WorldWideScience

Sample records for wall loading

  1. The DEMO wall load challenge

    Science.gov (United States)

    Wenninger, R.; Albanese, R.; Ambrosino, R.; Arbeiter, F.; Aubert, J.; Bachmann, C.; Barbato, L.; Barrett, T.; Beckers, M.; Biel, W.; Boccaccini, L.; Carralero, D.; Coster, D.; Eich, T.; Fasoli, A.; Federici, G.; Firdaouss, M.; Graves, J.; Horacek, J.; Kovari, M.; Lanthaler, S.; Loschiavo, V.; Lowry, C.; Lux, H.; Maddaluno, G.; Maviglia, F.; Mitteau, R.; Neu, R.; Pfefferle, D.; Schmid, K.; Siccinio, M.; Sieglin, B.; Silva, C.; Snicker, A.; Subba, F.; Varje, J.; Zohm, H.

    2017-04-01

    For several reasons the challenge to keep the loads to the first wall within engineering limits is substantially higher in DEMO compared to ITER. Therefore the pre-conceptual design development for DEMO that is currently ongoing in Europe needs to be based on load estimates that are derived employing the most recent plasma edge physics knowledge. An initial assessment of the static wall heat load limit in DEMO infers that the steady state peak heat flux limit on the majority of the DEMO first wall should not be assumed to be higher than 1.0 MW m-2. This compares to an average wall heat load of 0.29 MW m-2 for the design {\\tt {EU}}{\\tt {~}}{\\tt {DEMO1}}{\\tt {~2015}} assuming a perfect homogeneous distribution. The main part of this publication concentrates on the development of first DEMO estimates for charged particle, radiation, fast particle (all static) and disruption heat loads. Employing an initial engineering wall design with clear optimization potential in combination with parameters for the flat-top phase (x-point configuration), loads up to 7 MW m-2 (penalty factor for tolerances etc not applied) have been calculated. Assuming a fraction of power radiated from the x-point region between 1/5 and 1/3, peaks of the total power flux density due to radiation of 0.6-0.8 MW m-2 are found in the outer baffle region. This first review of wall loads, and the associated limits in DEMO clearly underlines a significant challenge that necessitates substantial engineering efforts as well as a considerable consolidation of the associated physics basis.

  2. Wind Load Test of Earthbag Wall

    Directory of Open Access Journals (Sweden)

    Ryan Scott

    2013-08-01

    Full Text Available Earthbag construction is a sustainable, low-cost, housing option for developing countries. Earthbag structures are built of individual soil-filled fabric bags (i.e., sand bags stacked in a running bond pattern. Once stacked, earthbags are compacted and the soil inside the bags is dried in-place to form earthen bricks. Barbed wires are placed between each course to affect shear transfer within the wall. Results of an out-of-plane load test on a full-scale earthbag wall are presented in this paper. The wall was subjected to out-of-plane pressure up to 3.16 kPa, which resulted in plastic deformations up to 50 mm. The wall did not collapse during loading. Wall behavior and force transfer mechanisms are discussed.

  3. Dynamic load test of Arquin-designed CMU wall.

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Richard Pearson

    2010-02-01

    The Arquin Corporation has developed a new method of constructing CMU (concrete masonry unit) walls. This new method uses polymer spacers connected to steel wires that serve as reinforcing as well as a means of accurately placing the spacers so that the concrete block can be dry stacked. The hollows of the concrete block are then filled with grout. As part of a New Mexico Small Business Assistance Program (NMSBA), Sandia National Laboratories conducted a series of tests that dynamically loaded wall segments to compare the performance of walls constructed using the Arquin method to a more traditional method of constructing CMU walls. A total of four walls were built, two with traditional methods and two with the Arquin method. Two of the walls, one traditional and one Arquin, had every third cell filled with grout. The remaining two walls, one traditional and one Arquin, had every cell filled with grout. The walls were dynamically loaded with explosive forces. No significant difference was noted between the performance of the walls constructed by the Arquin method when compared to the walls constructed by the traditional method.

  4. Simulations of Alpha Wall Load in ITER. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Johan

    2010-10-20

    The partially DOE funded International Thermonuclear Experimental Reactor (ITER) will produce massive amounts of energetic charged alpha particles, which are imperfectly confined by a strong magnetic field. The wall of the experiment is designed to withstand an estimated wall load from these fusion alpha particles, but the accuracy of this estimate needs to be improved to avoid potentially catastrophic surprises when the experiment becomes operational. We have added a more accurate, gyro-dynamic model of particle motion to the existing drift-dynamic model in the DELTA5D simulation software used for the project. We have also added the ability to load a detailed engineering model of the wall and use it in the simulations.

  5. Static load test of Arquin-designed CMU wall.

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Richard Pearson; Cherry, Jeffery L.

    2008-12-01

    The Arquin Corporation has developed a new method of constructing CMU (concrete masonry unit) walls. This new method uses polymer spacers connected to steel wires that serve as reinforcing as well as means of accurately placing the spacers so that the concrete block can be dry stacked. The hollows of the concrete block used in constructing the wall are then filled with grout. As part of a New Mexico Small Business Assistance Program (NMSBAP), Sandia National Laboratories conducted a series of tests that statically loaded wall segments to compare the Arquin method to a more traditional method of constructing CMU walls. A total of 12 tests were conducted, three with the Arquin method using a W5 reinforcing wire, three with the traditional method of construction using a number 3 rebar as reinforcing, three with the Arquin method using a W2 reinforcing wire, and three with the traditional construction method but without rebar. The results of the tests showed that the walls constructed with the Arquin method and with a W5 reinforcing wire withstood more load than any of the other three types of walls that were tested.

  6. Chest wall volumes during inspiratory loaded breathing in COPD patients.

    Science.gov (United States)

    Coutinho Myrrha, Mariana Alves; Vieira, Danielle Soares Rocha; Moraes, Karoline Simões; Lage, Susan Martins; Parreira, Verônica Franco; Britto, Raquel Rodrigues

    2013-08-01

    Chest wall volumes and breathing patterns of 13 male COPD patients were evaluated at rest and during inspiratory loaded breathing (ILB). The sternocleidomastoid (SMM) and abdominal muscle activity was also evaluated. The main compartment responsible for the tidal volume at rest and during ILB was the abdomen. During ILB patients exhibited, in addition to increases in the ratio of inspiratory time to total time of the respiratory cycle and minute ventilation, increases (p<0.05) in the chest wall tidal volume by an increase in abdomen tidal volume as a result of improvement of end chest wall inspiratory volume without changing on end chest wall expiratory volume. The SMM and abdominal muscle activity increased 63.84% and 1.94% during ILB. Overall, to overcome the load imposed by ILB, COPD patients improve the tidal volume by changing the inspiratory chest wall volume without modifying the predominant mobility of the abdomen at rest and without affecting the end chest wall expiratory volume. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Design of SC walls and slabs for impulsive loading

    Energy Technology Data Exchange (ETDEWEB)

    Varma, Amit H. [Purdue Univ., West Lafayette, IN (United States)

    2015-11-11

    Reinforced concrete (RC) structures have historically been the preferred choice for blast resistant structures because of their mass and the ductility provided by steel reinforcement. Steel-plate composite (SC) walls are a viable alternative to RC for protecting the infrastructure against explosive threats. SC structures consist of two steel faceplates with a plain concrete core between them. The steel faceplates are anchored to the concrete using stud anchors and connected to each other using tie bars. SC structures provide mass from the concrete infill and ductility from the continuous external steel faceplates. This dissertation presents findings and recommendations from experimental and analytical investigations of the performance of SC walls subjected to far-field blast loads.

  8. Parametric study of cantilever walls subjected to seismic loading

    Science.gov (United States)

    Comina, Cesare; Corigliano, Mirko; Foti, Sebastiano; Lai, Carlo G.; Lancellotta, Renato; Leuzzi, Francesco; Nicosia, Giovanni Li Destri; Paolucci, Roberto; Pettiti, Alberto; Psarropoulos, Prodromos N.; Zanoli, Omar

    2008-07-01

    The design of flexible earth retaining structures under seismic loading is a challenging geotechnical problem, the dynamic soil-structure interaction being of paramount importance for this kind of structures. Pseudo-static approaches are often adopted but do not allow a realistic assessment of the performance of the structure subjected to the seismic motions. The present paper illustrates a numerical parametric study aimed at estimating the influence of the dynamic soil-structure interaction in the design. A series of flexible earth retaining walls have been preliminary designed according to the requirements of Eurocode 7 and Eurocode 8—Part 5; their dynamic behaviour has been then evaluated by means of dynamic numerical simulations in terms of bending moments, accelerations and stress state. The results obtained from dynamic analyses have then been compared with those determined using the pseudo-static approach.

  9. Experimental evaluation of the interaction between strength concrete block walls under vertical loads

    Directory of Open Access Journals (Sweden)

    L. O. CASTRO

    Full Text Available Abstract This paper aims to evaluate the interaction between structural masonry walls made of high performance concrete blocks, under vertical loads. Two H-shaped flanged wall series, all full scale and using direct bond, have been analyzed experimentally. In one series, three flanged-walls were built with the central wall (web supported and, in the other one, three specimens were built without any support at the central web. The load was applied on the central wall and vertical displacements were measured by means of displacement transducers located at eighteen points in the wall-assemblages. The results showed that the estimated load values for the flanges were close to those supported by the walls without central support, where 100% of the load transfer to the flanges occur. The average transfer load rate calculated based on the deformation ratio in the upper and lower section of the flanged-walls, with the central web support, were 37.65% and 77.30%, respectively, showing that there is load transfer from the central wall (web toward the flanges, particularly in the lower part of the flanged walls. Thus, there is indication that the distribution of vertical loads may be considered for projects of buildings for service load, such as in the method of isolated walls group. For estimation of the failure load, the method that considers the walls acting independently showed better results, due to the fact that failure started at the top of the central wall, where there is no effect of load distribution from the adjacent walls.

  10. Active stabilization of thin-wall structures under compressive loading

    Science.gov (United States)

    Welham, Jared; Calius, Emilio P.; Chase, J. Geoffrey

    2003-08-01

    The active suppression of elastic buckling instability has the potential to significantly increase the effective strength of thin-wall structures. Despite all the interest in smart structures, the active suppression of buckling has received comparatively little attention. This paper addresses the effects of embedded actuation on the compression buckling strength of laminated composite plates through analysis and simulation. Numerical models are formulated that include the influence of essential features such as sensor uncertainty and noise, actuator saturation and control architecture on the buckling process. Silicon-based strain sensors and diffuse laser distance sensors are both considered for use in the detection of incipient buckling behavior due to their increased sensitivity. Actuation is provided by paired distributions of piezo-electric material incorporated into both sides of the laminate. Optimal controllers are designed to command the structure to deform in ways that interfere with the development of buckling mode shapes. Commercial software packages are used to solve the resulting non-linear equations, and some of the tradeoffs are enumerated. Overall, the results show that active buckling control can considerably enhance resistance to instability under compressive loads. These buckling load predictions demonstrate the viability of optimal control and piezo-electric actuation for implementing active buckling control. Due to the importance of early detection, the relative effectiveness of active buckling control is shown to be strongly dependent on the performance of the sensing scheme, as well as on the characteristics of the structure.

  11. Chest wall and trunk muscle activity during inspiratory loading.

    Science.gov (United States)

    Cala, S J; Edyvean, J; Engel, L A

    1992-12-01

    We measured the electromyographic (EMG) activity in four chest wall and trunk (CWT) muscles, the erector spinae, latissimus dorsi, pectoralis major, and trapezius, together with the parasternal, in four normal subjects during graded inspiratory efforts against an occlusion in both upright and seated postures. We also measured CWT EMGs in six seated subjects during inspiratory resistive loading at high and low tidal volumes [1,280 +/- 80 (SE) and 920 +/- 60 ml, respectively]. With one exception, CWT EMG increased as a function of inspiratory pressure generated (Pmus) at all lung volumes in both postures, with no systematic difference in recruitment between CWT and parasternal muscles as a function of Pmus. At any given lung volume there was no consistent difference in CWT EMG at a given Pmus between the two postures (P > 0.09). However, at a given Pmus during both graded inspiratory efforts and inspiratory resistive loading, EMGs of all muscles increased with lung volume, with greater volume dependence in the upright posture (P < 0.02). The results suggest that during inspiratory efforts, CWT muscles contribute to the generation of inspiratory pressure. The CWT muscles may act as fixators opposing deflationary forces transmitted to the vertebral column by rib cage articulations, a function that may be less effective at high lung volumes if the direction of the muscular insertions is altered disadvantageously.

  12. The Material Behavior Of Plastered-Bamboo Wall Towards Lateral Loads

    Directory of Open Access Journals (Sweden)

    V. R. R. Hutubessy,

    2014-01-01

    Full Text Available This study determined the lateral resistance capacity of the plastered-bamboo wall. The test was carried out on three pieces of plastered-bamboo wall. The first was plastered-bamboo wall without bracing (DP-TB, second was plastered-bamboo wall using bamboo bracing (DP-BB, and the last is a plastered-bamboo wall which uses wiremesh bracing (DP-BK. The static load (monotonic test method was used to determine the correlation between the lateral resistance and the deflection of plastered-bamboo wall. The monotonic testing was only conducted until the load has experience 20% decrease from peak load. The test results showed that the plastered-bamboo wall using wiremesh bracing had the peak load capacity, energy dissipation, and higher ductility than the plastered-bamboo wall using bamboo bracing. Elastic stiffness of the plastered-bamboo wall using bamboo bracing was 1.27 greater than plastered-bamboo wall using wiremesh bracing. The ultimate load resulted from the experiment of the plastered-bamboo wall with either bamboo or additional wiremeshbracingwas 25.52 kN and 26.37 kN or two times greater than the results of an analysis of the flexural failure based on Subedi method (1991 which was 14.39 kN.

  13. Experimental study of masonry wall exposed to blast loading

    Directory of Open Access Journals (Sweden)

    Ahmad, S.

    2014-03-01

    Full Text Available The challenge of protecting the nation against the attack of terrorism has raised the importance to explore the understanding of building materials against the explosion. Unlike most of the building materials, brick masonry materials offer relatively small resistance against blast loading. In this research, a brick masonry wall was exposed to varying blast load at different scaled distances. Six tests with different amounts of explosives at various distances were carried out. Pressure time history, acceleration time history and strain at specific location were measured. The parameters measured from experimental pressure time history and acceleration time history is compared with those determined by ConWep to establish the correlations between experimental determined records and ConWep values. The experimental results were also compared with some researchers. These correlations may assist in understanding the behaviour of masonry structures subjected to explosive loading.Con el reto que supone proteger a la nación contra atentados terroristas se ha visto acrecentada la importancia de conocer el comportamiento de materiales de construcción cuando se someten a una carga explosiva. Al contrario de la mayoría de los materiales, las fábricas de ladrillo ofrecen poca resistencia a dichas cargas. En el presente trabajo, se estudió el comportamiento de una fábrica de ladrillo ante cargas explosivas colocadas a diferentes distancias del muro. Se realizaron seis pruebas con explosivos de potencias distintas y a diferentes distancias. Se trazaron las curvas presión-tiempo y aceleración-tiempo, midiéndose asimismo la deformación en un punto concreto. Los valores experimentales de las curvas presión-tiempo y aceleración-tiempo se compararon con los que se calcularon con la ayuda de la aplicación informática ConWep a fin de establecer las correlaciones entre ambos conjuntos de resultados. También se compararon los resultados experimentales

  14. The behaviour of roof gable walls under the effect of earthquake load

    Directory of Open Access Journals (Sweden)

    M. Kamanli

    2010-02-01

    Full Text Available In this study, the effect of earthquake loads on roof gable walls and the behaviours of these roof gable walls are investigated. In preparation of the study, two experiments on cradle roof system which gets and does not get any loads off the roof members were carried out in all. The experiments were performed on the shaking table in Earthquake Research Department of General Directorate of Disaster Affairs. Through the experiments, some considerable results were obtained on the behaviours of roof gable walls under the effect of horizontal dynamic loads. The results obtained at the end of these examinations are given and discussed. Furthermore, suggestions to make the brick gable walls more reliable against the loads of earthquake are given. When the results of the experiments were generally taken into consideration, it was realized that the gable walls in both roof systems would partly or completely collapse even under the effect of a little horizontal dynamic load.

  15. Progressive collapse resisting capacity of reinforced concrete load bearing wall structures

    Institute of Scientific and Technical Information of China (English)

    Alireza Rahai; Alireza Shahin; Farzad Hatami

    2015-01-01

    Reinforced concrete (RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthquakes, but also more economical. The effect of progressive collapse caused by removal of load bearing elements, in various positions in plan and stories of the RC load bearing wall system was evaluated by nonlinear dynamic and static analyses. For this purpose, three-dimensional model of 10-story structure was selected. The analysis results indicated stability, strength and stiffness of the RC load-bearing wall system against progressive collapse. It was observed that the most critical condition for removal of load bearing walls was the instantaneous removal of the surrounding walls located at the corners of the building where the sections of the load bearing elements were changed. In this case, the maximum vertical displacement was limited to 6.3 mm and the structure failed after applying the load of 10 times the axial load bored by removed elements. Comparison between the results of the nonlinear dynamic and static analyses demonstrated that the “load factor” parameter was a reasonable criterion to evaluate the progressive collapse potential of the structure.

  16. Evaluation of a denitrification wall to reduce surface water nitrogen loads.

    Science.gov (United States)

    Schmidt, Casey A; Clark, Mark W

    2012-01-01

    Denitrification walls have significantly reduced nitrogen concentrations in groundwater for at least 15 yr. This has spurred interest in developing methods to efficiently increase capture volume to reduce N loads in larger watersheds. The objective of this study was to maximize treatment volume by locating a wall where a large groundwatershed was funneled toward seepage slope headwaters. Nitrogen concentration and load were measured before and after wall installation in paired treatment and control streams. Beginning 2 d after installation, nitrogen concentration in the treatment stream declined from 6.7 ± 1.2 to 3.9 ± 0.78 mg L and total N loading rate declined by 65% (391 kg yr) with no corresponding decline in the control watershed. This wall, which only comprised 10 to 11% of the edge of field area that contributed to the treatment watershed, treated approximately 60% of the stream discharge, which confirmed the targeted approach. The total load reduction measured in the stream 155 m downstream from the wall (340 kg yr) was higher than that found in another study that measured load reductions in groundwater wells immediately around the wall (228 kg yr). This indicated the possibility of an extended impact on denitrification from carbon exported beyond the wall. This extended impact was inauspiciously confirmed when oxygen levels at the stream headwaters temporarily declined for 50 d. This research indicates that targeting walls adjacent to streams can effectively reduce N loading in receiving waters, although with a potentially short-term impact on water quality.

  17. Study Effective of Wind Load on Behavior of ShearWall in Frame Structure

    Directory of Open Access Journals (Sweden)

    Mahdi Hosseini

    2014-11-01

    Full Text Available Wind load is really the result of wind pressures acting on the building surfaces during a wind event. This wind pressure is primarily a function of the wind speed because the pressure or load increases with the square of the wind velocity.Structural walls, or shear walls, are elements used to resist lateral loads, such as those generated by wind and earthquakes. Structural walls are considerably deeper than typical beams or columns. This attribute gives structural walls considerable in-plane stiffness which makes structural walls a natural choice for resisting lateral loads. In addition to considerable strength, structural walls can dissipate a great deal of energy if detailed properly. Walls are an invaluable structural element when protecting buildings from seismic events. Buildings often rely on structural walls as the main lateral force resisting system. Shear walls are required to perform in multiple ways. Shear walls can then be designed to limit building damage to the specified degree. The loaddeformation response of the structural walls must be accurately predicted and related to structural damage in order to achieve these performance goals under loading events of various magnitudes. The applied load is generally transferred to the wall by a diaphragm or collector or drag member. The performance of the framed buildings depends on the structural system adopted for the structure The term structural system or structural frame in structural engineering refers to load-resisting sub-system of a structure. The structural system transfers loads through interconnected structural components or members. These structural systems need to be chosen based on its height and loads and need to be carried out, etc. The selection of appropriate structural systems for building must satisfy both strength and stiffness requirements. The structural system must be adequate to resist lateral and gravity loads that cause horizontal shear deformation and

  18. Distribution of Wave Loads for Design of Crown Walls in Deep and Shallow Water

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Quvang Harck; Andersen, Thomas Lykke

    2014-01-01

    This paper puts forward a new method to determine horizontal wave loads on rubble mound breakwater crown walls with specific exceedance probabilities based on the formulae by Nørgaard et al. (2013) as well as presents a new modified version of the wave run-up formula by Van der Meer & Stam (1992......). Predictions from the method are compared to measured horizontal wave loads from scaled model tests, and the new method provides results which are in agreement with measured values as long as the wave loads on the crown wall are relatively impulsive. Another aim of the paper has been to compare...... the displacements of a crown wall exposed to wave loads with different exceedance probabilities in an overload situation (in this case the loads exceeded by 0.1 % and 1/250 of the incident waves). The comparison is made using the assumption that the Eigenfrequency of the crown wall and breakwater is significantly...

  19. ANALYTICAL AND NUMERICAL RESEARCH OF WAVE LOADS ON A SHORT VERTICAL WALL

    Directory of Open Access Journals (Sweden)

    Kantarzhi Igor' Grigor'evich

    2012-10-01

    Full Text Available The problem of wave loads on a relatively short wall is related to the issue of the general design of the structure at the stage of its construction, particularly, if the structure is build offshore. The physical nature of interaction between waves and vertical walls that have different lengths is the subject matter of this paper. It is assumed that the wall is absolutely rigid. The comparison of numerical test results and an analytical calculation based on a short wall model is made. As a result, wave forces identified through the employment of the above two models demonstrate their satisfactory convergence. The difference is substantial for longer walls, and it increases along with the increase of the wall length. The conclusion is that a short wall is exposed to the wave load that is not accompanied by any diffraction, therefore, a related method of design may be recommended. Numerical models may be considered as the universal ones.

  20. Study the Effectiveof Seismic load on Behavior of Shear Wall in Frame Structure

    Directory of Open Access Journals (Sweden)

    Dr.Hadi Hosseini

    2014-11-01

    Full Text Available Structural walls, or shear walls, are elements used to resist lateral loads, such as those generated by wind and earthquakes. Structural walls are considerably deeper than typical beams or columns. This attribute gives structural walls considerable in-plane stiffness which makes structural walls a natural choice for resisting lateral loads. In addition to considerable strength, structural walls can dissipate a great deal of energy if detailed properly. Walls are an invaluable structural element when protecting buildings from seismic events. Buildings often rely on structural walls as the main lateral force resisting system. Shear walls are required to perform in multiple ways. Shear walls can then be designed to limit building damage to the specified degree. The load-deformation response of the structural walls must be accurately predicted and related to structural damage in order to achieve these performance goals under loading events of various magnitudes. The applied load is generally transferred to the wall by a diaphragm or collector or drag member. The performance of the framed buildings depends on the structural system adopted for the structure The term structural system or structural frame in structural engineering refers to load-resisting sub-system of a structure. The structural system transfers loads through interconnected structural components or members. These structural systems need to be chosen based on its height and loads and need to be carried out, etc. The selection of appropriate structural systems for building must satisfy both strength and stiffness requirements. The structural system must be adequate to resist lateral and gravity loads that cause horizontal shear deformation and overturning deformation. The efficiency of a structural system is measured in terms of their ability to resist lateral load, which increases with the height of the frame. A building can be considered as tall when the effect of lateral loads is

  1. The Material Behavior Of Plastered-Bamboo Wall Towards Lateral Loads

    OpenAIRE

    V. R. R. Hutubessy,; Hrc. Priyosulistyo

    2014-01-01

    This study determined the lateral resistance capacity of the plastered-bamboo wall. The test was carried out on three pieces of plastered-bamboo wall. The first was plastered-bamboo wall without bracing (DP-TB), second was plastered-bamboo wall using bamboo bracing (DP-BB), and the last is a plastered-bamboo wall which uses wiremesh bracing (DP-BK). The static load (monotonic) test method was used to determine the correlation between the lateral resistance and the deflection o...

  2. Simulation of reinforced concrete short shear wall subjected to cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Parulekar, Y.M., E-mail: yogitap@barc.gov.in [Bhabha Atomic Research Centre (India); Reddy, G.R., E-mail: rssred@barc.gov.in [Bhabha Atomic Research Centre (India); Vaze, K.K. [Reactor Design and Development Group, Bhabha Atomic Research Centre (India); Pegon, P. [Joint Research Centre, Ispra (Italy); Wenzel, H. [Vienna Consulting Engineers, Vienna (Austria)

    2014-04-01

    Highlights: • Prediction of the capacity of squat shear wall using tests and analysis. • Modification of model of concrete in the softening part. • Pushover analysis using softened truss theory and FE analysis is performed. • Modified concrete model gives reasonable accurate peak load and displacement. • The ductility, ultimate load and also crack pattern can be accurately predicted. - Abstract: This paper addresses the strength and deformation capacity of stiff squat shear wall subjected to monotonic and pseudo-static cyclic loading using experiments and analysis. Reinforced concrete squat shear walls offer great potential for lateral load resistance and the failure mode of these shear walls is brittle shear mode. Shear strength of these shear walls depend strongly on softening of concrete struts in principal compression direction due to principal tension in other direction. In this work simulation of the behavior of a squat shear wall is accurately predicted by finite element modeling by incorporating the appropriate softening model in the program. Modification of model of concrete in the softening part is suggested and reduction factor given by Vecchio et al. (1994) is used in the model. The accuracy of modeling is confirmed by comparing the simulated response with experimental one. The crack pattern generated from the 3D model is compared with that obtained from experiments. The load deflection for monotonic loads is also obtained using softened truss theory and compared with experimental one.

  3. Quantitative evaluation of wall heat loads by lost fast ions in the Large Helical Device

    Science.gov (United States)

    Morimoto, Junki; Suzuki, Yasuhiro; Seki, Ryosuke

    2016-10-01

    In fusion plasmas, fast ions are produced by neutral beam injections (NBI), ion cyclotron heating (ICH) and fusion reactions. Some of fast ions are lost from fusion plasmas because of some kinds of drift and instability. These lost fast ions may cause damages on plasma facing components such as divertors and diagnostic instruments in fusion reactors. Therefore, wall heat loads by lost fast ions in the Large Helical Device (LHD) is under investigation. For this purpose, we have been developing the Monte-Carlo code for the quantitative evaluation of wall heat loads based on following the guiding center orbits of fast ions. Using this code, we investigate wall heat loads and hitting points of lost fast ions produced by NBI in LHD. Magnetic field configurations, which depend on beta values, affect orbits of fast ions and wall heat loads. Therefore, the wall heat loads by fast ions in equilibrium magnetic fields including finite beta effect and magnetic islands are quantitatively evaluated. The differences of wall heat loads and particle deposition patterns for cases of the vacuum field and various beta equilibrium fields will be presented at the meeting.

  4. Load-sharing mechanism in timber-steel hybrid shear wall systems

    Institute of Scientific and Technical Information of China (English)

    Zheng LI[1; Minjuan HE[1; Frank LAM[2; Minghao LI[3

    2015-01-01

    The lateral performance of timber-steel hybrid shear wall systems with regard to the interaction between the steel frame and the intill wood shear wall was investigated in this paper. A numerical model for the timber-steel hybrid shear wall system was developed and verified against test results. Design parameters, such as the lateral infill-to-frame stiffness ratio and the arrangements of wood-steel bolted connections were studied using the numerical model. Some design recommendations were also proposed based on the parametric analysis. In the hybrid shear wall system, the infill wood wall was found to resist a major part of the lateral load within relatively small wall drifts, and then the steel frame provided more lateral resistance. Under seismic loads, the infill wood wall could significantly reduce the inter-story drift of the hybrid system, and a complementary effect between the infill wood wall and the steel frame was observed through different lateral load resisting mechanisms, which provided robustness to the hybrid shear wall systems.

  5. Experimental and analytical investigation of the lateral load response of confined masonry walls

    Directory of Open Access Journals (Sweden)

    Hussein Okail

    2016-04-01

    Full Text Available This paper investigates the behavior of confined masonry walls subjected to lateral loads. Six full-scale wall assembles, consisting of a clay masonry panel, two confining columns and a tie beam, were tested under a combination of vertical load and monotonic pushover up to failure. Wall panels had various configurations, namely, solid and perforated walls with window and door openings, variable longitudinal and transverse reinforcement ratios for the confining elements and different brick types, namely, cored clay and solid concrete masonry units. Key experimental results showed that the walls in general experienced a shear failure at the end of the lightly reinforced confining elements after the failure of the diagonal struts formed in the brick wall due to transversal diagonal tension. Stepped bed joint cracks formed in the masonry panel either diagonally or around the perforations. A numerical model was built using the finite element method and was validated in light of the experimental results. The model showed acceptable correlation and was used to conduct a thorough parametric study on various design configurations. The conducted parametric study involved the assessment of the load/displacement response for walls with different aspect ratios, axial load ratios, number of confining elements as well as the size and orientation of perforations. It was found that the strength of the bricks and the number of confining elements play a significant role in increasing the walls’ ultimate resistance and displacement ductility.

  6. Mitigation of blast loadings on structures by an anti-blast plastic water wall

    Institute of Scientific and Technical Information of China (English)

    张力; 陈力; 方秦; 张亚栋

    2016-01-01

    Seven in-situ tests were carried out in far field to study the blast mitigation effect of a kind of water filled plastic wall. Test results show that the mitigation effect of water filled plastic wall is remarkable. The maximum reduction of peak reflected overpressure reaches up to 94.53%, as well as 36.3% of the minimum peak reflected overpressure reduction in the scaled distance ranging from 1.71 m/kg1/3 to 3.42 m/kg1/3. Parametric studies were also carried out. The effects of the scaled gauge height, water/charge scaled distance (the distance between the explosive charge and the water wall), water wall scaled height and water/structure scaled distance (the distance between the water wall and the structure) were systematically investigated and compared with the usual rigid anti-blast wall. It is concluded that these parameters affect the mitigation effects of plastic water wall on blast loadings significantly, which is basically consistent to the trend of usual rigid anti-blast wall. Some formulae are also derived based on the numerical and test results, providing a simple but reliable prediction model to evaluate the peak overpressure of mitigated blast loadings on the structures.

  7. Effect of plastic soil on a retaining wall subjected to surcharge loading

    Directory of Open Access Journals (Sweden)

    Al-Juari Khawla

    2016-01-01

    Full Text Available The seasonal variation and climatic changes play a significant role that affects the stresses exerted on a retaining wall, and the state of stresses in the soil mass behind the wall especially for highly expansive soil. These stresses resulted in the wall moving either away or towards the soil. In this study, a laboratory physical model of the retaining wall formed of a box having (950×900×600 mm dimensions with one side representing the wall being developed. After the soil being laid out in the box in specified layers, specified conditions of saturation and normal stresses were applied. The wall is allowed to move horizontally in several distances (0.1, 0.2, 0.3, 0.6, 0.8, 1.0 , 2.0, 3.0 and 4.0 mm, and the stresses being measured, then the vertical loading was released. The main measured variables during the tests are; the active and passive earth pressures, vertical movement of the soil, total suction and time. Results showed that the lateral earth pressure along the depth of the wall largely decreased when wall moved away from the soil. Total suction was slightly affected during wall’s movement. At unloading stage, the lateral earth pressure decreased at the upper half of wall height, but increased at the other wall part. Total suction was increased at all depths during this stage.

  8. Development of a new connection for precast concrete walls subjected to cyclic loading

    Science.gov (United States)

    Vaghei, Ramin; Hejazi, Farzad; Taheri, Hafez; Jaafar, Mohd Saleh; Aziz, Farah Nora Aznieta Abdul

    2017-01-01

    The Industrialized Building System (IBS) was recently introduced to minimize the time and cost of project construction. Accordingly, ensuring the integration of the connection of precast components in IBS structures is an important factor that ensures stability of buildings subjected to dynamic loads from earthquakes, vehicles, and machineries. However, structural engineers still lack knowledge on the proper connection and detailed joints of IBS structure construction. Therefore, this study proposes a special precast concrete wall-to-wall connection system for dynamic loads that resists multidirectional imposed loads and reduces vibration effects (PI2014701723). This system is designed to connect two adjacent precast wall panels by using two steel U-shaped channels (i.e., male and female joints). During casting, each joint is adapted for incorporation into a respective wall panel after considering the following conditions: one side of the steel channel opens into the thickness face of the panel; a U-shaped rubber is implemented between the two channels to dissipate the vibration effect; and bolts and nuts are used to create an extension between the two U-shaped male and female steel channels. The developed finite element model of the precast wall is subjected to cyclic loads to evaluate the performance of the proposed connection during an imposed dynamic load. Connection performance is then compared with conventional connections based on the energy dissipation, stress, deformation, and concrete damage in the plastic range. The proposed precast connection is capable of exceeding the energy absorption of precast walls subjected to dynamic load, thereby improving its resistance behavior in all principal directions.

  9. Finite Element Analysis of Composite Hardened Walls Subjected to Blast Loads

    Directory of Open Access Journals (Sweden)

    Girum S. Urgessa

    2009-01-01

    Full Text Available Problem statement: There is currently no standard design guideline to determine the number of composites needed to retrofit masonry walls in order to withstand a given explosion. Past design approaches were mainly based on simplified single-degree-of-freedom analysis. A finite element analysis was conducted for concrete masonry walls hardened with composites and subjected to short duration blast loads. Approach: The analysis focused on displacement time history responses which form the basis for retrofit design guidelines against blast loadings. The blast was determined from 0.5 kg equivalent TNT explosive at 1.83 m stand-off distance to simulate small mailroom bombs. Two and four layered retrofitted walls were investigated. Uncertainties in the finite model analysis of walls such as pressure distributions, effect of mid height explosive bursts versus near the ground explosive bursts and variations in modulus of elasticity of the wall were presented. Results: Uniformly distributed blast loads over the retrofitted wall height produced a small difference in peak displacement results when compared to the non-uniform pressure distribution. Ground explosive burst was shown to produce a 62.7% increase in energy and a higher peak displacement response when compared to mid-height explosive burst. Conclusion: The parametric study on the variation of modulus of elasticity of concrete masonry showed no significant effect on peak displacement affirming the use of the resistance deflection contribution of the composite in retrofit designs.

  10. Prediction of the critical buckling load of multi-walled carbon nanotubes under axial compression

    Science.gov (United States)

    Timesli, Abdelaziz; Braikat, Bouazza; Jamal, Mohammad; Damil, Noureddine

    2017-02-01

    In this paper, we propose a new explicit analytical formula of the critical buckling load of double-walled carbon nanotubes (DWCNT) under axial compression. This formula takes into account van der Waals interactions between adjacent tubes and the effect of terms involving tube radii differences generally neglected in the derived expressions of the critical buckling load published in the literature. The elastic multiple Donnell shells continuum approach is employed for modelling the multi-walled carbon nanotubes. The validation of the proposed formula is made by comparison with a numerical solution. The influence of the neglected terms is also studied.

  11. Stability of Monolithic Rubble Mound Breakwater Crown Walls Subjected to Impulsive Loading

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Lars Vabbersgaard; Andersen, Thomas Lykke

    2012-01-01

    model tests. The outcome is a more reliable evaluation of the applicability of simple dynamic calculations for the estimation of sliding distances of rubble mound superstructures. This is of great practical importance since many existing rubble mound crown walls are subjected to increasing wave loads......This paper evaluates the validity of a simple onedimensional dynamic analysis as well as a FEM model to determine the sliding of a rubble mound breakwater crown wall. The evaluation is based on a case example with real wave load time series and displacements measured from two-dimensional physical...

  12. DYNAMIC BUCKLING OF DOUBLE-WALLED CARBON NANOTUBES UNDER STEP AXIAL LOAD

    Institute of Scientific and Technical Information of China (English)

    Chengqi Sun; Kaixln Liu

    2009-01-01

    An approximate method is presented in this paper for studying the dynamic buckling of double-walled carbon nanotubes (DWNTs) under step axial load. The analysis is based on the continuum mechanics model, which takes into account the van der Waals interaction between the outer and inner nanotubes. A buckling condition is derived, from which the critical buckling load and associated buckling mode can be determined. As examples, numerical results are worked out for DWNTs under fixed boundary conditions. It is shown that, due to the effect of van der Waals forces, the critical buckling load of a DWNT is enhanced when inserting an inner tube into a single-walled one. The paper indicates that the critical buckling load of DWNTs for dynamic buckling is higher than that for static buckling. The effect of the radii is also examined. In addition, some of the results are compared with the previous ones.

  13. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    Science.gov (United States)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2009-04-01

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  14. Wave Loads on Rubble Mound Breakwater Crown Walls in Long Waves

    DEFF Research Database (Denmark)

    Røge, Mads Sønderstrup; Færch Christensen, Nicole; Thomsen, Jonas Bjerg;

    2014-01-01

    This paper evaluates the formulae by Nørgaard et al. (2013) for predicting wave loads on rubble mound breakwater crown walls on new model tests. The formulae are tested outside their validation area by means of waves with a low wave steepness and low run-up height compared to the armour freeboard...

  15. Computation Analysis of Buckling Loads of Thin-Walled Members with Open Sections

    Directory of Open Access Journals (Sweden)

    Lihua Huang

    2016-01-01

    Full Text Available The computational methods for solving buckling loads of thin-walled members with open sections are not unique when different concerns are emphasized. In this paper, the buckling loads of thin-walled members in linear-elastic, geometrically nonlinear-elastic, and nonlinear-inelastic behaviors are investigated from the views of mathematical formulation, experiment, and numerical solution. The differential equations and their solutions of linear-elastic and geometrically nonlinear-elastic buckling of thin-walled members with various constraints are derived. Taking structural angle as an example, numerical analysis of elastic and inelastic buckling is carried out via ANSYS. Elastic analyses for linearized buckling and nonlinear buckling are realized using finite elements of beam and shell and are compared with the theoretical results. The effect of modeling of constraints on numerical results is studied when shell element is applied. The factors that influence the inelastic buckling load in numerical solution, such as modeling of constraint, loading pattern, adding rib, scale factor of initial defect, and yield strength of material, are studied. The noteworthy problems and their solutions in numerically buckling analysis of thin-walled member with open section are pointed out.

  16. High pressure, energy, and impulse loading of the wall in a 1-GJ Laboratory Microfusion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Harrach, R.J.

    1989-07-24

    A proposed Laboratory Microfusion Facility (LMF) must be able to withstand repeated, low-repetition-rate fusion explosions at the 1-GJ (one-quarter ton) yield level. The energy release will occur at the center of a chamber only a few meters in radius, subjecting the interior or first wall to severe levels of temperature, pressure, and impulse. We show by theory and computation that the wall loading can be ameliorated by interposing a spherical shell of low-Z material between the fuel and the wall. This sacrificial shield converts the source energy components that are most damaging to the wall (soft x-rays and fast ions) to more benign plasma kinetic energy from the vaporized shield, and stretches the time duration over which this energy is delivered to the wall from nanoseconds to microseconds. Numerical calculations emphasize thin, volleyball-sized plastic shields, and much thicker ones of frozen nitrogen. Wall shielding criteria of small (or no) amount of surface ablation, low impulse and pressure loading, minimal shrapnel danger, small expense, and convenience in handling all favor the thin plastic shields. 7 refs., 4 figs.

  17. PREDICTION OF NUPECS MULTI-AXIS LOADING TESTS OF CONCRETE SHEAR WALLS.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C.; Hofmayer, C.; Wang, Y.; Chokshi, N.; Murphy, A.; Kitada, Y.

    2001-03-22

    The Nuclear Power Engineering Corporation (NUPEC) of Japan is performing multi-axis loading tests of reinforced concrete (RC) shear wall models. The project, which includes both static and dynamic cyclic tests, started in 1994 and is scheduled to be completed in 2004. The static tests are performed on single elements, box type and. cylindrical type structures. Both unidirectional and multidirectional loads are placed on the models during the static test phase. The dynamic tests will be performed on a shaking table for both the box type and cylindrical type structures. As part of collaborative efforts between the US and Japan the US Nuclear Regulatory Commission (NRC) and Brookhaven National Laboratory (BNL) are participating in the multi-axial cyclic static loading tests and the shaking table tests. The multi-axis loading tests are unique and will provide significant insights into the effect of out-of-plane loads on the capacity of shear wall structures. Current analysis methods use simplified assumptions and do not specifically take this effect into account. Since the fragility levels of RC shear walls are key elements in a seismic PRA of a nuclear plant, it is important to verify the methodology for determining these levels. The NUPEC tests will provide valuable data for this purpose. Pre-test predictions of the box type structure's response to the multi-axis static loading are discussed in this paper. The tests were performed by NUPEC between June and August 2000. Two models are used to make these predictions. The first is au engineering model typical of those used in current design analyses. The second is a finite element model of the structure utilizing the ANSYS computer code. In both cases cyclic load behavior into the inelastic range is considered.

  18. FILLER LOADING IN THE LUMEN OR/AND CELL WALL OF FIBERS – A LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    Surendra Pal Singh

    2011-06-01

    Full Text Available A review of the literature reveals potential advantages that papermakers can achieve by placing minerals in the lumens or cell walls of fibers before the pulp is formed into paper. Loading of filler into the fiber lumen by mechanical deposition or within the cell wall by in-situ precipitation has been reported to generally result in a moderate reduction in light scattering coefficient and increased strength properties of laboratory handsheets, as well as in paper manufactured with pilot plant equipment, when compared to conventional addition of filler. However, there are some exceptions to this general observation, where the fiber loading is reported to decrease the tensile strength of paper. Some related effects can be achieved by either precipitating mineral onto fiber surfaces or co-flocculating mineral particles with cellulosic fines. Challenges remain with respect to the implementation of fiber-loading concepts at a commercial scale. Also, there is a need for further research aimed at establishing high-end applications in which it may be an advantage to load cellulosic fiber cell walls or lumens with minerals or other substances.

  19. Calcium bridges are not load-bearing cell-wall bonds in Avena coleoptiles

    Science.gov (United States)

    Rayle, D. L.

    1989-01-01

    I examined the ability of frozen-thawed Avena sativa L. coleoptile sections under applied load to extend in response to the calcium chelators ethyleneglycol-bis-(beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin II). Addition of 5 mM EGTA to weakly buffered (0.1 mM, pH 6.2) solutions of 2(N-morpholino) ethanesulfonic acid (Mes) initiated rapid extension and wall acidification. When the buffer strength was increased (e.g. from 20 to 100 mM Mes, pH 6.2) EGTA did not initiate extension nor did it cause wall acidification. At 5 mM Quin II failed to stimulate cell extension or wall acidification at all buffer molarities tested (0.1 to 100 mM Mes). Both chelators rapidly and effectively removed Ca2+ from Avena sections. These data indicate that Ca2+ chelation per se does not result in loosening of Avena cells walls. Rather, EGTA promotes wall extension indirectly via wall acidification.

  20. BUCKLING BEHAVIOUR OF SINGLE-WALLED CARBON NANOTUBES UNDER AXIAL LOADING

    Directory of Open Access Journals (Sweden)

    Grzegorz Litak

    2017-03-01

    Full Text Available We investigate a single walled Carbon Nanotube under an axially directed compressive line loading applied at both of its edges. The expected buckling behavior we study by application of a molecular computation approach. We formulate a global potential and search for its minimum to obtain the equilibrium configuration. Using besides the main parameter, which is the value of the loading, as second parameter the diameter of the tube, we are able to define the critical value of the diameter, for which we obtain the coincident case of local shell buckling.

  1. Wall-Friction Support of Vertical Loads in Submerged Sand and Gravel Columns

    Energy Technology Data Exchange (ETDEWEB)

    Walton, O. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vollmer, H. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hepa, V. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-25

    Laboratory studies of the ‘floor-loads’ under submerged vertical columns of sand and/or gravel indicate that such loads can be approximated by a buoyancy-corrected Janssen-silo-theory-like relationship. Similar to conditions in storage silos filled with dry granular solids, most of the weight of the sand or gravel is supported by wall friction forces. Laboratory measurements of the loads on the floor at the base of the water-filled columns (up to 25-diameters tall) indicate that the extra floor-load from the addition of the granular solid never exceeded the load that would exist under an unsupported (wide) bed of submerged sand or gravel that has a total depth corresponding to only two column-diameters. The measured floorloads reached an asymptotic maximum value when the depth of granular material in the columns was only three or four pipe-diameters, and never increased further as the columns were filled to the top (e.g. up to heights of 10 to 25 diameters). The floor-loads were stable and remained the same for days after filling. Aggressive tapping (e.g. hitting the containing pipe on the outside, manually with a wrench up and down the height and around the circumference) could increase (and occasionally decrease) the floor load substantially, but there was no sudden collapse or slumping to a state without significant wall friction effects. Considerable effort was required, repeatedly tapping over almost the entire column wall periphery, in order to produce floor-loads that corresponded to the total buoyancy-corrected weight of granular material added to the columns. Projecting the observed laboratory behavior to field conditions would imply that a stable floor-load condition, with only a slightly higher total floor pressure than the preexisting hydrostatic-head, would exist after a water-filled bore-hole is filled with sand or gravel. Significant seismic vibration (either a large nearby event or many micro-seismic events over an extended period) would likely

  2. Inelastic behavior of cold-formed braced walls under monotonic and cyclic loading

    Science.gov (United States)

    Gerami, Mohsen; Lotfi, Mohsen; Nejat, Roya

    2015-06-01

    The ever-increasing need for housing generated the search for new and innovative building methods to increase speed and efficiency and enhance quality. One method is the use of light thin steel profiles as load-bearing elements having different solutions for interior and exterior cladding. Due to the increase in CFS construction in low-rise residential structures in the modern construction industry, there is an increased demand for performance inelastic analysis of CFS walls. In this study, the nonlinear behavior of cold-formed steel frames with various bracing arrangements including cross, chevron and k-shape straps was evaluated under cyclic and monotonic loading and using nonlinear finite element analysis methods. In total, 68 frames with different bracing arrangements and different ratios of dimensions were studied. Also, seismic parameters including resistance reduction factor, ductility and force reduction factor due to ductility were evaluated for all samples. On the other hand, the seismic response modification factor was calculated for these systems. It was concluded that the highest response modification factor would be obtained for walls with bilateral cross bracing systems with a value of 3.14. In all samples, on increasing the distance of straps from each other, shear strength increased and shear strength of the wall with bilateral bracing system was 60 % greater than that with lateral bracing system.

  3. Beam heat load due to geometrical and resistive wall impedance in COLDDIAG

    Science.gov (United States)

    Casalbuoni, S.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Spataro, B.

    2012-11-01

    One of the still open issues for the development of superconductive insertion devices is the understanding of the heat intake from the electron beam. With the aim of measuring the beam heat load to a cold bore and the hope to gain a deeper understanding in the underlying mechanisms, a cold vacuum chamber for diagnostics (COLDDIAG) was built. It is equipped with the following instrumentation: retarding field analyzers to measure the electron flux, temperature sensors to measure the beam heat load, pressure gauges, and mass spectrometers to measure the gas content. Possible beam heat load sources are: synchrotron radiation, wakefield effects due to geometrical and resistive wall impedance and electron/ion bombardment. The flexibility of the engineering design will allow the installation of the cryostat in different synchrotron light sources. COLDDIAG was first installed in the Diamond Light Source (DLS) in 2011. Due to a mechanical failure of the thermal transition of the cold liner, the cryostat had to be removed after one week of operation. After having implemented design changes in the thermal liner transition, COLDDIAG has been reinstalled in the DLS at the end of August 2012. In order to understand the beam heat load mechanism it is important to compare the measured COLDDIAG parameters with theoretical expectations. In this paper we report on the analytical and numerical computation of the COLDDIAG beam heat load due to coupling impedances deriving from unavoidable step transitions, ports used for pumping and diagnostics, surface roughness, and resistive wall. The results might have an important impact on future technological solutions to be applied to cold bore devices.

  4. Ultimate Load Capacity and Behavior of Thin-Walled Curved-Steel Square Struts, Subjected to Compressive Load

    Directory of Open Access Journals (Sweden)

    S.Mohammad Reza Mortazavi

    2016-06-01

    Full Text Available There have been some experimental tests on hollow curved-steel struts with thin-walled square sections, in order to investigate their general behavior, particularly their capacity for bearing differing loads. One set of square tubes are cold-formed into segments of circular arcs with curvature radii, equal to 4000 mm. Different lengths of curved struts are fabricated so as to cover a practical range of slenderness ratios. The struts tests were pin-ended and had slenderness ratios, based on the straight length between ends ranging from 31-126. The cold-forming operation induces initial inelastic behavior and associated residual stresses. There is, therefore, an interaction among material effects, such as the strain hardening capacity, the Bauschinger effect, strain aging, and residual stresses, together with the significant geometrical effect of the initial curvature, caused by the cold-forming operation. Eventually the results from three series of tests, which are taken on fully-aged and stress-relief-annealed square curved struts, are compared. The variations in load carrying response are discussed.

  5. Performance of Screen Grid Insulating Concrete Form Walls under Combined In-Plane Vertical and Lateral Loads

    KAUST Repository

    Abdel Mooty, Mohamed

    2010-12-01

    Insulating Concrete Forms (ICF) walls generally comprise two layers of Expanded Polystyrene (EPS), steel reinforcement is placed in the center between the two layers and concrete is poured to fill the gap between those two layers. ICF\\'s have many advantages over traditional methods of wall construction such as reduced construction time, noise reduction, strength enhancement, energy efficiency, and compatibility with any inside or outside surface finish. The focus of this study is the Screen Grid ICF wall system consisting of a number of beams and columns forming a concrete mesh. The performance of ICF wall systems under lateral loads simulating seismic effect is experimentally evaluated in this paper. This work addresses the effect of the different design parameters on the wall behavior under seismic simulated loads. This includes different steel reinforcement ratio, various reinforcement distribution, wall aspect ratios, different openings sizes for windows and doors, as well as different spacing of the grid elements of the screen grid wall. Ten full scale wall specimens were tested where the effects of the various parameters on wall behavior in terms of lateral load capacity, lateral displacement, and modes of failure are presented. The test results are stored to be used for further analysis and calibration of numerical models developed for this study. © (2011) Trans Tech Publications.

  6. Molecular dynamics simulation of the test of single-walled carbon nanotubes under tensile loading

    Institute of Scientific and Technical Information of China (English)

    FU ChenXin; CHEN YunFei; JIAO JiWei

    2007-01-01

    Molecular dynamics (MD) simulations were performed to do the test of single-walled carbon nanotubes (SWCNT) under tensile loading with the use of Brenner potential to describe the interactions of atoms in SWCNTs. The Young's modulus and tensile strength for SWCNTs were calculated and the values found are 4.2 TPa and 1.40―1.77 TPa, respectively. During the simulation, it was found that if the SWCNTs are unloaded prior to the maximum stress, the stress-strain curve for unloading process overlaps with the loading one, showing that the SWCNT's deformation up to its fracture point is completely elastic. The MD simulation also demonstrates the fracture process for several types of SWCNT and the breaking mechanisms for SWCNTs were analyzed based on the energy and structure behavior.

  7. Unified solution of limit loads of thick wall cylinder subject to external pressure considering strain softening

    Institute of Scientific and Technical Information of China (English)

    CHEN Changfu; XIAO Shujun; YANG Yu

    2007-01-01

    Based on the unified strength theory [1],a unified strength criterion for strain softening materials,such as concrete or rock,was derived,and the elastic and plastic limit loads of a thick-walled cylinder made of these materials subject to external pressure were also given.In addition,the influence of some factors on the limit loads of such cylinders as the ratio of the external radius to intemal radius,rb/ra,the coefficient b,which reflects the effect of medium principal stress and the normal stress of the relevant surface on the material destroy degree,the ratio of tensile strength to compressed strength of the material,α,and the damage variable β were discussed in detail.Some examples were given and some meaningful results were obtained.

  8. Molecular dynamics simulation of the test of single-walled carbon nanotubes under tensile loading

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Molecular dynamics (MD) simulations were performed to do the test of sin-gle-walled carbon nanotubes (SWCNT) under tensile loading with the use of Bren-ner potential to describe the interactions of atoms in SWCNTs. The Young’s modulus and tensile strength for SWCNTs were calculated and the values found are 4.2 TPa and 1.40―1.77 TPa, respectively. During the simulation, it was found that if the SWCNTs are unloaded prior to the maximum stress, the stress-strain curve for unloading process overlaps with the loading one, showing that the SWCNT’s de-formation up to its fracture point is completely elastic. The MD simulation also demonstrates the fracture process for several types of SWCNT and the breaking mechanisms for SWCNTs were analyzed based on the energy and structure be-havior.

  9. Modular and scalable load-wall sled buck for pure-lateral and oblique side impact tests.

    Science.gov (United States)

    Yoganandan, Narayan; Humm, John R; Pintar, Frank A

    2012-05-11

    A considerable majority of side impact sled tests using different types of human surrogates has used a load-wall design not specific to subject anthropometry. The use of one load-wall configuration cannot accurately isolate and evaluate regional responses for the same load-wall geometry. As the anatomy and biomechanical responses of the human torso depends on the region, and anthropomorphic test devices continue to advance and accommodate regional differences, it is important to obtain specific data from sled tests. To achieve this goal, the present study designed a scalable modular load-wall consisting of the shoulder, thorax, abdomen, and superior and inferior pelvis, and lower limb plates. The first five plates were connected to a vertical fixture and the limb plate was connected to another fixture. The width, height, and thickness, and the gap between plates were modular. Independent adjustments in the coronal and sagittal planes allowed region-specific positioning depending on surrogate anthropometry, example pelvis width and seated height. Two tri-axial load cells were fixed on the contralateral face of each plate of the load-wall to record impact force-time histories. The load-wall and vertical fixture design can be used to conduct side impact tests with varying vectors, pure-lateral to anterior and posterior oblique, by appropriately orienting the load-wall with respect to the surrogate. The feasibility of the design to extract region-specific biomechanical data was demonstrated by conducting pure-lateral and anterior oblique sled tests using two different surrogates at a velocity of 6.7m/s. Uses of this design are discussed for different applications.

  10. Optimum Insulation Thickness for Walls and Roofs for Reducing Peak Cooling Loads in Residential Buildings in Lahore

    Directory of Open Access Journals (Sweden)

    SIBGHA SIDDIQUE SIDDIQUE

    2016-10-01

    Full Text Available Thermal insulation is the most effective energy saving measure for cooling in buildings. Therefore, the main subject of many engineering investigations is the selection and determination of the optimum insulation thickness. In the present study, the optimum insulation thickness on external walls and roofs is determined based on the peak cooling loads for an existing residential building in Lahore, Pakistan. Autodesk® Revit 2013 is used for the analysis of the building and determination of the peak cooling loads. The analysis shows that the optimum insulation thickness to reduce peak cooling loads up to 40.1% is 1 inch for external walls and roof respectively.

  11. Performance Evaluation of Different Masonry Infill Walls with Structural Fuse Elements Based on In-Plane Cyclic Load Testing

    Directory of Open Access Journals (Sweden)

    Andrew Kauffman

    2014-09-01

    Full Text Available This paper discusses the performance of a structural fuse concept developed for use as a seismic isolation system in the design and retrofit of masonry infill walls. An experimental program was developed and executed to study the behavior of the structural fuse system under cyclic loads, and to evaluate the performance of the system with various masonry materials. Cyclic tests were performed by applying displacement controlled loads at the first, second, and third stories of a two-bay, three-story steel test frame with brick infill walls; using a quasi-static loading protocol to create a first mode response in the structural system. A parametric study was also completed by replacing the brick infill panels with infill walls constructed of concrete masonry units and autoclaved aerated concrete blocks, and applying monotonically increasing, displacement controlled loads at the top story of the test frame.

  12. An Approximate Analysis of the Inner Wall Loading of a Bimetallic Camera Shell of Reusable Rocket Engine

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available Various technical devices quite widely use bimetallic shells as the structural elements. A chamber combustion design of the liquid rocket engine (LRE is a typical use of the bimetallic shells.In LRE operation a combustion chamber shell is subject to intense thermal and mechanical effects, which necessitates cooling. A cooling shell path is formed by a gap between its inner and outer walls connected to each other by milled or grooved spacer ribs. The outer wall of the shell serves as a load-bearing element, the inner wall is in direct contact with high-temperature combustion products and exposed to intense heat. The difference in functions of shell walls calls for their manufacturing from different materials with different thermophysical and mechanical properties.Interaction between the shell walls of different materials in heating and cooling leads to emerging thermal strains of various values in the walls. In terms of mechanical properties the inner wall material, usually ranks below the outer wall material strength, which uses the high strength stainless steel 12Х21Н5Т. The inner wall is typically made from copper-based highly heat-conductive alloys. (eg.: chromium bronze. Therefore, the result of the difference in temperature deformations, arising in the walls,  is inelastic nonisothermal strain of the inner wall material with (usually elastic behavior of the outer wall material.For reusable LRE, a cyclic sequence of the loading steps of the inner wall can lead to accumulating damages in its material because of the low-cycle fatigue and cause destruction of the wall or the loss of the cooling tract tightness. The main parameter that determines the level of low-cycle fatigue, is an absolute value of the accumulated inelastic strain (both plastic and evolving over time creep deformation. Quantitative evaluation of this parameter involves analysis of the inner wall loading with multiple starts and shutdowns of LRE. The paper represents an

  13. Cost optimization of load carrying thin-walled precast high performance concrete sandwich panels

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hansen, Sanne; Hulin, Thomas

    2015-01-01

    and HPCSP’s geometrical parameters as well as on material cost function in the HPCSP design. Cost functions are presented for High Performance Concrete (HPC), insulation layer, reinforcement and include labour-related costs. The present study reports the economic data corresponding to specific manufacturing......The paper describes a procedure to find the structurally and thermally efficient design of load-carrying thin-walled precast High Performance Concrete Sandwich Panels (HPCSP) with an optimal economical solution. A systematic optimization approach is based on the selection of material’s performances....... The solution of the optimization problem is performed in the computer package software Matlab® with SQPlab package and integrates the processes of HPCSP design, quantity take-off and cost estimation. The proposed optimization process outcomes in complex HPCSP design proposals to achieve minimum cost of HPCSP....

  14. Effect of Thermal Bridges in Insulated Walls on Air-Conditioning Loads Using Whole Building Energy Analysis

    Directory of Open Access Journals (Sweden)

    Mohamed F. Zedan

    2016-06-01

    Full Text Available Thermal bridges in building walls are usually caused by mortar joints between insulated building blocks and by the presence of concrete columns and beams within the building envelope. These bridges create an easy path for heat transmission and therefore increase air-conditioning loads. In this study, the effects of mortar joints only on cooling and heating loads in a typical two-story villa in Riyadh are investigated using whole building energy analysis. All loads found in the villa, which broadly include ventilation, transmission, solar and internal loads, are considered with schedules based on local lifestyles. The thermal bridging effect of mortar joints is simulated by reducing wall thermal resistance by a percentage that depends on the bridges to wall area ratio (TB area ratio or Amj/Atot and the nominal thermal insulation thickness (Lins. These percentage reductions are obtained from a correlation developed by using a rigorous 2D dynamic model of heat transmission through walls with mortar joints. The reduction in thermal resistance is achieved through minor reductions in insulation thickness, thereby keeping the thermal mass of the wall essentially unchanged. Results indicate that yearly and monthly cooling loads increase almost linearly with the thermal bridge to wall area ratio. The increase in the villa’s yearly loads varies from about 3% for Amj/Atot = 0.02 to about 11% for Amj/Atot = 0.08. The monthly increase is not uniform over the year and reaches a maximum in August, where it ranges from 5% for Amj/Atot = 0.02 to 15% for Amj/Atot = 0.08. In winter, results show that yearly heating loads are generally very small compared to cooling loads and that heating is only needed in December, January and February, starting from late night to late morning. Monthly heating loads increase with the thermal bridge area ratio; however, the variation is not as linear as observed in cooling loads. The present results highlight the importance of

  15. Propensity for hip dislocation in normal gait loading versus sit-to-stand maneuvers in posterior wall acetabular fractures.

    Science.gov (United States)

    Marmor, Meir; McDonald, Erik; Buckley, Jenni M; Matityahu, Amir

    2013-09-01

    Treatment of posterior wall (PW) fractures of the acetabulum is guided by the size of the broken wall fragment and by hip instability. Biomechanical testing of hip instability typically is done by simulating the single-leg-stance (SLS) phase of gait, but this does not represent daily activities, such as sit-to-stand (STS) motion. We conducted a study to examine and compare hip instability after PW fractures in SLS and STS loading. We hypothesized that wall fragment size and distance from the dome (DFD) of the acetabulum to the simulated fracture would correlate with hip instability and, in the presence of a PW fracture, the hip would be more unstable during STS loading than during SLS loading. Incremental PW osteotomies were made in 6 cadaveric acetabula. After each osteotomy, a 1200-N load was applied to the acetabulum to simulate SLS and STS loading until dislocation occurred. All hip joints in the cadaveric models were more unstable in STS loading than in SLS loading. PW fragments at time of dislocation were larger (Pfracture size of 33% or more and a DFD of 20 mm or less.

  16. MODELING OF NONLINEAR CYCLIC LOAD BEHAVIOR OF I-SHAPED COMPOSITE STEEL-CONCRETE SHEAR WALLS OF NUCLEAR POWER PLANTS

    Directory of Open Access Journals (Sweden)

    AHMER ALI

    2013-02-01

    Full Text Available In recent years steel-concrete composite shear walls have been widely used in enormous high-rise buildings. Due to high strength and ductility, enhanced stiffness, stable cycle characteristics and large energy absorption, such walls can be adopted in the auxiliary building; surrounding the reactor containment structure of nuclear power plants to resist lateral forces induced by heavy winds and severe earthquakes. This paper demonstrates a set of nonlinear numerical studies on I-shaped composite steel-concrete shear walls of the nuclear power plants subjected to reverse cyclic loading. A three-dimensional finite element model is developed using ABAQUS by emphasizing on constitutive material modeling and element type to represent the real physical behavior of complex shear wall structures. The analysis escalates with parametric variation in steel thickness sandwiching the stipulated amount of concrete panels. Modeling details of structural components, contact conditions between steel and concrete, associated boundary conditions and constitutive relationships for the cyclic loading are explained. Later, the load versus displacement curves, peak load and ultimate strength values, hysteretic characteristics and deflection profiles are verified with experimental data. The convergence of the numerical outcomes has been discussed to conclude the remarks.

  17. Active load management with advanced window wall systems: Research and industry perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor S.; Selkowitz, Stephen E.; Levi, Mark S.; Blanc, Steven L.; McConahey, Erin; McClintock, Maurya; Hakkarainen, Pekka; Sbar, Neil L.; Myser, Michael P.

    2002-06-01

    Advanced window wall systems have the potential to provide demand response by reducing peak electric loads by 20-30% in many commercial buildings through the active control of motorized shading systems, switchable window coatings, operable windows, and ventilated double-skin facade systems. These window strategies involve balancing daylighting and solar heat gains, heat rejection through ventilation, and night-time natural ventilation to achieve space-conditioning and lighting energy use reductions without the negative impacts on occupants associated with other demand responsive (DR) strategies. This paper explores conceptually how advanced window systems fit into the context of active load management programs, which cause customers to directly experience the time-varying costs of their consumption decisions. Technological options are suggested. We present pragmatic criteria that building owners use to determine whether to deploy such strategies. A utility's perspective is given. Industry also provides their perspectives on where the technology is today and what needs to happen to implement such strategies more broadly in the US. While there is significant potential for these advanced window concepts, widespread deployment is unlikely to occur with business-as-usual practice. Technologically, integrated window-lighting-HVAC products are underdeveloped. Implementation is hindered by fragmented labor practices, non-standard communication protocols, and lack of technical expertise. Design tools and information products that quantify energy performance, occupant impacts, reliability, and other pragmatic concerns are not available. Interest within the building industry in sustainability, energy-efficiency, and increased occupant amenity, comfort, and productivity will be the driving factors for these advanced facades in the near term--at least until the dust settles on the deregulated electricity market.

  18. Blast loading of sandwich panels with thin-walled tube cores

    Energy Technology Data Exchange (ETDEWEB)

    Theobold, M.D.; Nurick, G.N. [Cape Town Univ., Cape Town (South Africa). Blast Impact and Survivability Research Unit

    2007-07-01

    This paper presented the results of an experimental and modelling study that investigated the responses to blast loading of a novel sandwich panel used in structural protection. The panel was comprised of thin-walled aluminium alloy square tubes with annealed steel outer plates. A split Hopkinson pressure bar was used to characterize the materials at quasi-static strain rates as well as at high strain rates. A series of blast tests was conducted with explosive charges that ranged from between 13 to 38 g with a blast tube mounted to a ballistic pendulum. Results of the experimental study showed that the panel had a large energy absorption capacity. The tube layout and the choice of materials had a significant influence on panel response. During larger blasts, progressive symmetric buckling was observed in core tubes, and core stability was compromised in lower impulse blasts. It was concluded that finite element analyses conducted on the panels showed good agreement with results obtained during the experimental studies.

  19. The problems of calculating the load-bearing structures made of light steel thin-walled profiles

    Directory of Open Access Journals (Sweden)

    Roy Vera

    2016-01-01

    Full Text Available The article presents the results of a study of bearing capacity of thin-walled cold-formed steel beam of the guide profile. Such profiles have a small thickness and complex cross-sectional shape. Bending deformation develops in the cross-sectional plane under the influence of loads in beam. In addition, deformation of constrained torsion and warping arise. These deformations influence the stress distribution at the points of the cross-section of the beam and thereby determine its load-bearing capacity.

  20. A novel approach to mapping load transfer from the plantar surface of the foot to the walls of the total contact cast: a proof of concept study

    Directory of Open Access Journals (Sweden)

    Begg Lindy

    2012-12-01

    Full Text Available Abstract Background Total contact casting is regarded as the gold standard treatment for plantar foot ulcers. Load transfer from the plantar surface of the foot to the walls of the total contact cast has previously been assessed indirectly. The aim of this proof of concept study was to determine the feasibility of a new method to directly measure the load between the cast wall and the lower leg interface using capacitance sensors. Methods Plantar load was measured with pedar® sensor insoles and cast wall load with pliance® sensor strips as participants (n=2 walked along a 9 m walkway at 0.4±0.04 m/sec. The relative force (% on the cast wall was calculated by dividing the mean cast wall force (N per step by the mean plantar force (N per step in the shoe-cast condition. Results The combined average measured load per step upon the walls of the TCC equated to 23-34% of the average plantar load on the opposite foot. The highest areas of load on the lower leg were located at the posterior margin of the lateral malleolus and at the anterior ankle/extensor retinaculum. Conclusions These direct measurements of cast wall load are similar to previous indirect assessment of load transfer (30-36% to the cast walls. This new methodology may provide a more comprehensive understanding of the mechanism of load transfer from the plantar surface of the foot to the cast walls of the total contact cast.

  1. load-displacement and stability characteristics of tidn-walled beams ...

    African Journals Online (AJOL)

    The finite displacement formulation is used for load- displacement ..... sections, representing the four different types of possible ... following explicit equations for the four cross-section types: ..... curves converge to the same critical load levels.

  2. Synthesis of Single-Walled Carbon Nanotubes: Effects of Active Metals, Catalyst Supports, and Metal Loading Percentage

    Directory of Open Access Journals (Sweden)

    Wei-Wen Liu

    2013-01-01

    Full Text Available The effects of active metals, catalyst supports, and metal loading percentage on the formation of single-walled carbon nanotubes (SWNTs were studied. In particular, iron, cobalt, and nickel were investigated for SWNTs synthesis. Iron was found to grow better-quality SWNTs compared to cobalt and nickel. To study the effect of catalyst supports, magnesium oxide, silicon oxide, and aluminium oxide were chosen for iron. Among the studied supports, MgO was identified to be a suitable support for iron as it produced SWNTs with better graphitisation determined by Raman analysis. Increasing the iron loading decreased the quality of SWNTs due to extensive agglomeration of the iron particles. Thus, lower metal loading percentage is preferred to grow better-quality SWNTs with uniform diameters.

  3. Effects of Complex Symmetry-Breakings on Alpha Particle Power Loads on First Wall Structures and Equilibrium in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K. [Japan Atomic Energy Agency (JAEA), Naka; Kurki-Suonio, T. [Aalto University, Finland; Spong, Donald A [ORNL; Asunta, O. [Aalto University, Finland; Tani, K. [Japan Atomic Energy Agency (JAEA), Naka; Strumberger, E. [Max Planck Institute for Plasma Physics, Garching, Germany; Briguglio, S. [EURATOM / ENEA, Italy; Koskela, T. [Aalto University, Finland; Vlad, G. [EURATOM / ENEA, Italy; Günter, S. [Max-Planck Institute, Garching, Germany; Kramer, G. [Princeton Plasma Physics Laboratory (PPPL); Putvinski, S. [ITER Organization, Cadarache, France; Hamamatsu, K. [Japan Atomic Energy Agency (JAEA), Naka

    2011-01-01

    Within the ITPA Topical Group on Energetic Particles, we have investigated the impact that various mechanisms breaking the tokamak axisymmetry can have on the fusion alpha particle confinement in ITER as well as on the wall power loads due to these alphas. In addition to the well-known TF ripple, the 3D effect due to ferromagnetic materials (in ferritic inserts and test blanket modules) and ELM mitigation coils are included in these mechanisms. ITER scenario 4 was chosen since, due to its lower plasma current, it is more vulnerable for various off-normal features. First, the validity of using a 2D equilibrium was investigated: a 3D equilibrium was reconstructed using the VMEC code, and it was verified that no 3D equilibrium reconstruction is needed but it is sufficient to add the vacuum field perturbations onto an axisymmetric equilibrium. Then the alpha particle confinement was studied using three independent codes, ASCOT, DELTA5D and F3D OFMC, all of which assume MHD quiescent background plasma and no anomalous diffusion. All the codes gave a loss power fraction of about 0.2%. The distribution of the peak power load was found to depend on the first wall shape. We also made the first attempt to accommodate the effect of fast-ion-related MHD on the wall loads in ITER using the HMGC and ASCOT codes. The power flux to the wall was found to increase due to the redistribution of fast ions by the MHD activity. Furthermore, the effect of the ELM mitigation field on the fast-ion confinement was addressed by simulating NBI ions with the F3D OFMC code. The loss power fraction of NBI ions was found to increase from 0.3% without the ELM mitigation field to 4-5% with the ELM mitigation field.

  4. Best Position of R.C. Shear Wall due to seismic loads

    Directory of Open Access Journals (Sweden)

    Amita Baghel

    2017-02-01

    Full Text Available A shear wall is a wall that is designed to resist shear, the lateral force that causes the bulk of damage in earthquakes. Many building codes mandate the use of such walls to make homes safer and more stable. In this work, a G+2 storey R.C. building frame has been considered and analyzed for seismic zone-lll(Jabalpur using staad.prov8i (series4 package, special moment resisting frame (SMRF and hard rock types used in work. Parameters are taken to compare and analyze for the results are Node displacement and Reactions for different arrangements

  5. wall

    Directory of Open Access Journals (Sweden)

    Irshad Kashif

    2016-01-01

    Full Text Available Maintaining indoor climatic conditions of buildings compatible with the occupant comfort by consuming minimum energy, especially in a tropical climate becomes a challenging problem for researchers. This paper aims to investigate this problem by evaluating the effect of different kind of Photovoltaic Trombe wall system (PV-TW on thermal comfort, energy consumption and CO2 emission. A detailed simulation model of a single room building integrated with PV-TW was modelled using TRNSYS software. Results show that 14-35% PMV index and 26-38% PPD index reduces as system shifted from SPV-TW to DGPV-TW as compared to normal buildings. Thermal comfort indexes (PMV and PPD lie in the recommended range of ASHARE for both DPV-TW and DGPV-TW except for the few months when RH%, solar radiation intensity and ambient temperature were high. Moreover PVTW system significantly reduces energy consumption and CO2 emission of the building and also 2-4.8 °C of temperature differences between indoor and outdoor climate of building was examined.

  6. Load-carrying capacity of lightly reinforced, prefabricated walls of lightweight aggregate concrete with open structure

    DEFF Research Database (Denmark)

    Goltermann, Per

    2009-01-01

    The paper presents and evaluates the results of a coordinated testing of prefabricated, lightly reinforced walls of lightweight aggregate concrete with open structure. The coordinated testing covers all wall productions in Denmark and will therefore provide a representative assessment of the qual...... of the quality actually produced. Existing and new formulas for the capacity are evaluated by comparison to the test results and a new model with a good correlation with the test results is presented....

  7. Properties of Shredded Roof Membrane–Sand Mixture and Its Application as Retaining Wall Backfill under Static and Earthquake Loads

    Directory of Open Access Journals (Sweden)

    Bennett Livingston

    2017-04-01

    Full Text Available About 20 billion square feet of Ethylene Propylene Diene Monomer (EPDM rubber is installed on roofs in the United States and most of them will be reaching the end of their lifespan soon. The purpose of this study is to investigate potential reuses of this rubber in Civil Engineering projects rather than disposing it into landfills. First, laboratory tests were performed on various shredded rubber-sand mixtures to quantify the basic geotechnical engineering properties. The laboratory test results show that the shredded rubber-sand mixture is lightweight with good drainage properties and has shear strength parameters comparable to sand. This indicates that the rubber-sand mixture has potential to be used for retaining wall backfill and many other projects. To assess the economic advantage of using shredded rubber-sand mixtures as a lightweight backfill for retaining walls subjected to static and earthquake loadings, geotechnical designs of a 6 m tall gravity cantilever retaining wall were performed. The computed volume of concrete to build the structural components and volume of backfill material were compared with those of conventional sand backfill. Results show significant reductions in the volume of concrete and backfill material in both static and earthquake loading conditions when the portion of shredded rubber increased in the mixture.

  8. Effects of reducing temperatures on the hydrogen storage capacity of double-walled carbon nanotubes with Pd loading.

    Science.gov (United States)

    Sheng, Qu; Wu, Huimin; Wexler, David; Liu, Huakun

    2014-06-01

    The effects of different temperatures on the hydrogen sorption characteristics of double-walled carbon nanotubes (DWCNTs) with palladium loading have been investigated. When we use different temperatures, the particle sizes and specific surface areas of the samples are different, which affects the hydrogen storage capacity of the DWCNTs. In this work, the amount of hydrogen storage capacity was determined (by AMC Gas Reactor Controller) to be 1.70, 1.85, 2.00, and 1.93 wt% for pristine DWCNTS and for 2%Pd/DWCNTs-300 degrees C, 2%Pd/DWCNTs-400 degrees C, and 2%Pd/DWCNTs-500 degrees C, respectively. We found that the hydrogen storage capacity can be enhanced by loading with 2% Pd nanoparticles and selecting a suitable temperature. Furthermore, the sorption can be attributed to the chemical reaction between atomic hydrogen and the dangling bonds of the DWCNTs.

  9. Stress state of thin – walled member of the structure with operation damages under nonuniform loading

    Directory of Open Access Journals (Sweden)

    В.В. Астанін

    2004-01-01

    Full Text Available  The publication is dedicated to determining of stress state in particular the stress concentration factors for thin – walled members of the structures subject to nonuniform tension. A structure member has obtained the operation damage generation by corrosion and other causes.

  10. Resistance of Concrete Masonry Walls With Membrane Catcher Systems Subjected to Blast Loading

    Science.gov (United States)

    2010-12-01

    effectiveness of systems comprised of polymers, composites, geotextiles , and thin steel and aluminum sheets has been researched extensively over the past...secondary debris resulting from blast pressure, and the effectiveness of systems comprising polymers, composites, geotextiles , and thin steel and aluminum...wall structure undergoes large transient displacements. Initially, relatively stiff composite laminates and geotextiles were investigated, including

  11. Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall

    NARCIS (Netherlands)

    Giroud, C.; Maddison, G. P.; Jachmich, S.; Rimini, F.; Beurskens, M. N. A.; Balboa, I.; Brezinsek, S.; Coelho, R.; Coenen, J. W.; Frassinetti, L.; Joffrin, E.; Oberkofler, M.; Lehnen, M.; Liu, Y.; Marsen, S.; McCormick, K.; Meigs, A.; Neu, R.; Sieglin, B.; van Rooij, G. J.; Arnoux, G.; Belo, P.; Brix, M.; Clever, M.; Coffey, I.; Devaux, S.; Douai, D.; Eich, T.; Flanagan, J.; S. Grünhagen,; Huber, A.; Kempenaars, M.; Kruezi, U.; Lawson, K.; Lomas, P.; Lowry, C.; Nunes, I.; Sirinnelli, A.; Sips, A.C.C.; Stamp, M.; Wiesen, S.; JET-EFDA Contributors,

    2013-01-01

    This paper reports the impact on confinement and power load of the high-shape 2.5 MA ELMy H-mode scenario at JET of a change from all carbon plasma-facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result

  12. AN EVALUATION OF MULTI-HAZARD RISK SUBJECTED TO BLAST AND EARTHQUAKE LOADS IN RC MOMENT FRAME WITH SHEAR WALL

    Directory of Open Access Journals (Sweden)

    HADI FAGHIHMALEKI

    2017-03-01

    Full Text Available Over the recent decades, many public buildings located in a region of highseismic hazard have been subjected to simultaneous effect of abnormal loads against which they were not specifically designed. Hence, it is necessary to investigate the critical events occurring on the structure during its lifetime in order to investigate the structure’s performance based on a multi-hazard approach. The current study proposes a probabilistic framework for multihazard risk associated with collapse limit state of RC moment frame with shear wall structure, which is subjected to blast threats in the presence of seismic risk. The annual risk of structural collapse is calculated taking into account both the collapse caused by an earthquake event and the blast-induced progressive collapse. The blast fragility is calculated using a simulation procedure of Monte Carlo for generating blast scenarios. As a case study, the blast and seismic fragilities of a generic eight-story RC moment frame with shear wall building located in high seismic zone and subjected to the effect of blast load are calculated and implemented in the framework of a multi-hazard risk. The findings of the current research show a considerable risk; finally, the importance of taking the blast measure into account when designing strategic structures in areas of high seismic risk is highlighted.

  13. Simulations of fast ion wall loads in ASDEX Upgrade in the presence of magnetic perturbations due to ELM mitigation coils

    CERN Document Server

    Asunta, Otto; Kurki-Suonio, Taina; Koskela, Tuomas; Sipilä, Seppo; Snicker, Antti; Garcia-Muñoz, Manuel

    2015-01-01

    The effect of ASDEX Upgrade (AUG) ELM mitigation coils on fast ion wall loads was studied with the fast particle following Monte Carlo code ASCOT. Neutral beam injected (NBI) particles were simulated in two AUG discharges both in the presence and in the absence of the magnetic field perturbation induced by the eight newly installed in-vessel coils. In one of the discharges (#26476) beams were applied individually, making it a useful basis for investigating the effect of the coils on different beams. However, no ELM mitigation was observed in #26476, probably due to the low plasma density. Therefore, another discharge (#26895) demonstrating clear ELM mitigation was also studied. The magnetic perturbation due to the in-vessel coils has a significant effect on the fast particle confinement, but only when total magnetic field, $B_{tot}$, is low. When $B_{tot}$ was high, the perturbation did not increase the losses, but merely resulted in redistribution of the wall power loads. Hence, it seems to be possible to ac...

  14. Protecting ITER walls: fast ion power loads in 3D magnetic field

    Science.gov (United States)

    Kurki-Suonio, T.; Särkimäki, K.; Äkäslompolo, S.; Varje, J.; Liu, Y.; Sipilä, S.; Asunta, O.; Hirvijoki, E.; Snicker, A.; Terävä, J.; Cavinato, M.; Gagliardi, M.; Parail, V.; Saibene, G.

    2017-01-01

    The fusion alpha and beam ion with steady-state power loads in all four main operating scenarios of ITER have been evaluated by the ASCOT code. For this purpose, high-fidelity magnetic backgrounds were reconstructed, taking into account even the internal structure of the ferritic inserts and tritium breeding modules (TBM). The beam ions were found to be almost perfectly confined in all scenarios, and only the so-called hybrid scenario featured alpha loads reaching 0.5 MW due to its more triangular plasma. The TBMs were not found to jeopardize the alpha confinement, nor cause any hot spots. Including plasma response did not bring dramatic changes to the load. The ELM control coils (ECC) were simulated in the baseline scenario and found to seriously deteriorate even the beam confinement. However, the edge perturbation in this case is so large that the sources have to be re-evaluated with plasma profiles that take into account the ECC perturbation.

  15. Analogy between slow flow in channels with porous walls and flexure of simply suspended plates under uniform load

    Science.gov (United States)

    Jensen, Kaare

    2012-11-01

    The effect porous walls are important in the study of biological pipe flows due to the presence of semipermeable cell walls and in industrial filtration applications. Here, we consider slow flow of a viscous incompressible liquid in a channel of constant but arbitrary cross section shape, driven by non-uniform suction or injection through the porous channel walls. A similarity transformation reduces the Navier-Stokes equations to a set of coupled equations for the velocity potential in two dimensions. When the channel aspect ratio and Reynolds number are both small, the problem reduces to solving the biharmonic equation with constant forcing in two dimensions. With the relevant boundary conditions, determining the velocity field in a porous channels is thus equivalent to solving for the vertical displacement of a simply suspended thin plate under uniform load. This allows us to provide analytic solutions for flow in porous channels whose cross-section is e.g. a rectangle or an equilateral triangle, and provides a general framework for the extension of Berman flow (Journal of Applied Physics 24(9), p. 1232, 1953) to three dimensions.

  16. Investigating shoulder muscle loading and exerted forces during wall painting tasks: influence of gender, work height and paint tool design.

    Science.gov (United States)

    Rosati, Patricia M; Chopp, Jaclyn N; Dickerson, Clark R

    2014-07-01

    The task of wall painting produces considerable risk to the workers, both male and female, primarily in the development of upper extremity musculoskeletal disorders. Insufficient information is currently available regarding the potential benefits of using different paint roller designs or the possible adverse effects of painting at different work heights. The aim of this study was to investigate the influence of gender, work height, and paint tool design on shoulder muscle activity and exerted forces during wall painting. Ten young adults, five male and five female, were recruited to perform simulated wall painting at three different work heights with three different paint roller designs while upper extremity muscle activity and horizontal push force were recorded. Results demonstrated that for female participants, significantly greater total average (p = 0.007) and integrated (p = 0.047) muscle activity was present while using the conventional and curly flex paint roller designs compared to the proposed design in which the load was distributed between both hands. Additionally, for both genders, the high working height imposed greater muscular demands compared to middle and low heights. These findings suggest that, if possible, avoid painting at extreme heights (low or high) and that for female painters, consider a roller that requires the use of two hands; this will reduce fatigue onset and subsequently mitigate potential musculoskeletal shoulder injury risks.

  17. Load carrying capacity of shear wall t-connections reinforced with high strength wire ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik B.; Bryndom, Thor; Larsen, Michael

    2016-01-01

    Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction......-friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  18. Load Carrying Capacity of Shear Wall T-Connections Reinforced with High Strength Wire Ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Bryndum, Thor; Larsen, Michael

    2017-01-01

    Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction......-friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  19. Nonlocal axial load-bearing capacity of two neighboring perpendicular single-walled carbon nanotubes accounting for shear deformation

    Science.gov (United States)

    Kiani, Keivan

    2015-11-01

    This study is devoted to examine load-bearing capacity of a nanosystem composed of two adjacent perpendicular single-walled carbon nanotubes (SWCNTs) which are embedded in an elastic matrix. Accounting for the nonlocality and the intertube van der Waals forces, the governing equations are established based on the nonlocal Euler-Bernoulli, Timoshenko, and higher-order beam theories. These are sets of coupled integro-ordinary differential equations whose analytical solutions are unavailable. Hence, an efficient meshless methodology is proposed and the discrete governing equations are obtained via Galerkin approach. By solving the resulting set of eigenvalue equations, the axial buckling load of the elastically embedded nanosystem is evaluated. The roles of the radius and slenderness ratio of the constitutive SWCNTs, free distance between two tubes, small-scale parameter, aspect ratio, transverse and rotational stiffness of the surrounding matrix on the axial buckling load of the nanosystem are comprehensively addressed. The obtained results can be regarded as a pivotal step for better understanding the mechanism of elastic buckling of more complex systems such as elastically embedded-orthogonal membranes or even forests of SWCNTs.

  20. Lateral load-carrying capacity analyses of composite shear walls with double steel plates and filled concrete with binding bars

    Institute of Scientific and Technical Information of China (English)

    周德源; 刘凌飞; 朱立猛

    2016-01-01

    A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars (SCBs). Nonlinear finite element models of SCBs were established by using the finite element tool, Abaqus. Tie constraints were used to connect the binding bars and the steel plates. Surface-to-surface contact provided by the Abaqus was used to simulate the interaction between the steel plate and the core concrete. The established models could predict the lateral load-carrying capacity of SCBs with a reasonable degree of accuracy. A calculation method was developed by superposition principle to predict the lateral load-carrying capacity of SCBs for the engineering application. The concrete confined by steel plates and binding bars is under multi-axial compression; therefore, its shear strength was calculated by using the Guo-Wang concrete failure criterion. The shear strength of the steel plates of SCBs was calculated by using the von Mises yielding criterion without considering buckling. Results of the developed method are in good agreement with the testing and finite element results.

  1. STUDY OF HIGHER MODE EFFECTS AND LATERAL LOAD PATTERNS IN PUSHOVER ANALYSIS OF STEEL FRAMES WITH STEEL SHEAR WALL

    Directory of Open Access Journals (Sweden)

    Mohammad Ghanoonibagha

    2016-03-01

    Full Text Available When an earthquake occurs, the structure will enter into a nonlinear stage; therefore, new approaches based on nonlinear analysis are needed to flourish with the purpose of more realistic investigations on seismic behavior and destruction mechanism of structures. According to the modern philosophy, “Performance-based Earthquake Engineering” is formed in which simple nonlinear static analyses are mostly used in order to determine the structure’s behavior in nonlinear stage. This method assumes that the structure response is only controlled by the main mode and the shape of this mode will remain the same, while it enters the nonlinear stage. Both of these assumptions are approximations, especially in high buildings, which have a long period. It seems that constant load pattern used in these methods cannot consider all of the effects properly. In this paper, an attempt was made to study the accuracy of these methods in comparison to nonlinear dynamic analysis, by considering various load patterns existing in FEMA, also load patterns proportional to higher modes in nonlinear static method, and employing an approximative method of MPA modal analysis, study the accuracy of these methods in comparison to nonlinear dynamic analysis. For this purpose, three steel frames of 4, 8, and 12-stories with steel shear wall have been studied.

  2. A New Self-Loading Locomotion Mechanism for Wall Climbing Robots Employing Biomimetic Adhesives

    Institute of Scientific and Technical Information of China (English)

    Amirpasha Peyvandi; Parviz Soroushian; Jue Lu

    2013-01-01

    A versatile locomotion mechanism is introduced and experimentally verified.This mechanism comprises four rectangular wheels (legs) with rotational phase difference which enables the application of pressure to each contacting surface for securing it to the surface using bio-inspired or pressure-sensitive adhesives.In this mechanism,the adhesives are applied to two rigid plates attached to each wheel via hinges incorporating torsional springs.The springs force the plates back to their original position after the contact with the surface is lost in the course of locomotion.The wheels are made of low-modulus elastomers,and the pressure applied during contact is controlled by the elastic modulus,geometry and phase difference of wheels.This reliable adhesion system does not rely upon gravity for adhering to surfaces,and provides the locomotion mechanism with the ability to climb walls and transition from horizontal to vertical surfaces.

  3. Effect of Fusion Neutron Source Numerical Models on Neutron Wall Loading in a D-D Tokamak Device

    Institute of Scientific and Technical Information of China (English)

    陈义学; 吴宜灿

    2003-01-01

    Effect of various spatial and energy distributions of fusion neutron source on the calculation of neutron wall loading of Tokamak D-D fusion device has been investigated by means of the 3-D Monte Carlo code MCNP. A realistic Monte Carlo source model was developed based on the accurate representation of the spatial distribution and energy spectrum of fusion neutrons to solve the complicated problem of tokamak fusion neutron source modelling. The results show that those simplified source models will introduce significant uncertainties. For accurate estimation of the key nuclear responses of the tokamak design and analyses, the use of the realistic source is recommended. In addition, the accumulation of tritium produced during D-D plasma operation should be carefully considered.

  4. Thermoelastic Analysis of a Functionally Graded Rotating Thick-Walled Tube Subjected to Mechanical and Thermal Loads

    Science.gov (United States)

    Xin, Libiao; Yang, Shengyou; Ma, Baoyu; Dui, Guansuo

    2015-11-01

    A thermoelastic solution for the functionally graded rotating thick-walled tube subjected to axisymmetric mechanical and thermal loads is given in terms of volume fractions of constituents. We assume that the tube consists of two linear elastic constituents and the volume fraction of one phase is a power function varied in the radial direction. By using the assumption of a uniform strain field within the representative volume element, the theoretical solutions of the displacement and the stresses are presented. Based on the relation of the volume average stresses of constituents and the macroscopic stresses of the composite material in micromechanics, the present method can avoid the assumption of the distribution regularities of unknown overall material parameters appeared in existing papers, such as Young's modulus, thermal expansion coefficient, thermal conductivity, and density. The effects of the angular velocity, the volume fraction, the ratio of two thermal expansion coefficients, the ratio of two thermal conductivities, and the ratio of two densities on the displacement and stresses are systematically studied, which should help structural engineers and material scientists optimally design thick-walled tube comprised inhomogeneous materials.

  5. Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall

    CERN Document Server

    Giroud, C; Jachmich, S; Rimini, F; Beurskens, M N A; Balboa, I; Brezinsek, S; Coelho, R; Coenen, J W; Frassinetti, L; Joffrin, E; Oberkofler, M; Lehnen, M; Liu, Y; Marsen, S; K, K McCormick; Meigs, A; Neu, R; Sieglin, B; van Rooij, G; Arnoux, G; Belo, P; Brix, M; Clever, M; Coffey, I; Devaux, S; Douai, D; Eich, T; Flanagan, J; Grunhagen, S; Huber, A; Kempenaars, M; Kruezi, U; Lawson, K; Lomas, P; Lowry, C; Nunes, I; Sirinnelli, A; Sips, A C C; Stamp, M; Wiesen, S; contributors, JET-EFDA

    2013-01-01

    This paper reports the impact on confinement and power load of the high-shape 2.5MA ELMy H-mode scenario at JET of a change from an all carbon plasma facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result of fuelling in combination with nitrogen seeding were carried out in JET-C and are compared to their counterpart in JET with a metallic wall. An unexpected and significant change is reported on the decrease of the pedestal confinement but is partially recovered with the injection of nitrogen.

  6. Distortional solutions for loaded semi-discretized thin-walled beams

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Jönsson, Jeppe

    2012-01-01

    distortional displacement fields which decouple the reduced order differential equations. In this process the cross section is discretized into finite cross-section elements, and the natural distortional modes as well as the related axial variations are found as solutions to the established coupled fourth...... order homogeneous differential equations of GBT.In this paper the non-homogeneous distortional differential equations of GBT are formulated using this novel semi-discretization process. Transforming these non-homogeneous distortional differential equations into the natural eigenmode space by using...... the distortional modal matrix found for the homogeneous system, we get the uncoupled set of differential equations including the distributed loads. This uncoupling is very important in GBT, since the shear stiffness contribution from St. Venant torsional shear stress as well as “Bredt's shear flow” cannot...

  7. Defect-Defect Interaction in Single-Walled Carbon Nanotubes Under Torsional Loading

    Science.gov (United States)

    Huq, Abul M. A.; Bhuiyan, Abuhanif K.; Liao, Kin; Goh, Kheng Lim

    This paper presents an analysis of interactions between a pair of Stone-Wales (SW) defects in a single-walled carbon nanotube (SWCNT) that has been subjected to an external torque. Defect pairs, representing the different combinations of SW defect of A (SW-A) and B (SW-B) modes, were incorporated in SWCNT models of different chirality and diameter and solved using molecular mechanics. Defect-defect interaction was investigated by evaluating the C-C steric interactions in the defect that possesses the highest potential energy, E, as a function of inter-defect distance, D. This study reveals that the deformation of the C-C bond is attributed to bond stretching and bending. In the SW-B defects, there is an additional contributor arising from the dihedral angular deformation. The magnitude of E depends on the type of defect but the profile of the E versus D curve depends on the orientation of the defects. The largest indifference length, D0, beyond which two defects cease to interact, is approximately 30 Å. When the angular displacement of the tube increases two-fold, E increases, but the profile of the E versus D curve is not affected. The sense of rotation affects the magnitude of E but not the profile of the E versus D curve.

  8. Folic acid mediated solid lipid nanocarriers loaded with docetaxel and oxidized single-walled carbon nanotubes

    Science.gov (United States)

    Zhu, Xiali; Huang, Shengnan; Xie, Yingxia; Zhang, Huijuan; Hou, Lin; Zhang, Yingjie; Huang, Heqing; Shi, Jinjin; Wang, Lei; Zhang, Zhenzhong

    2014-01-01

    Single-walled carbon nanotubes (SWNT) possess high-near-infrared absorption coefficient, large surface area, and have great potential in drug delivery. In this study, we obtained ultrashort oxidized SWNT (OSWNT) using mixed acid oxidation method. Then, docetaxel (DTX) and folic acid (FA) are conjugated with OSWNT via π- π accumulation and amide linkage, respectively. A targeting and photothermal sensitive drug delivery system FA-DTX-OSWNT-SLN was prepared following a microemulsion technique. The size and zeta potential of FA-DTX-OSWNT-SLN were 182.8 ± 2.8 nm and -34.59 ± 1.50 mV, respectively. TEM images indicated that FA-DTX-OSWNT-SLN was spherical and much darker than general solid lipid nanoparticles (SLN). Furthermore, OSWNT may wind round, insert into or be encapsulated into the nanocarriers. Compared with free DTX, FA-DTX-OSWNT-SLN could efficiently cross cell membranes and afford higher antitumor efficacy in MCF-7 cells in vitro. Meanwhile, the combination of near-infrared laser (NIR) irradiation at 808 nm significantly enhanced cell inhibition. In conclusion, FA-DTX-OSWNT-SLN drug delivery system in combination with 808 nm NIR laser irradiation may be promising for targeting and photothermal cancer therapy with multiple mechanisms in future.

  9. Pharmacokinetic and biodistribution studies of doxorubicin-loaded single-wall carbon nanohorns in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junling [China Pharmaceutical University, Department of Analytical Chemistry (China); Ma, Xiaona [Hohai University, Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment (China); Shu, Chang; Li, Nannan; Zhao, Qian; Wang, Ran; Zhong, Wenying, E-mail: wyzhong@cpu.edu.cn [China Pharmaceutical University, Department of Analytical Chemistry (China)

    2015-09-15

    Pharmacokinetic and biodistribution studies of doxorubicin-loaded carbon nanohorns (DOX@oxSWCNHs/SA) in plasma and tissues were carried out. A high-performance liquid chromatographic method was developed and validated to determine the amount of doxorubicin. Compared with free DOX, the half-life (t{sub 1/2}) of DOX@oxSWCNHs/SA was increased from 5.44 ± 1.09 to 7.38 ± 0.98 h, area under plasma concentration–time curve (AUC{sub 0–∞}) was increased from 0.63 ± 0.008 to 1.42 ± 0.12 μg/(ml h), and the clearance of DOX was declined from 634 ± 10.05 to 280 ± 24.06 ml/h. No DOX was detected in heart after intravenous injection with DOX@oxSWCNHs/SA, while higher concentrations of drug were found in other tissues. These results suggested that DOX@oxSWCNHs/SA had the potential to obtain a long retention time in blood, sustained drug release, and a low toxicity, especially low cardiotoxicity.

  10. Pharmacokinetic and biodistribution studies of doxorubicin-loaded single-wall carbon nanohorns in mice

    Science.gov (United States)

    Wang, Junling; Ma, Xiaona; Shu, Chang; Li, Nannan; Zhao, Qian; Wang, Ran; Zhong, Wenying

    2015-09-01

    Pharmacokinetic and biodistribution studies of doxorubicin-loaded carbon nanohorns (DOX@oxSWCNHs/SA) in plasma and tissues were carried out. A high-performance liquid chromatographic method was developed and validated to determine the amount of doxorubicin. Compared with free DOX, the half-life ( t 1/2) of DOX@oxSWCNHs/SA was increased from 5.44 ± 1.09 to 7.38 ± 0.98 h, area under plasma concentration-time curve (AUC0-∞) was increased from 0.63 ± 0.008 to 1.42 ± 0.12 μg/(ml h), and the clearance of DOX was declined from 634 ± 10.05 to 280 ± 24.06 ml/h. No DOX was detected in heart after intravenous injection with DOX@oxSWCNHs/SA, while higher concentrations of drug were found in other tissues. These results suggested that DOX@oxSWCNHs/SA had the potential to obtain a long retention time in blood, sustained drug release, and a low toxicity, especially low cardiotoxicity.

  11. Target particle and heat loads in low-triangularity L-mode plasmas in JET with carbon and beryllium/tungsten walls

    NARCIS (Netherlands)

    Groth, M.; Brezinsek, S.; Belo, P.; Corrigan, G.; Harting, D.; Wiesen, S.; Beurskens, M. N. A.; Brix, M.; Clever, M.; Coenen, J. W.; Eich, T.; Flanagan, J.; Giroud, C.; Huber, A.; Jachmich, S.; Kruezi, U.; Lehnen, M.; Lowry, C.; Maggi, C. F.; Marsen, S.; Meigs, A. G.; Sergienko, G.; Sieglin, B.; Silva, C.; Sirinelli, A.; Stamp, M. F.; van Rooij, G. J.

    2013-01-01

    Divertor radiation profiles, and power and particle fluxes to the target have been measured in attached \\{JET\\} L-mode plasmas with carbon and beryllium/tungsten wall materials. In the beryllium/tungsten configuration, factors of 2–3 higher power loads and peak temperatures at the low field side tar

  12. Forced Transverse Vibration of a Closed Double Single-Walled Carbon Nanotube System Containing a Fluid with Effect of Compressive Axial Load

    Directory of Open Access Journals (Sweden)

    Mehrdad Nasirshoaibi

    2015-01-01

    Full Text Available Based on the Rayleigh beam theory, the forced transverse vibrations of a closed double single-walled carbon nanotube (SWCNT system containing a fluid with a Pasternak layer in-between are investigated. It is assumed that the two single-walled carbon nanotubes of the system are continuously joined by a Pasternak layer and both sides of SWCNTs containing a fluid are closed. The dynamic responses of the system caused by arbitrarily distributed continuous loads are obtained. The effect of compressive axial load on the forced vibrations of the double single-walled carbon nanotube system is discussed for one case of particular excitation loading. The properties of the forced transverse vibrations of the system are found to be significantly dependent on the compressive axial load. The steady-state vibration amplitudes of the SWCNT decrease with increasing of length of SWCNT. Vibrations caused by the harmonic exciting forces are discussed, and conditions of resonance and dynamic vibration absorption are formulated. The SWCNT-type dynamic absorber is a new concept of a dynamic vibration absorber (DVA, which can be applied to suppress excessive vibrations of corresponding SWCNT systems.

  13. Target particle and heat loads in low-triangularity L-mode plasmas in JET with carbon and beryllium/tungsten walls

    Energy Technology Data Exchange (ETDEWEB)

    Groth, M., E-mail: mathias.groth@aalto.fi [Aalto University, Association EURATOM-Tekes, Espoo (Finland); Brezinsek, S. [Institute for Energy and Climate Research, Association EURATOM-FZJ Jülich (Germany); Belo, P. [Institute of Plasmas and Nuclear Fusion, Association EURATOM-IST, Lisbon (Portugal); Corrigan, G. [Culham Centre of Fusion Energy, EURATOM-Association, Culham Science Centre, Abingdon (United Kingdom); Harting, D.; Wiesen, S. [Institute for Energy and Climate Research, Association EURATOM-FZJ Jülich (Germany); Beurskens, M.N.A.; Brix, M. [Culham Centre of Fusion Energy, EURATOM-Association, Culham Science Centre, Abingdon (United Kingdom); Clever, M.; Coenen, J.W. [Institute for Energy and Climate Research, Association EURATOM-FZJ Jülich (Germany); Eich, T. [Max-Planck Institute for Plasma Physics, EURATOM-Association, Garching (Germany); Flanagan, J.; Giroud, C. [Culham Centre of Fusion Energy, EURATOM-Association, Culham Science Centre, Abingdon (United Kingdom); Huber, A. [Institute for Energy and Climate Research, Association EURATOM-FZJ Jülich (Germany); Jachmich, S. [Association “EURATOM Belgium State”, Laboratory for Plasma Physics, Brussels (Belgium); Kruezi, U.; Lehnen, M. [Institute for Energy and Climate Research, Association EURATOM-FZJ Jülich (Germany); Lowry, C. [EFDA Close Support Unit, Culham Science Centre, Abingdon (United Kingdom); Maggi, C.F. [Max-Planck Institute for Plasma Physics, EURATOM-Association, Garching (Germany); Marsen, S. [Max-Planck-Institut for Plasma Physics, EURATOM-Association, Greifswald (Germany); and others

    2013-07-15

    Divertor radiation profiles, and power and particle fluxes to the target have been measured in attached JET L-mode plasmas with carbon and beryllium/tungsten wall materials. In the beryllium/tungsten configuration, factors of 2–3 higher power loads and peak temperatures at the low field side target were observed in high-recycling scrape-off layer conditions, whilst in close-to-sheath-limited conditions almost identical plasmas were obtained. The 30% reduction in total radiation with the beryllium/tungsten wall is consistent with a reduction of carbon as the dominant impurity radiator; however similar ion current to the plates, emission from recycling neutrals and neutral pressures in the pumping plenum were measured. Simulations with the EDGDE2/EIRENE code of these plasmas indicate a reduction of the total divertor radiation when carbon is omitted, but significantly higher power loads in high-recycling and detached conditions are predicted than measured.

  14. Fatigue life assessment of thin-walled welded joints under non-proportional load-time histories by the shear stress rate integral approach

    Directory of Open Access Journals (Sweden)

    A. Bolchoun

    2016-10-01

    Full Text Available Fatigue life tests under constant and variable amplitude loadings were performed on the tube-tube thin-walled welded specimens made of magnesium (AZ31 and AZ61 alloys. The tests included pure axial, pure torsional and combined in-phase and out-of-phase loadings with the load ratio  RR " ", " " 1  . For the tests with variable amplitude loads a Gaußdistributed loading spectrum with S L 4 5 10  cycles was used. Since magnesium welds show a fatigue life reduction under out-of-phase loads, a stress-based method, which takes this behavior into account, is proposed. The out-of-phase loading results in rotating shear stress vectors in the section planes, which are not orthogonal to the surface. This fact is used in order to provide an out-of-phase measure of the load. This measure is computed as an area covered by the shear stress vectors in all planes over a certain time interval, its computation involves the shear stress and the shear stress rate vectors in the individual planes. Fatigue life evaluation for the variable amplitudes loadings is performed using the Palmgren-Miner linear damage accumulation, whereas the total damage of every cycle is split up into two components: the amplitude component and the out-of-phase component. In order to compute the two components a modification of the rainflow counting method, which keeps track of the time intervals, where the cycles occur, must be used. The proposed method also takes into account different slopes of the pure axial and the pure torsional Wöhler-line by means of a Wöhler-line interpolation for combined loadings

  15. The effect of frog pressure and downward vertical load on hoof wall weight-bearing and third phalanx displacement in the horse - an in vitro study : research communication

    Directory of Open Access Journals (Sweden)

    A. Olivier

    2001-07-01

    load increased. Before loading, the pain-causing and pain-alleviating frog pressures resulted in a palmar movement of P3 relative to the dorsal hoof wall compared to the position of P3 at zero frog pressure (P < 0.05. This difference remained statistically significant up to 1300 Nload. At higher loads, the position of P3 did not differ significantly for the different frog pressures applied. It is concluded that increased frog pressure using the REFP shoe decreases total hoof wall weight-bearing and causes palmar movement of P3 at low weight-bearing loads. Without a shoe the toe and quarter hoof wall compression remained more constant and less in magnitude, than with a shoe.

  16. Preparation, characterization and in vitro release study of BSA-loaded double-walled glucose-poly(lactide-co-glycolide) microspheres.

    Science.gov (United States)

    Ansary, Rezaul H; Rahman, Mokhlesur M; Awang, Mohamed B; Katas, Haliza; Hadi, Hazrina; Mohamed, Farahidah; Doolaanea, Abd Almonem; Kamaruzzaman, Yunus B

    2016-09-01

    The aim of this study was to prepare a model protein, bovine serum albumin (BSA) loaded double-walled microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA) and a moderate-degrading carboxyl-terminated PLGA polymers to reduce the initial burst release and to eliminate the lag phase from the release profile of PLGA microspheres. The double-walled microspheres were prepared using a modified water-in-oil-in-oil-in-water (w/o/o/w) method and single-polymer microspheres were prepared using a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The particle size, morphology, encapsulation efficiency, thermal properties, in vitro drug release and structural integrity of BSA were evaluated in this study. Double-walled microspheres prepared with Glu-PLGA and PLGA polymers with a mass ratio of 1:1 were non-porous, smooth-surfaced, and spherical in shape. A significant reduction of initial burst release was achieved for the double-walled microspheres compared to single-polymer microspheres. In addition, microspheres prepared using Glu-PLGA and PLGA polymers in a mass ratio of 1:1 exhibited continuous BSA release after the small initial burst without any lag phase. It can be concluded that the double-walled microspheres made of Glu-PLGA and PLGA polymers in a mass ratio of 1:1 can be a potential delivery system for pharmaceutical proteins.

  17. Steel plates and concrete filled composite shear walls related nuclear structural engineering: Experimental study for out-of-plane cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaohu [The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124 (China); Li, Xiaojun, E-mail: beerli@vip.sina.com [The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124 (China); Institute of Geophysics, China Earthquake Administration, Beijing 100081 (China)

    2017-04-15

    Based on the program of CAP1400 nuclear structural engineering, the out-of-plane seismic behavior of steel plate and concrete infill composite shear walls (SCW) was investigated. 6 1/5 scaled specimens were conducted which consist of 5 SCW specimens and 1 reinforced concrete (RC) specimen. The specimens were tested under out-of-plane cyclic loading. The effect of the thickness of steel plate, vertical load and the strength grade of concrete on the out-of-plane seismic behavior of SCW were analyzed. The results show that the thickness of steel plate and vertical load have great influence on the ultimate bearing capacity and lateral stiffness, however, the influence of the strength grade of concrete was little within a certain range. SCW is presented to have a better ultimate capacity and lateral stiffness but have worse ductility in failure stage than that of RC. Based on the experiment, the cracking load of concrete infill SCW was analyzed in theory. The modified calculation formula of the cracking load was made, the calculated results showed good agreement with the test results. The formula can be used as the practical design for the design of cracking loads.

  18. AAC 砌块自由加载墙施工工法%Construction Technology of the Free Loading Wall of AAC Building Block

    Institute of Scientific and Technical Information of China (English)

    陆建辉; 戴伟军; 朱晓波

    2016-01-01

    AAC (Autoclaved Aerated Concrete) building block is light in self-weigh, good fireproof, warm-proof and more easily cutting. But the strength of AAC building block is low. The AAC can’t be easily loaded, punched or holed. Its strength and warm-proof will get lower, when it meets water especially. The technology of the free loading wall of AAC building block (AAC wall) adopts the mixed wall structure, which consists of AAC building blocks, shale bricks and concrete bricks. The AAC wall can be easily loaded, punched, holed and free to fit all kinds of deformation, when you put concrete bricks or shale bricks into AAC wall through BIM design. Using the technology of mortar cover with wire mesh and boundary plugging, the AAC wall can be better in waterproof yet. Using the different thickness among building block wall, shale bricks wall and concrete beam or column, adopting the technology of heat bridge of gearing each other, the heat bridge can be overcome. This technology has solved the common quality failing of AAC wall, enlarging its integrity and use range, increasing the function of punching, holing or waterproofing systemically. It can be widely utilized in inside wall or outside wall because of producing and manufacturing in industry.%AAC 砌块自重轻、易切割、防火与保温性好,但其强度低、不能任意加载,开槽开洞局限较多,遇水湿胀且强度和保温性能变低。 AAC 砌块自由加载墙体施工工艺采用 AAC 砌块、页岩砖、素混凝土块混墙结构,通过 BIM 排块设计,在 AAC 砌块墙体中嵌入素混凝土块,在箱体集中处砌筑页岩砖墙体,以自由地适应加载、开槽开洞和墙体变形;利用表面网膜和界面封堵工艺,较好地解决了防渗防漏;利用砌块墙与页岩砖墙、混凝土梁柱间的厚度差,采用热桥咬合工艺,较好地解决了热桥。该工法系统地解决 AAC 砌块墙体的质量通病、使用局限,增强 AAC砌块墙体的

  19. Preparation, loading, and cytotoxicity analysis of polymer nanotubes from an ethylene glycol dimethacrylate homopolymer in comparison to multi‐walled carbon nanotubes

    Science.gov (United States)

    Thomas, Laurent; Zheng, Yu; Steinhart, Martin; Werner, Carsten; Wang, Wenxin

    2016-01-01

    Abstract Despite concerns over toxicity, carbon nanotubes have been extensively investigated for potential applications in nanomedicine because of their small size, unique properties, and ability to carry cargo such as small molecules and nucleic acids. Herein, we show that polymer nanotubes can be synthesized quickly and easily from a homopolymer of ethylene glycol dimethacrylate (EGDMA). The nanotubes formed via photo‐initiated polymerization of the highly functional prepolymer, inside an anodized aluminium oxide template, have a regular structure and large internal pore and can be loaded with a fluorescent dye within minutes representing a simple alternative to multi‐walled carbon nanotubes for biomedical applications. PMID:27512602

  20. Thermo-sensitive liposomes loaded with doxorubicin and lysine modified single-walled carbon nanotubes as tumor-targeting drug delivery system.

    Science.gov (United States)

    Zhu, Xiali; Xie, Yingxia; Zhang, Yingjie; Huang, Heqing; Huang, Shengnan; Hou, Lin; Zhang, Huijuan; Li, Zhi; Shi, Jinjin; Zhang, Zhenzhong

    2014-11-01

    This report focuses on the thermo-sensitive liposomes loaded with doxorubicin and lysine-modified single-walled carbon nanotube drug delivery system, which was designed to enhance the anti-tumor effect and reduce the side effects of doxorubicin. Doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes was prepared by reverse-phase evaporation method, the mean particle size was 232.0 ± 5.6 nm, and drug entrapment efficiency was 86.5 ± 3.7%. The drug release test showed that doxorubicin released more quickly at 42℃ than at 37℃. Compared with free doxorubicin, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes could efficiently cross the cell membranes and afford higher anti-tumor efficacy on the human hepatic carcinoma cell line (SMMC-7721) cells in vitro. For in vivo experiments, the relative tumor volumes of the sarcomaia 180-bearing mice in thermo-sensitive liposomes group and doxorubicin group were significantly smaller than those of N.S. group. Meanwhile, the combination of near-infrared laser irradiation at 808 nm significantly enhanced the tumor growth inhibition both on SMMC-7721 cells and the sarcomaia 180-bearing mice. The quality of life such as body weight, mental state, food and water intake of sarcomaia 180 tumor-bearing mice treated with doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes were much higher than those treated with doxorubicin. In conclusion, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes combined with near-infrared laser irradiation at 808 nm may potentially provide viable clinical strategies for targeting delivery of anti-cancer drugs.

  1. Complete Soil-Structure Interaction (SSI) Analyses of I-walls Embedded in Level Ground During Flood Loading

    Science.gov (United States)

    2012-09-01

    8217 El=-2.5’ Sheet pile tip ERDC/ITL TR-12-4 10 (CWALSHT) ( Dawkins 1991) and procedures outlined in HQUSACE (1994). The initial design depth of...mechanics. 6th ed. New York: Chapman and Hall. Dawkins , W. P. 1991. User’s guide: Computer program for design and analysis of sheet- pile walls by... Dawkins , R. Mosher, and I. Hallal. 1997. Soil-structure interaction effects in floodwalls. Electronic Journal of Geotechnical Engineering. http

  2. Measurement of gas species, temperatures, char burnout, and wall heat fluxes in a 200-MW{sub e} lignite-fired boiler at different loads

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhengqi; Jing, Jianping; Liu, Guangkui; Chen, Zhichao; Liu, Chunlong [School of Energy Science and Engineering, Harbin Institute of Technology, 92, West Dazhi Street, Harbin 150001 (China)

    2010-04-15

    We measured various operational parameters of a 200-MW{sub e}, wall-fired, lignite utility boiler under different loads. The parameters measured were gas temperature, gas species concentration, char burnout, component release rates (C, H and N), furnace temperature, heat flux, and boiler efficiency. Cold air experiments of a single burner were conducted in the laboratory. A double swirl flow pulverized-coal burner has two ring recirculation zones that start in the secondary air region of the burner. With increasing secondary air flow, the air flow axial velocity increases, the maximum values for the radial velocity, tangential velocity, and turbulence intensity all increase, and there are slight increases in the air flow swirl intensity and the recirculation zone size. With increasing load gas, the temperature and CO concentration in the central region of burner decrease, while O{sub 2} concentration, NO{sub x} concentration, char burnout, and component release rates of C, H, and N increase. Pulverized-coal ignites farther into the burner, in the secondary air region. Gas temperature, O{sub 2} concentration, NO{sub x} concentration, char burnout and component release rates of C, H, and N all increase. Furthermore, CO concentration varies slightly and pulverized-coal ignites closer. In the side wall region, gas temperature, O{sub 2} concentration, and NO{sub x} concentration all increase, but CO concentration varies only slightly. In the bottom row burner region the furnace temperature and heat flux increase appreciably, but the increase become more obvious in the middle and top row burner regions and in the burnout region. Compared with a 120-MW{sub e} load, the mean NO{sub x} emission at the air preheater exits for 190-MW{sub e} load increases from 589.5 mg/m{sup 3} (O{sub 2} = 6%) to 794.6 mg/m{sup 3} (O{sub 2} = 6%), and the boiler efficiency increases from 90.73% to 92.45%. (author)

  3. Nonlinear incompressible finite element for simulating loading of cardiac tissue--Part II: Three dimensional formulation for thick ventricular wall segments.

    Science.gov (United States)

    Horowitz, A; Sheinman, I; Lanir, Y

    1988-02-01

    A three dimensional incompressible and geometrically as well as materially nonlinear finite element is formulated for future implementation in models of cardiac mechanics. The stress-strain relations in the finite element are derived from a recently proposed constitutive law which is based on the histological composition of the myocardium. The finite element is formulated for large deformations and considers incompressibility by introducing the hydrostatic pressure as an additional variable. The results of passive loading cases simulated by this element allow to analyze the mechanical properties of ventricular wall segments, the main of which are that the circumferential direction is stiffer than the longitudinal one, that its shear stiffness is considerably lower than its tensile and compressive stiffness and that, due to its mechanically prominent role, the collagenous matrix may affect the myocardial perfusion.

  4. Static load cycle testing of a low-aspect-ratio four-inch wall, TRG-type structure, TRG-5-4 (1. 0, 0. 56)

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C.R.; Bennett, J.G.; Dunwoody, W.E. (Los Alamos National Lab., NM (USA)); Baker, W.E. (New Mexico Univ., Albuquerque, NM (USA))

    1990-11-01

    This report is the second in a series of test reports that details the quasi-static cyclic testing of low height-to-length aspect ratio reinforced concrete structures. The test structures were designed according to the recommendations of a technical review group for the US Nuclear Regulatory Commission sponsored Seismic Category I Structures Program. The structure tested and reported here had 4-in.-thick shear and end walls, and the elastic deformation was dominated by shear. The background of the program and previous results are given for completeness. Details of the geometry, material property tests, construction history, ultrasonic testing, and modal testing to find the undamaged dynamic characteristics of the structures are given. Next, the static test procedure and results in terms of stiffness and load deformation behavior are given. Finally, results are shown relative to other known results, and conclusions are presented. 33 refs., 140 figs., 13 tabs.

  5. Damage and fatigue crack growth of Eurofer steel first wall mock-up under cyclic heat flux loads. Part 2: Finite element analysis of damage evolution

    Energy Technology Data Exchange (ETDEWEB)

    You, Jeong-Ha, E-mail: you@ipp.mpg.de

    2014-04-15

    Highlights: • The surface heat flux load of 3.5 MW/m{sup 2} produced substantial stresses and inelastic strains in the heat-loaded surface region, especially at the notch root. • The notch root exhibited a typical notch effect such as stress concentration and localized inelastic yield leading to a preferred damage development. • The predicted damage evolution feature agrees well with the experimental observation. • The smooth surface also experiences considerable stresses and inelastic strains. However, the stress intensity and the amount of inelastic deformation are not high enough to cause any serious damage. • The level of maximum inelastic strain is higher at the notch root than at the smooth surface. On the other hand, the amplitude of inelastic strain variation is comparable at both positions. • The amount of inelastic deformation is significantly affected by the length of pulse duration time indicating the important role of creep. - Abstract: In the preceding companion article (part 1), the experimental results of the high-heat-flux (3.5 MW/m{sup 2}) fatigue tests of a Eurofer bare steel first wall mock-up was presented. The aim was to investigate the damage evolution and crack initiation feature. The mock-up used there was a simplified model having only basic and generic structural feature of an actively cooled steel FW component for DEMO reactor. In that study, it was found that microscopic damage was formed at the notch root already in the early stage of the fatigue loading. On the contrary, the heat-loaded smooth surface exhibited no damage up to 800 load cycles. In this paper, the high-heat-flux fatigue behavior is investigated with a finite element analysis to provide a theoretical interpretation. The thermal fatigue test was simulated using the coupled damage-viscoplastic constitutive model developed by Aktaa. The stresses, inelastic deformation and damage evolution at the notch groove and at the smooth surface are compared. The different

  6. Analysis of thin-walled cylindrical composite shell structures subject to axial and bending loads: Concept development, analytical modeling and experimental verification

    Science.gov (United States)

    Mahadev, Sthanu

    Continued research and development efforts devoted in recent years have generated novel avenues towards the advancement of efficient and effective, slender laminated fiber-reinforced composite members. Numerous studies have focused on the modeling and response characterization of composite structures with particular relevance to thin-walled cylindrical composite shells. This class of shell configurations is being actively explored to fully determine their mechanical efficacy as primary aerospace structural members. The proposed research is targeted towards formulating a composite shell theory based prognosis methodology that entails an elaborate analysis and investigation of thin-walled cylindrical shell type laminated composite configurations that are highly desirable in increasing number of mechanical and aerospace applications. The prime motivation to adopt this theory arises from its superior ability to generate simple yet viable closed-form analytical solution procedure to numerous geometrically intense, inherent curvature possessing composite structures. This analytical evaluative routine offers to acquire a first-hand insight on the primary mechanical characteristics that essentially govern the behavior of slender composite shells under typical static loading conditions. Current work exposes the robustness of this mathematical framework via demonstrating its potential towards the prediction of structural properties such as axial stiffness and bending stiffness respectively. Longitudinal ply-stress computations are investigated upon deriving the global stiffness matrix model for composite cylindrical tubes with circular cross-sections. Additionally, this work employs a finite element based numerical technique to substantiate the analytical results reported for cylindrically shaped circular composite tubes. Furthermore, this concept development is extended to the study of thin-walled, open cross-sectioned, curved laminated shells that are geometrically

  7. High loading of graphene oxide/multi-walled carbon nanotubes into PDLLA: A route towards the design of osteoconductive, bactericidal and non-immunogenic 3D porous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Hudson [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil); Laboratory of Energy Storage & Supply - ES& S, Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, CEP: 12.244-000, Sao Paulo (Brazil); Rodrigues, Bruno Vinícius Manzolli [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil); Ribeiro Neto, Wilson Alves; Bretas, Rosario Elida Suman [Department of Materials Engineering, Federal University of Sao Carlos, Rodovia Washington Luis, km 235 – SP-310, Sao Carlos, Sao Paulo (Brazil); Da-Silva, Newton Soares [Laboratory of Cell Biology and Tissue, Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, CEP: 12244-000, Sao Paulo (Brazil); Marciano, Fernanda Roberta [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil); Oliveira Lobo, Anderson, E-mail: aolobo@pq.cnpq.br [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil)

    2016-07-01

    We have prepared a novel 3D porous biomaterial combining poly (DL-lactic acid) (PDLLA) and graphene and multi-walled carbon nanotubes oxides (MWCNTO-GO) composite. PDLLA as control and a high loading of PDLLA/MWCNTO-GO (50/50 w/w) bioscaffolds were prepared and functionalized. MWCNTs were exfoliated to form MWCNTO-GO by oxygen plasma etching. The later was also applied to enhance the scaffolds wettability, attaching oxygen-containing groups on their surfaces. This approach produced a porous architecture observed by scanning electron microscopy and semi-quantified by electrochemical analysis. The later also indicated a notable increase on the conductivity of PDLLA/MWCNTO-GO scaffold compared to MWCNTO-GO free PDLLA (about 5 orders of magnitudes at low frequencies). Thermogravimetric analysis showed that the MWCNTO-GO acted protecting the PDLLA matrix, enhancing its thermal stability. The PDLLA/MWCNTO-GO scaffolds had significant cellular adhesion, did not present cytotoxicity effect, besides reduced bactericidal proliferation and produced mineralized tissues in SBF media. The metallic MWCNTO-GO powder held together by PDLLA polymer opens a whole new branch of applications, including bioelectroanalyses, drug delivery systems and tissue engineering. - Highlights: • We produced a novel 3D porous material from PDLLA, graphene oxide and MWCNT oxide. • MWCNTO-GO loading (50/50 w/w) increased notably the conductivity of PDLLA scaffold. • MWCNTO-GO acted protecting the PDLLA matrix, enhancing its thermal stability. • PDLLA/MWCNTO-GO scaffolds did not present cytotoxicity effect. • PDLLA/MWCNTO-GO scaffolds presented bioactivity properties.

  8. Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin-loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells

    Science.gov (United States)

    Oh, Yunok; Jin, Jun-O.; Oh, Junghwan

    2017-03-01

    Single-walled carbon nanotubes (SWNTs) are often the subject of investigation as effective photothermal therapy (PTT) agents owing to their unique strong optical absorption. Doxorubicin (DOX)-loaded SWNTs (SWNTs-DOX) can be used as an efficient therapeutic agent for combined near infrared (NIR) cancer photothermal and chemotherapy. However, SWNTs-DOX-mediated induction of cancer cell death has not been fully investigated, particularly the reaction of DOX inside cancer cells by PTT. In this study, we examined how the SWNTs-DOX promoted effective MDA-MB-231 cell death compared to DOX and PTT alone. We successfully synthesized the SWNTs-DOX. The SWNTs-DOX exhibited a slow DOX release, which was accelerated by NIR irradiation. Furthermore, DOX released from the SWNTs-DOX accumulated inside the cells at high concentration and effectively localized into the MDA-MB-231 cell nucleus. A combination of SWNTs-DOX and PTT promoted an effective MDA-MB-231 cell death by mitochondrial disruption and ROS generation. Thus, SWNTs-DOX can be utilized as an excellent anticancer agent for early breast cancer treatment.

  9. Experimental study of the shearing behavior of cold-formed steel wall panels under cyclic load%冷弯薄壁型钢组合墙体循环荷载下抗剪性能试验研究

    Institute of Scientific and Technical Information of China (English)

    苏明周; 黄智光; 孙健; 齐岩; 申林

    2011-01-01

    为考察冷弯薄壁型钢组合墙体在循环荷载下的抗剪性能,进行10片足尺墙体试件水平低周反复加载试验,得到不同构造墙体的屈服荷载、最大荷载、破坏荷载、耗能系数和延性系数等性能指标。试验结果表明:组合墙体的耗能能力较好;墙体的抗剪承载力主要来源于墙板的蒙皮作用;斜撑对提高单柱墙体抗剪承载力起一定作用,但对双柱墙体的作用很小;当忽略墙体开洞部分的抗剪承载力后,单位长度开洞墙体的抗剪承载力比普通墙体稍高,表明墙体开洞部分承担了一定剪力;双柱墙体比单柱墙体的抗剪承载力显著提高;试验过程中各试件立柱的应变反应普遍较大、横撑%In order to study the shearing behavior of cold-formed steel wall panels, full scale model test was carried out for 10 pieces of wall panels under cyclic horizontal load. The shearing performance indexes of wall panels such as yield load, maximum load, failure load, energy dissipation coefficient, and ductility factor were calculated using the test results. Based on the analysis, the following conclusions are obtained. The wall panels had good energy dissipation capacity. The shear resistance of the wall panels mainly derived from skin action. The diagonal bracings were helpful to improve the shear resistance of single-column wall panel while nearly useless to double-column wall panel. The per unit shear resistance of wall panel with openings was higher than that of ordinary wall panel when the shear load carrying capacity of openings was ignored. The shear load carrying capacities of double-column wall panels were obviously higher than that of single-column ones. The strain response was largest for the column, smaller for the transverse bracing, and smallest for the diagonal bracing. The interface slip between the upper and lower wallboards was obvious, thus the seams between wallboards should be as small as possible

  10. Lifetime assessment of thick-walled components made of nickel-base alloys under near-service loading conditions; Lebensdauerbewertung dickwandiger Bauteile aus Nickelbasislegierungen unter betriebsnahen Beanspruchungen

    Energy Technology Data Exchange (ETDEWEB)

    Hueggenberg, Daniel

    2015-11-06

    and the transmission electron microscope for the base raw material, the creep and creep-fatigue exposed material. For the classification the investigation results were compared to the results of the other projects and no differences could be identified. For the description of the deformation and damage behavior under creep-fatigue loading with finite elements simulations a viscoplastic deformation model with an integrated damage model of Lemaitre was used. The material dependent model parameters were fitted under consideration of the basis characterization test results of the Alloy 617 mod. and Alloy 263. All basis characterization tests are simulated with finite elements to classify the parameter fittings. The verification of the fitted material models was carried out by simulations of the complex lab tests. From the comparison of the simulation and test results it is obvious that the deformation and damage behavior can be reproduced with the used material model in a good manner. With finite element simulations of complex thick-walled components (header, formed part) under realistic thermal and mechanic loading conditions could be shown that the viscoplastic material model fitted for the Alloy 617 mod. and Alloy 263 is able to predict the locations of the maximum loadings and the lifetime until the first cracks appear. This could be confirmed by dye penetrant testing on the one hand and destructive investigations of two fracture surfaces of the header on the other hand. Additionally the approaches of the European DIN EN 12952-3/4, the American ASME Section III Division 1 Subsection NH, the French RCC-MR RB 3262.12 and the British R5 recommendations Volume 2/3 are used to predict the lifetimes. It can be seen that the approaches of ASME and RCC-MR provide very conservative predictions and that the approaches of R5 and DIN EN 12952 provide non-conservative predictions. These results lead to the conclusion that no approach of the standards/recommendation is suitable for

  11. 框支密肋复合墙梁竖向承载力影响因素分析%ANALYSIS OF FACTORS INFLUENCING PERFORMANCE OF FRAME-SUPPORTED MULTI-RIBBED WALL BEAM UNDER VERTICAL LOAD

    Institute of Scientific and Technical Information of China (English)

    庞乃勇; 贾英杰; 夏雷

    2012-01-01

    以框支密肋复合墙梁为研究对象,通过有限元分析,改变上部密肋复合墙板的划分形式、边框柱尺寸以及填充砌块与密肋框格的弹性模量比等性能参数,研究竖向荷载作用下框支密肋托墙梁的受力机理及墙板参数对托梁受力的影响,进而对框支密肋复合墙梁的优化设计提出要求,为工程实践提供参考。%FEM was employed to study frame-supported multi-ribbed wall beam under vertical load. Using the changes in performance parameters such as divided form of wall, the size of the side column and the ratio of in-filled block and multi-ribbed frame, the mechanism of frame-supported multi-ribbed wall beam and the influencing factors of the parameters of wall to the wall beam are studied. Which provides references for the optimization and engineering practice of frame-supported multi-ribbed wall.

  12. Docetaxel-loaded single-wall carbon nanohorns using anti-VEGF antibody as a targeting agent: characterization, in vitro and in vivo antitumor activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qian; Li, Nannan; Shu, Chang; Li, Ruixin; Ma, Xiaona; Li, Xuequan; Wang, Ran; Zhong, Wenying, E-mail: wyzhong@cpu.edu.cn [China Pharmaceutical University, Department of Analytical Chemistry (China)

    2015-05-15

    A novel antitumor drug delivery system, docetaxel (DTX)-loaded oxidized single-wall carbon nanohorns (oxSWNHs) with anti-VEGF monoclonal antibody (mAb) as a target agent was constructed. DTX was absorbed onto the oxSWNHs via the physical adsorption or π–π interaction. DSPE–PEG–COOH was non-covalently wrapped to the hydrophobic surface of oxSWNHs to improve its water solubility and biocompatibility. The mAb was bonded to the PEG through amide bond. The DTX@oxSWNHs-PEG-mAb (DDS) exhibited suitable particle size (191.2 ± 2.1 nm), good particle size distribution (PDI: 0.196), and negative zeta potential (−24.3 ± 0.85 mV). These features enhanced permeability and retention (EPR) effect and reduced the drug molecule uptake by the reticuloendothelial system. The in vitro drug release followed non-Fickian diffusion (n = 0.6857, R = 0.9924) with the cumulative release of DTX 59 ± 1.35 % at 72 h. Compared with free DTX, the DDS enhanced the cytotoxicity in MCF-7 cell lines in vitro efficiently (IC{sub 50}: 2.96 ± 0.6 μg/ml), and provided higher antitumor efficacy (TGI: 69.88 %) in vivo. The histological analysis indicated that the DDS had no significant side effect. Therefore, the new DDS is promising to attain higher pharmaceutical efficacy and lower side effects than free DTX for cancer therapy. The research demonstrated that DTX@oxSWNHs-PEG-mAb might have promising biomedical applications for future cancer therapy.

  13. Docetaxel-loaded single-wall carbon nanohorns using anti-VEGF antibody as a targeting agent: characterization, in vitro and in vivo antitumor activity

    Science.gov (United States)

    Zhao, Qian; Li, Nannan; Shu, Chang; Li, Ruixin; Ma, Xiaona; Li, Xuequan; Wang, Ran; Zhong, Wenying

    2015-05-01

    A novel antitumor drug delivery system, docetaxel (DTX)-loaded oxidized single-wall carbon nanohorns (oxSWNHs) with anti-VEGF monoclonal antibody (mAb) as a target agent was constructed. DTX was absorbed onto the oxSWNHs via the physical adsorption or π-π interaction. DSPE-PEG-COOH was non-covalently wrapped to the hydrophobic surface of oxSWNHs to improve its water solubility and biocompatibility. The mAb was bonded to the PEG through amide bond. The DTX@oxSWNHs-PEG-mAb (DDS) exhibited suitable particle size (191.2 ± 2.1 nm), good particle size distribution (PDI: 0.196), and negative zeta potential (-24.3 ± 0.85 mV). These features enhanced permeability and retention (EPR) effect and reduced the drug molecule uptake by the reticuloendothelial system. The in vitro drug release followed non-Fickian diffusion ( n = 0.6857, R = 0.9924) with the cumulative release of DTX 59 ± 1.35 % at 72 h. Compared with free DTX, the DDS enhanced the cytotoxicity in MCF-7 cell lines in vitro efficiently (IC50: 2.96 ± 0.6 μg/ml), and provided higher antitumor efficacy (TGI: 69.88 %) in vivo. The histological analysis indicated that the DDS had no significant side effect. Therefore, the new DDS is promising to attain higher pharmaceutical efficacy and lower side effects than free DTX for cancer therapy. The research demonstrated that DTX@oxSWNHs-PEG-mAb might have promising biomedical applications for future cancer therapy.

  14. Investigation on the steel staggered truss under seismic load considering the effect of infilled walls%错列式钢桁架结构受填充墙影响的抗震研究

    Institute of Scientific and Technical Information of China (English)

    郭庆生; 杨庆山

    2012-01-01

    The steel consumption of steel staggered truss structure is 40 % less than other structure system. The effect of infilled walls on the structure and the structure members is important because the member size of steel staggered truss is small. The finite element analysis software ETABS was adopted to simulate the structure actual mechanics effect with 3D model. The effect of infilled wall stiffness on structure and interior members was summed up comparing with the different results based on two different models considering or ignoring the infilled wall stiffness under the load combination with seismic load. Some suggestions were made about technical parameters and steel structure design. The investigation shows that it should be analysed with 3D models according to the infilled wall stiffness, wall distribution and the wall connection method to main buildings for steel staggered truss structure. The infilled wall stiffness is big enough to affect the structure natural vibration periods and interior member forces before it is destroied by the accidental seimic load.%错列式钢桁架结构比其他结构形式可节省约40%的用钢量,结构杆件的截面比较小,填充墙刚度对结构及杆件受力性能的影响较为重要.采用有限元分析软件ETABS,建立三维空间模型模拟结构的实际受力状态,通过对错列式钢桁架结构在地震力组合荷载作用下是否计取填充墙刚度的对比分析,给出了有关技术参数及钢结构设计的建议.对于错列式钢桁架结构,应据填充墙刚度、位置及与主结构的连接方式等建立空间三维模型进行计算,分析表明,填充墙在没有因偶遇地震荷载破坏之前,具有一定的刚度,它对于结构的自振周期及杆件内力的分布有较大影响.

  15. The Lamportian cell wall

    Energy Technology Data Exchange (ETDEWEB)

    Keiliszewski, M.; Lamport, D. (Michigan State Univ. Plant Research Lab., East Lansing (United States))

    1991-05-01

    The Lamportian Warp-Weft hypothesis suggests a cellulose-extensin interpenetrating network where extensin mechanically couples the load-bearing cellulose microfibrils in a wall matrix that is best described as a microcomposite. This model is based on data gathered from the extensin-rich walls of tomato and sycamore cell suspension culture, wherein extensin precursors are insolubilized into the wall by undefined crosslinks. The authors recent work with cell walls isolated from intact tissue as well as walls from suspension cultured cells of the graminaceous monocots maize and rice, the non-graminaceous monocot asparagus, the primitive herbaceous dicot sugar beet, and the gymnosperm Douglas Fir indicate that although extensins are ubiquitous to all plant species examined, they are not the major structural protein component of most walls examined. Amino acid analyses of intact and HF-treated walls shows a major component neither an HRGP, nor directly comparable to the glycine-rich wall proteins such as those associated with seed coat walls or the 67 mole% glycine-rich proteins cloned from petunia and soybean. Clearly, structural wall protein alternatives to extensin exist and any cell wall model must take that into account. If we assume that extracellular matrices are a priori network structures, then new Hypless' structural proteins in the maize cell wall raise questions about the sort of network these proteins create: the kinds of crosslinks involved; how they are formed; and the roles played by the small amounts of HRGPs.

  16. 重复荷载作用下加筋格宾挡土墙动力特性%Dynamic Characteristics of Reinforced Gabion Walls Subjected to Cyclic Loading

    Institute of Scientific and Technical Information of China (English)

    李昀; 杨果林; 林宇亮

    2011-01-01

    A large-scale model test of reinforced gabion walls was designed and performed. The model wall filled with red sandstone for construction was built with a length of 3.0 m, height of 2. 0 m, and width of 0. 85 m. PVC-coated heavy galvanized double twisted hexagonal wire mesh was used in the test, and the wire mesh specimens were 80 mm x 100 mm cell sizes. A series of tests were performed with different input sine wave frequencies and amplitudes. The dynamic characteristics and dynamic responses of model wall under cyclic loading were discussed. The results show that (1) the inside and outside of reinforced gabion wall under two million times repeated loads does not appear significant local and overall damage, the structure is stable and anti-destructive; (2) when the vibration frequency reaches 10 Hz, there are great changes of vertical and horizontal acceleration and displacement response of the reinforced gabion wall. The results are helpful to reveal the mechanism of reinforced gabion wall's instability under cyclic loading.%设计并完成了大型加筋格宾挡墙模型试验.试验模型尺寸为3.0 m x0.85 m×2.0 m(长×宽×高),填料采用工程现场用红砂岩材料制备.双绞合六边形金属格宾网由PVC包裹,并镀锌防腐,网面单元尺寸为80 mm x100 mm.通过输入不同幅值和频率的正弦波激励,探讨重复荷载作用下模型挡墙的动力特性与动力响应规律.试验结果表明,加筋格宾挡墙在重复荷载作用200万次下,挡墙内外部未出现明显的局部和整体破坏,其结构具有良好的稳定性和抗破坏性.当振动频率达到10 Hz时,加筋格宾挡墙的竖向、水平加速度和竖向、水平位移反应变化极大.试验结果有助于揭示挡墙在重复荷栽作用下的失稳机制.

  17. Polyionic complex of single-walled carbon nanotubes and PEG-grafted-hyperbranched polyethyleneimine (PEG-PEI-SWNT) for an improved doxorubicin loading and delivery: development and in vitro characterization.

    Science.gov (United States)

    Farvadi, Fakhrossadat; Tamaddon, AliMohammad; Sobhani, Zahra; Abolmaali, Samira Sadat

    2016-05-13

    To take advantages of single-walled carbon nanotubes (SWNTs) for cellular delivery of chemotherapeutic agents (e.g. doxorubicin) in order to decrease general toxicities of doxorubicin (DOX) and to promote the efficacy, we aimed to develop a novel approach to stabilize SWNTs through consequent steps of oxidation and PEG-g-PEI polyionic complexation (PEG-PEI-SWNT). The DOX loading capacity of modified SWNTs was about 900%. Moreover, it showed an enhanced dispersibility in physiologic-stimulated medium. DOX release was prolonged, independent of dilution, and exhibited an acidic pH-stimulated release. Therefore, PEG-PEI-SWNT could be used for cancer chemotherapy in vivo.

  18. STABILITY ANALYSIS OF WATER FRONT RETAINING WALL SUBJECTED TO SEISMIC LOADS USING PSEUDO-DYNAMIC METHOD%强地震荷载作用下临水挡土墙的拟动力法稳定性分析

    Institute of Scientific and Technical Information of China (English)

    周小平; 季璇; 钱七虎

    2012-01-01

    It is assumed that failure surfa.ce of backfill soil is composite curved one. Pseudo-dynamic method, in which time-history curves of acceleration was simulated by sinusoidal motions, was adopted to research the stability of the water front retaining wall subjected to seismic loads. The damping force and the inertial force acting on retaining wall and backfill soil were investigated. The closed-form solutions of passive earth pressure and dynamic factor of safety against sliding and rotation of the retaining wall during earthquake were obtained. Finally, effects of seismic acceleration, amplification factor, wall height, physico-mechanical parameters of backfill soil and hydrodynamic pressure acting on water front retaining wall on sliding displacement, dynamic factor of safety against sliding and rotation of the retaining wall were quantitatively analyzed. It is concluded that the stability of the water front retaining wall is getting worse when the earthquake speeds up, the water level gets higher and the internal friction angle gets smaller.%假设墙后填土破坏面为曲面,用正弦波模拟地震加速度时程曲线,采用拟动力法对临水挡土墙进行稳定性分析,确定了挡土墙和墙后填土所受的阻尼力和惯性力,获得地震荷载作用下挡土墙的被动土压力、抗滑和抗倾覆稳定性系数的封闭形式解析解.定量分析地震加速度、放大系数、墙后填土的物理力学参数和动水压力对挡土墙的滑动位移、挡土墙的抗滑和抗倾覆稳定性系数的影响,得出当地震加速度、放大系数越大,水位越高,内摩擦角越小,临水挡土墙的稳定性越差.

  19. 竹筋夯土墙单调水平荷载非线性有限元分析%Nonlinear FEM analysis of rammed-earth walls with bamboo bars under monotonic horizontal load

    Institute of Scientific and Technical Information of China (English)

    文枚; 李洪昌; 李岩

    2011-01-01

    Numerical models of rammed-earth walls with bamboo bars under monotonic horizontal load were builded using Solid 65 and Link 8 in the commerical finite element software ANSYS, and then analyzed, lateral resistence capacities, crack shapes, loaddisplacement curves and ductilities of the rammed-earth walls with bamboo bans were reached.By means of comparing the analytical to experimental results,it can be concluded that analysis of rammed-earth walls with bamboo bars using FEM has a high precision.%应用有限元分析软件ANSYS中的Solid65和Link8单元建立竹筋夯土墙的数值分析模型,并对其进行单调荷载下的数值计算,得出了竹筋夯土墙的抗侧承载力、裂缝形态、荷载位移曲线和延性.将数值结果与试验结果进行对比,结果表明,有限元法分析竹筋夯土墙具有较高的精度.

  20. Load Determination and Internal Force Calculation Methods for the Door-frame Wall in Civil Air Defense Basement Structures%人防地下室门框墙荷载取值和内力计算方法

    Institute of Scientific and Technical Information of China (English)

    陈星

    2014-01-01

    净高超过3.6 m 的五、六级人防地下室门框墙需要手算内力和配筋。对于最常见的无侧立柱型门框墙,可根据门框墙的组成部分将其分割成侧挡墙、门槛、上挡墙和上挡梁,按照单一构件确定其等效静荷载取值和计算方法。侧挡墙和门槛可按照规范提供的方法设计。现有文献对上挡墙的等效静荷载取值说法不一,可根据人防设计规范的要求,按照是否设置上挡梁,分别取临空墙荷载或门框墙荷载。上挡梁的计算跨度和边界条件,在不同文献中区别较大。在 SAP2000中采用壳单元和梁单元分别模拟人防墙板和上挡梁,结果显示上挡梁的支座条件很难达到理想的固结。由于门框墙的几何尺寸较为固定,层高和支撑墙的长度对上挡梁弯矩影响不大。分别调整上挡梁截面、支撑墙墙厚和梁跨度,无量纲化之后,发现墙梁抗弯刚度比同支座与跨中弯矩比之间呈对数关系,并对其进行了拟合。给出了无侧立柱型门框墙的手算流程,并同图集结果进行对比,结果显示本文提供的计算方法同人防图集的配筋值较为接近。%For the door-frame wall in civil air defense basement structures at five or six grade seismic intensity fortification zones, interior forces need to be hand-calculated if the clear height of basement is more than 3. 6 m. For most common door-frame walls without column flanks, the wall can be divided into several parts, including the flank retaining wall, the doorsill, the above-door retaining wall, and the above-door beam. These components can be designed by the equivalent static load method one by one. The flank retaining wall and the doorsill should be designed according to Code for Design of Civil Air Defense Basement. However, the equivalent static load values are different in existing literatures. It should be classified as the opening wall load or the door-frame wall load

  1. Optimization of wall thickness and lay-up for the shell-like composite structure loaded by non-uniform pressure field

    Science.gov (United States)

    Shevtsov, S.; Zhilyaev, I.; Oganesyan, P.; Axenov, V.

    2017-01-01

    The glass/carbon fiber composites are widely used in the design of various aircraft and rotorcraft components such as fairings and cowlings, which have predominantly a shell-like geometry and are made of quasi-isotropic laminates. The main requirements to such the composite parts are the specified mechanical stiffness to withstand the non-uniform air pressure at the different flight conditions and reduce a level of noise caused by the airflow-induced vibrations at the constrained weight of the part. The main objective of present study is the optimization of wall thickness and lay-up of composite shell-like cowling. The present approach assumes conversion of the CAD model of the cowling surface to finite element (FE) representation, then its wind tunnel testing simulation at the different orientation of airflow to find the most stressed mode of flight. Numerical solutions of the Reynolds averaged Navier-Stokes (RANS) equations supplemented by k-w turbulence model provide the spatial distributions of air pressure applied to the shell surface. At the formulation of optimization problem the global strain energy calculated within the optimized shell was assumed as the objective. A wall thickness of the shell had to change over its surface to minimize the objective at the constrained weight. We used a parameterization of the problem that assumes an initiation of auxiliary sphere with varied radius and coordinates of the center, which were the design variables. Curve that formed by the intersection of the shell with sphere defined boundary of area, which should be reinforced by local thickening the shell wall. To eliminate a local stress concentration this increment was defined as the smooth function defined on the shell surface. As a result of structural optimization we obtained the thickness of shell's wall distribution, which then was used to design the draping and lay-up of composite prepreg layers. The global strain energy in the optimized cowling was reduced in2

  2. 竖向荷载下的生态复合墙体内力计算及影响因素分析%CALCULATION OF INTERNAL FORCE AND INFLUENCE FACTORS ANALYSIS OF ECO-COMPOSITE WALL UNDER VERTICAL LOADING

    Institute of Scientific and Technical Information of China (English)

    侯莉娜; 黄炜; 田英侠

    2015-01-01

    生态复合墙体在竖向荷载作用下,墙体各组件(边框、肋格、填充砌块)之间存在协同工作关系。采用弹性地基梁理论,建立生态复合墙体在竖向荷载作用下的内力计算模型,定量地计算出各组件在竖向荷载作用下承担的内力,分析影响墙体受力分配关系的因素。理论分析与试验结果对比表明:该计算模型运用于竖向荷载作用下的生态复合墙体内力计算具有一定的精确度;各组件分配竖向荷载比例与暗梁刚度、边框柱刚度及复合墙板等效弹性模量等因素有关,边框柱刚度的影响小于暗梁刚度影响;当复合墙板等效弹性模量增大至30 GPa时,边框柱承担的荷载只占总荷载的18.4%。该研究结果为生态复合墙结构的抗震优化设计提供了一定的参考。%Under vertical loading, the three-part members of the eco-composite wall ( side frame, rib grids and filler blocks) work cooperatively.Based on the elastic foundation beam theory, the mechanical calculation model of the eco-composite wall was established.The internal force carried by each component was quantitatively calculated.The influence factors of the bearing performance of the components in the wall were analyzed.The comparison of theory analysis with experiment results showed that the calculation of the internal force had a certain degree of precision;the vertical loads carried by each component was related to such factors as the stiffness of side-frame column, the stiffness of concealed beam and the equivalent elastic modulus of the eco-composite slab.The stiffness of the side-frame beam had greater effect on the loads distribution than that of side-frame column.When the equivalent elastic modulus increased to 30 GPa, the proportion of the loading carried by the side-frame column was only 18.4% of the total load.The results of the research would provide an important theory foundation for the seismic optimum design of

  3. 关于静载作用下大型储罐罐壁的合理设计%On the Reasonable Design of Tank Wall of Large Storage Tank under Static Loads

    Institute of Scientific and Technical Information of China (English)

    卜凡; 钱才富

    2013-01-01

    罐壁是大型储罐的重要部件,其设计是否合理决定着整个储罐是否安全和经济。目前各国大型储罐的设计准则不同,设计结果也有差异。分别根据中国标准GB 50341-2003的设计方法与美国标准API 650-2007中的“变设计点法”,对容积为1×105 m3与2×105 m3的2个受静载作用的大型储罐进行设计,并比较两种设计方法的差异,同时通过有限元软件ANSYS对罐壁进行优化设计,以期得到更经济可行的设计方案。%Tank wall is the most important component in a large storage tank .Reasonable design of the tank wall determines the safety and economy of the whole tank .Different countries have different design criterias for the design of large storage tanks , and as a result , giving different results .Two large storage tanks with the capacity of 1 ×105 m3 and 2 ×105 m3 under the static loads were designed based on the de-sign criteria in China standard GB 50341-2003 and the Variable-Design-Point Method in USA stand-ard API 650-2007 and compared for the wall thickness .At the same time , the optimization design was performed with the finite element software ANSYS in order to obtain a more economic and feasible design approach .

  4. Dynamic buckling of double-walled carbon nanotubes under axial impact loading%轴向冲击载荷作用下双壁碳纳米管的动力屈曲

    Institute of Scientific and Technical Information of China (English)

    姚小虎; 张晓晴; 韩强

    2011-01-01

    Using the modified finite element method, the nonlinear shell-spring finite element model is established with taking the van der waals force into account. Based on the B-R motion criterion, the dynamic bucking behaviors of multi-walled carbon nanotubes are examined systemically. The dynamic critical loads for buckling and failure of double-walled carbon nanotubes under axial impact load are obtained. It is shown that in the dynamic buckling process of multi-walled carbon nanotubes, the deformation of each wall is harmonious to each other and the change of interlayer spacing is very small. The magnitude and the duration of impact load as well as the length of carbon nanotube have greater effects on the dynamic buckling of carbon nanotubes. For the shorter carbon nanotubes, asymmetrical buckling mode appears earlier. The simulations further show that the stress wave propagation in carbon nanotubes induces the asymmetrical buckling mode. In the dynamic buckling process of carbon nanotubes, there are four circumferential lobes that can be observed obviously, and their wave crest and trough of the lobes change alternately.%应用改进的有限元方法,建立考虑层间范德华力作用的壳-弹簧非线性有限元模型,基于B-R运动准则,系统地研究了双壁碳纳米管的动力屈曲问题,得到了轴向冲击载荷作用下双壁碳纳米管的临界动力屈曲载荷和临界动力失效载荷.研究结果表明,在动力屈曲过程中,双壁碳纳米管层间距的变化非常小,各管的变形相互协调;碳纳米管中应力波的传播导致碳纳米管出现非对称屈曲模态,可明显观测到四个环向波瓣,沿着碳纳米管的轴线方向,四个波瓣的波峰和波谷交替变化.对碳纳米管动力屈曲问题的研究表明,冲击载荷的大小和持续时间对碳纳米管的动力屈曲有较大影响,同时碳纳米管的长度对碳纳米管的动力屈曲也有较大的影响,较短的碳纳米管较早出现非对称屈曲模态.

  5. Full size testing of sheet pile walls

    NARCIS (Netherlands)

    Kuilen, J.W.G. van de; Linden, M.L.R. van der; Katsma, H.; Stolle, P.

    1996-01-01

    Azobé (Lophira alata) is widely used in timber sheet pile walls in the Netherlands. The boards in these walls are coupled and therefore load-sharing can be expected. A simulation model based on the finite element method DIANA (DIANA, 1992) was developed and load-sharing could be calculated. To check

  6. Contribution to the understanding of the behaviour of reinforced concrete shear walls under seismic loading: contribution of experiment and modeling to the design; Contribution a la comprehension du fonctionnement des voiles en beton arme sous sollicitation sismique: apport de l'experimentation et de la modelisation a la conception

    Energy Technology Data Exchange (ETDEWEB)

    Ile, N

    2000-12-01

    This thesis deals with aspects of seismic behaviour of reinforced concrete shear walls (RCSW). Its objective is to introduce a useful modelling approach for addressing the non-linear response of a large variety of RCSW and to identify several aspects in which this numerical approach could be implemented into design applications. Firstly, the characteristics of the behaviour of RCSW under seismic loading, some design principles and different modelling approaches are discussed. As an important lack of knowledge in several fields was identified, it was considered that three types of shear walls deserve more attention: slightly reinforced slender walls; U-shaped walls and heavily reinforced squat shear walls. A local modelling approach is adopted and the material constitutive models are described in details. Secondly, the behaviour of the two mock-up, CAMUS I and II, tested on the shaking-table during the CAMUS programme, which are slightly reinforced and designed according to the French code PS92 is simulated using a 2-D finite element model (FEM). For comparison purposes, the case of the CAMUS III mock-up, designed according to EC8, is considered. We are then dealing with the case of U-shaped walls under dynamic and cyclic loading. The results obtained from numerical simulations, based on a 3-D shell FEM, are compared with those obtained from tests carried out in the frame of the ICONS programme. Finally, the numerical model is applied to the case of heavily reinforced squat shear walls (similar to those used in the nuclear power plant buildings) subjected to shear loading. A 2-D FEM is considered in order to simulate the behaviour of three different walls, which were tested pseudo-dynamically during the SAFE programme. The results from both experimental and numerical studies are compared and discussed. The most important factors affecting the behaviour of RCSW are highlighted. Different examples of possible contributions to design are presented. (author)

  7. Properties of a new energy-saving and load-bearing sandwich composite wall material without connecting pieces%一种无拉接件的节能承重型夹芯复合墙材的性能

    Institute of Scientific and Technical Information of China (English)

    殷素红; 周小华; 李从波; 文梓芸

    2012-01-01

    研制了一种在两等厚的全轻轻集料混凝土中间浇注泡沫保温砂浆的无拉接件节能承重型夹芯复合墙材,对不同保温层厚度、不同物理嵌合方式的夹芯复合墙材的抗压强度、劈裂抗拉强度和热工性能进行研究.结果表明,设计墙材厚度为150 mm时,虽然影响复合墙材抗压强度和劈裂抗拉强度的因素有所不同,但当保温层厚度为40~50 mm,采用单齿结构复合方式,齿形宽度为50~60 mm时,复合墙材的抗压强度和劈裂抗拉强度较高,分别可达8.0、1.2 MPa,满足MU7.5强度等级墙体材料的要求;同时墙材的传热系数K约为1.3 W/(m2·K),热惰性指标D约为4.15,满足夏热冬暖地区居住建筑节能50%的要求.%A new energy-saving and load-bearing sandwich composite wall material without connecting pieces was developed, which was manufactured by pouring foam mortar into the space between two lightweight aggregate concrete. The compression strength, splitting tensile strength and thermal performance of this wall material with different insulation thickness and different composite forms were studied in this paper. Results show that, when the thickness of the wall material is 150 mm, the insulation thickness is 40-50 mm, the tooth width of single tooth structure composite form is 50-60 mm, the compression strength and splitting tensile strength of the wall material are high, respectively reaching 8.0 MPa and 1.2 MPa, and meet the requirement of MU7.5 strength grade. Simultaneity, the heat transfer coefficient K of the wall material is about 1.3 W/(m2·K) and the thermal inertia index D is about 4.15, which meet the thermal design requirements of 50% energy-saving of exterior wall used for residential building in hot summer and warm winter area.

  8. Conducting Wall Hall Thrusters

    Science.gov (United States)

    Goebel, Dan M.; Hofer, Richard R.; Mikellides, Ioannis G.; Katz, Ira; Polk, James E.; Dotson, Brandon

    2013-01-01

    A unique configuration of the magnetic field near the wall of Hall thrusters, called Magnetic Shielding, has recently demonstrated the ability to significantly reduce the erosion of the boron nitride (BN) walls and extend the life of Hall thrusters by orders of magnitude. The ability of magnetic shielding to minimize interactions between the plasma and the discharge chamber walls has for the first time enabled the replacement of insulating walls with conducting materials without loss in thruster performance. The boron nitride rings in the 6 kW H6 Hall thruster were replaced with graphite that self-biased to near the anode potential. The thruster efficiency remained over 60% (within two percent of the baseline BN configuration) with a small decrease in thrust and increase in Isp typical of magnetically shielded Hall thrusters. The graphite wall temperatures decreased significantly compared to both shielded and unshielded BN configurations, leading to the potential for higher power operation. Eliminating ceramic walls makes it simpler and less expensive to fabricate a thruster to survive launch loads, and the graphite discharge chamber radiates more efficiently which increases the power capability of the thruster compared to conventional Hall thruster designs.

  9. FIWATKA - a first-wall thermal fatigue test facility

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, G.; Eggert, E. (Kernforschungszentrum Karlsruhe, Inst. fuer Reaktorbauelemente (Germany))

    1991-12-01

    The first wall of a fusion device receives from the plasma thermal loads in addition to neutron radiation, chemical and mechanical loads. To qualify a first-wall design, it needs to be tested under these loads, which is done out of the device in separate tests. The test facility described in this paper is designed for testing medium sized first-wall specimens under cyclic thermal loads. A technical description of the facility and its design limits are given. (orig.).

  10. Strengthening of Shear Walls

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg

    -plane loaded walls and disks is however not included in any guidelines, and only a small fraction of scientists have initiated research within this topic. Furthermore, studies of the principal behavior and response of a strengthened disk has not yet been investigated satisfactorily, and this is the principal...... be altered to fit the surrounding boundary conditions. The effective cohesive law will then become a function of the investigated structural geometry. A simplified approach for the latter topic was used to predict the load capacity of concrete beams in shear. Results obtained were acceptable, but the model...

  11. 大型厚壁封头热锻成形中降低成型载荷的策略%Strategy of Decreasing Forming Load in Hot Forging of Heavy Thick-wall Sealing Head

    Institute of Scientific and Technical Information of China (English)

    徐戊矫; 丁永峰; 邹明平; 王凯庆

    2011-01-01

    The forging process for the heavy thick-wall saling head is required to neet the severe condition,whereas the forging factories often face eith the insufficient forging capacity to execute the foring process. Based on the rigid-viscoplastic FEM platform DEFORM-3D, the upper anvil swaging foring process was simulatde to ana1yze the cause of the fold defer and much higher forming load. The configuration of the upper anvil was optimized in the shape of saddle,meanwhile, the reduction of per revolution was deternined as 100 mm and the rotary anglc of per reduction of the upper anvil was decided as 24°. The optimized process was numerically simulated The results show that the forming load to execute the forging process is decreased to available range and the fold is avoided in the finished forgings The research is very helpful to improve the feasibility of forging proccss and forming quality of heavy thick-wall sealing head.%大型厚壁封头严苛的使用性能要求其采用整体锻造方法生产,但锻造企业通常不具备足够的设备能力以满足封头整体锻造超高的力能需求.基于刚粘塑性有限元模拟平台DEFORM-3D,对大型厚壁封头上砧旋转锻造成形原有的工艺方案进行了模拟仿真,分析了产生折迭缺陷和锻造载荷超限的原因.优化上砧形状为马鞍型,并确定上砧的运动轨迹为单周压下量为100mm,每压下一次后上砧旋转角度为24°.对优化后的工艺方案进行仿真计算.结果表明,工艺优化有效地将所需的成形载荷降到了设备能力允许的范围之内,并使整体锻造的封头无折迭缺陷.研究结果对提高封头整体锻造的可行性及改善大型厚壁封头的成形质量具有重要的指导意义.

  12. Wonderful Walls

    Science.gov (United States)

    Greenman, Jim

    2006-01-01

    In this article, the author emphasizes the importance of "working" walls in children's programs. Children's programs need "working" walls (and ceilings and floors) which can be put to use for communication, display, storage, and activity space. The furnishings also work, or don't work, for the program in another sense: in aggregate, they serve as…

  13. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    The introduction of Light Emitting Diodes (LEDs) in the built environment has encouraged myriad applications, often embedded in surfaces as an integrated part of the architecture. Thus the wall as responsive luminous skin is becoming, if not common, at least familiar. Taking into account how wall...

  14. Density functional and molecular docking studies towards investigating the role of single-wall carbon nanotubes as nanocarrier for loading and delivery of pyrazinamide antitubercular drug onto pncA protein

    Science.gov (United States)

    Saikia, Nabanita; Rajkhowa, Sanchaita; Deka, Ramesh C.

    2013-03-01

    The potential biomedical application of carbon nanotubes (CNTs) pertinent to drug delivery is highly manifested considering the remarkable electronic and structural properties exhibited by CNT. To simulate the interaction of nanomaterials with biomolecular systems, we have performed density functional calculations on the interaction of pyrazinamide (PZA) drug with functionalized single-wall CNT ( fSWCNT) as a function of nanotube chirality and length using two different approaches of covalent functionalization, followed by docking simulation of fSWCNT with pncA protein. The functionalization of pristine SWCNT facilitates in enhancing the reactivity of the nanotubes and formation of such type of nanotube-drug conjugate is thermodynamically feasible. Docking studies predict the plausible binding mechanism and suggests that PZA loaded fSWCNT facilitates in the target specific binding of PZA within the protein following a lock and key mechanism. Interestingly, no major structural deformation in the protein was observed after binding with CNT and the interaction between ligand and receptor is mainly hydrophobic in nature. We anticipate that these findings may provide new routes towards the drug delivery mechanism by CNTs with long term practical implications in tuberculosis chemotherapy.

  15. Wall Turbulence.

    Science.gov (United States)

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  16. Dynamic Response Research on Cable Truss Point-supporting Glass Curtain Wall Under Coupling Wind and Rain Loads%风雨荷载耦合作用下索桁架体系点支式玻璃幕墙的动力响应研究

    Institute of Scientific and Technical Information of China (English)

    李宏男; 王奇

    2012-01-01

    The fluctuating wind load was got by using the harmonic wave superposition method to simulate the curve of fluctuating wind and the fluctuating rain load was obtained with the help of M-P rain together with the fluctuating wind velocity. Time history analysis of fluid-structure interaction from cable truss point supporting glass curtain walls was carried out under dynamic wind and rain loads by using ANSYS. The influence of rain load on curtain walls under wind and rain loads was studied. The results show that maximum proportion of rain load on total load increases with wind speed and rain loads. The maximum proportion is 5. 8%, while the proportion at the situation of extremum raining is 12. 4%.%应用谐波叠加法模拟了脉动风速时程曲线,进而得到了脉动风荷载;通过马歇尔-帕尔默指数分布的雨滴谱及脉动风速得到了脉动雨荷载;利用ANSYS对索桁架体系点支式玻璃幕墙进行动力风荷载和雨荷载耦合作用下的时程分析,研究在风雨荷载共同作用下雨荷载对幕墙的影响.结果表明:雨荷载占总荷载最大比重随风速级别和降雨量的增加而增加;且雨荷载占总荷载最大比重为5.8%,极值雨情况下为12.4%.

  17. Shear wall ultimate drift limits

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, T.A. [Duffy, (T.A.) Tijeras, NM (United States); Goldman, A. [Goldman, (A.), Sandia, Los Alamos, NM (United States); Farrar, C.R. [Los Alamos National Lab., NM (United States)

    1994-04-01

    Drift limits for reinforced-concrete shear walls are investigated by reviewing the open literature for appropriate experimental data. Drift values at ultimate are determined for walls with aspect ratios ranging up to a maximum of 3.53 and undergoing different types of lateral loading (cyclic static, monotonic static, and dynamic). Based on the geometry of actual nuclear power plant structures exclusive of containments and concerns regarding their response during seismic (i.e.,cyclic) loading, data are obtained from pertinent references for which the wall aspect ratio is less than or equal to approximately 1, and for which testing is cyclic in nature (typically displacement controlled). In particular, lateral deflections at ultimate load, and at points in the softening region beyond ultimate for which the load has dropped to 90, 80, 70, 60, and 50 percent of its ultimate value, are obtained and converted to drift information. The statistical nature of the data is also investigated. These data are shown to be lognormally distributed, and an analysis of variance is performed. The use of statistics to estimate Probability of Failure for a shear wall structure is illustrated.

  18. Full-scale fire resistance tests on load-bearing C-shape cold-formed steel wall systems%C形冷弯薄壁型钢承重组合墙体足尺耐火试验研究

    Institute of Scientific and Technical Information of China (English)

    叶继红; 陈伟; 尹亮

    2013-01-01

    Fire performance of Cold-Formed Steel (CFS) load-bearing walls is the key problem encountered when popularizing and applying multi-storey CFS structures in China.This paper presents a detailed experimental investigation on ten full-scale load-bearing walls with C-shape CFS frame to efficiently improve their fire performance.The influences of the type of wall panels,insulation and load levels were also investigated.The results show that:① The disadvantage of calcium silicate board is its bursting feature at high temperatures,oriented strand boards (OSB) may burn in the fire resistance tests of CFS walls,bolivian magnesium board and autoclaved lightweight concrete (ALC) board,however,exhibit excellent fire performance ; ② When non-cavity insulated CFS walls with bolivian magnesium boards as base layer and gypsum plasterboards as face layer are exposed to a fire,different load levels may result in completely different failure modes and affect the fire resistance time of CFS walls; ③ By using aluminum silicate wool as external insulation in which the aluminum silicate wool was located outside the CFS frame and sandwiched between two layers of boards on the fire side,a noticeable reduction of heat transfer to the surface of steel stud and a considerable improvement of fire performance of CFS walls can be achieved.For the present specimens of CFS wall with aluminum silicate wool as external insulation on the fire side,the maximum fire resistance time was 165 minutes when the load ratio was 0.65,satisfying the fire resistance requirement of 120 minutes for load-bearing walls of multi-story structures in China.%冷弯薄壁型钢承重组合墙体抗火研究是多层冷弯薄壁型钢结构在我国推广应用的关键问题.文章共设计完成了十片C形冷弯薄壁型钢承重墙体足尺耐火试验,旨在经济高效地提高此类墙体耐火性能.试验同时考察了墙板类型、填充层情况、荷载水平等因素对墙体耐火性能的影响.

  19. Wall Art

    Science.gov (United States)

    McGinley, Connie Q.

    2004-01-01

    The author of this article, an art teacher at Monarch High School in Louisville, Colorado, describes how her experience teaching in a new school presented an exciting visual challenge for an art teacher--monotonous brick walls just waiting for decoration. This school experienced only minimal instances of graffiti, but as an art teacher, she did…

  20. Reliability Analysis of Existing Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Sørensen, John Dalsgaard

    1998-01-01

    Vertical wall breakwaters are used under quite different conditions where failure of the breakwater or a part of it will have very different consequences. Further a number of existing vertical wall breakwaters have been subjected to significant wave loads which have caused partial failures...

  1. Experimental investigations on dry stone masonry walls

    OpenAIRE

    2006-01-01

    Brick unreinforced masonry walls have been widely studied both from experimental and numerical point of view, but scarce experimental information is available for dry stone masonry walls that constitute the material more frequently used in the construction of ancient historical constructions. Therefore, the present work aims at increasing the insight about the behavior of typical ancient masonry walls under cyclic loading. To attain such goal, different experimental approaches are consi...

  2. 开口冷弯厚壁型钢轴压构件抗震性能研究%Research on the seismic behaviors of opening cold-formed thick-walled steel under the axial cyclic loading

    Institute of Scientific and Technical Information of China (English)

    付小超; 李元齐; 沈祖炎

    2016-01-01

    为研究开口冷弯厚壁型钢构件在轴向滞回荷载作用下的抗震性能,首先选取了3根壁厚t>6 mm的冷弯内卷边槽钢进行轴向滞回试验,然后建立相关的ANSYS有限元模型进行模拟计算,在与试验结果对比的基础上,选取了不同的腹板宽厚比(h/t=25~90)、绕弱轴长细比(λy=30~90)的构件进行参数化分析计算.研究结果表明:宽厚比、长细比是影响冷弯型钢抗震性能的两个主要因素,宽厚比(h/t)越大抗震性能越差,长细比(λy)越大抗震性能同样也越差,设计时应尽量避免选择长细比和宽厚比均较大的构件.%In order to investigate the hysteretic behaviors of opening cold-formed thick-walled steel members under the axial cyclic loading, three cold-formed steel columns were tested. On the basis of compared with the test results, a finite element method ( FEM) in ANSYS was established. The in-fluence of width-thickness ratio ( h/t) rang from 25 to 90 for web and slenderness ratio about the weak axis y (λy ) rang from 30 to 90 of such members were investigated by FEM. Analysis results in-dicated that the width-thickness ratio and the slenderness ratio about the weak axis y are the most important factors to affect the hysteretic behaviors. So, the cold-formed steels which with great width-thickness ratio ( h/t) and great slenderness ratio (λy ) should be avoided in designing, because they will lead to poor seismic performance.

  3. CLIMBING WALL

    CERN Multimedia

    1999-01-01

    The FIRE AND RESCUE Group of TIS Commission informs that the climbing wall in the yard of the Fire-fighters Station, is intended for the sole use of the members of that service, and recalls that access to this installation is forbidden for safety reasons to all persons not belonging to the Service.CERN accepts no liability for damage or injury suffered as a result of failure to comply with this interdiction.TIS/DI

  4. 薄壁方钢管-砂卵石组合短柱轴压力学性能研究%Study of the Mechanical Properties of Thin-Walled Square Steel Tube Sandy Pebble Composite Short Columns to Axial Loads

    Institute of Scientific and Technical Information of China (English)

    邓勇军; 姚勇; 刘欢; 陈代果; 徐刚

    2014-01-01

    保持砂卵石压实系数在大于87.7%的范围,对两组6根薄壁方钢管-砂卵石短柱的轴压静力性能进行了试验研究,分析了试件的破坏形态、极限承载力、轴向荷载-位移曲线以及轴向荷载-应变曲线等数据。试验结果表明:(1)薄壁方钢管-砂卵石短柱的破坏模式均为局部失稳破坏,且破坏后砂卵石随钢管变形而变形;(2)薄壁方钢管-砂卵石短柱轴向荷载-位移曲线根据钢管与砂卵石分担荷载情况大致可以分为钢管主要受力阶段、砂卵石压实阶段、砂卵石主要受力阶段、破坏阶段4个阶段;(3)增加壁厚能增强薄壁钢管与砂卵石的相互作用。%Under keeping the compaction factor of sandy pebble is greater than the suggestion of the range of 87 .7%, take static experimental study on the axis pressure mechanical property of two groups of six sandy -pebble-filled thin-walled square steel tubular short columns .The failure characteristics , the ultimate bearing capacity , the load-strain curves and the load -compression displacement curves of dif-ferent test specimens were comparatively analyzed .The experimental results indicate that ( 1 ) thin -walled square steel tube -sandy pebble short column failure mode are local buckling failure , the de-struction of the sand and gravel with deformed steel deformation ;(2) Thin-walled square steel tube -sandy pebble short column axial load -displacement curve according to the steel tube and sandy pebble all share the load situation can be divided into four stages: main stress on steel stage , compaction on sandy pebble stage , main stress on sandy pebble stage , failure stage;( 3 ) Increasing the wall thickness can significantly enhance the interaction of thin -walled steel pipe with sandy pebble .

  5. Comparison of load parameters for stored materials

    DEFF Research Database (Denmark)

    Munch-Andersen, J.; Nielsen, J.

    1997-01-01

    that the wall friction measured in a silo might be significantly larger than the value obtained from shear tests. The load parameters depend on the load level, perhaps in a way not reflected by the internal friction angle. It is not necessarily on the safe side to determine the parameters for a high load level....

  6. Response of Rubble Foundation to Dynamic Loading

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Ibsen, Lars Bo

    1993-01-01

    The soil beneath vertical monolithic structures is subjected to a combination of static load due to the submerged weight of the structure and stochastic non-stationary loads as a result of the wave loads on the vertical wall. The stress conditions in the soil below a foundation exposed to both st...

  7. Response of Rubble Foundation to Dynamic Loading

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Ibsen, Lars Bo

    1994-01-01

    The soil beneath vertical monolithic structures is subjected to a combination of static load due to the submerged weight of the structure and stochastic non-stationary loads as a result of the wave loads on the vertical wall. The stress conditions in the soil below a foundation exposed to both st...

  8. Research on low-cyclic load test of large shear span ratio composite shear wall with GHB heat preservation formwork%高剪跨比玻化微珠保温墙模复合剪力墙低周往复荷载试验研究

    Institute of Scientific and Technical Information of China (English)

    李珠; 张婷; 刘元珍

    2013-01-01

    A low-cyclic load test was carried out on large shear span ratio composite shear wall structures with heat preservation formwork by glazed hollow bead (GHB) , which is a kind of new insulation structure system. The test was conducted to compare the performance of composite shear wall and ordinary solid concrete shear wall in terms of bearing capacity, stiffness and ductility. Results show that compared with ordinary solid concrete shear wall, the stiffness of composite shear wall reduces significantly while the bearing capacity reduces about 7%. Composite shear wall is characterized by higher safety reserve and significantly better ductility, which indicates this composite shear wall has greater performance in seismic design. The test results also demonstrate that the formwork of composite shear wall works together with internal concrete as a whole. Study results can be applied in design and performance evaluation of composite shear wall structure with heat preservation formwork.%对保温结构新体系——玻化微珠保温墙模复合剪力墙体系中的高剪跨比剪力墙进行低周往复荷载试验研究.通过对比试验的方法,研究了保温墙模复合剪力墙与普通实体剪力墙在承载力、刚度、延性等方面的性能.试验结果表明:复合剪力墙的承载力较普通剪力墙的仅降低约7%,而刚度却明显减小,既使结构有较高的安全储备,又使延性得到明显改善,该体系在结构抗震方面能发挥较大潜力;墙模与内部混凝土的粘结能力强,共同工作性能良好.研究成果可以作为保温墙模复合剪力墙工作性能评价与工程设计的理论依据.

  9. Metamaterial Loadings for Waveguide Miniaturization

    CERN Document Server

    Odabasi, H

    2013-01-01

    We show that a rectangular metallic waveguide loaded with metamaterial elements consisting of electric-field coupled (ELC) resonators placed at the side walls can operate well below the cutoff frequency of the respective unloaded waveguide. The dispersion diagrams indicate that propagating modes in ELC-loaded waveguides are of forward-type for both TE and TM modes. We also study the dispersion diagram and transmission characteristics of rectangular metallic waveguides simultaneously loaded with ELCs and split ring resonators (SRRs). Such doubly-loaded waveguides can support both forward wave and backward waves, and provide independent control of the propagation characteristics for the respective modes.

  10. Modelling Australian Red Brick and Bluestone Walls in VAPO

    Science.gov (United States)

    2013-01-01

    span. Note that internal masonry walls are also often load bearing for this UNCLASSIFIED 9 UNCLASSIFIED DSTO-TN-1155 type of floor/ ceiling slab ...compressive strength of a short column of masonry material that is mortared together in a manner representative of the wall construction. The bulk...beneath the load bearing wall on the level below. For a slab consisting of a wood deck on wood joists or concrete deck on open web steel joists, the

  11. Seismic displacement of gravity retaining walls

    Directory of Open Access Journals (Sweden)

    Kamal Mohamed Hafez Ismail Ibrahim

    2015-08-01

    Full Text Available Seismic displacement of gravity walls had been studied using conventional static methods for controlled displacement design. In this study plain strain numerical analysis is performed using Plaxis dynamic program where prescribed displacement is applied at the bottom boundary of the soil to simulate the applied seismic load. Constrained absorbent side boundaries are introduced to prevent any wave reflection. The studied soil is chosen dense granular sand and modeled as elasto-plastic material according to Mohr–Column criteria while the gravity wall is assumed elastic. By comparing the resulted seismic wall displacements calculated by numerical analysis for six historical ground motions with that calculated by the pseudo-static method, it is found that numerical seismic displacements are either equal to or greater than corresponding pseudo-static values. Permissible seismic wall displacement calculated by AASHTO can be used for empirical estimation of seismic displacement. It is also found that seismic wall displacement is directly proportional with the positive angle of inclination of the back surface of the wall, soil flexibility and with the earthquake maximum ground acceleration. Seismic wall sliding is dominant and rotation is negligible for rigid walls when the ratio between the wall height and the foundation width is less than 1.4, while for greater ratios the wall becomes more flexible and rotation (rocking increases till the ratio reaches 1.8 where overturning is susceptible to take place. Cumulative seismic wall rotation increases with dynamic time and tends to be constant at the end of earthquake.

  12. Load Measurements

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes Load measurements carried out on a given wind turbine. The aim of the measurement program regarding the loads on the turbine is to verify the basic characteristics of the wind turbine and loads on the blades, the rotor and the tower, using [Ref 1], [Ref2] and [Ref 3]. Regarding...... the fatigue loads, the rotor, blades and tower moments are presented. The fatigue loads are evaluated using rainflow counting described in detail in Ref. [1]. The 1Hz equivalent load ranges are calculated at different wind speeds. All information regarding the instrumentation is collected in [ref 4] and [ref...

  13. Modelo no lineal en elementos finitos para muros livianos con entramados de acero sujetos a carga lateral/A nonlinear finite element model of lightweight walls with cold formed steel members under lateral load

    National Research Council Canada - National Science Library

    Carlos Andrés M Gaviria; Aydée Patricia Z Guerrero; Peter R Thomson

    2013-01-01

    ... of the connections between elements. This model was updated for different coating materials using experimental results of lateral loads test conduced on full-scale prototypes for five different coating configurations...

  14. Comparison of critical circumferential through-wall-crack-lengths in welds between pieces of straight pipes to welds between straigth pipes and bends with and without internal pressure at force- and displacement-controlled bending load; Vergleich kritischer Umfangsdurchrisslaengen in Schweissnaehten zwischen Geradrohrstuecken mit Schweissnaehten an Rohrbogen-Geradrohrverbindungen mit und ohne Innendruck bei kraft- und wegkontrollierter Biegebelastung

    Energy Technology Data Exchange (ETDEWEB)

    Steinbuch, R. [Fachhochschule fuer Technik und Wirtschaft Reutlingen (Germany). Fachbereich Maschinenbau

    1998-11-01

    Methods for calculation of critical, circumferential through-wall crack lengths in pipes have been developed and verified by several research projects. In applications during the last few years it has been found that the force or displacement-controlled loads have to be considered separately, and this approach was integrated into the recent methods. Methods so far assumed cracks to be located in welds joining straight pipes. But this approach starts from an incomplete picture of reality, as with today`s technology, circumferential welds are less frequent in straight pipes and much more frequent in pipework of other geometry, as for instance in welds joining straight pipes and bends, or bends with longer legs, nozzles, or T-pieces. The non-linear FEM parameter study presented in the paper, covering cases with internal pressure of pipes and one-dimensional bending loads, is based on current geometries of pipework in the primary and secondary loops of industrial plants and compares the conditions induced by circumferential through-wall cracks in welds joining only straight pipes and in those joining bended and straight pipes. At the relevant, displacement-controlled bending loads due to hampered thermal expansion of the pipe system, the critical through-wall cracks lengths occurring in pipe-to-bend welds are of about the same size and importance as those in pipe-to-pipe welds. As for the case of force-controlled loads, the technical codes calculate more serious effects and require lower bending load limits. Within the range of admissible loads given in the codes, the critical through-wall crack lengths occurring in pipe-to-bend welds are similar in size to those in straight pipe welds. It is therefore a conservative or realistic approach to apply the values determined for critical through-wall crack lengths in pipe-to-pipe joints also to pipe-to-bend welds. (orig./CB) [Deutsch] Verfahren zur Berechnung kritischer Umfangdurchrisslaengen in Rohrleitungen wurden in

  15. Falling walls

    CERN Multimedia

    It was 20 years ago this week that the Berlin wall was opened for the first time since its construction began in 1961. Although the signs of a thaw had been in the air for some time, few predicted the speed of the change that would ensue. As members of the scientific community, we can take a moment to reflect on the role our field played in bringing East and West together. CERN’s collaboration with the East, primarily through links with the Joint Institute for Nuclear Research, JINR, in Dubna, Russia, is well documented. Less well known, however, is the role CERN played in bringing the scientists of East and West Germany together. As the Iron curtain was going up, particle physicists on both sides were already creating the conditions that would allow it to be torn down. Cold war historian Thomas Stange tells the story in his 2002 CERN Courier article. It was my privilege to be in Berlin on Monday, the anniversary of the wall’s opening, to take part in a conference entitled &lsquo...

  16. Load Measurements

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    The report describes Load measurements carried out on a given wind turbine. The aim of the measurement program regarding the loads on the turbine is to verify the basic characteristics of the wind turbine and loads on the blades, the rotor and the tower, using [Ref 1], [Ref2] and [Ref 3]. Regardi...

  17. Load Measurements

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes Load measurements carried out on a given wind turbine. The aim of the measurement program regarding the loads on the turbine is to verify the basic characteristics of the wind turbine and loads on the blades, the rotor and the tower, using [Ref 1], [Ref2] and [Ref 3]. Regarding...

  18. Evaluating rammed earth walls: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P. [Deakin University, Geelong (Australia). Built Environment Research Group; La Trobe University, Wodonga (Australia); Luther, M.B. [Deakin University, Geelong (Australia). Built Environment Research Group

    2004-03-01

    The following research has been undertaken as a response to the recent controversy regarding the suitability of rammed earth wall construction as an effective building envelope in regard to its thermal performance. The R-value for rammed earth walls is low hence they might be expected to conduct heat into a building during summer. However the large mass of these walls and the associated thermal lag in heat transfer from outside to inside may result in the walls performing satisfactorily in a building which is only occupied during working hours. Internal rammed earth walls may act as moderators of large diurnal temperature swings helping to produce an even comfortable temperature within a building. Empirical (in situ) measurements of temperature and heat flux were taken on the walls of an existing rammed earth office building in New South Wales, Australia during the summer. An analysis was performed which established a methodology to measure the heat flow associated with the walls, floor, ceiling, windows and infiltration for one office during occupied hours and the net energy transferred between the office and these elements was established. During this time the earth walls performed well. External walls were found to transmit comparatively little heat to the office and the internal walls absorbed heat during this time. Diffuse sky radiation transmitted by the window and infiltration are both likely to be important factors in the summer heat load. (author)

  19. Design Aspect of including Infill Wall in RC Frame Design*

    Directory of Open Access Journals (Sweden)

    Sukrawa, M.

    2014-01-01

    Full Text Available This study compares analysis and design of a four story reinforced concrete (RC frame structure with infill wall at upper levels and open at basement level. For the analysis, the RC frame are modeled as open frame (MOF and infilled-frames using six compression only cross diagonal strut (MIF-Strut, and infilled frame using shell elements (MIF-Shell. Another model, MIF-Full, is created by adding walls at basement level of the MIF-Strut to study the effect of wall discontinuity. All three dimensional models are loaded with gravity load and quake load appropriate for South Bali region. Results show that the infilled-frame models are 4.8 times stiffer than MOF in the wall direction. Perpendicular to the wall, however, the stiffness increase is 29%. Soft storey mechanism exists in the absence of wall at basement level, regardless of reasonable column dimensions.

  20. Wall to Wall Optimal Transport

    CERN Document Server

    Hassanzadeh, Pedram; Doering, Charles R

    2013-01-01

    The calculus of variations is employed to find steady divergence-free velocity fields that maximize transport of a tracer between two parallel walls held at fixed concentration for one of two constraints on flow strength: a fixed value of the kinetic energy or a fixed value of the enstrophy. The optimizing flows consist of an array of (convection) cells of a particular aspect ratio Gamma. We solve the nonlinear Euler-Lagrange equations analytically for weak flows and numerically (and via matched asymptotic analysis in the fixed energy case) for strong flows. We report the results in terms of the Nusselt number Nu, a dimensionless measure of the tracer transport, as a function of the Peclet number Pe, a dimensionless measure of the energy or enstrophy of the flow. For both constraints the maximum transport Nu_{MAX}(Pe) is realized in cells of decreasing aspect ratio Gamma_{opt}(Pe) as Pe increases. For the fixed energy problem, Nu_{MAX} \\sim Pe and Gamma_{opt} \\sim Pe^{-1/2}, while for the fixed enstrophy scen...

  1. Bearing capacity of thin-walled steel tube short columns filled with lightweight aggregate concrete under axial load%薄壁钢管轻骨料混凝土轴压短柱承载力分析

    Institute of Scientific and Technical Information of China (English)

    肖海兵; 赵均海; 孙楚平; 彭宁; 孙珊珊

    2012-01-01

    Based on the unified strength theory, considering the effects of the intermediate principal stress and the differences of the multi-axial strength criterion for the lightweight aggregate concrete and common concrete, by introducing parameter αu and/βu, loop tensile stress σθ , longitudinal compressive stress σ, and radial compressiye stress σ of the thin- walled steel tube in ultimate bearing condition were obtained. Thus the calculation formula of ultimate bearing capacity of thin-walled steel tube short columns filled with lightweight aggregate concrete was deduced, and the influence complication was analyzed. Compared with the obtained solution and the test results in reference, good agreement can be found. The results indicate that the unified strength theory has the good applicability in the calculation of ultimate bearing capacity of thin-walled steel tube short columns filled with lightweight aggregate concrete. The results can provide theoretical foundation for the design of thin-walled steel tube filled with lightweight aggregate concrete.%运用统一强度理论,考虑中间主应力的影响,引入参数αu,βu确定薄壁钢管在极限荷载时的环向拉应力σθ、纵向压应力σz和径向压应力σr,并考虑轻骨料混凝土与普通混凝土多轴强度准则差异的影响,推导出薄壁钢管轻骨料混凝土轴压短柱的极限承载力公式,并对影响因素进行了分析。将本文计算结果与文献试验数据进行比较,结果吻合良好,表明将统一强度理论运用于薄壁钢管轻骨料混凝土轴压短柱承载力计算是可行的。该结果为薄壁钢管轻骨料混凝土的优化设计提供了一定的理论依据。

  2. Integrating Building Functions into Massive External Walls

    Directory of Open Access Journals (Sweden)

    Ahmed Hisham Hafez

    2016-05-01

    Full Text Available Well into the twentieth century, brick and stone were the materials used. Bricklaying and stonemasonry were the construction technologies employed for the exterior walls of virtually all major structures. However, with the rise in quality of life, the massive walls alone became incapable of fulfilling all the developed needs. Adjacent systems and layers had then to be attached to the massive layer. Nowadays, the external wall is usually composed of a layered construction. Each external wall function is usually represented by a separate layer or system. The massive layer of the wall is usually responsible for the load-bearing function.Traditional massive external walls vary in terms of their external appearance, their composition and attached layers. However, their design and construction process is usually a repeated process. It is a linear process where each discipline is concerned with a separate layer or system. These disciplines usually take their tasks away and bring them back to be re-integrated in a layered manner. New massive technologies with additional function have recently become available.Such technologies can provide the external wall with other functions in addition to its load-bearing function. The purpose of this research is to map the changes required to the traditional design and construction process when massive technologies with additional function are applied in external walls. Moreover, the research aims at assessing the performance of massive solutions with additional function when compared to traditional solutions in two different contexts, the Netherlands and Egypt.Through the analysis of different additional function technologies in external walls, a guidance scheme for different stakeholders is generated. It shows the expected process changes as related to the product level and customization level. Moreover, the research concludes that the performance of additional insulating technologies, and specifically Autoclaved

  3. Impact Load of Rain Induced Wind on Rammed Earth Wall of Earth Building%土楼夯土墙的风驱雨撞击荷载影响分析

    Institute of Scientific and Technical Information of China (English)

    张丽; 彭兴黔

    2012-01-01

    运用流体力学的相关知识,分析雨滴降落的运动方程,在考虑风速的基础上推算出风驱雨的雨滴撞击荷载,并分析各因素对撞击荷载的影响.研究结果表明:雨滴降落的竖直极限速度与雨滴的直径及牵引阻力系数有关,并随着雨滴直径的增大而增大;雨滴的水平极限速度等于风速.理论分析表明:雨滴的撞击荷载及其法向分荷载、切向分荷载均随着风速和雨滴直径的增大而增大.%Using hydromechanics, considering the effect of wind speed, the equation of motion of raindrops was presented to calculate the impact load of rain induced wind, the influence of different factors on the impact load was analyzed. Research results show that the vertical limit speed of the raindrops is related to the diameter of the raindrops and drawing resistance coefficient, and the speed increases with the increase of the diameter of the raindrops; the horizontal speed limit of raindrops is equal to the wind speed. Through a series of theory analysis, it is concluded that raindrop impact load, its normal and tangential component loads increase with the increase of wind speed and the diameter of the raindrops.

  4. Effect of pressure upon wall-to-wall polymerization contraction of a chemically-cured resin.

    Science.gov (United States)

    Hansen, E K

    1983-02-01

    The marginal gaps of 105 Silar fillings were measured after application of a load between zero and 100 N on the matrix during the initial polymerization. The fillings were placed in non-etched dentin cavities in extracted human teeth. The dentin surrounding the cavities was either roughened with carborundum paper No. 220 or polished with Alfa Micropolish 1 micron before the cavities were filled. When load was applied to the matrix, no effect was found of the roughness surrounding the cavities, but without load the wall-to-wall contraction was significantly greater in cavities where the surrounding dentin surfaces had been polished with Alfa Micropolish. Apparently the effect of load was related to friction during the polymerization between filling surplus and the dentin surrounding the cavities and not to load per se.

  5. Vertical Equilibrium of Sheet Pile Walls with Emphasis on Toe Capacity and Plugging

    DEFF Research Database (Denmark)

    Iversen, Kirsten Malte; Augustesen, Anders Hust; Nielsen, Benjaminn Nordahl

    Constructions including retaining walls are normally established in areas where it is impossible to conduct an excavation with inclined sides. Due to large excavation depths and due to restrictions on the deformations of the wall, it is often necessary to anchor the wall. The limited space makes...... at the pile toe to fulfil vertical equilibrium. The paper describes a case study of sheet pile walls in Aalborg Clay, and the amount of loads transferred as point loads at the pile toe for free and anchored walls is estimated. A parametric study is made for the free wall with regards to the height...... and the roughness of the wall. Due to limitations of the calculation method, the study of the anchored wall only includes variation of the roughness. For the case study, it is found that the vertical equilibrium is fulfilled for the considered free wall. An anchored wall needs a plug forming at the pile toe...

  6. 高强冷弯薄壁型钢抱合箱形截面受压构件承载力试验研究%Load-carrying capacity of 550MPa high-strength cold-formed thin-walled steel built-up box section columns

    Institute of Scientific and Technical Information of China (English)

    李元齐; 姚行友; 沈祖炎; 王树坤; 刘翔

    2011-01-01

    由两个槽形截面构成的抱合箱形截面在超薄壁冷弯型钢结构中应用广泛,但关于其承载力的计算只是将单个构件的承载力简单地数学叠加,并没有相应公式来考虑单个槽形截面构件之间的相互加强.对40根高强冷弯薄壁型钢抱合箱形截面受压构件进行试验研究,考察其受力特性及破坏特征,包括轴压构件21个,绕弱轴偏心和绕强轴偏心构件共19个.试验研究结果表明:抱合箱形截面构件由于两个槽形截面试件的相互约束作用,实测承载力比按单根构件计算承载力叠加结果提高10%~20%左右.最后,在试验和理论分析的基础上,针对高强冷弯薄壁型钢抱合箱形截面受压构件极限承载力提出了一种建议计算方法,依照建议计算方法所得结果与试验结果吻合较好,且偏于安全,可供实际设计参考.%Built-up box section columns by two lipped channel sections are widely used in super thin-walled cold-formed steel structures.However, for their load-carrying capacities of built-up box section columns, usually a mathematical sum according to the load-carrying capacities of each channel section involved is utilized without any further consideration on the reinforcement between single channel sections.Load-carrying capacities and failure modes of 40 high-strength cold-formed thin-walled steel built-up box section columns have been studied, including 21 axially-compressed columns and 19 eccentrically-compressed columns subjected to bending moments along the weak axis and the strong axis respectively.The results show that, due to the interaction between two lipped channel columns connected by self-drilling screws, the ultimate load-carrying capacity of a built-up box section column is 10% to 20% higher than the sum of the ultimate load-carrying capacity of two single lipped channels loaded in the same way independently.Based on the tests and theoretical analysis, a proposed method to estimate

  7. 高强薄壁冷弯卷边槽钢柱承载力计算方法%Calculation method for load-carrying capacity of high strength thin-wall cold-formed lipped channel columns under axial compression

    Institute of Scientific and Technical Information of China (English)

    金梦飞; 刘昕露; 吕呈; 孙德发

    2014-01-01

    Based on the contrast analysis of the Effective Width Method and the Direct Strength Method, analysis and discussion are mentioned about the ultimate load-carrying capacities of 1 mm thickness Q345 cold-formed thin-wall steel lipped channel columns. The calculation and test results showed that, it is relative safety in calculation the lipped channel columns according to GB 50018-2002 Technical Code of Cold-Formed Thin-wall Steel Structure.%在分析比较有效宽度法( EWM)和直接强度法( DSM)的基础上,以1 mm厚Q345冷弯薄壁卷边槽钢柱为例,对其极限承载力进行了较深入的探讨和对比分析,计算与试验结果表明:按GB 50018-2002冷弯薄壁型钢结构技术规范计算槽钢柱是可行的。

  8. Iron load

    Directory of Open Access Journals (Sweden)

    Filippo Cassarà

    2013-03-01

    Full Text Available Recent research addressed the main role of hepcidin in the regulation of iron metabolism. However, while this mechanism could be relevant in causing iron load in Thalassemia Intermedia and Sickle-Cell Anemia, its role in Thalassemia Major (TM is marginal. This is mainly due to the high impact of transfusional requirement into the severe increase of body iron. Moreover, the damage of iron load may be worsened by infections, as HCV hepatitis, or liver and endocrinological damage. One of the most relevant associations was found between splenectomy and increase of risk for mortality due,probably, to more severe iron load. These issues suggest as morbidity and mortality of this group of patients they do not depend only by our ability in controlling heart damage but even in preventing or treating particular infections and complications. This finding is supported by the impairment of survival curves in patients with complications different from heart damage. However, because, during recent years different direct and indirect methods to detect iron overload in patients affected by secondary hemochromatosis have been implemented, our ability to maintain under control iron load is significantly improved. Anyway, the future in iron load management remains to be able to have an iron load map of our body for targeting chelation and other medical treatment according to the single organ damage.

  9. Design Method of Reinforced Concrete Shear Wall Using EBCS

    Directory of Open Access Journals (Sweden)

    Dr. Suresh Borra

    2015-03-01

    Full Text Available Concrete shear walls or structural walls are often used in multistory buildings to resist lateral loads such as wind, seismic and blast loads. Such walls are used when the frame system alone is insufficient or uneconomical to withstand all the lateral loads or when partition walls can be made load bearing, replacing columns and beams. The analysis and design of buildings with shear walls became simple using commercially available computer programs based on the finite element method (FEM and subsequent implementation of stress integration techniques to arrive at generalized forces (axial, shear, and moments. On the other hand, design engineers without such facilities or those with computer facilities lacking such features use simple method of analysis and design by taking the entire dimensions of the walls. This is done by considering the shear walls as wide columns of high moment of inertia and following the same procedure as for columns. The primary purpose of this paper is believed that structural engineers working in the analysis and design of highrise buildings will be benefited from the design shear wall by using EBCS: 2-1995 and EBCS:8-1995codes and its results.

  10. Effect of Horizontal Tied Rebars on Precast Reinforced Concrete Core Walls

    OpenAIRE

    Nakachi, Tadaharu

    2013-01-01

    Multistory core walls installed in high-rise reinforced concrete buildings effectively reduce seismic vibration. On the other hand, precast core walls are considered effective for construction because they can be built more quickly than cast-in-place core walls. In this study, lateral loading tests were conducted on precast wall columns simulating the corner and the area near the corner of the L-shaped precast core wall. The specimen consisted of four square-section precast columns. The verti...

  11. Comparative study of Trombe wall, water wall and trans wall

    Energy Technology Data Exchange (ETDEWEB)

    Sodha, M.S.; Bansal, N.K.; Singh, S.; Ram, S.; Annamalai, M.; Iyer, M.V.; Nirmala, K.A.; Venkatesh, P.; Prasad, C.R.; Subramani, C.

    1982-01-01

    The thermal performances of three systems viz. Trombe wall: (1) without; and (2) with vents (forced air circulation), water wall and Transwall have been studied analytically interms of heat flux entering the living space (Maintained at 20/sup 0/C) corresponding to the meteriological data on January 19, 1981 at New Delhi (India), a typical cold winter day. Subsequent parametric studies using the simulation indicated that the Transwall system is the more efficient system for the passive heating of buildings.

  12. Under Wind Load Function the Curtain Wall Aluminum Plate Internal Force and Distortion Calculation%风荷载作用下幕墙铝板内力和变形的计算

    Institute of Scientific and Technical Information of China (English)

    毛伙南

    2012-01-01

    The survey of unit type curtain wall is researched. Using the ANSYS software, the internal force and displacement of the unit type plate structure which are composed of the trough type aluminum plate and S stiffening ribs (portal type frame) are calculated. The stiffening rib and the aluminum plate corner partial rivet loosens by the rigid joint turns the hinge point is studied. The computation model is built and its biggest internal force and displacement are obtained. Finally, the practical application is in troduced.%阐述了槽型铝板和加劲肋构成的单元式幕墙的内力及变形计算.采用ANSYS软件对单元板块由槽型铝板与5条加劲肋组成的结构的内力和变形进行计算,研究了加劲肋转角处由于局部铆钉松脱由刚结点变成铰接点后其计算模型发生改变的应力及位移计算,最后介绍实际应用.

  13. Domain Walls on Singularities

    CERN Document Server

    Halyo, Edi

    2009-01-01

    We describe domain walls that live on $A_2$ and $A_3$ singularities. The walls are BPS if the singularity is resolved and non--BPS if it is deformed and fibered. We show that these domain walls may interpolate between vacua that support monopoles and/or vortices.

  14. Halogenation of microcapsule walls

    Science.gov (United States)

    Davis, T. R.; Schaab, C. K.; Scott, J. C.

    1972-01-01

    Procedure for halogenation of confining walls of both gelatin and gelatin-phenolic resin capsules is similar to that used for microencapsulation. Ten percent halogen content renders capsule wall nonburning; any higher content enhances flame-retardant properties of selected internal phase material. Halogenation decreases permeability of wall material to encapsulated materials.

  15. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  16. Comparison of the Structural Performance of Monolithic and Precast Reinforced Concrete Core Walls

    OpenAIRE

    Nakachi, Tadaharu

    2014-01-01

    In the core wall system in high-rise buildings, the four L-shaped core walls at the center effectively reduce seismic vibration. On the other hand, precast core walls are effective for construction because they can be built more quickly than cast-in-place core walls. In this study, a lateral loading test was conducted on a monolithic wall column simulating the corner and the area near the corner of an L-shaped core wall. The test results were compared with those of a precast wall column teste...

  17. Electromagnetic approaches to wall characterization, wall mitigation, and antenna design for through-the-wall radar systems

    Science.gov (United States)

    Thajudeen, Christopher

    of ground reflections, and situations where they may be applied to the estimation of the parameters associated with an interior wall. It is demonstrated through extensive computer simulations and laboratory experiments that, by proper exploitation of the electromagnetic characteristics of walls, one can efficiently extract the constitutive parameters associated with unknown wall(s) as well as to characterize and image the intra-wall region. Additionally, it is possible, to a large extent, to remove the negative wall effects, such as shadowing and incorrect target localization, as well as to enhance the imaging and classification of targets behind walls. In addition to the discussion of post processing the radar data to account for wall effects, the design of antenna elements used for transmit (Tx) and receive (Rx) operations in TWR radars is also discussed but limited to antennas for mobile, handheld, or UAV TWR systems which impose design requirements such as low profiles, wide operational bands, and in most cases lend themselves to fabrication using surface printing techniques. A new class of wideband antennas, formed though the use of printed metallic paths in the form of Peano and Hilbert space-filling curves (SFC) to provide top-loading properties that miniaturize monopole antenna elements, has been developed for applications in conformal and/or low profile antennas systems, such as mobile platforms for TWRI and communication systems. Additionally, boresight gain enhancements of a stair-like antenna geometry, through the addition of parasitic self-similar patches and gate like ground plane structures, are presented.

  18. Carbohydrate Loading.

    Science.gov (United States)

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  19. Load sensor

    NARCIS (Netherlands)

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder for

  20. Carbohydrate Loading.

    Science.gov (United States)

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  1. Static and dynamic buckling of thin-walled plate structures

    CERN Document Server

    Kubiak, Tomasz

    2013-01-01

    This monograph deals with buckling and postbuckling behavior of thin plates and thin-walled structures with flat wall subjected to static and dynamic load. The investigations are carried out in elastic range. The basic assumption here is the  thin plate theory. This method is used to determination the buckling load and postbuckling analysis of thin-walled structures subjected to static and dynamic load. The book introduces two methods for static and dynamic buckling investigation which allow for a wider understanding of the phenomenon. Two different methods also can allow uncoupling of the phenomena occurring at the same time and attempt to estimate their impact on the final result. A general mathematical model, adopted in proposed analytical-numerical method, enables the consideration of all types of stability loss i.e.local, global and interactive forms of buckling. The applied numerical-numerical method includes adjacent of walls, shear-lag phenomenon and a deplanation of cross-sections.

  2. Control of cracking in R.C. Structures: Numerical simulation of a squat shear wall

    NARCIS (Netherlands)

    Damoni, C.; Belletti, B.; Lilliu, G.

    2013-01-01

    In this paper the behavior of a squat shear wall subjected to monotonic shear loading is investigated. The study fits into the experimental program driven by CEOS.fr on modeling of the behavior of the tested mocks-ups (monotonic and cycling loading-under prevented or free shrinkage). The shear wall

  3. Fundamental Characterization of Spanwise Loading and Trailed Wake Vortices

    Science.gov (United States)

    2016-07-01

    tunnel dynamic pressure q = 70 psf, which corresponds to roughly V∞ = 280 ft/s and is shown in the paper. Initial tests allowed construction of a loading ...0.3 0.4 0.5 0.6 0.7 0.8 8 30 46.5 52.5 58.5 64.5 c n y (in) Fence plate Tunnel wall Figure 5. Example wing loading distribution from...wing between the tunnel wall and the fence. If the wing lift on the tunnel wall side of the fence is assumed to follow the loading distribution further

  4. Abdominal wall fat pad biopsy

    Science.gov (United States)

    Amyloidosis - abdominal wall fat pad biopsy; Abdominal wall biopsy; Biopsy - abdominal wall fat pad ... method of taking an abdominal wall fat pad biopsy . The health care provider cleans the skin on ...

  5. Mitigation of Blast Effects on Aluminum Foam Protected Masonry Walls

    Institute of Scientific and Technical Information of China (English)

    SU Yu; WU Chengqing; GRIFFITH Mike

    2008-01-01

    Terrorist attacks using improvised explosive devices (lED) can result in unreinforced masonry (URM) wall collapse.Protecting URM wall from lED attack is very complicated.An effective solution to mitigate blast effects on URM wall is to retrofit URM walls with metallic foam sheets to absorb blast energy.However,mitigation of blast effects on metallic foam protected URM walls is currently in their infancy in the world.In this palaer,numerical models are used to simulate the performance of aluminum foam protected URM walls subjected to blast loads.A distinctive model,in which mortar and brick units of masonry are discritized individually,is used to model the performance of masonry and the contact between the masonry and steel face-sheet of aluminum foam is modelled using the interface element model.The aluminum foam is modelled by a nonlinear elastoplastic material model.The material models for masonry,aluminum foam and interface are then coded into a finite element program LS-DYNA3D to perform the numerical calculations of response and damage of aluminum foam protected URM walls under airblast loads.Discussion is made on the effectiveness of the aluminum foam protected system for URM wall against blast loads.

  6. Plasticity Approach to HSC Shear Wall Design

    DEFF Research Database (Denmark)

    Liu, Lunying; Nielsen, Mogens Peter

    1998-01-01

    The paper describes a simple theory for determining the ultimate strength of shear walls. It is based on application of the theory of perfectly plastic materials. When applied to concrete the theoretical solutions must be modified by inserting into the solutions a reduced compressive strength...... to 140 MPa and reinforcement yield strengths up to 1420 MPa. The work was carried out as a Ph.D. study by the first author, the second author supervising the study.Keywords: shear wall, plasticity, strut and tie, load-carrying capacity, concrete, reinforcement....

  7. First wall thermal hydraulic models for fusion blankets

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J A

    1980-01-01

    Subject to normal and off-normal reactor conditions, thermal hydraulic models of first walls, e.g., a thermal mass barrier, a tubular shield, and a radiating liner are reviewed. Under normal operation the plasma behaves as expected in a predicted way for transient and steady-state conditions. The most severe thermal loading on the first wall occurs when the plasma becomes unstable and dumps its energy on the wall in a very short period of time (milliseconds). Depending on the plasma dump time and area over which the energy is deposited may result in melting of the first wall surface, and if the temperature is high enough, vaporization.

  8. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  9. Study of Strength of RC Shear Wall at Different Location on Multi-Storied Residential Building

    Directory of Open Access Journals (Sweden)

    Syed Ehtesham Ali

    2014-09-01

    Full Text Available Shear wall systems are one of the most commonly used lateral load resisting systems in high-rise buildings. Shear walls have very high in plane stiffness and strength, which can be used to simultaneously resist large horizontal loads and support gravity loads, making them quite advantageous in many structural engineering applications. There are lots of literatures available to design and analyze the shear wall. However, the decision about the location of shear wall in multi-storey building is not much discussed in any literatures. In this paper, therefore, main focus is to determine the solution for shear wall location in multi-storey building. A RCC building of six storey placed in HYDERABAD subjected to earthquake loading in zone-II is considered. An earthquake load is calculated by seismic coefficient method using IS 1893 (PART–I:2002. These analyses were performed using ETABS.

  10. Solar heating wall

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, J.L.

    1983-08-16

    A solar heating wall is disclosed including a water pipe circulation system having a plurality of separate tubes, each formed as a loop, connected between a water supply and a return. The separate tubes are arranged in a single vertical plane at the approximate center of the wall. The wall is formed within a frame which is packed with a material suited for use as a thERMAL RESERVOIR, SUCH AS concrete. The frame provides extra support by having a series of horizontally disposed cross supports on one surface of the wall and a series of vertically disposed cross supports on the opposite surface A pressure relief valve may be provided between the water supply to the separate tubes and the water supply to the building or structure containing the solar wall, so that the solar wall can be adapted for use with a city water system.

  11. LOAD CARRYING CAPABILITY OF LIQUID FILLED CYLINDRICAL SHELL STRUCTURES UNDER AXIAL COMPRESSION

    Directory of Open Access Journals (Sweden)

    QASIM H. SHAH

    2011-08-01

    Full Text Available Empty and water filled cylindrical Tin (Sn coated steel cans were loaded under axial compression at varying loading rates to study their resistance to withstand accidental loads. Compared to empty cans the water filled cans exhibit greater resistance to axially applied compression loads before a complete collapse. The time and load or stroke and load plots showed three significant load peaks related to three stages during loading until the cylinder collapse. First peak corresponds to the initial structural buckling of can. Second peak occurs when cylindrical can walls gradually come into full contact with water. The third peak shows the maximum load carrying capability of the structure where pressurized water deforms the can walls into curved shape until can walls fail under peak pressure. The collapse process of water filled cylindrical shell was further studied using Smooth Particle Hydrodynamics (SPH technique in LSDYNA. Load peaks observed in the experimental work were successfully simulated which substantiated the experimental work.

  12. Moisture Management for High R-Value Walls

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R.; Schumacher, C.; Lukachko, A.

    2013-11-01

    The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.

  13. Nonlinear behaviour and stability of thin-walled shells

    CERN Document Server

    Obodan, Natalia I; Gromov, Vasilii A

    2013-01-01

    This book focuses on the nonlinear behaviour of thin-wall shells (single- and multilayered with delamination areas) under various uniform and non-uniform loadings. The dependence of critical (buckling) load upon load variability is revealed to be highly non-monotonous, showing minima when load variability is close to the eigenmode variabilities of solution branching points of the respective nonlinear boundary problem. A novel numerical approach is employed to analyze branching points and to build primary, secondary, and tertiary bifurcation paths of the nonlinear boundary problem for the case of uniform loading. The load levels of singular points belonging to the paths are considered to be critical load estimates for the case of non-uniform loadings.

  14. Cell Wall Proteome

    OpenAIRE

    Boudart, Georges; Minic, Zoran; Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth; Pont-Lezica, Rafael F

    2007-01-01

    In this chapter, we will focus on the contribution of proteomics to the identification and determination of the structure and function of CWPs as well as discussing new perspectives in this area. The great variety of proteins found in the plant cell wall is described. Some families, such as glycoside hydrolases, proteases, lectins, and inhibitors of cell wall modifying enzymes, are discussed in detail. Examples of the use of proteomic techniques to elucidate the structure of various cell wall...

  15. Staggered domain wall fermions

    CERN Document Server

    Hoelbling, Christian

    2016-01-01

    We construct domain wall fermions with a staggered kernel and investigate their spectral and chiral properties numerically in the Schwinger model. In some relevant cases we see an improvement of chirality by more than an order of magnitude as compared to usual domain wall fermions. Moreover, we present first results for four-dimensional quantum chromodynamics, where we also observe significant reductions of chiral symmetry violations for staggered domain wall fermions.

  16. Green walls in Vancouver

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R. [Sharp and Diamond Landscape Architecture Inc., Vancouver, BC (Canada)

    2007-07-01

    With the renewed interest in design for microclimate control and energy conservation, many cities are implementing clean air initiatives and sustainable planning policies to mitigate the effects of urban climate and the urban heat island effect. Green roofs, sky courts and green walls must be thoughtfully designed to withstand severe conditions such as moisture stress, extremes in temperature, tropical storms and strong desiccating winds. This paper focused on the installation of green wall systems. There are 2 general types of green walls systems, namely facade greening and living walls. Green facades are trellis systems where climbing plants can grow vertically without attaching to the surface of the building. Living walls are part of a building envelope system where plants are actually planted and grown in a wall system. A modular G-SKY Green Wall Panel was installed at the Aquaquest Learning Centre at the Vancouver Aquarium in Stanley Park in September 2006. This green wall panel, which was originally developed in Japan, incorporates many innovative features in the building envelope. It provides an exterior wall covered with 8 species of plants native to the Coastal Temperate Rain Forest. The living wall is irrigated by rainwater collected from the roof, stored in an underground cistern and fed through a drip irrigation system. From a habitat perspective, the building imitates an escarpment. Installation, support systems, irrigation, replacement of modules and maintenance are included in the complete wall system. Living walls reduce the surface temperature of buildings by as much as 10 degrees C when covered with vegetation and a growing medium. The project team is anticipating LEED gold certification under the United States-Canada Green Building Council. It was concluded that this technology of vegetated building envelopes is applicable for acoustical control at airports, biofiltration of indoor air, greywater treatment, and urban agriculture and vertical

  17. Experiment and Simulation Study on the Amorphous Silicon Photovoltaic Walls

    Directory of Open Access Journals (Sweden)

    Wenjie Zhang

    2014-01-01

    Full Text Available Based on comparative study on two amorphous silicon photovoltaic walls (a-Si PV walls, the temperature distribution and the instant power were tested; and with EnergyPlus software, similar models of the walls were built to simulate annual power generation and air conditioning load. On typical sunshine day, the corresponding position temperature of nonventilated PV wall was generally 0.5~1.5°C higher than that of ventilated one, while the power generation was 0.2%~0.4% lower, which was consistent with the simulation results with a difference of 0.41% in annual energy output. As simulation results, in summer, comparing the PV walls with normal wall, the heat per unit area of these two photovoltaic walls was 5.25 kWh/m2 (nonventilated and 0.67 kWh/m2 (ventilated higher, respectively. But in winter the heat loss of nonventilated one was smaller, while ventilated PV wall was similar to normal wall. To annual energy consumption of heating and cooling, the building with ventilated PV wall and normal wall was also similar but slightly better than nonventilated one. Therefore, it is inferred that, at low latitudes, such as Zhuhai, China, air gap ventilation is suitable, while the length to thickness ratio of the air gap needs to be taken into account.

  18. Effect of Shock Wave on Fabricated Anti-Blast Wall and Distribution Law Around the Wall Under Near Surface Explosion

    Institute of Scientific and Technical Information of China (English)

    WU Jun; LIU Jingbo; YAN Qiushi

    2008-01-01

    The loads of shock wave effect on fabricated anti-blast wall and distribution law around the wall were investigated by using near surface explosion test method and FEM.The pressure-time histories and variety law on the foreside and backside of the anti-blast wall were adopted in the tests of variety of different explosion distances and dynamites,as well as in the comparison between the test and numerical calculation.The test results show that the loads of shock wave effect on the anti-blast wall were essen-tially consistent with calculation results using criterion under surface explosion when explosion distances exceed 2 m,the distribution of overpressure behind wall was gained according to variety law based on small-large-small.It is also demonstrated that the peak overpressure behind wall had commonly appeared in wall height by 1.5--2.5 multiples,and the peak overpressures of protective building behind wall could be reduced effectively by using the fabricated anti-blast wall.

  19. Mechanical Properties of Plant Cell Walls Probed by Relaxation Spectra

    DEFF Research Database (Denmark)

    Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola

    2011-01-01

    Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild...... type. This may be due to the plant’s ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply...... a method, determination of relaxation spectra, which probes, and can separate, the viscoelastic properties of different cell wall components (i.e. those properties that depend on the elastic behavior of load-bearing wall polymers combined with viscous interactions between them). A computer program, Bayes...

  20. Mechanical Properties of Plant Cell Walls Probed by Relaxation Spectra

    DEFF Research Database (Denmark)

    Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola

    2011-01-01

    Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild...... type. This may be due to the plant’s ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply...... a method, determination of relaxation spectra, which probes, and can separate, the viscoelastic properties of different cell wall components (i.e. those properties that depend on the elastic behavior of load-bearing wall polymers combined with viscous interactions between them). A computer program, Bayes...

  1. Sequential buckling of an elastic wall

    Science.gov (United States)

    Bico, Jose; Bense, Hadrien; Keiser, Ludovic; Roman, Benoit; Melo, Francisco; Abkarian, Manouk

    A beam under quasistatic compression classically buckles beyond a critical threshold. In the case of a free beam, the lowest buckling mode is selected. We investigate the case of a long ``wall'' grounded of a compliant base and compressed in the axial compression. In the case of a wall of slender rectangular cross section, the selected buckling mode adopts a nearly fixed wavelength proportional to the height of the wall. Higher compressive loads only increase the amplitude of the buckle. However if the cross section has a sharp shape (such as an Eiffel tower profile), we observe successive buckling modes of increasing wavelength. We interpret this unusual evolution in terms of scaling arguments. At small scales, this variable periodicity might be used to develop tunable optical devices. We thank ECOS C12E07, CNRS-CONICYT, and Fondecyt Grant No. N1130922 for partially funding this work.

  2. Retrofitting Masonry Walls with Carbon Mesh

    Directory of Open Access Journals (Sweden)

    Patrick Bischof

    2014-01-01

    Full Text Available Static-cyclic shear load tests and tensile tests on retrofitted masonry walls were conducted at UAS Fribourg for an evaluation of the newly developed retrofitting system, the S&P ARMO-System. This retrofitting system consists of a composite of carbon mesh embedded in a specially adapted high quality spray mortar. It can be applied with established construction techniques using traditional construction materials. The experimental study has shown that masonry walls reinforced by this retrofitting system reach a similar strength and a higher ductility than retrofits by means of bonded carbon fiber reinforced polymer sheets. Hence, the retrofitting system using carbon fiber meshes embedded in a high quality mortar constitutes a good option for static or seismic retrofits or reinforcements for masonry walls. However, the experimental studies also revealed that the mechanical anchorage of carbon mesh may be delicate depending on its design.

  3. Hollow clay tile wall program summary report

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.C.; Jones, W.D. [Gilbert/Commonwealth, Inc., Oak Ridge, TN (United States); Beavers, J.E. [MS Technology, Inc. (United States)

    1995-07-30

    Many of the Y-12 Plant buildings, constructed during the 1940s and 1950s, consist of steel ed concrete framing infilled with hollow clay tile (HCT). The infill was intended to provide for building enclosure and was not designed to have vertical or lateral load-carrying capacity. During the late 1970s and early 1980s, seismic and wind evaluations were performed on many of these buildings in conjunction with the preparation of a site-wide safety analysis report. This analytical work, based on the best available methodology, considered lateral load-carrying capacity of the HCT infill on the basis of building code allowable shear values. In parallel with the analysis effort, DOE initiated a program to develop natural phenomena capacity and performance criteria for existing buildings, but these criteria did not specify guidelines for determining the lateral force capacity of frames infilled with HCT. The evaluation of infills was, therefore, based on the provisions for the design of unreinforced masonry as outlined in standard masonry codes. When the results of the seismic and wind evaluations were compared with the new criteria, the projected building capacities fell short of the requirements. Apparently, if the buildings were to meet the new criteria, many millions of dollars would be required for building upgrades. Because the upgrade costs were significant, the assumptions and approaches used in the analyses were reevaluated. Four issues were identified: (1) Once the infilled walls cracked, what capacity (nonlinear response), if any, would the walls have to resist earthquake or wind loads applied in the plane of the infill (in-plane)? (2) Would the infilled walls remain within the steel or reinforced concrete framing when subjected to earthquake or high wind loads applied perpendicular to the infill (out-of-plane)? (3) What was the actual shear capacity of the HCT infill? (4) Was modeling the HCT infill as a shear wall the best approach?

  4. Displacement ductility for seismic design of RC walls for low-rise housing

    OpenAIRE

    Carrillo,Julian; González, Giovanni; Rubiano, Astrid

    2014-01-01

    The paper compares and discusses displacement ductility ratios of reinforced concrete walls typically used in one- and two-story houses. Ductility is investigated by assessing response measured on 39 walls tested under shaking table excitations and quasi-static lateral loads. Variables studied were the height-to-length ratio and walls with openings, type of concrete and, steel ratio and type of web reinforcement. An equation to estimate the available ductility of a wall is proposed. Based on ...

  5. International Divider Walls

    NARCIS (Netherlands)

    Kruis, A.; Sneller, A.C.W.(L.)

    2013-01-01

    The subject of this teaching case is the Enterprise Resource Planning (ERP) system implementation at International Divider Walls, the world market leader in design, production, and sales of divider walls. The implementation in one of the divisions of this multinational company had been successful, a

  6. Domain wall filters

    CERN Document Server

    Bär, O; Neuberger, H; Witzel, O; Baer, Oliver; Narayanan, Rajamani; Neuberger, Herbert; Witzel, Oliver

    2007-01-01

    We propose using the extra dimension separating the domain walls carrying lattice quarks of opposite handedness to gradually filter out the ultraviolet fluctuations of the gauge fields that are felt by the fermionic excitations living in the bulk. This generalization of the homogeneous domain wall construction has some theoretical features that seem nontrivial.

  7. Thin Wall Iron Castings

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  8. International Divider Walls

    NARCIS (Netherlands)

    Kruis, A.; Sneller, A.C.W.(L.)

    2013-01-01

    The subject of this teaching case is the Enterprise Resource Planning (ERP) system implementation at International Divider Walls, the world market leader in design, production, and sales of divider walls. The implementation in one of the divisions of this multinational company had been successful,

  9. Hard and soft walls

    CERN Document Server

    Milton, Kimball A

    2011-01-01

    In a continuing effort to understand divergences which occur when quantum fields are confined by bounding surfaces, we investigate local energy densities (and the local energy-momentum tensor) in the vicinity of a wall. In this paper, attention is largely confined to a scalar field. If the wall is an infinite Dirichlet plane, well known volume and surface divergences are found, which are regulated by a temporal point-splitting parameter. If the wall is represented by a linear potential in one coordinate $z$, the divergences are softened. The case of a general wall, described by a potential of the form $z^\\alpha$ for $z>0$ is considered. If $\\alpha>2$, there are no surface divergences, which in any case vanish if the conformal stress tensor is employed. Divergences within the wall are also considered.

  10. A closer look at salt loaded microstructures

    NARCIS (Netherlands)

    Rooij, M.R. de

    2006-01-01

    Many walls of ancient buildings are covered with plaster layers. Amongst the most recurrent causes of damage of plasters and substrates are moisture and salt decay processes. To combat these salt problems, special salt resistant plasters have been developed for application on salt loaded substrates.

  11. A closer look at salt loaded microstructures

    NARCIS (Netherlands)

    Rooij, M.R. de

    2006-01-01

    Many walls of ancient buildings are covered with plaster layers. Amongst the most recurrent causes of damage of plasters and substrates are moisture and salt decay processes. To combat these salt problems, special salt resistant plasters have been developed for application on salt loaded substrates.

  12. "I Climbed the Great Wall"

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    I finally climbed the Great Wall, A dream of my childhood; my heart is filled with pleasure at the indescribable beauty of the Wall. China’s ancient civilization is best documented by the grandeur of the Wall.

  13. Load testing circuit

    DEFF Research Database (Denmark)

    2009-01-01

    A load testing circuit a circuit tests the load impedance of a load connected to an amplifier. The load impedance includes a first terminal and a second terminal, the load testing circuit comprising a signal generator providing a test signal of a defined bandwidth to the first terminal of the load...

  14. Advanced walling systems

    CSIR Research Space (South Africa)

    De Villiers, A

    2010-01-01

    Full Text Available The question addressed by this chapter is: How should advanced walling systems be planned, designed, built, refurbished, and end their useful lives, to classify as smart, sustainable, green or eco-building environments?...

  15. Experiment and calculation on seismic behavior of RC composite core walls with concealed steel truss

    Institute of Scientific and Technical Information of China (English)

    Wanlin CAO; Weihua CHANG; Changjun ZHAO; Jianwei ZHANG

    2009-01-01

    To improve the seismic performance of reinforced concrete core walls, reinforced concrete com-posite core walls with concealed steel truss were proposed and systemically investigated. Two 1/6 scale core wall specimens, including a normal reinforced concrete core wall and a reinforced concrete composite core wall with concealed steel truss, were designed. The experimental study on seismic performance under cyclic loading was carried out. The load-carrying capacity, stiffness, ductility,hysteretic behavior and energy dissipation of the core walls were discussed. The test results showed that the seismic performance of core walls is improved greatly by the concealed steel truss. The calculated results were found to agree well with the actual measured ones.

  16. Method of Calculation of Crown Wall Stability in Oblique Waves

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    2007-01-01

    The wave loading along a structure exposed to oblique waves varies in time and space. Despite of this, the wave generated pressures are usually recorded by gauges only in one position of the wall (more gauges densily spaced is regarded as one position).......The wave loading along a structure exposed to oblique waves varies in time and space. Despite of this, the wave generated pressures are usually recorded by gauges only in one position of the wall (more gauges densily spaced is regarded as one position)....

  17. Loads and loads and loads: The influence of prospective load, retrospective load, and ongoing task load in prospective memory

    Directory of Open Access Journals (Sweden)

    Beat eMeier

    2015-06-01

    Full Text Available In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load can affect prospective memory performance. The existence of multiple target events increases prospective load and adding complexity to the to-be-remembered action increases retrospective load. In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of prospective load on costs in the ongoing task for categorical targets (Experiment 2, but not for specific targets (Experiment 1. Retrospective load and ongoing task load both affected remembering the retrospective component of the prospective memory task. We suggest that prospective load can enhance costs in the ongoing task due to additional monitoring requirements. Retrospective load and ongoing task load seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially.

  18. Modeling Effects on Forces in Shear Wall-Frame Structures

    Directory of Open Access Journals (Sweden)

    Adang Surahman

    2015-05-01

    Full Text Available Shear walls are added to a structural system to reduce lateral deformations in moment resisting frames and are designed to carry a major portion of lateral load induced by an earthquake. A small percentage error in the shear wall calculation will have a significant effect on the frame forces. The results show that even a slight difference in structural assumption, or modeling, results in significant differences. Some of these differences are beyond the values that are covered by safety factors for errors in modeling. The differences are more obvious in the upper stories. It is not recommended to overestimate shear wall stiffness, nor underestimate frame stiffness.

  19. Design of ITER vacuum vessel in-wall shielding

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X., E-mail: xiaoyu.wang@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ioki, K. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Morimoto, M. [Mitsubishi Heavy Industries, 1-1, Wadasaki-cho 1-chome, Hyogo-ku, Kobe (Japan); Choi, C.H.; Utin, Y.; Sborchia, C. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); TaiLhardat, O. [Assystem EOS, ZAC SAINT MARTIN, 23 rue Benjamin Franklin, 84120 Pertuis (France); Mille, B.; Terasawa, A.; Gribov, Y.; Barabash, V.; Polunovskiy, E.; Dani, S. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Pathak, H.; Raval, J. [ITER-India, Institute for Plasma Research, Gandhinagar 382025 (India); Liu, S.; Lu, M.; Du, S. [Institute of Plasma Physics, China Academy of Sciences, Shushanhu Road 350, Hefei (China)

    2014-10-15

    The ITER vacuum vessel is a torus-shaped, double wall structure. The space between the double walls of the VV is filled with in-wall shielding (IWS) and cooling water. The main purpose of the in-wall shielding is to provide neutron shielding together with the blanket and VV shells and water during ITER plasma operation and to reduce the ripple of the Toroidal magnetic field. Based on ITER vacuum vessel structure and related requirements, in-wall shielding are designed as about 8900 individual blocks with different sizes and several different materials distributed over nine vessel sectors and nine field joints of vessel sectors. This paper presents the design of the IWS, considering loads, structural stresses and assembly method, and also shows neutron shielding effect and TF ripple reduced by the IWS.

  20. Examination of the behavior of gravity quay wall against liquefaction under the effect of wall width and soil improvement.

    Science.gov (United States)

    Firoozi, Ali Akbar; Taha, Mohd Raihan; Mir Moammad Hosseini, S M; Firoozi, Ali Asghar

    2014-01-01

    Deformation of quay walls is one of the main sources of damage to port facility while liquefaction of backfill and base soil of the wall are the main reasons for failures of quay walls. During earthquakes, the most susceptible materials for liquefaction in seashore regions are loose saturated sand. In this study, effects of enhancing the wall width and the soil improvement on the behavior of gravity quay walls are examined in order to obtain the optimum improved region. The FLAC 2D software was used for analyzing and modeling progressed models of soil and loading under difference conditions. Also, the behavior of liquefiable soil is simulated by the use of "Finn" constitutive model in the analysis models. The "Finn" constitutive model is especially created to determine liquefaction phenomena and excess pore pressure generation.

  1. Silo with a Corrugated Sheet Wall

    Science.gov (United States)

    Németh, Csaba; Brodniansky, Ján

    2013-09-01

    Silos and tanks are currently being used to create reserves of stored materials. Their importance is based on balancing the production and consumption of bulk materials to establish an adequate reserve throughout the year. The case study introduced within the framework of this paper focuses on thin-walled silos made of corrugated sheets and on an approach for designing these types of structures. The storage of bulk materials causes compression or tensile stresses in the walls of a silo structure. The effect of a frictional force in the silo walls creates an additional bending moment in a wave, which ultimately affects the resulting bending moments. Several mathematical and physical models were used in order to examine various types of loading and their effects on a structure. Subsequently, the accuracy of the computational models was verified by experimental measurements on a grain silo in Bojničky, Slovakia. A comparison of the experimental and mathematical models shows a reasonable match and confirms the load specifications, while indicating that the mathematical model was correct.

  2. Where are the Walls?

    CERN Document Server

    Olive, Keith A; Peterson, Adam J

    2012-01-01

    The reported spatial variation in the fine-structure constant at high redshift, if physical, could be due to the presence of dilatonic domains, and one or more domain walls inside our horizon. An absorption spectrum of an object in a different domain from our own would be characterized by a different value of alpha. We show that while a single wall solution is statically comparable to a dipole fit, and is a big improvement over a weighted mean (despite adding 3 parameters), a two-wall solution is a far better fit (despite adding 3 parameters over the single wall solution). We derive a simple model accounting for the two-domain wall solution. The goodness of these fits is however dependent on the extra random error which was argued to account for the large scatter in most of the data. When this error is omitted, all the above solutions are poor fits to the data. When included, the solutions that exhibit a spatial dependence agree with the data much more significantly than the Standard Model; however, the Stand...

  3. DYNAMIC RESPONSE OF HIGH RISE STRUCTURES UNDER THE INFLUENCE OF DISCRETE STAGGERED SHEAR WALLS

    Directory of Open Access Journals (Sweden)

    Dr. B. KAMESHWARI

    2011-10-01

    Full Text Available It is well-established fact that shear walls are quite effective in lateral load resistance of low-rise to medium-rise reinforced concrete buildings. Restriction in the architectural design by the presence of the shear walls may contribute to discourage the engineers from adopting the shear walls. Due to this a new concept ofproviding storey deep and bay wide discrete staggered shear wall panels have been introduced. In this study, the effect of various configurations of shear walls on high-rise structure is analysed. The drift and inter-storey drift of the structure in the following configurations of shear wall panels is studied and is compared with that of bare frame: (1 Conventional shear walls. (2 Alternate arrangement of shear walls. (3 Diagonal arrangement of shear walls. (4 Zigzag arrangement of shear walls. (5 Influence of lift core walls. Of the configurations studied, the zigzag shear wall configuration is found to be better than the other systems studied in controlling the response to earthquake loading. The diagonal configuration is found to be having significant role in controlling the response of structures to earthquake.

  4. Electrical load detection aparatus

    DEFF Research Database (Denmark)

    2010-01-01

    A load detection technique for a load comprising multiple frequency-dependant sub-loads comprises measuring a representation of the impedance characteristic of the load; providing stored representations of a multiplicity of impedance characteristics of the load; each one of the stored representat...

  5. Mouse bladder wall injection.

    Science.gov (United States)

    Fu, Chi-Ling; Apelo, Charity A; Torres, Baldemar; Thai, Kim H; Hsieh, Michael H

    2011-07-12

    Mouse bladder wall injection is a useful technique to orthotopically study bladder phenomena, including stem cell, smooth muscle, and cancer biology. Before starting injections, the surgical area must be cleaned with soap and water and antiseptic solution. Surgical equipment must be sterilized before use and between each animal. Each mouse is placed under inhaled isoflurane anesthesia (2-5% for induction, 1-3% for maintenance) and its bladder exposed by making a midline abdominal incision with scissors. If the bladder is full, it is partially decompressed by gentle squeezing between two fingers. The cell suspension of interest is intramurally injected into the wall of the bladder dome using a 29 or 30 gauge needle and 1 cc or smaller syringe. The wound is then closed using wound clips and the mouse allowed to recover on a warming pad. Bladder wall injection is a delicate microsurgical technique that can be mastered with practice.

  6. Axion domain wall baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Daido, Ryuji; Kitajima, Naoya [Department of Physics, Tohoku University,Sendai 980-8578 (Japan); Takahashi, Fuminobu [Department of Physics, Tohoku University,Sendai 980-8578 (Japan); Kavli IPMU, TODIAS, University of Tokyo,Kashiwa 277-8583 (Japan)

    2015-07-28

    We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m≃10{sup 8}–10{sup 13} GeV and f≃10{sup 13}–10{sup 16} GeV. Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domain wall annihilation and its implications for the future gravitational wave experiments.

  7. Congenital Abdominal Wall Defects

    DEFF Research Database (Denmark)

    Risby, Kirsten; Jakobsen, Marianne Skytte; Qvist, Niels

    2016-01-01

    complications were seen in five (15%) children: four had detachment of the mesh and one patient developed abdominal compartment syndrome. Mesh related clinical infection was observed in five children. In hospital mortality occurred in four cases (2 gastroschisis and 2 omphalocele) and was not procedure......OBJECTIVE: To evaluate the clinical utility of GORE® DUALMESH (GDM) in the staged closure of large congenital abdominal wall defects. MATERIALS AND METHODS: Data of patients with congenital abdominal wall defects managed with GDM was analyzed for outcome regarding complete fascial closure; mesh...

  8. Timber frame walls

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Brandt, Erik

    2010-01-01

    A ventilated cavity is usually considered good practice for removing moisture behind the cladding of timber framed walls. Timber frame walls with no cavity are a logical alternative as they are slimmer and less expensive to produce and besides the risk of a two-sided fire behind the cladding....... It was found that the specific damages made to the vapour barrier as part of the test did not have any provable effect on the moisture content. In general elements with an intact vapour barrier did not show a critical moisture content at the wind barrier after four years of exposure....

  9. Distribution load estimation (DLE)

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A.; Lehtonen, M. [VTT Energy, Espoo (Finland)

    1998-08-01

    The load research has produced customer class load models to convert the customers` annual energy consumption to hourly load values. The reliability of load models applied from a nation-wide sample is limited in any specific network because many local circumstances are different from utility to utility and time to time. Therefore there is a need to find improvements to the load models or, in general, improvements to the load estimates. In Distribution Load Estimation (DLE) the measurements from the network are utilized to improve the customer class load models. The results of DLE will be new load models that better correspond to the loading of the distribution network but are still close to the original load models obtained by load research. The principal data flow of DLE is presented

  10. Approach to Assessing the Long-term Performance of Wall Assemblies – Durability of Low-rise Wood-frame walls

    DEFF Research Database (Denmark)

    Lacasse, Michael A.; Morelli, Martin

    2017-01-01

    The long-term performance or durability of wall assemblies in respect to the moisture management of components of which comprise the wall depends on the hygrothermal response of the wall to local climate loads. Critical factors in estimating the longevity of wood frame structures include limiting...... in which the LSD approach is applied to low-rise wood-frame walls, as are built in North America, and that incorporate drainage components, such components forming part of a rain screen wall assembly. The use of this approach permits determining whether wall assemblies incorporating novel components...... are suitable for use in walls exposed to climates having extreme wind-driven rain conditions. The performance assessment is based on the results derived from hygrothermal simulation....

  11. DISTORTIONAL BUCKLING TEST AND CALCULATION METHOD OF LOAD-CARRYING CAPACITY OF COLD-FORMED THIN-WALLED STEEL LIPPED CHANNEL COLUMNS WITH CIRCLE HOLES IN WEB UNDER AXIAL COMPRESSION%腹板开圆孔冷弯卷边槽钢轴压构件畸变屈曲承载力试验及计算方法

    Institute of Scientific and Technical Information of China (English)

    姚行友; 郭彦利

    2016-01-01

    对26根屈服强度为235 MPa的腹板开孔和未开孔冷弯薄壁型钢截面轴压构件进行畸变屈曲承载力试验研究,分析构件的屈曲模式和极限承载力.将我国及北美相关规范计算的构件承载力以及非线性有限元数值模拟结果与试验结果进行分析比较,并对腹板开孔冷弯薄壁型钢截面轴压构件的承载力合理计算模式进行研究.结果表明:对于中等长度腹板开孔冷弯薄壁型钢截面轴压构件主要出现局部、畸变和整体屈曲的相关作用;腹板开孔对构件畸变屈曲稳定承载力有一定的降低作用;采用折减构件有效截面面积的修正方法可计算开孔构件的畸变屈曲稳定承载力;非线性有限元方法可用于腹板开孔冷弯薄壁型钢构件的屈曲模式和极限承载力的分析.%In order to research the distortional buckling mode and load-carrying capacity of cold-formed thin-walled steel members with holes, compression tests were conducted on 26 intermediate length columns with and without web holes.For each specimen, a shell finite element eigenbuckling analysis and nonlinear analysis were also conducted such that the influence of the hole on local, distortional, and global elastic buckling responses could also be got.The comparison of ultimate strength between test results and calculated results using relevant codes was made.The calculated method for cold-formed thin-walled steel columns with web holes was proposed.The results showed that the interaction of local buckling, distortional buckling, and overall buckling usually would occur in the intermediate length member under axial compression, and the web holes had a little influence on the elastic buckling strength and the distortional buckling ultimate strength of columns, the ultimate strength of the members with holes in web could be predicted using a reduced effective area, and the nonlinear finite element method could be used to analyse the buckling mode and

  12. Dynamic stiffness for thin-walled structures by power series

    Institute of Scientific and Technical Information of China (English)

    ZHU Bin; LEUNG A.Y.T.

    2006-01-01

    The dynamic stiffness method is introduced to analyze thin-walled structures including thin-walled straight beams and spatial twisted helix beam. A dynamic stiffness matrix is formed by using frequency dependent shape functions which are exact solutions of the governing differential equations. With the obtained thin-walled beam dynamic stiffness matrices, the thin-walled frame dynamic stiffness matrix can also be formulated by satisfying the required displacements compatibility and forces equilibrium, a method which is similar to the finite element method (FEM). Then the thin-walled structure natural frequencies can be found by equating the determinant of the system dynamic stiffness matrix to zero. By this way, just one element and several elements can exactly predict many modes of a thin-walled beam and a spatial thin-walled frame, respectively. Several cases are studied and the results are compared with the existing solutions of other methods. The natural frequencies and buckling loads of these thin-walled structures are computed.

  13. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations......Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...

  14. Distribution load estimation - DLE

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A. [VTT Energy, Espoo (Finland)

    1996-12-31

    The load research project has produced statistical information in the form of load models to convert the figures of annual energy consumption to hourly load values. The reliability of load models is limited to a certain network because many local circumstances are different from utility to utility and time to time. Therefore there is a need to make improvements in the load models. Distribution load estimation (DLE) is the method developed here to improve load estimates from the load models. The method is also quite cheap to apply as it utilises information that is already available in SCADA systems

  15. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations......Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...

  16. Ambiguity of the critical load for spherical shells with shear damageability of the material

    Science.gov (United States)

    Babich, D. V.; Dorodnykh, T. I.

    2016-06-01

    The structural-probabilistic approach to the modeling of combined crack formation and material deformation processes is used to develop a technique for solving bifurcation stability problems for thin-walled structural members made of damageable materials under single and repeated loadings. The example of a uniformly compressed spherical shell is used to show that, under repeated loading, thin-walled structural members made of shear damageable materials can lose stability under loads smaller than the upper critical loads. The ambiguity of the critical loads for various damage accumulation processes in the material of thin-walled structures depends on the level and character of loading. This phenomenon can be one possible cause of the experimental data spread and the discrepancy between theoretical and experimental results used to determine the critical loads for spherical and cylindrical shells.

  17. The preparation of functionalized single walled carbon nanotubes as high efficiency DNA carriers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The positively charged single walled carbon nanotubes (SWNTs+) were prepared by conjugating with -CONH-C6H12-NH3+.The double strand DNA (dsDNA) chains were loaded onto SWNTs+ via the electrostatic interactions. SWNTs+ shows improved loading efficiency (353.5 μg/mg) toward dsDNA compared with that of charged free single walled carbon nanotubes (SWNTs)(82.9 μg/mg).

  18. The Investigation with ANSYS of Stress Changes on Silo Wall According to Different Standards

    OpenAIRE

    KİBAR, Hakan; Öztürk,Turgut

    2013-01-01

    In this study, the optimal dimensions of the silo were investigated for barrel-type cylinder, conical outlet, steel construction silo which used in Tombul hazelnut storage in the Giresun province conditions. 10, 11, 12, 13, 14, 15 ve 20 mm wall thickness for 1635 tons storage capacity silo were examined in the study. For this purpose, pressure loads acting on the silo wall surface (vertical, horizontal, friction traction pressure load) using Eurocode 1 and Australian standards were calculated...

  19. Displacement of Monolithic Rubble-Mound Breakwater Crown-Walls

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Lars Vabbersgaard; Andersen, Thomas Lykke

    2012-01-01

    studies on caisson breakwaters, but correction terms are suggested in the present paper to obtain almost equal measured and estimated displacements. This is of great practical importance since many existing rubble-mound crown-walls are subjected to increasing wave loads due to rising sea water level from......This paper evaluates the validity of a simple one-dimensional dynamic analysis as well as a Finite-Element model to determine the sliding of a rubble-mound breakwater crown-wall. The evaluation is based on a case example with real wave load time-series and displacements measured from two...... of the accumulated sliding distance of crown-wall superstructures, which is in contrast to findings from previous similar studies on caisson breakwaters. The calculated sliding distance is approximately three times larger than the measured one when using the original one-dimensional model suggested in previous...

  20. Material options for a commercial fusion reactor first wall

    Energy Technology Data Exchange (ETDEWEB)

    Dabiri, A.E.

    1986-05-01

    A study has been conducted to evaluate the potential of various materials for use as first walls in high-power-density commercial fusion reactors. Operating limits for each material were obtained based on a number of criteria, including maximum allowable structural temperatures, critical heat flux, ultimate tensile strength, and design-allowable stress. The results with water as a coolant indicate that a modified alloy similar to HT-9 may be a suitable candidate for low- and medium-power-density reactor first walls with neutron loads of up to 6 MW/m/sup 2/. A vanadium or copper alloy must be used for high-power-density reactors. The neutron wall load limit for vanadium alloys is about 14 MW/sup 2/, provided a suitable coating material is chosen. The extremely limited data base for radiation effects hinders any quantitative assessment of the limits for copper alloys.

  1. Performance of masonry enclosure walls: lessons learned from recent earthquakes

    Science.gov (United States)

    Vicente, Romeu Silva; Rodrigues, Hugo; Varum, Humberto; Costa, Aníbal; Mendes da Silva, José António Raimundo

    2012-03-01

    This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-bearing masonry walls, using horizontally perforated clay bricks. These walls are generally supported and confined by a reinforced concrete frame structure of columns and beams/slabs. Since these walls are commonly considered to be nonstructural elements and their influence on the structural response is ignored, their consideration in the design of structures as well as their connection to the adjacent structural elements is frequently negligent or insufficiently detailed. As a consequence, nonstructural elements, as for wall enclosures, are relatively sensitive to drift and acceleration demands when buildings are subjected to seismic actions. Many international standards and technical documents stress the need for design acceptability criteria for nonstructural elements, however they do not specifically indicate how to prevent collapse and severe cracking, and how to enhance the overall stability in the case of moderate to high seismic loading. Furthermore, a review of appropriate measures to improve enclosure wall performance and both in-plane and out-of-plane integrity under seismic actions is addressed.

  2. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement

    Directory of Open Access Journals (Sweden)

    Wanlin Cao

    2014-08-01

    Full Text Available Recycled concrete brick (RCB is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.

  3. Experimental Study on the Seismic Performance of Recycled Concrete Brick Walls Embedded with Vertical Reinforcement

    Science.gov (United States)

    Cao, Wanlin; Zhang, Yongbo; Dong, Hongying; Zhou, Zhongyi; Qiao, Qiyun

    2014-01-01

    Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied. PMID:28788170

  4. Moisture Research - Optimizing Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Mantha, Pallavi [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2013-05-01

    In this project, the Consortium for Advanced Residential Buildings (CARB) team evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls. Wall assemblies evaluated included code minimum walls using spray foam insulation and fiberglass batts, high R-value walls at least 12 in. thick (R-40 and R-60 assemblies), and brick walls with interior insulation.

  5. Investigating Wind-Driven Rain Intrusion in Walls with the CARWASh

    Science.gov (United States)

    C.R. Boardman; Samuel V. Glass

    2013-01-01

    Wind-driven rain provides the primary external moisture load for exterior walls.Water absorption by the cladding, runoff, and penetration through the cladding or at details determine how a wall system performs. In this paper we describe a new laboratory facility that can create controlled outdoor and indoor conditions and use it to investigate the water...

  6. 29 CFR 1926.854 - Removal of walls, masonry sections, and chimneys.

    Science.gov (United States)

    2010-07-01

    ... to work on the top of a wall when weather conditions constitute a hazard. (d) Structural or load... 29 Labor 8 2010-07-01 2010-07-01 false Removal of walls, masonry sections, and chimneys. 1926.854... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Demolition § 1926...

  7. Numerical simulations of tests masonry walls from ceramic block using a detailed finite element model

    Directory of Open Access Journals (Sweden)

    V. Salajka

    2017-01-01

    Full Text Available This article deals with an analysis of the behaviour of brick ceramic walls. The behaviour of the walls was analysed experimentally in order to obtain their bearing capacity under static loading and their seismic resistance. Simultaneously, numerical simulations of the experiments were carried out in order to obtain additional information on the behaviour of masonry walls made of ceramic blocks. The results of the geometrically and materially nonlinear computations were compared to the results of the performed tests.

  8. Lateral load pattern in pushover analysis

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The seismic capacity curves of three types of buildings including frame, frame-shear wall and shear wall obtained by pushover analysis under different lateral load patterns are compared with those from nonlinear time history analysis. Based on the numerical results obtained a two-phase load pattern: an inverted triangle(first mode)load pattern until the base shear force reaches β times its maximum value,Vmax, followed by a(x/H)α form, here β and α being some coefficients depending on the type of the structures considered, is proposed in the paper, which can provide excellent approximation of the seismic capacity curve for low-to-mid-rise shear type buildings. Furthermore, it is shown both the two-phase load pattern proposed and the invariant uniform pattern can be used for low-to-mid-rise shear-bending type and low-rise bending type of buildings. No suitable load patterns have been found for high-rise buildings.

  9. High-R Walls for Remodeling: Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  10. High-R Walls for Remodeling. Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Kochkin, V. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States)

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  11. Occupy Wall Street

    DEFF Research Database (Denmark)

    Jensen, Michael J.; Bang, Henrik

    2013-01-01

    This article analyzes the political form of Occupy Wall Street on Twitter. Drawing on evidence contained within the profiles of over 50,000 Twitter users, political identities of participants are characterized using natural language processing. The results find evidence of a traditional oppositio......This article analyzes the political form of Occupy Wall Street on Twitter. Drawing on evidence contained within the profiles of over 50,000 Twitter users, political identities of participants are characterized using natural language processing. The results find evidence of a traditional...... oppositional social movement alongside a legitimizing countermovement, but also a new notion of political community as an ensemble of discursive practices that are endogenous to the constitution of political regimes from the “inside out.” These new political identities are bound by thin ties of political...

  12. Timber frame walls

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Brandt, Erik

    2010-01-01

    A ventilated cavity is usually considered good practice for removing moisture behind the cladding of timber framed walls. Timber frame walls with no cavity are a logical alternative as they are slimmer and less expensive to produce and besides the risk of a two-sided fire behind the cladding...... were removed in some of the elements to simulate damaged vapour barriers. The condition of the wind barriers of elements with intact vapour barriers was inspected from the inside after four years of exposure. This paper presents results with emphasis on the moisture conditions behind the wind barrier....... It was found that the specific damages made to the vapour barrier as part of the test did not have any provable effect on the moisture content. In general elements with an intact vapour barrier did not show a critical moisture content at the wind barrier after four years of exposure....

  13. Seismic earth pressures on flexible cantilever retaining walls with deformable inclusions

    Directory of Open Access Journals (Sweden)

    Ozgur L. Ertugrul

    2014-10-01

    Full Text Available In this study, the results of 1-g shaking table tests performed on small-scale flexible cantilever wall models retaining composite backfill made of a deformable geofoam inclusion and granular cohesionless material were presented. Two different polystyrene materials were utilized as deformable inclusions. Lateral dynamic earth pressures and wall displacements at different elevations of the retaining wall model were monitored during the tests. The earth pressures and displacements of the retaining walls with deformable inclusions were compared with those of the models without geofoam inclusions. Comparisons indicated that geofoam panels of low stiffness installed against the retaining wall model affect displacement and dynamic lateral pressure profile along the wall height. Depending on the inclusion characteristics and the wall flexibility, up to 50% reduction in dynamic earth pressures was observed. The efficiency of load and displacement reduction decreased as the flexibility ratio of the wall model increased. On the other hand, dynamic load reduction efficiency of the deformable inclusion increased as the amplitude and frequency ratio of the seismic excitation increased. Relative flexibility of the deformable layer (the thickness and the elastic stiffness of the polystyrene material played an important role in the amount of load reduction. Dynamic earth pressure coefficients were compared with those calculated with an analytical approach. Pressure coefficients calculated with this method were found to be in good agreement with the results of the tests performed on the wall model having low flexibility ratio. It was observed that deformable inclusions reduce residual wall stresses observed at the end of seismic excitation thus contributing to the post-earthquake stability of the retaining wall. The graphs presented within this paper regarding the dynamic earth pressure coefficients versus the wall flexibility and inclusion characteristics may

  14. Seismic earth pressures on flexible cantilever retaining walls with deformable inclusions

    Institute of Scientific and Technical Information of China (English)

    Ozgur L. Ertugrul; Aurelian C. Trandafir

    2014-01-01

    In this study, the results of 1-g shaking table tests performed on small-scale flexible cantilever wall models retaining composite backfill made of a deformable geofoam inclusion and granular cohesionless material were presented. Two different polystyrene materials were utilized as deformable inclusions. Lateral dynamic earth pressures and wall displacements at different elevations of the retaining wall model were monitored during the tests. The earth pressures and displacements of the retaining walls with deformable inclusions were compared with those of the models without geofoam inclusions. Comparisons indicated that geofoam panels of low stiffness installed against the retaining wall model affect displacement and dynamic lateral pressure profile along the wall height. Depending on the in-clusion characteristics and the wall flexibility, up to 50% reduction in dynamic earth pressures was observed. The efficiency of load and displacement reduction decreased as the flexibility ratio of the wall model increased. On the other hand, dynamic load reduction efficiency of the deformable inclusion increased as the amplitude and frequency ratio of the seismic excitation increased. Relative flexibility of the deformable layer (the thickness and the elastic stiffness of the polystyrene material) played an important role in the amount of load reduction. Dynamic earth pressure coefficients were compared with those calculated with an analytical approach. Pressure coefficients calculated with this method were found to be in good agreement with the results of the tests performed on the wall model having low flexibility ratio. It was observed that deformable inclusions reduce residual wall stresses observed at the end of seismic excitation thus contributing to the post-earthquake stability of the retaining wall. The graphs presented within this paper regarding the dynamic earth pressure coefficients versus the wall flexibility and inclusion characteristics may serve for the

  15. Seismic Performance of Composite Shear Walls Constructed Using Recycled Aggregate Concrete and Different Expandable Polystyrene Configurations

    Science.gov (United States)

    Liu, Wenchao; Cao, Wanlin; Zhang, Jianwei; Qiao, Qiyun; Ma, Heng

    2016-01-01

    The seismic performance of recycled aggregate concrete (RAC) composite shear walls with different expandable polystyrene (EPS) configurations was investigated. Six concrete shear walls were designed and tested under cyclic loading to evaluate the effect of fine RAC in designing earthquake-resistant structures. Three of the six specimens were used to construct mid-rise walls with a shear-span ratio of 1.5, and the other three specimens were used to construct low-rise walls with a shear-span ratio of 0.8. The mid-rise and low-rise shear walls consisted of an ordinary recycled concrete shear wall, a composite wall with fine aggregate concrete (FAC) protective layer (EPS modules as the external insulation layer), and a composite wall with sandwiched EPS modules as the insulation layer. Several parameters obtained from the experimental results were compared and analyzed, including the load-bearing capacity, stiffness, ductility, energy dissipation, and failure characteristics of the specimens. The calculation formula of load-bearing capacity was obtained by considering the effect of FAC on composite shear walls as the protective layer. The damage process of the specimen was simulated using the ABAQUS Software, and the results agreed quite well with those obtained from the experiments. The results show that the seismic resistance behavior of the EPS module composite for shear walls performed better than ordinary recycled concrete for shear walls. Shear walls with sandwiched EPS modules had a better seismic performance than those with EPS modules lying outside. Although the FAC protective layer slightly improved the seismic performance of the structure, it undoubtedly slowed down the speed of crack formation and the stiffness degradation of the walls. PMID:28773274

  16. Seismic Performance of Composite Shear Walls Constructed Using Recycled Aggregate Concrete and Different Expandable Polystyrene Configurations

    Directory of Open Access Journals (Sweden)

    Wenchao Liu

    2016-03-01

    Full Text Available The seismic performance of recycled aggregate concrete (RAC composite shear walls with different expandable polystyrene (EPS configurations was investigated. Six concrete shear walls were designed and tested under cyclic loading to evaluate the effect of fine RAC in designing earthquake-resistant structures. Three of the six specimens were used to construct mid-rise walls with a shear-span ratio of 1.5, and the other three specimens were used to construct low-rise walls with a shear-span ratio of 0.8. The mid-rise and low-rise shear walls consisted of an ordinary recycled concrete shear wall, a composite wall with fine aggregate concrete (FAC protective layer (EPS modules as the external insulation layer, and a composite wall with sandwiched EPS modules as the insulation layer. Several parameters obtained from the experimental results were compared and analyzed, including the load-bearing capacity, stiffness, ductility, energy dissipation, and failure characteristics of the specimens. The calculation formula of load-bearing capacity was obtained by considering the effect of FAC on composite shear walls as the protective layer. The damage process of the specimen was simulated using the ABAQUS Software, and the results agreed quite well with those obtained from the experiments. The results show that the seismic resistance behavior of the EPS module composite for shear walls performed better than ordinary recycled concrete for shear walls. Shear walls with sandwiched EPS modules had a better seismic performance than those with EPS modules lying outside. Although the FAC protective layer slightly improved the seismic performance of the structure, it undoubtedly slowed down the speed of crack formation and the stiffness degradation of the walls.

  17. Space, composition, vertical wall ...

    OpenAIRE

    Despot, Katerina; Sandeva, Vaska

    2016-01-01

    The space in which it is an integral segment of our life is nourished with many functional and decorative elements. One aspect for consideration of vertical walls or The vertical gardens and their aesthetic impact in space called function. Vertical gardens bordering the decoration to totally functional garden in areas where there is little oxygen and space, ideal for residential buildings and public spaces where missing greenery, special place occupies in interior design where their expres...

  18. Scalable Resolution Display Walls

    KAUST Repository

    Leigh, Jason

    2013-01-01

    This article will describe the progress since 2000 on research and development in 2-D and 3-D scalable resolution display walls that are built from tiling individual lower resolution flat panel displays. The article will describe approaches and trends in display hardware construction, middleware architecture, and user-interaction design. The article will also highlight examples of use cases and the benefits the technology has brought to their respective disciplines. © 1963-2012 IEEE.

  19. Wall Street som kreationistisk forkynder

    DEFF Research Database (Denmark)

    Ekman, Susanne

    2016-01-01

    Artiklen gennemgår Karen Hos etnografi om Wall Street: "Liquidated: An ethnography of Wall Street" set i lyset af den offentlige debat vedrørende Goldman Sachs opkøb af Dong......Artiklen gennemgår Karen Hos etnografi om Wall Street: "Liquidated: An ethnography of Wall Street" set i lyset af den offentlige debat vedrørende Goldman Sachs opkøb af Dong...

  20. Light shining through walls

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    Shining light through walls? At first glance this sounds crazy. However, very feeble gravitational and electroweak effects allow for this exotic possibility. Unfortunately, with present and near future technologies the opportunity to observe light shining through walls via these effects is completely out of question. Nevertheless there are quite a number of experimental collaborations around the globe involved in this quest. Why are they doing it? Are there additional ways of sending photons through opaque matter? Indeed, various extensions of the standard model of particle physics predict the existence of new particles called WISPs - extremely weakly interacting slim particles. Photons can convert into these hypothetical particles, which have no problems to penetrate very dense materials, and these can reconvert into photons after their passage - as if light was effectively traversing walls. We review this exciting field of research, describing the most important WISPs, the present and future experiments, the indirect hints from astrophysics and cosmology pointing to the existence of WISPs, and finally outlining the consequences that the discovery of WISPs would have. (orig.)

  1. Molded Concrete Center Mine Wall

    Science.gov (United States)

    Lewis, E. V.

    1987-01-01

    Proposed semiautomatic system forms concrete-foam wall along middle of coal-mine passage. Wall helps support roof and divides passage into two conduits needed for ventilation of coal face. Mobile mold and concrete-foam generator form sections of wall in place.

  2. Cell Wall Biology: Perspectives from Cell Wall Imaging

    Institute of Scientific and Technical Information of China (English)

    Kieran J.D.Lee; Susan E.Marcus; J.Paul Knox

    2011-01-01

    Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth,are major repositories for photosynthetically accumulated carbon,and,in addition,impact greatly on the human use of plants. Land plant cell walls contain in the region of a dozen major polysaccharide structures that are mostly encompassed by cellulose,hemicelluloses,and pectic polysaccharides. During the evolution of land plants,polysaccharide diversification appears to have largely involved structural elaboration and diversification within these polysaccharide groups. Cell wall chemistry is well advanced and a current phase of cell wall science is aimed at placing the complex polysaccharide chemistry in cellular contexts and developing a detailed understanding of cell wall biology. Imaging cell wall glycomes is a challenging area but recent developments in the establishment of cell wall molecular probe panels and their use in high throughput procedures are leading to rapid advances in the molecular understanding of the spatial heterogeneity of individual cell walls and also cell wall differences at taxonomic levels. The challenge now is to integrate this knowledge of cell wall heterogeneity with an understanding of the molecular and physiological mechanisms that underpin cell wall properties and functions.

  3. Canal Wall Reconstruction Mastoidectomy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate the advantages of canal wall reconstruction (CWR) mastoidectomy, a single-stage technique for cholesteatoma removal and posterior external canal wall reconstruction, over the open and closed procedures in terms of cholesteatoma recurrence. Methods: Between June 2002 and December 2005, 38 patients (40 ears) with cholesteatoma were admited to Sun Yat-Sen Memorial Hospital and received surgical treatments. Of these patients, 25 were male with ages ranging between 11 and 60 years (mean = 31.6 years) and 13 were female with ages ranging between 20 and 65 years (mean = 38.8 years). Canal wall reconstruction (CWR)mastoidectomy was performed in 31 ears and canal wall down (CWD) mastoidectomy in 9 ears. Concha cartilage was used for ear canal wall reconstruction in 22 of the 31 CWR procedures and cortical mastoid bone was used in the remaining 9 cases. Results At 0.5 to 4 years follow up, all but one patients remained free of signs of cholesteatoma recurrence, i.e., no retraction pocket or cholesteatoma matrix. One patient, a smoker, needed revision surgery due to cholesteatoma recurrence 1.5 year after the initial operation. The recurrence rate was therefore 3.2% (1/31). Cholesteatoma recurrence was monitored using postoperative CT scans whenever possible. In the case that needed a revision procedure, a retraction pocket was identified by otoendoscopy in the pars flacida area that eventually evolved into a cholesteatoma. A pocket extending to the epitympanum filled with cholesteatoma matrix was confirmed during the revision operation, A decision to perform a modified mastoidectomy was made as the patient refused to quit smoking. The mean air-bone gap in pure tone threshold was 45 dB before surgery and 25 dB after (p < 0.05). There was no difference between using concha cartilage and cortical mastoid bone for the reconstruction regarding air-bone gap improvement, CT findings and otoendoscopic results. Conclusion CWR mastoidectomy can be used for

  4. In vivo hypertensive arterial wall uptake of radiolabeled liposomes

    Energy Technology Data Exchange (ETDEWEB)

    Hodis, H.N.; Amartey, J.K.; Crawford, D.W.; Wickham, E.; Blankenhorn, D.H. (Univ. of Southern California School of Medicine, Los Angeles (USA))

    1990-06-01

    Using five sham-operated and seven aortic coarctation-induced hypertensive New Zealand White rabbits intravenously injected with neutral small unilamellar vesicles loaded with (111In)nitrilotriacetic acid, we demonstrated in vivo that the normal aortic arterial wall participates in liposome uptake and that this uptake is increased in the hypertensive aortic wall by approximately threefold (p less than or equal to 0.0001). Among the three regions examined, aortic arch, thoracic aorta, and lower abdominal aorta, the difference in uptake between the normotensive and hypertensive arterial walls was significantly different, p less than or equal to 0.05, p less than or equal to 0.0001, and p less than 0.05, respectively. The uptake by the different regions of the hypertensive arterial wall is consistent with the pathological changes present in these areas. Furthermore, the extent of liposome uptake by the aortic wall is strongly correlated with the height of the blood pressure (r = 0.85, p = 0.001, n = 11). We conclude that neutral small unilamellar liposomes can be used to carry agents into the arterial wall in vivo in the study of hypertensive vascular disease and could be especially useful for the delivery of pharmacologically or biologically active agents that would otherwise be inactivated within the circulation or are impermeable to the arterial wall.

  5. An experimental investigation of the seismic behavior of semi-supported steel shear walls

    DEFF Research Database (Denmark)

    Jahanpour, Alireza; Jönsson, Jeppe; Moharrami, H.

    2010-01-01

    A semi-supported steel shear wall (SSSW) has been developed in the recent decade, the steel wall is connected to secondary columns that do not carry vertical loads and are used to enable the plate to enter into the post buckling region and develop a tension field. Theoretical research...... on this system has been performed and an algorithmic method has been developed, which enables the determination of the ultimate capacity of the wall. In this paper results from an experimental investigation of this type of system including two half scale models under cyclic quasi static loading will be presented...

  6. Left ventricular wall stress compendium.

    Science.gov (United States)

    Zhong, L; Ghista, D N; Tan, R S

    2012-01-01

    Left ventricular (LV) wall stress has intrigued scientists and cardiologists since the time of Lame and Laplace in 1800s. The left ventricle is an intriguing organ structure, whose intrinsic design enables it to fill and contract. The development of wall stress is intriguing to cardiologists and biomedical engineers. The role of left ventricle wall stress in cardiac perfusion and pumping as well as in cardiac pathophysiology is a relatively unexplored phenomenon. But even for us to assess this role, we first need accurate determination of in vivo wall stress. However, at this point, 150 years after Lame estimated left ventricle wall stress using the elasticity theory, we are still in the exploratory stage of (i) developing left ventricle models that properly represent left ventricle anatomy and physiology and (ii) obtaining data on left ventricle dynamics. In this paper, we are responding to the need for a comprehensive survey of left ventricle wall stress models, their mechanics, stress computation and results. We have provided herein a compendium of major type of wall stress models: thin-wall models based on the Laplace law, thick-wall shell models, elasticity theory model, thick-wall large deformation models and finite element models. We have compared the mean stress values of these models as well as the variation of stress across the wall. All of the thin-wall and thick-wall shell models are based on idealised ellipsoidal and spherical geometries. However, the elasticity model's shape can vary through the cycle, to simulate the more ellipsoidal shape of the left ventricle in the systolic phase. The finite element models have more representative geometries, but are generally based on animal data, which limits their medical relevance. This paper can enable readers to obtain a comprehensive perspective of left ventricle wall stress models, of how to employ them to determine wall stresses, and be cognizant of the assumptions involved in the use of specific models.

  7. Isotropy and anisotropy of the arterial wall.

    Science.gov (United States)

    Weizsacker, H W; Pinto, J G

    1988-01-01

    The passive biomechanical response of intact cylindrical rat carotid arteries is studied in vitro and compared with the mechanical response of rubber tubes. Using true stress and natural strain in the definition of the incremental modulus of elasticity, the tissue wall properties are analyzed over wide ranges of simultaneous circumferential and longitudinal deformations. The type of loading chosen is 'physiological' i.e. symmetric: the cylindrical segments are subjected to internal pressure and axial prestretch without torsion or shear. Several aspects pertaining to the choice of parameters characterizing the material are discussed and the analysis pertaining to the deformational behavior of a hypothetical compliant tube with Hookean wall material is presented. The experimental results show that while rubber response can be adequately represented as linearly elastic and isotropic, the overall response of vascular tissue is highly non-linear and anisotropic. However, for states of deformation that occur in vivo, the elasticity of arteries is quite similar to that of rubber tubes and as such the arterial wall may be viewed as incrementally isotropic for the range of deformations that occur in vivo.

  8. High Power Disk Loaded Guide Load

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Z.D.; /SLAC

    2006-02-22

    A method to design a matching section from a smooth guide to a disk-loaded guide, using a variation of broadband matching, [1, 2] is described. Using this method, we show how to design high power loads. The load consists of a disk-loaded coaxial guide operating in the TE{sub 01}-mode. We use this mode because it has no electric field terminating on a conductor, has no axial currents, and has no current at the cylinder-disk interface. A high power load design that has -35 dB reflection and a 200 MHz, -20 dB bandwidth, is presented. It is expected that it will carry the 600 MW output peak power of the pulse compression network. We use coaxial geometry and stainless steel material to increase the attenuation per cell.

  9. Thermal dynamic simulation of wall for building energy efficiency under varied climate environment

    Science.gov (United States)

    Wang, Xuejin; Zhang, Yujin; Hong, Jing

    2017-08-01

    Aiming at different kind of walls in five cities of different zoning for thermal design, using thermal instantaneous response factors method, the author develops software to calculation air conditioning cooling load temperature, thermal response factors, and periodic response factors. On the basis of the data, the author gives the net work analysis about the influence of dynamic thermal of wall on air-conditioning load and thermal environment in building of different zoning for thermal design regional, and put forward the strategy how to design thermal insulation and heat preservation wall base on dynamic thermal characteristic of wall under different zoning for thermal design regional. And then provide the theory basis and the technical references for the further study on the heat preservation with the insulation are in the service of energy saving wall design. All-year thermal dynamic load simulating and energy consumption analysis for new energy-saving building is very important in building environment. This software will provide the referable scientific foundation for all-year new thermal dynamic load simulation, energy consumption analysis, building environment systems control, carrying through farther research on thermal particularity and general particularity evaluation for new energy -saving walls building. Based on which, we will not only expediently design system of building energy, but also analyze building energy consumption and carry through scientific energy management. The study will provide the referable scientific foundation for carrying through farther research on thermal particularity and general particularity evaluation for new energy saving walls building.

  10. Numerical Modelling of Double-Steel Plate Composite Shear Walls

    Directory of Open Access Journals (Sweden)

    Michaela Elmatzoglou

    2017-02-01

    Full Text Available Double-steel plate concrete composite shear walls are being used for nuclear plants and high-rise buildings. They consist of thick concrete walls, exterior steel faceplates serving as reinforcement and shear connectors, which guarantee the composite action between the two different materials. Several researchers have used the Finite Element Method to investigate the behaviour of double-steel plate concrete walls. The majority of them model every element explicitly leading to a rather time-consuming solution, which cannot be easily used for design purposes. In the present paper, the main objective is the introduction of a three-dimensional finite element model, which can efficiently predict the overall performance of a double-steel plate concrete wall in terms of accuracy and time saving. At first, empirical formulations and design relations established in current design codes for shear connectors are evaluated. Then, a simplified finite element model is used to investigate the nonlinear response of composite walls. The developed model is validated using results from tests reported in the literature in terms of axial compression and monotonic, cyclic in-plane shear loading. Several finite element modelling issues related to potential convergence problems, loading strategies and computer efficiency are also discussed. The accuracy and simplicity of the proposed model make it suitable for further numerical studies on the shear connection behaviour at the steel-concrete interface.

  11. Axions from wall decay

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S; Hagmann, C; Sikivie, P

    2001-01-08

    The authors discuss the decay of axion walls bounded by strings and present numerical simulations of the decay process. In these simulations, the decay happens immediately, in a time scale of order the light travel time, and the average energy of the radiated axions is {approx_equal} 7m{sub a} for v{sub a}/m{sub a} {approx_equal} 500. is found to increase approximately linearly with ln(v{sub a}/m{sub a}). Extrapolation of this behavior yields {approx_equal} 60 m{sub a} in axion models of interest.

  12. Abdominal wall endometriosis.

    Science.gov (United States)

    Upadhyaya, P; Karak, A K; Sinha, A K; Kumar, B; Karki, S; Agarwal, C S

    2010-01-01

    Endometriosis of abdominal wall scar following operation on uterus and tubes is extremely rare. The late onset of symptoms after surgery is the usual cause of misdiagnosis. Scar endometriosis is a rare disease which is difficult to diagnose and should always be considered as a differential diagnosis of painful abdominal masses in women. The diagnosis is made only after excision and histopathology of the lesion. Preoperative differentials include hernia, lipoma, suture granuloma or abscess. Hence an awareness of the entity avoids delay in diagnosis, helps clinicians to a more tailored treatment and also avoids unnecessary referrals. We report a case of abdominal endometriosis. The definitive diagnosis of which was established by histopathological studies.

  13. Modeling rammed earth wall using discrete element method

    Science.gov (United States)

    Bui, T.-T.; Bui, Q.-B.; Limam, A.; Morel, J.-C.

    2016-03-01

    Rammed earth is attracting renewed interest throughout the world thanks to its "green" characteristics in the context of sustainable development. Several research studies have thus recently been carried out to investigate this material. Some of them attempted to simulate the rammed earth's mechanical behavior by using analytical or numerical models. Most of these studies assumed that there was a perfect cohesion at the interface between earthen layers. This hypothesis proved to be acceptable for the case of vertical loading, but it could be questionable for horizontal loading. To address this problem, discrete element modeling seems to be relevant to simulate a rammed earth wall. To our knowledge, no research has been conducted thus far using discrete element modeling to study a rammed earth wall. This paper presents an assessment of the discrete element modeling's robustness for rammed earth walls. Firstly, a brief description of the discrete element modeling is presented. Then the parameters necessary for discrete element modeling of the material law of the earthen layers and their interfaces law following the Mohr-Coulomb model with a tension cut-off and post-peak softening were given. The relevance of the model and the material parameters were assessed by comparing them with experimental results from the literature. The results showed that, in the case of vertical loading, interfaces did not have an important effect. In the case of diagonal loading, model with interfaces produced better results. Interface characteristics can vary from 85 to 100% of the corresponding earthen layer's characteristics.

  14. Performance Theory of Diagonal Conducting Wall MHD Accelerators

    Science.gov (United States)

    Litchford, R. J.

    2003-01-01

    The theoretical performance of diagonal conducting wall crossed field accelerators is examined on the basis of an infinite segmentation assumption using a cross-plane averaged generalized Ohm's law for a partially ionized gas, including ion slip. The desired accelerator performance relationships are derived from the cross-plane averaged Ohm's law by imposing appropriate configuration and loading constraints. A current dependent effective voltage drop model is also incorporated to account for cold-wall boundary layer effects including gasdynamic variations, discharge constriction, and electrode falls. Definition of dimensionless electric fields and current densities lead to the construction of graphical performance diagrams, which further illuminate the rudimentary behavior of crossed field accelerator operation.

  15. Nonlinear response of plain concrete shear walls with elastic-damaging behavior

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, S.; Schreyer, H.L.

    1997-02-01

    This report summarizes the theoretical and computational efforts on the modeling of small scale shear walls. Small scale shear walls are used extensively in the study of shear wall behavior because the construction and testing of full size walls are rather expensive. A finite element code is developed which incorporates nonlinear constitutive relations of damage mechanics. The program is used to obtain nonlinear load-deformation curves and to address the initial loss of stiffness due to shrinkage cracking. The program can also be used to monitor the continuous degradation of the fundamental frequency due to progressive damage.

  16. Lightening the Load

    OpenAIRE

    Remington, Anna M.; Swettenham, John G.; Lavie, Nilli

    2012-01-01

    Autism spectrum disorder (ASD) research portrays a mixed picture of attentional abilities with demonstrations of enhancements (e.g., superior visual search) and deficits (e.g., higher distractibility). Here we test a potential resolution derived from the Load Theory of Attention (e.g., Lavie, 2005). In Load Theory, distractor processing depends on the perceptual load of the task and as such can only be eliminated under high load that engages full capacity. We hypothesize that ASD involves enh...

  17. Studying boundary elements’ behaviour using masonry walls built with high-resistance bricks

    Directory of Open Access Journals (Sweden)

    Juan Carlos Restrepo Mejía

    2010-04-01

    Full Text Available This research was aimed at studying the behaviour of masonry walls built with and without boundary elements at both ends when sublected to monotonic and cyclic lateral loads. The walls were designed to have the greatest resistance, following NSR-98 recommendations (normas Colombianas de diseno y construcción sismo resistente, except for shear reinforcement. XTRACT software was used for finding axial load cf bending moment and curvature cf bending moment curves. One monotonic test and two cyclic tests were performed for each type of wall. Experimental results from the walls’ lateral load cf displacement curves were used for determining their ability to dissipate energy on an inelastic range (“R” force-reduction factor for seismic loads and displacement and curvature malleability. It was found that walls built without boundary elements suffered shear failure with cracks in a stepped configuration along the bricks’ edge. The type of failure for walls built with boundary elements was shear failure in the central panel with cracks in a stepped configuration, in addition to compression failure at the edge of the boundary elements with vertical cracks on the lower part of the wall and at the contact between the wall and the boundary element. Comparison with two other studies carried out at the Universidad Nacional showed similar cyclic behaviour, regardless of the clay brick’s strength. The “R” values obtained for both types of walls were lower than the recommended values given by NSR-98. It was determined that walls having boundary element have greater displacement malleability than walls without boundary elements.

  18. Taking a Load Off.

    Science.gov (United States)

    Kenny, John

    1995-01-01

    Discusses the snow -load capacity of school roofs and how understanding this data aids in planning preventive measures and easing fear of roof collapse. Describes how to determine snow-load capacity, and explains the load-bearing behavior of flat versus sloped roofs. Collapse prevention measures are highlighted. (GR)

  19. Abdominal wall blocks in adults

    DEFF Research Database (Denmark)

    Børglum, Jens; Gögenür, Ismail; Bendtsen, Thomas F

    2016-01-01

    Purpose of review Abdominal wall blocks in adults have evolved much during the last decade; that is, particularly with the introduction of ultrasound-guided (USG) blocks. This review highlights recent advances of block techniques within this field and proposes directions for future research.......  Recent findings Ultrasound guidance is now considered the golden standard for abdominal wall blocks in adults, even though some landmark-based blocks are still being investigated. The efficiency of USG transversus abdominis plane blocks in relation to many surgical procedures involving the abdominal wall...... been introduced with success. Future research should also investigate the effect of specific abdominal wall blocks on neuroendocrine and inflammatory stress response after surgery.  Summary USG abdominal wall blocks in adults are commonplace techniques today. Most abdominal wall blocks are assigned...

  20. Structure of axionic domain walls

    Science.gov (United States)

    Huang, M. C.; Sikivie, P.

    1985-09-01

    The structure of axionic domain walls is investigated using the low-energy effective theory of axions and pions. We derive the spatial dependence of the phases of the Peccei-Quinn scalar field and the QCD quark-antiquark condensates inside an axionic domain wall. Thence an accurate estimate of the wall surface energy density is obtained. The equations of motion for axions, photons, leptons, and baryons in the neighborhood of axionic domain walls are written down and estimates are given for the wall reflection and transmission coefficients of these particles. Finally, we discuss the energy dissipation by axionic domain walls oscillating in the early universe due to the reflection of particles in the primordial soup.

  1. Structure of axionic domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Huang, M.C.; Sikivie, P.

    1985-09-15

    The structure of axionic domain walls is investigated using the low-energy effective theory of axions and pions. We derive the spatial dependence of the phases of the Peccei-Quinn scalar field and the QCD quark-antiquark condensates inside an axionic domain wall. Thence an accurate estimate of the wall surface energy density is obtained. The equations of motion for axions, photons, leptons, and baryons in the neighborhood of axionic domain walls are written down and estimates are given for the wall reflection and transmission coefficients of these particles. Finally, we discuss the energy dissipation by axionic domain walls oscillating in the early universe due to the reflection of particles in the primordial soup.

  2. Study on Seismic Behavior of Recycled Concrete Energy-efficient Homes Structure Wall

    Directory of Open Access Journals (Sweden)

    Dong Lan

    2016-01-01

    Full Text Available The main point is to study the seismic behavior of the lattice type recycled concrete energy saving wall under low-cyclic loading,to provide the basis for the seismic performance of application of recycled concrete lattice wall in energy-saving residential structure. Design two walls with the same structure measures, include Lattice type recycled concrete wall and natural concrete wall, they are tested under low-cycle repetitive loading, compared failure mode and seismic performance in different reinforcement conditions of side column. The bearing capacity and ductility of recycled aggregate concrete are better than natural aggregate concrete, The stiffness degradation curves and the skeleton curves of the walls are basically the same, both of them have better seismic energy dissipation capacity. Lattice type concrete wall is good at seismic performance, recycled aggregate concrete is good at plastic deformation ability, it is advantageous to seismic energy dissipation of wall, it can be applied in energy efficient residential structure wall.

  3. DEVELOPMENT OF CALCULATING MODEL APPLICABLE FOR CYLINDER WALL DYNAMIC HEAT TRANSFER

    Institute of Scientific and Technical Information of China (English)

    ZHONG Minjun; SHI Tielin

    2007-01-01

    In the calculation of submarine air conditioning load of the early stage, the obtained heat is regarded as cooling load. The confusion of the two words causing the cooling load figured out is abnormally high, and the change of air conditioning cooling load can not be indicated. In accordance with submarine structure and heat transfer characteristics of its inner components, Laplace transformation to heat conduction differential equation of cylinder wall is carried out. The dynamic calculation of submarine conditioning load based on this model is also conducted, and the results of calculation are compared with those of static cooling load calculation. It is concluded that the dynamic cooling load calculation methods can illustrate the change of submarine air conditioning cooling load more accurate than the static one.

  4. Spatial electric load forecasting

    CERN Document Server

    Willis, H Lee

    2002-01-01

    Spatial Electric Load Forecasting Consumer Demand for Power and ReliabilityCoincidence and Load BehaviorLoad Curve and End-Use ModelingWeather and Electric LoadWeather Design Criteria and Forecast NormalizationSpatial Load Growth BehaviorSpatial Forecast Accuracy and Error MeasuresTrending MethodsSimulation Method: Basic ConceptsA Detailed Look at the Simulation MethodBasics of Computerized SimulationAnalytical Building Blocks for Spatial SimulationAdvanced Elements of Computerized SimulationHybrid Trending-Simulation MethodsAdvanced

  5. Asymptotic Dynamics of Monopole Walls

    CERN Document Server

    Cross, R

    2015-01-01

    We determine the asymptotic dynamics of the U(N) doubly periodic BPS monopole in Yang-Mills-Higgs theory, called a monopole wall, by exploring its Higgs curve using the Newton polytope and amoeba. In particular, we show that the monopole wall splits into subwalls when any of its moduli become large. The long-distance gauge and Higgs field interactions of these subwalls are abelian, allowing us to derive an asymptotic metric for the monopole wall moduli space.

  6. Dynamical domain wall and localization

    Directory of Open Access Journals (Sweden)

    Yuta Toyozato

    2016-03-01

    Full Text Available Based on the previous works (Toyozato et al., 2013 [24]; Higuchi and Nojiri, 2014 [25], we investigate the localization of the fields on the dynamical domain wall, where the four-dimensional FRW universe is realized on the domain wall in the five-dimensional space–time. Especially we show that the chiral spinor can localize on the domain wall, which has not been succeeded in the past works as the seminal work in George et al. (2009 [23].

  7. Seismic Performance of Precast Reinforced Concrete Core Wall with Horizontal Tied Rebars at Mid Height Level of First Story

    OpenAIRE

    Nakachi, Tadaharu

    2013-01-01

    Precast core walls are considered effective for construction because they can be built more quickly than cast-in-place core walls. Previously, we conducted a lateral loading test on a full precast wall column simulating the area near the corner of an L-shaped core wall in order to examine the seismic performance. The wall column was divided into precast columns, and horizontal tied rebars were concentrated at the second and third floor levels to connect the precast columns. In this study, a l...

  8. Potential Energy Savings Due to Phase Change Material in a Building Wall Assembly: An Examination of Two Climates

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Kenneth W [ORNL; Stovall, Therese K [ORNL

    2012-03-01

    Phase change material (PCM), placed in an exterior wall, alters the temperature profile within the wall and thus influences the heat transport through the wall. This may reduce the net energy transport through the wall via interactions with diurnal temperature swings in the external environment or reduce the electricity needed to meet the net load through the wall by shifting the time of the peak load to a time when the cooling system operates more efficiently. This study covers a broad range of parameters that can influence the effectiveness of such a merged thermal storage-thermal insulation system. These parameters included climate, PCM location within the wall, amount of PCM, midpoint of the PCM melting and freezing range relative to the indoor setpoint temperature, temperature range over which phase change occurs, and the wall orientation. Two climates are investigated using finite difference and optimization analyses: Phoenix and Baltimore, with two utility rate schedules. Although potential savings for a PCM with optimized properties were greater when the PCM was concentrated near the inside wall surface, other considerations described here lead to a recommendation for a full-thickness application. An examination of the temperature distribution within the walls also revealed the potential for this system to reduce the amount of energy transported through the wall framing. Finally, economic benefits can exceed energy savings when time-of-day utility rates are in effect, reflecting the value of peak load reductions for the utility grid.

  9. Duration of load revisited

    DEFF Research Database (Denmark)

    Hoffmeyer, Preben; Sørensen, John Dalsgaard

    2007-01-01

    were formed. Four groups were subjected to short-term strength tests, and four groups were subjected to long-term tests. Creep and time to failure were moni-tored. Time to failure as a function of stress level was established and the reliability of stress level assessment was discussed. A significant...... mechanosorptive effect was demonstrated both in terms of increased creep and shortening of time to failure. The test results were employed for the calibration of four existing duration of load models. The effect of long-term loading was expressed as the stress level SL50 to cause failure after 50 years of loading...... and of the short-term and long-term strengths. For permanent and imposed library loads, reliability-based estimation of the load duration factor gave almost the same results as direct, deterministic calibration. Keywords: Creep, damage models, duration of load, equal rank assumption, load duration factor, matched...

  10. Determination of the Airborne Sound Insulation of a Straw Bale Partition Wall

    Science.gov (United States)

    Teslík, Jiří; Fabian, Radek; Hrubá, Barbora

    2017-06-01

    This paper describes the results of a scientific project focused on determining of the Airborne Sound Insulation of a peripheral non-load bearing wall made of straw bales expressed by Weighted Sound Reduction Index. Weighted Sound Reduction Index was determined by measuring in the certified acoustic laboratory at the Faculty of Mechanical Engineering at Brno University of Technology. The measured structure of the straw wall was modified in combinations with various materials, so the results include a wide range of possible compositions of the wall. The key modification was application of plaster on both sides of the straw bale wall. This construction as is frequently done in actual straw houses. The additional measurements were performed on the straw wall with several variants of additional wall of slab materials. The airborne sound insulation value has been also measured in separate stages of the construction. Thus it is possible to compare and determinate the effect of the single layers on the airborne sound insulation.

  11. Molecular deformation mechanisms of the wood cell wall material.

    Science.gov (United States)

    Jin, Kai; Qin, Zhao; Buehler, Markus J

    2015-02-01

    Wood is a biological material with outstanding mechanical properties resulting from its hierarchical structure across different scales. Although earlier work has shown that the cellular structure of wood is a key factor that renders it excellent mechanical properties at light weight, the mechanical properties of the wood cell wall material itself still needs to be understood comprehensively. The wood cell wall material features a fiber reinforced composite structure, where cellulose fibrils act as stiff fibers, and hemicellulose and lignin molecules act as soft matrix. The angle between the fiber direction and the loading direction has been found to be the key factor controlling the mechanical properties. However, how the interactions between theses constitutive molecules contribute to the overall properties is still unclear, although the shearing between fibers has been proposed as a primary deformation mechanism. Here we report a molecular model of the wood cell wall material with atomistic resolution, used to assess the mechanical behavior under shear loading in order to understand the deformation mechanisms at the molecular level. The model includes an explicit description of cellulose crystals, hemicellulose, as well as lignin molecules arranged in a layered nanocomposite. The results obtained using this model show that the wood cell wall material under shear loading deforms in an elastic and then plastic manner. The plastic regime can be divided into two parts according to the different deformation mechanisms: yielding of the matrix and sliding of matrix along the cellulose surface. Our molecular dynamics study provides insights of the mechanical behavior of wood cell wall material at the molecular level, and paves a way for the multi-scale understanding of the mechanical properties of wood.

  12. Optimisation of load control

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, P. [VTT Energy, Espoo (Finland)

    1998-08-01

    Electricity cannot be stored in large quantities. That is why the electricity supply and consumption are always almost equal in large power supply systems. If this balance were disturbed beyond stability, the system or a part of it would collapse until a new stable equilibrium is reached. The balance between supply and consumption is mainly maintained by controlling the power production, but also the electricity consumption or, in other words, the load is controlled. Controlling the load of the power supply system is important, if easily controllable power production capacity is limited. Temporary shortage of capacity causes high peaks in the energy price in the electricity market. Load control either reduces the electricity consumption during peak consumption and peak price or moves electricity consumption to some other time. The project Optimisation of Load Control is a part of the EDISON research program for distribution automation. The following areas were studied: Optimization of space heating and ventilation, when electricity price is time variable, load control model in power purchase optimization, optimization of direct load control sequences, interaction between load control optimization and power purchase optimization, literature on load control, optimization methods and field tests and response models of direct load control and the effects of the electricity market deregulation on load control. An overview of the main results is given in this chapter

  13. Simulated microgravity inhibits cell wall regeneration of Penicillium decumbens protoplasts

    Science.gov (United States)

    Zhao, C.; Sun, Y.; Yi, Z. C.; Rong, L.; Zhuang, F. Y.; Fan, Y. B.

    2010-09-01

    This work compares cell wall regeneration from protoplasts of the fungus Penicillium decumbens under rotary culture (simulated microgravity) and stationary cultures. Using an optimized lytic enzyme mixture, protoplasts were successfully released with a yield of 5.3 × 10 5 cells/mL. Under simulated microgravity conditions, the protoplast regeneration efficiency was 33.8%, lower than 44.9% under stationary conditions. Laser scanning confocal microscopy gave direct evidence for reduced formation of polysaccharides under simulated conditions. Scanning electron microscopy showed the delayed process of cell wall regeneration by simulated microgravity. The delayed regeneration of P. decumbens cell wall under simulated microgravity was likely caused by the inhibition of polysaccharide synthesis. This research contributes to the understanding of how gravitational loads affect morphological and physiological processes of fungi.

  14. An object-oriented modelling framework for the arterial wall.

    Science.gov (United States)

    Balaguera, M I; Briceño, J C; Glazier, J A

    2010-02-01

    An object-oriented modelling framework for the arterial wall is presented. The novelty of the framework is the possibility to generate customizable artery models, taking advantage of imaging technology. In our knowledge, this is the first object-oriented modelling framework for the arterial wall. Existing models do not allow close structural mapping with arterial microstructure as in the object-oriented framework. In the implemented model, passive behaviour of the arterial wall was considered and the tunica adventitia was the objective system. As verification, a model of an arterial segment was generated. In order to simulate its deformation, a matrix structural mechanics simulator was implemented. Two simulations were conducted, one for an axial loading test and other for a pressure-volume test. Each simulation began with a sensitivity analysis in order to determinate the best parameter combination and to compare the results with analogue controls. In both cases, the simulated results closely reproduced qualitatively and quantitatively the analogue control plots.

  15. Force-Driven Polymerization and Turgor-Induced Wall Expansion.

    Science.gov (United States)

    Ali, Olivier; Traas, Jan

    2016-05-01

    While many molecular players involved in growth control have been identified in the past decades, it is often unknown how they mechanistically act to induce specific shape changes during development. Plant morphogenesis results from the turgor-induced yielding of the extracellular and load-bearing cell wall. Its mechanochemical equilibrium appears as a fundamental link between molecular growth regulation and the effective shape evolution of the tissue. We focus here on force-driven polymerization of the cell wall as a central process in growth control. We propose that mechanical forces facilitate the insertion of wall components, in particular pectins, a process that can be modulated through genetic regulation. We formalize this idea in a mathematical model, which we subsequently test with published experimental results.

  16. Centrifugal experimental study of suction bucket foundations under dynamic loading

    Science.gov (United States)

    Lu, Xiaobing; Wu, Yongren; Jiao, Bintian; Wang, Shuyun

    2007-12-01

    Centrifugal experiments were carried out to investigate the responses of suction bucket foundations under horizontal and vertical dynamic loading. It is shown that when the loading amplitude is over a critical value, the sand at the upper part around the bucket is softened or even liquefied. The excess pore pressure decreases from the upper part to the lower part of the sand layer in the vertical direction and decreases radially from the bucket’s side wall in the horizontal direction. Large settlements of the bucket and the sand layer around the bucket are induced by dynamic loading. The dynamic responses of the bucket with smaller height (the same diameter) are heavier.

  17. Diplopia and orbital wall fractures

    NARCIS (Netherlands)

    Boffano, P.; Roccia, F.; Gallesio, C.; Karagozoglu, K.H.; Forouzanfar, T.

    2014-01-01

    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and su

  18. Domain Walls in SU(5)

    CERN Document Server

    Poghosian, L E; Pogosian, Levon; Vachaspati, Tanmay

    2000-01-01

    We consider the Grand Unified SU(5) model with a small or vanishing cubic term in the adjoint scalar field in the potential. This gives the model an approximate or exact Z$_2$ symmetry whose breaking leads to domain walls. The simplest domain wall has the structure of a kink across which the Higgs field changes sign ($\\Phi \\to -\\Phi$) and inside which the full SU(5) is restored. The kink is shown to be perturbatively unstable for all parameters. We then construct a domain wall solution that is lighter than the kink and show it to be perturbatively stable for a range of parameters. The symmetry in the core of this domain wall is smaller than that outside. The interactions of the domain wall with magnetic monopole is discussed and it is shown that magnetic monopoles with certain internal space orientations relative to the wall pass through the domain wall. Magnetic monopoles in other relative internal space orientations are likely to be swept away on collision with the domain walls, suggesting a scenario where ...

  19. Solar Walls in tsbi3

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne

    tsbi3 is a user-friendly and flexible computer program, which provides support to the design team in the analysis of the indoor climate and the energy performance of buildings. The solar wall module gives tsbi3 the capability of simulating solar walls and their interaction with the building. This...

  20. Control of Wall Mounting Robot

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Pedersen, Rasmus

    2017-01-01

    This paper presents a method for designing controllers for trajectory tracking with actuator constraints. In particular, we consider a joystick-controlled wall mounting robot called WallMo. In contrast to previous works, a model-free approach is taken to the control problem, where the path...

  1. The "Brick Wall" Graphic Organizer

    Science.gov (United States)

    Matteson, Shirley M.

    2016-01-01

    A brick wall provides a fitting description of what happens when teachers try to teach a concept for which students are unprepared. When students are unsuccessful academically, their foundational knowledge may be missing, incomplete, or incorrect. As a result, students "hit a brick wall," and their academic progress stops because they do…

  2. Diplopia and orbital wall fractures

    NARCIS (Netherlands)

    Boffano, P.; Roccia, F.; Gallesio, C.; Karagozoglu, K.H.; Forouzanfar, T.

    2014-01-01

    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and

  3. Moisture Research - Optimizing Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L.; Mantha, P.

    2013-05-01

    The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.

  4. Power transformer additional load losses separation procedure

    Directory of Open Access Journals (Sweden)

    Kostić Miloje M.

    2011-01-01

    Full Text Available The proposed procedure is based on the fact that total transformer losses (PLL1,n, determined by short circuit test, can be separated into two components: the eddy current losses in the windings (PEC1,n and stray flux losses (PSL1,n in iron parts of construction as well as in the transformer tank walls. The total additional load losses, PLLd1 and PLLdh, are determined by short circuit test results, conducted at rated frequency (f1 and at increased harmonic frequency (fh=h*f1. Using so obtained total additional load losses, PLLd1 and PLLdh, which can be expressed in the form PLLdh=PEC1,n*h2 + PSL1,n*h, the corresponding rate additional load losses values PEC1,n and PSL1,n are derived. At the end, for given load with predefined high harmonics content, (Ih/I1n, relative to rated current, the total additional load losses value ΣPLLdh > PLLd1, is found. In such a way all harmonics up to hmax are taken into account.

  5. The Effects of Geometric and Loading Imperfections on the Response and Lower-Bound Buckling Load of a Compression-Loaded Cylindrical Shell

    Science.gov (United States)

    Kriegesmann, Benedikt; Hilburger, Mark W.; Rolfes, Raimund

    2012-01-01

    Results from a numerical study of the buckling response of a thin-walled compressionloaded isotropic circular cylindrical shell with initial geometric and loading imperfections are used to determine a lower bound buckling load estimate suitable for preliminary design. The lower bound prediction techniques presented herein include an imperfection caused by a lateral perturbation load, an imperfection in the shape of a single stress-free dimple (similar to the lateral pertubation imperfection), and a distributed load imperfection that induces a nonuniform load in the shell. The ABAQUS finite element code is used for the analyses. Responses of the cylinders for selected imperfection amplitudes and imperfection types are considered, and the effect of each imperfection is compared to the response of a geometrically perfect cylinder. The results indicate that compression-loaded shells subjected to a lateral perturbation load or a single dimple imperfection, and a nonuniform load imperfection, exhibit similar buckling behavior and lower bound trends and the predicted lower bounds are much less conservative than the corresponding design recommendation NASA SP-8007 for the design of buckling-critical shells. In addition, the lateral perturbation technique and the distributed load imperfection produce response characteristics that are physically meaningful and can be validated via laboratory testing.

  6. Slow flow in channels with porous walls

    CERN Document Server

    Jensen, Kaare H

    2012-01-01

    We consider the slow flow of a viscous incompressible liquid in a channel of constant but arbitrary cross section shape, driven by non-uniform suction or injection through the porous channel walls. A similarity transformation reduces the Navier-Stokes equations to a set of coupled equations for the velocity potential in two dimensions. When the channel aspect ratio and Reynolds number are both small, the problem reduces to solving the biharmonic equation with constant forcing in two dimensions. With the relevant boundary conditions, determining the velocity field in a porous channels is thus equivalent to solving for the vertical displacement of a simply suspended thin plate under uniform load. This allows us to provide analytic solutions for flow in porous channels whose cross-section is e.g. a rectangle or an equilateral triangle, and provides a general framework for the extension of Berman flow (Journal of Applied Physics 24(9), p. 1232, 1953) to three dimensions.

  7. Domain wall description of superconductivity

    CERN Document Server

    Brito, F A; Silva, J C M

    2012-01-01

    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted as the parameter to move type I to type II domain walls. Alternatively, this means that the domain wall surface is suffering an acceleration as one goes from one type to another. On the other hand, changing from type I to type II state means a formation of a condensate what is in perfect sense of lowering the temperature around the superconductor. One can think of this scenario as an analog of holographic scenarios where this set up is replaced by a black hole near the domain wall.

  8. Phloem parenchyma transfer cells in Arabidopsis – an experimental system to identify transcriptional regulators of wall ingrowth formation

    OpenAIRE

    Arun Chinnappa, Kiruba S.; Nguyen, Thi Thu S.; Hou, Jiexi; Wu, Yuzhou; McCurdy, David W.

    2013-01-01

    In species performing apoplasmic loading, phloem cells adjacent to sieve elements often develop into transfer cells (TCs) with wall ingrowths. The highly invaginated wall ingrowths serve to amplify plasma membrane surface area to achieve increased rates of apoplasmic transport, and may also serve as physical barriers to deter pathogen invasion. Wall ingrowth formation in TCs therefore plays an important role in phloem biology, however, the transcriptional switches regulating the deposition of...

  9. Full scale measurements and CFD investigations of a wall radiant cooling system integrated in thin concrete walls

    DEFF Research Database (Denmark)

    Mikeska, Tomás; Fan, Jianhua; Svendsen, Svend

    2017-01-01

    Densely occupied spaces such as classrooms can very often have problems with overheating. It can be difficult to cool such spaces by means of a ventilation system without creating draughts and causing discomfort for occupants. The use of a wall radiant cooling system is a suitable option for spaces...... with a high occupant density. Radiant systems can remove most sensible heat loads resulting in a relatively small requirement for supply air for ventilation....

  10. Anchor Loads on Pipelines

    OpenAIRE

    Wei, Ying

    2015-01-01

    Anchor hooking on a subsea pipeline has been investigated in this thesis. Anchor loads on pipelines is in general a rarely occurring event, however, the severity when it occurs could easily jeopardize the integrity of any pipeline. It is considered as an accidental load in the design of pipelines. Pipeline Loads, limit state criteria and anchor categories are defined by the DNV standards. For pipeline, DNV-OS-F101 (08.2012), Submarine Pipeline Systems is adopted. Offshore standard DNV-RP...

  11. Load induced blindness

    OpenAIRE

    Macdonald, J. S. P.; Lavie, N.

    2008-01-01

    Although the perceptual load theory of attention has stimulated a great deal of research, evidence for the role of perceptual load in determining perception has typically relied oil indirect measures that infer perception from distractor effects on reaction times or neural activity (see N. Lavie, 2005. for a review). Here we varied the level of perceptual load in a letter-search task and assessed its effect oil the conscious perception of a search-irrelevant shape stimulus appearing in the pe...

  12. Channel Wall Landslides

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] The multiple landslides in this VIS image occur along a steep channel wall. Note the large impact crater in the context image. The formation of the crater may have initially weakened that area of the surface prior to channel formation. Image information: VIS instrument. Latitude -2.7, Longitude 324.8 East (35.2 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Concentrated loads on concrete

    DEFF Research Database (Denmark)

    Lorenzen, Karen Grøndahl; Nielsen, Mogens Peter

    1997-01-01

    This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas are devel......This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas...

  14. Concentrated loads on concrete

    DEFF Research Database (Denmark)

    Lorenzen, Karen Grøndahl; Nielsen, Mogens Peter

    1997-01-01

    This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas are devel......This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas...

  15. Critical Axial Load

    Directory of Open Access Journals (Sweden)

    Walt Wells

    2008-01-01

    Full Text Available Our objective in this paper is to solve a second order differential equation for a long, simply supported column member subjected to a lateral axial load using Heun's numerical method. We will use the solution to find the critical load at which the column member will fail due to buckling. We will calculate this load using Euler's derived analytical approach for an exact solution, as well as Euler's Numerical Method. We will then compare the three calculated values to see how much they deviate from one another. During the critical load calculation, it will be necessary to calculate the moment of inertia for the column member.

  16. Electrical load modeling

    Energy Technology Data Exchange (ETDEWEB)

    Valgas, Helio Moreira; Pinto, Roberto del Giudice R.; Franca, Carlos [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil); Lambert-Torres, Germano; Silva, Alexandre P. Alves da; Pires, Robson Celso; Costa Junior, Roberto Affonso [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    Accurate dynamic load models allow more precise calculations of power system controls and stability limits, which are critical mainly in the operation planning of power systems. This paper describes the development of a computer program (software) for static and dynamic load model studies using the measurement approach for the CEMIG system. Two dynamic load model structures are developed and tested. A procedure for applying a set of measured data from an on-line transient recording system to develop load models is described. (author) 6 refs., 17 figs.

  17. Degree of coupling in high-rise mixed shear walls structures

    Indian Academy of Sciences (India)

    J C D Hoenderkamp

    2012-08-01

    A simple method of analysis is presented to determine the influence of single shear walls (SSW) on the degree of coupling DoC and on the peak shear demand PSD for beams of coupled shear walls (CSW) in mixed shear wall structures (MSW). Non-coupled lateral load resisting structures such as singular planar walls and cores will reduce primary bending moments in the coupled shear wall bents of MSW structures thereby increasing the degree of coupling. They will also change the location and magnitude of the maximum shear in and rotation of the coupling beams. These changes in the coupled wall bents may increase the demand on their performance beyond capacity. It is, therefore, important to have an indication of the change in the coupling beam design parameters at an early stage of the design. The proposed graphical method is based on the continuous medium theory and allows a rapid assessment of the structural behaviour of coupled shear wall bents in mixed shear wall structures that are subject to horizontal loading.

  18. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    Science.gov (United States)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  19. Analysis of Building with and with out Shear Wall at Various Heights and Variation of Zone III and Zone V

    Directory of Open Access Journals (Sweden)

    P.Kalpana

    2016-12-01

    Full Text Available It is well recognized that the incorporation of lateral load resisting systems in the form of shear walls, bracing systems etc. improve the structural performance of buildings subjected to lateral forces due to earthquake excitation. The seismic behavior of buildings is strongly affected by the arrangement of shear walls, the rigidity of floors and the connections of floors to the walls. The building with structural shear walls Improve the lateral load resistance. In the present project, an analytical parameter study is done for the structural shear walls with varying height for different models. The load combinations are consideration as per IS 1893 (Part-1:2002. The result in terms of axial forces, lateral displacement and bending moment in the structural shear walls with varying height are compared for different building models considered.As well as two reinforced concrete framed regular buildings with different zones locations of shear walls situated in seismic zone III and zone V have been analyzed in this study. Five-storied buildings were taken with shear-walls and without shear-walls. The design is above verified for this same structure using extended three dimensional analysis of buildings (STAAD Pro V8i software

  20. Diplopia and orbital wall fractures.

    Science.gov (United States)

    Boffano, Paolo; Roccia, Fabio; Gallesio, Cesare; Karagozoglu, K Hakki; Forouzanfar, Tymour

    2014-01-01

    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and such fractures. This study is based on 2 databases that have continuously recorded data of patients hospitalized with maxillofacial fractures between 2001 and 2010. On the whole, 447 patients (334 males, 113 females) with pure blow-out orbital wall fractures were included. The most frequently involved orbital site was the floor (359 fractures), followed by medial wall (41 fractures) and lateral wall (5 fractures). At presentation, 227 patients (50.7%) had evidence of diplopia. In particular, in most patients, a diplopia in all directions was referred (78 patients). Statistically significant associations were found between diplopia on eye elevation and orbital floor fractures (P diplopia and medial wall fractures (P diplopia on eye elevation and horizontal diplopia at presentation could be useful clinical indicators orbital floor and medial wall fractures, respectively.

  1. Green towers and green walls

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R. [Sharp and Diamond Landscape Architecture and Planning, Vancouver, BC (Canada)

    2006-07-01

    North American cities face many major environmental and health issues such as urban heat island effect, the intensity of storms, microclimate around buildings, imperviousness of sites, poor air quality and increases in respiratory disease. Several new technologies are starting to address global impacts and community level issues as well as the personal health and comfort of building occupants. These include green towers, living walls, vegetated rooftops and ecological site developments. This paper examined these forms of eco-development and presented their benefits. It discussed green walls in Japan; green towers in Malaysia, Singapore and Great Britain; green facades of climbing plants; active living walls in Canada; and passive living walls in France and Canada. It also discussed thermal walls; thematic walls; vertical gardens and structured wildlife habitat. Last, it presented testing, monitoring, research and conclusions. The Centre for the Advancement of Green Roof Technology is setting up a program to test thermal performance, to assess plant survival and to monitor green walls at the British Columbia Institute of Technology in Vancouver, Canada as much of the research out of Japan is only available in Japanese script. It was concluded that green architecture can provide shade, food, rainwater, shelter for wildlife and mimic natural systems. 15 refs.

  2. Heat Transfer and Impact Load of Steel and Concrete Double Containment

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Tae-Soon; Choi, Choeng-Ryul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    A CFD analysis technique was applied. The impact load on the concrete wall by aircraft and thermal heat release rate by steel containment were evaluated. We could confirm the structural role of added structure, and in conclusion, the case of adding cooling water tank to SUS containment vessel could obtain bigger impact load dispersion effect.

  3. High-flux first-wall design for a small reversed-field pinch reactor

    Science.gov (United States)

    Cort, G. E.; Graham, A. L.; Christensen, K. E.

    To achieve the goal of a commercially economical fusion power reactor, small physical size and high power density should be combined with simplicity (minimized use of high technology systems). The Reversed-Field Pinch (RFP) is a magnetic confinement device that promises to meet these requirements with power densities comparable to those in existing fission power plants. To establish feasibility of such an RFP reactor, a practical design for a first wall capable of withstanding high levels of cyclic neutron wall loadings is needed. Associated with the neutron flux in the proposed RFP reactor is a time averaged heat flux of 4.5 MW/sq m with a conservatively estimated transient peak approximately twice the average value. The design for a modular first wall made from a high-strength copper alloy that will meet these requirements of cyclic thermal loading is presented. The heat removal from the wall is by subcooled water flowing in straight tubes at high linear velocities.

  4. Combination of external loads

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, S.; Tarp Johansen, N.J.; Joergensen, H. [Forskningscenter Risoe, Roskilde (Denmark); Gravesen, H.; Soerensen, S.L. [Carl Bro, Glostrup (Denmark); Pedersen, J. [Elsam Engineering, Fredericia (Denmark); Zorn, R.; Hvidberg Knudsen, M. [DHI Water and Environment, Hoersholm (Denmark); Voelund, P. [Energi E2, Koebenhavn (Denmark)

    2003-09-01

    The project onbectives have been: To improve and consequently opimise the basis for design of offshore wind turbines. This is done through 1) mapping the wind, wave ice and current as well as correlations of these, and 2) by clarifyring how these external conditions transform into loads. A comprehensive effort has been made to get a thorough understanding of the uncertainties that govern the reliability of wind turbines with respect to wind and wave loading. One of the conclusions is that the reliability of wind turbines is generally lower, than the average reliability of building structures that are subject not only to environmental loads, which are very uncertain, but also imposed loads and self weight, which are less uncertain than the environmental loads. The implication is that, at the moment lower load partial safety factors for onshore wind turbines cannot be recommended. For the combination of wind and wave design loads the problem is twofold: 1). A very conservative design will be generated by simply adding the individual wind and wave design loads disregarding the independence of the short-term fluctuations of wind and wave loads. 2). Characteristic values and partial safety factors for wind and wave loads are not defined similarly. This implies that the reliability levels of turbine support structures subject to purely aerodynamic loads and subject to purely hydrodynamic loads are not identical. For the problem of combining aerodynamic design loads and hydrodynamic design loads two results have been obtained in the project: 1). By simple means a site specific wave load safety factor rendering the same safety level for hydrodynamic loads as for aerodynamic loads is derived, and next, by direct square summation of extreme fluctuations, the wind and wave load safety factors are weighted. 2). Under the assumptions that a deep water site is considered and that the wave loading is a fifty-fifty mix of drag and inertia the same wind and wave load safety factor

  5. Load Induced Blindness

    Science.gov (United States)

    Macdonald, James S. P.; Lavie, Nilli

    2008-01-01

    Although the perceptual load theory of attention has stimulated a great deal of research, evidence for the role of perceptual load in determining perception has typically relied on indirect measures that infer perception from distractor effects on reaction times or neural activity (see N. Lavie, 2005, for a review). Here we varied the level of…

  6. Double walled POE/PLGA microspheres: encapsulation of water-soluble and water-insoluble proteins and their release properties.

    Science.gov (United States)

    Shi, Meng; Yang, Yi-Yan; Chaw, Cheng-Shu; Goh, Suat-Hong; Moochhala, Shabbir M; Ng, Steve; Heller, Jorge

    2003-04-29

    The poly(orthoester) (POE)-poly(D,L-lactide-co-glycolide) (50:50) (PLGA) double-walled microspheres with 50% POE in weight were loaded with hydrophilic bovine serum albumin (BSA) and hydrophobic cyclosporin A (CyA). Most of the BSA and CyA was entrapped within the shell and core, respectively, because of the difference in their hydrophilicity. The morphologies and release mechanisms of proteins-loaded double-walled POE/PLGA microspheres were investigated. Scanning electron microscope studies revealed that the CyA-BSA-loaded double-walled POE/PLGA microspheres yielded a more porous surface and PLGA shell than those without BSA. The neat POE and PLGA yielded slow and incomplete CyA and BSA release. In contrast, nearly complete BSA and more than 95% CyA were released in a sustained manner from the double-walled POE/PLGA microspheres. Both the BSA- and CyA-BSA-loaded POE/PLGA microspheres yielded a sustained BSA release over 5 days. The CyA release pattern of the CyA-loaded double-walled POE/PLGA microspheres was biphasic, characterized by a slow release over 15 days followed by a sustained release over 27 days. However, the CyA-BSA-loaded double-walled POE/PLGA microspheres provided a more constant and faster CyA release due to their more porous shell. In the CyA-BSA-loaded double-walled POE/PLGA microspheres system, the PLGA layer acted as a carrier for BSA and mild reservoir for CyA. During the first 5 days, most BSA was released from the shell but only 14% CyA was left from the microspheres. Subsequently, more than 80% CyA were released in the next 25 days. The distinct structure of double-walled POE/PLGA microspheres would make an interesting device for controlled delivery of therapeutic agents.

  7. OTVE combustor wall condition monitoring

    Science.gov (United States)

    Szemenyei, Brian; Nelson, Robert S.; Barkhoudarian, S.

    1989-01-01

    Conventional ultrasonics, eddy current, and electromagnetic acoustic transduction (EMAT) technologies were evaluated to determine their capability of measuring wall thickness/wear of individual cooling channels in test specimens simulating conditions in the throat region of an OTVE combustion chamber liner. Quantitative results are presented for the eddy current technology, which was shown to measure up to the optimum 20-mil wall thickness with near single channel resolution. Additional results demonstrate the capability of the conventional ultrasonics and EMAT technologies to detect a thinning or cracked wall. Recommendations for additional eddy current and EMAT development tests are presented.

  8. Economics of abdominal wall reconstruction.

    Science.gov (United States)

    Bower, Curtis; Roth, J Scott

    2013-10-01

    The economic aspects of abdominal wall reconstruction are frequently overlooked, although understandings of the financial implications are essential in providing cost-efficient health care. Ventral hernia repairs are frequently performed surgical procedures with significant economic ramifications for employers, insurers, providers, and patients because of the volume of procedures, complication rates, the significant rate of recurrence, and escalating costs. Because biological mesh materials add significant expense to the costs of treating complex abdominal wall hernias, the role of such costly materials needs to be better defined to ensure the most cost-efficient and effective treatments for ventral abdominal wall hernias.

  9. Seismic strengthening of RC structures with exterior shear walls

    Indian Academy of Sciences (India)

    Hasan Kaplan; Salih Yilmaz; Nihat Cetinkaya; Ergin Atimtay

    2011-02-01

    Vulnerable buildings and their rehabilitation are important problems for earthquake regions. In recent decades the goal of building rehabilitation and strengthening has gained research attention and numerous techniques have been developed to achieve this. However, most of these strengthening techniques disturb the occupants, who must vacate the building during renovation. In this study, a new strengthening alternative for RC structures, namely exterior shear walls, has been experimentally investigated under reversed cyclic loading. Using the proposed technique, it is possible to strengthen structures without disturbing their users or vacating the building during renovation. In this technique, shear walls are installed in parallel to the building’s exterior sides. It has been observed that the usage of exterior shear walls considerably improve the capacity and sway stiffness of RC structures. The experimental results have also been compared and found to be in agreement with the numerical solutions. Post attached exterior shear walls behaved as a monolithic member of the structure. Design considerations for the exterior shear wall-strengthened buildings have also been discussed in the paper.

  10. Thermal insulating concrete wall panel design for sustainable built environment.

    Science.gov (United States)

    Zhou, Ao; Wong, Kwun-Wah; Lau, Denvid

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes.

  11. Experimental Thermal Analysis of Diesel Engine Piston and Cylinder Wall

    Directory of Open Access Journals (Sweden)

    Subodh Kumar Sharma

    2015-01-01

    Full Text Available Knowledge of piston and cylinder wall temperature is necessary to estimate the thermal stresses at different points; this gives an idea to the designer to take care of weaker cross section area. Along with that, this temperature also allows the calculation of heat losses through piston and cylinder wall. The proposed methodology has been successfully applied to a water-cooled four-stroke direct-injection diesel engine and it allows the estimation of the piston and cylinder wall temperature. The methodology described here combines numerical simulations based on FEM models and experimental procedures based on the use of thermocouples. Purposes of this investigation are to measure the distortion in the piston, temperature, and radial thermal stresses after thermal loading. To check the validity of the heat transfer model, measure the temperature through direct measurement using thermocouple wire at several points on the piston and cylinder wall. In order to prevent thermocouple wire entanglement, a suitable pathway was designed. Appropriate averaged thermal boundary conditions such as heat transfer coefficients were set on different surfaces for FE model. The study includes the effects of the thermal conductivity of the material of piston, piston rings, and combustion chamber wall. Results show variation of temperature, stresses, and deformation at various points on the piston.

  12. Embodied energy in cement stabilised rammed earth walls

    Energy Technology Data Exchange (ETDEWEB)

    Venkatarama Reddy, B.V.; Prasanna Kumar, P. [Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2010-03-15

    Rammed earth walls are low carbon emission and energy efficient alternatives to load bearing walls. Large numbers of rammed earth buildings have been constructed in the recent past across the globe. This paper is focused on embodied energy in cement stabilised rammed earth (CSRE) walls. Influence of soil grading, density and cement content on compaction energy input has been monitored. A comparison between energy content of cement and energy in transportation of materials, with that of the actual energy input during rammed earth compaction in the actual field conditions and the laboratory has been made. Major conclusions of the investigations are (a) compaction energy increases with increase in clay fraction of the soil mix and it is sensitive to density of the CSRE wall, (b) compaction energy varies between 0.033 MJ/m{sup 3} and 0.36 MJ/m{sup 3} for the range of densities and cement contents attempted, (c) energy expenditure in the compaction process is negligible when compared to energy content of the cement and (d) total embodied energy in CSRE walls increases linearly with the increase in cement content and is in the range of 0.4-0.5 GJ/m{sup 3} for cement content in the rage of 6-8%. (author)

  13. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    Directory of Open Access Journals (Sweden)

    Ao Zhou

    2014-01-01

    Full Text Available Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes.

  14. Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls

    Directory of Open Access Journals (Sweden)

    Omer Kaynakli

    2011-06-01

    Full Text Available Numerous studies have estimated the optimum thickness of thermal insulation materials used in building walls for different climate conditions. The economic parameters (inflation rate, discount rate, lifetime and energy costs, the heating/cooling loads of the building, the wall structure and the properties of the insulation material all affect the optimum insulation thickness. This study focused on the investigation of these parameters that affect the optimum thermal insulation thickness for building walls. To determine the optimum thickness and payback period, an economic model based on life-cycle cost analysis was used. As a result, the optimum thermal insulation thickness increased with increasing the heating and cooling energy requirements, the lifetime of the building, the inflation rate, energy costs and thermal conductivity of insulation. However, the thickness decreased with increasing the discount rate, the insulation material cost, the total wall resistance, the coefficient of performance (COP of the cooling system and the solar radiation incident on a wall. In addition, the effects of these parameters on the total life-cycle cost, payback periods and energy savings were also investigated.

  15. Soft impact testing of a wall-floor-wall reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Vepsä, Ari, E-mail: ari.vepsa@vtt.fi; Calonius, Kim; Saarenheimo, Arja; Aatola, Seppo; Halonen, Matti

    2017-01-15

    Highlights: • A wall-floor-wall reinforced concrete structure was built. • The structure was subjected to three almost identical soft impact tests. • Response was measured with accelerometers, displacement sensors and strain gauges. • Modal tests was also carried out with the same structure in different conditions. • The results are meant to be used for validation of computational methods and models. - Abstract: Assessing the safety of the reactor building of a nuclear power plant against the crash of an airplane calls for valid computational tools such as finite element models and material constitutive models. Validation of such tools and models in turn calls for reliable and relevant experimental data. The problem is that such data is scarcely available. One of the aspects of such a crash is vibrations that are generated by the impact. These vibrations tend to propagate from the impact point to the internal parts of the building. If strong enough, these vibrations may cause malfunction of the safety-critical equipment inside the building. To enable validation of computational models for this type of behaviour, we have conducted a series of three tests with a wall-floor-wall reinforced concrete structure under soft impact loading. The response of the structure was measured with accelerometers, displacement sensors and strain gauges. In addition to impact tests, the structure was subjected to modal tests under different conditions. The tests yielded a wealth of useful data for validation of computational models and better understanding about shock induced vibration physics especially in reinforced concrete structures.

  16. Indentation load relaxation test

    Energy Technology Data Exchange (ETDEWEB)

    Hannula, S.P.; Stone, D.; Li, C.Y. (Cornell Univ., Ithaca, NY (USA))

    Most of the models that are used to describe the nonelastic behavior of materials utilize stress-strain rate relations which can be obtained by a load relaxation test. The conventional load relaxation test, however, cannot be performed if the volume of the material to be tested is very small. For such applications the indentation type of test offers an attractive means of obtaining data necessary for materials characterization. In this work the feasibility of the indentation load relaxation test is studied. Experimental techniques are described together with results on Al, Cu and 316 SS. These results are compared to those of conventional uniaxial load relaxation tests, and the conversion of the load-indentation rate data into the stress-strain rate data is discussed.

  17. THE STRUCTURAL ANALYSIS OF STEEL SILOS WITH CYLINDRICAL-WALL BEARING AND PROFILE-STEEL BEARING

    OpenAIRE

    Zhengjun Tang; Daibiao Zhou; Chenwei Peng; Wenping Wu

    2015-01-01

    The silos are widely used in bulk material in many fields such as agriculture, mining, chemical, electric power storage, etc. Thin metal cylindrical silo shells are vulnerable to buckling failure caused by the compressive wall friction force. In this paper, the structural analysis of two types of steel silo with cylindrical-wall bearing and profile-steel bearing is implemented by Abaqus finite element analysis. The results indicate that under the same loading conditions, steel silos with prof...

  18. STRUCTURAL EVALUATION OF PSSDB WALL PANEL WITH SQUARE OPENING AND VARIED SCREW SPACING

    Directory of Open Access Journals (Sweden)

    SITI HAWA HAMZAH

    2009-03-01

    Full Text Available Profiled steel sheet dry boards or PSSDB system is an alternative composite construction system comprising of profiled steel sheet compositely connected to dry boards by self-tapping self-driving screws. PSSDB system was used widely as flooring system in the lightweight construction of buildings and office space in factories. Due to its superiority in the installation techniques, PSSDB system was expanded in the application as load bearing wall panel system in buildings. The PSSDB system is as an alternative construction technique on load bearing wall panel that offers cost savings synonymously with the rapid progress of science and technology which leads to the shift from traditional utilization of construction materials to newer construction techniques. A finite element analysis was carried out to determine the effect of screw spacing on the PSSDB wall panel. The spacing selected was between 100 mm to 500 mm, at an increment of 100 mm in each different model. The wall panel measured 3000 mm by 3000 mm with a 1200 mm square window opening, 78 mm thick and butt joints vertically positioned in the dry boards. This paper looks into the system as load bearing wall panels, analyzing it under axial compressive load using established Finite Element technique. The deformation profile of the PSSDB wall panel system showed a single curvature deformation profile, maximum lateral displacement at two-thirds wall panel height and critical sections at the upper corners of the square opening. The finite element analysis had provided good prediction of the structural behavior of the PSSDB wall panel system and it is concluded that the PW200 model possesses the optimum arrangement of the fixing screws used.

  19. Parametric Study on the Response of Compression-Loaded Composite Shells With Geometric and Material Imperfections

    Science.gov (United States)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2004-01-01

    The results of a parametric study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thinwalled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The imperfections considered include initial geometric shell-wall midsurface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these imperfections on the nonlinear responses and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable response characteristics.

  20. Juyongguan on the Great Wall

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Juyongguan Pass on the Great Wall,one ofthe most important strategic passes of the oldcapital Beijing,is now repaired and a goodplace for tourists to see ancient Chinesemilitary and cultural facilities,as well asbeautiful local scenery.

  1. Statistical characteristics of simulated walls

    CERN Document Server

    Demianski, M; Müller, V; Turchaninov, V I

    2000-01-01

    The large scale matter distribution in three different simulations of CDM models is investigated and compared with corresponding results of the Zel'dovich theory of nonlinear gravitational instability. We show that the basic characteristics of wall-like structure elements are well described by this theory, and that they can be expressed by the cosmological parameters and a few spectral moments of the perturbation spectrum. Therefore the characteristics of such elements provide reasonable estimates of these parameters. We show that the compressed matter is relaxed and gravitationally confined, what manifests itself in the existence of walls as (quasi)stationary structure elements with life time restricted by their disruption into high density clouds. The matter distribution is investigated both in the real and redshift spaces. In both cases almost the same particles form the walls, and we estimate differences in corresponding wall characteristics. The same methods are applied to several mock catalogues of 'gal...

  2. Complement activation by PEG-functionalized multi-walled carbon nanotubes is independent of PEG molecular mass and surface density

    DEFF Research Database (Denmark)

    Andersen, Alina Joukainen; Windschiegl, Barbara; Ilbasmis-Tamer, Sibel

    2013-01-01

    Carboxylated (4%) multi-walled carbon nanotubes were covalently functionalized with poly(ethylene glycol)1000 (PEG1000), PEG1500 and PEG4000 with a PEG loading of approximately 11% in all cases. PEG loading generated non-uniform and heterogeneous higher surface structures and increased nanotube...

  3. Piecewise Function Hysteretic Model for Cold-Formed Steel Shear Walls with Reinforced End Studs

    Directory of Open Access Journals (Sweden)

    Jihong Ye

    2017-01-01

    Full Text Available Cold-formed steel (CFS shear walls with concrete-filled rectangular steel tube (CFRST columns as end studs can upgrade the performance of mid-rise CFS structures, such as the vertical bearing capacity, anti-overturning ability, shear strength, and fire resistance properties, thereby enhancing the safety of structures. A theoretical hysteretic model is established according to a previous experimental study. This model is described in a simple mathematical form and takes nonlinearity, pinching, strength, and stiffness deterioration into consideration. It was established in two steps: (1 a discrete coordinate method was proposed to determine the load-displacement skeleton curve of the wall, by which governing deformations and their corresponding loads of the hysteretic loops under different loading cases can be obtained; afterwards; (2 a piecewise function was adopted to capture the hysteretic loop relative to each governing deformation, the hysteretic model of the wall was further established, and additional criteria for the dominant parameters of the model were stated. Finally, the hysteretic model was validated by experimental results from other studies. The results show that elastic lateral stiffness Ke and shear capacity Fp are key factors determining the load-displacement skeleton curve of the wall; hysteretic characteristics of the wall with reinforced end studs can be fully reflected by piecewise function hysteretic model, moreover, the model has intuitional expressions with clear physical interpretations for each parameter, paving the way for predicting the nonlinear dynamic responses of mid-rise CFS structures.

  4. Nonlinear Modeling of Autoclaved Aerated Concrete Masonry Wall Strengthened using Ferrocement Sandwich Structure

    KAUST Repository

    M., Abdel-Mooty

    2011-01-01

    Autoclaved Aerated Concrete (AAC) block are used mainly as non-load-bearing walls that provide heat insulation. This results in considerable saving in cooling energy particularly in hot desert environment with large variation of daily and seasonal temperatures. However, due to the relatively low strength there use load bearing walls is limited to single storey and low-rise construction. A system to enhance the strength of the AAC masonry wall in resisting both inplane vertical and combined vertical and lateral loads using ferrocement technology is proposed in this research. The proposed system significantly enhances the load carrying capacity and stiffness of the AAC wall without affecting its insulation characteristics. Ferrocement is made of cement mortar reinforced with closely spaced wire mesh. Full scale wall specimens with height of 2100mm and width of 1820mm were tested with different configuration of ferrocement. A finite elementmodel is developed and verified against the experimentalwork. The results of the finite element model correlates well with the experimental results.

  5. Nano magnetic vortex wall guide

    Directory of Open Access Journals (Sweden)

    H. Y. Yuan

    2015-11-01

    Full Text Available A concept of nano magnetic vortex wall guide is introduced. Two architectures are proposed. The first one is properly designed superlattices while the other one is bilayer nanostrips. The concept is verified by micromagnetic simulations. Both guides can prevent the vortex core in a magnetic vortex wall from colliding with sample surface so that the information stored in the vortex core can be preserved during its transportation from one location to another one through the guides.

  6. Actinomycosis - Left Post Chest Wall

    Directory of Open Access Journals (Sweden)

    Kafil Akhtar, M. Naim, S. Shamshad Ahmad, Nazoora Khan, Uroos Abedi, A.H. Khan*

    2008-01-01

    Full Text Available A forty year old female of weak body built presented with recurring small hard lumps in let posteriorchest wall for 3 years and discharging ulcers for 3 months duration. Clinically, the provisional diagnosiswas malignancy with secondary infection. FNAC showed features suggestive of dysplasia buthistopathology confirmed the diagnosis as actinomycosis. The present case is reported due to rare incidenceof actinomycosis at post chest wall with muscle involvement.

  7. CHEST WALL HAMARTOMA : Case Report

    OpenAIRE

    Gülden DİNİZ; Ortaç, Ragıp; Aktaş, Safiye; TEMİR, Günyüz; HOŞGÖR, Münevver; Karaca, İrfan

    2005-01-01

    A case of four-month – old girl diagnosed as chest wall hamartoma is presented. This entity is an extremely rare but characteristic lesion of the ribs usually presenting in the neonate or infant with a mass or respiratory symptoms. Complete sponraneous regression of the lesion has been reported. Recently conservative management of asymptomatic childiren was recommended. Although rare, this condition ought to be kept in mind while dealing with infantile chest wall masses to avoid an errone...

  8. CHEST WALL HAMARTOMA : Case Report

    OpenAIRE

    Gülden DİNİZ; Ortaç, Ragıp; Aktaş, Safiye; HOŞGÖR, Günyüz TEMİR2Münevver; Karaca, İrfan

    2005-01-01

    A case of four-month – old girl diagnosed as chest wall hamartoma is presented. This entity is an extremely rare but characteristic lesion of the ribs usually presenting in the neonate or infant with a mass or respiratory symptoms. Complete sponraneous regression of the lesion has been reported. Recently conservative management of asymptomatic childiren was recommended. Although rare, this condition ought to be kept in mind while dealing with infantile chest wall masses to avoid...

  9. Load Balancing Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, Olga Tkachyshyn [Texas A & M Univ., College Station, TX (United States)

    2014-12-01

    The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one at the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.

  10. Experimental study on temperature distribution of membrane water wall in an ultra-supercritical pressure once-through boiler burning zhundong coal

    Science.gov (United States)

    He, Honghao; Li, Wenjun; Zeng, Jun; Xie, Guohong; Peng, Min; Duan, Xuenong

    2017-05-01

    Taking an ultra-supercritical pressure once-through boiler as an example, the temperature distribution of the lower membrane water wall is investigated experimentally, the conclusion reveals that increasing the proportion of Zhundong coal can effectively reduce the district heat load, which benefits the temperature uniformity in the lower membrane water wall. When the boiler being operated at middle load, the temperature deviation in lower membrane water wall increase simultaneously, one of the reasons is that the restriction orifice could not adjust the flow rate of working fluid as expected. By adjusting boiler performance, the temperature uniformity of lower membrane water wall can be improved to a certain degree.

  11. Permeable conformal walls and holography

    Science.gov (United States)

    Bachas, Constantin; de Boer, Jan; Dijkgraaf, Robbert; Ooguri, Hirosi

    2002-06-01

    We study conformal field theories in two dimensions separated by domain walls, which preserve at least one Virasoro algebra. We develop tools to study such domain walls, extending and clarifying the concept of `folding' discussed in the condensed-matter literature. We analyze the conditions for unbroken supersymmetry, and discuss the holographic duals in AdS3 when they exist. One of the interesting observables is the Casimir energy between a wall and an anti-wall. When these separate free scalar field theories with different target-space radii, the Casimir energy is given by the dilogarithm function of the reflection probability. The walls with holographic duals in AdS3 separate two sigma models, whose target spaces are moduli spaces of Yang-Mills instantons on T4 or K3. In the supergravity limit, the Casimir energy is computable as classical energy of a brane that connects the walls through AdS3. We compare this result with expectations from the sigma-model point of view.

  12. Permeable conformal walls and holography

    CERN Document Server

    Bachas, C P; Dijkgraaf, R; Ooguri, H

    2002-01-01

    We study conformal field theories in two dimensions separated by domain walls, which preserve at least one Virasoro algebra. We develop tools to study such domain walls, extending and clarifying the concept of `folding' discussed in the condensed-matter literature. We analyze the conditions for unbroken supersymmetry, and discuss the holographic duals in AdS3 when they exist. One of the interesting observables is the Casimir energy between a wall and an anti-wall. When these separate free scalar field theories with different target-space radii, the Casimir energy is given by the dilogarithm function of the reflection probability. The walls with holographic duals in AdS3 separate two sigma models, whose target spaces are moduli spaces of Yang-Mills instantons on T4 or K3. In the supergravity limit, the Casimir energy is computable as classical energy of a brane that connects the walls through AdS3. We compare this result with expectations from the sigma-model point of view.

  13. Wall force produced during disruptions

    Science.gov (United States)

    Strauss, H.; Paccagnella, R.; Breslau, J.

    2009-11-01

    The study of disruptions is of great importance for ITER. Previous work on disruptions [1] is extended to compute toroidally asymmetric wall force in ITER, using the M3D code. The disruptions are produced by n = 1 resistive wall modes or external kink modes. A thin wall resistive boundary model is used to calculate the wall forces. The symmetric wall force, produced by a VDE, and the asymmetric wall force, produced by n = 1 modes, are comparable in magnitude. It is found that the asymmetric and axisymmetric forces scale with the growth rate of the instability multiplied by the square of the current divided by magnetic field. A similar scaling was reported for VDEs in JET [2]. Numerically, the study of disruptions is very challenging. In the M3D extended MHD code, dealiasing was applied in the toroidal direction. Advection terms were treated with a numerical upwind method. These techniques provided sufficient numerical stability to simulate entire disruption events. [4pt] [1] R. Paccagnella, H. R. Strauss, and J. Breslau, Nucl. Fusion (2009) 49 035003. [2] V. Riccardo, T. C. Hender, P. J. Lomas, et al., Plasma Phys. Control. Fusion (2004)

  14. Influence of boiler load on water tubes burnout

    Energy Technology Data Exchange (ETDEWEB)

    Said, S.A.M.; Habib, M.A.; Badr, H.M.; Mansour, R. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Mechanical Engineering

    2009-07-01

    The influence of boiler loads on water tube burnout was investigated. The in-service boiler had 2 burners at different levels located in the front of the burner's wall. Homogenous-flow and separated-flow models were designed to simulate the water circulation and combustion processes inside the boiler tubes. Heat flux calculations were derived by solving the conservation of mass, momentum, and energy equations and species concentration as well as by solving turbulence, reaction rate, and radiation model equations. Results of the study showed that heat flux during full loads ranged from close to 0 to 270 kW/m2. The right side screen wall of the burner exhibited higher heat flux values in the middle region of the wall where large areas were subjected to heat flux close to a maximum of 270 kW/m2. Results also included reductions in heat flux values at partial loads. Maximum values were reduced from 270 kW/m2 ato 230 kW/m2 at 75 per cent capacity and 200 kW/m2 at 60 per cent capacity. The rate of steam generation increased from 0.1 kg/s to 0.153 kg/s when the distance from the burner wall increased from 2 meters to 12 meters. 10 refs., 10 figs.

  15. Heat Transfer and Energy Performance of a PVA Wall Tile Containing Macro-Encapsulated PCM

    Directory of Open Access Journals (Sweden)

    Pin-Feng Liu

    2016-08-01

    Full Text Available This study integrated building material engineering, building construction practices, and heat transfer mechanisms to develop a polyvinyl acetate (PVA based wall tile, containing macro-encapsulated phase change material (macro-encapsulated PCM, macroPCM and PVA. The heat transfer characteristics and energy performances of the proposed prototype were investigated experimentally. The results indicated that the PVA-based macroPCM wall tile is suitable for use in exterior walls to enhance the thermal performance. The tile shows a lower heat indoor heat flux than other tested similar building materials and increases the time lag of peak load, effectively shifting the summer peak demand.

  16. Beryllium plasma-facing components for the ITER-like wall project at JET

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, M J; Sundelin, P [Alfven Laboratory, Royal Institute of Technology, Association Euratom-VR (Sweden); Bailescu, V [Nuclear Fuel Plant, Pitesti (Romania); Coad, J P; Matthews, G F; Pedrick, L; Riccardo, V; Villedieu, E [Culham Science Centre, Euratom-UKAEA Fusion Association, Abingdon (United Kingdom); Hirai, T; Linke, J [IEF-2, Forschungszentrum Juelich, Association Euratom-FZJ, Juelich (Germany); Likonen, J [VTT, Association Euratom-Tekes, 02044 VTT (Finland); Lungu, C P [NILPRP, Association Euratom-MEdC, Bucharest (Romania)], E-mail: rubel@kth.se

    2008-03-15

    ITER-Like Wall Project has been launched at the JET tokamak in order to study a tokamak operation with beryllium components on the main chamber wall and tungsten in the divertor. To perform this first comprehensive test of both materials in a thermonuclear fusion environment, a broad program has been undertaken to develop plasma-facing components and assess their performance under high power loads. The paper provides a concise report on scientific and technical issues in the development of a beryllium first wall at JET.

  17. Experimental Evaluation of Lightweight AAC Masonry Wall Prisms with Ferrocement Layers in Compression and Flexure

    KAUST Repository

    Abdel Mooty, Mohamed

    2012-05-01

    An experimental program is designed to evaluate the performance of lightweight autoclaved aerated concrete masonry wall strengthened using ferrocement layers, in a sandwich structure, under in-plane compression and out-of-plane bending. The 25 mm thick ferrocement mortar is reinforced with steel welded wire mesh of 1 mm diameters at 15 mm spacing. Different types of shear connectors are used to evaluate their effect on failure loads. The effect of different design parameters on the wall strength are considered including wall thickness, mortar strength, and type and distribution of shear connectors. A total of 20 prisms are tested in compression and 5 prisms are tested under bending. The proposed ferrocement strengthening technique is easy to apply on existing wall system and results in significant strength and stiffness enhancement of the tested wall specimens. © (2012) Trans Tech Publications.

  18. Experimental and Numerical Analyses of New Massive Wooden Shear-Wall Systems

    Directory of Open Access Journals (Sweden)

    Luca Pozza

    2014-07-01

    Full Text Available Three innovative massive wooden shear-wall systems (Cross-Laminated-Glued Wall, Cross-Laminated-Stapled Wall, Layered Wall with dovetail inserts were tested and their structural behaviour under seismic action was assessed with numerical simulations. The wall specimens differ mainly in the method used to assemble the layers of timber boards composing them. Quasi-static cyclic loading tests were carried out and then reproduced with a non-linear numerical model calibrated on the test results to estimate the most appropriate behaviour factor for each system. Non-linear dynamic simulations of 15 artificially generated seismic shocks showed that these systems have good dissipative capacity when correctly designed and that they can be assigned to the medium ductility class of Eurocode 8. This work also shows the influence of deformations in wooden panels and base connectors on the behaviour factor and dissipative capacity of the system.

  19. Influence of EPS Geofoam Buffers on the Static Behavior of Cantilever Earth-Retaining Walls

    Directory of Open Access Journals (Sweden)

    Özgür L. Ertuğrul

    2012-03-01

    Full Text Available In this study, the effect of expanded polystyrene (EPS buffers on lateral stresses and deflections of model retaining walls with various flexibility values were investigated. For this purpose, 0.7 m high model walls were instrumented and 1-g model tests were performed in laboratory environment. In the first group of tests, the wall models retain only granular cohesionless backfill whereas in the second and third group of tests, EPS deformable buffers of two different thicknesses were installed between the wall and granular backfill. Tests were repeated for four different wall thicknesses and results were discussed comparatively. As wall flexibility increases, there is a decrease in the load reduction pattern of the buffer. On the other hand, utilization of geofoam buffers with flexible cantilever walls still provides substantial decrease in wall thrust and deflections thus leading to more economical retaining structure design. The lateral earth pressure coefficients determined through model tests were compared to those calculated from Coulomb's theory for active lateral earth stresses. A graph is provided for the estimation of lateral earth pressure coefficients for various combinations of wall flexibilities and buffer characteristics.

  20. Thermal transmittance of reed-insulated walls in a purpose-built test house

    Directory of Open Access Journals (Sweden)

    M. Miljan

    2014-03-01

    Full Text Available We studied the construction and thermal properties of walls insulated with reed, to enable comparisons with other wall structures that are widely used in building. In 2010 we built a test house insulated with reed adjacent to the Estonian University of Life Sciences in Tartu. The load-bearing structure of the house was a timber frame, and four different technologies were used to place reed insulation in its external walls. The thickness of the reed layer was 450 mm in all cases, and both sides (inside and outside of the walls were rendered with clay plaster. Records were kept of time spent and materials used in construction of the different types of walls, and these data were used to calculate unit (m-2 requirements of time and materials for each wall type to enable direct comparisons. From October 2010 to March 2012, heat flow plates were used to measure the thermal transmittance of the walls of the completed house and the results were compared with the thermal transmittance requirements set by Estonian legislation. Only one of the test walls met the Estonian standard. This was insulated with compressed loose reed, placed horizontally in the wall.

  1. Evaluation of Steel Shear Walls Behavior with Sinusoidal and Trapezoidal Corrugated Plates

    Directory of Open Access Journals (Sweden)

    Emad Hosseinpour

    2015-01-01

    Full Text Available Reinforcement of structures aims to control the input energy of unnatural and natural forces. In the past four decades, steel shear walls are utilized in huge constructions in some seismic countries such as Japan, United States, and Canada to lessen the risk of destructive forces. The steel shear walls are divided into two types: unstiffened and stiffened. In the former, a series of plates (sinusoidal and trapezoidal corrugated with light thickness are used that have the postbuckling field property under overall buckling. In the latter, steel profile belt series are employed as stiffeners with different arrangement: horizontal, vertical, or diagonal in one side or both sides of wall. In the unstiffened walls, increasing the thickness causes an increase in the wall capacity under large forces in tall structures. In the stiffened walls, joining the stiffeners to the wall is costly and time consuming. The ANSYS software was used to analyze the different models of unstiffened one-story steel walls with sinusoidal and trapezoidal corrugated plates under lateral load. The obtained results demonstrated that, in the walls with the same dimensions, the trapezoidal corrugated plates showed higher ductility and ultimate bearing compared to the sinusoidal corrugated plates.

  2. Lumbriculus variegatus loading study

    Data.gov (United States)

    U.S. Environmental Protection Agency — Results from sediment bioaccumulation tests with Lumbriculus variegatus with evaluating the effects of organism loading density. This dataset is associated with the...

  3. Carbohydrate-Loading Diet

    Science.gov (United States)

    ... Grape juice (12 ounces) 55 225 Lunch Milk, chocolate, reduced fat (12 ounces) 45 285 4 slices ... of carb-loading for sports performance. Academy of Nutrition and Dietetics. http://www.eatright.org/resource/fitness/ ...

  4. LOADING SIMULATION PROGRAM C

    Data.gov (United States)

    U.S. Environmental Protection Agency — LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for...

  5. Cognitive load theory

    NARCIS (Netherlands)

    Kirschner, Paul A.; Kirschner, Femke; Paas, Fred

    2010-01-01

    Kirschner, P. A., Kirschner, F. C., & Paas, F. (2009). Cognitive load theory. In E. M. Anderman & L. H. Anderman (Eds.). Psychology of classroom learning: An encyclopedia, Volume 1, a-j (pp. 205-209). Detroit, MI: Macmillan Reference.

  6. Static Loads Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to perform large-scale structural loads testing on spacecraft and other structures. Results from these tests can be used to verify...

  7. Plug Load Data

    Data.gov (United States)

    National Aeronautics and Space Administration — We provide MATLAB binary files (.mat) and comma separated values files of data collected from a pilot study of a plug load management system that allows for the...

  8. Effects of the flexibility of the arterial wall on the wall shear stresses and wall tension in Abdominal Aortic Aneurysms.

    Science.gov (United States)

    Salsac, Anne-Virginie; Fernandez, Miguel; Chomaz, Jean-Marc

    2005-11-01

    As an abdominal aortic aneurysm develops, large changes occur in the composition and structure of the arterial wall, which result in its stiffening. So far, most studies, whether experimental or numerical, have been conducted assuming the walls to be rigid. A numerical simulation of the fluid structure interactions is performed in different models of aneurysms in order to analyze the effects that the wall compliance might have on the flow topology. Both symmetric and non-symmetric models of aneurysms are considered, all idealistic in shape. The wall mechanical properties are varied in order to simulate the progressive stiffening of the walls. The spatial and temporal distributions of wall tension are calculated for the different values of the wall elasticity and compared to the results for the rigid walls. In the case of rigid walls, the calculation of the wall shear stresses and pressure compare very well with experimental results.

  9. Progress in load prediction for speed-no-load operation in Francis turbines

    Science.gov (United States)

    Mende, C.; Weber, W.; Seidel, U.

    2016-11-01

    Francis turbines are increasingly required to operate from 0-100% of power output. For the design of these turbines, a sound understanding of formerly “off-design” operating points, e.g. speed-no-load, is necessary. One way to assess loads at these operating points is to apply scale resolving CFD methods in order to account for the broad-band turbulence spectrum. This results in stochastic load patterns, which are characteristic for these off-design points. In this paper, two CFD approaches for scale resolving simulations are applied to a Francis model turbine to resolve the larger anisotropic scales in turbine flow at speed-no-load operation. The first uses a hybrid RANS-LES model presented by Menter & Egorov [2]. Here the resolved scales are adapted continuously by RANS-LES blending based on the actual flow condition. The second approach is a LES with a dynamic model based on Germano et al. [3]. For both approaches, spectra of resulting pressure fluctuations at the draft tube cone wall are presented. Additionally, pressure loads from LES are applied to calculate mean and dynamic stresses. The dynamic stresses are finally compared with measurements in the corresponding prototype turbine.

  10. Isolation of the Cell Wall.

    Science.gov (United States)

    Canut, Hervé; Albenne, Cécile; Jamet, Elisabeth

    2017-01-01

    This chapter describes a method allowing the purification of the cell wall for studying both polysaccharides and proteins. The plant primary cell wall is mainly composed of polysaccharides (90-95 % in mass) and of proteins (5-10 %). At the end of growth, specialized cells may synthesize a lignified secondary wall composed of polysaccharides (about 65 %) and lignin (about 35 %). Due to its composition, the cell wall is the cellular compartment having the highest density and this property is used for its purification. It plays critical roles during plant development and in response to environmental constraints. It is largely used in the food and textile industries as well as for the production of bioenergy. All these characteristics and uses explain why its study as a true cell compartment is of high interest. The proposed method of purification can be used for large amount of material but can also be downscaled to 500 mg of fresh material. Tools for checking the quality of the cell wall preparation, such as protein analysis and microscopy observation, are also provided.

  11. Experimental Study of Multi-Walled Composite Shell Fragments under Thermal Force Effects

    Directory of Open Access Journals (Sweden)

    L. P. Tairova

    2015-01-01

    Full Text Available Multi-walled composite shells are a relatively new prospective type of load carrying structures for rocket and space engineering. These CFRP structures are produced by injection and infusion methods and have several advantages in comparison with common structures such as stringer-frame, grid and sandwich structures with a light core. In particular, those have more structural parameters, which enable one to control mechanical properties of the structure, and this is important in designing the load carrying structures of different purpose.Presently, there are few national and foreign publications on experimental investigations of mechanical properties of multi-walled shells. That is why the objective of the paper is to conduct the experimental study of deformation and failure processes of a multi-walled panel both under steady-state heating and under unsteady-state one.The paper presents the results of two tests: (1 the study of deformation and failure modes under compression and complete heating up to a specified temperature and (2 validation of working capability of multi-walled samples under single-side heating and compression simulating a start and flight version of the “ Proton” launch vehicle.Experimental results have shown that average elastic properties of multi-walled samples slightly depend on temperature for the studied range (from room temperature up to 195C while strength properties considerably decrease with increasing temperature, and this is typical for CFRP structures under compression. However, under unsteady-state short-term heating the structure has a strength that exceeds the minimal necessary strength of load carrying structures of the “Proton” launch vehicle (the samples satisfy simulated start conditions of the “Proton” launch vehicle. This is because of a low heat conductivity of the multi-walled core: an unheated sheet holds a low temperature and high load carrying capacity.Obtained results can be used in

  12. Centrifugal experimental study of suction bucket foundations under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    Xiaobing Lu; Yongren Wu; Bintian Jiao; Shuyun Wang

    2007-01-01

    Centrifugal experiments were carded out to investigate the responses of suction bucket foundations under horizontal and vertical dynamic loading. It is shown that when the loading amplitude is over a critical value, the sand at the upper part around the bucket is softened or even liq-uefied. The excess pore pressure decreases from the upper part to the lower part of the sand layer in the vertical direc-tion and decreases radially from the bucket's side wall in the horizontal direction. Large settlements of the bucket and the sand layer around the bucket are induced by dynamic load-ing. The dynamic responses of the bucket with smaller height (the same diameter) are heavier.

  13. CONCENTRATION DISTRIBUTION OF SEDIMENT IN BED LOAD LAYER

    Institute of Scientific and Technical Information of China (English)

    ZHONG De-yu; ZHANG Hong-wu

    2004-01-01

    In this paper the concentration profile in bed load layer is derived based on kinetic theory. According to observations, particles moving in near wall region behave differently during ejection and sweeping of turbulence burst, as indicates that they are subject to different influences from turbulence, and therefore, the forces acting on particles are not the same. Consequently, particles moving in bed load layer are classified into two groups, one lifted upward by ejections, the other carried back to bed by sweepings, and the forces corresponding to upward and downward motions are proposed. By solving the basic transport equation of kinetic theory, the velocity distribution functions, upward and downward fluxes of particles in bed load layer are derived. Upon assumption of equilibrium sediment transport, concentration profile in bed load layer is obtained. Verification is also presented in this paper, which shows that the concentration profile produced by the relation proposed in this paper agrees with observations well.

  14. Preparation of Antimicrobial Agent Loaded Microcapsules For Medical Textiles

    Directory of Open Access Journals (Sweden)

    Güldemet Başal

    2013-04-01

    Full Text Available The aim of this work is to develop microcapsules loaded with antimicrobial agent to apply medical textile products. For this purpose St. John's Wort oil (Hypericum perforatum with antimicrobial activity was encapsulated by complex coacervation method using gelatin (GE and gum arabic (GA as wall material. The effect of various processing parameters, including the amount of oil, amount of surfactant and stirring rate at hardening stage on the encapsulation yield, particle size distribution and capsule loading was investigated. In general, at high oil content the encapsulation yield, capsule size and oil loading increased. As expected an increase in the amount of surfactant decreased the capsule size. In this case, the loading was low, as well. High stirring rate increased the encapsulation yield and capsule siz.

  15. Abdominal wall hernia and pregnancy

    DEFF Research Database (Denmark)

    Jensen, K K; Henriksen, N A; Jorgensen, L N

    2015-01-01

    PURPOSE: There is no consensus as to the treatment strategy for abdominal wall hernias in fertile women. This study was undertaken to review the current literature on treatment of abdominal wall hernias in fertile women before or during pregnancy. METHODS: A literature search was undertaken in Pub......Med and Embase in combination with a cross-reference search of eligible papers. RESULTS: We included 31 papers of which 23 were case reports. In fertile women undergoing sutured or mesh repair, pain was described in a few patients during the last trimester of a subsequent pregnancy. Emergency surgery...... of incarcerated hernias in pregnant women, as well as combined hernia repair and cesarean section appears as safe procedures. No major complications were reported following hernia repair before or during pregnancy. The combined procedure of elective cesarean section and abdominal wall hernia repair was reported...

  16. Combined torsional buckling of multi-walled carbon nanotubes

    Science.gov (United States)

    Lu, Y. J.; Wang, X.

    2006-08-01

    This paper reports the results of an investigation on combined torsional buckling of an individual multi-walled carbon nanotube (MWNT) under combined torque and axial loading. Here, a multiple shell model is adopted and the effect of van der Waals forces between two adjacent tubes is taken into account. According to the ratio of radius to thickness, MWNTs discussed in this paper are classified into three types: thin, thick and nearly solid. The critical shear stress and the combined buckling mode are calculated for three types of MWNTs under combined torque and axial loading. Results carried out show that the buckling mode (m, n) corresponding to the critical shear stress is unique, which is obviously different from the purely axial compression buckling of an individual MWNT. Numerical results also show that the critical shear stresses and the corresponding buckling modes of MWNTs under combined torque and axial loading are dependent on the axial loading form and the types of MWNTs. The new features and meaningful numerical results in the present work on combined buckling of MWNTs under combined torque and axial loading may be used as a useful reference for the designs of nano-drive devices and rotational actuators in which MWNTs act as basic elements.

  17. Catalysts of plant cell wall loosening

    OpenAIRE

    Cosgrove, Daniel J.

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyl...

  18. Diffusion-damped domain wall dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Varga, R; Infante, G [Inst. Phys., Fac. Sci., UPJS, Park Angelinum 9, 04154 Kosice (Slovakia); Badini-Confalonieri, G A; Vazquez, M, E-mail: rvarga@upjs.s [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049, Madrid (Spain)

    2010-01-01

    In the given work, the influence of diffusional damping on the domain wall dynamics of heat treated FeSiBP microwires is presented. Two regions of the domain wall dynamics have been found. At low applied fields diffusion damping prevails, keeping the domain wall velocity and mobility low. At higher fields, the diffusional effects are overcomed and domain wall velocity increases steeply and so does the domain wall mobility.

  19. Progress in Acoustic Transmission of Power through Walls

    Science.gov (United States)

    Sherrit,Stewart; Coty, Benjamin; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea; Chang, Zensheu

    2008-01-01

    A document presents updated information on implementation of the wireless acoustic-electric feed-through (WAEF) concept, which was reported in Using Piezoelectric Devices To Transmit Power Through Walls (NPO-41157), NASA Tech Briefs, Vol. 32, No. 6 (June 2008), page 70. To recapitulate: In a basic WAEF setup, a transmitting piezoelectric transducer on one side of a wall is driven at resonance to excite ultrasonic vibrations in the wall. A receiving piezoelectric transducer on the opposite side of the wall converts the vibrations back to an ultrasonic AC electric signal, which is then detected and otherwise processed in a manner that depends on the modulation (if any) applied to the signal and whether the signal is used to transmit power, data, or both. The present document expands upon the previous information concerning underlying physical principles, advantages, and potential applications of WAEF. It discusses the design and construction of breadboard prototype piezoelectric transducers for WAEF. It goes on to present results of computational simulations of performance and results of laboratory tests of the prototypes. In one notable test, a 100-W light bulb was lit by WAEF to demonstrate the feasibility of powering a realistic load.

  20. Wall conditioning of JET with the ITER-Like Wall

    NARCIS (Netherlands)

    Douai, D.; Brezinsek, S.; Esser, H. G.; Joffrin, E.; Keenan, T.; Knipe, S.; Kogut, D.; Lomas, P. J.; Marsen, S.; Nunes, I.; Philipps, V.; Pitts, R.A.; Shimada, M.; P. de Vries,

    2013-01-01

    The initial conditioning cycle of \\{JET\\} İLW\\} is analysed and compared with restart and operation in 2008 with a carbon dominated wall. Comparable water and oxygen decay times are observed during bake-out in both cases. Despite a 2 × 10−3 mbar l/s leak rate duri

  1. [Structure of the interalveolar wall].

    Science.gov (United States)

    Senelar, R

    1975-01-01

    The wall, which unites as well as separates two contiguous pulmonary alveoli is composed of: - a conjuntival partition, the veritable skeleton of the wall, which is occupied, to the largest extent, by capillary blood vessels. Between the capillaries, conjunctival cells are dispursed: fibrocytes, fibroblasts and histiocytes, of which some can be mobilised, transformed into macrophages, and penetrate into the alveolar lumen; - modified epithelial cells, whose very thin, vast expansions cover the conjunctival partition; - a liquid film, 0.2 mu in thickness, which separates the epithelial cells, or pneumocytes from the alveolar air. Numerous physiological implications result from this organisation.

  2. Domain wall description of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Brito, F.A. [Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba (Brazil); Freire, M.L.F. [Departamento de Física, Universidade Estadual da Paraíba, 58109-753 Campina Grande, Paraíba (Brazil); Mota-Silva, J.C. [Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba (Brazil); Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970 João Pessoa, Paraíba (Brazil)

    2014-01-20

    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath.

  3. TE(01) High Power Disk Loaded Guide Load

    CERN Document Server

    Farkas, Zoltan D

    2005-01-01

    A method to design a matching section from a smooth guide to a disk loaded guide, using a variation of broadband matching* is described. Using this method, we show how to design high power loads, filters and attenuators. The load consists of a disk loaded coaxial guide, operating in the T01

  4. E-2C Loads Calibration in DFRC Flight Loads Lab

    Science.gov (United States)

    Schuster, Lawrence S.

    2008-01-01

    Objectives: a) Safely and efficiently perform structural load tests on NAVAIR E-2C aircraft to calibrate strain gage instrumentation installed by NAVAIR; b) Collect load test data and derive loads equations for use in NAVAIR flight tests; and c) Assist flight test team with use of loads equations measurements at PAX River.

  5. Experimental evaluation of the wall thinned defects using IR thermography

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Jin; Kwon, Min Ki; Kim, Ju Hyun; Na, Man Gyun; Kim, Jin Weon; Won, Yun Kyung; Kim, Kyeong Suk [Chosun Univ., Gwangju (Korea, Republic of)

    2012-10-15

    Local wall thinning is the main degradation mechanism of carbon steel piping components in nuclear power plants (NPPs), resulting from flow accelerated corrosion (FAC). Local wall thinning reduces the failure pressure, load carrying capacity, deformation ability, and fatigue resistance of piping components. Therefore, the appropriate integrity assessment procedure is required. From past several decades, there have been lots of nondestructive inspection technologies widely. On the other hand, thermography method in these nondestructive testing (NDT) has recently expanded its application range gradually with the development of vision technology. The infrared thermo r graph y which is one of these techniques provides real time images by scanning the temperature of the target surface and then, converting it to the temperature. Though observation of the temperature difference this technique can assess the appropriated integrity of carbon steel piping.

  6. Shape optimization of a thick-walled power boiler component

    Directory of Open Access Journals (Sweden)

    Duda Piotr

    2017-01-01

    Full Text Available This paper presents a methodology and successful application of structural optimization of a T-pipe under transient thermal and mechanical loads. In order to find the optimal shape of a thick-walled power boiler component, a parametric FE model and the evolutionary algorithm (EA are applied. The power boiler start-up and shutdown curves are based on the TRD 301 guidelines. Maximum total stresses are assumed as optimization constraints. The obtained geometry is by about 18.6% lighter than the original one due to thinning of the walls. Maximum tensile and compressive stresses in the modified geometry are smaller than in the original one during the whole cycle. Additionally, lower total stress values are recorded during heating and cooling processes. Therefore, these transient processes can be accelerated and the shutdown and start-up losses can be reduced.

  7. Performance Theory of Diagonal Conducting Wall Magnetohydrodynamic Accelerators

    Science.gov (United States)

    Litchford, R. J.

    2004-01-01

    The theoretical performance of diagonal conducting wall crossed-field accelerators is examined on the basis of an infinite segmentation assumption using a cross-plane averaged generalized Ohm s law for a partially ionized gas, including ion slip. The desired accelerator performance relationships are derived from the cross-plane averaged Ohm s law by imposing appropriate configuration and loading constraints. A current-dependent effective voltage drop model is also incorporated to account for cold-wall boundary layer effects, including gasdynamic variations, discharge constriction, and electrode falls. Definition of dimensionless electric fields and current densities leads to the construction of graphical performance diagrams, which further illuminate the rudimentary behavior of crossed-field accelerator operation.

  8. Distortional eigenmodes and solutions for thin-walled beams

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Jönsson, Jeppe

    2011-01-01

    This paper presents a generalization of the classic theory for thin-walled beams by including distortional displacements. A condensed presentation of the novel finite-elementbased displacement approach in [1,2] is given, where specific distortional displacement fields, which decouple the differen......This paper presents a generalization of the classic theory for thin-walled beams by including distortional displacements. A condensed presentation of the novel finite-elementbased displacement approach in [1,2] is given, where specific distortional displacement fields, which decouple...... found for the homogeneous system the final uncoupled set of distortional differential equations including the load terms are presented and the full solution is given, including an illustrative example. This new approach is an alternative to the traditional first order GBT method....

  9. Finite element simulation of barge impact into a rigid wall

    Directory of Open Access Journals (Sweden)

    H.W. Leheta

    2014-03-01

    Many approaches have been developed in order to obtain these impact loads. In general, collision mechanics for floating units is classified into, external mechanics and internal mechanics. In external mechanics, analytical approaches are used to determine the absorbed energy acting on the vessel from the collision, while in internal mechanics analytical approaches are used to determine the ability of the ship’s structure to withstand the absorbed energy. Due to the difficulty and the highly expected cost to perform model testing and impact data for validation, finite element simulation provides an alternative tool for physical validation. In this study, a simulation of barge impact to a rigid wall is presented using the explicit nonlinear finite element code LS-DYNA3D. A conventional fine mesh finite element barge model is created. Impact results are obtained at two different speeds in order to show the consequence of barge and wall damage.

  10. SYNTHESIS OF MULTI-WALL CARBON NANOTUBES USING Fe-LOADED MESOPOROUS MOLECULAR SIEVE AS CATALYTIC TEMPLATE%采用负载铁的介孔分子筛催化模板剂合成多壁碳纳米管

    Institute of Scientific and Technical Information of China (English)

    姜廷顺; 李梅; 李艳慧; 李萌; 殷恒波

    2009-01-01

    用水热法合成纯硅介孔分子筛(mesoporous molecular sieves,MCM-41.用浸渍法将MCM-41负载不同量铁制得负载铁的介孔分子筛(Fe-loading mesoporous molecular sieve,Fe/MCM-41).以Fe/MCM-41作为催化剂催化热解乙醇制备碳纳米管.用N2物理吸附、Raman光谱、透射电镜和高分辨透射电镜等手段对样品进行了表征.结果表明:制备出了多壁碳纳米管,并且随着催化剂中Fe负载量的增加,所生成碳纳米管的管径增加.

  11. The monitoring of pipeline strength in dynamic loading

    Science.gov (United States)

    Proskuriakov, N. E.; Lopa, I. V.

    2017-08-01

    The article considers the strength of a dynamically loaded pipeline at hydraulic blow. We propose, in diagnosing the pipeline quality, to determine the pipe material stress-strain state based on the wave problem solution on the distribution of radial pressure waves in the pipe, both taking into account the falling radial compressive stress waves and the interference of falling and reflected stress waves that form on the free surface. It is shown that the mechanical pressures from the loaded surface to the free surface significantly reduced. The calculations results of the necessary pipe wall thickness the are given at averaging the effective stresses for various transport environments.

  12. Dielectrically Loaded Biconical Antennas

    Science.gov (United States)

    Nusseibeh, Fouad Ahmed

    1995-01-01

    Biconical antennas are of great interest to those who deal with broadband applications including the transmission/reception of pulses. In particular, wide-angle conical antennas are an attractive choice in many applications including Electronic Support Measures (ESM) and the measurements of transient surface currents and charge densities on aircraft. Dielectric loading in the interior region of a conical antenna can be used to reduce the size of the antenna especially at low frequencies and/or for structural strength. Therefore, having an analytical solution for the input impedance and the frequency response is very helpful in optimizing the design and understanding the behavior of the antenna. From the quasi-analytical solution for the input impedance and the electric field of a wide-angle conical antenna, it can be seen that the dielectric loading in the antenna region improves the input impedance at low frequencies, but increases the number of resonance points and the magnitude of these peaks. When an inhomogeneous dielectric load is used, the magnitude of the resonance peaks is decreased (depending on the way the load is distributed), improving the input impedance of the antenna significantly. Introducing a dielectric load in the interior region of an electrically short receiving cone makes the antenna behave as an electrically longer antenna. However, this is not true for the case for electrical1y long antennas. For the case of pulse transmission, the dielectric load affects only the amplitude. Of course, if the dielectric fills the whole space, both transmitting and receiving antennas behave as electrically longer antennas.

  13. Impact of poroelasticity of intraluminal thrombus on wall stress of abdominal aortic aneurysms

    Directory of Open Access Journals (Sweden)

    Polzer Stanislav

    2012-08-01

    Full Text Available Abstract Background The predictions of stress fields in Abdominal Aortic Aneurysm (AAA depend on constitutive descriptions of the aneurysm wall and the Intra-luminal Thrombus (ILT. ILT is a porous diluted structure (biphasic solid–fluid material and its impact on AAA biomechanics is controversially discussed in the literature. Specifically, pressure measurements showed that the ILT cannot protect the wall from the arterial pressure, while other (numerical and experimental studies showed that at the same time it reduces the stress in the wall. Method To explore this phenomenon further a poroelastic description of the ILT was integrated in Finite Element (FE Models of the AAA. The AAA model was loaded by a pressure step and a cyclic pressure wave and their transition into wall tension was investigated. To this end ILT’s permeability was varied within a microstructurally motivated range. Results The two-phase model verified that the ILT transmits the entire mean arterial pressure to the wall while, at the same time, it significantly reduces the stress in the wall. The predicted mean stress in the AAA wall was insensitive to the permeability of the ILT and coincided with the results of AAA models using a single-phase ILT description. Conclusion At steady state, the biphasic ILT behaves like a single-phase material in an AAA model. Consequently, computational efficient FE single-phase models, as they have been exclusively used in the past, accurately predict the wall stress in AAA models.

  14. Laterally loaded masonry

    DEFF Research Database (Denmark)

    Raun Gottfredsen, F.

    In this thesis results from experiments on mortar joints and masonry as well as methods of calculation of strength and deformation of laterally loaded masonry are presented. The strength and deformation capacity of mortar joints have been determined from experiments involving a constant compressive...... stress and increasing shear. The results show a transition to pure friction as the cohesion is gradually destroyed. An interface model of a mortar joint that can take into account this aspect has been developed. Laterally loaded masonry panels have also been tested and it is found to be characteristic...

  15. Wave Loads on Cylinders

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Frigaard, Peter

    1989-01-01

    Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area.......Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area....

  16. Iinitial-Boundary Value Problems for Thin-Walled Beam System with Coupled Flexural-Torsional Load%一类弯曲与扭转联合作用下的薄壁梁系统的初边值问题

    Institute of Scientific and Technical Information of China (English)

    牛丽芳; 段周波

    2012-01-01

    The initial-boundary value problem was studied in given Sobolve spaces. The problem involved a class of nonlinear partial differential equations describing coupled flexural and torsional oscillations of thin-walled beam. By using Faedo-Galerkin method, the existence and uniqueness of the solutions of the proposed problem was proved through the appropriate manipulation of variable coefficient and nonlinear items.%在给定的Sobolve空间中,研究了一类非线性梁方程组的初边值问题.描述了弯曲和扭转联合作用下薄壁梁的振动问题,利用Faedo-Galerkin方法,通过对变系数及非线性项的处理,证明了该系统在一定初边值条件下整体强解的存在、唯一性,为力学中此类振动问题的研究和计算提供了数学依据.

  17. The effect of fibronectin on structural and biological properties of single walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Mottaghitalab, Fatemeh [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Farokhi, Mehdi [National cell bank of Iran, Pasteur Institute, Tehran (Iran, Islamic Republic of); Atyabi, Fatemeh [Department of Pharmaceutical Nanoechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Omidvar, Ramin [Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali, E-mail: mashokrgozar@pasteur.ac.ir [National cell bank of Iran, Pasteur Institute, Tehran (Iran, Islamic Republic of); Sadeghizadeh, Majid, E-mail: sadeghma@modares.ac.ir [Department Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2015-06-01

    Highlights: • Increasing the cytocompatibility of single walled carbon nanotube by loading fibronectin. • Enhancing the hydrophilicity and nanosurface roughness of single walled carbon nanotube after loading fibronectin. • Fibronectin makes the surface properties of single walled carbon nanotube more suitable for cell proliferation and growth. - Abstract: Despite the attractive properties of carbon nanotubes (CNTs), cytoxicity and hydrophobicity are two main considerable features which limit their application in biomedical fields. It was well established that treating CNTs with extracellular matrix components could reduce these unfavourable characteristics. In an attempt to address these issues, fibronectin (FN) with different concentrations was loaded on single walled carbon nanotubes (SWCNTs) substrate. Scanning electron microscope, atomic force microscopy (AFM), contact angles and X-ray photoelectron spectroscopy (XPS) were preformed in order to characterize FN loaded SWCNTs substrates. According to XPS and AFM results, FN could interact with SWCNTs and for this, the hydrophilicity of SWCNTs was improved. Additionally, SWCNT modified with FN showed less cytotoxicity compared with neat SWCNT. Finally, FN was shown to act as an interesting extracellular component for enhancing the biological properties of SWCNT.

  18. Effect of wall wettability on the onset of churning in upward gas-liquid annular flow

    NARCIS (Netherlands)

    Belfroid, S.P.C.; Khosla, V.; Nennie, E.D.; Alberts, G.J.N.; Veeken, C.A.M.

    2013-01-01

    The influence of hydrophobic and hydrophilic tube walls on the pressure drop and liquid loading behavior was investigated in previous projects in the past. In this paper, results of visualization experiments and of experiments at different liquid-to-gas ratios and inclination angles are presented fo

  19. Behavior of Reinforced Retaining Walls with Different Reinforcement Spacing during Vehicle Collisions

    Directory of Open Access Journals (Sweden)

    Kwangkuk Ahn

    2015-01-01

    reinforcement spacing using LS-DYNA, a general finite-element program. Eight tons of truck weight was used for the numerical analysis model. The behavior of a reinforced retaining wall under variable reinforcement spacing and positioning was analyzed. The results indicated that the reinforcement material was an important resistance factor against external collision load.

  20. Integral Facade Construction: Towards a new product architecture for curtain walls

    NARCIS (Netherlands)

    Klein, T.

    2013-01-01

    Curtain wall constructions are one of the most applied facade constructions today. Independently attached to the primary load bearing structure of the building they protect the building’s interior from external climate conditions and allow great design freedom. With continuously rising requirements

  1. Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution

    DEFF Research Database (Denmark)

    Meyer, H.; Eich, T.; Beurskens, M.

    2017-01-01

    Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine ...

  2. New Bricks in the Wall

    Institute of Scientific and Technical Information of China (English)

    RONG JIAOJIAO

    2007-01-01

    @@ Whenever a newcomer enters the classroom, he points at the wall. "Look at that!" says Li Shunye, indicating a picture of something that looks a bit like a pink furry fox, only with an oversized tail. "It's a squirrel," says the 9-year-old. "I made it."

  3. Designing a Sound Reducing Wall

    Science.gov (United States)

    Erk, Kendra; Lumkes, John; Shambach, Jill; Braile, Larry; Brickler, Anne; Matthys, Anna

    2015-01-01

    Acoustical engineers use their knowledge of sound to design quiet environments (e.g., classrooms and libraries) as well as to design environments that are supposed to be loud (e.g., concert halls and football stadiums). They also design sound barriers, such as the walls along busy roadways that decrease the traffic noise heard by people in…

  4. Solar Walls for concrete renovation

    DEFF Research Database (Denmark)

    Gramkow, Lotte; Vejen, Niels Kristian; Olsen, Lars

    1996-01-01

    This repport gives a short presentation of three full-scale testing solar walls, the construction including the architectural design, materials and components, transportation and storage of solar enegy, the effect on the construction behind, statics and practical experience.The results...

  5. Overlap/Domain-wall reweighting

    CERN Document Server

    Fukaya, H; Cossu, G; Hashimoto, S; Kaneko, T; Noaki, J

    2013-01-01

    We investigate the eigenvalues of nearly chiral lattice Dirac operators constructed with five-dimensional implementations. Allowing small violation of the Ginsparg-Wilson relation, the HMC simulation is made much faster while the eigenvalues are not significantly affected. We discuss the possibility of reweighting the gauge configurations generated with domain-wall fermions to those of exactly chiral lattice fermions.

  6. Wary Eyes Monitoring Wall Street

    Science.gov (United States)

    Jacobson, Linda

    2008-01-01

    School business officials kept a close watch on the financial markets this week--and on district investment portfolios and teacher-retirement funds--as stock prices gyrated and once-sound institutions got government bailouts or crumbled into bankruptcy. While financial observers said it was too soon to predict how Wall Street's upheaval might…

  7. Solar Walls for concrete renovation

    DEFF Research Database (Denmark)

    Gramkow, Lotte; Vejen, Niels Kristian; Olsen, Lars

    1996-01-01

    This repport gives a short presentation of three full-scale testing solar walls, the construction including the architectural design, materials and components, transportation and storage of solar enegy, the effect on the construction behind, statics and practical experience.The results of the mea...

  8. Fandom and the fourth wall

    Directory of Open Access Journals (Sweden)

    Jenna Kathryn Ballinger

    2014-09-01

    Full Text Available I use the Teen Wolf fandom as an example to examine the ways social media has created a more complicated, nuanced relationship with fans. The collapse of the fourth wall between fans and The Powers That Be can have both positive and negative impacts, depending on the willingness of participants to maintain mutual respect and engage in meaningful dialogue.

  9. Wary Eyes Monitoring Wall Street

    Science.gov (United States)

    Jacobson, Linda

    2008-01-01

    School business officials kept a close watch on the financial markets this week--and on district investment portfolios and teacher-retirement funds--as stock prices gyrated and once-sound institutions got government bailouts or crumbled into bankruptcy. While financial observers said it was too soon to predict how Wall Street's upheaval might…

  10. Designing a Sound Reducing Wall

    Science.gov (United States)

    Erk, Kendra; Lumkes, John; Shambach, Jill; Braile, Larry; Brickler, Anne; Matthys, Anna

    2015-01-01

    Acoustical engineers use their knowledge of sound to design quiet environments (e.g., classrooms and libraries) as well as to design environments that are supposed to be loud (e.g., concert halls and football stadiums). They also design sound barriers, such as the walls along busy roadways that decrease the traffic noise heard by people in…

  11. Statistical characteristics of simulated walls

    Science.gov (United States)

    Demiański, M.; Doroshkevich, A. G.; Müller, V.; Turchaninov, V.

    2000-11-01

    The large-scale matter distribution in three different simulations of CDM models is investigated and compared with corresponding results of the Zel'dovich theory of non-linear gravitational instability. We show that the basic characteristics of wall-like structure elements are well described by this theory, and that they can be expressed by the cosmological parameters and a few spectral moments of the perturbation spectrum. Therefore the characteristics of such elements provide reasonable estimates of these parameters. We show that the compressed matter is relaxed and gravitationally confined and manifests itself in the existence of walls as (quasi-)stationary structure elements with a lifetime restricted by their disruption into high-density clouds. The matter distribution is investigated in both real and redshift spaces. In both cases almost the same particles form the walls, and we estimate differences in corresponding wall characteristics. The same methods are applied to several mock catalogues of `galaxies', which allows us to characterize a large-scale bias between the spatial distribution of dark matter and of simulated `galaxies'.

  12. Partial domain wall partition functions

    CERN Document Server

    Foda, O

    2012-01-01

    We consider six-vertex model configurations on a rectangular lattice with n (N) horizontal (vertical) lines, and "partial domain wall boundary conditions" defined as 1. all 2n arrows on the left and right boundaries point inwards, 2. n_u (n_l) arrows on the upper (lower) boundary, such that n_u + n_l = N - n, also point inwards, 3. all remaining n+N arrows on the upper and lower boundaries point outwards, and 4. all spin configurations on the upper and lower boundaries are summed over. To generate (n-by-N) "partial domain wall configurations", one can start from A. (N-by-N) configurations with domain wall boundary conditions and delete n_u (n_l) upper (lower) horizontal lines, or B. (2n-by-N) configurations that represent the scalar product of an n-magnon Bethe eigenstate and an n-magnon generic state on an N-site spin-1/2 chain, and delete the n lines that represent the Bethe eigenstate. The corresponding "partial domain wall partition function" is computed in construction {A} ({B}) as an N-by-N (n-by-n) det...

  13. The Influence of Wall Binders

    DEFF Research Database (Denmark)

    Rose, Jørgen

    1997-01-01

    This report is an analysis of the thermal bridge effects that occur in wall binders in masonry buildings. The effects are analyzed using a numerical calculation programme.The results are compared to the values given in the danish standard, DS418....

  14. Chuck Close: "Off the Wall."

    Science.gov (United States)

    Gardner, Michael

    2001-01-01

    Describes the planning and design process of "Off the Wall," a student-developed CD-ROM multimedia project about the life and work of artist Chuck Close-the product of a studio-based course in Learning Experiments Design at the University of Georgia. The design includes an element of gaming; text is kept sparse; navigational elements are rendered…

  15. Rethinking China's new great wall

    National Research Council Canada - National Science Library

    Ma, Zhijun; Melville, David S; Liu, Jianguo; Chen, Ying; Yang, Hongyan; Ren, Wenwei; Zhang, Zhengwang; Piersma, Theunis; Li, Bo

    2014-01-01

    ... enclosed by thousands of kilometers of seawalls, whose length exceeds that of China’s famous ancient “Great Wall” (see photos and map). This new “Great Wall,” covering 60% of the total length of coast-line along mainland China...

  16. Thin Wall Austempered Ductile Iron (TWADI

    Directory of Open Access Journals (Sweden)

    M. Górny

    2009-07-01

    Full Text Available In this paper the analysis of thin walled castings made of ductile iron is considered. It is shown that thin wall austempered ductile iron can be obtained by means of short-term heat treatment of thin wall castings without addition of alloying elements. Metallographic examinations of 2 mm thin walled castings along with casting with thicker wall thickness (20x28 mm after different austempring conditions are presented. It has been proved that short-term heat treatment amounted 20 minutes of austenitizing at 880 oC followed by holding at 400 oC for 5 minutes causes ausferrite matrix in 2 mm wall thickness castings, while casting with thicker wall thickness remain untransformed and martensite is still present in a matrix. Finally there are shown that thin wall ductile iron is an excellent base material for austempering heat treatments. As a result high mechanical properties received in thin wall plates made of austempered ductile iron.

  17. PPOOLEX experiments on wall condensation

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2009-08-15

    This report summarizes the results of the wall condensation experiments carried out in December 2008 and January 2009 with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool. Altogether five experiments, each consisting of several blows, were carried out. The main purpose of the experiment series was to study wall condensation phenomenon inside the dry well compartment while steam is discharged through it into the condensation pool and to produce comparison data for CFD calculations at VTT. The PPOOLEX test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. For the wall condensation experiments the test facility was equipped with a system for collecting and measuring the amount of condensate from four different wall segments of the dry well compartment. A thermo graphic camera was used in a couple of experiments for filming the outside surface of the dry well wall. The effect of the initial temperature level of the dry well structures and of the steam flow rate for the accumulation of condensate was studied. The initial temperature level of the dry well structures varied from 23 to 99 deg. C. The steam flow rate varied from 90 to 690 g/s and the temperature of incoming steam from 115 to 160 deg. C. During the initial phase of steam discharge the accumulation of condensate was strongly controlled by the temperature level of the dry well structures; the lower the initial temperature level was the more condensate was accumulated. As the dry well structural temperatures increased the condensation process slowed down. Most of the condensate usually accumulated during the first 200 seconds of the discharge. However, the condensation process never completely stopped because a small temperature difference remained between the dry well atmosphere and inner wall

  18. In Plan Shear Retrofit of Masonry Walls with Fibre Reinforced Polymer Composites Experimental Investigations

    Directory of Open Access Journals (Sweden)

    Tamás Nagy-György

    2006-01-01

    Full Text Available The paper presents the results from tests on clay brick masonry walls strengthened using fiber reinforced polymer (FRP composites. Five 1.50x1.50 m wall specimens have been subjected to pure in plan shear loads up to failure and then retrofitted on one side, with different types, percentages and lay-ups of the fiber sheets. Based on the experi¬mental results, it was proven the effectiveness of using externally bonded composites for retrofitting brick masonry walls, with less disruption during strengthening, and in this way with reduced costs compared with other conventional repairing and strengthening tech¬niques. Performances of the different strengthening configurations were compared in terms of ultimate load, strain in composite and failure mechanism.

  19. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D. [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, J. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate.

  20. Load research and load estimation in electricity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A. [VTT Energy, Espoo (Finland). Energy Systems

    1996-12-31

    The topics introduced in this thesis are: the Finnish load research project, a simple form customer class load model, analysis of the origins of customers load distribution, a method for the estimation of the confidence interval of customer loads and Distribution Load Estimation (DLE) which utilises both the load models and measurements from distribution networks. The Finnish load research project started in 1983. The project was initially coordinated by the Association of Finnish Electric Utilities and 40 utilities joined the project. Now there are over 1000 customer hourly load recordings in a database. A simple form customer class load model is introduced. The model is designed to be practical for most utility applications and has been used by the Finnish utilities for several years. The only variable of the model is the customers annual energy consumption. The model gives the customers average hourly load and standard deviation for a selected month, day and hour. The statistical distribution of customer loads is studied and a model for customer electric load variation is developed. The model results in a lognormal distribution as an extreme case. Using the `simple form load model`, a method for estimating confidence intervals (confidence limits) of customer hourly load is developed. The two methods selected for final analysis are based on normal and lognormal distribution estimated in a simplified manner. The estimation of several cumulated customer class loads is also analysed. Customer class load estimation which combines the information from load models and distribution network load measurements is developed. This method, called Distribution Load Estimation (DLE), utilises information already available in the utilities databases and is thus easy to apply

  1. Stability of Double-Walled Carbon Nanotubes Revisited

    Science.gov (United States)

    Semenyuk, N. P.

    2016-01-01

    An approach to the stability analysis of orthotropic two-layer shells with mechanical and electrical properties of carbon nanotubes is proposed. Van der Waals forces act between the layers. The parameters of the continuum between the layers are obtained using the Lennard-Jones potential. The governing system of equations is written for rates of sixteen variables. The loading and boundary conditions are specified for each layer separately. Numerical results are obtained using the discrete orthogonalization method. The stability of single- and double-walled nanotubes is analyzed. Numerical results are summarized in tables and analyzed

  2. Stress analysis for wall structure in mobile hot cell design

    Energy Technology Data Exchange (ETDEWEB)

    Bahrin, Muhammad Hannan, E-mail: hannan@nuclearmalaysia.gov.my; Rahman, Anwar Abdul, E-mail: anwar@nuclearmalaysia.gov.my; Hamzah, Mohd Arif, E-mail: arif@nuclearmalaysia.gov.my; Mamat, Mohd Rizal; Azman, Azraf; Hasan, Hasni [Prototype and Plant Development Centre, Technical Services Division, Malaysian Nuclear Agency (Malaysia)

    2016-01-22

    Malaysian Nuclear Agency is developing a Mobile Hot Cell (MHC) in order to handle and manage Spent High Activity Radioactive Sources (SHARS) such as teletherapy heads and irradiators. At present, there are only two units of MHC in the world, in South Africa and China. Malaysian Mobile Hot cell is developed by Malaysian Nuclear Agency with the assistance of IAEA expert, based on the design of South Africa and China, but with improved features. Stress analysis has been performed on the design in order to fulfil the safety requirement in operation of MHC. This paper discusses the loading analysis effect from the sand to the MHC wall structure.

  3. BEHAVIOUR OF UNREINFORCED EXPANDED POLYSTYRENE LIGHTWEIGHT CONCRETE (EPS-LWC WALL PANEL ENHANCED WITH STEEL FIBRE

    Directory of Open Access Journals (Sweden)

    ROHANA MAMAT

    2015-12-01

    Full Text Available This study used steel fibre as reinforcement while enhancing the EPS-LWC strength. In line with architectural demand and ventilation requirement, opening within wall panel was also taken into account. Experimental tests were conducted for reinforced and unreinforced EPS-LWC wall panel. Two samples with size of 1500 mm (height x 1000 mm (length x 75 mm (thickness for each group of wall panel were prepared. Samples in each group had opening size of 600 mm (height x 400 mm (length located at 350 mm and 550 mm from upper end respectively. EPS-LWC wall panel had fcu of 20.87 N/mm2 and a density of 1900 kg/m3. The loading capacity, displacement profiles and crack pattern of each sample was analyzed and discussed. Unreinforced EPS-LWC enhanced with steel fibre resist almost similar loading as reinforced EPS-LWC wall panel. The presence of steel fibre as the only reinforcement creates higher lateral displacement. Wall panel experience shear failure at the side of opening. The number of micro cracks reduces significantly due to presence of steel fibre.

  4. Probabilistic Load Flow

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Chen, Zhe; Bak-Jensen, Birgitte

    2008-01-01

    This paper reviews the development of the probabilistic load flow (PLF) techniques. Applications of the PLF techniques in different areas of power system steady-state analysis are also discussed. The purpose of the review is to identify different available PLF techniques and their corresponding...

  5. Through-the-wall radar imaging

    CERN Document Server

    Amin, Moeness G

    2011-01-01

    Wall Attenuation and Dispersion, A. Hussein Muqaibel, M.A. Alsunaidi, Nuruddeen M. Iya, and A. Safaai-JaziAntenna Elements, Arrays, and Systems for Through-the-Wall Radar Imaging, A. Hoorfar and A. FathyBeamforming for Through-the-Wall Radar Imaging, G. Alli and D. DiFilippoImage and Localization of Behind-the-Wall Targets Using Collocated and Distributed Apertures, Y.D. Zhang and A. HuntConventional and Emerging Waveforms for Detection and Imaging of Targets behind Walls, F. Ahmad and R.M. NarayananInverse Scattering Approaches in Through-the-Wall Imaging, K. Sarabandi, M. Thiel, M. Dehmollai

  6. Cruciate ligament loading during common knee rehabilitation exercises.

    Science.gov (United States)

    Escamilla, Rafael F; Macleod, Toran D; Wilk, Kevin E; Paulos, Lonnie; Andrews, James R

    2012-09-01

    Cruciate ligament injuries are common and may lead to dysfunction if not rehabilitated. Understanding how to progress anterior cruciate ligament and posterior cruciate ligament loading, early after injury or reconstruction, helps clinicians prescribe rehabilitation exercises in a safe manner to enhance recovery. Commonly prescribed therapeutic exercises include both weight-bearing exercise and non-weight-bearing exercise. This review was written to summarize and provide an update on the available literature on cruciate ligament loading during commonly used therapeutic exercises. In general, weight-bearing exercise produces smaller loads on the anterior cruciate ligament and posterior cruciate ligament compared with non-weight-bearing exercise. The anterior cruciate ligament is loaded less at higher knee angles (i.e. 50-100 degrees). Squatting and lunging with a more forward trunk tilt and moving the resistance pad proximally on the leg during the seated knee extension unloads the anterior cruciate ligament. The posterior cruciate ligament is less loaded at lower knee angles (i.e. 0-50 degrees), and may be progressed from level ground walking to a one-leg squat, lunges, wall squat, leg press, and the two-leg squat (from smallest to greatest). Exercise type and technique variation affect cruciate ligament loading, such that the clinician may prescribe therapeutic exercises to progress ligament loading safely, while ensuring optimal recovery of the musculoskeletal system.

  7. Resistive Wall Heating of the Undulator in High Repetition Rate

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, J; Corlett, J; Emma, P; Wu, J

    2012-05-20

    In next generation high repetition rate FELs, beam energy loss due to resistive wall wakefields will produce significant amount of heat. The heat load for a superconducting undulator (operating at low temperature), must be removed and will be expensive to remove. In this paper, we study this effect in an undulator proposed for a Next Generation Light Source (NGLS) at LBNL. We benchmark our calculations with measurements at the LCLS and carry out detailed parameter studies using beam from a start-to-end simulation. Our preliminarym results suggest that the heat load in the undulator is about 2 W/m or lower with an aperture size of 6 mm for nominal NGLS preliminary design parameters.

  8. 冷弯薄壁复杂卷边槽钢轴压固支构件稳定性能分析%STABILITY BEHAVIOR OF COLD-FORMED THIN-WALLED STEEL FIXED-ENDED CHANNELS WITH COMPLEX EDGE STIFFENERS UNDER AXIAL COMPRESSIVE LOAD

    Institute of Scientific and Technical Information of China (English)

    王春刚; 宋代军; 张壮南

    2012-01-01

    In order to investigate the stability behavior of channels with complex edge stiffeners under axial load between fixed-ends, a total of 292 members with different parameters such as width-to-thickness ratio of flanges, section shapes, length of column, stiffener length were selected to be studied by nonlinear finite element analysis. The influence of the above parameters on stability behavior of channels with complex edge stiffeners were studied. It is shown that fixed-ended columns are more prone to distortional buckling. When width-to-thickness ratio of flanges is big, the overall instability mode tends to perform the flexural-torsional buckling. The ultimate load-carrying capacity of members decreases with the increase in the flange width-to-thickness ratio and slenderness ratio. With differences of width-to-thickness ratio of flanges, two different rules were shown about the influence of edge stiffeners on the loadcarrying efficiency of members.%为研究复杂卷边槽钢轴压固支构件的稳定性能,选取不同的翼缘宽厚比、截面形式、构件长度、卷边长度等几何参数,对共计292个构件进行非线性有限元分析,研究上述参数对复杂卷边槽钢固支构件稳定性能的影响。结果表明:固支构件较易发生畸变屈曲,翼缘宽厚比较大时,构件的整体失稳模式多为弯扭屈曲。构件的极限承载力随着翼缘宽厚比、构件长细比的增大而减小,卷边对构件承载效率的影响随翼缘宽厚比的不同而呈现两种不同的规律。

  9. Osteocytes Mechanosensing in NASA Rotating Wall Bioreactor

    Science.gov (United States)

    Spatz, Jordan; Sibonga, Jean; Wu, Honglu; Barry, Kevin; Bouxsein, Mary; Pajevic, Paola Divieti

    2010-01-01

    Osteocyte cells are the most abundant (90%) yet least understood bone cell type in the human body. Osteocytes are theorized to be the mechanosensors and transducers of mechanical load for bones, yet the biological mechanism of this action remains elusive. However, recent discoveries in osteocyte cell biology have shed light on their importance as key mechanosensing cells regulating bone remodeling and phosphate homeostasis. The aim of this project was to characterize gene expression patterns and protein levels following exposure of MLO-Y4, a very well characterized murine osteocyte-like cell line, to simulated microgravity using the NASA Rotating Wall Vessel (RWV) Bioreactor. To determine mechanistic pathways of the osteocyte's gravity sensing ability, we evaluated in vitro gene and protein expression of osteocytes exposed to simulated microgravity. Improved understanding of the fundamental mechanisms of mechano transduction at the osteocyte cellular level may lead to revolutionary treatment otions to mitigate the effects of bone loss encountered by astronauts on long duration space missions and provide tailored treatment options for maintaining bone strength of immobilized/partially paralyzed patients here on Earth.

  10. Analysis of a Floodplain I-Wall Embedded in Horizontally Stratified Soil Layers During Flood Events Using Corps I-Wall Software Version 1.0

    Science.gov (United States)

    2016-07-01

    net active and net passive pressures are constructed and presented in Figure 4.31a. For the prescribed LHS flood loading, the I-Wall will rotate in a...The net passive pressures are plotted on the RHS of the sheet-pile wall. The final results are illustrated in Figure 4.32 by the presentation of the...or overburden induced horizontal pressures , if present ) is added on this diagram. b. The net passive pressure distribution is also formed on the

  11. The effect of dryer load on freeze drying process design.

    Science.gov (United States)

    Patel, Sajal M; Jameel, Feroz; Pikal, Michael J

    2010-10-01

    Freeze-drying using a partial load is a common occurrence during the early manufacturing stages when insufficient amounts of active pharmaceutical ingredient (API) are available. In such cases, the immediate production needs are met by performing lyophilization with less than a full freeze dryer load. However, it is not obvious at what fractional load significant deviations from full load behavior begin. The objective of this research was to systematically study the effects of variation in product load on freeze drying behavior in laboratory, pilot and clinical scale freeze-dryers. Experiments were conducted with 5% mannitol (high heat and mass flux) and 5% sucrose (low heat and mass flux) at different product loads (100%, 50%, 10%, and 2%). Product temperature was measured in edge as well as center vials with thermocouples. Specific surface area (SSA) was measured by BET gas adsorption analysis and residual moisture was measured by Karl Fischer. In the lab scale freeze-dryer, the molar flux of inert gas was determined by direct flow measurement using a flowmeter and the molar flux of water vapor was determined by manometric temperature measurement (MTM) and tunable diode laser absorption spectroscopy (TDLAS) techniques. Comparative pressure measurement (capacitance manometer vs. Pirani) was used to determine primary drying time. For both 5% mannitol and 5% sucrose, primary drying time decreases and product temperature increases as the load on the shelves decreases. No systematic variation was observed in residual moisture and vapor composition as load decreased. Further, SSA data suggests that there are no significant freezing differences under different load conditions. Independent of dryer scale, among all the effects, variation in radiation heat transfer from the chamber walls to the product seems to be the dominant effect resulting in shorter primary drying time as the load on the shelf decreases (i.e., the fraction of edge vials increases).

  12. Near-wall behavior of turbulent wall-bounded flows

    Energy Technology Data Exchange (ETDEWEB)

    Buschmann, Matthias H. [Institut fuer Luft- und Kaeltetechnik Dresden, Bertolt-Brecht-Allee 20, 01309 Dresden (Germany)], E-mail: Matthias.Buschmann@ilkdresden.de; Indinger, Thomas [Technische Universitaet Muenchen, Institute of Aerodynamics, Boltzmannstr., 15, 85748 Garching (Germany); Gad-el-Hak, Mohamed [Virginia Commonwealth University, Richmond, VA 23284-3015 (United States)

    2009-10-15

    A data base compiling a large number of results from direct numerical simulations and physical experiments is used to explore the properties of shear and normal Reynolds stresses very close to the wall of turbulent channel/pipe flows and boundary layers. Three types of scaling are mainly investigated, classical inner, standard mixed, and pure outer scaling. The study focuses on the wall behavior, the location and the value of the peak Reynolds shear stress and the three normal stresses. A primary observation is that all of these parameters show a significant Karman number dependence. None of the scalings investigated works in an equal manner for all parameters. It is found that the respective first-order Taylor series expansion satisfactorily represents each stress only in a surprisingly thin layer very close to the wall. In some cases, a newly introduced scaling based on u{sub {tau}}{sup 3/2}u{sub e}{sup 1/2} offers a remedy.

  13. EFFECT OF WALL THICKNESS ON THE SOLAR GAIN

    Directory of Open Access Journals (Sweden)

    KEREKES A.

    2016-03-01

    Full Text Available Utilized passive solar gain covers considerable part of heat losses, especially in well insulated buildings. At the same time the thermal insulation of the wall in such a building, e.g. approaching the “Passivhaus” standard is about 20 cm thick. Unless a light weight building is spoken of further 20-30 cm loadbearing layer and the surface finishing should be added resulting in a total thickness of 45-60 cm. The thick wall narrows the cross section through which the direct solar beam may enter the room thus decreases the solar gain. The movement of the solar beam during the day and season can be followed on the base of the sun path diagram. One could say that on the other hand a massive loadbearing layer - especially if it is on the inner side - increases the heat storage capacity, thus increases the utilized part of the solar gain. Series of thermal simulation proves that the effect of heat storage capacity is less important in comparison with the cross section through which the solar beam enters the room. In other terms a light weight building with thin walls performs better than a massive one with thick wall providing the U-value is the same in both cases. In this paper the results of simulation will be presented. Certainly the wall should fulfill many requirements including load, weather-proofness, thermal insulation, building technology. Solar beam is only one of the many aspects. Nevertheless simple geometric tricks may lead to a good compromise, e.g. bevel edge reveal which is not perpendicular to the façade. No doubt in this case the thermal bridge losses around the window perimeter will be higher however this will be compensated by the solar gain.

  14. Dynamic torsional buckling of multi-walled carbon nanotubes embedded in an elastic medium

    Institute of Scientific and Technical Information of China (English)

    Chengqi Sun; Kaixin Liu; Guoxing Lu

    2008-01-01

    In this paper the dynamic torsional buckling of multi-walled carbon nanotubes (MWNTs) embedded in an elastic medium is studied by using a continuum mechan-ics model. By introducing initial imperfections for MWNTs and applying the preferred mode analytical method, a buck-ling condition is derived for the buckling load and associ-ated buckling mode. In particular, explicit expressions are obtained for embedded double-walled carbon nanotubes (DWNTs). Numerical results show that, for both the DWNTs and embedded DWNTs, the buckling form shifts from the lower buckling mode to the higher buckling mode with increasing the buckling load, but the buckling mode is invari-able for a certain domain of the buckling load. It is also indicated that, the surrounding elastic medium generally has effect on the lower buckling mode of DWNTs only when compared with the corresponding one for individual DWNTs.

  15. Experimental and theoretical studies on concrete structures with special-shaped shear walls

    Directory of Open Access Journals (Sweden)

    LIU Jianxin

    2014-06-01

    Full Text Available On the basis of concept design and staggered shear panels structure,this paper puts forward a new reinforced concrete high rise biuding structure with special-shaped shear walls and presents an experimental study of the seismic performance of the new special-shaped shear walls structure under low reversed cyclic loading using MTS electro hydraulic servo system.Compared with experimental results,a finite element analysis on this special-shaped shear wall structure,which considers the nonlinearity of concrete structure,is found suitable.It shows that the experimental results fairly confirms to the calculated values,which indicates that this new structure has advantages as good architecture function,big effective space,high overall lateral stiffness,fine ductility,advanced seismic behavior,etc..That is,the close r agreement between the theoretical and experimental results indicates the proposed shear wall structure has wide applications.

  16. Polyvinylchloride-Single-Walled Carbon Nanotube Composites: Thermal and Spectroscopic Properties

    Directory of Open Access Journals (Sweden)

    Mircea Chipara

    2012-01-01

    Full Text Available Nanocomposites of single-walled carbon nanotubes dispersed within polyvinylchloride have been obtained by using the solution path. High-power sonication was utilized to achieve a good dispersion of carbon nanotubes. Thermogravimetric analysis revealed that during the synthesis, processing, or thermal analysis of these nanocomposites the released chlorine is functionalizing the single-walled carbon nanotubes. The loading of polyvinylchloride by single-walled carbon nanotubes increases the glass transition temperature of the polymeric matrix, demonstrating the interactions between macromolecular chains and filler. Wide Angle X-Ray Scattering data suggested a drop of the crystallite size and of the degree of crystallinity as the concentration of single-walled carbon nanotubes is increased. The in situ chlorination and amorphization of nanotube during the synthesis (sonication step is confirmed by Raman spectroscopy.

  17. THE STRUCTURAL ANALYSIS OF STEEL SILOS WITH CYLINDRICAL-WALL BEARING AND PROFILE-STEEL BEARING

    Directory of Open Access Journals (Sweden)

    Zhengjun Tang

    2015-04-01

    Full Text Available The silos are widely used in bulk material in many fields such as agriculture, mining, chemical, electric power storage, etc. Thin metal cylindrical silo shells are vulnerable to buckling failure caused by the compressive wall friction force. In this paper, the structural analysis of two types of steel silo with cylindrical-wall bearing and profile-steel bearing is implemented by Abaqus finite element analysis. The results indicate that under the same loading conditions, steel silos with profile-steel bearing and cylindrical-Wall bearing have similar values in Mises stress, but the steel silo with profile-steel bearing has a smaller radial displacement and a better capability of buckling resistance. Meanwhile, the total steel volumes reduced 8.0% comparing to the steel silo with cylindrical-wall bearing. Therefore, steel soil with profile-steel bearing not only has a less steel volumes but also a good stability.

  18. Low cycle fatigue behaviors of elbow pipe with local wall thinning

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Koji, E-mail: ktaka@ynu.ac.j [Faculty of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama, 240-8501 (Japan); Watanabe, Sota; Ando, Kotoji [Faculty of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama, 240-8501 (Japan); Urabe, Yoshio [Japan Nuclear Technology Institute, 7F Shiba Bldg., 4-2-3, Shiba, Minato-ku, Tokyo, 108-0014 (Japan); Hidaka, Akitaka; Hisatsune, Masakazu [Hitachi-GE Nuclear Energy, Ltd., 3-1-1, Saiwai-cho, Hitachi, Ibaraki, 317-8511 (Japan); Miyazaki, Katsumasa [Hitachi, Ltd., 3-1-1, Saiwai-cho, Hitachi, Ibaraki, 317-8511 (Japan)

    2009-12-15

    Low cycle fatigue tests were conducted using 100A elbow specimens made of STPT410 carbon steel with local wall thinning. Local wall thinning by erosion/corrosion was simulated by machined pipe wall thinning. The local wall thinning areas were located at three different areas, called extrados, crown and intrados. The elbow specimens were subjected to cyclic in-plane bending under displacement control without internal pressure. The effects of eroded conditions, such as eroded ratio, eroded angle and position, on the low cycle fatigue behavior and fatigue life were discussed by using experimental results and finite element analyses. Also the location of crack initiation and the crack growth direction could be predicted by three dimensional elasto-plastic finite element analyses. In addition, the safety margin of eroded elbows against seismic loading was discussed by comparing the fictitious stress of elbows with the allowable stress limit demanded by the design code.

  19. A new dedicated finite element for push-over analysis of reinforced concrete shear wall systems

    Directory of Open Access Journals (Sweden)

    Delal Doğru ORMANCI

    2016-06-01

    Full Text Available In this study, a finite element which has been analyzed based on anisotropic behavior of reinforced shear walls is developed. Element stiffness matrices were varied based on whether the element is in the tension or the compression zone of the cross-section. Nonlinear behavior of reinforced shear wall model is investigated under horizontal loads. This behavior is defined with a similar approach to plastic hinge assumption in frame structures that the finite element behaves lineer elastic between joints and plastic deformations are concentrated on joints as vertical plastic displacements. According to this acceptance, plastic behavior of reinforced shear wall occurs when the vertical strain reaches elastic strain limit. In the definition of finite element, displacement functions are chosen considering that the partition of shear walls just at floor levels, are enough for solution. Results of this study are compared with the solution obtained from a different computer programme and experimental results.

  20. Behaviour Of Multi-Storied Flat Slab Building Considering Shear Walls: A Review

    Directory of Open Access Journals (Sweden)

    Dhanaji R. Chavan

    2016-10-01

    Full Text Available Recently there has been a considerable increase in the number of tall buildings, both residential and commercial, and modern trend is towards taller structures. Flat slab is most widely used systems in reinforced concrete construction. Flat-slab building structures possesses major advantages over traditional slab-beam-column structures taking a advantages of reduced floor height, shorter construction time, architectural –functional and economical aspects. But in flat slab building columns are directly provides supports to slab with eliminating beams so there is requirement of provision of shear walls to increase the stiffness of building against lateral forces. Shear wall system are one of the most commonly used lateral load resisting in high rise building. Shear wall has high in plane stiffness and strength. The present paper reviews various research works carried out by several researchers on multi-storied buildings provided with flat slab and shear walls.

  1. Analytical Study on the Beyond Design Seismic Capacity of Reinforced Concrete Shear Walls

    Energy Technology Data Exchange (ETDEWEB)

    Nugroho, Tino Sawaldi Adi [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chi, Ho-Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The OECD-NEA has organized an international benchmarking program to better understand this critical issue. The benchmark program provides test specimen geometry, test setup, material properties, loading conditions, recorded measures, and observations of the test specimens. The main objective of this research is to assess the beyond design seismic capacity of the reinforced concrete shear walls tested at the European Laboratory for Structural Assessment between 1997 and 1998 through participation in the OECD-NEA benchmark program. In this study, assessing the beyond design seismic capacity of reinforced concrete shear walls is performed analytically by comparing numerical results with experimental results. The seismic shear capacity of the reinforced concrete shear wall was predicted reasonably well using ABAQUS program. However, the proper calibration of the concrete material model was necessary for better prediction of the behavior of the reinforced concrete shear walls since the response was influenced significantly by the material constitutive model.

  2. ORIGINAL ARTICLE Sonographic gallbladder wall thickness in ...

    African Journals Online (AJOL)

    gallbladder wall thickness and the subjects' age, sex, height and weight .... sex distributions and mean height and weights were calculated. Results were expressed .... establishing of a population-based US gallbladder wall thickness so that.

  3. Brick Walls on the Brane

    CERN Document Server

    Medved, A J M

    2002-01-01

    The so-called ``brick-wall model'' is a semi-classical approach that has been used to explain black hole entropy in terms of thermal matter fields. Here, we apply the brick-wall formalism to thermal bulk fields in a Randall-Sundrum brane world scenario. In this case, the black hole entity is really a string-like object in the anti-de Sitter bulk, while appearing as a Schwarzchild black hole to observers living on the brane. In spite of these exotic circumstances, we establish that the Bekenstein-Hawking entropy law is preserved. Although a similar calculation was recently considered in the literature, this prior work invoked a simplifying assumption (which we avoid) that can not be adequately justified.

  4. Brick walls on the brane

    Energy Technology Data Exchange (ETDEWEB)

    Medved, A J M [Department of Physics and Theoretical Physics Institute, University of Alberta, Edmonton (Canada)

    2002-01-21

    The so-called 'brick-wall model' is a semiclassical approach that has been used to explain black hole entropy in terms of thermal matter fields. Here, we apply the brick-wall formalism to thermal bulk fields in a Randall-Sundrum brane world scenario. In this case, the black hole entity is really a string-like object in the anti-de Sitter bulk, while appearing as a Schwarzchild black hole to observers living on the brane. In spite of these exotic circumstances, we establish that the Bekenstein-Hawking entropy law is preserved. Although a similar calculation was recently considered in the literature, this prior study invoked a simplifying assumption (which we avoid) that cannot be adequately justified.

  5. Creating universes with thick walls

    CERN Document Server

    Ulvestad, Andrew

    2012-01-01

    We study the dynamics of a spherically symmetric false vacuum bubble embedded in a true vacuum region separated by a "thick wall", which is generated by a scalar field in a quartic potential. We study the "Farhi-Guth-Guven" (FGG) quantum tunneling process by constructing numerical solutions relevant to this process. The ADM mass of the spacetime is calculated, and we show that there is a lower bound that is a significant fraction of the scalar field mass. We argue that the zero mass solutions used to by some to argue against the physicality of the FGG process are artifacts of the thin wall approximation used in earlier work. We argue that the zero mass solutions should not be used to question the viability of the FGG process.

  6. Walled-off pancreatic necrosis

    Institute of Scientific and Technical Information of China (English)

    Michael; Stamatakos; Charikleia; Stefanaki; Konstantinos; Kontzoglou; Spyros; Stergiopoulos; Georgios; Giannopoulos; Michael; Safioleas

    2010-01-01

    Walled-off pancreatic necrosis (WOPN), formerly known as pancreatic abscess is a late complication of acute pancreatitis. It can be lethal, even though it is rare. This critical review provides an overview of the continually expanding knowledge about WOPN, by review of current data from references identified in Medline and PubMed, to September 2009, using key words, such as WOPN, infected pseudocyst, severe pancreatitis, pancreatic abscess, acute necrotizing pancreatitis (ANP), pancreas, inflammation and al...

  7. Droplets Evaporation on Heated Wall

    Directory of Open Access Journals (Sweden)

    Misyura S. Y.

    2015-01-01

    Full Text Available Various modes of evaporation in a wide range of droplet sizes and wall temperatures have been investigated in the present work. For any initial drop size there are three typical boiling regime: 1 the nucleate boiling; 2 the transitional regime; 3 the film boiling. The width of the transition region of boiling crisis increases with increasing the initial volume V0. Evaporation of large droplets at high superheat depends on the initial droplet shape.

  8. Statistical characteristics of simulated walls

    OpenAIRE

    Demianski, M.; Doroshkevich, A. G.; V.; Mueller; Turchaninov, V.

    2000-01-01

    The large scale matter distribution in three different simulations of CDM models is investigated and compared with corresponding results of the Zel'dovich theory of nonlinear gravitational instability. We show that the basic characteristics of wall-like structure elements are well described by this theory, and that they can be expressed by the cosmological parameters and a few spectral moments of the perturbation spectrum. Therefore the characteristics of such elements provide reasonable esti...

  9. Analytical and experimental investigations into the controlled energy absorption characteristics of thick-walled tubes with circumferential grooves

    Energy Technology Data Exchange (ETDEWEB)

    Darvizeh, Abolfazl [Islamic Azad University, Bandar-e Anzali (Iran, Islamic Republic of); Darvizeh, Mansour; Ansari, Reza; Meshkinzar, Ata [University of Guilan, Rasht (Iran, Islamic Republic of)

    2014-10-15

    In this paper, the energy absorption characteristics of grooved circular tubes are investigated under quasi-static loading condition. For experiments, thick-walled tubes with circumferential grooves are prepared. The grooves divide the thick-walled tube into several shorter thin-walled portions. Specimens are subjected to axial crushing load to observe the effect of distribution of circular grooves on the deformation mechanism and energy absorption capacity. Geometrical parameters of the specimens are designed utilizing the Taguchi method to cover a reasonably wide range of groove length-to-wall thickness ratios. An analytical approach based on the concept of energy dissipation through the plastic hinges is applied. Taking the effect of strain hardening into account, the obtained analytical results are in good agreement with the experimental ones. The agreement between analytical and experimental results may indicate the validity of the proposed analytical approach. Desirable mechanism of deformation observed justifies the pre-forming method for obtaining favorable energy absorption characteristics.

  10. Documentation for Calculations of Standard Fire Resistance of Slabs and Walls of Concrete with Expanded Clay Aggregate

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    with the calculation methods used for other load cases. In addition the methods are shown to be valid for heavy concrete constructions by cooperation with tests for beams and columns, and a few slabs and walls. The two test series phase 1 and 2 of this report can therefore be seen as a necessary supplement to show......A number of full-scale tests are made in order to document calculation methods for fire-exposed slabs and walls derived during a previous project on fire exposed light-weight aggregate concrete constructions. The calculation methods are derived, and thus have a logical connection...... be calculated for slabs and that a support of only 70 mm is sufficient for slabs with deformed bars and the actual loads. It is also shown, that the load bearing capacity can be modeled for walls, if a detailed model for the thermal expansion is used, and if the calculation is made in time steps taking...

  11. Characterization and heat flux testing of beryllium coatings on Inconel for JET ITER-like wall project

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, T [Forschungszentrum Juelich, Association EURATOM-FZJ, 52425 Juelich (Germany); Linke, J [Forschungszentrum Juelich, Association EURATOM-FZJ, 52425 Juelich (Germany); Sundelin, P [Alfven Laboratory, Association EURATOM-VR, 100 44 Stockholm (Sweden); Rubel, M [Alfven Laboratory, Association EURATOM-VR, 100 44 Stockholm (Sweden); Kuehnlein, W [Forschungszentrum Juelich, Association EURATOM-FZJ, 52425 Juelich (Germany); Wessel, E [Forschungszentrum Juelich, Association EURATOM-FZJ, 52425 Juelich (Germany); Coad, J P [Culham Science Centre, EURATOM-UKAEA Fusion Association, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Lungu, C P [National Institute of Lasers, Plasma and Radiation Physics, Association EURATOM-MEdC, Bucharest (Romania); Matthews, G F [Culham Science Centre, EURATOM-UKAEA Fusion Association, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Pedrick, L [Culham Science Centre, EURATOM-UKAEA Fusion Association, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Piazza, G [EFDA, CSU, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2007-03-15

    In order to perform a fully integrated material test, JET has launched the ITER-like wall project with the aim of installing a full metal wall during the next major shutdown. The material foreseen for the main chamber wall is bulk Be at the limiters and Be coatings on inconel tiles elsewhere. R and D process comprises global characterization (structure, purity etc) of the evaporated films and testing of their performance under heat loads. The major results are (i) the layers have survived energy loads of 20 MJ m{sup -2} which is significantly above the required level of 5-10 MJ m{sup -2} (ii) melting limit of beryllium coating would be at the energy level of 30 MJ m{sup -2} (iii) cyclic thermal load of 10 MJ m{sup -2} for up to 50 cycles have not induced any noticeable damage such as flaking or detachment.

  12. Flooding Effect on Earth Walls

    Directory of Open Access Journals (Sweden)

    Meysam Banimahd

    2010-12-01

    Full Text Available Earth building is a sustainable, environmentally friendly and economical method of construction that has been used worldwide for many centuries. For the past three decades, earth has seen a revival as a building material for a modern construction method due to its benefits in terms of low carbon content, low cost and energy involved during construction, as well as the fact that it is a sustainable technology of building. Climate change is influencing precipitation levels and patterns around the world, and as a consequence, flood risk is increasing rapidly. When flooding occurs, earth buildings are exposed to water by submersion, causing an increase in the degree of saturation of the earth structures and therefore a decrease of the suction between particles. This study investigated the effect of cycles of flooding (consecutive events of flooding followed by dry periods on earth walls. A series of characterization tests were carried out to obtain the physical and mechanical properties of the studied earth material. In a second stage, Flooding Simulation Tests (FST were performed to explore the earth walls’ response to repeated flooding events. The results obtained for the tested earth wall/samples with reinforced material (straw reveal hydraulic hysteresis when wall/samples are subject to cycles of wetting and drying.

  13. Tube wall thickness measurement apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, P.R.

    1985-06-21

    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and radius by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  14. Tube wall thickness measurement apparatus

    Science.gov (United States)

    Lagasse, P.R.

    1985-06-21

    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and radius by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  15. Tube wall thickness measurement apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, Paul R. (Santa Fe, NM)

    1987-01-01

    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and circumference by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  16. Thermal insulation properties of walls

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2014-05-01

    Full Text Available Heat-protective qualities of building structures are determined by the qualities of the used materials, adequate design solutions and construction and installation work of high quality. This rule refers both to the structures made of materials similar in their structure and nature and mixed, combined by a construction system. The necessity to ecaluate thermal conductivity is important for a product and for a construction. Methods for evaluating the thermal protection of walls are based on the methods of calculation, on full-scale tests in a laboratory or on objects. At the same time there is a reason to believe that even deep and detailed calculation may cause deviation of the values from real data. Using finite difference method can improve accuracy of the results, but it doesn’t solve all problems. The article discusses new approaches to evaluating thermal insulation properties of walls. The authors propose technique of accurate measurement of thermal insulation properties in single blocks and fragments of walls and structures.

  17. daily nigerian nigerian nigerian peak load forec peak load forec ...

    African Journals Online (AJOL)

    User

    is generally needed for control and scheduling power system and also as inputs to load flo analysis .... Figure 1 Seasonal indices computing neural network ... Feedback paths are sometimes used. In applying a neural network to electric load ...

  18. Load flow analysis using decoupled fuzzy load flow under critical ...

    African Journals Online (AJOL)

    user

    of power system, reliable fuzzy load flow is developed to overcome the limitations of the ... of power mismatches are taken as two inputs for fuzzy logic controller. ..... Programming Based Load Flow Algorithm For Systems Containing Unified ...

  19. A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress.

    Science.gov (United States)

    Joldes, Grand Roman; Miller, Karol; Wittek, Adam; Doyle, Barry

    2016-05-01

    Abdominal aortic aneurysm (AAA) is a permanent and irreversible dilation of the lower region of the aorta. It is a symptomless condition that if left untreated can expand to the point of rupture. Mechanically-speaking, rupture of an artery occurs when the local wall stress exceeds the local wall strength. It is therefore desirable to be able to non-invasively estimate the AAA wall stress for a given patient, quickly and reliably. In this paper we present an entirely new approach to computing the wall tension (i.e. the stress resultant equal to the integral of the stresses tangent to the wall over the wall thickness) within an AAA that relies on trivial linear elastic finite element computations, which can be performed instantaneously in the clinical environment on the simplest computing hardware. As an input to our calculations we only use information readily available in the clinic: the shape of the aneurysm in-vivo, as seen on a computed tomography (CT) scan, and blood pressure. We demonstrate that tension fields computed with the proposed approach agree well with those obtained using very sophisticated, state-of-the-art non-linear inverse procedures. Using magnetic resonance (MR) images of the same patient, we can approximately measure the local wall thickness and calculate the local wall stress. What is truly exciting about this simple approach is that one does not need any information on material parameters; this supports the development and use of patient-specific modelling (PSM), where uncertainty in material data is recognised as a key limitation. The methods demonstrated in this paper are applicable to other areas of biomechanics where the loads and loaded geometry of the system are known. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The cell wall of Fusarium oxysporum

    NARCIS (Netherlands)

    Schoffelmeer, EAM; Klis, FM; Sietsma, JH; Cornelissen, BJC

    1999-01-01

    Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for

  1. The cell wall of Fusarium oxysporum

    NARCIS (Netherlands)

    Schoffelmeer, EAM; Klis, FM; Sietsma, JH; Cornelissen, BJC

    1999-01-01

    Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for 50

  2. To detect anomalies in diaphragm walls

    NARCIS (Netherlands)

    Spruit, R.

    2015-01-01

    Diaphragm walls are potentially ideal retaining walls for deep excavations in densely built-up areas, as they cause no vibrations during their construction and provide structural elements with high strength and stiffness. In the recent past, however, several projects using diaphragm walls as soil an

  3. Static domain wall in braneworld gravity

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, M.C.B.; Carlesso, P.F. [UNESP, Universidade Estadual Paulista, Instituto de Fisica Teiorica, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, Barra-Funda, Caixa Postal 70532-2, Sao Paulo, SP (Brazil); Hoff da Silva, J.M. [UNESP, Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)

    2014-01-15

    In this paper we consider a static domain wall inside a 3-brane. Different from the standard achievement obtained in General Relativity, the analysis performed here gives a consistency condition for the existence of static domain walls in a braneworld gravitational scenario. Also the behavior of the domain wall's gravitational field in the newtonian limit is shown. (orig.)

  4. Methods & Strategies: Put Your Walls to Work

    Science.gov (United States)

    Jackson, Julie; Durham, Annie

    2016-01-01

    This column provides ideas and techniques to enhance your science teaching. This month's issue discusses planning and using interactive word walls to support science and reading instruction. Many classrooms have word walls displaying vocabulary that students have learned in class. Word walls serve as visual scaffolds to support instruction. To…

  5. Steel Sheet Pile Walls in Soft Soil

    NARCIS (Netherlands)

    Kort, D.A.

    2002-01-01

    For almost a century, steel sheet pile walls are applied worldwide as earth retaining structures for excavations and quay walls. Within the framework of the development of European structural codes for Civil Engineering works, the Eurocodes, Eurocode 3 Part 5 for design of steel sheet pile walls was

  6. Three dimensional finite element analysis of acetabulum loaded by static stress and its biomechanical significance

    Institute of Scientific and Technical Information of China (English)

    SU Jia-can; ZHANG Ben; YU Bao-qing; ZHANG Chun-cai; CHEN Xue-qiang; WANG Bao-hua; DING Zu-quan

    2005-01-01

    Objective:To explore the mechanical behavior of acetabulum loaded by static stress and provide the mechanical basis for clinical analysis and judgement on acetabular mechanical distribution and effect of static stress. Methods:By means of computer simulation, acetabular three dimensional model was input into three dimensional finite element analysis software ANSYS7.0. The acetabular mechanical behavior was calculated and the main stress value, stress distribution and acetabular unit displacement in the direction of main stress were analyzed when anterior wall of acetabulum and acetabular crest were loaded by 1 000 N static stress. Results :When acetabular anterior wall loaded by X direction and Z direction composition force, the stress passed along 4 directions: (1)from acetabular anterior wall to pubic symphysis a long superior branch of pubis firstly, (2)from acetabular anterior wall to cacroiliac joint along pelvic ring,(3)in the acetabulum, (4)from the suffered point to ischium. When acetabular crest loaded by X direction and Y direction composition force, the stress transmitted to 4 directions: (1)from acetabular crest to ilium firstly, (2)from suffered point to cacroiliac joint along pelvic ring, (3) in the acetabulum , (4)along the pubic branch ,but no stress transmitted to the ischium branch. Conclusion:Analyzing the stress distribution of acetabulum and units displacement when static stress loaded can provide internal fixation point for acetabular fracture treatment and help understand the stress distribution of acetabulum.

  7. Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Zhang, Jianwei; Xu, Fangfang

    2013-12-01

    A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements — the CFST columns and SP deep beams — to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.

  8. Detailed energy saving performance analyses on thermal mass walls demonstrated in a zero energy house

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L. [School of Architecture, Tianjin University, Tianjin 300072 (China); Hurt, R.; Correia, D.; Boehm, R. [Center for Energy Research, University of Nevada, Las Vegas, NV 89154 (United States)

    2009-03-15

    An insulated concrete wall system{sup 1}1 was used on exterior walls of a zero energy house. Its thermal functions were investigated using actual data in comparison to a conventional wood frame system. The internal wall temperature of massive systems changes more slowly than the conventional wall constructions, leading to a more stable indoor temperature. The Energy10 simulated equivalent R-value and DBMS of the mass walls under actual climate conditions are, respectively, 6.98 (m{sup 2} C)/W and 3.39. However, the simulated heating energy use was much lower for the massive walls while the cooling load was a little higher. Further investigation on the heat flux indicates that the heat actually is transferred inside all day and night, which results in a higher cooling energy consumption. A one-dimensional model further verified these analyses, and the calculated results are in good agreement with the actual data. We conclude that the thermal mass wall does have the ability to store heat during the daytime and release it back at night, but in desert climates with high 24-h ambient temperature and intense sunlight, more heat will be stored than can be transferred back outside at night. As a result, an increased cooling energy will be required. (author)

  9. Wave trapping by dual porous barriers near a wall in the presence of bottom undulation

    Science.gov (United States)

    Kaligatla, R. B.; Manisha; Sahoo, T.

    2017-09-01

    Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers are assumed to be fixed at a certain distance in front of a vertical rigid wall. Using linear water wave theory and Darcy's law for flow past porous structure, the physical problem is converted into a boundary value problem. Using eigenfunction expansion in the uniform bottom bed region and modified mild-slope equation in the varying bottom bed region, the mathematical problem is handled for solution. Moreover, certain jump conditions are used to account for mass conservation at slope discontinuities in the bottom bed profile. To understand the effect of dual porous barriers in creating tranquility zone and minimum load on the sea wall, reflection coefficient, wave forces acting on the barrier and the wall, and surface wave elevation are computed and analyzed for different values of depth ratio, porous-effect parameter, incident wave angle, gap between the barriers and wall and slope length of undulated bottom. The study reveals that with moderate porosity and suitable gap between barriers and sea wall, using dual barriers an effective wave trapping system can be developed which will exert less wave force on the barriers and the rigid wall. The proposed wave trapping system is likely to be of immense help for protecting various facilities/ infrastructures in coastal environment.

  10. Grouting of Multiple Leaf-Masonry Walls: Application on Some Islamic Historical Monuments in Cairo, Egypt

    Directory of Open Access Journals (Sweden)

    Sayed HEMEDA

    2012-12-01

    Full Text Available Present study summarizes an overview on the available experimental and practical data and results from laboratory testing (ungrouted and grouted three leaf masonry wallettes in compression and in diagonal compression. On the basis of the experimental results, (A the structural behavior of the multiple leaf-masonry walls studied in details (b the parameters that affect the behavior of ungrouted masonry are detected and commented upon, and (c the behavior of grouted masonry studied in details. Particularly attention to be paid to large walls whose construction may comprise different kinds of materials. Such walls include cavity walls; rubble filled masonry walls and veneered brick walls which have poor quality core. Not only may the interior of the wall be less capable of carrying load but movement of the core material may also be a source of new stresses. As the experimental results show that the key parameter for the improvement of the mechanical properties of masonry is not the compressive strength of the injected grout, emphasis is given to ternary, as well as to hydraulic lime based grouts: those materials are expected to ensure durable interventions, they lead to a significant enhancement of the mechanical properties of masonry. On the basis of the experimental data on wallettes, as well as based on recent data from tests on grouted cylinders made of filling materials, simple formulae are drived, allowing for the strength of masonry to be calculated, and scientifically interventions processes and techniques had been applied to selected historical monuments in Cairo.

  11. Fragmentation of wall rock garnets during deep crustal earthquakes

    Science.gov (United States)

    Austrheim, Håkon; Dunkel, Kristina G.; Plümper, Oliver; Ildefonse, Benoit; Liu, Yang; Jamtveit, Bjørn

    2017-01-01

    Fractures and faults riddle the Earth’s crust on all scales, and the deformation associated with them is presumed to have had significant effects on its petrological and structural evolution. However, despite the abundance of directly observable earthquake activity, unequivocal evidence for seismic slip rates along ancient faults is rare and usually related to frictional melting and the formation of pseudotachylites. We report novel microstructures from garnet crystals in the immediate vicinity of seismic slip planes that transected lower crustal granulites during intermediate-depth earthquakes in the Bergen Arcs area, western Norway, some 420 million years ago. Seismic loading caused massive dislocation formations and fragmentation of wall rock garnets. Microfracturing and the injection of sulfide melts occurred during an early stage of loading. Subsequent dilation caused pervasive transport of fluids into the garnets along a network of microfractures, dislocations, and subgrain and grain boundaries, leading to the growth of abundant mineral inclusions inside the fragmented garnets. Recrystallization by grain boundary migration closed most of the pores and fractures generated by the seismic event. This wall rock alteration represents the initial stages of an earthquake-triggered metamorphic transformation process that ultimately led to reworking of the lower crust on a regional scale.

  12. Nutrient and Coliform Loading (NCL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a database of available fecal coliform bacteria, fecal streptococci bacteria, and nutrient loading data. Loading for contaminants other than fecal coliform...

  13. The International Mass Loading Service

    CERN Document Server

    Petrov, Leonid

    2015-01-01

    The International Mass Loading Service computes four loadings: a) atmospheric pressure loading; b) land water storage loading; c) oceanic tidal loading; and d) non-tidal oceanic loading. The service provides to users the mass loading time series in three forms: 1) pre-computed time series for a list of 849 space geodesy stations; 2) pre-computed time series on the global 1deg x 1deg grid; and 3) on-demand Internet service for a list of stations and a time range specified by the user. The loading displacements are provided for the time period from 1979.01.01 through present, updated on an hourly basis, and have latencies 8-20 hours.

  14. Thin Wall Austempered Ductile Iron (TWADI)

    OpenAIRE

    M. Górny; E. Fraś

    2009-01-01

    In this paper the analysis of thin walled castings made of ductile iron is considered. It is shown that thin wall austempered ductile iron can be obtained by means of short-term heat treatment of thin wall castings without addition of alloying elements. Metallographic examinations of 2 mm thin walled castings along with casting with thicker wall thickness (20x28 mm) after different austempring conditions are presented. It has been proved that short-term heat treatment amounted 20 minutes of a...

  15. Explosion Testing of a Polycarbonate Safe Haven Wall

    Science.gov (United States)

    Perry, Kyle A.; Meyr, Rex A.

    2016-12-01

    The MINER Act of 2006 was enacted by MSHA following the major mining accidents and required every underground coal mine to install refuge areas to help prevent future fatalities of trapped miners in the event of a disaster where the miners cannot escape. A polycarbonate safe haven wall for use in underground coal mines as component of a complete system was designed and modeled using finite element modeling in ANSYS Explicit Dynamics to withstand the MSHA required 15 psi (103.4 kPa) blast loading spanning 200 milliseconds. The successful design was constructed at a uniform height in both half-width scale and quarter-width scale in the University of Kentucky Explosives Research Team's (UKERT) explosives driven shock tube for verification of the models. The constructed polycarbonate walls were tested multiple times to determine the walls resistance to pressures generated by an explosion. The results for each test were analyzed and averaged to create one pressure versus time waveform which was then imported into ANSYS Explicit Dynamics and modeled to compare results to that which was measured during testing for model validation. This paper summarizes the results.

  16. Displacement-based seismic design of flat slab-shear wall buildings

    Science.gov (United States)

    Sen, Subhajit; Singh, Yogendra

    2016-06-01

    Flat slab system is becoming widely popular for multistory buildings due to its several advantages. However, the performance of flat slab buildings under earthquake loading is unsatisfactory due to their vulnerability to punching shear failure. Several national design codes provide guidelines for designing flat slab system under gravity load only. Nevertheless, flat slab buildings are also being constructed in high seismicity regions. In this paper, performance of flat slab buildings of various heights, designed for gravity load alone according to code, is evaluated under earthquake loading as per ASCE/SEI 41 methodology. Continuity of slab bottom reinforcement through column cage improves the performance of flat slab buildings to some extent, but it is observed that these flat slab systems are not adequate in high seismicity areas and need additional primary lateral load resisting systems such as shear walls. A displacement-based method is proposed to proportion shear walls as primary lateral load resisting elements to ensure satisfactory performance. The methodology is validated using design examples of flat slab buildings with various heights.

  17. Seismic behavior and mechanism analysis of innovative precast shear wall involving vertical joints

    Institute of Scientific and Technical Information of China (English)

    孙建; 邱洪兴

    2015-01-01

    To study the seismic performance and load-transferring mechanism of an innovative precast shear wall (IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted on two test walls. The test results confirm the feasibility of the novel joints as well as the favorable seismic performance of the walls, even though certain optimization measures should be taken to improve the ductility. The load-transferring mechanism subsequently is theoretically investigated based on the experimental study. The theoretical results show the load-transferring route of the novel joints is concise and definite. During the elastic stage, the vertical shear stress in the connecting steel frame (CSF) distributes uniformly;and each high-strength bolt (HSB) primarily delivers vertical shear force. However, the stress in the CSF redistributes when the walls develop into the elastic-plastic stage. At the ultimate state, the vertical shear stress and horizontal normal stress in the CSF distribute linearly;and the HSBs at both ends of the CSF transfer the maximum shear forces.

  18. Cellulose-hemicellulose interaction in wood secondary cell-wall

    Science.gov (United States)

    Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping

    2015-12-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.

  19. Mechanism of bubble detachment from vibrating walls

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongjun; Park, Jun Kwon, E-mail: junkeun@postech.ac.kr; Kang, Kwan Hyoung [Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); Kang, In Seok [Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of)

    2013-11-15

    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  20. Pulmonary complications of abdominal wall defects.

    Science.gov (United States)

    Panitch, Howard B

    2015-01-01

    The abdominal wall is an integral component of the chest wall. Defects in the ventral abdominal wall alter respiratory mechanics and can impair diaphragm function. Congenital abdominal wall defects also are associated with abnormalities in lung growth and development that lead to pulmonary hypoplasia, pulmonary hypertension, and alterations in thoracic cage formation. Although infants with ventral abdominal wall defects can experience life-threatening pulmonary complications, older children typically experience a more benign respiratory course. Studies of lung and chest wall function in older children and adolescents with congenital abdominal wall defects are few; such investigations could provide strategies for improved respiratory performance, avoidance of respiratory morbidity, and enhanced exercise ability for these children.

  1. POROUS WALL, HOLLOW GLASS MICROSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to &apos

  2. Numerical Analysis of Composite Steel Concrete Structural Shear Walls with Steel Encased Profiles

    Directory of Open Access Journals (Sweden)

    Daniel Dan

    2009-01-01

    Full Text Available The use of common reinforced concrete shear walls in high rise buildings is sometimes limited because of the large amount of reinforcement localized at the end of the element. A good alternative in avoiding this disadvantage is to use composite steel concrete structural shear walls with steel encased profiles. This solution used for high rise buildings, offers to designers lateral stiffness, shear capacity and high bending resisting moment of structural walls. The encasement of the steel shapes in concrete is applied also for the following purposes: flexural stiffening and strengthening of compression elements; fire protection; potentially easier repairs after moderate damage; economy with respect both to material and construction. Until now in the national and international literature poor information about nonlinear behaviour of composite steel concrete structural shear walls with steel encased profiles is available. A theoretical and experimental program related to the behaviour of steel concrete structural shear walls with steel encased profiles is developed at “Politehnica” University of Timişoara. The program refers to six different elements, which differ by the shape of the steel encased profile and also by the arrangement of steel shapes on the cross section of the element. In order to calibrate the elements for experimental study some numerical analysis were made. The paper presents the results of numerical analysis with details of stress distribution, crack distribution, structural stiffness at various loads, and load bearing capacity of the elements.

  3. Experimental and analytical study on seismic behavior of steel-concrete multienergy dissipation composite shear walls

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Qiao, Qiyun; Yu, Chuanpeng

    2015-03-01

    In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carried out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out; they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique.

  4. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D.; Wiehagen, J.

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

  5. Zinc adsorption and desorption characteristics in root cell wall involving zinc hyperaccumulation in Sedum alfredii Hance.

    Science.gov (United States)

    Li, Ting-qiang; Yang, Xiao-e; Meng, Fan-hua; Lu, Ling-li

    2007-02-01

    Radiotracer techniques were employed to characterize (65)Zn adsorption and desorption in root-cell-wall of hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) species of Sedum alfredii Hance. The results indicated that at the end of a 30 min short time radioisotope loading period, comparable amounts of (65)Zn were accumulated in the roots of the two ecotypes Sedum alfredii, whereas 2.1-fold more (65)Zn remains in NHE root after 45-min desorption. At the end of 60 min uptake period, no difference of (65)Zn accumulation was observed in undesorbed root-cell-wall of Sedum alfredii. However, 3.0-fold more (65)Zn accumulated in desorbed root-cell-wall of NHE. Zn(2+) binding in root-cell-wall preparations of NHE was greater than that in HE under high Zn(2+) concentration. All these results suggested that root-cell-wall of the two ecotypes Sedum alfredii had the same ability to adsorb Zn(2+), whereas the desorption characteristics were different, and with most of (65)Zn binding on root of HE being available for loading into the xylem, as a result, more (65)Zn was translocated to the shoot.

  6. Tube wall thickness measurement apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, P.R.

    1987-01-06

    An apparatus is described for measuring the thickness of a tube's wall for the tube's entire length and circumference by determining the deviation of the tube wall thickness from the known thickness of a selected standard item, the apparatus comprising: a. a base; b. a first support member having first and second ends, the first end being connected to the base, the first support member having a sufficiently small circumference that the tube can be slid over the first support member; c. a spherical element, the spherical element being connected to the second end of the first support member. The spherical element has a sufficiently small circumference at its equator that the tube can be slid over the spherical element, the spherical element having at its equator a larger circumference than the first support member; d. a second support member having first and second ends, the first end being connected to the base, the second support member being spaced apart form the first support member; e. a positioning element connected to and moveable relative to the second support member; and f. an indicator connected to the positioning element and being moveable thereby to a location proximate the spherical element. The indicator includes a contact ball for contacting the selected standard item and holding it against the spherical element, the contact ball contacting the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item, the rotatable needle being operatively connected to and responsive to the position of the contact ball.

  7. Android Fully Loaded

    CERN Document Server

    Huddleston, Rob

    2012-01-01

    Fully loaded with the latest tricks and tips on your new Android! Android smartphones are so hot, they're soaring past iPhones on the sales charts. And the second edition of this muscular little book is equally impressive--it's packed with tips and tricks for getting the very most out of your latest-generation Android device. Start Facebooking and tweeting with your Android mobile, scan barcodes to get pricing and product reviews, download your favorite TV shows--the book is positively bursting with practical and fun how-tos. Topics run the gamut from using speech recognition, location-based m

  8. Water Walls for Life Support

    Science.gov (United States)

    Flynn, Michael T. (Inventor); Gormly, Sherwin J. (Inventor); Hammoudeh, Mona (Inventor); Richardson, Tra-My Justine (Inventor)

    2017-01-01

    A method and associated system for processing waste gases, liquids and solids, produced by human activity, to separate (i) liquids suitable for processing to produce potable water, (ii) solids and liquids suitable for construction of walls suitable for enclosing a habitat volume and for radiation shielding, and (iii) other fluids and solids that are not suitable for processing. A forward osmosis process and a reverse osmosis process are sequentially combined to reduce fouling and to permit accumulation of different processable substances. The invention may be used for long term life support of human activity.

  9. Explosive Fragmentation of Dividing Walls

    Science.gov (United States)

    1981-07-01

    bloc~ks and the complexity of the molds that would have to be built, it was de- cided to use full-scale masonry blocks. The walls fabricated were 163...Z .y ,. ,- ;. -.. "COMBINED DISTRIBUTION FOR TESI SERIES 3W I o3 10 ’ I • I ’ ii i’i’I l’l ’ I ’-I"* I *1" PiiPl’ ’ 1 ’l i l• iT -7,62 cm Rs

  10. First Wall and Operational Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Lasnier, C; Allen, S; Boedo, J; Groth, M; Brooks, N; McLean, A; LaBombard, B; Sharpe, J; Skinner, C; Whyte, D; Rudakov, D; West, W; Wong, C

    2006-06-19

    In this chapter we review numerous diagnostics capable of measurements at or near the first wall, many of which contribute information useful for safe operation of a tokamak. There are sections discussing infrared cameras, visible and VUV cameras, pressure gauges and RGAs, Langmuir probes, thermocouples, and erosion and deposition measurements by insertable probes and quartz microbalance. Also discussed are dust measurements by electrostatic detectors, laser scattering, visible and IR cameras, and manual collection of samples after machine opening. In each case the diagnostic is discussed with a view toward application to a burning plasma machine such as ITER.

  11. Witten Index and Wall Crossing

    CERN Document Server

    Hori, Kentaro; Yi, Piljin

    2014-01-01

    We compute the Witten index of one-dimensional gauged linear sigma models with at least ${\\mathcal N}=2$ supersymmetry. In the phase where the gauge group is broken to a finite group, the index is expressed as a certain residue integral. It is subject to a change as the Fayet-Iliopoulos parameter is varied through the phase boundaries. The wall crossing formula is expressed as an integral at infinity of the Coulomb branch. The result is applied to many examples, including quiver quantum mechanics that is relevant for BPS states in $d=4$ ${\\mathcal N}=2$ theories.

  12. Fire behaviour of tabique walls

    OpenAIRE

    Araújo, Alexandre; Fonseca, E.M.M.; Ferreira, Débora; P. A. G. Piloto; Pinto,Jorge

    2015-01-01

    The tabique is one of the main Portuguese traditional building techniques, which is based on raw materials as earth and wood. In general, a tabique wall is formed by a simple timber structure covered by an earth-based material. Earth has an important role in this system because it protects the internal timber structure along with its finishing function. The Trás-os-Montes e Alto Douro is the northeast region of Portugal and it is very rich in terms of tabique construction heritage. Nowadays, ...

  13. Analyzing Design Heating Loads in Superinsulated Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-06-01

    Super-insulated homes offer many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for super insulated homes.

  14. Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian.

    Directory of Open Access Journals (Sweden)

    Yoshitaro Akiyama

    Full Text Available The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called "wall preference". This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian "wall-preference" behavior only appears to be a "preference" behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and

  15. Load Control System Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Trudnowski, Daniel [Montana Tech of the Univ. of Montana, Butte, MT (United States)

    2015-04-03

    This report summarizes the results of the Load Control System Reliability project (DOE Award DE-FC26-06NT42750). The original grant was awarded to Montana Tech April 2006. Follow-on DOE awards and expansions to the project scope occurred August 2007, January 2009, April 2011, and April 2013. In addition to the DOE monies, the project also consisted of matching funds from the states of Montana and Wyoming. Project participants included Montana Tech; the University of Wyoming; Montana State University; NorthWestern Energy, Inc., and MSE. Research focused on two areas: real-time power-system load control methodologies; and, power-system measurement-based stability-assessment operation and control tools. The majority of effort was focused on area 2. Results from the research includes: development of fundamental power-system dynamic concepts, control schemes, and signal-processing algorithms; many papers (including two prize papers) in leading journals and conferences and leadership of IEEE activities; one patent; participation in major actual-system testing in the western North American power system; prototype power-system operation and control software installed and tested at three major North American control centers; and, the incubation of a new commercial-grade operation and control software tool. Work under this grant certainly supported the DOE-OE goals in the area of “Real Time Grid Reliability Management.”

  16. Experimental, numerical, and analytical studies on the seismic response of steel-plate concrete (SC) composite shear walls

    Science.gov (United States)

    Epackachi, Siamak

    The seismic performance of rectangular steel-plate concrete (SC) composite shear walls is assessed for application to buildings and mission-critical infrastructure. The SC walls considered in this study were composed of two steel faceplates and infill concrete. The steel faceplates were connected together and to the infill concrete using tie rods and headed studs, respectively. The research focused on the in-plane behavior of flexure- and flexure-shear-critical SC walls. An experimental program was executed in the NEES laboratory at the University at Buffalo and was followed by numerical and analytical studies. In the experimental program, four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure- and flexure-shear critical. The progression of damage in the four walls was identical, namely, cracking and crushing of the infill concrete at the toes of the walls, outward buckling and yielding of the steel faceplates near the base of the wall, and tearing of the faceplates at their junctions with the baseplate. A robust finite element model was developed in LS-DYNA for nonlinear cyclic analysis of the flexure- and flexure-shear-critical SC walls. The DYNA model was validated using the results of the cyclic tests of the four SC walls. The validated and benchmarked models were then used to conduct a parametric study, which investigated the effects of wall aspect ratio, reinforcement ratio, wall thickness, and uniaxial concrete compressive strength on the in-plane response of SC walls. Simplified analytical models, suitable for preliminary analysis and design of SC walls, were

  17. Analysis of moderately thin-walled beam cross-sections by cubic isoparametric elements

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Krenk, Steen

    2014-01-01

    numerically by introducing a cubic-linear two-dimensional isoparametric element. The cubic interpolation of this element accurately represents quadratic shear stress variations along cross-section walls, and thus moderately thin-walled cross-sections are effectively discretized by these elements. The ability......In technical beam theory the six equilibrium states associated with homogeneous tension, bending, shear and torsion are treated as individual load cases. This enables the formulation of weak form equations governing the warping from shear and torsion. These weak form equations are solved...... of this element to represent curved geometries, and to accurately determine cross-section parameters and shear stress distributions is demonstrated....

  18. Experimental evaluation of the strut-and-tie method applied to low-rise concrete walls

    Directory of Open Access Journals (Sweden)

    Julian Carrillo León

    2010-05-01

    0.25% and the type of web reinforcement against shear (corrugated bars and welded wire mesh. Wall properties were typical of low-rise housing in Mexico. When the calculated shear strength was compared with the measured one it was found that the S-T method proposed by the ACI-318 building code suitably estimated the shear capacity of the models being studied. However, the wall’s shear failure mode, loading rate, the number of cycles and the cumulative energy dissipated would noticeably affect the degradation in strength of low-rise, reinforced concrete walls.

  19. Development of divertor tungsten coatings for the JET ITER-like wall

    Science.gov (United States)

    Matthews, G. F.; Coad, P.; Greuner, H.; Hill, M.; Hirai, T.; Likonen, J.; Maier, H.; Mayer, M.; Neu, R.; Philipps, V.; Pitts, R.; Riccardo, V.; JET EFDA Contributors

    2009-06-01

    The main objectives of the JET ITER-like Wall Project are to provide a beryllium main wall and tungsten divertor with at least a 4 year lifetime to allow full evaluation of the materials and related plasma scenarios for ITER. Tungsten coatings will be used over most of the divertor area and this paper describes the latest developments in the coating technology and an analysis of the implications for the coating lifetime and machine operation. Both steady state and transient heat loads are assessed.

  20. Finite element analyses for seismic shear wall international standard problem

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.J.; Hofmayer, C.H.

    1998-04-01

    Two identical reinforced concrete (RC) shear walls, which consist of web, flanges and massive top and bottom slabs, were tested up to ultimate failure under earthquake motions at the Nuclear Power Engineering Corporation`s (NUPEC) Tadotsu Engineering Laboratory, Japan. NUPEC provided the dynamic test results to the OECD (Organization for Economic Cooperation and Development), Nuclear Energy Agency (NEA) for use as an International Standard Problem (ISP). The shear walls were intended to be part of a typical reactor building. One of the major objectives of the Seismic Shear Wall ISP (SSWISP) was to evaluate various seismic analysis methods for concrete structures used for design and seismic margin assessment. It also offered a unique opportunity to assess the state-of-the-art in nonlinear dynamic analysis of reinforced concrete shear wall structures under severe earthquake loadings. As a participant of the SSWISP workshops, Brookhaven National Laboratory (BNL) performed finite element analyses under the sponsorship of the U.S. Nuclear Regulatory Commission (USNRC). Three types of analysis were performed, i.e., monotonic static (push-over), cyclic static and dynamic analyses. Additional monotonic static analyses were performed by two consultants, F. Vecchio of the University of Toronto (UT) and F. Filippou of the University of California at Berkeley (UCB). The analysis results by BNL and the consultants were presented during the second workshop in Yokohama, Japan in 1996. A total of 55 analyses were presented during the workshop by 30 participants from 11 different countries. The major findings on the presented analysis methods, as well as engineering insights regarding the applicability and reliability of the FEM codes are described in detail in this report. 16 refs., 60 figs., 16 tabs.