Pretreatment with unlabelled GRP for up to 6 h caused only a slight decrease in both specific 125I-GRP binding and the affinity labelling of the Mr 75,000-85,000 protein. We also show that the cross-linked complex is a glycoprotein. First, solubilized affinity labelled Mr 75,000-85,000 complex applied to wheat germ lectin-sepharose columns was eluted by addition of 0.3 M N-acetyl-D-glucosamine. Second, treatment with endo-beta-N-acetylglucosaminidase F reduced the apparent molecular weight of the affinity-labelled band from 75,000-85,000 to 43,000, indicating the presence of N-linked oligosaccharide groups

  18. Collagen cross-linking in sun-exposed and unexposed sites of aged human skin

    Science.gov (United States)

    Yamauchi, M.; Prisayanh, P.; Haque, Z.; Woodley, D. T.

    1991-01-01

    A recently described nonreducible, acid-heat stable compound, histidinohydroxylysinonorleucine (HHL), is a collagen cross-link isolated from mature skin tissue. Its abundance is related to chronologic aging of skin. The present communication describes the quantity of HHL from aged human skin of the same individuals in sun-exposed (wrist) and unexposed (buttock) sites. Punch biopsies were obtained from these sites from nine people of age 60 or older. HHL contents (moles/mole of collagen) at these sites were for wrist 0.13 +/- 0.07 and for buttock 0.69 +/- 0.17 (mean +/- SD, p less than 0.001). In addition, it was found that acute irradiation of the cross-linked peptides with UVA (up to 250 J/cm2) and UVB (up to 1 J/cm2) had no effect on HHL structure. The same treatment significantly degraded another nonreducible, stable collagen cross-link, pyridinoline. The results suggest that chronic sunlight exposure may be associated with an impediment to normal maturation of human dermal collagen resulting in tenuous amount of HHL. Thus, the process of photoaging in dermal collagen is different from that of chronologic aging in human skin.

  19. Radiation-induced DNA-protein cross-links: Mechanisms and biological significance.

    Science.gov (United States)

    Nakano, Toshiaki; Xu, Xu; Salem, Amir M H; Shoulkamy, Mahmoud I; Ide, Hiroshi

    2017-06-01

    Ionizing radiation produces various DNA lesions such as base damage, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-protein cross-links (DPCs). Of these, the biological significance of DPCs remains elusive. In this article, we focus on radiation-induced DPCs and review the current understanding of their induction, properties, repair, and biological consequences. When cells are irradiated, the formation of base damage, SSBs, and DSBs are promoted in the presence of oxygen. Conversely, that of DPCs is promoted in the absence of oxygen, suggesting their importance in hypoxic cells, such as those present in tumors. DNA and protein radicals generated by hydroxyl radicals (i.e., indirect effect) are responsible for DPC formation. In addition, DPCs can also be formed from guanine radical cations generated by the direct effect. Actin, histones, and other proteins have been identified as cross-linked proteins. Also, covalent linkages between DNA and protein constituents such as thymine-lysine and guanine-lysine have been identified and their structures are proposed. In irradiated cells and tissues, DPCs are repaired in a biphasic manner, consisting of fast and slow components. The half-time for the fast component is 20min-2h and that for the slow component is 2-70h. Notably, radiation-induced DPCs are repaired more slowly than DSBs. Homologous recombination plays a pivotal role in the repair of radiation-induced DPCs as well as DSBs. Recently, a novel mechanism of DPC repair mediated by a DPC protease was reported, wherein the resulting DNA-peptide cross-links were bypassed by translesion synthesis. The replication and transcription of DPC-bearing reporter plasmids are inhibited in cells, suggesting that DPCs are potentially lethal lesions. However, whether DPCs are mutagenic and induce gross chromosomal alterations remains to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. EVALUATION OF THERMAL INSULATION FOR THREE DIFFERENT MATERIALS USED IN CONSTRUCTION AND COMPLETION OF EXTERNAL WALLS

    Directory of Open Access Journals (Sweden)

    Marcio Carlos Navroski

    2010-05-01

    Full Text Available Summers increasingly hot are bringing large thermal problems within homes and businesses, leading to increased demand for installation of air conditioners and the consequent high energy consumption. Constructions with thermal insulation on its external walls thatcould reduce energy use or even supply the use of such equipment. Due to these factors the present study was to evaluate the insulation in three boxes built with different materials, one made of wooden boards with plain walls, and two built with plywood, wall insulation andinterior walls filled with rice husk and Styrofoam®. The boxes were built after placed in drying oven at 40 °C, then noted the temperature inside the same interval every five minutes using a digital thermometer. The box with inner Styrofoam® showed the lowest variation among the three evaluated, followed by the box of rice husk. These two materials also showed good thermal initial, unlike the box built only with wood, which showed a large interiorheating, lay in a drying oven.

  1. Hybrid sol-gel optical materials

    Science.gov (United States)

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  2. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.

    Science.gov (United States)

    Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P

    2015-07-28

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by

  3. Sensitizing capacity and allergenicity of enzymatically cross-linked sodium caseinate in comparison to sodium caseinate in a mouse model for cow's milk allergy.

    Science.gov (United States)

    van Esch, Betty C A M; Gros-van Hest, Marjan; Westerbeek, Hans; Garssen, Johan

    2013-03-27

    A transglutaminase cross-linked caseinate was designed for use in dairy products to increase the viscosity of food matrices. The difference in structure of cross-linked caseinate might have implications for the risk of developing cow's milk allergy. The sensitizing capacity and the allergenicity (the potency to induce an allergic effector response) of cross-linked sodium caseinate was investigated using a mouse model for cow's milk allergy. Mice were orally sensitized with cross-linked caseinate or caseinate using cholera toxin as adjuvant. Anaphylactic shock reactions, change in body temperature, acute allergic skin response, caseinate-, cross-linked caseinate-IgE and mMCP-1 concentrations were determined after challenge with cross-linked caseinate or caseinate. Sensitization with cross-linked caseinate did not result in anaphylactic shock symptoms, drop in body temperature or release of serum mMCP-1. A tendency toward decreased casein-specific IgE levels was observed. The allergenicity did not differ between both products. These results indicate that in already caseinate-sensitized mice, cross-linked caseinate did not provoke more pronounced allergenic reactions compared to sodium caseinate. On top of that, reduced sensitization to cross-linked caseinate was observed. Cross-linked caseinate might therefore be an interesting new dietary concept for humans at risk for food allergy although more mechanistic studies and clinical trials are needed for validation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. At the border: the plasma membrane-cell wall continuum.

    Science.gov (United States)

    Liu, Zengyu; Persson, Staffan; Sánchez-Rodríguez, Clara

    2015-03-01

    Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Epigallocatechin gallate incorporation into lignin enhances the alkaline delignification and enzymatic saccharification of cell walls

    Directory of Open Access Journals (Sweden)

    Elumalai Sasikumar

    2012-08-01

    Full Text Available Abstract Background Lignin is an integral component of the plant cell wall matrix but impedes the conversion of biomass into biofuels. The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers such as flavonoids into cell wall lignins that are consequently less recalcitrant to biomass processing. In the present study, epigallocatechin gallate (EGCG was evaluated as a potential lignin bioengineering target for rendering biomass more amenable to processing for biofuel production. Results In vitro peroxidase-catalyzed polymerization experiments revealed that both gallate and pyrogallyl (B-ring moieties in EGCG underwent radical cross-coupling with monolignols mainly by β–O–4-type cross-coupling, producing benzodioxane units following rearomatization reactions. Biomimetic lignification of maize cell walls with a 3:1 molar ratio of monolignols and EGCG permitted extensive alkaline delignification of cell walls (72 to 92% that far exceeded that for lignified controls (44 to 62%. Alkali-insoluble residues from EGCG-lignified walls yielded up to 34% more glucose and total sugars following enzymatic saccharification than lignified controls. Conclusions It was found that EGCG readily copolymerized with monolignols to become integrally cross-coupled into cell wall lignins, where it greatly enhanced alkaline delignification and subsequent enzymatic saccharification. Improved delignification may be attributed to internal trapping of quinone-methide intermediates to prevent benzyl ether cross-linking of lignin to structural polysaccharides during lignification, and to the cleavage of ester intra-unit linkages within EGCG during pretreatment. Overall, our results suggest that apoplastic deposition of EGCG for incorporation into lignin would be a promising plant genetic engineering target for improving the delignification and saccharification of biomass crops.

  6. Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration

    International Nuclear Information System (INIS)

    Cui, Xintao; Zhang, Hongwei; Wang, Shuxin; Zhang, Lianhong; Ko, Jeonghan

    2011-01-01

    Currently, automotive bodies are constructed usually using a single material, e.g. steel or aluminum. Compared to single-material automotive bodies, multi-material automotive bodies allow optimal material selection in each structural component for higher product performance and lower cost. This paper presents novel material performance indices and procedures developed to guide systematic material selection for multi-material automotive bodies. These new indices enable to characterize the crashworthiness performance of complex-shaped thin-walled beams in multi-material automotive bodies according to material types. This paper also illustrates the application of these performance indices and procedures by designing a lightweight multi-material automotive body. These procedures will help to design a lightweight and affordable body favored by the automotive industry, thus to reduce fuel consumption and greenhouse gas emissions.

  7. Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Li, Yiju; Yu, Neng; Yan, Peng; Li, Yuguang; Zhou, Xuemei; Chen, Shuangling; Wang, Guiling; Wei, Tong; Fan, Zhuangjun

    2015-12-01

    In this paper, MnO2 nanoplates loading on biomass-derived cross-linked carbon nanosheets have been prepared by a two-step synthesis. At first, the cross-linked carbon nanosheets derived from willow catkin are synthesized by one-step pyrolysis and activation method, then the MnO2 anchored cross-linked carbon nanosheets is prepared via in-situ hydrothermal deposition. The asymmetric supercapacitor with terrific energy and power density is assembled by employing the MnO2 anchored cross-linked carbon nanosheets as the positive electrode and the cross-linked carbon nanosheets as the negative electrode in a 1 M Na2SO4 electrolyte. The asymmetric supercapacitor displays a high energy density of 23.6 Wh kg-1 at a power density of 188.8 W kg-1 within a wide voltage rage of 0-1.9 V. In addition, the asymmetric supercapacitor exhibits excellent cycling stability with only 1.4% capacitance loss after 10000 cycles at 1 A g-1. These discoveries open up the prospect of biomass/biowaste derived carbon-based composites for high-voltage asymmetric supercapacitors with superb energy and power density performance.

  8. Novel chemically cross-linked solid state electrolyte for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Yin Xiong; Tan Weiwei; Xiang Wangchun; Lin Yuan; Zhang Jingbo; Xiao Xurui; Li Xueping; Zhou Xiaowen; Fang Shibi

    2010-01-01

    Poly(vinylpyridine-co-ethylene glycol methyl ether methacrylate) (P(VP-co-MEOMA)) and α,ω-diiodo poly(ethylene oxide-co-propylene oxide) (I[(EO) 0.8 -co-(PO) 0.2 ] y I) were synthesized and used as chemically cross-linked precursors of the electrolyte for dye-sensitized solar cells. Meanwhile, α-iodo poly(ethylene oxide-co-propylene oxide) methyl ether (CH 3 O[(EO) 0.8 -co-(PO) 0.2 ] x I) was synthesized and added into the electrolyte as an internal plasticizer. Novel polymer electrolyte resulting from chemically cross-linked precursors was obtained by the quaterisation at 90 o C for 30 min. The characteristics for this kind of electrolyte were investigated by means of ionic conductivity, thermogravimetric and photocurrent-voltage. The ambient ionic conductivity was significantly enhanced to 2.3 x 10 -4 S cm -1 after introducing plasticizer, modified-ionic liquid. The weight loss of the solid state electrolyte at 200 o C was 1.8%, and its decomposition temperature was 287 o C. Solid state dye-sensitized solar cell based on chemically cross-linked electrolyte presented an overall conversion efficiency of 2.35% under AM1.5 irradiation (100 mW cm -2 ). The as-fabricated device maintained 88% of its initial performance at room temperature even without sealing for 30 days, showing a good stability.

  9. Design and fabrication of a chitosan hydrogel with gradient structures via a step-by-step cross-linking process.

    Science.gov (United States)

    Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui

    2017-11-15

    The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.

  10. Contribution of the different erosion processes to material release from the vessel walls of fusion devices during plasma operation

    International Nuclear Information System (INIS)

    Behrisch, R.

    2002-01-01

    In high temperature plasma experiments several processes contribute to erosion and loss of material from the vessel walls. This material may enter the plasma edge and the central plasma where it acts as impurities. It will finally be re-deposited at other wall areas. These erosion processes are: evaporation due to heating of wall areas. At very high power deposition evaporation may become very large, which has been named ''blooming''. Large evaporation and melting at some areas of the vessel wall surface may occur during heat pulses, as observed in plasma devices during plasma disruptions. At tips on the vessel walls and/or hot spots on the plasma exposed solid surfaces electrical arcs between the plasma and the vessel wall may ignite. They cause the release of ions, atoms and small metal droplets, or of carbon dust particles. Finally, atoms from the vessel walls are removed by physical and chemical sputtering caused by the bombardment of the vessel walls with ions as well as energetic neutral hydrogen atoms from the boundary plasma. All these processes have been, and are, observed in today's plasma experiments. Evaporation can in principle be controlled by very effective cooling of the wall tiles, arcing is reduced by very stable plasma operation, and sputtering by ions can be reduced by operating with a cold plasma in front of the vessel walls. However, sputtering by energetic neutrals, which impinge on all areas of the vessel walls, is likely to be the most critical process because ions lost from the plasma recycle as neutrals or have to be refuelled by neutrals leading to the charge exchange processes in the plasma. In order to quantify the wall erosion, ''materials factors'' (MF) have been introduced in the following for the different erosion processes. (orig.)

  11. Time-resolved magnetization dynamics of cross-tie domain walls in permalloy microstructures

    International Nuclear Information System (INIS)

    Miguel, J; Kurde, J; Piantek, M; Kuch, W; Sanchez-Barriga, J; Heitkamp, B; Kronast, F; Duerr, H A; Bayer, D; Aeschlimann, M

    2009-01-01

    We report on a picosecond time-resolved x-ray magnetic circular dichroic-photoelectron emission microscopy study of the evolution of the magnetization components of a microstructured permalloy platelet comprising three cross-tie domain walls. A laser-excited photoswitch has been used to apply a triangular 80 Oe, 160 ps magnetic pulse. Micromagnetic calculations agree well with the experimental results, both in time and frequency, illustrating the large angle precession in the magnetic domains with magnetization perpendicular to the applied pulse, and showing how the magnetic vortices revert their core magnetization while the antivortices remain unaffected.

  12. Time-resolved magnetization dynamics of cross-tie domain walls in permalloy microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, J; Kurde, J; Piantek, M; Kuch, W [Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin (Germany); Sanchez-Barriga, J; Heitkamp, B; Kronast, F; Duerr, H A [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Elektronenspeicherring BESSY II, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Bayer, D; Aeschlimann, M, E-mail: jorge.miguel@fu-berlin.d [Fachbereich Physik, Universitaet Kaiserslautern, Erwin-Schroedinger Strasse 46, D-67663 Kaiserslautern (Germany)

    2009-12-02

    We report on a picosecond time-resolved x-ray magnetic circular dichroic-photoelectron emission microscopy study of the evolution of the magnetization components of a microstructured permalloy platelet comprising three cross-tie domain walls. A laser-excited photoswitch has been used to apply a triangular 80 Oe, 160 ps magnetic pulse. Micromagnetic calculations agree well with the experimental results, both in time and frequency, illustrating the large angle precession in the magnetic domains with magnetization perpendicular to the applied pulse, and showing how the magnetic vortices revert their core magnetization while the antivortices remain unaffected.

  13. In vitro Antiglycation and Cross-Link Breaking Activities of Sri ...

    African Journals Online (AJOL)

    Purpose: To investigate the antiglycation and cross-link breaking activities of Sri Lankan low-grown orthodox Orange Pekoe grade black tea (Camellia sinensis L) Methods: Five concentrations (6.25, 12.5, 25.0, 50.0 or 100.0 ìg/ml) of Black tea brew (BTB) were made using Sri Lankan low-grown Orange Pekoe (O.P.) grade ...

  14. Spatio-temporal diversification of the cell wall matrix materials in the developing stomatal complexes of Zea mays.

    Science.gov (United States)

    Giannoutsou, E; Apostolakos, P; Galatis, B

    2016-11-01

    The matrix cell wall materials, in developing Zea mays stomatal complexes are asymmetrically distributed, a phenomenon appearing related to the local cell wall expansion and deformation, the establishment of cell polarity, and determination of the cell division plane. In cells of developing Zea mays stomatal complexes, definite cell wall regions expand determinately and become locally deformed. This differential cell wall behavior is obvious in the guard cell mother cells (GMCs) and the subsidiary cell mother cells (SMCs) that locally protrude towards the adjacent GMCs. The latter, emitting a morphogenetic stimulus, induce polarization/asymmetrical division in SMCs. Examination of immunolabeled specimens revealed that homogalacturonans (HGAs) with a high degree of de-esterification (2F4- and JIM5-HGA epitopes) and arabinogalactan proteins are selectively distributed in the extending and deformed cell wall regions, while their margins are enriched with rhamnogalacturonans (RGAs) containing highly branched arabinans (LM6-RGA epitope). In SMCs, the local cell wall matrix differentiation constitutes the first structural event, indicating the establishment of cell polarity. Moreover, in the premitotic GMCs and SMCs, non-esterified HGAs (2F4-HGA epitope) are preferentially localized in the cell wall areas outlining the cytoplasm where the preprophase band is formed. In these areas, the forthcoming cell plate fuses with the parent cell walls. These data suggest that the described heterogeneity in matrix cell wall materials is probably involved in: (a) local cell wall expansion and deformation, (b) the transduction of the inductive GMC stimulus, and (c) the determination of the division plane in GMCs and SMCs.

  15. Horseradish peroxidase-catalyzed cross-linking of feruloylated arabinoxylans with β-casein

    NARCIS (Netherlands)

    Boeriu, C.G.; Oudgenoeg, G.; Spekking, W.T.J.; Berendsen, L.B.J.M.; Vancon, L.; Boumans, H.; Gruppen, H.; Berkel, W.J.H. van; Laane, C.; Voragen, A.G.J.

    2004-01-01

    Heterologous conjugates of wheat arabinoxylan and β-casein were prepared via enzymatic cross-linking, using sequential addition of the arabinoxylan to a mixture of β-casein, peroxidase, and hydrogen peroxide. The maximal formation of adducts between the β-casein and the feruloylated arabinoxylan was

  16. Effects of Genipin Concentration on Cross-Linked Chitosan Scaffolds for Bone Tissue Engineering: Structural Characterization and Evidence of Biocompatibility Features

    Directory of Open Access Journals (Sweden)

    Simona Dimida

    2017-01-01

    Full Text Available Genipin (GN is a natural molecule extracted from the fruit of Gardenia jasminoides Ellis according to modern microbiological processes. Genipin is considered as a favorable cross-linking agent due to its low cytotoxicity compared to widely used cross-linkers; it cross-links compounds with primary amine groups such as proteins, collagen, and chitosan. Chitosan is a biocompatible polymer that is currently studied in bone tissue engineering for its capacity to promote growth and mineral-rich matrix deposition by osteoblasts in culture. In this work, two genipin cross-linked chitosan scaffolds for bone repair and regeneration were prepared with different GN concentrations, and their chemical, physical, and biological properties were explored. Scanning electron microscopy and mechanical tests revealed that nonremarkable changes in morphology, porosity, and mechanical strength of scaffolds are induced by increasing the cross-linking degree. Also, the degradation rate was shown to decrease while increasing the cross-linking degree, with the high cross-linking density of the scaffold disabling the hydrolysis activity. Finally, basic biocompatibility was investigated in vitro, by evaluating proliferation of two human-derived cell lines, namely, the MG63 (human immortalized osteosarcoma and the hMSCs (human mesenchymal stem cells, as suitable cell models for bone tissue engineering applications of biomaterials.

  17. Wavelength dependence for the photoreactions of DNA-psoralen monoadducts. 2. Photo-cross-linking of monoadducts

    International Nuclear Information System (INIS)

    Shi, Y.; Hearst, J.E.

    1987-01-01

    The photoreactions of HMT [4'-(hydroxymethyl)-4,5',8-trimethylpsoralen] monoadducts in double-stranded DNA have been studied with complementary oligonucleotides. The HMT was first attached to the thymidine residue in the oligonucleotide 5'-GAAGCTACGAGC-3' as either a furan-side monoadduct or a pyrone-side monoadduct. The HMT-monoadducted oligonucleotide was then hybridized to the complementary oligonucleotide 5'-GCTCGTAGCTTC-3' and irradiated with monochromatic light. In the case of the pyrone-side monoadducted oligonucleotide, photoreversal was the predominant reaction, and very little cross-link was formed at all wavelengths. The course of the photoreaction of the double-stranded furan-side monoadducted oligonucleotide was dependent on the irradiation wavelength. At wavelengths below 313 nm, both photoreversal and photo-cross-linking occurred. At wavelengths above 313 nm, photoreversal of the monoadduct could not be detected, and photo-cross-linking occurred efficiently with a quantum yield of 2,4 x 10 -2

  18. The effects of cross-link length on the thermal properties of epoxy-resins from 1.5 to 80 K

    International Nuclear Information System (INIS)

    Nicholls, C.I.; Rosenberg, H.M.

    1981-01-01

    The thermal conductivity and diffusivity of epoxy-resins with cross-links of varying lengths have been measured from 1.5 to 80 K. The longer the cross-links, the higher is the conductivity in the liquid helium range, but this behaviour is inverted at 80 K. The specific heat is not dependent on the length of the cross-links. The results are discussed in the light of current ideas on the thermal properties of glasses. (orig.)

  19. Interstrand cross-linking of DNA by 1,3-bis(2-chloroethyl)-1-nitrosourea and other 1-(2-haloethyl)-1-nitrosoureas.

    Science.gov (United States)

    Kohn, K W

    1977-05-01

    Bifunctional alkylating agents are known to cross-link DNA by simultaneously alkylating two guanine residues located on opposite strands. Despite this apparent requirement for bifunctionality, 1-(2-chloroethyl)-1-nitrosoureas bearing a single alkylating function were found to cross-link DNA in vitro. Cross-linking was demonstrated by showing inhibition of alkali-induced strand separation. Extensive cross-linking was observed in DNA treated with 1-(2-chloroethyl)-1-nitrosourea, 1,3-bis-(2-chloroethyl)-1-nitrosourea, and 1-(2-chloroethyl(-3-cyclohexyl-1-nitrosourea. The reaction occurs in two steps, an intital binding followed by a second step which can proceed after removal of unbound drug. It is suggested that the first step is chloroethylation of a nucleophilic site on one strand and that the second step involves displacement of Cl- by a nucleophilic site on the opposite strand, resulting in an ethyl bridge between the strands. Consistent with this possibility, 1-(2-fluoroethyl)-3-cyclohexyl-1-nitrosourea produced much less cross-linking, as expected from the known low activity of F-, compared with Cl-, as leaving group. 1-Methyl-1-nitrosourea, which is known to depurinate DNA, produced no detectable cross-linking.

  20. Preparation of Thermo-Responsive and Cross-Linked Fluorinated Nanoparticles via RAFT-Mediated Aqueous Polymerization in Nanoreactors.

    Science.gov (United States)

    Ma, Jiachen; Zhang, Luqing; Geng, Bing; Azhar, Umair; Xu, Anhou; Zhang, Shuxiang

    2017-01-25

    In this work, a thermo-responsive and cross-linked fluoropolymer poly(2,2,2-Trifluoroethyl) methacrylate (PTFEMA) was successfully prepared by reversible addition-fragmentation chain transfer (RAFT) mediated aqueous polymerization with a thermo-responsive diblock poly(dimethylacrylamide- b - N -isopropylacrylamide) (PDMA- b -PNIPAM) that performed a dual function as both a nanoreactor and macro-RAFT agent. The cross-linked polymer particles proved to be in a spherical-like structure of about 50 nm in diameter and with a relatively narrow particle size distribution. ¹H-NMR and 19 F-NMR spectra showed that thermo-responsive diblock P(DMA- b -NIPAM) and cross-linked PTFEMA particles were successfully synthesized. Influence of the amount of ammonium persulfate (APS), the molar ratio of monomers to RAFT agent, influence of the amount of cross-linker on aqueous polymerization and thermo-responsive characterization of the particles are investigated. Monomer conversion increased from 44% to 94% with increasing the molar ratio of APS and P(DMA- b -NIPAM) from 1:9 to1:3. As the reaction proceeded, the particle size increased from 29 to 49 nm due to the consumption of TFEMA monomer. The size of cross-linked nanoparticles sharply decreased from 50.3 to 40.5 nm over the temperature range 14-44 °C, suggesting good temperature sensitivity for these nanoparticles.