WorldWideScience

Sample records for wall degrading enzymes

  1. Pathogenicity and cell wall-degrading enzyme activities of some ...

    African Journals Online (AJOL)

    Dr. J. T. Ekanem

    2005-12-17

    Dec 17, 2005 ... be attributed to the activities of these cell wall degrading enzymes. Keywords: Cowpea ... bacteria have long been known to produce enzymes capable of ... Inoculated seeds were sown in small plastic pots filled with steam- ...

  2. Diversity of beetle genes encoding novel plant cell wall degrading enzymes.

    Directory of Open Access Journals (Sweden)

    Yannick Pauchet

    Full Text Available Plant cell walls are a heterogeneous mixture of polysaccharides and proteins that require a range of different enzymes to degrade them. Plant cell walls are also the primary source of cellulose, the most abundant and useful biopolymer on the planet. Plant cell wall degrading enzymes (PCWDEs are therefore important in a wide range of biotechnological processes from the production of biofuels and food to waste processing. However, despite the fact that the last common ancestor of all deuterostomes was inferred to be able to digest, or even synthesize, cellulose using endogenous genes, all model insects whose complete genomes have been sequenced lack genes encoding such enzymes. To establish if the apparent "disappearance" of PCWDEs from insects is simply a sampling problem, we used 454 mediated pyrosequencing to scan the gut transcriptomes of beetles that feed on a variety of plant derived diets. By sequencing the transcriptome of five beetles, and surveying publicly available ESTs, we describe 167 new beetle PCWDEs belonging to eight different enzyme families. This survey proves that these enzymes are not only present in non-model insects but that the multigene families that encode them are apparently undergoing complex birth-death dynamics. This reinforces the observation that insects themselves, and not just their microbial symbionts, are a rich source of PCWDEs. Further it emphasises that the apparent absence of genes encoding PCWDEs from model organisms is indeed simply a sampling artefact. Given the huge diversity of beetles alive today, and the diversity of their lifestyles and diets, we predict that beetle guts will emerge as an important new source of enzymes for use in biotechnology.

  3. Enhancement of Palm Oil Extraction Using Cell Wall Degrading Enzyme Formulation

    International Nuclear Information System (INIS)

    Silvamany, H.; Jamaliah Md Jahim

    2015-01-01

    In this recent work, application of aqueous enzymatic process to enhance recovery of palm oil was studied. Experiments were carried out to investigate the structural carbohydrate composition of oil palm mesocarp (Elaeis guineensis) and to analyze the effect of different combination of enzymes on the palm oil recovery and degree of digestibility and the respective correlation. The optimum combination of enzymes comprising of Cellic CTec2 (X 1 ), Cellic HTec2 (X 2 ) and Pectinex Ultra SP-L (X 3 ) for Aqueous Enzymatic Oil Extraction Process (AEOEP), were determined using Simplex Lattice mixture design under fixed parameters. Maximum oil recovery of 88 % was achieved with ratio of enzymes at 0.46: 0.34: 0.2 (X 1 :X 2 :X 3 ), at enzyme loading of 30 mg protein/ 10 g substrate, substrate loading of 50 % w/v, pH 4.8, and 2 hours of incubation at 50 degree Celsius. The conversion of reducing sugar at corresponding condition was measured to evaluate the effectiveness of enzymes in degrading fruit cell wall releasing trapped oil. Moreover, transmission electron microscopy (TEM) was utilized to indicate the increase in cell wall disintegration leading to higher release of oil with enzymatic treatment. (author)

  4. Discovery of novel algae-degrading enzymes from marine bacteria

    DEFF Research Database (Denmark)

    Schultz-Johansen, Mikkel; Bech, Pernille Kjersgaard; Hennessy, Rosanna Catherine

    Algal cell wall polysaccharides, and their derived oligosaccharides, display a range of health beneficial bioactive properties. Enzymes capable of degrading algal polysaccharides into oligosaccharides may be used to produce biomolecules with new functionalities for the food and pharma industry....... Some marine bacteria are specialized in degrading algal biomass and secrete enzymes that can decompose the complex algal cell wall polysaccharides. In order to identify such bacteria and enzymatic activities, we have used a combination of traditional cultivation and isolation methods, bioinformatics...... and functional screening. This resulted in the discovery of a novel marine bacterium which displays a large enzymatic potential for degradation of red algal polysaccharides e.g. agar and carrageenan. In addition, we searched metagenome sequence data and identified new enzyme candidates for degradation...

  5. On-Site Enzyme Production by Trichoderma asperellum for the Degradation of Duckweed

    DEFF Research Database (Denmark)

    Bech, Lasse; Herbst, Florian-Alexander; Grell, Morten Nedergaard

    2015-01-01

    The on-site production of cell wall degrading enzymes is an important strategy for the development of sustainable bio-refinery processes. This study concerns the optimization of production of plant cell wall-degrading enzymes produced by Trichoderma asperellum. A comparative secretome analysis...

  6. Heterologous Expression of Plant Cell Wall Degrading Enzymes for Effective Production of Cellulosic Biofuels

    Science.gov (United States)

    Jung, Sang-Kyu; Parisutham, Vinuselvi; Jeong, Seong Hun; Lee, Sung Kuk

    2012-01-01

    A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell wall degrading enzymes (PCDE), which is required for the production of sugars from biomass. Several competitive, low-cost technologies have been developed to produce PCDE in different host organisms such as Escherichia coli, Zymomonas mobilis, and plant. Selection of an ideal host organism is very important, because each host organism has its own unique features. Synthetic biology-aided tools enable heterologous expression of PCDE in recombinant E. coli or Z. mobilis and allow successful consolidated bioprocessing (CBP) in these microorganisms. In-planta expression provides an opportunity to simplify the process of enzyme production and plant biomass processing and leads to self-deconstruction of plant cell walls. Although the future of currently available technologies is difficult to predict, a complete and viable platform will most likely be available through the integration of the existing approaches with the development of breakthrough technologies. PMID:22911272

  7. Plant Wall Degradative Compounds and Systems

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The present invention relates to cell wall degradative systems, in particular to systems containing enzymes that bind to and/or depolymerize cellulose. These systems...

  8. In vitro growth and cell wall degrading enzyme production by Argentinean isolates of Macrophomina phaseolina, the causative agent of charcoal rot in corn.

    Science.gov (United States)

    Ramos, Araceli M; Gally, Marcela; Szapiro, Gala; Itzcovich, Tatiana; Carabajal, Maira; Levin, Laura

    Macrophomina phaseolina is a polyphagous phytopathogen, causing stalk rot on many commercially important species. Damages caused by this pathogen in soybean and maize crops in Argentina during drought and hot weather have increased due its ability to survive as sclerotia in soil and crop debris under non-till practices. In this work, we explored the in vitro production of plant cell wall-degrading enzymes [pectinases (polygalacturonase and polymethylgalacturonase); cellulases (endoglucanase); hemicellulases (endoxylanase) and the ligninolytic enzyme laccase] by several Argentinean isolates of M. phaseolina, and assessed the pathogenicity of these isolates as a preliminary step to establish the role of these enzymes in M. phaseolina-maize interaction. The isolates were grown in liquid synthetic medium supplemented with glucose, pectin, carboxymethylcellulose or xylan as carbon sources and/or enzyme inducers and glutamic acid as nitrogen source. Pectinases were the first cell wall-degrading enzymes detected and the activities obtained (polygalacturonase activity was between 0.4 and 1.3U/ml and polymethylgalacturonase between 0.15 and 1.3U/ml) were higher than those of cellulases and xylanases, which appeared later and in a lesser magnitude. This sequence would promote initial tissue maceration followed by cell wall degradation. Laccase was detected in all the isolates evaluated (activity was between 36U/l and 63U/l). The aggressiveness of the isolates was tested in maize, sunflower and watermelon seeds, being high on all the plants assayed. This study reports for the first time the potential of different isolates of M. phaseolina to produce plant cell wall-degrading enzymes in submerged fermentation. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification.

    Science.gov (United States)

    Longoni, Paolo; Leelavathi, Sadhu; Doria, Enrico; Reddy, Vanga Siva; Cella, Rino

    2015-01-01

    Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  10. Understanding how the complex molecular architecture of mannan-degrading hydrolases contributes to plant cell wall degradation.

    Science.gov (United States)

    Zhang, Xiaoyang; Rogowski, Artur; Zhao, Lei; Hahn, Michael G; Avci, Utku; Knox, J Paul; Gilbert, Harry J

    2014-01-24

    Microbial degradation of plant cell walls is a central component of the carbon cycle and is of increasing importance in environmentally significant industries. Plant cell wall-degrading enzymes have a complex molecular architecture consisting of catalytic modules and, frequently, multiple non-catalytic carbohydrate binding modules (CBMs). It is currently unclear whether the specificities of the CBMs or the topology of the catalytic modules are the primary drivers for the specificity of these enzymes against plant cell walls. Here, we have evaluated the relationship between CBM specificity and their capacity to enhance the activity of GH5 and GH26 mannanases and CE2 esterases against intact plant cell walls. The data show that cellulose and mannan binding CBMs have the greatest impact on the removal of mannan from tobacco and Physcomitrella cell walls, respectively. Although the action of the GH5 mannanase was independent of the context of mannan in tobacco cell walls, a significant proportion of the polysaccharide was inaccessible to the GH26 enzyme. The recalcitrant mannan, however, was fully accessible to the GH26 mannanase appended to a cellulose binding CBM. Although CE2 esterases display similar specificities against acetylated substrates in vitro, only CjCE2C was active against acetylated mannan in Physcomitrella. Appending a mannan binding CBM27 to CjCE2C potentiated its activity against Physcomitrella walls, whereas a xylan binding CBM reduced the capacity of esterases to deacetylate xylan in tobacco walls. This work provides insight into the biological significance for the complex array of hydrolytic enzymes expressed by plant cell wall-degrading microorganisms.

  11. Novel Enzymes for Targeted Hydrolysis of Algal Cell Walls

    DEFF Research Database (Denmark)

    Schultz-Johansen, Mikkel

    Seaweeds, also known as macroalgae, constitute a rich source of valuable biomolecules which have a potential industrial application in food and pharma products. The use of enzymes can optimize the extraction and separation of these molecules from the seaweed biomass, but most commercial enzymes...... are incapable of breaking the complex polysaccharides found in seaweed cell walls. Therefore, new enzymes are needed for degradation of seaweed biomass. Bacteria that colonize the surfaces of seaweed secrete enzymes that allow them to degrade and utilize seaweed polysaccharides as energy. In addition, sea...... degradation. In addition, three carrageenases were characterised; one as a GH16 κ-carrageenase whereas the other two belong to a new GH16 subfamily of enzymes that degrade furcellaran (κ/β-carrageenan). From metagenome sequence data three putative GH107 fucanases were identified and characterized...

  12. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification

    Directory of Open Access Journals (Sweden)

    Paolo Longoni

    2015-01-01

    Full Text Available Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  13. Genomic characterization of plant cell wall degrading enzymes and in silico analysis of xylanses and polygalacturonases of Fusarium virguliforme

    Science.gov (United States)

    Plant cell wall degrading enzymes (PCWDEs) are important effectors for plant pathogens to invade plants. In this study, the composition of PCWDEs in Fusarium virguliforme that were grown for 5-days and 20 days in liquid medium was determined by RNA-Seq. Differential expression analysis showed more P...

  14. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels

    Directory of Open Access Journals (Sweden)

    Shazia Rehman

    2014-12-01

    Full Text Available Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE, in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase using a novel substrate, Banana Peels (BP for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes.

  15. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels.

    Science.gov (United States)

    Rehman, Shazia; Aslam, Hina; Ahmad, Aqeel; Khan, Shakeel Ahmed; Sohail, Muhammad

    2014-01-01

    Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE), in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase) using a novel substrate, Banana Peels (BP) for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes.

  16. Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1.

    Directory of Open Access Journals (Sweden)

    Margret E Berg Miller

    Full Text Available BACKGROUND: Ruminococcus flavefaciens is a predominant cellulolytic rumen bacterium, which forms a multi-enzyme cellulosome complex that could play an integral role in the ability of this bacterium to degrade plant cell wall polysaccharides. Identifying the major enzyme types involved in plant cell wall degradation is essential for gaining a better understanding of the cellulolytic capabilities of this organism as well as highlighting potential enzymes for application in improvement of livestock nutrition and for conversion of cellulosic biomass to liquid fuels. METHODOLOGY/PRINCIPAL FINDINGS: The R. flavefaciens FD-1 genome was sequenced to 29x-coverage, based on pulsed-field gel electrophoresis estimates (4.4 Mb, and assembled into 119 contigs providing 4,576,399 bp of unique sequence. As much as 87.1% of the genome encodes ORFs, tRNA, rRNAs, or repeats. The GC content was calculated at 45%. A total of 4,339 ORFs was detected with an average gene length of 918 bp. The cellulosome model for R. flavefaciens was further refined by sequence analysis, with at least 225 dockerin-containing ORFs, including previously characterized cohesin-containing scaffoldin molecules. These dockerin-containing ORFs encode a variety of catalytic modules including glycoside hydrolases (GHs, polysaccharide lyases, and carbohydrate esterases. Additionally, 56 ORFs encode proteins that contain carbohydrate-binding modules (CBMs. Functional microarray analysis of the genome revealed that 56 of the cellulosome-associated ORFs were up-regulated, 14 were down-regulated, 135 were unaffected, when R. flavefaciens FD-1 was grown on cellulose versus cellobiose. Three multi-modular xylanases (ORF01222, ORF03896, and ORF01315 exhibited the highest levels of up-regulation. CONCLUSIONS/SIGNIFICANCE: The genomic evidence indicates that R. flavefaciens FD-1 has the largest known number of fiber-degrading enzymes likely to be arranged in a cellulosome architecture. Functional

  17. Discovery and Characterization of Enzymes for Degradation of Xyloglucan and Extensin

    DEFF Research Database (Denmark)

    Feng, Tao; Mikkelsen, Jørn Dalgaard

    before the residual polymers are used in the bioethanol production. Therefore, mono-component, substrate-specific enzymes that could selectively degrade or modify plant cell wall components are required. In this PhD study, three enzymes, including two xyloglucan-specific endoglucanases and one...

  18. A 3-D Model of a Perennial Ryegrass Primary Cell Wall and Its Enzymatic Degradation

    Directory of Open Access Journals (Sweden)

    Indrakumar Vetharaniam

    2014-05-01

    Full Text Available We have developed a novel 3-D, agent-based model of cell-wall digestion to improve our understanding of ruminal cell-wall digestion. It offers a capability to study cell walls and their enzymatic modification, by providing a representation of cellulose microfibrils and non-cellulosic polysaccharides and by simulating their spatial and catalytic interactions with enzymes. One can vary cell-wall composition and the types and numbers of enzyme molecules, allowing the model to be applied to a range of systems where cell walls are degraded and to the modification of cell walls by endogenous enzymes. As a proof of principle, we have modelled the wall of a mesophyll cell from the leaf of perennial ryegrass and then simulated its enzymatic degradation. This is a primary, non-lignified cell wall and the model includes cellulose, hemicelluloses (glucuronoarabinoxylans, 1,3;1,4-β-glucans, and xyloglucans and pectin. These polymers are represented at the level of constituent monosaccharides, and assembled to form a 3-D, meso-scale representation of the molecular structure of the cell wall. The composition of the cell wall can be parameterised to represent different walls in different cell types and taxa. The model can contain arbitrary combinations of different enzymes. It simulates their random diffusion through the polymer networks taking collisions into account, allowing steric hindrance from cell-wall polymers to be modelled. Steric considerations are included when target bonds are encountered, and breakdown products resulting from enzymatic activity are predicted.

  19. Lignin-degrading enzyme activities.

    Science.gov (United States)

    Chen, Yi-ru; Sarkanen, Simo; Wang, Yun-Yan

    2012-01-01

    Over the past three decades, the activities of four kinds of enzyme have been purported to furnish the mechanistic foundations for macromolecular lignin depolymerization in decaying plant cell walls. The pertinent fungal enzymes comprise lignin peroxidase (with a relatively high redox potential), manganese peroxidase, an alkyl aryl etherase, and laccase. The peroxidases and laccase, but not the etherase, are expressed extracellularly by white-rot fungi. A number of these microorganisms exhibit a marked preference toward lignin in their degradation of lignocellulose. Interestingly, some white-rot fungi secrete both kinds of peroxidase but no laccase, while others that are equally effective express extracellular laccase activity but no peroxidases. Actually, none of these enzymes has been reported to possess significant depolymerase activity toward macromolecular lignin substrates that are derived with little chemical modification from the native biopolymer. Here, the assays commonly employed for monitoring the traditional fungal peroxidases, alkyl aryl etherase, and laccase are described in their respective contexts. A soluble native polymeric substrate that can be isolated directly from a conventional milled-wood lignin preparation is characterized in relation to its utility in next-generation lignin-depolymerase assays.

  20. Oligogalacturonide-mediated induction of a gene involved in jasmonic acid synthesis in response to the cell-wall-degrading enzymes of the plant pathogen Erwinia carotovora.

    Science.gov (United States)

    Norman, C; Vidal, S; Palva, E T

    1999-07-01

    Identification of Arabidopsis thaliana genes responsive to plant cell-wall-degrading enzymes of Erwinia carotovora subsp. carotovora led to the isolation of a cDNA clone with high sequence homology to the gene for allene oxide synthase, an enzyme involved in the biosynthesis of jasmonates. Expression of the corresponding gene was induced by the extracellular enzymes from this pathogen as well as by treatment with methyl jasmonate and short oligogalacturonides (OGAs). This suggests that OGAs are involved in the induction of the jasmonate pathway during plant defense response to E. carotovora subsp. carotovora attack.

  1. Improvement in Saccharification Yield of Mixed Rumen Enzymes by Identification of Recalcitrant Cell Wall Constituents Using Enzyme Fingerprinting.

    Science.gov (United States)

    Badhan, Ajay; Wang, Yu-Xi; Gruninger, Robert; Patton, Donald; Powlowski, Justin; Tsang, Adrian; McAllister, Tim A

    2015-01-01

    Identification of recalcitrant factors that limit digestion of forages and the development of enzymatic approaches that improve hydrolysis could play a key role in improving the efficiency of meat and milk production in ruminants. Enzyme fingerprinting of barley silage fed to heifers and total tract indigestible fibre residue (TIFR) collected from feces was used to identify cell wall components resistant to total tract digestion. Enzyme fingerprinting results identified acetyl xylan esterases as key to the enhanced ruminal digestion. FTIR analysis also suggested cross-link cell wall polymers as principal components of indigested fiber residues in feces. Based on structural information from enzymatic fingerprinting and FTIR, enzyme pretreatment to enhance glucose yield from barley straw and alfalfa hay upon exposure to mixed rumen-enzymes was developed. Prehydrolysis effects of recombinant fungal fibrolytic hydrolases were analyzed using microassay in combination with statistical experimental design. Recombinant hemicellulases and auxiliary enzymes initiated degradation of plant structural polysaccharides upon application and improved the in vitro saccharification of alfalfa and barley straw by mixed rumen enzymes. The validation results showed that microassay in combination with statistical experimental design can be successfully used to predict effective enzyme pretreatments that can enhance plant cell wall digestion by mixed rumen enzymes.

  2. Reconstitution of a thermostable xylan-degrading enzyme mixture from the bacterium Caldicellulosiruptor bescii.

    Science.gov (United States)

    Su, Xiaoyun; Han, Yejun; Dodd, Dylan; Moon, Young Hwan; Yoshida, Shosuke; Mackie, Roderick I; Cann, Isaac K O

    2013-03-01

    Xylose, the major constituent of xylans, as well as the side chain sugars, such as arabinose, can be metabolized by engineered yeasts into ethanol. Therefore, xylan-degrading enzymes that efficiently hydrolyze xylans will add value to cellulases used in hydrolysis of plant cell wall polysaccharides for conversion to biofuels. Heterogeneous xylan is a complex substrate, and it requires multiple enzymes to release its constituent sugars. However, the components of xylan-degrading enzymes are often individually characterized, leading to a dearth of research that analyzes synergistic actions of the components of xylan-degrading enzymes. In the present report, six genes predicted to encode components of the xylan-degrading enzymes of the thermophilic bacterium Caldicellulosiruptor bescii were expressed in Escherichia coli, and the recombinant proteins were investigated as individual enzymes and also as a xylan-degrading enzyme cocktail. Most of the component enzymes of the xylan-degrading enzyme mixture had similar optimal pH (5.5 to ∼6.5) and temperature (75 to ∼90°C), and this facilitated their investigation as an enzyme cocktail for deconstruction of xylans. The core enzymes (two endoxylanases and a β-xylosidase) exhibited high turnover numbers during catalysis, with the two endoxylanases yielding estimated k(cat) values of ∼8,000 and ∼4,500 s(-1), respectively, on soluble wheat arabinoxylan. Addition of side chain-cleaving enzymes to the core enzymes increased depolymerization of a more complex model substrate, oat spelt xylan. The C. bescii xylan-degrading enzyme mixture effectively hydrolyzes xylan at 65 to 80°C and can serve as a basal mixture for deconstruction of xylans in bioenergy feedstock at high temperatures.

  3. Enzymatic cell wall degradation of high-pressure-homogenized tomato puree and its effect on lycopene bioaccessibility.

    Science.gov (United States)

    Palmero, Paola; Colle, Ines; Lemmens, Lien; Panozzo, Agnese; Nguyen, Tuyen Thi My; Hendrickx, Marc; Van Loey, Ann

    2016-01-15

    High-pressure homogenization disrupts cell structures, assisting carotenoid release from the matrix and subsequent micellarization. However, lycopene bioaccessibility of tomato puree upon high-pressure homogenization is limited by the formation of a process-induced barrier. In this context, cell wall-degrading enzymes were applied to hydrolyze the formed barrier and enhance lycopene bioaccessibility. The effectiveness of the enzymes in degrading their corresponding substrates was evaluated (consistency, amount of reducing sugars, molar mass distribution and immunolabeling). An in vitro digestion procedure was applied to evaluate the effect of the enzymatic treatments on lycopene bioaccessibility. Enzymatic treatments with pectinases and cellulase were proved to effectively degrade their corresponding cell wall polymers; however, no further significant increase in lycopene bioaccessibility was obtained. A process-induced barrier consisting of cell wall material is not the only factor governing lycopene bioaccessibility upon high-pressure homogenization. © 2015 Society of Chemical Industry.

  4. Identification of polysaccharide hydrolases involved in autolytic degradation of Zea cell walls

    International Nuclear Information System (INIS)

    Nock, L.P.; Smith, C.J.

    1987-01-01

    Cell walls of Zea mays (cv L.G.11) seedlings labeled with 14 C were treated with α-amylase from Bacillus subtilis to remove starch and mixed linkage glucans. These walls released arabinose, xylose, galactose, and galacturonic acid in addition to glucose when they were allowed to autolyze. Methylation analysis was performed on samples of wall which had been incubated autolytically and the results indicated that degradation of the major polymer of the wall, the glucoarabinoxylan, had occurred. A number of glycanases could be dissociated from the wall by use of 3 M LiCL. The proteins which were released were found to contain a number of exoglycosidase activities in addition to being effective in degrading the polysaccharide substrates, araban, xylan, galactan, laminarin, mannan, and polygalacturonic acid. The effects of these enzymes on the wall during autolysis appear to result from endo-activity in addition to exo-activity. The structural changes that occurred in the cell walls during autolysis were found to be related to the changes previously found to occur in cell walls during auxin induced extension

  5. Identification of Pectin Degrading Enzymes Secreted by Xanthomonas oryzae pv. oryzae and Determination of Their Role in Virulence on Rice

    OpenAIRE

    Tayi, Lavanya; Maku, Roshan V.; Patel, Hitendra Kumar; Sonti, Ramesh V.

    2016-01-01

    Xanthomonas oryzae pv.oryzae (Xoo) causes the serious bacterial blight disease of rice. Xoo secretes a repertoire of plant cell wall degrading enzymes (CWDEs) like cellulases, xylanases, esterases etc., which act on various components of the rice cell wall. The major cellulases and xylanases secreted by Xoo have been identified and their role in virulence has been determined. In this study, we have identified some of the pectin degrading enzymes of Xoo and assessed their role in virulence. Bi...

  6. Novel mutants of Erwinia carotovora subsp. carotovora defective in the production of plant cell wall degrading enzymes generated by Mu transpososome-mediated insertion mutagenesis.

    Science.gov (United States)

    Laasik, Eve; Ojarand, Merli; Pajunen, Maria; Savilahti, Harri; Mäe, Andres

    2005-02-01

    As in Erwinia carotovora subsp. carotovora the regulation details of the main virulence factors, encoding extracellular enzymes that degrade the plant cell wall, is only rudimentally understood, we performed a genetic screen to identify novel candidate genes involved in the process. Initially, we used Mu transpososome-mediated mutagenesis approach to generate a comprehensive transposon insertion mutant library of ca. 10000 clones and screened the clones for the loss of extracellular enzyme production. Extracellular enzymes production was abolished by mutations in the chromosomal helEcc, trkAEcc yheLEcc, glsEcc, igaAEcc and cysQEcc genes. The findings reported here demonstrate that we have isolated six new representatives that belong to the pool of genes modulating the production of virulence factors in E. carotovora.

  7. Chitin hydrolysis assisted by cell wall degrading enzymes immobilized of Thichoderma asperellum on totally cinnamoylated D-sorbitol beads

    International Nuclear Information System (INIS)

    Fernandes, Kátia F.; Cortijo-Triviño, David; Batista, Karla A.; Ulhoa, Cirano J.; García-Ruiz, Pedro A.

    2013-01-01

    In this study, cell wall degrading enzymes produced by Thrichoderma asperellum (TCWDE) were immobilized on totally cinnamoylated D-sorbitol (TCNSO) beads and used for chitin hydrolysis. In order to optimize immobilization efficiency, the reaction time was varied from 2 to 12 h and reactions were conducted in the presence or absence of Na 2 SO 4 . Immobilized enzymes were analysed concerning to thermal and operational stability. Immobilization in presence of Na 2 SO 4 was 54% more efficient than immobilization in absence of salt. After optimization, 32% of the total enzyme offered was immobilized, with 100% of bounding efficiency, measured as the relation between protein and enzyme immobilized. Free and TCNSO–TCWDE presented very similar kinetics with maximum hydrolysis reached at 90 min of reaction. Thermal stability of both free and TCNSO–TCWDE was similar, with losses in activity after 55 °C. Moreover, free and TCNSO–TCWDE retained 100% activity after 3 h incubation at 55 °C. TCNSO–TCWDE were used in a bath-wise reactor during 14 cycles, producing 1825 μg of N-acetylglucosamine (NAG) maintaining 83% of initial activity. - Highlights: • TCWDE immobilized on TCNSO, a support with highly hydrophobic character • New immobilization strategy for immobilization on a hydrophobic support • TCNSO–TCWDE were retained during washes and during incubation at 55 °C for 3 h

  8. Chitin hydrolysis assisted by cell wall degrading enzymes immobilized of Thichoderma asperellum on totally cinnamoylated D-sorbitol beads

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Kátia F., E-mail: katia@icb.ufg.br [Departamento de Bioquímica e Biologia Molecular, Instituo de Ciências Biológicas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970 Goiânia, GO (Brazil); Grupo de Química de Carbohidratos y Biotecnología de Alimentos (QCBA), Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain); Cortijo-Triviño, David [Grupo de Química de Carbohidratos y Biotecnología de Alimentos (QCBA), Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain); Batista, Karla A.; Ulhoa, Cirano J. [Departamento de Bioquímica e Biologia Molecular, Instituo de Ciências Biológicas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970 Goiânia, GO (Brazil); García-Ruiz, Pedro A. [Grupo de Química de Carbohidratos y Biotecnología de Alimentos (QCBA), Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain)

    2013-07-01

    In this study, cell wall degrading enzymes produced by Thrichoderma asperellum (TCWDE) were immobilized on totally cinnamoylated D-sorbitol (TCNSO) beads and used for chitin hydrolysis. In order to optimize immobilization efficiency, the reaction time was varied from 2 to 12 h and reactions were conducted in the presence or absence of Na{sub 2}SO{sub 4}. Immobilized enzymes were analysed concerning to thermal and operational stability. Immobilization in presence of Na{sub 2}SO{sub 4} was 54% more efficient than immobilization in absence of salt. After optimization, 32% of the total enzyme offered was immobilized, with 100% of bounding efficiency, measured as the relation between protein and enzyme immobilized. Free and TCNSO–TCWDE presented very similar kinetics with maximum hydrolysis reached at 90 min of reaction. Thermal stability of both free and TCNSO–TCWDE was similar, with losses in activity after 55 °C. Moreover, free and TCNSO–TCWDE retained 100% activity after 3 h incubation at 55 °C. TCNSO–TCWDE were used in a bath-wise reactor during 14 cycles, producing 1825 μg of N-acetylglucosamine (NAG) maintaining 83% of initial activity. - Highlights: • TCWDE immobilized on TCNSO, a support with highly hydrophobic character • New immobilization strategy for immobilization on a hydrophobic support • TCNSO–TCWDE were retained during washes and during incubation at 55 °C for 3 h.

  9. Complete genome sequence of N2-fixing model strain Klebsiella sp. nov. M5al, which produces plant cell wall-degrading enzymes and siderophores

    Directory of Open Access Journals (Sweden)

    Zhili Yu

    2018-03-01

    Full Text Available The bacterial strain M5al is a model strain for studying the molecular genetics of N2-fixation and molecular engineering of microbial production of platform chemicals 1,3-propanediol and 2,3-butanediol. Here, we present the complete genome sequence of the strain M5al, which belongs to a novel species closely related to Klebsiella michiganensis. M5al secretes plant cell wall-degrading enzymes and colonizes rice roots but does not cause soft rot disease. M5al also produces siderophores and contains the gene clusters for synthesis and transport of yersiniabactin which is a critical virulence factor for Klebsiella pathogens in causing human disease. We propose that the model strain M5al can be genetically modified to study bacterial N2-fixation in association with non-legume plants and production of 1,3-propanediol and 2,3-butanediol through degradation of plant cell wall biomass.

  10. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Science.gov (United States)

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  11. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    Science.gov (United States)

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  12. Substrate-Wrapped, Single-Walled Carbon Nanotube Probes for Hydrolytic Enzyme Characterization.

    Science.gov (United States)

    Kallmyer, Nathaniel E; Musielewicz, Joseph; Sutter, Joel; Reuel, Nigel F

    2018-04-17

    Hydrolytic enzymes are a topic of continual study and improvement due to their industrial impact and biological implications; however, the ability to measure the activity of these enzymes, especially in high-throughput assays, is limited to an established, few enzymes and often involves the measurement of secondary byproducts or the design of a complex degradation probe. Herein, a versatile single-walled carbon nanotube (SWNT)-based biosensor that is straightforward to produce and measure is described. The hydrolytic enzyme substrate is rendered as an amphiphilic polymer, which is then used to solubilize the hydrophobic nanotubes. When the target enzyme degrades the wrapping, the SWNT fluorescent signal is quenched due to increased solvent accessibility and aggregation, allowing quantitative measurement of hydrolytic enzyme activity. Using (6,5) chiral SWNT suspended with polypeptides and polysaccharides, turnover frequencies are estimated for cellulase, pectinase, and bacterial protease. Responses are recorded for concentrations as low as 5 fM using a well-characterized protease, Proteinase K. An established trypsin-based plate reader assay is used to compare this nanotube probe assay with standard techniques. Furthermore, the effect of freeze-thaw cycles and elevated temperature on enzyme activity is measured, suggesting freezing to have minimal impact even after 10 cycles and heating to be detrimental above 60 °C. Finally, rapid optimization of enzyme operating conditions is demonstrated by generating a response surface of cellulase activity with respect to temperature and pH to determine optimal conditions within 2 h of serial scans.

  13. Cell wall and enzyme changes during the graviresponse of the leaf-sheath pulvinus of oat (Avena sativa)

    Science.gov (United States)

    Gibeaut, David M.; Karuppiah, Nadarajah; Chang, S.-R.; Brock, Thomas G.; Vadlamudi, Babu; Kim, Donghern; Ghosheh, Najati S.; Rayle, David L.; Carpita, Nicholas C.; Kaufman, Peter B.

    1990-01-01

    The graviresponse of the leaf-sheath pulvinus of oat (Avena sativa) involves an asymmetric growth response and asymmetric processes involving degradation of starch and cell wall synthesis. Cellular and biochemical events were studied by investigation of the activities of related enzymes and changes in cell walls and their constituents. It is suggested that an osmotic potential gradient acts as the driving factor for growth, while wall extensibility is a limiting factor in pulvinus growth.

  14. Comparative secretome analysis suggests low plant cell wall degrading capacity in Frankia symbionts

    Directory of Open Access Journals (Sweden)

    Normand Philippe

    2008-01-01

    genomes, suggesting that plant cell wall polysaccharide degradation may not be crucial to root infection, or that this degradation varies among strains. We hypothesize that the relative lack of secreted polysaccharide-degrading enzymes in Frankia reflects a strategy used by these bacteria to avoid eliciting host defense responses. The esterases, lipases, and proteases found in the core Frankia secretome might facilitate hyphal penetration through the cell wall, release carbon sources, or modify chemical signals. The core secretome also includes extracellular solute-binding proteins and Frankia-specific hypothetical proteins that may enable the actinorhizal symbiosis.

  15. Suite of Activity-Based Probes for Cellulose-Degrading Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Chauvigne-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

    2012-12-19

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic cellulose degrading systems, and facilitates a greater understanding of the organismal role associated within biofuel development.

  16. Aβ-degrading enzymes: potential for treatment of Alzheimer disease.

    Science.gov (United States)

    Miners, James Scott; Barua, Neil; Kehoe, Patrick Gavin; Gill, Steven; Love, Seth

    2011-11-01

    There is increasing evidence that deficient clearance of β-amyloid (Aβ) contributes to its accumulation in late-onset Alzheimer disease (AD). Several Aβ-degrading enzymes, including neprilysin (NEP), insulin-degrading enzyme, and endothelin-converting enzyme reduce Aβ levels and protect against cognitive impairment in mouse models of AD. The activity of several Aβ-degrading enzymes rises with age and increases still further in AD, perhaps as a physiological response to minimize the buildup of Aβ. The age- and disease-related changes in expression of more recently recognized Aβ-degrading enzymes (e.g. NEP-2 and cathepsin B) remain to be investigated, and there is strong evidence that reduced NEP activity contributes to the development of cerebral amyloid angiopathy. Regardless of the role of Aβ-degrading enzymes in the development of AD, experimental data indicate that increasing the activity of these enzymes (NEP in particular) has therapeutic potential in AD, although targeting their delivery to the brain remains a major challenge. The most promising current approaches include the peripheral administration of agents that enhance the activity of Aβ-degrading enzymes and the direct intracerebral delivery of NEP by convection-enhanced delivery. In the longer term, genetic approaches to increasing the intracerebral expression of NEP or other Aβ-degrading enzymes may offer advantages.

  17. Enzymes and fungal virulence | Tonukari | Journal of Applied ...

    African Journals Online (AJOL)

    This paper presents a comprehensive literature review of cell wall degrading enzymes (CWDEs). Plant pathogenic fungi secrete extracellular enzymes that are capable of degrading the cell walls of their host plants. These CWDEs may be necessary for penetration of the cell wall barrier, as well as for generation of simple ...

  18. Mycoparasitism studies of Trichoderma harzianum against Sclerotinia sclerotiorum: evaluation of antagonism and expression of cell wall-degrading enzymes genes.

    Science.gov (United States)

    Troian, Rogério Fraga; Steindorff, Andrei Stecca; Ramada, Marcelo Henrique Soller; Arruda, Walquiria; Ulhoa, Cirano José

    2014-10-01

    Trichoderma spp. are known for their biocontrol activity against several plant pathogens. A specific isolate of Trichoderma harzianum, 303/02, has the potential to inhibit the growth of Sclerotinia sclerotiorum, an important agent involved in several crop diseases. In this study, the interaction between T. harzianum 303/02 and mycelia, sclerotia and apothecia of S. sclerotiorum was studied by scanning electron microscopy. RT-qPCR was used to examine the expression of 11 genes potentially involved in biocontrol. T. harzianum 303/02 parasitizes S. sclerotiorum by forming branches that coil around the hyphae. The fungus multiplied abundantly at the sclerotia and apothecia surface, forming a dense mycelium that penetrated the inner surface of these structures. The levels of gene expression varied according to the type of structure with which T. harzianum was interacting. The data also showed the presence of synergistic action between the cell-wall degrading enzymes.

  19. Identification of Pectin Degrading Enzymes Secreted by Xanthomonas oryzae pv. oryzae and Determination of Their Role in Virulence on Rice.

    Directory of Open Access Journals (Sweden)

    Lavanya Tayi

    Full Text Available Xanthomonas oryzae pv.oryzae (Xoo causes the serious bacterial blight disease of rice. Xoo secretes a repertoire of plant cell wall degrading enzymes (CWDEs like cellulases, xylanases, esterases etc., which act on various components of the rice cell wall. The major cellulases and xylanases secreted by Xoo have been identified and their role in virulence has been determined. In this study, we have identified some of the pectin degrading enzymes of Xoo and assessed their role in virulence. Bioinformatics analysis indicated the presence of four pectin homogalacturonan (HG degrading genes in the genome of Xoo. The four HG degrading genes include one polygalacturonase (pglA, one pectin methyl esterase (pmt and two pectate lyases (pel and pelL. There was no difference in the expression of pglA, pmt and pel genes by laboratory wild type Xoo strain (BXO43 grown in either nutrient rich PS medium or in plant mimic XOM2 medium whereas the expression of pelL gene was induced in XOM2 medium as indicated by qRT-PCR experiments. Gene disruption mutations were generated in each of these four genes. The polygalacturonase mutant pglA- was completely deficient in degrading the substrate Na-polygalacturonicacid (PGA. Strains carrying mutations in the pmt, pel and pelL genes were as efficient as wild type Xoo (BXO43 in cleaving PGA. These observations clearly indicate that PglA is the major pectin degrading enzyme produced by Xoo. The pectin methyl esterase, Pmt, is the pectin de-esterifying enzyme secreted by Xoo as evident from the enzymatic activity assay performed using pectin as the substrate. Mutations in the pglA, pmt, pel and pelL genes have minimal effects on virulence. This suggests that, as compared to cellulases and xylanases, the HG degrading enzymes may not have a major role in the pathogenicity of Xoo.

  20. Identification of Pectin Degrading Enzymes Secreted by Xanthomonas oryzae pv. oryzae and Determination of Their Role in Virulence on Rice.

    Science.gov (United States)

    Tayi, Lavanya; Maku, Roshan V; Patel, Hitendra Kumar; Sonti, Ramesh V

    2016-01-01

    Xanthomonas oryzae pv.oryzae (Xoo) causes the serious bacterial blight disease of rice. Xoo secretes a repertoire of plant cell wall degrading enzymes (CWDEs) like cellulases, xylanases, esterases etc., which act on various components of the rice cell wall. The major cellulases and xylanases secreted by Xoo have been identified and their role in virulence has been determined. In this study, we have identified some of the pectin degrading enzymes of Xoo and assessed their role in virulence. Bioinformatics analysis indicated the presence of four pectin homogalacturonan (HG) degrading genes in the genome of Xoo. The four HG degrading genes include one polygalacturonase (pglA), one pectin methyl esterase (pmt) and two pectate lyases (pel and pelL). There was no difference in the expression of pglA, pmt and pel genes by laboratory wild type Xoo strain (BXO43) grown in either nutrient rich PS medium or in plant mimic XOM2 medium whereas the expression of pelL gene was induced in XOM2 medium as indicated by qRT-PCR experiments. Gene disruption mutations were generated in each of these four genes. The polygalacturonase mutant pglA- was completely deficient in degrading the substrate Na-polygalacturonicacid (PGA). Strains carrying mutations in the pmt, pel and pelL genes were as efficient as wild type Xoo (BXO43) in cleaving PGA. These observations clearly indicate that PglA is the major pectin degrading enzyme produced by Xoo. The pectin methyl esterase, Pmt, is the pectin de-esterifying enzyme secreted by Xoo as evident from the enzymatic activity assay performed using pectin as the substrate. Mutations in the pglA, pmt, pel and pelL genes have minimal effects on virulence. This suggests that, as compared to cellulases and xylanases, the HG degrading enzymes may not have a major role in the pathogenicity of Xoo.

  1. Rye Bran Modified with Cell Wall-Degrading Enzymes Influences the Kinetics of Plant Lignans but Not of Enterolignans in Multicatheterized Pigs.

    Science.gov (United States)

    Bolvig, Anne K; Nørskov, Natalja P; van Vliet, Sophie; Foldager, Leslie; Curtasu, Mihai V; Hedemann, Mette S; Sørensen, Jens F; Lærke, Helle N; Bach Knudsen, Knud E

    2017-12-01

    Background: Whole-grain intake is associated with a lower risk of chronic Western-style diseases, possibly brought about by the high concentration of phytochemicals, among them plant lignans (PLs), in the grains. Objective: We studied whether treatment of rye bran with cell wall-degrading enzymes changed the solubility and kinetics of PLs in multicatheterized pigs. Methods: Ten female Duroc × Danish Landrace × Yorkshire pigs (60.3 ± 2.3 kg at surgery) fitted with permanent catheters were included in an incomplete crossover study. The pigs were fed 2 experimental diets for 1-7 d. The diets were rich in PLs and based on nontreated lignan-rich [LR; lignan concentration: 20.2 mg dry matter (DM)/kg] or enzymatically treated lignan-rich (ENZLR; lignan concentration: 27.8 mg DM/kg) rye bran. Plasma concentrations of PLs and enterolignans were quantified with the use of targeted LC-tandem mass spectrometry. Data were log transformed and analyzed with mixed-effects, 1-compartment, and asymptotic regression models. Results: The availability of PLs was 38% greater in ENZLR than in LR, and the soluble fraction of PLs was 49% in ENZLR compared with 35% in LR diets. PLs appeared in the circulation 30 min after intake of both the ENZLR and LR diets. Postprandially, consumption of ENZLR resulted in a 4-times-greater ( P concentration compared with LR. The area under the curve (AUC) measured 0-360 min after ENZLR intake was ∼2 times higher than after LR intake. A 1-compartment model could describe the postprandial increase in plasma concentration after ENZLR intake, whereas an asymptotic regression model described the plasma concentrations after LR intake. Despite increased available and soluble PLs, ENZLR did not increase plasma enterolignans. Conclusion: The modification of rye bran with cell wall-degrading enzymes resulted in significantly greater plasma concentrations of PLs and the 4-h AUC, particularly syringaresinol, in multicatheterized pigs. © 2017 American Society

  2. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Donohoe, Byron; Ciesielski, Peter; Nill, Jennifer; McKinney, Kellene; Mittal, Ashutosh; Katahira, Rui; Himmel, Michael; Biddy, Mary; Beckham, Gregg; Decker, Steve

    2014-09-08

    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution.

  3. Disruption of cell walls for enhanced lipid recovery

    Science.gov (United States)

    Knoshaug, Eric P; Donohoe, Bryon S; Gerken, Henri; Laurens, Lieve; Van Wychen, Stefanie Rose

    2015-03-24

    Presented herein are methods of using cell wall degrading enzymes for recovery of internal lipid bodies from biomass sources such as algae. Also provided are algal cells that express at least one exogenous gene encoding a cell wall degrading enzyme and methods for recovering lipids from the cells.

  4. Alfalfa stem tissues: Cell wall deposition, composition, and degradability

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.

    2002-01-01

    Declining cell wall degradability of alfalfa (Medicago sativa L.) stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, composition, and degradability by rumen microbes resulting from alfalfa stem tissue

  5. Extracellular Enzymes Produced by the Cultivated Mushroom Lentinus edodes during Degradation of a Lignocellulosic Medium

    Science.gov (United States)

    Leatham, Gary F.

    1985-01-01

    Although the commercially important mushroom Lentinus (= Lentinula) edodes (Berk.) Sing. can be rapidly cultivated on supplemented wood particles, fruiting is not reliable. This study addressed the problem by developing more information about growth and development on a practical oakwood-oatmeal medium. The study determined (i) the components degraded during a 150-day incubation at 22°C, (ii) the apparent vegetative growth pattern, (iii) the likely growth-limiting nutrient, and (iv) assays that can be used to study key extracellular enzymes. All major components of the medium were degraded, lignin selectively so. The vegetative growth rate was most rapid during the initial 90 days, during which weight loss correlated with glucosamine accumulation (assayed after acid hydrolysis). The rate then slowed; in apparent preparation for fruiting, the cultures rapidly accumulated glucosamine (or its oligomer or polymer). Nitrogen was growth limiting. Certain enzyme activities were associated with the pattern of medium degradation, with growth, or with development. They included cellulolytic system enzymes, hemicellulases, the ligninolytic system, (gluco-)amylase, pectinase, acid protease, cell wall lytic enzymes (laminarinase, 1,4-β-d-glucosidase, β-N-acetyl-d-glucosaminidase, α-d-galactosidase, β-d-mannosidase), acid phosphatase, and laccase. Enzyme activities over the 150-day incubation period with and without a fruiting stimulus are reported. These results provide a basis for future investigations into the physiology and biochemistry of growth and fruiting. PMID:16346918

  6. Enzyme stabilization for pesticide degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, D.B.; Frazer, F.R. III; Mason, D.W.; Tice, T.R.

    1988-01-01

    Enzymes offer inherent advantages and limitations as active components of formulations used to decontaminate soil and equipment contaminated with toxic materials such as pesticides. Because of the catalytic nature of enzymes, each molecule of enzyme has the potential to destroy countless molecules of a contaminating toxic compound. This degradation takes place under mild environmental conditions of pH, temperature, pressure, and solvent. The basic limitation of enzymes is their degree of stability during storage and application conditions. Stabilizing methods such as the use of additives, covalent crosslinking, covalent attachment, gel entrapment, and microencapsulation have been directed developing an enzyme preparation that is stable under extremes of pH, temperature, and exposure to organic solvents. Initial studies were conducted using the model enzymes subtilisin and horseradish peroxidase.

  7. Enzymes in biogenesis of plant cell wall polysaccharides. Enzyme characterization using tracer techniques

    International Nuclear Information System (INIS)

    Dickinson, D.B.

    1975-01-01

    Enzymes and metabolic pathways, by which starch and cell wall polysaccharides are formed, were investigated in order to learn how these processes are regulated and to identify the enzymatic regulatory mechanisms involved. Germinating lily pollen was used for studies of cell wall formation, and pollen and maize endosperm for studies of starch biosynthesis. Hexokinase being the first step in conversion of hexoses to starch, wall polysaccharides and respiratory substrates, maize endosperm enzyme was assayed by its conversion of 14 C-hexose to 14 C-hexose-6-P, and rapid separation of the two labelled compounds on anion-exchange paper. This enzyme did not appear to be under tight regulation by feed-back inhibition or activation, nor to be severely inhibited by glucose-6-P or activated by citrate. ADP-glucose pyrophosphorylase and other pyrophosphorylases were assayed radiochemically with 14 C-glucose-1-P (forward direction) or 32-PPsub(i) (reverse direction). They showed that the maize endosperm enzyme was activated by the glycolytic intermediates fructose-6-P and 3-phosphoglycerate, and that low levels of the enzyme were present in the high sucrose-low starch mutant named shrunken-2. Under optimal in-vitro assay conditions, the pollen enzyme reacted four times faster than the observed in-vivo rate of starch accumulation. Biogenesis of plant cell wall polysaccharides requires the conversion of hexose phosphates to various sugar nucleotides and utilization of the latter by the appropriate polysaccharide synthetases. Lily pollen possesses a β-1,3-glucan synthetase which is activated up to six-fold by β-linked oligosaccharides. Hence, the in-vivo activity of this enzyme may be modulated by such effector molecules

  8. Insight into Enzymatic Degradation of Corn, Wheat, and Soybean Cell Wall Cellulose Using Quantitative Secretome Analysis of Aspergillus fumigatus.

    Science.gov (United States)

    Sharma Ghimire, Prakriti; Ouyang, Haomiao; Wang, Qian; Luo, Yuanming; Shi, Bo; Yang, Jinghua; Lü, Yang; Jin, Cheng

    2016-12-02

    Lignocelluloses contained in animal forage cannot be digested by pigs or poultry with 100% efficiency. On contrary, Aspergillus fumigatus, a saprophytic filamentous fungus, is known to harbor 263 glycoside hydrolase encoding genes, suggesting that A. fumigatus is an efficient lignocellulose degrader. Hence the present study uses corn, wheat, or soybean as a sole carbon source to culture A. fumigatus under animal physiological condition to understand how cellulolytic enzymes work together to achieve an efficient degradation of lignocellulose. Our results showed that A. fumigatus produced different sets of enzymes to degrade lignocelluloses derived from corn, wheat, or soybean cell wall. In addition, the cellulolytic enzymes produced by A. fumigatus were stable under acidic condition or at higher temperatures. Using isobaric tags for a relative and absolute quantification (iTRAQ) approach, a total of ∼600 extracellular proteins were identified and quantified, in which ∼50 proteins were involved in lignocellulolysis, including cellulases, hemicellulases, lignin-degrading enzymes, and some hypothetical proteins. Data are available via ProteomeXchange with identifier PXD004670. On the basis of quantitative iTRAQ results, 14 genes were selected for further confirmation by RT-PCR. Taken together, our results indicated that the expression and regulation of lignocellulolytic proteins in the secretome of A. fumigatus were dependent on both nature and complexity of cellulose, thus suggesting that a different enzyme system is required for degradation of different lignocelluloses derived from plant cells. Although A. fumigatus is a pathogenic fungus and cannot be directly used as an enzyme source, as an efficient lignocellulose degrader its strategy to synergistically degrade various lignocelluloses with different enzymes can be used to design enzyme combination for optimal digestion and absorption of corn, wheat, or soybean that are used as forage of pig and poultry.

  9. Combined effects of pectic enzymes on the degradation of pectin polysaccharides of banana fruit

    International Nuclear Information System (INIS)

    Jheng, G.; Jiang, Y.; Ghen, Y.; Yang, S.

    2011-01-01

    Pectin polysaccharide is one of the major components of the primary cellular wall in the middle lamella of plant tissues. The degradation of pectin polysaccharide contributes to fruit softening. In this study, water-soluble pectin (WSP) and acid-soluble pectin (ASP) were isolated from pulp tissues of banana fruit at various ripening stages, and combinations of the enzymes such as polygalcturonase (PG), pectin methylesterase (PME) and beta-galactosidase (beta-Gal) were used to investigate the effect on the degradation of WSP and ASP. PG promoted the degradation of pectin polysaccharides, especially in ASP. An enhanced effect of the degradation of WSP and ASP from various ripening banana fruit was observed in the presence of PME. In addition, beta-Gal accelerated slightly the degradation of WSP and ASP in the presence of PG. Overall, PG, PME and beta-Gal can coordinate to promote the degradation of pectin polysaccharides of banana fruit, resulting in fruit softening. (author)

  10. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora.

    Science.gov (United States)

    Norman-Setterblad, C; Vidal, S; Palva, E T

    2000-04-01

    We have characterized the role of salicylic acid (SA)-independent defense signaling in Arabidopsis thaliana in response to the plant pathogen Erwinia carotovora subsp. carotovora. Use of pathway-specific target genes as well as signal mutants allowed us to elucidate the role and interactions of ethylene, jasmonic acid (JA), and SA signal pathways in this response. Gene expression studies suggest a central role for both ethylene and JA pathways in the regulation of defense gene expression triggered by the pathogen or by plant cell wall-degrading enzymes (CF) secreted by the pathogen. Our results suggest that ethylene and JA act in concert in this regulation. In addition, CF triggers another, strictly JA-mediated response inhibited by ethylene and SA. SA does not appear to have a major role in activating defense gene expression in response to CF. However, SA may have a dual role in controlling CF-induced gene expression, by enhancing the expression of genes synergistically induced by ethylene and JA and repressing genes induced by JA alone.

  11. Identification and expression profiling of novel plant cell wall degrading enzymes from a destructive pest of palm trees, Rhynchophorus ferrugineus.

    Science.gov (United States)

    Antony, B; Johny, J; Aldosari, S A; Abdelazim, M M

    2017-08-01

    Plant cell wall degrading enzymes (PCWDEs) from insects were recently identified as a multigene family of proteins that consist primarily of glycoside hydrolases (GHs) and carbohydrate esterases (CEs) and play essential roles in the degradation of the cellulose/hemicellulose/pectin network in the invaded host plant. Here we applied transcriptomic and degenerate PCR approaches to identify the PCWDEs from a destructive pest of palm trees, Rhynchophorus ferrugineus, followed by a gut-specific and stage-specific differential expression analysis. We identified a total of 27 transcripts encoding GH family members and three transcripts of the CE family with cellulase, hemicellulase and pectinase activities. We also identified two GH9 candidates, which have not previously been reported from Curculionidae. The gut-specific quantitative expression analysis identified key cellulases, hemicellulases and pectinases from R. ferrugineus. The expression analysis revealed a pectin methylesterase, RferCE8u02, and a cellulase, GH45c34485, which showed the highest gut enriched expression. Comparison of PCWDE expression patterns revealed that cellulases and pectinases are significantly upregulated in the adult stages, and we observed specific high expression of the hemicellulase RferGH16c4170. Overall, our study revealed the potential of PCWDEs from R. ferrugineus, which may be useful in biotechnological applications and may represent new tools in R. ferrugineus pest management strategies. © 2017 The Royal Entomological Society.

  12. Starch-degrading enzymes from anaerobic non-clostridial bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Weber, H; Schepers, H J; Troesch, W [Fraunhofer-Institut fuer Grenzflaechen- und Bioverfahrenstechnik (IGB), Stuttgart (Germany, F.R.)

    1990-08-01

    A number of meso- and thermophilic anaerobic starch-degrading non-spore-forming bacteria have been isolated. All the isolates belonging to different genera are strictly anaerobic, as indicated by a catalase-negative reaction, and produce soluble starch-degrading enzymes. Compared to enzymes of aerobic bacteria, those of anaerobic origin mainly show low molecular mass of about 25 000 daltons. Some of the enzymes may have useful applications in the starch industry because of their unusual product pattern, yielding maltotetraose as the main hydrolysis product. (orig.).

  13. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature.

    Directory of Open Access Journals (Sweden)

    Peter K Busk

    Full Text Available The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls.

  14. Screening for isolation and characterisation of microorganisms and enzymes with usefull potential for degradation of celullose and hemicelluose

    Directory of Open Access Journals (Sweden)

    José Fernando Mikán Venegas

    2004-01-01

    Full Text Available A practical, applied microbiology and biotechnology model is presented for isolating and characterising micro-organisms, this being a tiny part of the immense biodiversity of tropical soils. These microbes' ability to produce depolymerases and accessory hydrolases degrading xyloglucans-pectates or glucoarabinoxylans is analysed to evaluate their potential for degrading plant material. We propose culturing micro-organisms on the cell wall as main carbon source and as hydrolitic activity inducer. The same cell walls can be used for cross-linking xylan and for rapid, low cost purification of cellulose and hemicellose degrading enzymes. A 500% xylanase purification yield was obtained in a single step with these affinity supports. Out of the 65 isolates obtained were finally selected for characterising isoenzymes for cellulase and xylanase activities. The five strains are suggested as being potentially useful in different industrial processes regarding degrading cellulose and hemicellulose. Key words: Cellulase, hemicellulase, affinity chromatography, cross-linked substrate, microbiological diversity, composting

  15. High Potential Source for Biomass Degradation Enzyme Discovery and Environmental Aspects Revealed through Metagenomics of Indian Buffalo Rumen

    Directory of Open Access Journals (Sweden)

    K. M. Singh

    2014-01-01

    Full Text Available The complex microbiomes of the rumen functions as an effective system for plant cell wall degradation, and biomass utilization provide genetic resource for degrading microbial enzymes that could be used in the production of biofuel. Therefore the buffalo rumen microbiota was surveyed using shot gun sequencing. This metagenomic sequencing generated 3.9 GB of sequences and data were assembled into 137270 contiguous sequences (contigs. We identified potential 2614 contigs encoding biomass degrading enzymes including glycoside hydrolases (GH: 1943 contigs, carbohydrate binding module (CBM: 23 contigs, glycosyl transferase (GT: 373 contigs, carbohydrate esterases (CE: 259 contigs, and polysaccharide lyases (PE: 16 contigs. The hierarchical clustering of buffalo metagenomes demonstrated the similarities and dissimilarity in microbial community structures and functional capacity. This demonstrates that buffalo rumen microbiome was considerably enriched in functional genes involved in polysaccharide degradation with great prospects to obtain new molecules that may be applied in the biofuel industry.

  16. A Proteomic Study of Pectin Degrading Enzymes Secreted by Botrytis cinerea Grown in Liquid Culture

    Science.gov (United States)

    Shah, Punit; Gutierrez-Sanchez, Gerardo; Orlando, Ron; Bergmann, Carl

    2009-01-01

    Botrytis cinerea is a pathogenic filamentous fungus which infects more than 200 plant species. The enzymes secreted by B. cinerea play an important role in the successful colonization of a host plant. Some of the secreted enzymes are involved in the degradation of pectin, a major component of the plant cell wall. A total of 126 proteins secreted by B. cinerea were identified by growing the fungus on highly or partially esterified pectin, or on sucrose in liquid culture. Sixty-seven common proteins were identified in each of the growth conditions, of which 50 proteins exhibited a Signal P motif. Thirteen B. cinerea proteins with functions related to pectin degradation were identified in both pectin growth conditions, while only four were identified in sucrose. Our results indicate it is unlikely that the activation of B. cinerea from the dormant state to active infection is solely dependent on changes in the degree of esterification of the pectin component of the plant cell wall. Further, these results suggest that future studies of the B. cinerea secretome in infections of ripe and unripe fruits will provide important information that will describe the mechanisms that the fungus employs to access nutrients and decompose tissues. PMID:19526562

  17. Experimental Strategy to Discover Microbes with Gluten-degrading Enzyme Activities.

    Science.gov (United States)

    Helmerhorst, Eva J; Wei, Guoxian

    2014-05-05

    Gluten proteins contained in the cereals barley, rye and wheat cause an inflammatory disorder called celiac disease in genetically predisposed individuals. Certain immunogenic gluten domains are resistant to degradation by mammalian digestive enzymes. Enzymes with the ability to target such domains are potentially of clinical use. Of particular interest are gluten-degrading enzymes that would be naturally present in the human body, e.g. associated with resident microbial species. This manuscript describes a selective gluten agar approach and four enzyme activity assays, including a gliadin zymogram assay, designed for the selection and discovery of novel gluten-degrading microorganisms from human biological samples. Resident and harmless bacteria and/or their derived enzymes could potentially find novel applications in the treatment of celiac disease, in the form of a probiotic agent or as a dietary enzyme supplement.

  18. Monooxygenase, a novel beta-cypermethrin degrading enzyme from Streptomyces sp.

    Directory of Open Access Journals (Sweden)

    Shaohua Chen

    Full Text Available The widely used insecticide beta-cypermethrin has become a public concern because of its environmental contamination and toxic effects on mammals. In this study, a novel beta-cypermethrin degrading enzyme designated as CMO was purified to apparent homogeneity from a Streptomyces sp. isolate capable of utilizing beta-cypermethrin as a growth substrate. The native enzyme showed a monomeric structure with a molecular mass of 41 kDa and pI of 5.4. The enzyme exhibited the maximal activity at pH 7.5 and 30°C. It was fairly stable in the pH range from 6.5-8.5 and at temperatures below 10°C. The enzyme activity was significantly stimulated by Fe(2+, but strongly inhibited by Ag(+, Al(3+, and Cu(2+. The enzyme catalyzed the degradation of beta-cypermethrin to form five products via hydroxylation and diaryl cleavage. A novel beta-cypermethrin detoxification pathway was proposed based on analysis of these products. The purified enzyme was identified as a monooxygenase by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry analysis (MALDI-TOF-MS and N-terminal protein sequencing. Given that all the characterized pyrethroid-degrading enzymes are the members of hydrolase family, CMO represents the first pyrethroid-degrading monooxygenase identified from environmental microorganisms. Taken together, our findings depict a novel pyrethroid degradation mechanism and indicate that the purified enzyme may be a promising candidate for detoxification of beta-cypermethrin and environmental protection.

  19. Activity of cell wall degrading glycanases in methyl jasmonate-induced leaf abscission in Kalanchoe blossfeldiana

    OpenAIRE

    Marian Saniewski; Ewa Gajewska; Henryk Urbanek

    2013-01-01

    It was found previously that methyl jasmonate (JA-Me) induced leaf abscission in Kalanchoe blossfeldiana. In present studies it was shown that JA-Me markedly increased the total activities of cellulase, polygalacturonase, pectinase and xylanase in petioles, but did not affect activities of these enzymes in the blades and apical part of shoots of K. blossfeldiana. These results suggest that methyl jasmonate promotes the degradation of cell wall polysaccharides in the abscission zone and in thi...

  20. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation

    DEFF Research Database (Denmark)

    Agger, Jane W.; Isaksen, Trine; Várnai, Anikó

    2014-01-01

    of LPMOs, and considering the complexity and copolymeric nature of the plant cell wall, it has been speculated that some LPMOs may act on other substrates, in particular the hemicelluloses that tether to cellulose microfibrils. We demonstrate that an LPMO from Neurospora crassa, NcLPMO9C, indeed degrades...... walls. Products generated by NcLPMO9C were analyzed using high performance anion exchange chromatography and multidimensional mass spectrometry. We show that NcLPMO9C generates oxidized products from a variety of substrates and that its product profile differs from those of hydrolytic enzymes acting...... on the same substrates. The enzyme particularly acts on the glucose backbone of xyloglucan, accepting various substitutions (xylose, galactose) in almost all positions. Because the attachment of xyloglucan to cellulose hampers depolymerization of the latter, it is possible that the beneficial effect...

  1. Functional analyses of multiple lichenin-degrading enzymes from the rumen bacterium Ruminococcus albus 8.

    Science.gov (United States)

    Iakiviak, Michael; Mackie, Roderick I; Cann, Isaac K O

    2011-11-01

    Ruminococcus albus 8 is a fibrolytic ruminal bacterium capable of utilization of various plant cell wall polysaccharides. A bioinformatic analysis of a partial genome sequence of R. albus revealed several putative enzymes likely to hydrolyze glucans, including lichenin, a mixed-linkage polysaccharide of glucose linked together in β-1,3 and β-1,4 glycosidic bonds. In the present study, we demonstrate the capacity of four glycoside hydrolases (GHs), derived from R. albus, to hydrolyze lichenin. Two of the genes encoded GH family 5 enzymes (Ra0453 and Ra2830), one gene encoded a GH family 16 enzyme (Ra0505), and the last gene encoded a GH family 3 enzyme (Ra1595). Each gene was expressed in Escherichia coli, and the recombinant protein was purified to near homogeneity. Upon screening on a wide range of substrates, Ra0453, Ra2830, and Ra0505 displayed different hydrolytic properties, as they released unique product profiles. The Ra1595 protein, predicted to function as a β-glucosidase, preferred cleavage of a nonreducing end glucose when linked by a β-1,3 glycosidic bond to the next glucose residue. The major product of Ra0505 hydrolysis of lichenin was predicted to be a glucotriose that was degraded only by Ra0453 to glucose and cellobiose. Most importantly, the four enzymes functioned synergistically to hydrolyze lichenin to glucose, cellobiose, and cellotriose. This lichenin-degrading enzyme mix should be of utility as an additive to feeds administered to monogastric animals, especially those high in fiber.

  2. Ineffective Degradation of Immunogenic Gluten Epitopes by Currently Available Digestive Enzyme Supplements

    Science.gov (United States)

    Janssen, George; Christis, Chantal; Kooy-Winkelaar, Yvonne; Edens, Luppo; Smith, Drew

    2015-01-01

    Background Due to the high proline content of gluten molecules, gastrointestinal proteases are unable to fully degrade them leaving large proline-rich gluten fragments intact, including an immunogenic 33-mer from α-gliadin and a 26-mer from γ-gliadin. These latter peptides can trigger pro-inflammatory T cell responses resulting in tissue remodeling, malnutrition and a variety of other complications. A strict lifelong gluten-free diet is currently the only available treatment to cope with gluten intolerance. Post-proline cutting enzymes have been shown to effectively degrade the immunogenic gluten peptides and have been proposed as oral supplements. Several existing digestive enzyme supplements also claim to aid in gluten degradation. Here we investigate the effectiveness of such existing enzyme supplements in comparison with a well characterized post-proline cutting enzyme, Prolyl EndoPeptidase from Aspergillus niger (AN-PEP). Methods Five commercially available digestive enzyme supplements along with purified digestive enzymes were subjected to 1) enzyme assays and 2) mass spectrometric identification. Gluten epitope degradation was monitored by 1) R5 ELISA, 2) mass spectrometric analysis of the degradation products and 3) T cell proliferation assays. Findings The digestive enzyme supplements showed comparable proteolytic activities with near neutral pH optima and modest gluten detoxification properties as determined by ELISA. Mass spectrometric analysis revealed the presence of many different enzymes including amylases and a variety of different proteases with aminopeptidase and carboxypeptidase activity. The enzyme supplements leave the nine immunogenic epitopes of the 26-mer and 33-mer gliadin fragments largely intact. In contrast, the pure enzyme AN-PEP effectively degraded all nine epitopes in the pH range of the stomach at much lower dose. T cell proliferation assays confirmed the mass spectrometric data. Conclusion Currently available digestive enzyme

  3. Ineffective degradation of immunogenic gluten epitopes by currently available digestive enzyme supplements.

    Directory of Open Access Journals (Sweden)

    George Janssen

    Full Text Available Due to the high proline content of gluten molecules, gastrointestinal proteases are unable to fully degrade them leaving large proline-rich gluten fragments intact, including an immunogenic 33-mer from α-gliadin and a 26-mer from γ-gliadin. These latter peptides can trigger pro-inflammatory T cell responses resulting in tissue remodeling, malnutrition and a variety of other complications. A strict lifelong gluten-free diet is currently the only available treatment to cope with gluten intolerance. Post-proline cutting enzymes have been shown to effectively degrade the immunogenic gluten peptides and have been proposed as oral supplements. Several existing digestive enzyme supplements also claim to aid in gluten degradation. Here we investigate the effectiveness of such existing enzyme supplements in comparison with a well characterized post-proline cutting enzyme, Prolyl EndoPeptidase from Aspergillus niger (AN-PEP.Five commercially available digestive enzyme supplements along with purified digestive enzymes were subjected to 1 enzyme assays and 2 mass spectrometric identification. Gluten epitope degradation was monitored by 1 R5 ELISA, 2 mass spectrometric analysis of the degradation products and 3 T cell proliferation assays.The digestive enzyme supplements showed comparable proteolytic activities with near neutral pH optima and modest gluten detoxification properties as determined by ELISA. Mass spectrometric analysis revealed the presence of many different enzymes including amylases and a variety of different proteases with aminopeptidase and carboxypeptidase activity. The enzyme supplements leave the nine immunogenic epitopes of the 26-mer and 33-mer gliadin fragments largely intact. In contrast, the pure enzyme AN-PEP effectively degraded all nine epitopes in the pH range of the stomach at much lower dose. T cell proliferation assays confirmed the mass spectrometric data.Currently available digestive enzyme supplements are ineffective in

  4. A cell wall-degrading esterase of Xanthomonas oryzae requires a unique substrate recognition module for pathogenesis on rice.

    Science.gov (United States)

    Aparna, Gudlur; Chatterjee, Avradip; Sonti, Ramesh V; Sankaranarayanan, Rajan

    2009-06-01

    Xanthomonas oryzae pv oryzae (Xoo) causes bacterial blight, a serious disease of rice (Oryza sativa). LipA is a secretory virulence factor of Xoo, implicated in degradation of rice cell walls and the concomitant elicitation of innate immune responses, such as callose deposition and programmed cell death. Here, we present the high-resolution structural characterization of LipA that reveals an all-helical ligand binding module as a distinct functional attachment to the canonical hydrolase catalytic domain. We demonstrate that the enzyme binds to a glycoside ligand through a rigid pocket comprising distinct carbohydrate-specific and acyl chain recognition sites where the catalytic triad is situated 15 A from the anchored carbohydrate. Point mutations disrupting the carbohydrate anchor site or blocking the pocket, even at a considerable distance from the enzyme active site, can abrogate in planta LipA function, exemplified by loss of both virulence and the ability to elicit host defense responses. A high conservation of the module across genus Xanthomonas emphasizes the significance of this unique plant cell wall-degrading function for this important group of plant pathogenic bacteria. A comparison with the related structural families illustrates how a typical lipase is recruited to act on plant cell walls to promote virulence, thus providing a remarkable example of the emergence of novel functions around existing scaffolds for increased proficiency of pathogenesis during pathogen-plant coevolution.

  5. The plant cell wall in the feeding sites of cyst nematodes.

    Science.gov (United States)

    Bohlmann, Holger; Sobczak, Miroslaw

    2014-01-01

    Plant parasitic cyst nematodes (genera Heterodera and Globodera) are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2) and migrate intracellularly toward the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC) within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.

  6. The plant cell wall in the feeding sites of cyst nematodes

    Directory of Open Access Journals (Sweden)

    Holger eBohlmann

    2014-03-01

    Full Text Available Plant parasitic cyst nematodes (genera Heterodera and Globodera are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2 and migrate intracellularly towards the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.

  7. Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment

    Directory of Open Access Journals (Sweden)

    Ladisch Michael

    2010-12-01

    Full Text Available Abstract Background Lignin is embedded in the plant cell wall matrix, and impedes the enzymatic saccharification of lignocellulosic feedstocks. To investigate whether enzymatic digestibility of cell wall materials can be improved by altering the relative abundance of the two major lignin monomers, guaiacyl (G and syringyl (S subunits, we compared the degradability of cell wall material from wild-type Arabidopsis thaliana with a mutant line and a genetically modified line, the lignins of which are enriched in G and S subunits, respectively. Results Arabidopsis tissue containing G- and S-rich lignins had the same saccharification performance as the wild type when subjected to enzyme hydrolysis without pretreatment. After a 24-hour incubation period, less than 30% of the total glucan was hydrolyzed. By contrast, when liquid hot water (LHW pretreatment was included before enzyme hydrolysis, the S-lignin-rich tissue gave a much higher glucose yield than either the wild-type or G-lignin-rich tissue. Applying a hot-water washing step after the pretreatment did not lead to a further increase in final glucose yield, but the initial hydrolytic rate was doubled. Conclusions Our analyses using the model plant A. thaliana revealed that lignin composition affects the enzymatic digestibility of LHW pretreated plant material. Pretreatment is more effective in enhancing the saccharification of A. thaliana cell walls that contain S-rich lignin. Increasing lignin S monomer content through genetic engineering may be a promising approach to increase the efficiency and reduce the cost of biomass to biofuel conversion.

  8. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level

    Directory of Open Access Journals (Sweden)

    Henrissat Bernard

    2011-01-01

    Full Text Available Abstract Background Rhizopus oryzae is a zygomycete filamentous fungus, well-known as a saprobe ubiquitous in soil and as a pathogenic/spoilage fungus, causing Rhizopus rot and mucomycoses. Results Carbohydrate Active enzyme (CAZy annotation of the R. oryzae identified, in contrast to other filamentous fungi, a low number of glycoside hydrolases (GHs and a high number of glycosyl transferases (GTs and carbohydrate esterases (CEs. A detailed analysis of CAZy families, supported by growth data, demonstrates highly specialized plant and fungal cell wall degrading abilities distinct from ascomycetes and basidiomycetes. The specific genomic and growth features for degradation of easily digestible plant cell wall mono- and polysaccharides (starch, galactomannan, unbranched pectin, hexose sugars, chitin, chitosan, β-1,3-glucan and fungal cell wall fractions suggest specific adaptations of R. oryzae to its environment. Conclusions CAZy analyses of the genome of the zygomycete fungus R. oryzae and comparison to ascomycetes and basidiomycete species revealed how evolution has shaped its genetic content with respect to carbohydrate degradation, after divergence from the Ascomycota and Basidiomycota.

  9. Enzymes with activity toward Xyloglucan

    NARCIS (Netherlands)

    Vincken, J.P.

    2003-01-01

    Xyloglucans are plant cell wall polysaccharides, which belong to the hemicellulose class. Here the structural variations of xyloglucans will be reviewed. Subsequently, the anchoring of xyloglucan in the plant cell wall will be discussed. Enzymes involved in degradation or modification of xyloglucan

  10. Enzyme-driven Bacillus spore coat degradation leading to spore killing.

    Science.gov (United States)

    Mundra, Ruchir V; Mehta, Krunal K; Wu, Xia; Paskaleva, Elena E; Kane, Ravi S; Dordick, Jonathan S

    2014-04-01

    The bacillus spore coat confers chemical and biological resistance, thereby protecting the core from harsh environments. The primarily protein-based coat consists of recalcitrant protein crosslinks that endow the coat with such functional protection. Proteases are present in the spore coat, which play a putative role in coat degradation in the environment. However these enzymes are poorly characterized. Nonetheless given the potential for proteases to catalyze coat degradation, we screened 10 commercially available proteases for their ability to degrade the spore coats of B. cereus and B. anthracis. Proteinase K and subtilisin Carlsberg, for B. cereus and B. anthracis spore coats, respectively, led to a morphological change in the otherwise impregnable coat structure, increasing coat permeability towards cortex lytic enzymes such as lysozyme and SleB, thereby initiating germination. Specifically in the presence of lysozyme, proteinase K resulted in 14-fold faster enzyme induced germination and exhibited significantly shorter lag times, than spores without protease pretreatment. Furthermore, the germinated spores were shown to be vulnerable to a lytic enzyme (PlyPH) resulting in effective spore killing. The spore surface in response to proteolytic degradation was probed using scanning electron microscopy (SEM), which provided key insights regarding coat degradation. The extent of coat degradation and spore killing using this enzyme-based pretreatment approach is similar to traditional, yet far harsher, chemical decoating methods that employ detergents and strong denaturants. Thus the enzymatic route reduces the environmental burden of chemically mediated spore killing, and demonstrates that a mild and environmentally benign biocatalytic spore killing is achievable. © 2013 Wiley Periodicals, Inc.

  11. Activity of cell wall degrading glycanases in methyl jasmonate-induced leaf abscission in Kalanchoe blossfeldiana

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It was found previously that methyl jasmonate (JA-Me induced leaf abscission in Kalanchoe blossfeldiana. In present studies it was shown that JA-Me markedly increased the total activities of cellulase, polygalacturonase, pectinase and xylanase in petioles, but did not affect activities of these enzymes in the blades and apical part of shoots of K. blossfeldiana. These results suggest that methyl jasmonate promotes the degradation of cell wall polysaccharides in the abscission zone and in this way induces leaf abscission in Kalanchoe blossfeldiana.

  12. Integrative computational approach for genome-based study of microbial lipid-degrading enzymes.

    Science.gov (United States)

    Vorapreeda, Tayvich; Thammarongtham, Chinae; Laoteng, Kobkul

    2016-07-01

    Lipid-degrading or lipolytic enzymes have gained enormous attention in academic and industrial sectors. Several efforts are underway to discover new lipase enzymes from a variety of microorganisms with particular catalytic properties to be used for extensive applications. In addition, various tools and strategies have been implemented to unravel the functional relevance of the versatile lipid-degrading enzymes for special purposes. This review highlights the study of microbial lipid-degrading enzymes through an integrative computational approach. The identification of putative lipase genes from microbial genomes and metagenomic libraries using homology-based mining is discussed, with an emphasis on sequence analysis of conserved motifs and enzyme topology. Molecular modelling of three-dimensional structure on the basis of sequence similarity is shown to be a potential approach for exploring the structural and functional relationships of candidate lipase enzymes. The perspectives on a discriminative framework of cutting-edge tools and technologies, including bioinformatics, computational biology, functional genomics and functional proteomics, intended to facilitate rapid progress in understanding lipolysis mechanism and to discover novel lipid-degrading enzymes of microorganisms are discussed.

  13. Enzymes and other agents that enhance cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1999-01-01

    Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.

  14. degradation or cerebral perfusion? Divergent effects of multifunctional enzymes.

    Science.gov (United States)

    Miners, J Scott; Palmer, Jennifer C; Tayler, Hannah; Palmer, Laura E; Ashby, Emma; Kehoe, Patrick G; Love, Seth

    2014-01-01

    There is increasing evidence that deficient clearance of β-amyloid (Aβ) contributes to its accumulation in late-onset Alzheimer disease (AD). Several Aβ-degrading enzymes, including neprilysin (NEP), endothelin-converting enzyme (ECE), and angiotensin-converting enzyme (ACE) reduce Aβ levels and protect against cognitive impairment in mouse models of AD. In post-mortem human brain tissue we have found that the activity of these Aβ-degrading enzymes rise with age and increases still further in AD, perhaps as a physiological response that helps to minimize the build-up of Aβ. ECE-1/-2 and ACE are also rate-limiting enzymes in the production of endothelin-1 (ET-1) and angiotensin II (Ang II), two potent vasoconstrictors, increases in the levels of which are likely to contribute to reduced blood flow in AD. This review considers the possible interdependence between Aβ-degrading enzymes, ischemia and Aβ in AD: ischemia has been shown to increase Aβ production both in vitro and in vivo, whereas increased Aβ probably enhances ischemia by vasoconstriction, mediated at least in part by increased ECE and ACE activity. In contrast, NEP activity may help to maintain cerebral perfusion, by reducing the accumulation of Aβ in cerebral blood vessels and lessening its toxicity to vascular smooth muscle cells. In assessing the role of Aβ-degrading proteases in the pathogenesis of AD and, particularly, their potential as therapeutic agents, it is important to bear in mind the multifunctional nature of these enzymes and to consider their effects on other substrates and pathways.

  15. Subcellular distribution of histone-degrading enzyme activities from rat liver

    International Nuclear Information System (INIS)

    Heinrich, P.C.; Raydt, G.; Puschendorf, B.; Jusic, M.

    1976-01-01

    Chromatin prepared from liver tissue contains a histone-degrading enzyme activity with a pH optimum of 7.5-8.0, whereas chromatin isolated from purified nuclei is devoid of it. The histone-degrading enzyme activity was assayed with radioactively labelled total histones from Ehrlich ascites tumor cells. Among the different subcellular fractions assayed, only lysosomes and mitochondria exhibited histone-degrading enzymes. A pH optimum around 4.0-5.0 was found for the lysosomal fraction, whereas 7.5-8.0 has been found for mitochondria. Binding studies of frozen and thawed lysosomes or mitochondria to proteinase-free chromatin demonstrate that the proteinase associated with chromatin isolated from frozen tissue originates from damaged mitochondria. The protein degradation patterns obtained after acrylamide gel electrophoresis are similar for the chromatin-associated and the mitochondrial proteinase and different from that obtained after incubation with lysosomes. The chromatin-associated proteinase as well as the mitochondrial proteinase are strongly inhibited by 1.0 mM phenylmethanesulfonyl fluoride. Weak inhibition is found for lysosomal proteinases at pH 5. Kallikrein-trypsin inhibitor, however, inhibits lysosomal proteinase activity and has no effect on either chromatin-associated or mitochondrial proteinases. The higher template activity of chromatin isolated from a total homogenate compared to chromatin prepared from nuclei may be due to the presence of this histone-degrading enzyme activity. (orig.) [de

  16. Thermostable Alginate degrading enzymes and their methods of use

    NARCIS (Netherlands)

    Hreggvidsson, Gudmundur Oli; Jonsson, Oskar W.J.; Bjornsdottir, Bryndis; Fridjonsson, Hedinn O; Altenbuchner, Josef; Watzlawick, Hildegard; Dobruchowska, Justyna; Kamerling, Johannis

    2015-01-01

    The present invention relates to the identification, production and use of thermostable alginate lyase enzymes that can be used to partially degrade alginate to yield oligosaccharides or to give complete degradation of alginate to yield (unsaturated) mono-uronates.

  17. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.

    Science.gov (United States)

    Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P

    2015-07-28

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by

  18. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  20. A role for α-galactosidase in the degradation of the endosperm cell walls of lettuce seeds, cv. Grand Rapids.

    Science.gov (United States)

    Leung, D W; Bewley, J D

    1983-04-01

    Isolated endosperms of Grand Rapids lettuce (Lactuca sativa L.) seeds undergo extensive cell-wall degradation and sugars are released into the surrounding incubation medium. One sugar so released is galactose. α-Galactosidase (EC 3.2.122) is present at the same level in both dry and imbibed isolated endosperms and is responsible for the release of galactose. However, this enzyme does not act upon the native endosperm cell wall, but requires first its partial hydrolysis and the production of oligomers by the action of endo-β-mannanase (EC 3.2.1.787). Galactose is then cleaved from these oligomers, allowing their further subsequent hydrolysis by endo-β-mannanase. Thus α-galactosidase and endo-β-mannanase act cooperatively to effect the hydrolysis of the lettuce endosperm cell walls.

  1. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution.

    Science.gov (United States)

    Janusz, Grzegorz; Pawlik, Anna; Sulej, Justyna; Swiderska-Burek, Urszula; Jarosz-Wilkolazka, Anna; Paszczynski, Andrzej

    2017-11-01

    Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described. © FEMS 2017.

  2. Microbial surface displayed enzymes based biofuel cell utilizing degradation products of lignocellulosic biomass for direct electrical energy.

    Science.gov (United States)

    Fan, Shuqin; Hou, Chuantao; Liang, Bo; Feng, Ruirui; Liu, Aihua

    2015-09-01

    In this work, a bacterial surface displaying enzyme based two-compartment biofuel cell for the direct electrical energy conversion from degradation products of lignocellulosic biomass is reported. Considering that the main degradation products of the lignocellulose are glucose and xylose, xylose dehydrogenase (XDH) displayed bacteria (XDH-bacteria) and glucose dehydrogenase (GDH) displayed bacteria (GDH-bacteria) were used as anode catalysts in anode chamber with methylene blue as electron transfer mediator. While the cathode chamber was constructed with laccase/multi-walled-carbon nanotube/glassy-carbon-electrode. XDH-bacteria exhibited 1.75 times higher catalytic efficiency than GDH-bacteria. This assembled enzymatic fuel cell exhibited a high open-circuit potential of 0.80 V, acceptable stability and energy conversion efficiency. Moreover, the maximum power density of the cell could reach 53 μW cm(-2) when fueled with degradation products of corn stalk. Thus, this finding holds great potential to directly convert degradation products of biomass into electrical energy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of NaHCO3 treatments on the activity of cell wall-degrading enzymes produced by Penicillium digitatum during the pathogenesis process on grapefruit.

    Science.gov (United States)

    Venditti, Tullio; D'hallewin, Guy; Ladu, Gianfranca; Petretto, Giacomo L; Pintore, Giorgio; Labavitch, John M

    2018-03-25

    The present study was performed to clarify the strategies of Penicillium digitatum during pathogenesis on citrus, assessing, on albedo plugs, the effects of treatment with NaHCO 3 , at two different pH (5 and 8.3), on cell wall-degrading enzymes activity, over a period of 72 h. The treatment with NaHCO 3 , under alkaline pH, delayed the polygalacturonase activity for 72 h, or 48 h in the case of the pectin lyase, if compared to the control or the same treatment at pH 5. On the contrary, the pectin methyl esterase activity rapidly increased after 24 h, in plugs dipped in the same solution. In this case, the activity remained higher than untreated or pH 5 treated plugs up to 72 h. The rapid increase in pectin methyl esterase activity, under alkaline conditions, is presumably the strategy of the pathogen to lower the pH, soon after the initiation of infection, in order to restore an optimal environment for the subsequent polygalacturonase and pectin lyase action. In fact at the same time, a low pH delayed the enzymatic activity of polygalacturonase and pectin lyase, the two enzymes that actually cleave the α-1,4-linkages between the galacturonic acid residues. This article is protected by copyright. All rights reserved.

  4. Biosurfactant and Degradative Enzymes Mediated Crude Oil Degradation by Bacterium Bacillus subtilis A1

    Science.gov (United States)

    Parthipan, Punniyakotti; Preetham, Elumalai; Machuca, Laura L.; Rahman, Pattanathu K. S. M.; Murugan, Kadarkarai; Rajasekar, Aruliah

    2017-01-01

    In this work, the biodegradation of the crude oil by the potential biosurfactant producing Bacillus subtilis A1 was investigated. The isolate had the ability to synthesize degradative enzymes such as alkane hydroxylase and alcohol dehydrogenase at the time of biodegradation of hydrocarbon. The biosurfactant producing conditions were optimized as pH 7.0, temperature 40°C, 2% sucrose and 3% of yeast extract as best carbon and nitrogen sources for maximum production of biosurfactant (4.85 g l-1). Specifically, the low molecular weight compounds, i.e., C10–C14 were completely degraded, while C15–C19 were degraded up to 97% from the total hydrocarbon pools. Overall crude oil degradation efficiency of the strain A1 was about 87% within a short period of time (7 days). The accumulated biosurfactant from the biodegradation medium was characterized to be lipopeptide in nature. The strain A1 was found to be more robust than other reported biosurfactant producing bacteria in degradation efficiency of crude oil due to their enzyme production capability and therefore can be used to remove the hydrocarbon pollutants from contaminated environment. PMID:28232826

  5. Enhanced Cellulose Degradation Using Cellulase-Nanosphere Complexes

    Science.gov (United States)

    Blanchette, Craig; Lacayo, Catherine I.; Fischer, Nicholas O.; Hwang, Mona; Thelen, Michael P.

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production. PMID:22870287

  6. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    Directory of Open Access Journals (Sweden)

    Craig Blanchette

    Full Text Available Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC; however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  7. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    Science.gov (United States)

    Blanchette, Craig; Lacayo, Catherine I; Fischer, Nicholas O; Hwang, Mona; Thelen, Michael P

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  8. Impact of cell wall-degrading enzymes on water-holding capacity and solubility of dietary fibre in rye and wheat bran.

    Science.gov (United States)

    Petersson, Karin; Nordlund, Emilia; Tornberg, Eva; Eliasson, Ann-Charlotte; Buchert, Johanna

    2013-03-15

    Rye and wheat bran were treated with several xylanases and endoglucanases, and the effects on physicochemical properties such as solubility, viscosity, water-holding capacity and particle size as well as the chemical composition of the soluble and insoluble fractions of the bran were studied. A large number of enzymes with well-defined activities were used. This enabled a comparison between enzymes of different origins and with different activities as well as a comparison between the effects of the enzymes on rye and wheat bran. The xylanases derived from Bacillus subtilis were the most effective in solubilising dietary fibre from wheat and rye bran. There was a tendency for a higher degree of degradation of the soluble or solubilised dietary fibre in rye bran than in wheat bran when treated with most of the enzymes. None of the enzymes increased the water-holding capacity of the bran or the viscosity of the aqueous phase. The content of insoluble material decreased as the dietary fibre was solubilised by the enzymes. The amount of material that may form a network to retain water in the system was thereby decreased. © 2012 Society of Chemical Industry.

  9. Effects of commercial pectolytic and cellulolytic enzyme preparations on the apple cell wall.

    Science.gov (United States)

    Dongowski, G; Sembries, S

    2001-09-01

    The action of three different commercial enzyme combinations on apple cell wall material has been examined in a model system under conditions of mash and pomace treatment by using an alcohol-insoluble substance prepared from apples. A part of the total dietary fiber, for example, galacturonan (pectin), appeared in the soluble fraction after enzymatic mash treatment. The soluble fraction increased intensely during pomace treatment. Furthermore, enzyme actions caused a change in the water-binding capacity of residues as well as changes in the monosaccharide composition and in the molecular weight distribution of saccharides in filtrates (soluble parts). The extent of decomposition of cell wall material and the increase of soluble oligomeric and/or polymeric dietary fiber components are caused by both the composition (pectinases, cellulases, and hemicellulases) and the activities of the enzyme preparations. The model experiments allow an insight into the reactions occurring during enzyme action on the plant cell wall, for example, during apple juice production using pectolytic and cellulolytic enzyme preparations.

  10. Preparation of supramolecular hydrogel-enzyme hybrids exhibiting biomolecule-responsive gel degradation.

    Science.gov (United States)

    Shigemitsu, Hajime; Fujisaku, Takahiro; Onogi, Shoji; Yoshii, Tatsuyuki; Ikeda, Masato; Hamachi, Itaru

    2016-09-01

    Hydrogelators are small, self-assembling molecules that form supramolecular nanofiber networks that exhibit unique dynamic properties. Development of supramolecular hydrogels that degrade in response to various biomolecules could potentially be used for applications in areas such as drug delivery and diagnostics. Here we provide a synthetic procedure for preparing redox-responsive supramolecular hydrogelators that are used to create hydrogels that degrade in response to oxidizing or reducing conditions. The synthesis takes ∼2-4 d, and it can potentially be carried out in parallel to prepare multiple hydrogelator candidates. This described solid-phase peptide synthesis protocol can be used to produce previously described hydrogelators or to construct a focused molecular library to efficiently discover and optimize new hydrogelators. In addition, we describe the preparation of redox-responsive supramolecular hydrogel-enzyme hybrids that are created by mixing aqueous solutions of hydrogelators and enzymes, which requires 2 h for completion. The resultant supramolecular hydrogel-enzyme hybrids exhibit gel degradation in response to various biomolecules, and can be rationally designed by connecting the chemical reactions of the hydrogelators with enzymatic reactions. Gel degradation in response to biomolecules as triggers occurs within a few hours. We also describe the preparation of hydrogel-enzyme hybrids arrayed on flat glass slides, enabling high-throughput analysis of biomolecules such as glucose, uric acid, lactate and so on by gel degradation, which is detectable by the naked eye. The protocol requires ∼6 h to prepare the hydrogel-enzyme hybrid array and to complete the biomolecule assay.

  11. Survey of ectomycorrhizal, litter-degrading, and wood-degrading Basidiomycetes for dye decolorization and ligninolytic enzyme activity.

    Science.gov (United States)

    Casieri, Leonardo; Anastasi, Antonella; Prigione, Valeria; Varese, Giovanna Cristina

    2010-11-01

    Basidiomycetes are essential in forest ecology, being deeply involved in wood and litter decomposition, humification, and mineralization of soil organic matter. The fungal oxidoreductases involved in these processes are today the focus of much attention with a view to their applications. The ecological role and potential biotechnological applications of 300 isolates of Basidiomycetes were assessed, taking into account the degradation of model dyes in different culture conditions and the production of oxidoreductase enzymes. The tested isolates belong to different ecophysiological groups (wood-degrading, litter-degrading, ectomycorrhizal, and coprophilous fungi) and represent a broad systematic and functional biodiversity among Basidiomycetes occurring in deciduous and evergreen forests of northwest Italy (Piedmont Region). The high number of species tested and the use of different culture conditions allowed the investigation of the degradation activity of several novel species, neglected to date. Oxidative enzyme activities varied widely among all ecophysiological groups and laccases were the most commonly detected enzymes. A large number of isolates (86%), belonging to all ecophysiological groups, were found to be active against at least one model dye; the wood-degrading fungi represented the most efficient group. Noteworthily, also some isolates of litter-degrading and ectomycorrhizal fungi achieved good decolorization yield. The 25 best isolates were then tested against nine industrial dyes commonly employed in textile industries. Three isolates of Bjerkandera adusta efficiently decolorized the dyes on all media and can be considered important candidates for application in textile wastewater treatment.

  12. Inhibition and kinetic studies of lignin degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    Science.gov (United States)

    Surendran, Arthy; Siddiqui, Yasmeen; Saud, Halimi Mohd; Ali, Nusaibah Syd; Manickam, Sivakumar

    2018-05-22

    Lignolytic (Lignin degrading) enzyme, from oil palm pathogen Ganoderma boninense Pat. (Syn G. orbiforme (Ryvarden), is involved in the detoxification and the degradation of lignin in the oil palm and is the rate-limiting step in the infection process of this fungus. Active inhibition of lignin degrading enzymes secreted by G. boninense by various naturally occurring phenolic compounds and estimation of efficiency on pathogen suppression was aimed at. In our work, ten naturally occurring phenolic compounds were evaluated for their inhibitory potential towards the lignolytic enzymes of G.boninense. Additionally, the lignin degrading enzymes were characterised. Most of the peholic compounds exhibited an uncompetitive inhibition towards the lignin degrading enzymes. Benzoic acid was the superior inhibitor to the production of lignin degrading enzymes, when compared between the ten phenolic compounds. The inhibitory potential of the phenolic compounds toward the lignin degrading enzymes are higher than that of the conventional metal ion inhibitor. The lignin degrading enzymes were stable in a wide range of pH but were sensitive to higher to temperature. The study demonstrated the inhibitor potential of ten naturally occurring phenolic compounds toward the lignin degrading enzymes of G. boninense with different efficacies. The study has shed a light towards a new management strategy to control BSR in oil palm. It serves as replacement for the existing chemical control. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes

    Science.gov (United States)

    Rytioja, Johanna; Hildén, Kristiina; Yuzon, Jennifer; Hatakka, Annele; de Vries, Ronald P.

    2014-01-01

    SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation. PMID:25428937

  14. Production of xylan-degrading enzymes by a Trichoderma harzianum strain

    Directory of Open Access Journals (Sweden)

    Cacais André O.Guerreiro

    2001-01-01

    Full Text Available Trichoderma harzianum strain 4 produced extracellular xylan-degrading enzymes, namely beta-xylanase, beta-xylosidase and alpha-arabinofuranosidase, when grown in liquid medium cultures containing oat spelt xylan as inducer. Cellulase activity was not detected. The pattern of xylan-degrading enzymes induction was influenced by the form of xylan present in the medium. They were detected in different incubation periods. Electrophoretic separation of the proteins from liquid culture filtrates by SDS-PAGE showed a variety of bands with high and low molecular weights.

  15. Micropollutant degradation via extracted native enzymes from activated sludge.

    Science.gov (United States)

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  16. A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium Paraglaciecola hydrolytica S66T Encoded in a Sizeable Polysaccharide Utilization Locus.

    Science.gov (United States)

    Schultz-Johansen, Mikkel; Bech, Pernille K; Hennessy, Rosanna C; Glaring, Mikkel A; Barbeyron, Tristan; Czjzek, Mirjam; Stougaard, Peter

    2018-01-01

    Marine microbes are a rich source of enzymes for the degradation of diverse polysaccharides. Paraglaciecola hydrolytica S66 T is a marine bacterium capable of hydrolyzing polysaccharides found in the cell wall of red macroalgae. In this study, we applied an approach combining genomic mining with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66 T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes) notably agarases and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme activities targeting furcellaran, a hybrid carrageenan containing both β-carrageenan and κ/β-carrageenan motifs. Some of these enzymes represent a new subfamily within the CAZy classification. From the combined analyses, we propose models for the complete degradation of agar and κ/β-type carrageenan by P. hydrolytica S66 T . The novel enzymes described here may find value in new bio-based industries and advance our understanding of the mechanisms responsible for recycling of red algal polysaccharides in marine ecosystems.

  17. A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium Paraglaciecola hydrolytica S66T Encoded in a Sizeable Polysaccharide Utilization Locus

    Directory of Open Access Journals (Sweden)

    Mikkel Schultz-Johansen

    2018-05-01

    Full Text Available Marine microbes are a rich source of enzymes for the degradation of diverse polysaccharides. Paraglaciecola hydrolytica S66T is a marine bacterium capable of hydrolyzing polysaccharides found in the cell wall of red macroalgae. In this study, we applied an approach combining genomic mining with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes notably agarases and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme activities targeting furcellaran, a hybrid carrageenan containing both β-carrageenan and κ/β-carrageenan motifs. Some of these enzymes represent a new subfamily within the CAZy classification. From the combined analyses, we propose models for the complete degradation of agar and κ/β-type carrageenan by P. hydrolytica S66T. The novel enzymes described here may find value in new bio-based industries and advance our understanding of the mechanisms responsible for recycling of red algal polysaccharides in marine ecosystems.

  18. Functional and modular analyses of diverse endoglucanases from Ruminococcus albus 8, a specialist plant cell wall degrading bacterium.

    Science.gov (United States)

    Iakiviak, Michael; Devendran, Saravanan; Skorupski, Anna; Moon, Young Hwan; Mackie, Roderick I; Cann, Isaac

    2016-07-21

    Ruminococcus albus 8 is a specialist plant cell wall degrading ruminal bacterium capable of utilizing hemicellulose and cellulose. Cellulose degradation requires a suite of enzymes including endoglucanases, exoglucanases, and β-glucosidases. The enzymes employed by R. albus 8 in degrading cellulose are yet to be completely elucidated. Through bioinformatic analysis of a draft genome sequence of R. albus 8, seventeen putatively cellulolytic genes were identified. The genes were heterologously expressed in E. coli, and purified to near homogeneity. On biochemical analysis with cellulosic substrates, seven of the gene products (Ra0185, Ra0259, Ra0325, Ra0903, Ra1831, Ra2461, and Ra2535) were identified as endoglucanases, releasing predominantly cellobiose and cellotriose. Each of the R. albus 8 endoglucanases, except for Ra0259 and Ra0325, bound to the model crystalline cellulose Avicel, confirming functional carbohydrate binding modules (CBMs). The polypeptides for Ra1831 and Ra2535 were found to contain distantly related homologs of CBM65. Mutational analysis of residues within the CBM65 of Ra1831 identified key residues required for binding. Phylogenetic analysis of the endoglucanases revealed three distinct subfamilies of glycoside hydrolase family 5 (GH5). Our results demonstrate that this fibrolytic bacterium uses diverse GH5 catalytic domains appended with different CBMs, including novel forms of CBM65, to degrade cellulose.

  19. 2009 Cellulosomes, Cellulases & Other Carbohydrate Modifying Enzymes GRC

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Harry [Univ. of Newcastle, Callaghan, NSW (Australia)

    2009-07-26

    The 2009 Gordon Conference on Cellulosomes, Cellulases & Other Carbohydrate Modifying Enzymes will present cutting-edge research on the enzymatic degradation of cellulose and other plant cell wall polysaccharides. The Conference will feature a wide range of topics that includes the enzymology of plant structural degradation, regulation of the degradative apparatus, the mechanism of protein complex assembly, the genomics of cell wall degrading organisms, the structure of the substrate and the industrial application of the process particularly within the biofuel arena. Indeed the deployment of plant cell wall degrading enzymes in biofuel processes will be an important feature of the meeting. It should be emphasized that the 2009 Conference will be expanded to include, in addition to cellulase research, recent advances in other plant cell wall degrading enzymes, and contributions from people working on hemicellulases and pectinases will be particularly welcome. Invited speakers represent a variety of scientific disciplines, including biochemistry, structural biology, genetics and cell biology. The interplay between fundamental research and its industrial exploitation is a particularly important aspect of the meeting, reflecting the appointment of the chair and vice-chair from academia and industry, respectively. The meeting will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with more established figures in the field. Indeed, some poster presenters will be selected for short talks. The collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to brainstorm and promotes cross-disciplinary collaborations in the various research areas represented. The Conference is likely to be heavily subscribed so we would recommend that you submit

  20. Early-branching Gut Fungi Possess A Large, And Comprehensive Array Of Biomass-Degrading Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Kevin V.; Haitjema, Charles; Henske, John K.; Gilmore, Sean P.; Borges-Rivera, Diego; Lipzen, Anna; Brewer, Heather M.; Purvine, Samuel O.; Wright, Aaron T.; Theodorou, Michael K.; Grigoriev, Igor V.; Regev, Aviv; Thompson, Dawn; O' Malley, Michelle A.

    2016-03-11

    The fungal kingdom is the source of almost all industrial enzymes in use for lignocellulose bioprocessing. Its more primitive members, however, remain relatively unexploited. We developed a systems-level approach that integrates RNA-Seq, proteomics, phenotype and biochemical studies of relatively unexplored early-branching free-living fungi. Anaerobic gut fungi isolated from herbivores produce a large array of biomass-degrading enzymes that synergistically degrade crude, unpretreated plant biomass, and are competitive with optimized commercial preparations from Aspergillus and Trichoderma. Compared to these model platforms, gut fungal enzymes are unbiased in substrate preference due to a wealth of xylan-degrading enzymes. These enzymes are universally catabolite repressed, and are further regulated by a rich landscape of noncoding regulatory RNAs. Furthermore, we identified several promising sequence divergent enzyme candidates for lignocellulosic bioprocessing.

  1. Influence of exogenous fibrolytic enzymes on in vitro and in sacco degradation of forages for ruminants

    Directory of Open Access Journals (Sweden)

    Lorenzo Carreón

    2010-02-01

    Full Text Available An in vitro assay was carried out to evaluate the effects of exogenous fibrolytic enzymes (1, 2, 3 and 4 g/kg DM powder preparation containing xylanase and cellulase from Aspergillus niger and Trichoderma viride on DM, NDF and ADF degradation of alfalfa hay, corn silage, corn stover, elephant grass, Guinea grass and oat straw. Kinetics data of in vitro degradations were analyzed. The potentially degradable fraction and degradation rate of NDF and ADF of alfalfa increased quadratically (P<0.05 as the inclusion level of enzyme increased up to 3 g. The others forages were not affected by the enzyme. An in sacco trail was performed using four Holstein steers fitted with ruminal cannulas to evaluate the effects of the exogenous fibrolytic enzymes (3 g/kg DM on DM, NDF and ADF degradation of alfalfa hay and corn stover. Kinetics data were also analyzed. The potentially degradable fraction degradation of NDF (62.0 vs 65.7% and ADF (52.8 vs 56.9%, of alfalfa hay were increased (P<0.05 by the exogenous fibrolytic enzymes, but no differences were found for corn stover. These results suggest that the enzymes increased in vitro and in sacco fibre degradation only for alfalfa hay.

  2. Industrially Important Carbohydrate Degrading Enzymes from Yeasts: Pectinases, Chitinases, and β-1,3-Glucanases

    Science.gov (United States)

    Gummadi, Sathyanarayana N.; Kumar, D. Sunil; Dash, Swati S.; Sahu, Santosh Kumar

    Polysaccharide degrading enzymes are hydrolytic enzymes, which have a lot of industrial potential and also play a crucial role in carbon recycling. Pectinases, chitinases and glucanases are the three major polysaccharide degrading enzymes found abundantly in nature and these enzymes are mainly produced by fungal strains. Production of these enzymes by yeasts is advantageous over fungi, because the former are easily amenable to genetic manipulations and time required for growth and production is less than that of the latter. Several yeasts belonging to Saccharomyces, Pichia, Rhodotorula and Cryptococcus produce extracellular pectinases, glucanases and chitinases. This chapter emphasizes on the biological significance of these enzymes, their production and their industrial applications.

  3. Purification and Properties of a Polyester Polyurethane-Degrading Enzyme from Comamonas acidovorans TB-35.

    Science.gov (United States)

    Akutsu, Y; Nakajima-Kambe, T; Nomura, N; Nakahara, T

    1998-01-01

    A polyester polyurethane (PUR)-degrading enzyme, PUR esterase, derived from Comamonas acidovorans TB-35, a bacterium that utilizes polyester PUR as the sole carbon source, was purified until it showed a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This enzyme was bound to the cell surface and was extracted by addition of 0.2% N,N-bis(3-d-gluconamidopropyl)deoxycholamide (deoxy-BIGCHAP). The results of gel filtration and SDS-PAGE showed that the PUR esterase was a monomer with a molecular mass of about 62,000 Da. This enzyme, which is a kind of esterase, degraded solid polyester PUR, with diethylene glycol and adipic acid released as the degradation products. The optimum pH for this enzyme was 6.5, and the optimum temperature was 45 degrees C. PUR degradation by the PUR esterase was strongly inhibited by the addition of 0.04% deoxy-BIGCHAP. On the other hand, deoxy-BIGCHAP did not inhibit the activity when p-nitrophenyl acetate, a water-soluble compound, was used as a substrate. These observations indicated that this enzyme degrades PUR in a two-step reaction: hydrophobic adsorption to the PUR surface and hydrolysis of the ester bond of PUR.

  4. Isolation and characterization of an insulin-degrading enzyme from Drosophila melanogaster

    International Nuclear Information System (INIS)

    Garcia, J.V.; Fenton, B.W.; Rosner, M.R.

    1988-01-01

    An insulin-degrading enzyme (IDE) from the cytoplasm of Drosophila Kc cells has been purified and characterized. The purified enzyme is a monomer with an s value of 7.2 S, an apparent K/sub m/ for porcine insulin of 3 μM, and a specific activity of 3.3 nmol of porcine insulin degraded/(min x mg). N-Terminal sequence analysis of the gel-purified enzyme gave a single, serine-rich sequence. The Drosophila IDE shares a number of properties in common with its mammalian counterpart. The enzyme could be specifically affinity-labeled with [ 125 I]insulin, has a molecular weight of 110K, and has a pI of 5.3. Although Drosophila Kc cells grow at room temperature, the optimal enzyme activity assay conditions parallel those of the mammalian IDE: 37 0 C and a pH range of 7-8. The Drosophila IDE activity, like the mammalian enzymes, is inhibited by bacitracin and sulfhydryl-specific reagents. Similarly, the Drosophila IDE activity is insensitive to glutathione as well as protease inhibitors such as aprotinin and leupeptin. Insulin-like growth factor II, equine insulin, and porcine insulin compete for degradation of [ 125 I]insulin at comparable concentrations (approximately 10 -6 M), whereas insulin-like growth factor I and the individual A and B chains of insulin are less effective. The high degree of evolutionary conservation between the Drosophila and mammalian IDE suggest an important role for this enzyme in the metabolism of insulin and also provides further evidence for the existence of a complete insulin-like system in invertebrate organisms such as Drosophila

  5. Degradation of phenolic compounds with hydrogen peroxide catalyzed by enzyme from Serratia marcescens AB 90027.

    Science.gov (United States)

    Yao, Ri-Sheng; Sun, Min; Wang, Chun-Ling; Deng, Sheng-Song

    2006-09-01

    In this paper, the degradation of phenolic compounds using hydrogen peroxide as oxidizer and the enzyme extract from Serratia marcescens AB 90027 as catalyst was reported. With such an enzyme/H2O2 combination treatment, a high chemical oxygen demand (COD) removal efficiency was achieved, e.g., degradation of hydroquinone exceeded 96%. From UV-visible and IR spectra, the degradation mechanisms were judged as a process of phenyl ring cleavage. HPLC analysis shows that in the degradation p-benzoquinone, maleic acid and oxalic acid were formed as intermediates and that they were ultimately converted to CO2 and H2O. With the enzyme/H2O2 treatment, vanillin, hydroquinone, catechol, o-aminophenol, p-aminophenol, phloroglucinol and p-hydroxybenzaldehyde were readily degraded, whereas the degradation of phenol, salicylic acid, resorcinol, p-cholorophenol and p-nitrophenol were limited. Their degradability was closely related to the properties and positions of their side chain groups. Electron-donating groups, such as -OH, -NH2 and -OCH3 enhanced the degradation, whereas electron-withdrawing groups, such as -NO2, -Cl and -COOH, had a negative effect on the degradation of these compounds in the presence of enzyme/H2O2. Compounds with -OH at ortho and para positions were more readily degraded than those with -OH at meta positions.

  6. Sensitivity of Variables with Time for Degraded RC Shear Wall with Low Steel Ratio under Seismic Load

    International Nuclear Information System (INIS)

    Park, Jun Hee; Choun, Young Sun; Choi, In Kil

    2011-01-01

    Various factors lead to the degradation of reinforced concrete (RC) shear wall over time. The steel section loss, concrete spalling and strength of material have been considered for the structural analysis of degraded shear wall. When all variables with respect to degradation are considered for probabilistic evaluation of degraded shear wall, many of time and effort were demanded. Therefore, it is required to define important variables related to structural behavior for effectively conducting probabilistic seismic analysis of structures with age-related degradation. In this study, variables were defined by applying the function of time to consider degradation with time. Importance of variables with time on the seismic response was investigated by conducting sensitivity analysis

  7. Interaction and modulation of two antagonistic cell wall enzymes of mycobacteria.

    Directory of Open Access Journals (Sweden)

    Erik C Hett

    2010-07-01

    Full Text Available Bacterial cell growth and division require coordinated cell wall hydrolysis and synthesis, allowing for the removal and expansion of cell wall material. Without proper coordination, unchecked hydrolysis can result in cell lysis. How these opposing activities are simultaneously regulated is poorly understood. In Mycobacterium tuberculosis, the resuscitation-promoting factor B (RpfB, a lytic transglycosylase, interacts and synergizes with Rpf-interacting protein A (RipA, an endopeptidase, to hydrolyze peptidoglycan. However, it remains unclear what governs this synergy and how it is coordinated with cell wall synthesis. Here we identify the bifunctional peptidoglycan-synthesizing enzyme, penicillin binding protein 1 (PBP1, as a RipA-interacting protein. PBP1, like RipA, localizes both at the poles and septa of dividing cells. Depletion of the ponA1 gene, encoding PBP1 in M. smegmatis, results in a severe growth defect and abnormally shaped cells, indicating that PBP1 is necessary for viability and cell wall stability. Finally, PBP1 inhibits the synergistic hydrolysis of peptidoglycan by the RipA-RpfB complex in vitro. These data reveal a post-translational mechanism for regulating cell wall hydrolysis and synthesis through protein-protein interactions between enzymes with antagonistic functions.

  8. Enzyme Amplified Detection of Microbial Cell Wall Components

    Science.gov (United States)

    Wainwright, Norman R.

    2004-01-01

    This proposal is MBL's portion of NASA's Johnson Space Center's Astrobiology Center led by Principal Investigator, Dr. David McKay, entitled: 'Institute for the Study of Biomarkers in Astromaterials.' Dr. Norman Wainwright is the principal investigator at MBL and is responsible for developing methods to detect trace quantities of microbial cell wall chemicals using the enzyme amplification system of Limulus polyphemus and other related methods.

  9. Two novel, putatively cell wall-associated and glycosylphosphatidylinositol-anchored alpha-glucanotransferase enzymes of Aspergillus niger.

    Science.gov (United States)

    van der Kaaij, R M; Yuan, X-L; Franken, A; Ram, A F J; Punt, P J; van der Maarel, M J E C; Dijkhuizen, L

    2007-07-01

    In the genome sequence of Aspergillus niger CBS 513.88, three genes were identified with high similarity to fungal alpha-amylases. The protein sequences derived from these genes were different in two ways from all described fungal alpha-amylases: they were predicted to be glycosylphosphatidylinositol anchored, and some highly conserved amino acids of enzymes in the alpha-amylase family were absent. We expressed two of these enzymes in a suitable A. niger strain and characterized the purified proteins. Both enzymes showed transglycosylation activity on donor substrates with alpha-(1,4)-glycosidic bonds and at least five anhydroglucose units. The enzymes, designated AgtA and AgtB, produced new alpha-(1,4)-glycosidic bonds and therefore belong to the group of the 4-alpha-glucanotransferases (EC 2.4.1.25). Their reaction products reached a degree of polymerization of at least 30. Maltose and larger maltooligosaccharides were the most efficient acceptor substrates, although AgtA also used small nigerooligosaccharides containing alpha-(1,3)-glycosidic bonds as acceptor substrate. An agtA knockout of A. niger showed an increased susceptibility towards the cell wall-disrupting compound calcofluor white, indicating a cell wall integrity defect in this strain. Homologues of AgtA and AgtB are present in other fungal species with alpha-glucans in their cell walls, but not in yeast species lacking cell wall alpha-glucan. Possible roles for these enzymes in the synthesis and/or maintenance of the fungal cell wall are discussed.

  10. Winery biomass waste degradation by sequential sonication and mixed fungal enzyme treatments.

    Science.gov (United States)

    Karpe, Avinash V; Dhamale, Vijay V; Morrison, Paul D; Beale, David J; Harding, Ian H; Palombo, Enzo A

    2017-05-01

    To increase the efficiency of winery-derived biomass biodegradation, grape pomace was ultrasonicated for 20min in the presence of 0.25M, 0.5Mand1.0MKOH and 1.0MNaOH. This was followed by treatment with a 1:1 (v/v) mix of crude enzyme preparation derived from Phanerochaete chrysosporium and Trametes versicolor for 18h and a further 18h treatment with a 60:14:4:2 percent ratio combination of enzymes derived from Aspergillus niger: Penicillium chrysogenum: Trichoderma harzianum: P. citrinum, repsectively. Process efficiency was evaluated by its comparison to biological only mixed fungal degradation over 16days. Ultrasonication treatment with 0.5MKOH followed by mixed enzyme treatment yielded the highest lignin degradation of about 13%. Cellulase, β-glucosidase, xylanase, laccase and lignin peroxidase activities of 77.9, 476, 5,390.5, 66.7 and 29,230.7U/mL, respectively, were observed during biomass degradation. Gas chromatography-mass spectrometry (GC-MS) analysis of the degraded material identified commercially important compounds such as gallic acid, lithocholic acid, glycolic acid and lactic acid which were generated in considerable quantities. Thus, the combination of sonication pre-treatment and enzymatic degradation has the potential to considerably improve the breakdown of agricultural biomass and produce commercially useful compounds in markedly less time (<40h) with respect to biological only degradation (16days). Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Application of residual polysaccharide-degrading enzymes in dried shiitake mushrooms as an enzyme preparation in food processing.

    Science.gov (United States)

    Tatsumi, E; Konishi, Y; Tsujiyama, S

    2016-11-01

    To examine the activities of residual enzymes in dried shiitake mushrooms, which are a traditional foodstuff in Japanese cuisine, for possible applications in food processing. Polysaccharide-degrading enzymes remained intact in dried shiitake mushrooms and the activities of amylase, β-glucosidase and pectinase were high. A potato digestion was tested using dried shiitake powder. The enzymes reacted with potato tuber specimens to solubilize sugars even under a heterogeneous solid-state condition and that their reaction modes were different at 38 and 50 °C. Dried shiitake mushrooms have a potential use in food processing as an enzyme preparation.

  12. Enzymatic Modification of Plant Cell Wall Polysaccharides

    DEFF Research Database (Denmark)

    Øbro, Jens; Hayashi, Takahisa; Mikkelsen, Jørn Dalgaard

    2011-01-01

    Plant cell walls are intricate structures with remarkable properties, widely used in almost every aspect of our life. Cell walls consist largely of complex polysaccharides and there is often a need for chemical and biochemical processing before industrial use. There is an increasing demand...... for sustainable processes that replace chemical treatments with white biotechnology. Plants can contribute significantly to this sustainable process by producing plant or microbialenzymes in planta that are necessary for plant cell wall modification or total degradation. This will give rise to superior food...... fibres, hydrocolloids, paper,textile, animal feeds or biofuels. Classical microbial-based fermentation systems could in the future face serious competition from plant-based expression systems for enzyme production. Plant expressed enzymes can either be targeted to specific cellular compartments...

  13. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP)

    Science.gov (United States)

    Ma, Hongyan; Delafield, Daniel G.; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion.

  14. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts

    Science.gov (United States)

    Chenthamara, Komal; Zhang, Jian; Atanasova, Lea; Yang, Dongqing; Miao, Youzhi; Grujic, Marica; Pourmehdi, Shadi; Pretzer, Carina; Kopchinskiy, Alexey G.; Hundley, Hope; Wang, Mei; Aerts, Andrea; Salamov, Asaf; Lipzen, Anna; Barry, Kerrie; Grigoriev, Igor V.; Shen, Qirong; Kubicek, Christian P.

    2018-01-01

    Unlike most other fungi, molds of the genus Trichoderma (Hypocreales, Ascomycota) are aggressive parasites of other fungi and efficient decomposers of plant biomass. Although nutritional shifts are common among hypocrealean fungi, there are no examples of such broad substrate versatility as that observed in Trichoderma. A phylogenomic analysis of 23 hypocrealean fungi (including nine Trichoderma spp. and the related Escovopsis weberi) revealed that the genus Trichoderma has evolved from an ancestor with limited cellulolytic capability that fed on either fungi or arthropods. The evolutionary analysis of Trichoderma genes encoding plant cell wall-degrading carbohydrate-active enzymes and auxiliary proteins (pcwdCAZome, 122 gene families) based on a gene tree / species tree reconciliation demonstrated that the formation of the genus was accompanied by an unprecedented extent of lateral gene transfer (LGT). Nearly one-half of the genes in Trichoderma pcwdCAZome (41%) were obtained via LGT from plant-associated filamentous fungi belonging to different classes of Ascomycota, while no LGT was observed from other potential donors. In addition to the ability to feed on unrelated fungi (such as Basidiomycota), we also showed that Trichoderma is capable of endoparasitism on a broad range of Ascomycota, including extant LGT donors. This phenomenon was not observed in E. weberi and rarely in other mycoparasitic hypocrealean fungi. Thus, our study suggests that LGT is linked to the ability of Trichoderma to parasitize taxonomically related fungi (up to adelphoparasitism in strict sense). This may have allowed primarily mycotrophic Trichoderma fungi to evolve into decomposers of plant biomass. PMID:29630596

  15. End-to-end gene fusions and their impact on the production of multifunctional biomass degrading enzymes

    International Nuclear Information System (INIS)

    Rizk, Mazen; Antranikian, Garabed; Elleuche, Skander

    2012-01-01

    Highlights: ► Multifunctional enzymes offer an interesting approach for biomass degradation. ► Size and conformation of separate constructs play a role in the effectiveness of chimeras. ► A connecting linker allows for maximal flexibility and increased thermostability. ► Genes with functional similarities are the best choice for fusion candidates. -- Abstract: The reduction of fossil fuels, coupled with its increase in price, has made the search for alternative energy resources more plausible. One of the topics gaining fast interest is the utilization of lignocellulose, the main component of plants. Its primary constituents, cellulose and hemicellulose, can be degraded by a series of enzymes present in microorganisms, into simple sugars, later used for bioethanol production. Thermophilic bacteria have proven to be an interesting source of enzymes required for hydrolysis since they can withstand high and denaturing temperatures, which are usually required for processes involving biomass degradation. However, the cost associated with the whole enzymatic process is staggering. A solution for cost effective and highly active production is through the construction of multifunctional enzyme complexes harboring the function of more than one enzyme needed for the hydrolysis process. There are various strategies for the degradation of complex biomass ranging from the regulation of the enzymes involved, to cellulosomes, and proteins harboring more than one enzymatic activity. In this review, the construction of multifunctional biomass degrading enzymes through end-to-end gene fusions, and its impact on production and activity by choosing the enzymes and linkers is assessed.

  16. Potential Degradation of Swainsonine by Intracellular Enzymes of Arthrobacter sp. HW08

    Directory of Open Access Journals (Sweden)

    Haili Li

    2013-11-01

    Full Text Available Swainsonine (SW is a toxin produced by locoweeds and harmful to the livestock industry. Degrading SW by Arthrobacter sp. HW08 was demonstrated as a promising way to deal with SW poisoning. However, it is unknown which part of the subcellular enzymes in Arthrobacter sp. HW08 is responsible for biodegrading SW and whether the metabolites are atoxic. In this study, intracellular and extracellular enzymes of Arthrobacter sp. HW08 were isolated and their enzyme activity was evaluated. The metabolites were fed to mice, and physiological and histological properties of the treated mice were investigated. The results showed that only intracellular enzyme of Arthrobacter sp. HW08 (IEHW08 could degrade SW efficiently. Compared with mice in SW treatment group, mice in SW + IEHW08 treatment group (1 increased their body weights; (2 showed higher number of platelets and lower number of white blood cells; (3 decreased the levels of creatinine, urea nitrogen, alanine transaminase and aspartate aminotransferase in serum; (4 reduced the number of vacuolated cells in cerebellum, liver and kidney. All these data demonstrate that IEHW08 was potentially safe for mice, while keeping the capacity of degrading SW. This study indicates a possible application of IEHW08 as an additive in the livestock industry to protect animals from SW poisoning.

  17. Metabolism of enkephalin in stomach wall of rats

    Energy Technology Data Exchange (ETDEWEB)

    Bunnett, N.W.; Walsh, J.H.; Debas, H.T. (Univ. of California, San Francisco (USA))

    1990-01-01

    Peptidases degrade neuropeptides and thereby limit the duration and extent of their influence. This investigation examined the importance of peptidases in the degradation of the neuropeptide enkephalin in the stomach wall of the rat. Metabolism of (Leu5)- and (D-Ala2)(Leu5)enkephalin by gastric membranes was examined in vitro. Degradation of (Tyr1-3H)(Leu5)enkephalin was studied in the gastric submucosa of anesthetized and conscious rats in vivo by using a catheter to deliver peptide to tissues and implanted dialysis fibers to collect the metabolites. Specific inhibitors were used to assess the contribution of particular enzymes. (Leu5)- and (Tyr1-3H)(Leu5)enkephalin were metabolized by membranes and in the stomach wall by hydrolysis of the Tyr1-Gly2 bond. Degradation was inhibited by the aminopeptidase inhibitor amastatin (10(-5) M in vitro, 10 nmol in vivo). Inhibitors of endopeptidase-24.11 (phosphoramidon) and angiotensin-converting enzyme (captopril) did not inhibit degradation. Metabolism of the aminopeptidase-resistant analogue (D-Ala2)(Leu5)enkephalin by membranes was unaffected by amastatin and weakly inhibited by phosphoramidon affected by amastatin and weakly inhibited by phosphoramidon and captopril. A carboxypeptidase removed the COOH-terminal leucine residue and made a substantial contribution to degradation of both peptides by gastric membranes.

  18. Effect of solvents on the enzyme mediated degradation of copolymers

    International Nuclear Information System (INIS)

    Banerjee, Aditi; Chatterjee, Kaushik; Madras, Giridhar

    2015-01-01

    The biodegradation of polycaprolactone (PCL), polylactic acid (PLA), polyglycolide (PGA) and their copolymers, poly (lactide-co-glycolide) and poly (D, L-lactide-co-caprolactone) (PLCL) was investigated. The influence of different solvents on the degradation of these polymers at 37 °C in the presence of two different lipases namely Novozym 435 and the free lipase of porcine pancreas was investigated. The rate coefficients for the polymer degradation and enzyme deactivation were determined using continuous distribution kinetics. Among the homopolymers, the degradation of PGA was nearly an order of magnitude lower than that for PCL and PLA. The overall rate coefficients of the copolymers were higher than their respective homopolymers. Thus, PLCL degraded faster than either PCL or PLA. The degradation was highly dependent on the viscosity of the solvent used with the highest degradation observed in acetone. The degradation of the polymers in acetone was nearly twice that observed in dimethyl sulfoxide indicating that the degradation decreases with increase in the solvent viscosity. The degradation of the polymers in water-solvent mixtures indicated an optimal water content of 2.5 wt% of water. (paper)

  19. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  20. Investigating Aspergillus nidulans secretome during colonisation of cork cell walls.

    Science.gov (United States)

    Martins, Isabel; Garcia, Helga; Varela, Adélia; Núñez, Oscar; Planchon, Sébastien; Galceran, Maria Teresa; Renaut, Jenny; Rebelo, Luís P N; Silva Pereira, Cristina

    2014-02-26

    Cork, the outer bark of Quercus suber, shows a unique compositional structure, a set of remarkable properties, including high recalcitrance. Cork colonisation by Ascomycota remains largely overlooked. Herein, Aspergillus nidulans secretome on cork was analysed (2DE). Proteomic data were further complemented by microscopic (SEM) and spectroscopic (ATR-FTIR) evaluation of the colonised substrate and by targeted analysis of lignin degradation compounds (UPLC-HRMS). Data showed that the fungus formed an intricate network of hyphae around the cork cell walls, which enabled polysaccharides and lignin superficial degradation, but probably not of suberin. The degradation of polysaccharides was suggested by the identification of few polysaccharide degrading enzymes (β-glucosidases and endo-1,5-α-l-arabinosidase). Lignin degradation, which likely evolved throughout a Fenton-like mechanism relying on the activity of alcohol oxidases, was supported by the identification of small aromatic compounds (e.g. cinnamic acid and veratrylaldehyde) and of several putative high molecular weight lignin degradation products. In addition, cork recalcitrance was corroborated by the identification of several protein species which are associated with autolysis. Finally, stringent comparative proteomics revealed that A. nidulans colonisation of cork and wood share a common set of enzymatic mechanisms. However the higher polysaccharide accessibility in cork might explain the increase of β-glucosidase in cork secretome. Cork degradation by fungi remains largely overlook. Herein we aimed at understanding how A. nidulans colonise cork cell walls and how this relates to wood colonisation. To address this, the protein species consistently present in the secretome were analysed, as well as major alterations occurring in the substrate, including lignin degradation compounds being released. The obtained data demonstrate that this fungus has superficially attacked the cork cell walls apparently by

  1. Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw

    DEFF Research Database (Denmark)

    Thygesen, A.; Thomsen, A.B.; Schmidt, A.S.

    2003-01-01

    The production of cellulose and hemicellulose-degrading enzymes by cultivation of Aspergillus niger ATCC 9029, Botrytis cinerea ATCC 28466, Penicillium brasilianum IBT 20888, Schizophyllum commune ATCC 38548, and Trichoderma reesei Rut-C30 was studied. Wet-oxidised wheat straw suspension suppleme......The production of cellulose and hemicellulose-degrading enzymes by cultivation of Aspergillus niger ATCC 9029, Botrytis cinerea ATCC 28466, Penicillium brasilianum IBT 20888, Schizophyllum commune ATCC 38548, and Trichoderma reesei Rut-C30 was studied. Wet-oxidised wheat straw suspension...... hydrolysis of filter cake from wet-oxidised wheat straw for 48 h with an enzyme loading of 5 FPU/g biomass resulted in glucose yields from cellulose of 58% (w/w) and 39% (w/w) using enzymes produced by R brasilianum and a commercial enzyme mixture, respectively. At higher enzyme loading (25 FPU/g biomass...

  2. Effects of X-irradiation on artificial blood vessel wall degradation by invasive tumor cells

    International Nuclear Information System (INIS)

    Heisel, M.A.; Laug, W.E.; Stowe, S.M.; Jones, P.A.

    1984-01-01

    Artificial vessel wall cultures, constructed by growing arterial endothelial cells on preformed layers of rat smooth muscle cells, were used to evaluate the effects of X-irradiation on tumor cell-induced tissue degradation. Bovine endothelial cells had radiation sensitivities similar to those of rat smooth muscle cells. Preirradiation of smooth muscle cells, before the addition of human fibrosarcoma (HT 1080) cells, did not increase the rate of degradation and destruction by the invasive cells. However, the degradation rate was decreased if the cultures were irradiated after the addition of HT 1080 cells. The presence of bovine endothelial cells markedly inhibited the destructive abilities of fibrosarcoma cells, but preirradiation of artificial vessel walls substantially decreased their capabilities to resist HT 1080-induced lysis. These findings suggest that the abilities of blood vessels to limit extravasation may be compromised by ionizing radiation

  3. A molecular analysis of (hemi-)cellulose degradation by Aspergilli

    NARCIS (Netherlands)

    Gielkens, M.M.C.

    1999-01-01

    Glycosylhydrolases like cellulases and xylanases are of great importance for the ecological recycling of biomass. The saprophytic fungi, e.g Aspergillus niger , are capable of degrading plant cell wall material by secreting these enzymes. Because of their properties, a

  4. Cell wall degrading enzymes in Trichoderma asperellum grown on wheat bran

    DEFF Research Database (Denmark)

    Bech, Lasse; Busk, Peter Kamp; Lange, Lene

    2015-01-01

    . asperellum was grown on wheat bran, the greatest range of enzymes activity was detected and a total of 175 glycoside hydrolases from 48 glycoside hydrolase families were identified in the transcriptome. The glycoside hydrolases were identified on a functional level using the bioinformatical tool Peptide...... the theory that the glycoside hydrolases have evolved from a common ancestor, followed by a specialization in which saprotrophic fungi such as T. reesei and T. longibrachiatum lost a significant number of genes including several glycoside hydrolases....

  5. Diversity screening for novel enzymes degrading synthetic polymers

    DEFF Research Database (Denmark)

    Lezyk, Mateusz Jakub

    plant cell wall polymers. Several enzymes catalysed transglycosylation either using lactose or pNP-Fuc as acceptor and Mfuc6 exhibited an unusually high transglycosylation/hydrolysis ratio. Using 25 mM pNP-Fuc as donor and under conditions tested, the maximum yields of 1.6 ± 0.1 mM 2’-fucosyllactose...... of glucose during cellulase-catalyzed hydrolysis of pretreated sugarcane bagasse. We have further utilized the constructed metagenomic library for functional identification of epoxide hydrolase activities using a new agar-plate assay. Using this method, clones with epoxide hydrolase activity were identified...

  6. Optimization of liquid-state fermentation conditions for the glyphosate degradation enzyme production of strain Aspergillus oryzae by ultraviolet mutagenesis.

    Science.gov (United States)

    Fu, Gui-Ming; Li, Ru-Yi; Li, Kai-Min; Hu, Ming; Yuan, Xiao-Qiang; Li, Bin; Wang, Feng-Xue; Liu, Cheng-Mei; Wan, Yin

    2016-11-16

    This study aimed to obtain strains with high glyphosate-degrading ability and improve the ability of glyphosate degradation enzyme by the optimization of fermentation conditions. Spore from Aspergillus oryzae A-F02 was subjected to ultraviolet mutagenesis. Single-factor experiment and response surface methodology were used to optimize glyphosate degradation enzyme production from mutant strain by liquid-state fermentation. Four mutant strains were obtained and named as FUJX 001, FUJX 002, FUJX 003, and FUJX 004, in which FUJX 001 gave the highest total enzyme activity. Starch concentration at 0.56%, GP concentration at 1,370 mg/l, initial pH at 6.8, and temperature at 30°C were the optimum conditions for the improved glyphosate degradation endoenzyme production of A. oryzae FUJX 001. Under these conditions, the experimental endoenzyme activity was 784.15 U/100 ml fermentation liquor. The result (784.15 U/100 ml fermentation liquor) was approximately 14-fold higher than that of the original strain. The result highlights the potential of glyphosate degradation enzyme to degrade glyphosate.

  7. Degradation of β-Aryl Ether Bonds in Transgenic Plants

    DEFF Research Database (Denmark)

    Mnich, Ewelina

    Lignin is one of the main building blocks of the plant cell wall. It tethers the cell wall by cross-linking with polysaccharides conferring mechanical strength to plants, aiding water transport and providing a mechanical barrier against pathogens. It is generated by the polymerization....... Compared to other plants grass cell walls contain elevated amount of ferulates which play a crucial role in cross-linking of polysaccharides and lignin. In addition ferulates are believed to be nucleation cites for the lignification. The bacterium Sphingomonas paucimobilis SYK6 has developed an enzyme...... of the cell wall. The aim of the study was to alter lignin structure by expression in plants of the enzymes from S. paucimobilis involved in ether bond degradation (LigDFG). Arabidopsis thaliana and Brachypodium distachyon transgenic lines were generated and characterized with respect to lignin structure...

  8. Relating Nanoscale Accessibility within Plant Cell Walls to Improved Enzyme Hydrolysis Yields in Corn Stover Subjected to Diverse Pretreatments.

    Science.gov (United States)

    Crowe, Jacob D; Zarger, Rachael A; Hodge, David B

    2017-10-04

    Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water-cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields.

  9. Effects of Lactobacillus plantarum and hydrolytic enzymes on fermentation and ruminal degradability of orange pulp silage

    DEFF Research Database (Denmark)

    Taghizadeh, Akbar; Paya, Hamid; Lashkari, Saman

    2015-01-01

    The current study was carried out to examine the effect of inoculants, enzymes and mixtures of them on the fermentation, degradability and nutrient value of orange pulp silage. Orange pulp was treated with water (control), inoculant (Lactobacillus plantarum), enzymes (multiple enzyme) or inoculants...

  10. Characterization of poly(L-lactide)-degrading enzyme produced by thermophilic filamentous bacteria Laceyella sacchari LP175.

    Science.gov (United States)

    Hanphakphoom, Srisuda; Maneewong, Narisara; Sukkhum, Sukhumaporn; Tokuyama, Shinji; Kitpreechavanich, Vichien

    2014-01-01

    Eleven strains of poly(L-lactide) (PLLA)-degrading thermophilic bacteria were isolated from forest soils and selected based on clear zone formation on an emulsified PLLA agar plate at 50°C. Among the isolates, strain LP175 showed the highest PLLA-degrading ability. It was closely related to Laceyella sacchari, with 99.9% similarity based on the 16S rRNA gene sequence. The PLLA-degrading enzyme produced by the strain was purified to homogeneity by 48.1% yield and specific activity of 328 U·mg-protein-1 with a 15.3-fold purity increase. The purified enzyme was strongly active against specific substrates such as casein and gelatin and weakly active against Suc-(Ala)₃-pNA. Optimum enzyme activity was exhibited at a temperature of 60°C with thermal stability up to 50°C and a pH of 9.0 with pH stability in a range of 8.5-10.5. Molecular weight of the enzyme was approximately 28.0 kDa, as determined by gel filtration and SDS-PAGE. The inhibitors phenylmethylsulfonyl fluoride (PMSF), ethylenediaminetetraacetate (EDTA), and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) strongly inhibited enzyme activity, but the activity was not inhibited by 1 mM 1,10-phenanthroline (1,10-phen). The N-terminal amino acid sequences had 100% homology with thermostable serine protease (thermitase) from Thermoactinomyces vulgaris. The results obtained suggest that the PLLA-degrading enzyme produced by L. sacchari strain LP175 is serine protease.

  11. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2013-01-01

    Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also

  12. Plant cell wall glycosyltransferases: High-throughput recombinant expression screening and general requirements for these challenging enzymes

    DEFF Research Database (Denmark)

    Welner, Ditte Hededam; Shin, David; Tomaleri, Giovani P.

    2017-01-01

    Molecular characterization of plant cell wall glycosyltransferases is a critical step towards understanding the biosynthesis of the complex plant cell wall, and ultimately for efficient engineering of biofuel and agricultural crops. The majority of these enzymes have proven very difficult to obta...

  13. Selective degradation of the recalcitrant cell wall of Scenedesmus quadricauda CASA CC202.

    Science.gov (United States)

    Reshma, Ragini; Arumugam, Muthu

    2017-10-01

    An eco-friendly cell wall digestion strategy was developed to enhance the availability of nutritionally important bio molecules of edible microalgae and exploit them for cloning, transformation, and expression of therapeutic proteins. Microalgae are the source for many nutritionally important bioactive compounds and potential drugs. Even though edible microalgae are rich in nutraceutical, bioavailability of all these molecules is very less due to their rigid recalcitrant cell wall. For example, the cell wall of Scenedesmus quadricauda CASA CC202 is made up of three layers comprising of rigid outer pectin and inner cellulosic layer separated by a thin middle layer. In the present investigation, a comprehensive method has been developed for the selective degradation of S. quadricauda CASA CC202 cell wall, by employing both mechanical and enzymatic treatments. The efficiency of cell wall removal was evaluated by measuring total reducing sugar (TRS), tannic acid-ferric chloride staining, calcoflour white staining, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) analysis. It was confirmed that the yield of TRS increased from 129.82 mg/g in 14 h from pectinase treatment alone to 352.44 mg/g by combined sonication and enzymatic treatment within 12 h. As a result, the combination method was found to be effective for the selective degradation of S. quadricauda CASA CC202 cell wall. This study will form a base for our future works, where this will help to enhance the digestibility and availability of nutraceutically important proteins.

  14. Screening of SDS-degrading bacteria from car wash wastewater and study of the alkylsulfatase enzyme activity.

    Science.gov (United States)

    Shahbazi, Razieh; Kasra-Kermanshahi, Roha; Gharavi, Sara; Moosavi-Nejad, Zahra; Borzooee, Faezeh

    2013-06-01

    Sodium dodecyl sulfate (SDS) is one of the main surfactant components in detergents and cosmetics, used in high amounts as a detergent in products such as shampoos, car wash soap and toothpaste. Therefore, its bioremediation by suitable microorganisms is important. Alkylsulfatase is an enzyme that hydrolyses sulfate -ester bonds to give inorganic sulfate and alcohol. The purpose of this study was to isolate SDS-degrading bacteria from Tehran city car wash wastewater, study bacterial alkylsulfatase enzyme activity and identify the alkylsulfatase enzyme coding gene. Screening of SDS-degrading bacteria was carried out on basal salt medium containing SDS as the sole source of carbon. Amount of SDS degraded was assayed by methylene blue active substance (MBAS). Identification of the sdsA gene was carried by PCR and subsequent sequencing of the 16S rDNA gene and biochemical tests identified Pseudomonas aeruginosa. This bacterium is able to degrade 84% of SDS after four days incubation. Bacteria isolated from car wash wastewater were shown to carry the sdsA gene (670bp) and the alkylsulfatase enzyme specific activity expressed from this gene was determined to be 24.3 unit/mg. The results presented in this research indicate that Pseudomonas aeruginosa is a suitable candidate for SDS biodegradation.

  15. Effect of enzyme addition to forage at ensiling on silage chemical composition and NDF degradation characteristics

    DEFF Research Database (Denmark)

    Dehghani, Mohammad Reza; Weisbjerg, Martin Riis; Hvelplund, Torben

    2012-01-01

    , and two varieties of maize stover, lucerne and grass clover were used to study NDF degradation characteristics in experiment 2. Forages were treated with enzymes (500 mg crude protein of the enzyme products/kg DM) and ensiled for 60 days in vacuum-sealed bags. Samples of forage (before ensiling......) and silage were analysed for chemical composition and silages were analysed for pH and fermentation products. The in vitro NDF degradation characteristics of four forages treated with selected enzymes were measured by incubation for up to 96 h with rumen fluid. Enzymes with glucanase, β......-glucanase and pectinase activity increased lactic acid and decreased butyric acid, ammonia and pH compared with control silage, and increased glucose concentration in lucerne silage. NDF concentration generally decreased due to enzyme treatment with glucanase, β-glucanase and xylanase activity and in vitro organic matter...

  16. Patterns of functional enzyme activity in fungus farming ambrosia beetles.

    Science.gov (United States)

    De Fine Licht, Henrik H; Biedermann, Peter H W

    2012-06-06

    In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray

  17. Carbohydrate-related enzymes of important Phytophthora plant pathogens.

    Science.gov (United States)

    Brouwer, Henk; Coutinho, Pedro M; Henrissat, Bernard; de Vries, Ronald P

    2014-11-01

    Carbohydrate-Active enZymes (CAZymes) form particularly interesting targets to study in plant pathogens. Despite the fact that many CAZymes are pathogenicity factors, oomycete CAZymes have received significantly less attention than effectors in the literature. Here we present an analysis of the CAZymes present in the Phytophthora infestans, Ph. ramorum, Ph. sojae and Pythium ultimum genomes compared to growth of these species on a range of different carbon sources. Growth on these carbon sources indicates that the size of enzyme families involved in degradation of cell-wall related substrates like cellulose, xylan and pectin is not always a good predictor of growth on these substrates. While a capacity to degrade xylan and cellulose exists the products are not fully saccharified and used as a carbon source. The Phytophthora genomes encode larger CAZyme sets when compared to Py. ultimum, and encode putative cutinases, GH12 xyloglucanases and GH10 xylanases that are missing in the Py. ultimum genome. Phytophthora spp. also encode a larger number of enzyme families and genes involved in pectin degradation. No loss or gain of complete enzyme families was found between the Phytophthora genomes, but there are some marked differences in the size of some enzyme families. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Dissecting the functional significance of non-catalytic carbohydrate binding modules in the deconstruction of plant cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Michael G. [Univ. of Georgia, Athens, GA (United States). Complex Carbohydrate Research Center

    2017-03-16

    The project seeks to investigate the mechanism by which CBMs potentiate the activity of glycoside hydrolases against complete plant cell walls. The project is based on the hypothesis that the wide range of CBMs present in bacterial enzymes maximize the potential target substrates by directing the cognate enzymes not only to different regions of a specific plant cell wall, but also increases the range of plant cell walls that can be degraded. In addition to maximizing substrate access, it was also proposed that CBMs can target specific subsets of hydrolases with complementary activities to the same region of the plant cell wall, thereby maximizing the synergistic interactions between these enzymes. This synergy is based on the premise that the hydrolysis of a specific polysaccharide will increase the access of closely associated polymers to enzyme attack. In addition, it is unclear whether the catalytic module and appended CBM of modular enzymes have evolved unique complementary activities.

  19. Improving digestive utilization of fiber-rich feedstuffs in pigs and poultry by processing and enzyme technologies: A review

    NARCIS (Netherlands)

    Vries, de S.; Pustjens, A.M.; Schols, H.A.; Hendriks, W.H.; Gerrits, W.J.J.

    2012-01-01

    The effects of processing technologies, whether or not combined with cell wall degrading enzymes, on the physicochemical properties of non-starch polysaccharides (NSP) and the resulting effects on NSP degradation in both pigs and poultry were reviewed. Evaluation of the effects of processing

  20. Catabolite repression and nitrogen control of allantoin-degrading enzymes in Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Janssen, D.B.; Drift, C. van der

    1983-01-01

    The formation of the allantoin-degrading enzymes allantoinase, allantoicase and ureidoglycolase in Pseudomonas aeruginosa was found to be regulated by induction, catabolite repression and nitrogen control. Induction was observed when urate, allantoin or allantoate were included in the growth medium,

  1. Effect of commercial enzymes on berry cell wall deconstruction in the context of intravineyard ripeness variation under winemaking conditions

    DEFF Research Database (Denmark)

    Gao, Yu; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2016-01-01

    Significant intravineyard variation in grape berry ripening occurs within vines and between vines. However, no cell wall data are available on such variation. Here we used a checkerboard panel design to investigate ripening variation in pooled grape bunches for enzyme-assisted winemaking...... positively influence the consistency of winemaking and provides a foundation for further research into the relationship between grape berry cell wall architecture and enzyme formulations....

  2. Fungal enzymes in the attine ant symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    the more basal attine genera use substrates such as flowers, plant debris, small twigs, insect feces and insect carcasses. This diverse array of fungal substrates across the attine lineage implies that the symbiotic fungus needs different enzymes to break down the plant material that the ants provide...... or different efficiencies of enzyme function. Fungal enzymes that degrade plant cell walls may have functionally co-evolved with the ants in this scenario. We explore this hypothesis with direct measurements of enzyme activity in fungus gardens in 12 species across 8 genera spanning the entire phylogeny...... and diversity of life-styles within the attine clade. We find significant differences in enzyme activity between different genera and life-styles of the ants. How these findings relate to attine ant coevolution and crop optimization are discussed....

  3. Enzyme-catalyzed degradation of biodegradable polymers derived from trimethylene carbonate and glycolide by lipases from Candida antarctica and Hog pancreas.

    Science.gov (United States)

    Liu, Feng; Yang, Jian; Fan, Zhongyong; Li, Suming; Kasperczyk, Janusz; Dobrzynski, Piotr

    2012-01-01

    Enzyme-catalyzed degradation of poly(trimethylene carbonate) homo-polymer (PTMC) and poly(trimethylene carbonate-co-glycolide) co-polymer (PTGA) was investigated in the presence of lipases from Candida antarctica and Hog pancreas. Degradation was monitored by gravimetry, size-exclusion chromatography (SEC), nuclear magnetic resonance (NMR), tensiometry and environmental scanning electron microscopy (ESEM). PTMC can be rapidly degraded by Candida antarctica lipase with 98% mass loss after 9 days, while degradation by Hog pancreas lipase leads to 27% mass loss. Introduction of 16% glycolide units in PTMC chains strongly affects the enzymatic degradation. Hog pancreas lipase becomes more effective to PTGA co-polymer with a mass loss of 58% after 9 days, while Candida antarctica lipase seems not able to degrade PTGA. Bimodal molecular weight distributions are observed during enzymatic degradation of both PTMC and PTGA, which can be assigned to the fact that the surface is largely degraded while the internal part remains intact. The composition of the PTGA co-polymer remains constant, and ESEM shows that the polymers are homogeneously eroded during enzymatic degradation. Contact angle measurements confirm the enzymatic degradation mechanism, i.e., enzyme adsorption on the polymer surface followed by enzyme-catalyzed chain cleavage.

  4. Stable Isotope Fractionation Caused by Glycyl Radical Enzymes during Bacterial Degradation of Aromatic Compounds

    Science.gov (United States)

    Morasch, Barbara; Richnow, Hans H.; Vieth, Andrea; Schink, Bernhard; Meckenstock, Rainer U.

    2004-01-01

    Stable isotope fractionation was studied during the degradation of m-xylene, o-xylene, m-cresol, and p-cresol with two pure cultures of sulfate-reducing bacteria. Degradation of all four compounds is initiated by a fumarate addition reaction by a glycyl radical enzyme, analogous to the well-studied benzylsuccinate synthase reaction in toluene degradation. The extent of stable carbon isotope fractionation caused by these radical-type reactions was between enrichment factors (ɛ) of −1.5 and −3.9‰, which is in the same order of magnitude as data provided before for anaerobic toluene degradation. Based on our results, an analysis of isotope fractionation should be applicable for the evaluation of in situ bioremediation of all contaminants degraded by glycyl radical enzyme mechanisms that are smaller than 14 carbon atoms. In order to compare carbon isotope fractionations upon the degradation of various substrates whose numbers of carbon atoms differ, intrinsic ɛ (ɛintrinsic) were calculated. A comparison of ɛintrinsic at the single carbon atoms of the molecule where the benzylsuccinate synthase reaction took place with compound-specific ɛ elucidated that both varied on average to the same extent. Despite variations during the degradation of different substrates, the range of ɛ found for glycyl radical reactions was reasonably narrow to propose that rough estimates of biodegradation in situ might be given by using an average ɛ if no fractionation factor is available for single compounds. PMID:15128554

  5. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mireille eHaon

    2015-09-01

    Full Text Available Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural study. In the last decade, the yeast Pichia pastoris has become increasingly popular as a host for the production of fungal biomass-degrading enzymes, and particularly carbohydrate-active enzymes (CAZymes. This study aimed at setting-up a platform to easily and quickly screen the extracellular expression of biomass-degrading enzymes in Pichia pastoris. We first used three fungal glycoside hydrolases that we previously expressed using the protocol devised by Invitrogen to try different modifications of the original protocol. Considering the gain in time and convenience provided by the new protocol, we used it as basis to set-up the facility and produce a suite of fungal CAZymes (glycoside hydrolases, carbohydrate esterases and auxiliary activity enzyme families out of which more than 70% were successfully expressed. The platform tasks range from gene cloning to automated protein purifications and activity tests, and is open to the CAZyme users’ community.

  6. Probiotic activity of lignocellulosic enzyme as bioactivator for rice husk degradation

    Science.gov (United States)

    Lamid, Mirni; Al-Arif, Anam; Warsito, Sunaryo Hadi

    2017-02-01

    The utilization of lignocellulosic enzyme will increase nutritional value of rice husk. Cellulase consists of C1 (β-1, 4-glucan cellobiohydrolase or exo-β-1,4glucanase), Cc (endo-β-1,4-glucanase) and component and cellobiose (β-glucocidase). Hemicellulase enzyme consists of endo-β-1,4-xilanase, β-xilosidase, α-L arabinofuranosidase, α-D-glukuronidaseand asetil xilan esterase. This research aimed to study the activity of lignocellulosic enzyme, produced by cows in their rumen, which can be used as a bioactivator in rice husk degradation. This research resulted G6 and G7 bacteria, producing xylanase and cellulase with the activity of 0.004 U mL-1 and 0.021 U mL-1; 0.003 ( U mL-1) and 0.026 (U mL-1) respectively.

  7. Fermentation characteristics in hay from Cynodon and crop stubble treated with exogenous enzymes

    Directory of Open Access Journals (Sweden)

    Yânez André Gomes Santana

    Full Text Available ABSTRACT The effect of treatment with xylanase and β-glucanase was evaluated for gas production and the ruminal degradation of nutrients from the hay of Tifton 85 grass and the stubble of maize, sorghum, peanut, sunflower and sesame crops. Two commercial fibrolytic enzymes were used (Dyadic xylanase PLUS - Xylanase; BrewZyme LP-β-glucanase, added to the hay at doses of 7.5 units of endoglucanase and 0.46 units of xylanase per 500 mg/gDM, for the cellulase and xylanase products respectively. The chemical composition of the hay was determined for no enzyme application and 24 hours after enzyme treatment, and the in vitro gas production and in situ microbial degradation was estimated for dry matter, organic matter, neutral detergent fibre and truly-degradable organic matter after 24 hours of incubation in the rumen. Enzyme treatment of the hay from Tifton 85 grass and the stubble of maize, sorghum, sunflower, peanut and sesame crops with the exogenous fibrolytic enzymes β-glucanase and xylanase influences in vitro gas production, and the in situ degradation of dry matter, organic matter, neutral detergent fibre and truly-degradable organic matter in the rumen. This variation can be attributed to differences in the chemical composition of the hay from the grass and the crop stubble, and to the different ways the enzymes act upon the cell wall.

  8. Patterns of functional enzyme activity in fungus farming ambrosia beetles

    Directory of Open Access Journals (Sweden)

    De Fine Licht Henrik H

    2012-06-01

    Full Text Available Abstract Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae, wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily

  9. Neuroprotective mechanism of Kai Xin San: upregulation of hippocampal insulin-degrading enzyme protein expression and acceleration of amyloid-beta degradation

    Directory of Open Access Journals (Sweden)

    Na Wang

    2017-01-01

    Full Text Available Kai Xin San is a Chinese herbal formula composed of Radix Ginseng , Poria , Radix Polygalae and Acorus Tatarinowii Rhizome . It has been used in China for many years for treating amnesia. Kai Xin San ameliorates amyloid-β (Aβ-induced cognitive dysfunction and is neuroprotective in vivo , but its precise mechanism remains unclear. Expression of insulin-degrading enzyme (IDE, which degrades Aβ, is strongly correlated with cognitive function. Here, we injected rats with exogenous Aβ42 (200 μM, 5 μL into the hippocampus and subsequently administered Kai Xin San (0.54 or 1.08 g/kg/d intragastrically for 21 consecutive days. Hematoxylin-eosin and Nissl staining revealed that Kai Xin San protected neurons against Aβ-induced damage. Furthermore, enzyme-linked immunosorbent assay, western blot and polymerase chain reaction results showed that Kai Xin San decreased Aβ42 protein levels and increased expression of IDE protein, but not mRNA, in the hippocampus. Our findings reveal that Kai Xin San facilitates hippocampal Aβ degradation and increases IDE expression, which leads, at least in part, to the alleviation of hippocampal neuron injury in rats.

  10. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides.

    Science.gov (United States)

    Cravatt, B F; Giang, D K; Mayfield, S P; Boger, D L; Lerner, R A; Gilula, N B

    1996-11-07

    Endogenous neuromodulatory molecules are commonly coupled to specific metabolic enzymes to ensure rapid signal inactivation. Thus, acetylcholine is hydrolysed by acetylcholine esterase and tryptamine neurotransmitters like serotonin are degraded by monoamine oxidases. Previously, we reported the structure and sleep-inducing properties of cis-9-octadecenamide, a lipid isolated from the cerebrospinal fluid of sleep-deprived cats. cis-9-Octadecenamide, or oleamide, has since been shown to affect serotonergic systems and block gap-junction communication in glial cells (our unpublished results). We also identified a membrane-bound enzyme activity that hydrolyses oleamide to its inactive acid, oleic acid. We now report the mechanism-based isolation, cloning and expression of this enzyme activity, originally named oleamide hydrolase, from rat liver plasma membranes. We also show that oleamide hydrolase converts anandamide, a fatty-acid amide identified as the endogenous ligand for the cannabinoid receptor, to arachidonic acid, indicating that oleamide hydrolase may serve as the general inactivating enzyme for a growing family of bioactive signalling molecules, the fatty-acid amides. Therefore we will hereafter refer to oleamide hydrolase as fatty-acid amide hydrolase, in recognition of the plurality of fatty-acid amides that the enzyme can accept as substrates.

  11. Ruminant Nutrition Symposium: Improving cell wall digestion and animal performance with fibrolytic enzymes.

    Science.gov (United States)

    Adesogan, A T; Ma, Z X; Romero, J J; Arriola, K G

    2014-04-01

    This paper aimed to summarize published responses to treatment of cattle diets with exogenous fibrolytic enzymes (EFE), to discuss reasons for variable EFE efficacy in animal trials, to recommend strategies for improving enzyme testing and EFE efficacy in ruminant diets, and to identify proteomic differences between effective and ineffective EFE. A meta-analysis of 20 dairy cow studies with 30 experiments revealed that only a few increased lactational performance and the response was inconsistent. This variability is attributable to several enzyme, feed, animal, and management factors that were discussed in this paper. The variability reflects our limited understanding of the synergistic and sequential interactions between exogenous glycosyl hydrolases, autochthonous ruminal microbes, and endogenous fibrolytic enzymes that are necessary to optimize ruminal fiber digestion. An added complication is that many of the standard methods of assaying EFE activities may over- or underestimate their potential effects because they are based on pure substrate saccharification and do not simulate ruminal conditions. Our recent evaluation of 18 commercial EFE showed that 78 and 83% of them exhibited optimal endoglucanase and xylanase activities, respectively, at 50 °C, and 77 and 61% had optimal activities at pH 4 to 5, respectively, indicating that most would likely act suboptimally in the rumen. Of the many fibrolytic activities that act synergistically to degrade forage fiber, the few usually assayed, typically endoglucanase and xylanase, cannot hydrolyze the recalcitrant phenolic acid-lignin linkages that are the main constraints to ruminal fiber degradation. These factors highlight the futility of random addition of EFE to diets. This paper discusses reasons for the variable animal responses to dietary addition of fibrolytic enzymes, advances explanations for the inconsistency, suggests a strategy to improve enzyme efficacy in ruminant diets, and describes differences

  12. Targeting Insulin-Degrading Enzyme to Treat Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Tang, Wei-Jen

    2016-01-01

    Insulin-degrading enzyme (IDE) selectively degrades peptides, such as insulin, amylin, and amyloid β (Aβ) that form toxic aggregates, to maintain proteostasis. IDE defects are linked to the development of type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD). Structural and biochemical analyses revealed the molecular basis for IDE-mediated destruction of amyloidogenic peptides and this information has been exploited to develop promising inhibitors of IDE to improve glucose homeostasis. However, the inhibition of IDE can also lead to glucose intolerance. In this review, I focus on recent advances regarding our understanding of the structure and function of IDE and the discovery of IDE inhibitors, as well as challenges in developing IDE-based therapy for human diseases, particularly T2DM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Newly isolated Penicillium oxalicum A592-4B secretes enzymes that degrade milled rice straw with high efficiency.

    Science.gov (United States)

    Aoyama, Akihisa; Kurane, Ryuichiro; Matsuura, Akira; Nagai, Kazuo

    2015-01-01

    An enzyme producing micro-organism, which can directly saccharify rice straw that has only been crushed without undergoing the current acid or alkaline pretreatment, was found. From the homology with the ITS, 28S rDNA sequence, the strain named A592-4B was identified as Penicillium oxalicum. Activities of the A592-4B enzymes and commercial enzyme preparations were compared by Novozymes Cellic CTec2 and Genencore GC220. In the present experimental condition, activity of A592-4B enzymes was 2.6 times higher than that of CTec2 for degrading milled rice straw. Furthermore, even when a quarter amount of A592-4B enzyme was applied to the rice straw, the conversion rate was still higher than that by CTec2. By utilizing A592-4B enzymes, improved lignocellulose degradation yields can be achieved without pre-treatment of the substrates; thus, contributing to cost reduction as well as reducing environmental burden.

  14. Extracellular Degradative Enzymes from Pleurotus pulmonarius Cultivated on Various Solid Cellulose- Radioactive Waste Simulates

    International Nuclear Information System (INIS)

    Abd El-Aziz, S.M.; El-Sayad, H.; Abu El- Soud, S.M.; Awad Alah, O.A.; Eskander, S.B.

    2008-01-01

    The present work was devoted to search the behavior of some extracellular enzymes secreted by P. pulmonarius during the bioremediation process of some cellulose based solid radioactive waste simulates. Four categories of this group, namely contaminated protective clothes, spent paper, and ruined cotton and mixture of them were subject to the fungal biodegradation and the variations in P. pulmonarius cellulase, xylanase and laccase enzymes activates were followed during three microbial growing stages. In addition, the changes in reducing sugars and total protein as end products of the degradation process were determined. Also the variations in both the secreted enzymes and the metabolism end products were measured as function of exposing the inoculated P. pulmonarius spawns to increasing doses of gamma irradiation(0.0,0.1,0.25,0.5,0.75,1.0,2.0 kGy). Based on the data so far obtained, it could be stated that the extracellular cellulase enzyme and total protein in the degraded substrate were increased throughout the whole incubation period for all types of cellulose based waste. In addition, it have been concluded that the enzymatic activities and consequently the biodegradation of the cellulose based solid radioactive simulates is enhanced by the gamma irradiation up to the dose 0.75 kGy

  15. Discriminated release of phenolic substances from red wine grape skins (Vitis vinifera L.) by multicomponent enzymes treatment

    DEFF Research Database (Denmark)

    Arnous, Anis; Meyer, Anne S.

    2010-01-01

    Detailed insight into the effects of enzymatic treatments on grape phenolics is of significant importance for grape processing for wine making. This study examined the release of phenols during enzymatic (pectinolytic and cellulolytic) degradation of the cell wall polysaccharides in skins of Merlot...... the enzymatic treatment; phenolic acids, including hydroxybenzoic acids and hydroxycinnamic acids, were released as a function of monosaccharides liberation, i.e. as a function of the enzyme catalyzed cell wall degradation of the skins, and with some of the phenolic acids perhaps released from the lignin...

  16. Endophytic Actinomycetes: A Novel Source of Potential Acyl Homoserine Lactone Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Surang Chankhamhaengdecha

    2013-01-01

    Full Text Available Several Gram-negative pathogenic bacteria employ N-acyl-L-homoserine lactone (HSL quorum sensing (QS system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9% and 68 (51.5% of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at 151.30±3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified as Streptomyces based on 16S  rRNA gene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In an in vitro pathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused by Pectobacterium carotovorum ssp. carotovorum as demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophytic Streptomyces.

  17. Substrate Shift Reveals Roles for Members of Bacterial Consortia in Degradation of Plant Cell Wall Polymers

    Directory of Open Access Journals (Sweden)

    Camila Carlos

    2018-03-01

    Full Text Available Deconstructing the intricate matrix of cellulose, hemicellulose, and lignin poses a major challenge in biofuel production. In diverse environments in nature, some microbial communities, are able to overcome plant biomass recalcitrance. Identifying key degraders of each component of plant cell wall can help improve biological degradation of plant feedstock. Here, we sequenced the metagenome of lignocellulose-adapted microbial consortia sub-cultured on xylan and alkali lignin media. We observed a drastic shift on community composition after sub-culturing, independently of the original consortia. Proteobacteria relative abundance increased after growth in alkali lignin medium, while Bacteroidetes abundance increased after growth in xylan medium. At the genus level, Pseudomonas was more abundant in the communities growing on alkali lignin, Sphingobacterium in the communities growing on xylan and Cellulomonas abundance was the highest in the original microbial consortia. We also observed functional convergence of microbial communities after incubation in alkali lignin, due to an enrichment of genes involved in benzoate degradation and catechol ortho-cleavage pathways. Our results represent an important step toward the elucidation of key members of microbial communities on lignocellulose degradation and may aide the design of novel lignocellulolytic microbial consortia that are able to efficiently degrade plant cell wall polymers.

  18. Substrate Shift Reveals Roles for Members of Bacterial Consortia in Degradation of Plant Cell Wall Polymers.

    Science.gov (United States)

    Carlos, Camila; Fan, Huan; Currie, Cameron R

    2018-01-01

    Deconstructing the intricate matrix of cellulose, hemicellulose, and lignin poses a major challenge in biofuel production. In diverse environments in nature, some microbial communities, are able to overcome plant biomass recalcitrance. Identifying key degraders of each component of plant cell wall can help improve biological degradation of plant feedstock. Here, we sequenced the metagenome of lignocellulose-adapted microbial consortia sub-cultured on xylan and alkali lignin media. We observed a drastic shift on community composition after sub-culturing, independently of the original consortia. Proteobacteria relative abundance increased after growth in alkali lignin medium, while Bacteroidetes abundance increased after growth in xylan medium. At the genus level, Pseudomonas was more abundant in the communities growing on alkali lignin, Sphingobacterium in the communities growing on xylan and Cellulomonas abundance was the highest in the original microbial consortia. We also observed functional convergence of microbial communities after incubation in alkali lignin, due to an enrichment of genes involved in benzoate degradation and catechol ortho-cleavage pathways. Our results represent an important step toward the elucidation of key members of microbial communities on lignocellulose degradation and may aide the design of novel lignocellulolytic microbial consortia that are able to efficiently degrade plant cell wall polymers.

  19. Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus.

    OpenAIRE

    Vogt, R G; Riddiford, L M; Prestwich, G D

    1985-01-01

    Behavioral and electrophysiological evidence has suggested that sex pheromone is rapidly inactivated within the sensory hairs soon after initiation of the action-potential spike. We report the isolation and characterization of a sex-pheromone-degrading enzyme from the sensory hairs of the silkmoth Antheraea polyphemus. In the presence of this enzyme at physiological concentration, the pheromone [(6E,11Z)-hexadecadienyl acetate] has an estimated half-life of 15 msec. Our findings suggest a mol...

  20. EVOLUTIONARY TRANSITIONS IN ENZYME ACTIVITY OF ANT FUNGUS GARDENS

    DEFF Research Database (Denmark)

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G

    2010-01-01

    an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across...... the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens...... are targeted primarily towards partial degradation of plant cell walls, reflecting a plesiomorphic state of non-domesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major...

  1. The ubiquitous presence of exopolygalacturonase in maize suggests a fundamental cellular function for this enzyme.

    Science.gov (United States)

    Dubald, M; Barakate, A; Mandaron, P; Mache, R

    1993-11-01

    Exopolygalacturonase (exoPG) is a pectin-degrading enzyme abundant in maize pollen. Using immunochemistry and in situ hybridization it is shown that in addition to its presence in pollen, exoPG is also present in sporophytic tissues, such as the tapetum and mesophyll cells. The enzyme is located in the cytoplasm of pollen and of some mesophyll cells. In other mesophyll cells, the tapetum and the pollen tube, exoPG is located in the cell wall. The measurement of enzyme activity shows that exoPG is ubiquitous in the vegetative organs. These results suggest a general function for exoPG in cell wall edification or degradation. ExoPG is encoded by a closely related multigene family. The regulation of the expression of one of the exoPG genes was analyzed in transgenic tobacco. Reporter GUS activity was detected in anthers, seeds and stems but not in leaves or roots of transgenic plants. This strongly suggests that the ubiquitous presence of exoPG in maize is the result of the expression of different exoPG genes.

  2. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus.

    Science.gov (United States)

    Strakowska, Judyta; Błaszczyk, Lidia; Chełkowski, Jerzy

    2014-07-01

    The degradation of native cellulose to glucose monomers is a complex process, which requires the synergistic action of the extracellular enzymes produced by cellulolytic microorganisms. Among fungi, the enzymatic systems that can degrade native cellulose have been extensively studied for species belonging to the genera of Trichoderma. The majority of the cellulolytic enzymes described so far have been examples of Trichoderma reesei, extremely specialized in the efficient degradation of plant cell wall cellulose. Other Trichoderma species, such as T. harzianum, T. koningii, T. longibrachiatum, and T. viride, known for their capacity to produce cellulolytic enzymes, have been isolated from various ecological niches, where they have proved successful in various heterotrophic interactions. As saprotrophs, these species are considered to make a contribution to the degradation of lignocellulosic plant material. Their cellulolytic potential is also used in interactions with plants, especially in plant root colonization. However, the role of cellulolytic enzymes in species forming endophytic associations with plants or in those existing in the substratum for mushroom cultivation remains unknown. The present review discusses the current state of knowledge about cellulolytic enzymes production by Trichoderma species and the encoding genes, as well as the involvement of these proteins in the lifestyle of Trichoderma. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts

    Directory of Open Access Journals (Sweden)

    Barbara eBlanco-Ulate

    2014-09-01

    Full Text Available Cell walls are barriers that impair colonization of host tissues, but also are important reservoirs of energy-rich sugars. Growing hyphae of necrotrophic fungal pathogens, such as Botrytis cinerea (Botrytis, henceforth, secrete enzymes that disassemble cell wall polysaccharides. In this work we describe the annotation of 275 putative secreted Carbohydrate-Active enZymes (CAZymes identified in the Botrytis B05.10 genome. Using RNAseq we determined which Botrytis CAZymes were expressed during infections of lettuce leaves, ripe tomato fruit, and grape berries. On the three hosts, Botrytis expressed a common group of 229 potentially secreted CAZymes, including 28 pectin backbone-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes that might target pectin and hemicellulose side-branches, and 16 enzymes predicted to degrade cellulose. The diversity of the Botrytis CAZymes may be partly responsible for its wide host range. Thirty-six candidate CAZymes with secretion signals were found exclusively when Botrytis interacted with ripe tomato fruit and grape berries. Pectin polysaccharides are notably abundant in grape and tomato cell walls, but lettuce leaf walls have less pectin and are richer in hemicelluloses and cellulose. The results of this study not only suggest that Botrytis targets similar wall polysaccharide networks on fruit and leaves, but also that it may selectively attack host wall polysaccharide substrates depending on the host tissue.

  4. Roles of tRNA in cell wall biosynthesis

    DEFF Research Database (Denmark)

    Dare, Kiley; Ibba, Michael

    2012-01-01

    Recent research into various aspects of bacterial metabolism such as cell wall and antibiotic synthesis, degradation pathways, cellular stress, and amino acid biosynthesis has elucidated roles of aminoacyl-transfer ribonucleic acid (aa-tRNA) outside of translation. Although the two enzyme families...... responsible for cell wall modifications, aminoacyl-phosphatidylglycerol synthases (aaPGSs) and Fem, were discovered some time ago, they have recently become of intense interest for their roles in the antimicrobial resistance of pathogenic microorganisms. The addition of positively charged amino acids...... and play a role in resistance to antibiotics that target the cell wall. Additionally, the formation of truncated peptides results in shorter peptide bridges and loss of branched linkages which makes bacteria more susceptible to antimicrobials. A greater understanding of the structure and substrate...

  5. Application of carbohydrate arrays coupled with mass spectrometry to detect activity of plant-polysaccharide degradative enzymes from the fungus Aspergillus niger.

    Science.gov (United States)

    van Munster, Jolanda M; Thomas, Baptiste; Riese, Michel; Davis, Adrienne L; Gray, Christopher J; Archer, David B; Flitsch, Sabine L

    2017-02-21

    Renewables-based biotechnology depends on enzymes to degrade plant lignocellulose to simple sugars that are converted to fuels or high-value products. Identification and characterization of such lignocellulose degradative enzymes could be fast-tracked by availability of an enzyme activity measurement method that is fast, label-free, uses minimal resources and allows direct identification of generated products. We developed such a method by applying carbohydrate arrays coupled with MALDI-ToF mass spectrometry to identify reaction products of carbohydrate active enzymes (CAZymes) of the filamentous fungus Aspergillus niger. We describe the production and characterization of plant polysaccharide-derived oligosaccharides and their attachment to hydrophobic self-assembling monolayers on a gold target. We verify effectiveness of this array for detecting exo- and endo-acting glycoside hydrolase activity using commercial enzymes, and demonstrate how this platform is suitable for detection of enzyme activity in relevant biological samples, the culture filtrate of A. niger grown on wheat straw. In conclusion, this versatile method is broadly applicable in screening and characterisation of activity of CAZymes, such as fungal enzymes for plant lignocellulose degradation with relevance to biotechnological applications as biofuel production, the food and animal feed industry.

  6. Glycosylation Helps Cellulase Enzymes Bind to Plant Cell Walls (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-06-01

    Computer simulations suggest a new strategy to design enhanced enzymes for biofuels production. Large-scale computer simulations predict that the addition of glycosylation on carbohydrate-binding modules can dramatically improve the binding affinity of these protein domains over amino acid mutations alone. These simulations suggest that glycosylation can be used as a protein engineering tool to enhance the activity of cellulase enzymes, which are a key component in the conversion of cellulose to soluble sugars in the production of biofuels. Glycosylation is the covalent attachment of carbohydrate molecules to protein side chains, and is present in many proteins across all kingdoms of life. Moreover, glycosylation is known to serve a wide variety of functions in biological recognition, cell signaling, and metabolism. Cellulase enzymes, which are responsible for deconstructing cellulose found in plant cell walls to glucose, contain glycosylation that when modified can affect enzymatic activity-often in an unpredictable manner. To gain insight into the role of glycosylation on cellulase activity, scientists at the National Renewable Energy Laboratory (NREL) used computer simulation to predict that adding glycosylation on the carbohydrate-binding module of a cellulase enzyme dramatically boosts the binding affinity to cellulose-more than standard protein engineering approaches in which amino acids are mutated. Because it is known that higher binding affinity in cellulases leads to higher activity, this work suggests a new route to designing enhanced enzymes for biofuels production. More generally, this work suggests that tuning glycosylation in cellulase enzymes is a key factor to consider when engineering biochemical conversion processes, and that more work is needed to understand how glycosylation affects cellulase activity at the molecular level.

  7. Treatment of colored effluents with lignin-degrading enzymes: An emerging role of marine-derived fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; DeSouza-Ticlo, D.; Verma, A.K.

    laccase, manganese-peroxidase and lignin peroxidases are useful in the treatment of colored industrial effluents and other xenobiotics. Free mycelia, mycelial pellets, immobilized fungi or their lignin-degrading enzymes fromterrestrial fungi have been...

  8. Purification and Properties of a Polyester Polyurethane-Degrading Enzyme from Comamonas acidovorans TB-35

    OpenAIRE

    Akutsu, Yukie; Nakajima-Kambe, Toshiaki; Nomura, Nobuhiko; Nakahara, Tadaatsu

    1998-01-01

    A polyester polyurethane (PUR)-degrading enzyme, PUR esterase, derived from Comamonas acidovorans TB-35, a bacterium that utilizes polyester PUR as the sole carbon source, was purified until it showed a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This enzyme was bound to the cell surface and was extracted by addition of 0.2% N,N-bis(3-d-gluconamidopropyl)deoxycholamide (deoxy-BIGCHAP). The results of gel filtration and SDS-PAGE showed that the PUR este...

  9. Phage display-derived inhibitor of the essential cell wall biosynthesis enzyme MurF

    Directory of Open Access Journals (Sweden)

    Blewett Ann

    2008-12-01

    Full Text Available Abstract Background To develop antibacterial agents having novel modes of action against bacterial cell wall biosynthesis, we targeted the essential MurF enzyme of the antibiotic resistant pathogen Pseudomonas aeruginosa. MurF catalyzes the formation of a peptide bond between D-Alanyl-D-Alanine (D-Ala-D-Ala and the cell wall precursor uridine 5'-diphosphoryl N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid (UDP-MurNAc-Ala-Glu-meso-A2pm with the concomitant hydrolysis of ATP to ADP and inorganic phosphate, yielding UDP-N-acetylmuramyl-pentapeptide. As MurF acts on a dipeptide, we exploited a phage display approach to identify peptide ligands having high binding affinities for the enzyme. Results Screening of a phage display 12-mer library using purified P. aeruginosa MurF yielded to the identification of the MurFp1 peptide. The MurF substrate UDP-MurNAc-Ala-Glumeso-A2pm was synthesized and used to develop a sensitive spectrophotometric assay to quantify MurF kinetics and inhibition. MurFp1 acted as a weak, time-dependent inhibitor of MurF activity but was a potent inhibitor when MurF was pre-incubated with UDP-MurNAc-Ala-Glu-meso-A2pm or ATP. In contrast, adding the substrate D-Ala-D-Ala during the pre-incubation nullified the inhibition. The IC50 value of MurFp1 was evaluated at 250 μM, and the Ki was established at 420 μM with respect to the mixed type of inhibition against D-Ala-D-Ala. Conclusion MurFp1 exerts its inhibitory action by interfering with the utilization of D-Ala-D-Ala by the MurF amide ligase enzyme. We propose that MurFp1 exploits UDP-MurNAc-Ala-Glu-meso-A2pm-induced structural changes for better interaction with the enzyme. We present the first peptide inhibitor of MurF, an enzyme that should be exploited as a target for antimicrobial drug development.

  10. Polyphenols as enzyme inhibitors in different degraded peat soils: Implication for microbial metabolism in rewetted peatlands

    Science.gov (United States)

    Zak, Dominik; Roth, Cyril; Gelbrecht, Jörg; Fenner, Nathalie; Reuter, Hendrik

    2015-04-01

    Recently, more than 30,000 ha of drained minerotrophic peatlands (= fens) in NE Germany were rewetted to restore their ecological functions. Due to an extended drainage history, a re-establishment of their original state is not expected in the short-term. Elevated concentrations of dissolved organic carbon, ammonium and phosphate have been measured in the soil porewater of the upper degraded peat layers of rewetted fens at levels of one to three orders higher than the values in pristine systems; an indicator of increased microbial activity in the upper degraded soil layers. On the other hand there is evidence that the substrate availability within the degraded peat layer is lowered since the organic matter has formerly been subject to intense decomposition over the decades of drainage and intense agricultural use of the areas. Previously however, it was suggested that inhibition of hydrolytic enzymes by polyphenolic substances is suspended during aeration of peat soils mainly due to the decomposition of the inhibiting polyphenols by oxidising enzymes such as phenol oxidase. Accordingly we hypothesised a lack of enzyme inhibiting polyphenols in degraded peat soils of rewetted fens compared to less decomposed peat of more natural fens. We collected both peat samples at the soil surface (0-20 cm) and fresh roots of dominating vascular plants and mosses (as peat parent material) from five formerly drained rewetted sites and five more natural sites of NE Germany and NW Poland. Less decomposed peat and living roots were used to obtain an internal standard for polyphenol analysis and to run enzyme inhibition tests. For all samples we determined the total phenolic contents and in addition we distinguished between the contents of hydrolysable and condensed tannic substances. From a methodical perspective the advantage of internal standards compared to the commercially available standards cyanidin chloride and tannic acid became apparent. Quantification with cyanidin or

  11. Identification of food-grade subtilisins as gluten-degrading enzymes to treat celiac disease

    Science.gov (United States)

    Wei, Guoxian; Tian, Na; Siezen, Roland; Schuppan, Detlef

    2016-01-01

    Gluten are proline- and glutamine-rich proteins present in wheat, barley, and rye and contain the immunogenic sequences that drive celiac disease (CD). Rothia mucilaginosa, an oral microbial colonizer, can cleave these gluten epitopes. The aim was to isolate and identify the enzymes and evaluate their potential as novel enzyme therapeutics for CD. The membrane-associated R. mucilaginosa proteins were extracted and separated by DEAE chromatography. Enzyme activities were monitored with paranitroanilide-derivatized and fluorescence resonance energy transfer (FRET) peptide substrates, and by gliadin zymography. Epitope elimination was determined in R5 and G12 ELISAs. The gliadin-degrading Rothia enzymes were identified by LC-ESI-MS/MS as hypothetical proteins ROTMU0001_0241 (C6R5V9_9MICC), ROTMU0001_0243 (C6R5W1_9MICC), and ROTMU0001_240 (C6R5V8_9MICC). A search with the Basic Local Alignment Search Tool revealed that these are subtilisin-like serine proteases belonging to the peptidase S8 family. Alignment of the major Rothia subtilisins indicated that all contain the catalytic triad with Asp (D), His (H), and Ser (S) in the D-H-S order. They cleaved succinyl-Ala-Ala-Pro-Phe-paranitroanilide, a substrate for subtilisin with Pro in the P2 position, as in Tyr-Pro-Gln and Leu-Pro-Tyr in gluten, which are also cleaved. Consistently, FRET substrates of gliadin immunogenic epitopes comprising Xaa-Pro-Xaa motives were rapidly hydrolyzed. The Rothia subtilisins and two subtilisins from Bacillus licheniformis, subtilisin A and the food-grade Nattokinase, efficiently degraded the immunogenic gliadin-derived 33-mer peptide and the immunodominant epitopes recognized by the R5 and G12 antibodies. This study identified Rothia and food-grade Bacillus subtilisins as promising new candidates for enzyme therapeutics in CD. PMID:27469368

  12. Discovery, cloning and characterisation of proline specific prolyl endopeptidase, a gluten degrading thermo-stable enzyme from Sphaerobacter thermophiles

    DEFF Research Database (Denmark)

    Shetty, Radhakrishna; Vestergaard, Mike; Jessen, Flemming

    2017-01-01

    processes occur at elevated temperature. We present in this paper, the discovery, cloning and characterisation of a novel recombinant thermostable gluten degrading enzyme, a proline specific prolyl endoprotease (PEP) from Sphaerobacter thermophiles. The molecular mass of the prolyl endopeptidase......Gluten free products have emerged during the last decades, as a result of a growing public concern and technological advancements allowing gluten reduction in food products. One approach is to use gluten degrading enzymes, typically at low or ambient temperatures, whereas many food production...... was estimated to be 77 kDa by using SDS-PAGE. Enzyme activity assays with a synthetic dipeptide Z-Gly-Pro-p-nitroanilide as the substrate revealed that the enzyme had optimal activity at pH 6.6 and was most active from pH 5.0-8.0. The optimum temperature was 63 °C and residual activity after one hour incubation...

  13. Degradation of pheromone and plant volatile components by a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis.

    Directory of Open Access Journals (Sweden)

    Nicolas Durand

    Full Text Available Odorant-Degrading Enzymes (ODEs are supposed to be involved in the signal inactivation step within the olfactory sensilla of insects by quickly removing odorant molecules from the vicinity of the olfactory receptors. Only three ODEs have been both identified at the molecular level and functionally characterized: two were specialized in the degradation of pheromone compounds and the last one was shown to degrade a plant odorant.Previous work has shown that the antennae of the cotton leafworm Spodoptera littoralis, a worldwide pest of agricultural crops, express numerous candidate ODEs. We focused on an esterase overexpressed in males antennae, namely SlCXE7. We studied its expression patterns and tested its catalytic properties towards three odorants, i.e. the two female sex pheromone components and a green leaf volatile emitted by host plants.SlCXE7 expression was concomitant during development with male responsiveness to odorants and during adult scotophase with the period of male most active sexual behaviour. Furthermore, SlCXE7 transcription could be induced by male exposure to the main pheromone component, suggesting a role of Pheromone-Degrading Enzyme. Interestingly, recombinant SlCXE7 was able to efficiently hydrolyze the pheromone compounds but also the plant volatile, with a higher affinity for the pheromone than for the plant compound. In male antennae, SlCXE7 expression was associated with both long and short sensilla, tuned to sex pheromones or plant odours, respectively. Our results thus suggested that a same ODE could have a dual function depending of it sensillar localisation. Within the pheromone-sensitive sensilla, SlCXE7 may play a role in pheromone signal termination and in reduction of odorant background noise, whereas it could be involved in plant odorant inactivation within the short sensilla.

  14. Evolutionary transitions in enzyme activity of ant fungus gardens.

    Science.gov (United States)

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G; Boomsma, Jacobus J

    2010-07-01

    Fungus-growing (attine) ants and their fungal symbionts passed through several evolutionary transitions during their 50 million year old evolutionary history. The basal attine lineages often shifted between two main cultivar clades, whereas the derived higher-attine lineages maintained an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens are targeted primarily toward partial degradation of plant cell walls, reflecting a plesiomorphic state of nondomesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major breakdown of cell walls. The adaptive significance of the lower-attine symbiont shifts remains unclear. One of these shifts was obligate, but digestive advantages remained ambiguous, whereas the other remained facultative despite providing greater digestive efficiency.

  15. Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani.

    Science.gov (United States)

    Grinyer, Jasmine; Hunt, Sybille; McKay, Matthew; Herbert, Ben R; Nevalainen, Helena

    2005-06-01

    Trichoderma atroviride has a natural ability to parasitise phytopathogenic fungi such as Rhizoctonia solani and Botrytis cinerea, therefore providing an environmentally sound alternative to chemical fungicides in the management of these pathogens. Two-dimensional electrophoresis was used to display cellular protein patterns of T. atroviride (T. harzianum P1) grown on media containing either glucose or R. solani cell walls. Protein profiles were compared to identify T. atroviride proteins up-regulated in the presence of the R. solani cell walls. Twenty-four protein spots were identified using matrix-assisted laser desorption ionisation mass spectrometry, liquid chromatography mass spectrometry and N-terminal sequencing. Identified up-regulated proteins include known fungal cell wall-degrading enzymes such as N-acetyl-beta-D: -glucosaminidase and 42-kDa endochitinase. Three novel proteases of T. atroviride were identified, containing sequence similarity to vacuolar serine protease, vacuolar protease A and a trypsin-like protease from known fungal proteins. Eukaryotic initiation factor 4a, superoxide dismutase and a hypothetical protein from Neurospora crassa were also up-regulated as a response to R. solani cell walls. Several cell wall-degrading enzymes were identified from the T. atroviride culture supernatant, providing further evidence that a cellular response indicative of biological control had occurred.

  16. Produção, purificação, clonagem e aplicação de enzimas líticas Production, purification, cloning and application of lytic enzymes

    Directory of Open Access Journals (Sweden)

    Luciana Francisco Fleuri

    2005-10-01

    Full Text Available Lytic enzymes such as beta-1,3 glucanases, proteases and chitinases are able to hydrolyse, respectively, beta-1,3 glucans, mannoproteins and chitin, as well as the cell walls of many yeast species. Lytic enzymes are useful in a great variety of applications including the preparation of protoplasts; the extraction of proteins, enzymes, pigments and functional carbohydrates; pre-treatment for the mechanical rupture of cells; degradation of residual yeast cell mass for the preparation of animal feed; analysis of the yeast cell wall structure and composition; study of the yeast cell wall synthesis and the control of pathogenic fungi. This review presents the most important aspects with respect to lytic enzymes, especially their production, purification, cloning and application.

  17. Phage lytic enzymes: a history.

    Science.gov (United States)

    Trudil, David

    2015-02-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of 'bacteria-eaters' or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well (Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specific disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay (Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes-from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  18. Cell wall polysaccharides hydrolysis of malting barley (Hordeum vulgare L.: a review

    Directory of Open Access Journals (Sweden)

    Jamar, C.

    2011-01-01

    Full Text Available Malting quality results from the different steps of the malting process. Malting uses internal changes of the seed occurring during germination, such as enzymes synthesis, to obtain a good hydrolysis process and the components required. Among the three main hydrolytic events observed, that are namely starch degradation, cell wall breakdown and protein hydrolysis, an efficient cell wall polysaccharides hydrolysis is an essential condition for a final product of quality. Indeed, because of the physical barrier of the cell wall, cell wall polysaccharides hydrolysis is one of the first steps expected from the process to gain access to the cell components. Moreover, viscosity problem and haze formation in malting industry are related to their presence during the process when inefficient degradation occurs, leading to increased production time and cost. Understanding the key elements in cell wall degradation is important for a better control. (1-3,1-4-β-glucans and arabinoxylans are the main constituents of cell wall. (1-3,1-4-β-glucans are unbranched chains of β-D-glucopyranose residues with β-(1,3 linkages and β-(1,4 linkages. Arabinoxylan consists in a backbone of D-xylanopyranosyl units linked by β-(1-4 bonds connected to single L-arabinofuranose by α-(1→2 or α-(1→3-linkages. Degradation of (1-3,1-4-β-glucans is processed by the (1-3,1-4-β-glucanases, the β-glucosidases and the β-glucane exohydrolases. It seems that the (1-3-β-glucanases are also involved. Arabinoxylans are mainly decomposed by (1-4-β-xylan endohydrolase, arabinofuranosidase and β-xylosidase.

  19. Unravelling the Interactions between Hydrolytic and Oxidative Enzymes in Degradation of Lignocellulosic Biomass by Sporothrix carnis under Various Fermentation Conditions

    Directory of Open Access Journals (Sweden)

    Olusola A. Ogunyewo

    2016-01-01

    Full Text Available The mechanism underlying the action of lignocellulolytic enzymes in biodegradation of lignocellulosic biomass remains unclear; hence, it is crucial to investigate enzymatic interactions involved in the process. In this study, degradation of corn cob by Sporothrix carnis and involvement of lignocellulolytic enzymes in biodegradation were investigated over 240 h cultivation period. About 60% degradation of corn cob was achieved by S. carnis at the end of fermentation. The yields of hydrolytic enzymes, cellulase and xylanase, were higher than oxidative enzymes, laccase and peroxidase, over 144 h fermentation period. Maximum yields of cellulase (854.4 U/mg and xylanase (789.6 U/mg were at 96 and 144 h, respectively. Laccase and peroxidase were produced cooperatively with maximum yields of 489.06 U/mg and 585.39 U/mg at 144 h. Drastic decline in production of cellulase at 144 h (242.01 U/mg and xylanase at 192 h (192.2 U/mg indicates that they play initial roles in biodegradation of lignocellulosic biomass while laccase and peroxidase play later roles. Optimal degradation of corn cob (76.6% and production of hydrolytic and oxidative enzymes were achieved with 2.5% inoculum at pH 6.0. Results suggest synergy in interactions between the hydrolytic and oxidative enzymes which can be optimized for improved biodegradation.

  20. Insulin‐degrading enzyme is genetically associated with Alzheimer's disease in the Finnish population

    Science.gov (United States)

    Vepsäläinen, Saila; Parkinson, Michele; Helisalmi, Seppo; Mannermaa, Arto; Soininen, Hilkka; Tanzi, Rudolph E; Bertram, Lars; Hiltunen, Mikko

    2007-01-01

    The gene for insulin‐degrading enzyme (IDE), which is located at chromosome 10q24, has been previously proposed as a candidate gene for late‐onset Alzheimer's disease (AD) based on its ability to degrade amyloid β‐protein. Genotyping of single nucleotide polymorphisms (SNPs) in the IDE gene in Finnish patients with AD and controls revealed SNPs rs4646953 and rs4646955 to be associated with AD, conferring an approximately two‐fold increased risk. Single locus findings were corroborated by the results obtained from haplotype analyses. This suggests that genetic alterations in or near the IDE gene may increase the risk for developing AD. PMID:17496198

  1. Optimisation of synergistic biomass-degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design.

    Science.gov (United States)

    Suwannarangsee, Surisa; Bunterngsook, Benjarat; Arnthong, Jantima; Paemanee, Atchara; Thamchaipenet, Arinthip; Eurwilaichitr, Lily; Laosiripojana, Navadol; Champreda, Verawat

    2012-09-01

    Synergistic enzyme system for the hydrolysis of alkali-pretreated rice straw was optimised based on the synergy of crude fungal enzyme extracts with a commercial cellulase (Celluclast™). Among 13 enzyme extracts, the enzyme preparation from Aspergillus aculeatus BCC 199 exhibited the highest level of synergy with Celluclast™. This synergy was based on the complementary cellulolytic and hemicellulolytic activities of the BCC 199 enzyme extract. A mixture design was used to optimise the ternary enzyme complex based on the synergistic enzyme mixture with Bacillus subtilis expansin. Using the full cubic model, the optimal formulation of the enzyme mixture was predicted to the percentage of Celluclast™: BCC 199: expansin=41.4:37.0:21.6, which produced 769 mg reducing sugar/g biomass using 2.82 FPU/g enzymes. This work demonstrated the use of a systematic approach for the design and optimisation of a synergistic enzyme mixture of fungal enzymes and expansin for lignocellulosic degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Production and partial characterization of arabinoxylan-degrading enzymes by Penicillium brasilianum under solid-state fermentation

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Granouillet, P.; Olsson, Lisbeth

    2006-01-01

    The production of a battery of arabinoxylan-degrading enzymes by the fungus Penicillium brasilianum grown on brewer's spent grain (BSG) under solid-state fermentation was investigated. Initial moisture content, initial pH, temperature, and nitrogen source content were optimized to achieve maximum...

  3. Pectin-modifying enzymes and pectin-derived materials: applications and impacts.

    Science.gov (United States)

    Bonnin, Estelle; Garnier, Catherine; Ralet, Marie-Christine

    2014-01-01

    Pectins are complex branched polysaccharides present in primary cell walls. As a distinctive feature, they contain high amount of partly methyl-esterified galacturonic acid and low amount of rhamnose and carry arabinose and galactose as major neutral sugars. Due to their structural complexity, they are modifiable by many different enzymes, including hydrolases, lyases, and esterases. Their peculiar structure is the origin of their physicochemical properties. Among others, their remarkable gelling properties make them a key additive for food industries. Pectin-degrading enzymes and -modifying enzymes may be used in a wide variety of applications to modulate pectin properties or produce pectin derivatives and oligosaccharides with functional as well as nutritional interests. This paper reviews the scientific information available on pectin structure, pectin-modifying enzymes, and the use of enzymes to produce pectin with controlled structure or pectin-derived oligosaccharides, with functional or nutritional interesting properties.

  4. Production of heterologous cutinases by E. coli and improved enzyme formulation for application on plastic degradation

    OpenAIRE

    Gomes,Daniela S; Matamá,Teresa; Cavaco-Paulo,Artur; Campos-Takaki,Galba M; Salgueiro,Alexandra A

    2013-01-01

    Background: The hydrolytic action of cutinases has been applied to the degradation of plastics. Polyethylene terephthalate (PET) have long half-life which constitutes a major problem for their treatment as urban solid residues. The aim of this work was to characterize and to improve stable the enzyme to optimize the process of degradation using enzymatic hydrolysis of PET by recombinant cutinases. Results: The wild type form of cutinase from Fusarium solani pisi and its C-terminal fusion to c...

  5. Development of a genetically programed vanillin-sensing bacterium for high-throughput screening of lignin-degrading enzyme libraries.

    Science.gov (United States)

    Sana, Barindra; Chia, Kuan Hui Burton; Raghavan, Sarada S; Ramalingam, Balamurugan; Nagarajan, Niranjan; Seayad, Jayasree; Ghadessy, Farid J

    2017-01-01

    Lignin is a potential biorefinery feedstock for the production of value-added chemicals including vanillin. A huge amount of lignin is produced as a by-product of the paper industry, while cellulosic components of plant biomass are utilized for the production of paper pulp. In spite of vast potential, lignin remains the least exploited component of plant biomass due to its extremely complex and heterogenous structure. Several enzymes have been reported to have lignin-degrading properties and could be potentially used in lignin biorefining if their catalytic properties could be improved by enzyme engineering. The much needed improvement of lignin-degrading enzymes by high-throughput selection techniques such as directed evolution is currently limited, as robust methods for detecting the conversion of lignin to desired small molecules are not available. We identified a vanillin-inducible promoter by RNAseq analysis of Escherichia coli cells treated with a sublethal dose of vanillin and developed a genetically programmed vanillin-sensing cell by placing the 'very green fluorescent protein' gene under the control of this promoter. Fluorescence of the biosensing cell is enhanced significantly when grown in the presence of vanillin and is readily visualized by fluorescence microscopy. The use of fluorescence-activated cell sorting analysis further enhances the sensitivity, enabling dose-dependent detection of as low as 200 µM vanillin. The biosensor is highly specific to vanillin and no major response is elicited by the presence of lignin, lignin model compound, DMSO, vanillin analogues or non-specific toxic chemicals. We developed an engineered E. coli cell that can detect vanillin at a concentration as low as 200 µM. The vanillin-sensing cell did not show cross-reactivity towards lignin or major lignin degradation products including vanillin analogues. This engineered E. coli cell could potentially be used as a host cell for screening lignin-degrading enzymes that

  6. A monomeric variant of insulin degrading enzyme (IDE loses its regulatory properties.

    Directory of Open Access Journals (Sweden)

    Eun Suk Song

    2010-03-01

    Full Text Available Insulin degrading enzyme (IDE is a key enzyme in the metabolism of both insulin and amyloid beta peptides. IDE is unique in that it is subject to allosteric activation which is hypothesized to occur through an oligomeric structure.IDE is known to exist as an equilibrium mixture of monomers, dimers, and higher oligomers, with the dimer being the predominant form. Based on the crystal structure of IDE we deleted the putative dimer interface in the C-terminal region, which resulted in a monomeric variant. Monomeric IDE retained enzymatic activity, however instead of the allosteric behavior seen with wild type enzyme it displayed Michaelis-Menten kinetic behavior. With the substrate Abz-GGFLRKHGQ-EDDnp, monomeric IDE retained approximately 25% of the wild type activity. In contrast with the larger peptide substrates beta-endorphin and amyloid beta peptide 1-40, monomeric IDE retained only 1 to 0.25% of wild type activity. Unlike wild type IDE neither bradykinin nor dynorphin B-9 activated the monomeric variant of the enzyme. Similarly, monomeric IDE was not activated by polyphosphates under conditions in which the activity of wild type enzyme was increased more than 50 fold.These findings serve to establish the dimer interface in IDE and demonstrate the requirement for an oligomeric form of the enzyme for its regulatory properties. The data support a mechanism where the binding of activators to oligomeric IDE induces a conformational change that cannot occur in the monomeric variant. Since a conformational change from a closed to a more open structure is likely the rate-determining step in the IDE reaction, the subunit induced conformational change likely shifts the structure of the oligomeric enzyme to a more open conformation.

  7. Biosurfactant and enzyme mediated crude oil degradation by Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3.

    Science.gov (United States)

    Parthipan, Punniyakotti; Elumalai, Punniyakotti; Sathishkumar, Kuppusamy; Sabarinathan, Devaraj; Murugan, Kadarkarai; Benelli, Giovanni; Rajasekar, Aruliah

    2017-10-01

    The present study focuses on the optimization of biosurfactant (BS) production using two potential biosurfactant producer Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3 and role of enzymes in the biodegradation of crude oil. The optimal conditions for P. stutzeri NA3 and A. baumannii MN3 for biodegradation were pH of 8 and 7; temperature of 30 and 40 °C, respectively. P. stutzeri NA3 and A. baumannii MN3 produced 3.81 and 4.68 g/L of BS, respectively. Gas chromatography mass spectrometry confirmed that BS was mainly composed of fatty acids. Furthermore, the role of the degradative enzymes, alkane hydroxylase, alcohol dehydrogenase and laccase on biodegradation of crude oil are explained. Maximum biodegradation efficiency (BE) was recorded for mixed consortia (86%) followed by strain P. stutzeri NA3 (84%). Both bacterial strains were found to be vigorous biodegraders of crude oil than other biosurfactant-producing bacteria due to their enzyme production capabilities and our results suggests that the bacterial isolates can be used for effective degradation of crude oil within short time periods.

  8. Involvement of a novel enzyme, MdpA, in methyl tert-butyl ether degradation in Methylibium petroleiphilum PM1.

    Science.gov (United States)

    Schmidt, Radomir; Battaglia, Vince; Scow, Kate; Kane, Staci; Hristova, Krassimira R

    2008-11-01

    Methylibium petroleiphilum PM1 is a well-characterized environmental strain capable of complete metabolism of the fuel oxygenate methyl tert-butyl ether (MTBE). Using a molecular genetic system which we established to study MTBE metabolism by PM1, we demonstrated that the enzyme MdpA is involved in MTBE removal, based on insertional inactivation and complementation studies. MdpA is constitutively expressed at low levels but is strongly induced by MTBE. MdpA is also involved in the regulation of tert-butyl alcohol (TBA) removal under certain conditions but is not directly responsible for TBA degradation. Phylogenetic comparison of MdpA to related enzymes indicates close homology to the short-chain hydrolyzing alkane hydroxylases (AH1), a group that appears to be a distinct subfamily of the AHs. The unique, substrate-size-determining residue Thr(59) distinguishes MdpA from the AH1 subfamily as well as from AlkB enzymes linked to MTBE degradation in Mycobacterium austroafricanum.

  9. Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases

    DEFF Research Database (Denmark)

    Yuhong, Huang; Busk, Peter Kamp; Lange, Lene

    2015-01-01

    in Fusarium commune. Prediction of the cellulose and hemicellulose-degrading enzymes in the F. commune transcriptome using peptide pattern recognition revealed 147 genes encoding glycoside hydrolases and six genes encoding lytic polysaccharide monooxygenases (AA9 and AA11), including all relevant cellulose...

  10. Pectinases: aplicações industriais e perspectivas Pectinolytic enzymes: industrial applications and future perspectives

    Directory of Open Access Journals (Sweden)

    Mariana Uenojo

    2007-04-01

    Full Text Available Pectic substances are structural heteropolysaccharides that occur in the middle lamellae and primary cell walls of higher plants. They are composed of partially methyl-esterified galacturonic acid residues linked by alpha-1, 4-glycosidic bonds. Pectinolytic enzymes are complex enzymes that degrade pectic polymers and there are several classes of enzymes, which include pectin esterases, pectin and pectate lyases and polygalacturonases. Plants, filamentous fungi, bacteria and yeasts are able to produce pectinases. In the industrial world, pectinases are used in fruit juice clarification, in the production of wine, in the extraction of olive oil, fiber degumming and fermentation of tea, coffee and cocoa.

  11. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw

    NARCIS (Netherlands)

    Rodrigues, M.A.M.; Pinto, P.; Bezerra, R.M.F.; Dias, A.A.; Guedes, C.M.; Cone, J.W.

    2008-01-01

    A series of in vitro experiments were completed to evaluate the potential of enzyme extracts, obtained from the white-rot fungi Trametes versicolor (TV1, TV2), Bjerkandera adusta (BA) and Fomes fomentarius (FF), to increase degradation of cell wall components of wheat straw. The studies were

  12. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay

    Science.gov (United States)

    Chiaki Hori; Jill Gaskell; Kiyohiko Igarashi; Masahiro Samejima; David Hibbett; Bernard Henrissat; Dan Cullen

    2013-01-01

    To degrade the polysaccharides, wood-decay fungi secrete a variety of glycoside hydrolases (GHs) and carbohydrate esterases (CEs) classified into various sequence-based families of carbohydrate-active enzymes (CAZys) and their appended carbohydrate-binding modules (CBM). Oxidative enzymes, such as cellobiose dehydrogenase (CDH) and lytic polysaccharide monooxygenase (...

  13. Combining polysaccharide biosynthesis and transport in a single enzyme: dual-function cell wall glycan synthases.

    Directory of Open Access Journals (Sweden)

    Jonathan Kent Davis

    2012-06-01

    Full Text Available Extracellular polysaccharides are synthesized by a wide variety of species, from unicellular bacteria and Archaea to the largest multicellular plants and animals in the biosphere. In every case, the biosynthesis of these polymers requires transport across a membrane, from the cytosol to either the lumen of secretory pathway organelles or directly into the extracellular space. Although some polysaccharide biosynthetic substrates are moved across the membrane to sites of polysaccharide synthesis by separate transporter proteins before being incorporated into polymers by glycosyltransferase proteins, many polysaccharide biosynthetic enzymes appear to have both transporter and transferase activities. In these cases, the biosynthetic enzymes utilize substrate on one side of the membrane and deposit the polymer product on the other side. This review discusses structural characteristics of plant cell wall glycan synthases that couple synthesis with transport, drawing on what is known about such dual-function enzymes in other species.

  14. PENGARUH DEGRADASI ENZIM PROTEOLITIK TERHADAP AKTIVITAS ANGIOTENSIN CONVERTING ENZYME INHIBITOR BEKASAM DENGAN Lactobacillus plantarum B1765 (The Effect of Degradation of Proteolitic Enzyme on Angiotensin Converting Enzyme Inhibitor Activity of Bekasam with Lactobacillus plantarum B1765

    Directory of Open Access Journals (Sweden)

    Prima Retno Wikandari

    2016-10-01

    Full Text Available This research studied the effect of digestive enzyme degradation on the Angiotensin Converting Enzyme Inhibitor (ACEI activity and the stability of bekasam peptide and ACEI activity. Water extract of bekasam was subjected to pepsin and trypsin. The stability of peptide was measured from the changes of peptide concentration before and after treatment by those enzymes. The stability of ACEI activity was measured by hypuric acid liberated from Hip-His-Leu as ACE substrate and determined by spectrophotometer. The results showed that proteolytic enzyme degradation did not affect the concentration of peptide (p>0,05 and the mean concentration 36.72. It was closely related with the ACEI activity that did not change significantly before and after digestion by pepsin and trypsin (p>0,05 and the mean ACEI activity was 70.73. It showed that ACEI activity of bekasam did not change by the degradation of digestive enzyme. Keywords: bekasam, fermented fish, peptides, ACEI activity ABSTRAK Penelitian ini bertujuan untuk mengkaji pengaruh degradasi enzim pencernaan proteolitik terhadap stabilitas peptida dan aktivitas Angiotensin Converting Enzyme Inhibitor (ACEI bekasam yang difermentasi dengan kultur starter Lactobacillus plantarum B1765. Terhadap ekstrak bekasam diberi perlakuan enzim proteolitik pepsin dan tripsin. Pengujian stabilitas peptida diukur dengan ada tidaknya perubahan jumlah peptida setelah perlakuan enzim menggunakan metode formol, sedangkan aktivitas ACEI dilakukan dengan mengetahui jumlah asam hipurat dari substrat Hip-His-Leu yang dibebaskan oleh ACE diukur dengan spektrofotometer. Hasil pengujian menunjukkan perlakuan enzim proteolitik tidak berpengaruh pada konsentrasi peptida dengan p>0,05 dengan nilai rata-rata konsentrasi peptida sebesar 36,72. Hal ini berkorelasi dengan aktivitas ACEI yang juga menunjukkan tidak ada pengaruh antara perlakuan sebelum dan setelah degradasi enzim (p>0,05 dengan rata-rata aktivitas ACEI sebesar 70,73. Hasil

  15. Extraction of pectic enzymes from of Lulo (Solanum quitoense lam) involved in softening

    International Nuclear Information System (INIS)

    Rodriguez Nieto, Jeimmy Marcela; Restrepo Sanchez, Luz Patricia

    2011-01-01

    The main problem of post-harvest deterioration of Lulo (Solanum quitoense lam) is the softening is the main problem of post-harvest deterioration of Lulo that is generated mainly by the activity of pectic enzymes, which attack the structural network of the cell wall. this research was based on finding the best conditions structural cell wall network for extraction and measurement of enzyme activity pectinesterase (PE), polygalacturonase (PG) and pectato liasa (PL); tools needed to study the further role of these enzymes in the deterioration of pectatelyase fruit softening, due to various metabolic changes. It was found that the first two enzymes can be extracted simultaneously with 20 mm phosphate buffer pH 7.0, 0.06 m NaCl and 60 minutes of extraction, ratio 1:2 (plant material: extraction buffer), pectatelyase extracted with 20 mm phosphate buffer pH 7.0, 20 mm cysteine and 30 minutes of extraction, ratio 1:3. for quantification of pectinesterase activity is necessary to incubate 15 minutes at 42 Celsius degrade, 2500 μl of crude enzyme extract (EE) in 20 mm phosphate buffer pH 7.0, to 0.15 m NaCl and 1.6% citrus pectin as (CP) substrate with apparent km values of 3.78% CP and vmax 17.95 mol h+/min, mg prot. for the quantification of pectinesterase activity is necessary to incubate 15 minutes to 42 Celsius degrade 2500 μl of crude enzyme extract (EE) in 20 mm phosphate buffer pH 7.0, 0.15 m NaCl and 1.6% citrus pectin as substrate with apparent km values of 3.78% CP and 17.95 μ vmax mol h+/min Mg prot. for the quantification of polygalacturonase activity is necessary to incubate 15 minutes to 37 Celsius degrade 30 μl (EE) in 200 mm acetate buffer pH 4.5, 0.25 m NaCl and 1.0% of APG as substrate, with apparent km values 0.141% of APG and vmax 28.46 nkat/s mg prot. for the quantification of the pectatelyase activity is necessary to incubate 2 minutes to 17 Celsius degrade, 100 μl (EE) in buffer tris: HCl pH 8.5, 50 mm 4 mm CaCl2 and 0.1% PGA as substrate, with

  16. Cell wall composition profiling of parasitic giant dodder (Cuscuta reflexa) and its hosts: a priori differences and induced changes.

    Science.gov (United States)

    Johnsen, Hanne R; Striberny, Bernd; Olsen, Stian; Vidal-Melgosa, Silvia; Fangel, Jonatan U; Willats, William G T; Rose, Jocelyn K C; Krause, Kirsten

    2015-08-01

    Host plant penetration is the gateway to survival for holoparasitic Cuscuta and requires host cell wall degradation. Compositional differences of cell walls may explain why some hosts are amenable to such degradation while others can resist infection. Antibody-based techniques for comprehensive profiling of cell wall epitopes and cell wall-modifying enzymes were applied to several susceptible hosts and a resistant host of Cuscuta reflexa and to the parasite itself. Infected tissue of Pelargonium zonale contained high concentrations of de-esterified homogalacturonans in the cell walls, particularly adjacent to the parasite's haustoria. High pectinolytic activity in haustorial extracts and high expression levels of pectate lyase genes suggest that the parasite contributes directly to wall remodeling. Mannan and xylan concentrations were low in P. zonale and in five susceptible tomato introgression lines, but high in the resistant Solanum lycopersicum cv M82, and in C. reflexa itself. Knowledge of the composition of resistant host cell walls and the parasite's own cell walls is useful in developing strategies to prevent infection by parasitic plants. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Sulfur isotopic fractionation of carbonyl sulfide during degradation by soil bacteria and enzyme

    Science.gov (United States)

    Kamezaki, Kazuki; Hattori, Shohei; Ogawa, Takahiro; Toyoda, Sakae; Kato, Hiromi; Katayama, Yoko; Yoshida, Naohiro

    2017-04-01

    Carbonyl sulfide (COS) is an atmospheric trace gas that possess great potential for tracer of carbon cycle (Campbell et al., 2008). COS is taken up by vegetation during photosynthesis like absorption of carbon dioxide but COS can not emit by respiration of vegetation, suggesting possible tracer for gross primary production. However, some studies show the COS-derived GPP is larger than the estimates by using carbon dioxide flux because COS flux by photolysis and soil flux are not distinguished (e.g. Asaf et al., 2013). Isotope analysis is a useful tool to trace sources and transformations of trace gases. Recently our group developed a promising new analytical method for measuring the stable sulfur isotopic compositions of COS using nanomole level samples: the direct isotopic analytical technique of on-line gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions S+ enabling us to easily analyze sulfur isotopes in COS (Hattori et al., 2015). Soil is thought to be important as both a source and a sink of COS in the troposphere. In particular, soil has been reported as a large environmental sink for atmospheric COS. Bacteria isolated from various soils actively degrade COS, with various enzymes such as carbonic anhydrase and COSase (Ogawa et al., 2013) involved in COS degradation. However, the mechanism and the magnitude of bacterial contribution in terms of a sink for atmospheric COS is still uncertain. Therefore, it is important to quantitatively evaluate this contribution using COS sulfur isotope analysis. We present isotopic fractionation constants for COS by laboratory incubation experiments during degradation by soil bacteria and COSase. Incubation experiments were conducted using strains belonging to the genera Mycobacterium, Williamsia, Cupriavidus, and Thiobacillus, isolated from natural soil or activated sludge and enzyme purified from a bacteria. As a result, the isotopic compositions of OCS were increased during degradation of

  18. Direct immunofluorescence and enzyme-linked immunosorbent assays for evaluating chlorinated hydrocarbon degrading bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L.; Franck, M.M.; Brey, J.; Fliermans, C.B. [Westinghouse Savannah River, Aiken, SC (United States). Environmental Biotechnology Section; Scott, D.; Lanclos, K. [Medical Coll. of Georgia, Augusta, GA (United States)

    1997-06-01

    Immunological procedures were developed to enumerate chlorinated hydrocarbon degrading bacteria. Polyclonal antibodies (Pabs) were produced by immunizing New Zealand white rabbits against 18 contaminant-degrading bacteria. These included methanotrophic and chlorobenzene (CB) degrading species. An enzyme-linked immunosorbent assay (ELISA) was used to test for specificity and sensitivity of the Pabs. Direct fluorescent antibodies (DFAs) were developed with these Pabs against select methanotrophic bacteria isolated from a trichloroethylene (TCE) contaminated landfill at the Savannah River Site (SRS) and cultures from the American Type Culture Collection (ATCC). Analysis of cross reactivity testing data showed some of the Pabs to be group specific while others were species specific. The threshold of sensitivity for the ELISA is 105 bacteria cells/ml. The DFA can detect as few as one bacterium per ml after concentration. Results from the DFA and ELISA techniques for enumeration of methanotrophic bacteria in groundwater were higher but not significantly different (P < 0.05) compared to indirect microbiological techniques such as MPN. These methods provide useful information on in situ community structure and function for bioremediation applications within 1--4 hours of sampling.

  19. Notable fibrolytic enzyme production by Aspergillus spp. isolates from the gastrointestinal tract of beef cattle fed in lignified pastures.

    Directory of Open Access Journals (Sweden)

    Flávia Oliveira Abrão

    Full Text Available Fungi have the ability to degrade vegetal cell wall carbohydrates, and their presence in the digestive tract of ruminants can minimize the effects of lignified forage on ruminal fermentation. Here, we evaluated enzyme production by Aspergillus spp. isolates from the digestive tracts of cattle grazed in tropical pastures during the dry season. Filamentous fungi were isolated from rumen and feces by culture in cellulose-based medium. Ninety fungal strains were isolated and identified by rDNA sequence analysis, microculture, or both. Aspergillus terreus was the most frequently isolated species, followed by Aspergillus fumigatus. The isolates were characterized with respect to their cellulolytic, xylanolytic, and lignolytic activity through qualitative evaluation in culture medium containing a specific corresponding carbon source. Carboxymethyl cellulase (CMCase activity was quantified by the reducing sugar method. In the avicel and xilan degradation test, the enzyme activity (EA at 48 h was significantly higher other periods (P < 0.05. Intra- and inter-specific differences in EA were verified, and high levels of phenoloxidases, which are crucial for lignin degradation, were observed in 28.9% of the isolates. Aspergillus terreus showed significantly higher EA for avicelase (3.96 ±1.77 and xylanase (3.13 ±.091 than the other Aspergillus species at 48 h of incubation. Isolates AT13 and AF69 showed the highest CMCase specific activity (54.84 and 33.03 U mg-1 protein, respectively. Selected Aspergillus spp. isolates produced remarkable levels of enzymes involved in vegetal cell wall degradation, suggesting their potential as antimicrobial additives or probiotics in ruminant diets.

  20. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Suen, Garret; Barry, Kerrie; Goodwin, Lynne; Scott, Jarrod; Aylward, Frank; Adams, Sandra; Pinto-Tomas, Adrian; Foster, Clifton; Pauly, Markus; Weimer, Paul; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy; Slater, Steven; Donohue, Timothy; Currie, Cameron; Tringe, Susannah G.

    2010-09-23

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome?s predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  1. An insect herbivore microbiome with high plant biomass-degrading capacity.

    Directory of Open Access Journals (Sweden)

    Garret Suen

    2010-09-01

    Full Text Available Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini, which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  2. Cometabolic Degradation of Dibenzofuran and Dibenzothiophene by a Naphthalene-Degrading Comamonas sp. JB.

    Science.gov (United States)

    Ji, Xiangyu; Xu, Jing; Ning, Shuxiang; Li, Nan; Tan, Liang; Shi, Shengnan

    2017-12-01

    Comamonas sp. JB was used to investigate the cometabolic degradation of dibenzofuran (DBF) and dibenzothiophene (DBT) with naphthalene as the primary substrate. Dehydrogenase and ATPase activity of the growing system with the presence of DBF and DBT were decreased when compared to only naphthalene in the growing system, indicating that the presence of DBF and DBT inhibited the metabolic activity of strain JB. The pathways and enzymes involved in the cometabolic degradation were tested. Examination of metabolites elucidated that strain JB cometabolically degraded DBF to 1,2-dihydroxydibenzofuran, subsequently to 2-hydroxy-4-(3'-oxo-3'H-benzofuran-2'-yliden)but-2-enoic acid, and finally to catechol. Meanwhile, strain JB cometabolically degraded DBT to 1,2-dihydroxydibenzothiophene and subsequently to the ring cleavage product. A series of naphthalene-degrading enzymes including naphthalene dioxygenase, 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase, salicylate hydroxylase, and catechol 2,3-oxygenase have been detected, confirming that naphthalene was the real inducer of expression the degradation enzymes and metabolic pathways were controlled by naphthalene-degrading enzymes.

  3. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides.

    Science.gov (United States)

    Devendran, Saravanan; Abdel-Hamid, Ahmed M; Evans, Anton F; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I; Cann, Isaac

    2016-10-17

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose.

  4. Fungal enzyme production in seeds of transgenic canola plants for conversion of cellulosic materials to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, K.J.; Beauchemin, K.A. [Agriculture and Agri-Food Canada, Lethbridge, AB (Canada); Moloney, M.M. [Calgary Univ., AB (Canada). Dept. of Biological Sciences

    1997-07-01

    The fuel alcohol industry makes use of industrial enzymes to effectively degrade fibrous plant cell walls. Carbohydrates in cellulosic materials are in the form of complex sugars that can be hydrolyzed to simple sugars by fungal fibrolytic enzymes such as cellulases and xylanases. This study was conducted to find a cost effective way to produce fibrolytic enzymes using gene fusion technology in which a xylanase gene and a cellulase gene from two fungal species are introduced into canola to be a carrier for the production of these enzymes. The two genes had been analyzed for maximal enzymatic activity to minimize side effects. Results of the study demonstrated the stability and potential of transgenic oil-bodies as an immobilized enzyme matrix, and showed that it is possible to express fibrolytic enzymes in canola.

  5. Involvement of a Novel Enzyme, MdpA, in Methyl tert-Butyl Ether Degradation in Methylibium petroleiphilum PM1 ▿

    Science.gov (United States)

    Schmidt, Radomir; Battaglia, Vince; Scow, Kate; Kane, Staci; Hristova, Krassimira R.

    2008-01-01

    Methylibium petroleiphilum PM1 is a well-characterized environmental strain capable of complete metabolism of the fuel oxygenate methyl tert-butyl ether (MTBE). Using a molecular genetic system which we established to study MTBE metabolism by PM1, we demonstrated that the enzyme MdpA is involved in MTBE removal, based on insertional inactivation and complementation studies. MdpA is constitutively expressed at low levels but is strongly induced by MTBE. MdpA is also involved in the regulation of tert-butyl alcohol (TBA) removal under certain conditions but is not directly responsible for TBA degradation. Phylogenetic comparison of MdpA to related enzymes indicates close homology to the short-chain hydrolyzing alkane hydroxylases (AH1), a group that appears to be a distinct subfamily of the AHs. The unique, substrate-size-determining residue Thr59 distinguishes MdpA from the AH1 subfamily as well as from AlkB enzymes linked to MTBE degradation in Mycobacterium austroafricanum. PMID:18791002

  6. PPARγ transcriptionally regulates the expression of insulin-degrading enzyme in primary neurons

    International Nuclear Information System (INIS)

    Du, Jing; Zhang, Lang; Liu, Shubo; Zhang, Chi; Huang, Xiuqing; Li, Jian; Zhao, Nanming; Wang, Zhao

    2009-01-01

    Insulin-degrading enzyme (IDE) is a protease that has been demonstrated to play a key role in degrading both Aβ and insulin and deficient in IDE function is associated with Alzheimer's disease (AD) and type 2 diabetes mellitus (DM2) pathology. However, little is known about the cellular and molecular regulation of IDE expression. Here we show IDE levels are markedly decreased in DM2 patients and positively correlated with the peroxisome proliferator-activated receptor γ (PPARγ) levels. Further studies show that PPARγ plays an important role in regulating IDE expression in rat primary neurons through binding to a functional peroxisome proliferator-response element (PPRE) in IDE promoter and promoting IDE gene transcription. Finally, we demonstrate that PPARγ participates in the insulin-induced IDE expression in neurons. These results suggest that PPARγ transcriptionally induces IDE expression which provides a novel mechanism for the use of PPARγ agonists in both DM2 and AD therapies.

  7. [Effect of tongluo xingnao effervescent tablet on learning and memory of AD rats and expression of insulin-degrading enzyme in hippocampus].

    Science.gov (United States)

    Zhang, Yin-Jie; Dai, Yuan; Hu, Yong; Ma, Yun-Tong; Xu, Shi-Jun; Wang, Yong-Yan

    2013-09-01

    To study the effect of Tongluo Xingnao effervescent tablet on learning and memory of dementia rats induced by injection of Abeta25-35 in hippocampus and expression of insulin-degrading enzyme in hippocampus, in order to provide basis for preventing and treating senile dementia. The dementia rat model was established by injecting Abeta25-35 in hippocampus. The rats were divided into the model control group, the Aricept (1.4 mg x kg(-1)) group, and Tongluo Xingnao effervescent tablet high dose (7.56 g x kg(-1)), middle dose (3.78 g x kg(-1)) and low dose (1.59 g x kg(-1)) groups. A sham operation group was established by injecting normal saline in hippocampus. The rats were orally given drugs for 90 days, once a day. Their learning and memory were tested by using Morris water maze. Immunohistochemistry and image analysis were utilized for a quantitative analysis on the expression of insulin-degrading enzyme in hippocampus. Tongluo Xingnao effervescent tablet could significantly shorten the escape latency of rats in the directional navigation test, prolong the retention time in the first quadrant dwell, decrease the retention time in the third quadrant dwell, increase the frequency of crossing the platform, show a more notable statistical significance than the model control group (P tablet has the effects of improving learning and memory capacity of AD rats and promoting the expression of insulin-degrading enzyme in hippocampus. Its effect in promoting intelligence will be related to increased insulin-degrading enzyme in hippocampus.

  8. Development and validation of an enzyme-linked immunosorbent assay for the quantification of a specific MMP-9 mediated degradation fragment of type III collagen--A novel biomarker of atherosclerotic plaque remodeling

    DEFF Research Database (Denmark)

    Barascuk, Natasha; Vassiliadis, Efstathios; Larsen, Lise

    2011-01-01

    Degradation of collagen in the arterial wall by matrix metalloproteinases is the hallmark of atherosclerosis. We have developed an ELISA for the quantification of type III collagen degradation mediated by MMP-9 in urine.......Degradation of collagen in the arterial wall by matrix metalloproteinases is the hallmark of atherosclerosis. We have developed an ELISA for the quantification of type III collagen degradation mediated by MMP-9 in urine....

  9. From 20th century metabolic wall charts to 21st century systems biology: database of mammalian metabolic enzymes.

    Science.gov (United States)

    Corcoran, Callan C; Grady, Cameron R; Pisitkun, Trairak; Parulekar, Jaya; Knepper, Mark A

    2017-03-01

    The organization of the mammalian genome into gene subsets corresponding to specific functional classes has provided key tools for systems biology research. Here, we have created a web-accessible resource called the Mammalian Metabolic Enzyme Database ( https://hpcwebapps.cit.nih.gov/ESBL/Database/MetabolicEnzymes/MetabolicEnzymeDatabase.html) keyed to the biochemical reactions represented on iconic metabolic pathway wall charts created in the previous century. Overall, we have mapped 1,647 genes to these pathways, representing ~7 percent of the protein-coding genome. To illustrate the use of the database, we apply it to the area of kidney physiology. In so doing, we have created an additional database ( Database of Metabolic Enzymes in Kidney Tubule Segments: https://hpcwebapps.cit.nih.gov/ESBL/Database/MetabolicEnzymes/), mapping mRNA abundance measurements (mined from RNA-Seq studies) for all metabolic enzymes to each of 14 renal tubule segments. We carry out bioinformatics analysis of the enzyme expression pattern among renal tubule segments and mine various data sources to identify vasopressin-regulated metabolic enzymes in the renal collecting duct. Copyright © 2017 the American Physiological Society.

  10. Enzyme kinetics and identification of the rate-limiting step of enzymatic arabinoxylan degradation

    DEFF Research Database (Denmark)

    Rasmussen, Louise Enggaard; Xu, Cheng; Sørensen, Jens

    2012-01-01

    This study investigated the kinetics of multi-enzymatic degradation of soluble wheat arabinoxylan by monitoring the release of xylose and arabinose during designed treatments with mono-component enzymes at different substrate concentrations. The results of different combinations of α...... α-l-arabinofuranosidases catalyze liberation of arabinose residues linked 1→3 to singly (AFAn) or doubly (AFBa) substituted xyloses in arabinoxylan, respectively. When added to arabinoxylan at equimolar levels, the AFBa enzyme catalyzed the release of more arabinose, i.e. had a higher rate constant...... than AFAn, but with respect to the xylose release, AFAn – as expected – exhibited a better synergistic effect than AFBa with β-xylosidase. This synergistic effect with AFAn was estimated to increase the number of β-xylosidase catalyzed cuts from ∼3 (with β-xylosidase alone) to ∼7 in each arabinoxylan...

  11. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes

    Science.gov (United States)

    Winter, H.; Huber, S. C.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux. Availability of metabolites for Suc synthesis and 'demand' for products of sucrose degradation are important factors, but this review specifically focuses on the biosynthetic enzyme sucrose-phosphate synthase (SPS), and the degradative enzymes, sucrose synthase (SuSy), and the invertases. Recent progress has included the cloning of genes encoding these enzymes and the elucidation of posttranslational regulatory mechanisms. Protein phosphorylation is emerging as an important mechanism controlling SPS activity in response to various environmental and endogenous signals. In terms of Suc degradation, invertase-catalyzed hydrolysis generally has been associated with cell expansion, whereas SuSy-catalyzed metabolism has been linked with biosynthetic processes (e.g., cell wall or storage products). Recent results indicate that SuSy may be localized in multiple cellular compartments: (1) as a soluble enzyme in the cytosol (as traditionally assumed); (2) associated with the plasma membrane; and (3) associated with the actin cytoskeleton. Phosphorylation of SuSy has been shown to occur and may be one of the factors controlling localization of the enzyme. The purpose of this review is to summarize some of the recent developments relating to regulation of activity and localization of key enzymes involved in sucrose metabolism in plants.

  12. Loss in photosynthesis during senescence is accompanied by an increase in the activity of β-galactosidase in leaves of Arabidopsis thaliana: modulation of the enzyme activity by water stress.

    Science.gov (United States)

    Pandey, Jitendra Kumar; Dash, Sidhartha Kumar; Biswal, Basanti

    2017-07-01

    The precise nature of the developmental modulation of the activity of cell wall hydrolases that breakdown the wall polysaccharides to maintain cellular sugar homeostasis under sugar starvation environment still remains unclear. In this work, the activity of β-galactosidase (EC 3.2.1.23), a cell-wall-bound enzyme known to degrade the wall polysaccharides, has been demonstrated to remarkably enhance during senescence-induced loss in photosynthesis in Arabidopsis thaliana. The enhancement in the enzyme activity reaches a peak at the terminal phase of senescence when the rate of photosynthesis is at its minimum. Although the precise nature of chemistry of the interface between the decline in photosynthesis and enhancement in the activity of the enzyme could not be fully resolved, the enhancement in its activity in dark and its suppression in light or with exogenous sugars may indicate the involvement of loss of photosynthetic production of sugars as a key factor that initiates and stimulates the activity of the enzyme. The hydrolase possibly participates in the catabolic network of cell wall polysaccharides to produce sugars for execution of energy-dependant senescence program in the background of loss of photosynthesis. Drought stress experienced by the senescing leaves accelerates the decline in photosynthesis with further stimulation in the activity of the enzyme. The stress recovery of photosynthesis and suppression of the enzyme activity on withdrawal of stress support the proposition of photosynthetic modulation of the cell-wall-bound enzyme activity.

  13. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2014-01-01

    Abstract The version of this article published in BMC Genomics 2013, 14: 274, contains 9 unpublished genomes (Botryobasidium botryosum, Gymnopus luxurians, Hypholoma sublateritium, Jaapia argillacea, Hebeloma cylindrosporum, Conidiobolus coronatus, Laccaria amethystina, Paxillus involutus, and P. rubicundulus) downloaded from JGI website. In this correction, we removed these genomes after discussion with editors and data producers whom we should have contacted before downloading these genomes. Removing these data did not alter the principle results and conclusions of our original work. The relevant Figures 1, 2, 3, 4 and 6; and Table 1 have been revised. Additional files 1, 3, 4, and 5 were also revised. We would like to apologize for any confusion or inconvenience this may have caused. Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 94 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed

  14. Breakdown of mucin as barrier to digestive enzymes in the ischemic rat small intestine.

    Directory of Open Access Journals (Sweden)

    Marisol Chang

    Full Text Available Loss of integrity of the epithelial/mucosal barrier in the small intestine has been associated with different pathologies that originate and/or develop in the gastrointestinal tract. We showed recently that mucin, the main protein in the mucus layer, is disrupted during early periods of intestinal ischemia. This event is accompanied by entry of pancreatic digestive enzymes into the intestinal wall. We hypothesize that the mucin-containing mucus layer is the main barrier preventing digestive enzymes from contacting the epithelium. Mucin breakdown may render the epithelium accessible to pancreatic enzymes, causing its disruption and increased permeability. The objective of this study was to investigate the role of mucin as a protection for epithelial integrity and function. A rat model of 30 min splanchnic arterial occlusion (SAO was used to study the degradation of two mucin isoforms (mucin 2 and 13 and two epithelial membrane proteins (E-cadherin and toll-like receptor 4, TLR4. In addition, the role of digestive enzymes in mucin breakdown was assessed in this model by luminal inhibition with acarbose, tranexamic acid, or nafamostat mesilate. Furthermore, the protective effect of the mucin layer against trypsin-mediated disruption of the intestinal epithelium was studied in vitro. Rats after SAO showed degradation of mucin 2 and fragmentation of mucin 13, which was not prevented by protease inhibition. Mucin breakdown was accompanied by increased intestinal permeability to FITC-dextran as well as degradation of E-cadherin and TLR4. Addition of mucin to intestinal epithelial cells in vitro protected against trypsin-mediated degradation of E-cadherin and TLR4 and reduced permeability of FITC-dextran across the monolayer. These results indicate that mucin plays an important role in the preservation of the mucosal barrier and that ischemia but not digestive enzymes disturbs mucin integrity, while digestive enzymes actively mediate epithelial cell

  15. Metagenomic insights into the rumen microbial fibrolytic enzymes in Indian crossbred cattle fed finger millet straw.

    Science.gov (United States)

    Jose, V Lyju; Appoothy, Thulasi; More, Ravi P; Arun, A Sha

    2017-12-01

    The rumen is a unique natural habitat, exhibiting an unparalleled genetic resource of fibrolytic enzymes of microbial origin that degrade plant polysaccharides. The objectives of this study were to identify the principal plant cell wall-degrading enzymes and the taxonomic profile of rumen microbial communities that are associated with it. The cattle rumen microflora and the carbohydrate-active enzymes were functionally classified through a whole metagenomic sequencing approach. Analysis of the assembled sequences by the Carbohydrate-active enzyme analysis Toolkit identified the candidate genes encoding fibrolytic enzymes belonging to different classes of glycoside hydrolases(11,010 contigs), glycosyltransferases (6366 contigs), carbohydrate esterases (4945 contigs), carbohydrate-binding modules (1975 contigs), polysaccharide lyases (480 contigs), and auxiliary activities (115 contigs). Phylogenetic analysis of CAZyme encoding contigs revealed that a significant proportion of CAZymes were contributed by bacteria belonging to genera Prevotella, Bacteroides, Fibrobacter, Clostridium, and Ruminococcus. The results indicated that the cattle rumen microbiome and the CAZymes are highly complex, structurally similar but compositionally distinct from other ruminants. The unique characteristics of rumen microbiota and the enzymes produced by resident microbes provide opportunities to improve the feed conversion efficiency in ruminants and serve as a reservoir of industrially important enzymes for cellulosic biofuel production.

  16. Structural and functional analysis of phytotoxin toxoflavin-degrading enzyme.

    Directory of Open Access Journals (Sweden)

    Woo-Suk Jung

    Full Text Available Pathogenic bacteria synthesize and secrete toxic low molecular weight compounds as virulence factors. These microbial toxins play essential roles in the pathogenicity of bacteria in various hosts, and are emerging as targets for antivirulence strategies. Toxoflavin, a phytotoxin produced by Burkholderia glumae BGR1, has been known to be the key factor in rice grain rot and wilt in many field crops. Recently, toxoflavin-degrading enzyme (TxDE was identified from Paenibacillus polymyxa JH2, thereby providing a possible antivirulence strategy for toxoflavin-mediated plant diseases. Here, we report the crystal structure of TxDE in the substrate-free form and in complex with toxoflavin, along with the results of a functional analysis. The overall structure of TxDE is similar to those of the vicinal oxygen chelate superfamily of metalloenzymes, despite the lack of apparent sequence identity. The active site is located at the end of the hydrophobic channel, 9 Å in length, and contains a Mn(II ion interacting with one histidine residue, two glutamate residues, and three water molecules in an octahedral coordination. In the complex, toxoflavin binds in the hydrophobic active site, specifically the Mn(II-coordination shell by replacing a ligating water molecule. A functional analysis indicated that TxDE catalyzes the degradation of toxoflavin in a manner dependent on oxygen, Mn(II, and the reducing agent dithiothreitol. These results provide the structural features of TxDE and the early events in catalysis.

  17. High-throughput microarray mapping of cell wall polymers in roots and tubers during the viscosity-reducing process

    DEFF Research Database (Denmark)

    Huang, Yuhong; Willats, William George Tycho; Lange, Lene

    2016-01-01

    the viscosity-reducing process are poorly characterized. Comprehensive microarray polymer profiling, which is a high-throughput microarray, was used for the first time to map changes in the cell wall polymers of sweet potato (Ipomoea batatas), cassava (Manihot esculenta), and Canna edulis Ker. over the entire...... viscosity-reducing process. The results indicated that the composition of cell wall polymers among these three roots and tubers was markedly different. The gel-like matrix and glycoprotein network in the C. edulis Ker. cell wall caused difficulty in viscosity reduction. The obvious viscosity reduction......Viscosity reduction has a great impact on the efficiency of ethanol production when using roots and tubers as feedstock. Plant cell wall-degrading enzymes have been successfully applied to overcome the challenges posed by high viscosity. However, the changes in cell wall polymers during...

  18. Fibre degrading enzymes and Lactobacillus plantarum influence liquid feed characteristics and the solubility of fibre components and dry matter in vitro

    DEFF Research Database (Denmark)

    Christensen, P.; Glitso, V.; Pettersson, D.

    2007-01-01

    The effect of fibre degrading enzymes in combination with Lactobacillus plantarum on feed viscosity and pH and on solubilisation of non-starch polysaccharides (NSP) was studied in vitro using diets composed of cereals and soybean meal. The diet was incubated over time up to 24 It as liquid feed...... or liquid feed added L. plantarum and in addition both feeds were treated without or with fibre degrading enzymes. Spontaneous fermentation developed in the liquid feed without L. plantarum and became noticeable after a period of 6 to 8 It, when pH began to drop. From 8 to 24 h there was a slow but steady...... reduction in pH down to a level of about pH 4.3. This development was irrespective of enzyme supplementation level. The L. plantarum treatment had already reached a pH of 4.2 after 8 h and a pH of 3.6 after 24 It. The viscosity was reduced with supplementation with a high enzyme dose (6000 FXU and 600 FBG...

  19. [Induction of polygalacturonases important in pathogenicity of Pseudomonas solanacearum

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Recent studies on the importance of hydroxyproline-rich glycoproteins (HPRG`s) in the nature and function of plant cell walls have led to the question as to whether proteolytic enzymes are also involved in tissue maceration and act in concert with other cell wall degrading enzymes in the process. The primary objective of this research was to determine whether proteolytic enzymes, in combination with other enzymes, are involved in the degradation of plant cell walls and thus may be essential for pathogenesis by certain soft rot bacteria. The proteolytic enzymes of Erwinia carotovora subsp.carotovora (Ecc) grown on various media were examined by isoelectrofocusing in polyacrylamide gels over a pH range of 3-10. In addition to the main protease present in culture filtrates, low concentrations of several other proteases were present in extracts from potato tubers infected by Ecc. These enzymes degraded gelatin, soluble collagen, and Hide Powder Azure, and showed weak activity on casein, but did not degrade insoluble collagen or elastin. Ecc proteases appear capable of degrading at least one type of cell wall protein in vitro, but we were unable to obtain evidence that these proteases can attack cell wall proteins in muro. The results indicate that some glycosidic alkali- labile bonds have to be broken befor Ecc proteases can degrade cell wall proteins. Thus, these proteases may play a role in cell wall degradation only when acting in concert with other enzymes that split glycosidic bonds.

  20. [Induction of polygalacturonases important in pathogenicity of Pseudomonas solanacearum

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Recent studies on the importance of hydroxyproline-rich glycoproteins (HPRG's) in the nature and function of plant cell walls have led to the question as to whether proteolytic enzymes are also involved in tissue maceration and act in concert with other cell wall degrading enzymes in the process. The primary objective of this research was to determine whether proteolytic enzymes, in combination with other enzymes, are involved in the degradation of plant cell walls and thus may be essential for pathogenesis by certain soft rot bacteria. The proteolytic enzymes of Erwinia carotovora subsp.carotovora (Ecc) grown on various media were examined by isoelectrofocusing in polyacrylamide gels over a pH range of 3-10. In addition to the main protease present in culture filtrates, low concentrations of several other proteases were present in extracts from potato tubers infected by Ecc. These enzymes degraded gelatin, soluble collagen, and Hide Powder Azure, and showed weak activity on casein, but did not degrade insoluble collagen or elastin. Ecc proteases appear capable of degrading at least one type of cell wall protein in vitro, but we were unable to obtain evidence that these proteases can attack cell wall proteins in muro. The results indicate that some glycosidic alkali- labile bonds have to be broken befor Ecc proteases can degrade cell wall proteins. Thus, these proteases may play a role in cell wall degradation only when acting in concert with other enzymes that split glycosidic bonds.

  1. [Characteristics of soil microbes and enzyme activities in different degraded alpine meadows].

    Science.gov (United States)

    Yin, Ya Li; Wang, Yu Qin; Bao, Gen Sheng; Wang, Hong Sheng; Li, Shi Xiong; Song, Mei Ling; Shao, Bao Lian; Wen, Yu Cun

    2017-12-01

    Soil microbial biomass C and N, microbial diversities and enzyme activity in 0-10 cm and 10-20 cm soil layers of different degraded grasslands (non-degradation, ND; light degradation, LD; moderate degradation, MD; sever degradation, SD; and black soil beach, ED) were measured by Biolog and other methods. The results showed that: 1) There were significant diffe-rences between 0-10 cm and 10-20 cm soil layers in soil microbial biomass, diversities and inver-tase activities in all grasslands. 2) The ratio of soil microbial biomass C to N decreased significantly with the grassland degradation. In the 0-10 cm soil layer, microbial biomass C and N in ND and LD were significantly higher than that in MD, SD and ED. Among the latter three kinds of grasslands, there was no difference for microbial biomass C, but microbial biomass N was lower in MD than in the other grasslands. The average color change rate (AWCD) and McIntosh Index (U) also decreased with grassland degradation, but only the reduction from ND to MD was significant. There were no differences among all grasslands for Shannon index (H) and Simpson Index (D). The urease activity was highest in MD and SD, and the activity of phosphatase and invertase was lowest in ED. In the 10-20 cm soil layer, microbial biomass C in ND and LD were significantly higher than that in the other grasslands. Microbial biomass N in LD and ED were significantly higher than that in the other grasslands. Carbon metabolism index in MD was significantly lower than that in LD and SD. AWCD and U index in ND and LD were significantly higher than that in ED. H index and D index showed no difference among different grasslands. The urease activity in ND and MD was significantly higher than that in the other grasslands. The phosphatase activity was highest in MD, and the invertase activity was lowest in MD. 3) The belowground biomass was significantly positively correlated with microbial biomass, carbon metabolic index and phosphatase activity

  2. Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40 T.

    Directory of Open Access Journals (Sweden)

    Ronald M Weiner

    2008-05-01

    Full Text Available The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40 is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 complex polysaccharides. Not only is this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-characterized in the marine environment.

  3. Mycelial growth interactions and mannan-degrading enzyme ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... enzymes (Frost and Moss, 1987). However, microbial enzymes are more in use due to cheaper substrates and ease of process modification. In microbial enzyme and biomass production, defined mixed culture method in which more than one organism grows simultaneously can result in increased biomass ...

  4. Extracellular enzyme activities during lignocellulose degradation by Streptomyces spp.: a comparative study of wild-type and genetically manipulated strains

    International Nuclear Information System (INIS)

    Ramachandra, M.; Crawford, D.L.; Pometto, A.L. III

    1987-01-01

    The wild-type ligninolytic actinomycete Streptomyces viridosporus T7A and two genetically manipulated strains with enhanced abilities to produce a water-soluble lignin degradation intermediate, an acid-precipitable polymeric lignin (APPL), were grown on lignocellulose in solid-state fermentation cultures. Culture filtrates were periodically collected, analyzed for APPL, and assayed for extracellular lignocellulose-catabolizing enzyme activities. Two APPL-overproducing strains, UV irradiation mutant T7A-81 and protoplast fusion recombinant SR-10, had higher and longer persisting peroxidase, esterase, and endoglucanase activities than did the wild-type strain T7A. Results implicated one or more of these enzymes in lignin solubilization. Only mutant T7A-81 had higher xylanase activity than the wild type. The peroxidase was induced by both lignocellulose and APPL. This extracellular enzyme has some similarities to previously described ligninases in fungi. This is the first report of such an enzyme in Streptomyces spp. Four peroxidase isozymes were present, and all catalyzed the oxidation of 3,4-dihydroxyphenylalanine, while one also catalyzed hydrogen peroxide-dependent oxidation of homoprotocatechuic acid and caffeic acid. Three constitutive esterase isozymes were produced which differed in substrate specificity toward α-naphthyl acetate and α-naphthyl butyrate. Three endoglucanase bands, which also exhibited a low level of xylanase activity, were identified on polyacrylamide gels as was one xylanase-specific band. There were no major differences in the isoenzymes produced by the different strains. The probable role of each enzyme in lignocellulose degradation is discussed

  5. Cell wall and DNA cosegregation in Bacillus subtilis studied by electron microscope autoradiography

    International Nuclear Information System (INIS)

    Schlaeppi, J.M.; Schaefer, O.; Karamata, D.

    1985-01-01

    Cells of a Bacillus subtilis mutant deficient in both major autolytic enzyme activities were continuously labeled in either cell wall or DNA or both cell wall and DNA. After appropriate periods of chase in minimal as well as in rich medium, thin sections of cells were autoradiographed and examined by electron microscopy. The resolution of the method was adequate to distinguish labeled DNA units from cell wall units. The latter, which could be easily identified, were shown to segregate symmetrically, suggesting a zonal mode of new wall insertion. DNA units could also be clearly recognized despite a limited fragmentation; they segregated asymmetrically with respect to the nearest septum. Analysis of cells simultaneously labeled in cell wall and DNA provided clear visual evidence of their regular but asymmetrical cosegregation, confirming a previous report obtained by light microscope autoradiography. In addition to labeled wall units, electron microscopy of thin sections of aligned cells has revealed fibrillar networks of wall material which are frequently associated with the cell surface. Most likely, these structures correspond to wall sloughed off by the turnover mechanism but not yet degraded to filterable or acid-soluble components

  6. Atrazine degradation and enzyme activities in an agricultural soil under two tillage systems.

    Science.gov (United States)

    Mahía, Jorge; Martín, Angela; Carballas, Tarsy; Díaz-Raviña, Montserrat

    2007-05-25

    The content of atrazine and its metabolites (hydroxyatrazine, deethylatrazine and deisopropylatrazine) as well as the activities of two soil enzymes (urease and beta-glucosidase) were evaluated in an acid agricultural soil, located in a temperate humid zone (Galicia, NW Spain), with an annual ryegrass-maize rotation under conventional tillage (CT) and no tillage (NT). Samples were collected during two consecutive years from the arable layer at two depths (0-5 cm and 5-20 cm) and different times after atrazine application. Hydroxyatrazine and deisopropylatrazine were the main metabolites resulting from atrazine degradation in the acid soil studied, the highest levels being detected in the surface layer of the NT treatment. A residual effect of atrazine was observed since hydroxyatrazine was detected in the arable layer (0-5 cm, 5-20 cm) even one year after the herbicide application. Soil enzyme activities in the upper 5 cm layer under NT were consistently higher than those in the same layer under CT. Urease and beta-glucosidase activities decreased with depth in the profile under NT but they did not show any differences between the two depths for the plots under CT. For both tillage systems enzyme activities also reflected temporal changes during the maize cultivation; however, no consistent effect of the herbicide application was observed.

  7. Decomposition of insoluble and hard-to-degrade animal proteins by enzyme E77 and its potential applications.

    Science.gov (United States)

    Zhao, Hui; Mitsuiki, Shinji; Takasugi, Mikako; Sakai, Masashi; Goto, Masatoshi; Kanouchi, Hiroaki; Oka, Tatsuzo

    2012-04-01

    Insoluble and hard-to-degrade animal proteins are group of troublesome proteins, such as collagen, elastin, keratin, and prion proteins that are largely generated by the meat industry and ultimately converted to industrial wastes. We analyzed the ability of the abnormal prion protein-degrading enzyme E77 to degrade insoluble and hard-to-degrade animal proteins including keratin, collagen, and elastin. The results indicate that E77 has a much higher keratinolytic activity than proteinase K and subtilisin. Maximal E77 keratinolytic activity was observed at pH 12.0 and 65 °C. E77 was also adsorbed by keratin in a pH-independent manner. E77 showed lower collagenolytic and elastinolytic specificities than proteinase K and subtilisin. Moreover, E77 treatment did not damage collagens in ovine small intestines but did almost completely remove the muscles. We consider that E77 has the potential ability for application in the processing of animal feedstuffs and sausages.

  8. Degradation processes and the methods of securing wall crests

    Directory of Open Access Journals (Sweden)

    Maciej Trochonowicz

    2017-12-01

    Full Text Available The protection of historical ruins requires solution of doctrinal and technical problems. Technical problems concern above all preservation of walls, which are exposed to the influence of atmospheric factors. The problem that needs to be solved in any historic ruin is securing of wall crests. Form of protection of the wall crests depends on many factors, mainly technical features of the wall and architectural and conservatory vision. The following article presents three aspects important for protection of wall crests. Firstly, analysis of features of the wall as a structure, secondly the characteristics of destructive agents, thirdly forms of protection of wall crests. In the summary of the following article, advantages and disadvantages of each method of preservation of the wall crests were presented.

  9. A Comparative Study of Sample Preparation for Staining and Immunodetection of Plant Cell Walls by Light Microscopy

    Science.gov (United States)

    Verhertbruggen, Yves; Walker, Jesse L.; Guillon, Fabienne; Scheller, Henrik V.

    2017-01-01

    Staining and immunodetection by light microscopy are methods widely used to investigate plant cell walls. The two techniques have been crucial to study the cell wall architecture in planta, its deconstruction by chemicals or cell wall-degrading enzymes. They have been instrumental in detecting the presence of cell types, in deciphering plant cell wall evolution and in characterizing plant mutants and transformants. The success of immunolabeling relies on how plant materials are embedded and sectioned. Agarose coating, wax and resin embedding are, respectively, associated with vibratome, microtome and ultramicrotome sectioning. Here, we have systematically carried out a comparative analysis of these three methods of sample preparation when they are applied for cell wall staining and cell wall immunomicroscopy. In order to help the plant community in understanding and selecting adequate methods of embedding and sectioning for cell wall immunodetection, we review in this article the advantages and limitations of these three methods. Moreover, we offer detailed protocols of embedding for studying plant materials through microscopy. PMID:28900439

  10. Crystallization and preliminary X-ray analysis of AAMS amidohydrolase, the final enzyme in degradation pathway I of pyridoxine

    International Nuclear Information System (INIS)

    Kobayashi, Jun; Yoshida, Hiromi; Chu, Huy Nhat; Yoshikane, Yu; Kamitori, Shigehiro; Yagi, Toshiharu

    2009-01-01

    Recombinant α-(N-acetylaminomethylene)succinic acid amidohydrolase from M. loti MAFF303099 was crystallized and diffraction data were collected at 2.7 Å resolution. α-(N-Acetylaminomethylene)succinic acid (AAMS) amidohydrolase from Mesorhizobium loti MAFF303099, which is involved in a degradation pathway of vitamin B 6 and catalyzes the degradation of AAMS to acetic acid, ammonia, carbon dioxide and succinic semialdehyde, has been overexpressed in Escherichia coli. To elucidate the reaction mechanism based on the tertiary structure, the recombinant enzyme was purified and crystallized by the sitting-drop vapour-diffusion method using PEG 8000 as precipitant. A crystal of the enzyme belonged to the monoclinic space group C2, with unit-cell parameters a = 393.2, b = 58.3, c = 98.9 Å, β = 103.4°, and diffraction data were collected to 2.7 Å resolution. The V M value and calculation of the self-rotation function suggested that three dimers with a threefold symmetry were possibly present in the asymmetric unit

  11. Selective splitting of 3'-adenylated dinucleoside polyphosphates by specific enzymes degrading dinucleoside polyphosphates.

    Science.gov (United States)

    Guranowski, Andrzej; Sillero, Antonio; Günther Sillero, María Antonia

    2003-01-01

    Several 3'-[(32)P]adenylated dinucleoside polyphosphates (Np(n)N'p*As) were synthesized by the use of poly(A) polymerase (Sillero MAG et al., 2001, Eur J Biochem.; 268: 3605-11) and three of them, ApppA[(32)P]A or ApppAp*A, AppppAp*A and GppppGp*A, were tested as potential substrates of different dinucleoside polyphosphate degrading enzymes. Human (asymmetrical) dinucleoside tetraphosphatase (EC 3.6.1.17) acted almost randomly on both AppppAp*A, yielding approximately equal amounts of pppA + pAp*A and pA + pppAp*A, and GppppGp*, yielding pppG + pGp*A and pG + pppGp*A. Narrow-leafed lupin (Lupinus angustifolius) tetraphosphatase acted preferentially on the dinucleotide unmodified end of both AppppAp*A (yielding 90% of pppA + pAp*A and 10 % of pA + pppAp*A) and GppppGp*A (yielding 89% pppG + pGp*A and 11% of pG + pppGp*A). (Symmetrical) dinucleoside tetraphosphatase (EC 3.6.1.41) from Escherichia coli hydrolyzed AppppAp*A and GppppGp*A producing equal amounts of ppA + ppAp*A and ppG + ppGp*A, respectively, and, to a lesser extent, ApppAp*A producing pA + ppAp*A. Two dinucleoside triphosphatases (EC 3.6.1.29) (the human Fhit protein and the enzyme from yellow lupin (Lupinus luteus)) and dinucleoside tetraphosphate phosphorylase (EC 2.7.7.53) from Saccharomyces cerevisiae did not degrade the three 3'-adenylated dinucleoside polyphosphates tested.

  12. Transcriptome analysis and ultrastructure observation reveal that hawthorn fruit softening is due to cellulose/hemicellulose degradation

    Directory of Open Access Journals (Sweden)

    Jiayu Xu

    2016-10-01

    Full Text Available Softening, a common phenomenon in many fruits, is a well coordinated and genetically determined process. However, the process of flesh softening during ripening has rarely been described in hawthorn. In this study, we found that ‘Ruanrou Shanlihong 3 Hao’ fruits became softer during ripening, whereas ‘Qiu JinXing’ fruits remained hard. At late developmental stages, the firmness of ‘Ruanrou Shanlihong 3 Hao’ fruits rapidly declined, and that of ‘Qiu JinXing’ fruits remained essentially unchanged. According to transmission electron microscopy (TEM, the middle lamella of ‘Qiu JinXing’ and ‘Ruanrou Shanlihong 3 Hao’ fruit flesh was largely degraded as the fruits matured. Microfilaments in ‘Qiu JinXing’ flesh were arranged close together and were deep in color, whereas those in ‘Ruanrou Shanlihong 3 Hao’ fruit flesh were arranged loosely, partially degraded and light in color. RNA-Seq analysis yielded approximately 46.72 Gb of clean data and 72,837 unigenes. Galactose metabolism and pentose and glucuronate interconversions are involved in cell wall metabolism, play an important role in hawthorn texture. We identified 85 unigenes related to the cell wall between hard- and soft-fleshed hawthorn fruits. Based on data analysis and real-time PCR, we suggest that β-GAL and PE4 have important functions in early fruit softening. The genes Ffase, Gns, α-GAL, PE63, XTH and CWP, which are involved in cell wall degradation, are responsible for the different textures of hawthorn fruits. Thus, we hypothesize that the different textures of ‘Qiu JinXing’ and ‘Ruanrou Shanlihong 3 Hao’ fruits at maturity mainly result from cellulose/hemicelluloses degradation rather than from lamella degradation. Overall, we propose that different types of hydrolytic enzymes in cells interact to degrade the cell wall, resulting in ultramicroscopic Structure changes in the cell wall and, consequently, fruit softening. These results provide

  13. Degradation of Diuron by Phanerochaete chrysosporium: Role of Ligninolytic Enzymes and Cytochrome P450

    Directory of Open Access Journals (Sweden)

    Jaqueline da Silva Coelho-Moreira

    2013-01-01

    Full Text Available The white-rot fungus Phanerochaete chrysosporium was investigated for its capacity to degrade the herbicide diuron in liquid stationary cultures. The presence of diuron increased the production of lignin peroxidase in relation to control cultures but only barely affected the production of manganese peroxidase. The herbicide at the concentration of 7 μg/mL did not cause any reduction in the biomass production and it was almost completely removed after 10 days. Concomitantly with the removal of diuron, two metabolites, DCPMU [1-(3,4-dichlorophenyl-3-methylurea] and DCPU [(3,4-dichlorophenylurea], were detected in the culture medium at the concentrations of 0.74 μg/mL and 0.06 μg/mL, respectively. Crude extracellular ligninolytic enzymes were not efficient in the in vitro degradation of diuron. In addition, 1-aminobenzotriazole (ABT, a cytochrome P450 inhibitor, significantly inhibited both diuron degradation and metabolites production. Significant reduction in the toxicity evaluated by the Lactuca sativa L. bioassay was observed in the cultures after 10 days of cultivation. In conclusion, P. chrysosporium can efficiently metabolize diuron without the accumulation of toxic products.

  14. Degradation of diuron by Phanerochaete chrysosporium: role of ligninolytic enzymes and cytochrome P450.

    Science.gov (United States)

    Coelho-Moreira, Jaqueline da Silva; Bracht, Adelar; de Souza, Aline Cristine da Silva; Oliveira, Roselene Ferreira; de Sá-Nakanishi, Anacharis Babeto; de Souza, Cristina Giatti Marques; Peralta, Rosane Marina

    2013-01-01

    The white-rot fungus Phanerochaete chrysosporium was investigated for its capacity to degrade the herbicide diuron in liquid stationary cultures. The presence of diuron increased the production of lignin peroxidase in relation to control cultures but only barely affected the production of manganese peroxidase. The herbicide at the concentration of 7 μ g/mL did not cause any reduction in the biomass production and it was almost completely removed after 10 days. Concomitantly with the removal of diuron, two metabolites, DCPMU [1-(3,4-dichlorophenyl)-3-methylurea] and DCPU [(3,4-dichlorophenyl)urea], were detected in the culture medium at the concentrations of 0.74 μ g/mL and 0.06 μ g/mL, respectively. Crude extracellular ligninolytic enzymes were not efficient in the in vitro degradation of diuron. In addition, 1-aminobenzotriazole (ABT), a cytochrome P450 inhibitor, significantly inhibited both diuron degradation and metabolites production. Significant reduction in the toxicity evaluated by the Lactuca sativa L. bioassay was observed in the cultures after 10 days of cultivation. In conclusion, P. chrysosporium can efficiently metabolize diuron without the accumulation of toxic products.

  15. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tingting; Sui, Xiaoyu, E-mail: suixiaoyu@outlook.com; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang

    2016-01-15

    A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. - Highlights: • An ionic liquid based enzyme-assisted extraction method of natural product was explored. • ILEAE utilizes enzymatic treatment to improve permeability of ionic liquids solution. • Enzyme incubation and solvent extraction process were ongoing simultaneously. • ILEAE process simplified operating process and suitable for more complete extraction.

  16. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves

    International Nuclear Information System (INIS)

    Liu, Tingting; Sui, Xiaoyu; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang

    2016-01-01

    A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. - Highlights: • An ionic liquid based enzyme-assisted extraction method of natural product was explored. • ILEAE utilizes enzymatic treatment to improve permeability of ionic liquids solution. • Enzyme incubation and solvent extraction process were ongoing simultaneously. • ILEAE process simplified operating process and suitable for more complete extraction.

  17. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  18. The endogenous proteoglycan-degrading enzyme ADAMTS-4 promotes functional recovery after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Tauchi Ryoji

    2012-03-01

    Full Text Available Abstract Background Chondroitin sulfate proteoglycans are major inhibitory molecules for neural plasticity under both physiological and pathological conditions. The chondroitin sulfate degrading enzyme chondroitinase ABC promotes functional recovery after spinal cord injury, and restores experience-dependent plasticity, such as ocular dominance plasticity and fear erasure plasticity, in adult rodents. These data suggest that the sugar chain in a proteoglycan moiety is essential for the inhibitory activity of proteoglycans. However, the significance of the core protein has not been studied extensively. Furthermore, considering that chondroitinase ABC is derived from bacteria, a mammalian endogenous enzyme which can inactivate the proteoglycans' activity is desirable for clinical use. Methods The degradation activity of ADAMTS-4 was estimated for the core proteins of chondroitin sulfate proteoglycans, that is, brevican, neurocan and phosphacan. To evaluate the biological significance of ADMATS-4 activity, an in vitro neurite growth assay and an in vivo neuronal injury model, spinal cord contusion injury, were employed. Results ADAMTS-4 digested proteoglycans, and reversed their inhibition of neurite outgrowth. Local administration of ADAMTS-4 significantly promoted motor function recovery after spinal cord injury. Supporting these findings, the ADAMTS-4-treated spinal cord exhibited enhanced axonal regeneration/sprouting after spinal cord injury. Conclusions Our data suggest that the core protein in a proteoglycan moiety is also important for the inhibition of neural plasticity, and provides a potentially safer tool for the treatment of neuronal injuries.

  19. Through wall degradation problem of the turbine extraction steam drain piping due to liquid drop impingement and measures taken for this problem at Fukushima Dai-ichi Nuclear Power Plant Unit 6

    International Nuclear Information System (INIS)

    Inagaki, Takeyuki; Kobayashi, Teruaki; Shimada, Shigeru; Inoue, Ryousuke; Usuba, Satoshi; Kimura, Takeo

    2011-01-01

    Through wall degradation was found on the extraction steam drain piping of Unit 6 of Fukushima Dai-ichi Nuclear Power Plant owned by Tokyo Electric Power Company after replacement of the turbine rotors with those of higher thermal efficiency. The mechanism of this degradation was loss of material due to liquid drop impingement. Since the estimated life time of the piping based on wall thickness measurements before the replacement was at least 9 years, the rapid wall thinning occurred after the replacement. This paper describes a summary of the phenomenon, its degradation mechanism and root cause, a temporary measurement taken for an immediate action and permanent measures taken during the next refueling outage. (author)

  20. Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil.

    Directory of Open Access Journals (Sweden)

    Harald Kellner

    Full Text Available BACKGROUND: Fungi are the main organisms responsible for the degradation of biopolymers such as lignin, cellulose, hemicellulose, and chitin in forest ecosystems. Soil surveys largely target fungal diversity, paying less attention to fungal activity. METHODOLOGY/PRINCIPAL FINDINGS: Here we have focused on the organic horizon of a hardwood forest dominated by sugar maple that spreads widely across Eastern North America. The sampling site included three plots receiving normal atmospheric nitrogen deposition and three that received an extra 3 g nitrogen m(2 y(1 in form of sodium nitrate pellets since 1994, which led to increased accumulation of organic matter in the soil. Our aim was to assess, in samples taken from all six plots, transcript-level expression of fungal genes encoding lignocellulolytic and chitinolytic enzymes. For this we collected RNA from the forest soil, reverse-transcribed it, and amplified cDNAs of interest, using both published primer pairs as well as 23 newly developed ones. We thus detected transcript-level expression of 234 genes putatively encoding 26 different groups of fungal enzymes, notably major ligninolytic and diverse aromatic-oxidizing enzymes, various cellulose- and hemicellulose-degrading glycoside hydrolases and carbohydrate esterases, enzymes involved in chitin breakdown, N-acetylglucosamine metabolism, and cell wall degradation. Among the genes identified, 125 are homologous to known ascomycete genes and 105 to basidiomycete genes. Transcripts corresponding to all 26 enzyme groups were detected in both control and nitrogen-supplemented plots. CONCLUSIONS/SIGNIFICANCE: Many of these enzyme groups are known to be important in soil turnover processes, but the contribution of some is probably underestimated. Our data highlight the importance of ascomycetes, as well as basidiomycetes, in important biogeochemical cycles. In the nitrogen-supplemented plots, we have detected no transcript-level gap likely to explain

  1. Effect of degradation of xylan constituent in Mitsumata (Edgeworthia papyrifera Sieb. et Zucc. ) bast on its pulping by pectinolytic enzymes form Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Hiroyuki; Matsuo, Ryukichi; Kobayashi, Yoshinari

    1988-01-01

    Pulping of mitsumata (Edgeworthia papyrifera Sieb. et Zucc.) bast by the crude enzyme from a bacterium Erwinia carotovora FERM P-7576, was more effective by a stepwise treatment at pH 6.5 and subsequently at pH 9.5 and eluted greater amount of xylose constituent than a constant pH treatment at pH 9.5 where only the maceration enzymes, endo-pectate lyase and endo-pectin lyase, among the crude enzyme are operative. The crude enzymes obtained from the cultivation of this bacterial strain on mitsumata bast fibers were more effective for the stepwise pH pulping method than those from the cultivation on soluble pectin. Xylanase activity in the mitsumata bast-induced enzyme at pH 6.5 was twice as high as that in the soluble pectin-induced one. The activities of other hemicellulases and cellulase were, high as that in the soluble pectin-induced one. The activities of other hemicellulases and cellulase were, however, independent on the inducing materials. Purified exo-type xylanase prepared from the crude enzyme acted comparably to the entire crude enzyme in the first step of the combination pulping, but the xylanase per se showed no maceration activity. These results suggests that the degradation of xylan constituent within the bast fibers effects the acceleration of the subsequent enzymatic pulping by the pectinolytic maceration enzymes. The maceration mechanism involving xylan degradation was also discussed.

  2. Biochemical characterization of thermophilic lignocellulose degrading enzymes and their potential for biomass bioprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Zambare, Vasudeo; Zambare, Archana; Christopher, Lew P. [Center for Bioprocessing Research & Development, South Dakota School of Mines and Technology, Rapid City 57701, SD (United States); Muthukumarappan, Kasiviswanath [Center for Bioprocessing Research & Development, South Dakota State University, Brookings 57007, SD (United States)

    2011-07-01

    . This could have important implications in the enzymatic breakdown of lignocellulosic biomass for the establishment of a robust and cost-efficient process for production of cellulosic ethanol. To the best of our knowledge, this work represents the first report in literature on biochemical characterization of lignocellulose-degrading enzymes from a thermophilic microbial consortium.

  3. Structure and functional regulation of RipA, a mycobacterial enzyme essential for daughter cell separation.

    Science.gov (United States)

    Ruggiero, Alessia; Marasco, Daniela; Squeglia, Flavia; Soldini, Silvia; Pedone, Emilia; Pedone, Carlo; Berisio, Rita

    2010-09-08

    Cell separation depends on cell-wall hydrolases that cleave the peptidoglycan layer connecting daughter cells. In Mycobacterium tuberculosis, this process is governed by the predicted endopeptidase RipA. In the absence of this enzyme, the bacterium is unable to divide and exhibits an abnormal phenotype. We here report the crystal structure of a relevant portion of RipA, containing its catalytic-domain and an extra-domain of hitherto unknown function. The structure clearly demonstrates that RipA is produced as a zymogen, which needs to be activated to achieve cell-division. Bacterial cell-wall degradation assays and proteolysis experiments strongly suggest that activation occurs via proteolytic processing of a fully solvent exposed loop identified in the crystal structure. Indeed, proteolytic cleavage at this loop produces an activated form, consisting of the sole catalytic domain. Our work provides the first evidence of self-inhibition in cell-disconnecting enzymes and opens a field for the design of novel antitubercular therapeutics. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Effective enhancement of polylactic acid-degrading enzyme production by Amycolatopsis sp. strain SCM_MK2-4 using statistical and one-factor-at-a-time approaches.

    Science.gov (United States)

    Penkhrue, Watsana; Kanpiengjai, Apinun; Khanongnuch, Chartchai; Masaki, Kazuo; Pathom-Aree, Wasu; Punyodom, Winita; Lumyong, Saisamorn

    2017-08-09

    This study aims to find the optimal medium and conditions for polylactic acid (PLA)-degrading enzyme production by Amycolatopsis sp. SCM_MK2-4. Screening of the most effective components in the enzyme production medium by Plackett-Burman design revealed that the silk cocoon and PLA film were the most significant variables enhancing the PLA-degrading enzyme production. After an response surface methodology, a maximum amount of PLA-degrading enzyme activity at 0.74 U mL -1 was predicted and successfully validated at 95% after 0.39% (w/v) silk cocoon and 1.62% (w/v) PLA film were applied to the basal medium. The optimal initial pH value, temperature, and inoculum size were evaluated by a method considering one-factor-at-a-time. The values were recorded at an initial pH in the range of 7.5-9.0, a temperature of 30-32°C, and an inoculum size of 4-10%. The highest activity of approximately 0.95 U mL -1 was achieved after 4 days of cultivation using the optimized medium and under optimized conditions in a shake flask. Upscaling to the use of a 3-L stirred tank fermenter was found to be successful with a PLA-degrading activity of 5.53 U mL -1 ; which represents a 51-fold increase in the activity compared with that obtained from the nonoptimized medium and conditions in the shake flask.

  5. Understanding plant cell-wall remodelling during the symbiotic interaction between Tuber melanosporum and Corylus avellana using a carbohydrate microarray.

    Science.gov (United States)

    Sillo, Fabiano; Fangel, Jonatan U; Henrissat, Bernard; Faccio, Antonella; Bonfante, Paola; Martin, Francis; Willats, William G T; Balestrini, Raffaella

    2016-08-01

    A combined approach, using a carbohydrate microarray as a support for genomic data, has revealed subtle plant cell-wall remodelling during Tuber melanosporum and Corylus avellana interaction. Cell walls are involved, to a great extent, in mediating plant-microbe interactions. An important feature of these interactions concerns changes in the cell-wall composition during interaction with other organisms. In ectomycorrhizae, plant and fungal cell walls come into direct contact, and represent the interface between the two partners. However, very little information is available on the re-arrangement that could occur within the plant and fungal cell walls during ectomycorrhizal symbiosis. Taking advantage of the Comprehensive Microarray Polymer Profiling (CoMPP) technology, the current study has had the aim of monitoring the changes that take place in the plant cell wall in Corylus avellana roots during colonization by the ascomycetous ectomycorrhizal fungus T. melanosporum. Additionally, genes encoding putative plant cell-wall degrading enzymes (PCWDEs) have been identified in the T. melanosporum genome, and RT-qPCRs have been performed to verify the expression of selected genes in fully developed C. avellana/T. melanosporum ectomycorrhizae. A localized degradation of pectin seems to occur during fungal colonization, in agreement with the growth of the ectomycorrhizal fungus through the middle lamella and with the fungal gene expression of genes acting on these polysaccharides.

  6. Metagenomic Analysis of the Gut Microbiome of the Common Black Slug Arion ater in Search of Novel Lignocellulose Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Ryan Joynson

    2017-11-01

    Full Text Available Some eukaryotes are able to gain access to well-protected carbon sources in plant biomass by exploiting microorganisms in the environment or harbored in their digestive system. One is the land pulmonate Arion ater, which takes advantage of a gut microbial consortium that can break down the widely available, but difficult to digest, carbohydrate polymers in lignocellulose, enabling them to digest a broad range of fresh and partially degraded plant material efficiently. This ability is considered one of the major factors that have enabled A. ater to become one of the most widespread plant pest species in Western Europe and North America. Using metagenomic techniques we have characterized the bacterial diversity and functional capability of the gut microbiome of this notorious agricultural pest. Analysis of gut metagenomic community sequences identified abundant populations of known lignocellulose-degrading bacteria, along with well-characterized bacterial plant pathogens. This also revealed a repertoire of more than 3,383 carbohydrate active enzymes (CAZymes including multiple enzymes associated with lignin degradation, demonstrating a microbial consortium capable of degradation of all components of lignocellulose. This would allow A. ater to make extensive use of plant biomass as a source of nutrients through exploitation of the enzymatic capabilities of the gut microbial consortia. From this metagenome assembly we also demonstrate the successful amplification of multiple predicted gene sequences from metagenomic DNA subjected to whole genome amplification and expression of functional proteins, facilitating the low cost acquisition and biochemical testing of the many thousands of novel genes identified in metagenomics studies. These findings demonstrate the importance of studying Gastropod microbial communities. Firstly, with respect to understanding links between feeding and evolutionary success and, secondly, as sources of novel enzymes with

  7. Xylan-degrading enzymes in male and female flower nectar of Cucurbita pepo

    Science.gov (United States)

    Nepi, M.; Bini, L.; Bianchi, L.; Puglia, M.; Abate, M.; Cai, G.

    2011-01-01

    Background and Aims Nectar is a very complex mixture of substances. Some components (sugars and amino acids) are considered primary alimentary rewards for animals and have been investigated and characterized in numerous species for many years. In contrast, nectar proteins have been the subject of few studies and little is known of their function. Only very recently have detailed studies and characterization of nectar proteins been undertaken, and then for only a very few species. This current work represents a first step in the identification of a protein profile for the floral nectar of Cucurbita pepo. In this regard, the species studied is of particular interest in that it is monoecious with unisexual flowers and, consequently, it is possible that nectar proteins derived from male and female flowers may differ. Methods Manually excised spots from two-dimensional (2-D) electrophoresis were subjected to in-gel protein digestion. The resulting peptides were sequenced using nanoscale LC–ESI/MS-MS (liquid chromatography–electrospray ionization/tandem mass spectrometry). An MS/MS ions search was carried out in Swiss-Prot and NCBInr databases using MASCOT software. Key Results Two-dimensional electrophoresis revealed a total of 24 spots and a different protein profile for male and female flower nectar. Four main proteins recognized by 2-D electrophoresis most closely resemble β-d-xylosidases from Arabidopsis thaliana and have some homology to a β-d-xylosidase from Medicago varia. They were present in similar quantities in male and female flowers and had the same molecular weight, but with slightly different isoelectric points. Conclusions A putative function for xylosidases in floral nectar of C. pepo is proposed, namely that they may be involved in degrading the oligosaccharides released by the nectary cell walls in response to hydrolytic enzymes produced by invading micro-organisms. Several types of oligosaccharides have been reported to increase the pathogenic

  8. Novel enzymes for the degradation of cellulose

    Directory of Open Access Journals (Sweden)

    Horn Svein

    2012-07-01

    Full Text Available Abstract The bulk terrestrial biomass resource in a future bio-economy will be lignocellulosic biomass, which is recalcitrant and challenging to process. Enzymatic conversion of polysaccharides in the lignocellulosic biomass will be a key technology in future biorefineries and this technology is currently the subject of intensive research. We describe recent developments in enzyme technology for conversion of cellulose, the most abundant, homogeneous and recalcitrant polysaccharide in lignocellulosic biomass. In particular, we focus on a recently discovered new type of enzymes currently classified as CBM33 and GH61 that catalyze oxidative cleavage of polysaccharides. These enzymes promote the efficiency of classical hydrolytic enzymes (cellulases by acting on the surfaces of the insoluble substrate, where they introduce chain breaks in the polysaccharide chains, without the need of first “extracting” these chains from their crystalline matrix.

  9. Enzyme activity and reserve mobilization during Macaw palm ( Acrocomia aculeata seed germination

    Directory of Open Access Journals (Sweden)

    Elisa Monteze Bicalho

    2016-01-01

    Full Text Available ABSTRACT Reserve mobilization in seeds occurs after visible germination, which is marked by the protrusion of the radicle or cotyledonary petiole, as in species of Arecaceae. Acrocomia aculeata (macaw palm, usually produces hard seeds whose endosperm has mannan-rich cell walls. We investigated the composition of storage compounds in macaw palm seed and the roles of two enzymes (endo-β-mannanase, α-galactosidase during and after germination. The seeds were firstly submitted to pre-established protocol to overcome dormancy and promote germination. Enzyme activity in both embryo and endosperm were assayed from the initiation of germinative activities until leaf sheath appearance, and the status of seed structures and reserve compounds were evaluated. Protein content of the embryo decreased with the initiation of imbibition while the lipid content began decreasing six days after removal of the operculum. Increases in enzyme activity and starch content were both observed after visible germination. We suggest that endo-β-mannanase and α-galactosidase become active immediately at germination, facilitating haustorium expansion and providing carbohydrates for initial seedling development. Protein is the first storage compound mobilized during early imbibition, and the observed increase in the starch content of the haustorium was related to lipid degradation in that organ and mannan degradation in the adjacent endosperm.

  10. Interaction of Carthamus tinctorius lignan arctigenin with the binding site of tryptophan-degrading enzyme indoleamine 2,3-dioxygenase☆

    Science.gov (United States)

    Temml, Veronika; Kuehnl, Susanne; Schuster, Daniela; Schwaiger, Stefan; Stuppner, Hermann; Fuchs, Dietmar

    2013-01-01

    Mediterranean Carthamus tinctorius (Safflower) is used for treatment of inflammatory conditions and neuropsychiatric disorders. Recently C. tinctorius lignans arctigenin and trachelogenin but not matairesinol were described to interfere with the activity of tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) in peripheral blood mononuclear cells in vitro. We examined a potential direct influence of compounds on IDO enzyme activity applying computational calculations based on 3D geometry of the compounds. The interaction pattern analysis and force field-based minimization was performed within LigandScout 3.03, the docking simulation with MOE 2011.10 using the X-ray crystal structure of IDO. Results confirm the possibility of an intense interaction of arctigenin and trachelogenin with the binding site of the enzyme, while matairesinol had no such effect. PMID:24251110

  11. Degradation of olive mill wastewater by the induced extracellular ligninolytic enzymes of two wood-rot fungi.

    Science.gov (United States)

    Zerva, Anastasia; Zervakis, Georgios I; Christakopoulos, Paul; Topakas, Evangelos

    2017-12-01

    Olive mill wastewater (OMWW) is a major problem in olive oil - producing countries, due to its high organic load and concentration in phenols that are toxic for marine life, plants and soil microorganisms. In the present study, two mushroom species were tested in regard to their OMWW's oxidative capacity, Pleurotus citrinopileatus LGAM 28684 and Irpex lacteus LGAM 238. OMWW (25% v/v) degradation was investigated for several culture conditions, namely pH, agitation speed, nitrogen-based supplements and their concentration. The selected values were pH 6, agitation rate 150 rpm, 30 g L -1 corn steep liquor as nitrogen source for P. citrinopileatus and 20 g L -1 diammonium tartrate for I. lacteus. The two strains performed well in cultures supplemented with OMWW, generating very high titers of oxidative enzymes and achieving more than 90% color and phenols reduction within a 24 days cultivation period. In addition, the amount of glucans present in the fungal biomass was assessed. Hence, P. citrinopileatus and I. lacteus appear as potent degraders of OMWW with the ability to use the effluent as a substrate for the production of biotechnologically important enzymes and valuable fungal glucans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Paradigmatic status of an endo- and exoglucanase and its effect on crystalline cellulose degradation

    Directory of Open Access Journals (Sweden)

    Moraïs Sarah

    2012-10-01

    Full Text Available Abstract Background Microorganisms employ a multiplicity of enzymes to efficiently degrade the composite structure of plant cell wall cellulosic polysaccharides. These remarkable enzyme systems include glycoside hydrolases (cellulases, hemicellulases, polysaccharide lyases, and the carbohydrate esterases. To accomplish this challenging task, several strategies are commonly observed either separately or in combination. These include free enzyme systems, multifunctional enzymes, and multi-enzyme self-assembled designer cellulosome complexes. Results In order to compare these different paradigms, we employed a synthetic biology approach to convert two different cellulases from the free enzymatic system of the well-studied bacterium, Thermobifida fusca, into bifunctional enzymes with different modular architectures. We then examined their performance compared to those of the combined parental free-enzyme and equivalent designer-cellulosome systems. The results showed that the cellulolytic activity displayed by the different architectures of the bifunctional enzymes was somewhat inferior to that of the wild-type free enzyme system. Conclusions The activity exhibited by the designer cellulosome system was equal or superior to that of the free system, presumably reflecting the combined proximity of the enzymes and high flexibility of the designer cellulosome components, thus enabling efficient enzymatic activity of the catalytic modules.

  13. Autolysis and extension of isolated walls from growing cucumber hypocotyls

    Science.gov (United States)

    Cosgrove, D. J.; Durachko, D. M.

    1994-01-01

    Walls isolated from cucumber hypocotyls retain autolytic activities and the ability to extend when placed under the appropriate conditions. To test whether autolysis and extension are related, we treated the walls in various ways to enhance or inhibit long-term wall extension ('creep') and measured autolysis as release of various saccharides from the wall. Except for some non-specific inhibitors of enzymatic activity, we found no correlation between wall extension and wall autolysis. Most notably, autolysis and extension differed strongly in their pH dependence. We also found that exogenous cellulases and pectinases enhanced extension in native walls, but when applied to walls previously inactivated with heat or protease these enzymes caused breakage without sustained extension. In contrast, pretreatment of walls with pectinase or cellulase, followed by boiling in methanol to inactivate the enzymes, resulted in walls with much stronger expansin-mediated extension responses. Crude protein preparations from the digestive tracts of snails enhanced extension of both native and inactivated walls, and these preparations contained expansin-like proteins (assessed by Western blotting). Our results indicate that the extension of isolated cucumber walls does not depend directly on the activity of endogenous wall-bound autolytic enzymes. The results with exogenous enzymes suggest that the hydrolysis of matrix polysaccharides may not induce wall creep by itself, but may act synergistically with expansins to enhance wall extension.

  14. Mycobacterium tuberculosis phosphoribosylpyrophosphate synthetase: biochemical features of a crucial enzyme for mycobacterial cell wall biosynthesis.

    Directory of Open Access Journals (Sweden)

    Anna P Lucarelli

    Full Text Available The selection and soaring spread of Mycobacterium tuberculosis multidrug-resistant (MDR-TB and extensively drug-resistant strains (XDR-TB is a severe public health problem. Currently, there is an urgent need for new drugs for tuberculosis treatment, with novel mechanisms of action and, moreover, the necessity to identify new drug targets. Mycobacterial phosphoribosylpyrophosphate synthetase (MtbPRPPase is a crucial enzyme involved in the biosynthesis of decaprenylphosphoryl-arabinose, an essential precursor for the mycobacterial cell wall biosynthesis. Moreover, phosphoribosylpyrophosphate, which is the product of the PRPPase catalyzed reaction, is the precursor for the biosynthesis of nucleotides and of some amino acids such as histidine and tryptophan. In this context, the elucidation of the molecular and functional features of MtbPRPPase is mandatory. MtbPRPPase was obtained as a recombinant form, purified to homogeneity and characterized. According to its hexameric form, substrate specificity and requirement of phosphate for activity, the enzyme proved to belong to the class I of PRPPases. Although the sulfate mimicked the phosphate, it was less effective and required higher concentrations for the enzyme activation. MtbPRPPase showed hyperbolic response to ribose 5-phosphate, but sigmoidal behaviour towards Mg-ATP. The enzyme resulted to be allosterically activated by Mg(2+ or Mn(2+ and inhibited by Ca(2+ and Cu(2+ but, differently from other characterized PRPPases, it showed a better affinity for the Mn(2+ and Cu(2+ ions, indicating a different cation binding site geometry. Moreover, the enzyme from M. tuberculosis was allosterically inhibited by ADP, but less sensitive to inhibition by GDP. The characterization of M. tuberculosis PRPPase provides the starting point for the development of inhibitors for antitubercular drug design.

  15. Degradation Signals Recognized by the Ubc6p-Ubc7p Ubiquitin-Conjugating Enzyme Pair

    Science.gov (United States)

    Gilon, Tamar; Chomsky, Orna; Kulka, Richard G.

    2000-01-01

    Proteolysis by the ubiquitin-proteasome system is highly selective. Specificity is achieved by the cooperation of diverse ubiquitin-conjugating enzymes (Ubcs or E2s) with a variety of ubiquitin ligases (E3s) and other ancillary factors. These recognize degradation signals characteristic of their target proteins. In a previous investigation, we identified signals directing the degradation of β-galactosidase and Ura3p fusion proteins via a subsidiary pathway of the ubiquitin-proteasome system involving Ubc6p and Ubc7p. This pathway has recently been shown to be essential for the degradation of misfolded and regulated proteins in the endoplasmic reticulum (ER) lumen and membrane, which are transported to the cytoplasm via the Sec61p translocon. Mutant backgrounds which prevent retrograde transport of ER proteins (hrd1/der3Δ and sec61-2) did not inhibit the degradation of the β-galactosidase and Ura3p fusions carrying Ubc6p/Ubc7p pathway signals. We therefore conclude that the ubiquitination of these fusion proteins takes place on the cytosolic face of the ER without prior transfer to the ER lumen. The contributions of different sequence elements to a 16-amino-acid-residue Ubc6p-Ubc7p-specific signal were analyzed by mutation. A patch of bulky hydrophobic residues was an essential element. In addition, positively charged residues were found to be essential. Unexpectedly, certain substitutions of bulky hydrophobic or positively charged residues with alanine created novel degradation signals, channeling the degradation of fusion proteins to an unidentified proteasomal pathway not involving Ubc6p and Ubc7p. PMID:10982838

  16. Enzymatic Mechanism for Arabinan Degradation and Transport in the Thermophilic Bacterium Caldanaerobius polysaccharolyticus.

    Science.gov (United States)

    Wefers, Daniel; Dong, Jia; Abdel-Hamid, Ahmed M; Paul, Hans Müller; Pereira, Gabriel V; Han, Yejun; Dodd, Dylan; Baskaran, Ramiya; Mayer, Beth; Mackie, Roderick I; Cann, Isaac

    2017-09-15

    The plant cell wall polysaccharide arabinan provides an important supply of arabinose, and unraveling arabinan-degrading strategies by microbes is important for understanding its use as a source of energy. Here, we explored the arabinan-degrading enzymes in the thermophilic bacterium Caldanaerobius polysaccharolyticus and identified a gene cluster encoding two glycoside hydrolase (GH) family 51 α-l-arabinofuranosidases (CpAbf51A, CpAbf51B), a GH43 endoarabinanase (CpAbn43A), a GH27 β-l-arabinopyranosidase (CpAbp27A), and two GH127 β-l-arabinofuranosidases (CpAbf127A, CpAbf127B). The genes were expressed as recombinant proteins, and the functions of the purified proteins were determined with para -nitrophenyl ( p NP)-linked sugars and naturally occurring pectin structural elements as the substrates. The results demonstrated that CpAbn43A is an endoarabinanase while CpAbf51A and CpAbf51B are α-l-arabinofuranosidases that exhibit diverse substrate specificities, cleaving α-1,2, α-1,3, and α-1,5 linkages of purified arabinan-oligosaccharides. Furthermore, both CpAbf127A and CpAbf127B cleaved β-arabinofuranose residues in complex arabinan side chains, thus providing evidence of the function of this family of enzymes on such polysaccharides. The optimal temperatures of the enzymes ranged between 60°C and 75°C, and CpAbf43A and CpAbf51A worked synergistically to release arabinose from branched and debranched arabinan. Furthermore, the hydrolytic activity on branched arabinan oligosaccharides and degradation of pectic substrates by the endoarabinanase and l-arabinofuranosidases suggested a microbe equipped with diverse activities to degrade complex arabinan in the environment. Based on our functional analyses of the genes in the arabinan degradation cluster and the substrate-binding studies on a component of the cognate transporter system, we propose a model for arabinan degradation and transport by C. polysaccharolyticus IMPORTANCE Genomic DNA sequencing and

  17. Enzymes for Degradation of Energetic Materials and Demilitarization of Explosives Stockpiles - SERDP Annual (Interim) Report, 12/98

    Energy Technology Data Exchange (ETDEWEB)

    Shah, M.M.

    1999-01-18

    The current stockpile of energetic materials requiring disposal contains about half a million tons. Through 2001, over 2.1 million tons are expected to pass through the stockpile for disposal. Safe and environmentally acceptable methods for disposing of these materials are needed. This project is developing safe, economical, and environmentally sound processes using biocatalyst (enzymes) to degrade energetic materials and to convert them into economically valuable products. Alternative methods for destroying these materials are hazardous, environmentally unacceptable, and expensive. These methods include burning, detonation, land and sea burial, treatment at high temperature and pressure, and treatment with harsh chemicals. Enzyme treatment operates at room temperature and atmospheric pressure in a water solution.

  18. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi.

    Science.gov (United States)

    Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter; Boomsma, Jacobus J

    2010-12-31

    Leaf-cutting (attine) ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth. We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in Acromyrmex echinatior leaf-cutting ants. Seven (21%) of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade. Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by Acromyrmex leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to those normally found in phytopathogens.

  19. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi

    Directory of Open Access Journals (Sweden)

    Boomsma Jacobus J

    2010-12-01

    Full Text Available Abstract Background Leaf-cutting (attine ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth. Results We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in Acromyrmex echinatior leaf-cutting ants. Seven (21% of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade. Conclusions Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by Acromyrmex leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to

  20. Degradation processes and the methods of securing wall crests

    OpenAIRE

    Maciej Trochonowicz; Bogusław Szmygin

    2017-01-01

    The protection of historical ruins requires solution of doctrinal and technical problems. Technical problems concern above all preservation of walls, which are exposed to the influence of atmospheric factors. The problem that needs to be solved in any historic ruin is securing of wall crests. Form of protection of the wall crests depends on many factors, mainly technical features of the wall and architectural and conservatory vision. The following article presents three aspects important for ...

  1. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis

    Directory of Open Access Journals (Sweden)

    Couturier Marie

    2012-02-01

    Full Text Available Abstract Background Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemicellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation. Results In this study, we performed a wide analysis of 20 filamentous fungi for which genomic data are available to investigate their biomass-hydrolysis potential. A comparison of fungal genomes and secretomes using enzyme activity profiling revealed discrepancies in carbohydrate active enzymes (CAZymes sets dedicated to plant cell wall. Investigation of the contribution made by each secretome to the saccharification of wheat straw demonstrated that most of them individually supplemented the industrial Trichoderma reesei CL847 enzymatic cocktail. Unexpectedly, the most striking effect was obtained with the phytopathogen Ustilago maydis that improved the release of total sugars by 57% and of glucose by 22%. Proteomic analyses of the best-performing secretomes indicated a specific enzymatic mechanism of U. maydis that is likely to involve oxido-reductases and hemicellulases. Conclusion This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignocellulose bioconversion process.

  2. [Purification, characterization and partial primary structure analysis of rutin-degrading enzyme in tartary buckwheat seeds].

    Science.gov (United States)

    Zhang, Yuwei; Li, Jie; Yuan, Yong; Gu, Jijuan; Chen, Peng

    2017-05-25

    Rutin-degrading enzymes (RDE) can degrade rutin into poorly water soluble compound, quercetin, and cause the bitter taste in tartary buckwheat. In the present study RDE from Yu 6-21 tartary buckwheat seeds was purified by ammonium sulphate precipitation, followed by hydrophobic interaction chromatography on Phenyl Sepharose CL-4B, ion exchange chromatography on CM-Cellulose and gel filtration chromatography on Sephadex G-150. Purified RDE showed single band with molecular weight of 66 kDa on SDS-PAGE. The optimum pH and temperature of RDE were 5.0 and 50 ℃ respectively. The Km was 0.27 mmol/L, and the Vmax was 39.68 U/mg. The RDE activity could be inhibited by Cu²⁺, Zn²⁺, Mn²⁺ and EDTA, and showed tolerance to 50% methanol (V/V). The N terminal sequence (TVSRSSFPDGFLFGL) was obtained by Edman degradation method and 15 internal peptide sequences were determined by MALDI-TOF-MS (matrix-assisted laser desorption ionization time of flight mass spectrometry). These results established the foundations for identification of the candidate gene of RDE via transcriptome data and further studying RDE biological function.

  3. Use of yeast spores for microencapsulation of enzymes.

    Science.gov (United States)

    Shi, Libing; Li, Zijie; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2014-08-01

    Here, we report a novel method to produce microencapsulated enzymes using Saccharomyces cerevisiae spores. In sporulating cells, soluble secreted proteins are transported to the spore wall. Previous work has shown that the spore wall is capable of retaining soluble proteins because its outer layers work as a diffusion barrier. Accordingly, a red fluorescent protein (RFP) fusion of the α-galactosidase, Mel1, expressed in spores was observed in the spore wall even after spores were subjected to a high-salt wash in the presence of detergent. In vegetative cells, however, the cell wall cannot retain the RFP fusion. Although the spore wall prevents diffusion of proteins, it is likely that smaller molecules, such as sugars, pass through it. In fact, spores can contain much higher α-galactosidase activity to digest melibiose than vegetative cells. When present in the spore wall, the enzyme acquires resistance to environmental stresses including enzymatic digestion and high temperatures. The outer layers of the spore wall are required to retain enzymes but also decrease accessibility of the substrates. However, mutants with mild spore wall defects can retain and stabilize the enzyme while still permitting access to the substrate. In addition to Mel1, we also show that spores can retain the invertase. Interestingly the encapsulated invertase has significantly lower activity toward raffinose than toward sucrose.This suggests that substrate selectivity could be altered by the encapsulation.

  4. Lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier rather than by inducing nonproductive adsorption of enzymes.

    Science.gov (United States)

    Djajadi, Demi T; Jensen, Mads M; Oliveira, Marlene; Jensen, Anders; Thygesen, Lisbeth G; Pinelo, Manuel; Glasius, Marianne; Jørgensen, Henning; Meyer, Anne S

    2018-01-01

    Lignin is known to hinder efficient enzymatic conversion of lignocellulose in biorefining processes. In particular, nonproductive adsorption of cellulases onto lignin is considered a key mechanism to explain how lignin retards enzymatic cellulose conversion in extended reactions. Lignin-rich residues (LRRs) were prepared via extensive enzymatic cellulose degradation of corn stover ( Zea mays subsp. mays L.), Miscanthus  ×  giganteus stalks (MS) and wheat straw ( Triticum aestivum L.) (WS) samples that each had been hydrothermally pretreated at three severity factors (log R 0 ) of 3.65, 3.83 and 3.97. The LRRs had different residual carbohydrate levels-the highest in MS; the lowest in WS. The residual carbohydrate was not traceable at the surface of the LRRs particles by ATR-FTIR analysis. The chemical properties of the lignin in the LRRs varied across the three types of biomass, but monolignols composition was not affected by the severity factor. When pure cellulose was added to a mixture of LRRs and a commercial cellulolytic enzyme preparation, the rate and extent of glucose release were unaffected by the presence of LRRs regardless of biomass type and severity factor, despite adsorption of the enzymes to the LRRs. Since the surface of the LRRs particles were covered by lignin, the data suggest that the retardation of enzymatic cellulose degradation during extended reaction on lignocellulosic substrates is due to physical blockage of the access of enzymes to the cellulose caused by the gradual accumulation of lignin at the surface of the biomass particles rather than by nonproductive enzyme adsorption. The study suggests that lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier blocking the access of enzymes to cellulose rather than by inducing retardation through nonproductive adsorption of enzymes.

  5. PhaC Synthases and PHA Depolymerases: The Enzymes that Produce and Degrade Plastic

    Directory of Open Access Journals (Sweden)

    Amro A. Amara

    2011-12-01

    Full Text Available PHAs are a group of intracellular biodegradable polymer produced by (most bacteria under unbalanced growth conditions. A series of enzymes are involved in different PHAs synthesis, however PhaC synthases are responsible for the polymerization step. PHAs are accumulated in bacterial cells from soluble to insoluble form as storage materials inside the inclusion bodies during unbalanced nutrition or to save organisms from reduces equivalents. PHAs are converted again to soluble components by another pathways and enzymes for the degradation process. PHAs depolymerases are the responsible enzymes. This review is designed to give the non-specialists a condense background about PHAs especially for researcher and students in medicinal and pharmaceutical filled. ABSTRAK: PHAs (polyhydroxyalkanoate merupakan sekumpulan polimer terbiodegradasikan intrasel yang dihasilkan oleh (kebanyakan bakteria di bawah keadaan tumbesaran tak seimbang. Satu rangkaian enzim terlibat dalam sistesis PHAs yang berbeza, namun sintesis PhaC bertanggungjawab dalam peringkat pempolimeran. PHAs dikumpulkan dalam sel bakteria dari bentuk larut dan tak larut sebagai bahan simpan di dalam jasad terangkum semasa nutrisi tak seimbang atau untuk menyelamatkan organisma daripada pengurangan tak keseimbangan. PHAs ditukarkan sekali lagi kepada komponen larut dengan cara lain dan enzim lain untuk proses degradasi. PHAs depoly-merases (enzim yang memangkin penguraian makro molekul kepada molekul yang lebih mudah merupakan enzim yang bertanggunjawab. Kajian semula ini direka untuk memberi mereka yang bukan pakar, satu ringkasan tentang PHAs terutamanya penyelidik dan penuntut dalam bidang peubatan dan farmaseutikal.

  6. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production.

    Science.gov (United States)

    Qualhato, Thiago Fernandes; Lopes, Fabyano Alvares Cardoso; Steindorff, Andrei Stecca; Brandão, Renata Silva; Jesuino, Rosália Santos Amorim; Ulhoa, Cirano José

    2013-09-01

    Trichoderma spp. are used for biocontrol of several plant pathogens. However, their efficient interaction with the host needs to be accompanied by production of secondary metabolites and cell wall-degrading enzymes. Three parameters were evaluated after interaction between four Trichoderma species and plant-pathogenic fungi: Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum. Trichoderma harzianum and T. asperellum were the most effective antagonists against the pathogens. Most of the Trichoderma species produced toxic volatile metabolites, having significant effects on growth and development of the plant pathogens. When these species were grown in liquid cultures with cell walls from these plant pathogens, they produced and secreted β-1,3-glucanase, NAGAse, chitinase, acid phosphatase, acid proteases and alginate lyase.

  7. Degradation of Perfluorooctanoic Acid and Perfluoroctane Sulfonate by Enzyme Catalyzed Oxidative Humification Reactions

    Science.gov (United States)

    Huang, Q.

    2016-12-01

    Poly- and perfluoroalkyl substances (PFASs) are alkyl based chemicals having multiple or all hydrogens replaced by fluorine atoms, and thus exhibit high thermal and chemical stability and other unusual characteristics. PFASs have been widely used in a wide variety of industrial and consumer products, and tend to be environmentally persistent. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two representative PFASs that have drawn particular attention because of their ubiquitous presence in the environment, resistance to degradation and toxicity to animals. This study examined the decomposition of PFOA and PFOS in enzyme catalyzed oxidative humification reactions (ECOHR), a class of reactions that are ubiquitous in the environment involved in natural organic humification. Reaction rates and influential factors were examined, and high-resolution mass spectrometry was used to identify possible products. Fluorides and partially fluorinated compounds were identified as likely products from PFOA and PFOS degradation, which were possibly formed via a combination of free radical decomposition, rearrangements and coupling processes. The findings suggest that PFOA and PFOS may be transformed during humification, and ECOHR can potentially be used for the remediation of these chemicals.

  8. Hemicellulose biosynthesis and degradation in tobacco cell walls

    NARCIS (Netherlands)

    Compier, M.G.M.

    2005-01-01

    Natural fibres have a wide range of technological applications, such as in paper and textile industries. The basic properties and the quality of plant fibres are determined by the composition of the plant cell wall. Characteristic for fibres are thick secondary cell walls, which consist of cellulose

  9. Degradation of wheat straw cell wall by white rot fungi Phanerochaete chrysosporium

    Science.gov (United States)

    Zeng, Jijiao

    The main aim of this dissertation research was to understand the natural microbial degradation process of lignocellulosic materials in order to develop a new, green and more effective pretreatment technology for bio-fuel production. The biodegradation of wheat straw by white rot fungi Phanerochaete chrysosporium was investigated. The addition of nutrients significantly improved the performance of P.chrysosporium on wheat straw degradation. The proteomic analysis indicated that this fungus produced various pepetides related to cellulose and lignin degradation while grown on the biomass. The structural analysis of lignin further showed that P.chrysosporium preferentially degraded hydroxycinnamtes in order to access cellulose. In details, the effects of carbon resource and metabolic pathway regulating compounds on manganeses peroxidase (MnP) were studied. The results indicated that MnP activity of 4.7 +/- 0.31 U mL-1 was obtained using mannose as a carbon source. The enzyme productivity further reached 7.36 +/- 0.05 U mL-1 and 8.77 +/- 0.23 U mL -1 when the mannose medium was supplemented with cyclic adenosine monophosphate (cAMP) and S-adenosylmethionine (SAM) respectively, revealing highest MnP productivity obtained by optimizing the carbon sources and supplementation with small molecules. In addition, the effects of nutrient additives for improving biological pretreatment of lignocellulosic biomass were studied. The pretreatment of wheat straw supplemented with inorganic salts (salts group) and tween 80 was examined. The extra nutrient significantly improved the ligninase expression leading to improve digestibility of lignocellulosic biomass. Among the solid state fermentation groups, salts group resulted in a substantial degradation of wheat straw within one week, along with the highest lignin loss (25 %) and ˜ 250% higher efficiency for the total sugar release through enzymatic hydrolysis. The results were correlated with pyrolysis GC-MS (Py

  10. A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes.

    Science.gov (United States)

    Maruthamuthu, Mukil; Jiménez, Diego Javier; Stevens, Patricia; van Elsas, Jan Dirk

    2016-01-28

    Functional metagenomics is a promising strategy for the exploration of the biocatalytic potential of microbiomes in order to uncover novel enzymes for industrial processes (e.g. biorefining or bleaching pulp). Most current methodologies used to screen for enzymes involved in plant biomass degradation are based on the use of single substrates. Moreover, highly diverse environments are used as metagenomic sources. However, such methods suffer from low hit rates of positive clones and hence the discovery of novel enzymatic activities from metagenomes has been hampered. Here, we constructed fosmid libraries from two wheat straw-degrading microbial consortia, denoted RWS (bred on untreated wheat straw) and TWS (bred on heat-treated wheat straw). Approximately 22,000 clones from each library were screened for (hemi)cellulose-degrading enzymes using a multi-chromogenic substrate approach. The screens yielded 71 positive clones for both libraries, giving hit rates of 1:440 and 1:1,047 for RWS and TWS, respectively. Seven clones (NT2-2, T5-5, NT18-17, T4-1, 10BT, NT18-21 and T17-2) were selected for sequence analyses. Their inserts revealed the presence of 18 genes encoding enzymes belonging to twelve different glycosyl hydrolase families (GH2, GH3, GH13, GH17, GH20, GH27, GH32, GH39, GH53, GH58, GH65 and GH109). These encompassed several carbohydrate-active gene clusters traceable mainly to Klebsiella related species. Detailed functional analyses showed that clone NT2-2 (containing a beta-galactosidase of ~116 kDa) had highest enzymatic activity at 55 °C and pH 9.0. Additionally, clone T5-5 (containing a beta-xylosidase of ~86 kDa) showed > 90% of enzymatic activity at 55 °C and pH 10.0. This study employed a high-throughput method for rapid screening of fosmid metagenomic libraries for (hemi)cellulose-degrading enzymes. The approach, consisting of screens on multi-substrates coupled to further analyses, revealed high hit rates, as compared with recent other studies. Two

  11. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity.

    Science.gov (United States)

    Yao, Xiangyang; Li, Guilan; Lü, Chaotian; Xu, Hui; Yin, Zhimin

    2012-10-01

    Arctigenin, a natural dibenzylbutyrolactone lignan compound, has been reported to possess anti-inflammatory properties. Previous works showed that arctigenin decreased lipopolysaccharide (LPS)-induced iNOS at transcription level. However, whether arctigenin could regulate iNOS at the post-translational level is still unclear. In the present study, we demonstrated that arctigenin promoted the degradation of iNOS which is expressed under LPS stimulation in murine macrophage-like RAW 264.7 cells. Such degradation of iNOS protein is due to CHIP-associated ubiquitination and proteasome-dependency. Furthermore, arctigenin decreased iNOS phosphorylation through inhibiting ERK and Src activation, subsequently suppressed iNOS enzyme activity. In conclusion, our research displays a new finding that arctigenin can promote the ubiqitination and degradation of iNOS after LPS stimulation. iNOS activity regulated by arctigenin is likely to involve a multitude of crosstalking mechanisms. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Cosgrove, Daniel J.

    2015-11-25

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the ‘Young's modulus’ of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potential pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics.

  13. Identification of a β-glucosidase from the Mucor circinelloides genome by peptide pattern recognition

    DEFF Research Database (Denmark)

    Yuhong, Huang; Busk, Peter Kamp; Grell, Morten Nedergaard

    2014-01-01

    Mucor circinelloides produces plant cell wall degrading enzymes that allow it to grow on complex polysaccharides. Although the genome of M. circinelloides has been sequenced, only few plant cell wall degrading enzymes are annotated in this species. We applied peptide pattern recognition, which...

  14. A novel enzyme portfolio for red algal polysaccharide degradation in the marine bacterium Paraglaciecola hydrolytica S66T encoded in a sizeable polysaccharide utilization locus

    DEFF Research Database (Denmark)

    Schultz-Johansen, Mikkel; Bech, Pernille Kjersgaard; Hennessy, Rosanna Catherine

    2018-01-01

    with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes) notably agarases...... and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme...

  15. Antioxidant and lipoxygenase activities of polyphenol extracts from oat brans treated with polysaccharide degrading enzymes

    Directory of Open Access Journals (Sweden)

    Nisita Ratnasari

    2017-07-01

    Full Text Available This study used polysaccharide degrading enzymes and protein precipitation to extract polyphenols from oats and to determine their bioactivity. Duplicate oat brans were treated with viscozyme (Vis, cellulase (Cel or no enzyme (control, CTL then, proteins were removed in one set (Vis1, Cel1, CTL1 and not in the other (Vis2, Cel2, CTL2. HPLC analyses showed that for cellulase treated brans, precipitation of proteins increased phenolic acids and avenanthramides by 14%. Meanwhile, a decreased of 67% and 20% respectively was found for viscozyme and control brans. The effect of protein precipitation on soluble polyphenols is therefore dependent of the carbohydrase, as proteins with different compositions will interact differently with other molecules. Radical scavenging data showed that Cel1 and Vis1 had higher quenching effects on ROO• radicals with activities of 22.1 ± 0.8 and 23.5 ± 1.2 μM Trolox Equivalents/g defatted brans. Meanwhile, CTL2 had the highest HO• radicals inhibition (49.4 ± 2.8% compared to 10.8–32.3% for others. Samples that highly inhibited lipoxygenase (LOX, an enzyme involved in lipid oxidation were Cel1 (23.4 ± 2.3% and CTL1 (18 ± 0.4%.

  16. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones.

    Science.gov (United States)

    Maianti, Juan Pablo; McFedries, Amanda; Foda, Zachariah H; Kleiner, Ralph E; Du, Xiu Quan; Leissring, Malcolm A; Tang, Wei-Jen; Charron, Maureen J; Seeliger, Markus A; Saghatelian, Alan; Liu, David R

    2014-07-03

    Despite decades of speculation that inhibiting endogenous insulin degradation might treat type-2 diabetes, and the identification of IDE (insulin-degrading enzyme) as a diabetes susceptibility gene, the relationship between the activity of the zinc metalloprotein IDE and glucose homeostasis remains unclear. Although Ide(-/-) mice have elevated insulin levels, they exhibit impaired, rather than improved, glucose tolerance that may arise from compensatory insulin signalling dysfunction. IDE inhibitors that are active in vivo are therefore needed to elucidate IDE's physiological roles and to determine its potential to serve as a target for the treatment of diabetes. Here we report the discovery of a physiologically active IDE inhibitor identified from a DNA-templated macrocycle library. An X-ray structure of the macrocycle bound to IDE reveals that it engages a binding pocket away from the catalytic site, which explains its remarkable selectivity. Treatment of lean and obese mice with this inhibitor shows that IDE regulates the abundance and signalling of glucagon and amylin, in addition to that of insulin. Under physiological conditions that augment insulin and amylin levels, such as oral glucose administration, acute IDE inhibition leads to substantially improved glucose tolerance and slower gastric emptying. These findings demonstrate the feasibility of modulating IDE activity as a new therapeutic strategy to treat type-2 diabetes and expand our understanding of the roles of IDE in glucose and hormone regulation.

  17. Biomass degrading enzymes from Penicillium – cloning and characterization

    DEFF Research Database (Denmark)

    Krogh, Kristian Bertel Rømer

    2008-01-01

    . Størstedelen af den forskning, der er foregået indenfor cellulosenedbrydende enzymer er med enzymer produceret af svampen Trichoderma reesei. Under mit Ph.D.studium har jeg undersøgt biomassenedbrydende enzymer fra forskellige Penicillium arter. Hovedvægten af forskningen har været indenfor...... cellulosenedbrydende enzymer.Penicillium arter er blandt de hyppigst forekommende mikroorganismer i skovjord, hvori der netop nedbrydes store mængder plantemateriale. Ved en sammenligning af produktionen af biomassenedbrydende enzymer fra forskellige Penicillium arter blev der fundet flere interessante enzymsystemer...... reaktionstid ved den enzymatisk hydrolyse hvor de enkelte sukkermolekyler bliver frigivet, hvorfor enzymstabilitet er særdeles væsentlig, når et rentabelt cellulosenedbrydende enzymsystem skal sammensættes. De nødvendige enzymer for en fuldstændig hydrolyse af cellulose blev oprenset, klonet, produceret...

  18. Role of the ganSPQAB Operon in Degradation of Galactan by Bacillus subtilis.

    Science.gov (United States)

    Watzlawick, Hildegard; Morabbi Heravi, Kambiz; Altenbuchner, Josef

    2016-10-15

    Bacillus subtilis possesses different enzymes for the utilization of plant cell wall polysaccharides. This includes a gene cluster containing galactan degradation genes (ganA and ganB), two transporter component genes (ganQ and ganP), and the sugar-binding lipoprotein-encoding gene ganS (previously known as cycB). These genes form an operon that is regulated by GanR. The degradation of galactan by B. subtilis begins with the activity of extracellular GanB. GanB is an endo-β-1,4-galactanase and is a member of glycoside hydrolase (GH) family 53. This enzyme was active on high-molecular-weight arabinose-free galactan and mainly produced galactotetraose as well as galactotriose and galactobiose. These galacto-oligosaccharides may enter the cell via the GanQP transmembrane proteins of the galactan ABC transporter. The specificity of the galactan ABC transporter depends on the sugar-binding lipoprotein, GanS. Purified GanS was shown to bind galactotetraose and galactotriose using thermal shift assay. The energy for this transport is provided by MsmX, an ATP-binding protein. The transported galacto-oligosaccharides are further degraded by GanA. GanA is a β-galactosidase that belongs to GH family 42. The GanA enzyme was able to hydrolyze short-chain β-1,4-galacto-oligosaccharides as well as synthetic β-galactopyranosides into galactose. Thermal shift assay as well as electrophoretic mobility shift assay demonstrated that galactobiose is the inducer of the galactan operon regulated by GanR. DNase I footprinting revealed that the GanR protein binds to an operator overlapping the -35 box of the σ(A)-type promoter of Pgan, which is located upstream of ganS IMPORTANCE: Bacillus subtilis is a Gram-positive soil bacterium that utilizes different types of carbohydrates, such as pectin, as carbon sources. So far, most of the pectin degradation systems and enzymes have been thoroughly studied in B. subtilis Nevertheless, the B. subtilis utilization system of galactan, which is

  19. Purification and crystallization of Bacillus subtilis NrnA, a novel enzyme involved in nanoRNA degradation

    Energy Technology Data Exchange (ETDEWEB)

    Nelersa, Claudiu M.; Schmier, Brad J.; Malhotra, Arun (Miami-MED)

    2012-05-08

    The final step in RNA degradation is the hydrolysis of RNA fragments five nucleotides or less in length (nanoRNA) to mononucleotides. In Escherichia coli this step is carried out by oligoribonuclease (Orn), a DEDD-family exoribonuclease that is conserved throughout eukaryotes. However, many bacteria lack Orn homologs, and an unrelated DHH-family phosphoesterase, NrnA, has recently been identified as one of the enzymes responsible for nanoRNA degradation in Bacillus subtilis. To understand its mechanism of action, B. subtilis NrnA was purified and crystallized at room temperature using the hanging-drop vapor-diffusion method with PEG 4000, PEG 3350 or PEG MME 2000 as precipitant. The crystals belonged to the primitive monoclinic space group P2{sub 1}, with unit-cell parameters a = 50.62, b = 121.3, c = 123.4 {angstrom}, {alpha} = 90, {beta} = 91.31, {gamma} = 90{sup o}.

  20. The Activity of Carbohydrate-Degrading Enzymes in the Development of Brood and Newly Emerged workers and Drones of the Carniolan Honeybee, Apis mellifera carnica

    OpenAIRE

    Żółtowska, Krystyna; Lipiński, Zbigniew; Łopieńska-Biernat, Elżbieta; Farjan, Marek; Dmitryjuk, Małgorzata

    2012-01-01

    The activity of glycogen Phosphorylase and carbohydrate hydrolyzing enzymes α-amylase, glucoamylase, trehalase, and sucrase was studied in the development of the Carniolan honey bee, Apis mellifera carnica Pollman (Hymenoptera: Apidae), from newly hatched larva to freshly emerged imago of worker and drone. Phosphorolytic degradation of glycogen was significantly stronger than hydrolytic degradation in all developmental stages. Developmental profiles of hydrolase activity were similar in both ...

  1. Degradation of wall paints due to sodium sulphate and sodium chloride crystallization

    Directory of Open Access Journals (Sweden)

    Díaz Gonçalves, T.

    2003-03-01

    Full Text Available A test method for evaluating wall paints behaviour to soluble salts crystallization was developed at LNEC. in the present paper, a recent set of tests is described and discussed. The major objectives were: analysing and comparing the behaviour of a common emulsion {"plastic" paint and a silicate-based paint; observing and comparing the effect of sodium sulphate, sodium chloride and distilled water on the paints and on a non-painted stone; evaluating this test method adequacy and effectiveness. The silicate-based paint showed a resistance to soluble salts crystallization greater than the one of the plastic paint. However, the degradation pattern of the silicate-based paint (blistering of a filmic layer was similar to the one of organic paints and distinct from the one of pure mineral paints. The amount of damage that a saline solution can cause to wall paints cannot be inferred from the amount of damage it can cause to stone. Sodium chloride seems to be able to cause more severe degradation to wall paints than sodium sulphate. To the unpainted stone, sodium sulphate seems to be more damaging than sodium chloride. The test method seems adequate to observe and compare the behaviour of wall paints under soluble salts action. However, lower (around 0.5% concentrations for both sodium sulphate and sodium chloride should be tested in the future.

    RESUMEN En el LNEC se desarrolló una metodología de ensayo para evaluar la respuesta de pinturas aplicadas sobre paredes, frente a la cristalización de sales solubles. En este trabajo, se describen y discuten un conjunto de ensayos recientes. Los principales objetivos fueron: el análisis y la comparación del comportamiento de una pintura de emulsión común {''pintura plástica" y la de una pintura de silicato; la observación y la comparación de los efectos del sulfato de sodio, del cloruro de sodio y del agua destilada sobre las pinturas y sobre piedra no pintada; la evaluación de la adecuaci

  2. Forage digestibility: the intersection of cell wall lignification and plant tissue anatomy

    Science.gov (United States)

    Cellulose and the other polysaccharides present in forage cell walls can be completely degraded by the rumen microflora but only when these polysaccharides have been isolated from the wall and all matrix structures eliminated. Understanding how cell wall component interactions limit microbial degrad...

  3. Antipathy of Trichoderma against Sclerotium rolfsii Sacc.: Evaluation of Cell Wall-Degrading Enzymatic Activities and Molecular Diversity Analysis of Antagonists.

    Science.gov (United States)

    Hirpara, Darshna G; Gajera, Harsukh P; Hirpara, Hitesh Z; Golakiya, Balubhai A

    2017-01-01

    The fungus Trichoderma is a teleomorph of the Hypocrea genus and associated with biological control of plant diseases. The microscopic, biochemical, and molecular characterization of Trichoderma was carried out and evaluated for in vitro antagonistic activity against the fungal pathogen Sclerotium rolfsii causing stem rot disease in groundnut. In total, 11 isolates of Trichoderma were examined for antagonism at 6 and 12 days after inoculation (DAI). Out of 11, T. virens NBAII Tvs12 evidenced the highest (87.91%) growth inhibition of the test pathogen followed by T. koningii MTCC 796 (67.03%), T. viride NBAII Tv23 (63.74%), and T. harzianum NBAII Th1 (60.44%). Strong mycoparasitism was observed in the best antagonist Tvs12 strain during 6-12 DAI. The specific activity of cell wall-degrading enzymes - chitinase and β-1,3-glucanase - was positively correlated with growth inhibition of the test pathogen. In total, 18 simple sequence repeat (SSR) polymorphisms were reported to amplify 202 alleles across 11 Trichoderma isolates. The average polymorphism information content for SSR markers was found to be 0.80. The best antagonist Tvs 12 was identified with 7 unique SSR alleles amplified by 5 SSR markers. Clustering patterns of 11 Trichoderma strains showed the best antagonist T. virens NBAII Tvs 12 outgrouped with a minimum 3% similarity from the rest of Trichoderma. © 2017 S. Karger AG, Basel.

  4. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    Science.gov (United States)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  5. Radiation and enzyme degradation of cellulose materials

    International Nuclear Information System (INIS)

    Duchacek, V.

    1983-01-01

    The results are summed up of a study of the effect of gamma radiation on pure cellulose and on wheat straw. The irradiation of cellulose yields acid substances - formic acid and polyhydroxy acids, toxic malondialdehyde and the most substantial fraction - the saccharides xylose, arabinose, glucose and certain oligosaccharides. A ten-fold reduction of the level of cellulose polymerization can be caused by relatively small doses - (up to 250 kGy). A qualitative analysis was made of the straw before and after irradiation and it was shown that irradiation had no significant effect on the qualitative composition of the straw. A 48 hour enzyme hydrolysis of the cellulose and straw were made after irradiation and an economic evaluation of the process was made. Radiation pretreatment is technically and economically advantageous; the production of fodder using enzyme hydrolysis of irradiated straw is not economically feasible due to the high cost of the enzyme. (M.D.)

  6. Increased production of biomass-degrading enzymes by double deletion of creA and creB genes involved in carbon catabolite repression in Aspergillus oryzae.

    Science.gov (United States)

    Ichinose, Sakurako; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya

    2018-02-01

    In a previous study, we reported that a double gene deletion mutant for CreA and CreB, which constitute the regulatory machinery involved in carbon catabolite repression, exhibited improved production of α-amylase compared with the wild-type strain and single creA or creB deletion mutants in Aspergillus oryzae. Because A. oryzae can also produce biomass-degrading enzymes, such as xylolytic and cellulolytic enzymes, we examined the production levels of those enzymes in deletion mutants in this study. Xylanase and β-glucosidase activities in the wild-type were hardly detected in submerged culture containing xylose as the carbon source, whereas those enzyme activities were significantly increased in the single creA deletion (ΔcreA) and double creA and creB deletion (ΔcreAΔcreB) mutants. In particular, the ΔcreAΔcreB mutant exhibited >100-fold higher xylanase and β-glucosidase activities than the wild-type. Moreover, in solid-state culture, the β-glucosidase activity of the double deletion mutant was >7-fold higher than in the wild-type. These results suggested that deletion of both creA and creB genes could also efficiently improve the production levels of biomass-degrading enzymes in A. oryzae. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Vesicles between plasma membrane and cell wall prior to visible senescence of Iris and Dendrobium flowers.

    Science.gov (United States)

    Kamdee, Channatika; Kirasak, Kanjana; Ketsa, Saichol; van Doorn, Wouter G

    2015-09-01

    Cut Iris flowers (Iris x hollandica, cv. Blue Magic) show visible senescence about two days after full opening. Epidermal cells of the outer tepals collapse due to programmed cell death (PCD). Transmission electron microscopy (TEM) showed irregular swelling of the cell walls, starting prior to cell collapse. Compared to cells in flowers that had just opened, wall thickness increased up to tenfold prior to cell death. Fibrils were visible in the swollen walls. After cell death very little of the cell wall remained. Prior to and during visible wall swelling, vesicles (paramural bodies) were observed between the plasma membrane and the cell walls. The vesicles were also found in groups and were accompanied by amorphous substance. They usually showed a single membrane, and had a variety of diameters and electron densities. Cut Dendrobium hybrid cv. Lucky Duan flowers exhibited visible senescence about 14 days after full flower opening. Paramural bodies were also found in Dendrobium tepal epidermis and mesophyll cells, related to wall swelling and degradation. Although alternative explanations are well possible, it is hypothesized that paramural bodies carry enzymes involved in cell wall breakdown. The literature has not yet reported such bodies in association with senescence/PCD. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Enzymatic degradation of polycaprolactone–gelatin blend

    International Nuclear Information System (INIS)

    Banerjee, Aditi; Chatterjee, Kaushik; Madras, Giridhar

    2015-01-01

    Blends of polycaprolactone (PCL), a synthetic polymer and gelatin, natural polymer offer a optimal combination of strength, water wettability and cytocompatibility for use as a resorbable biomaterial. The enzymatic degradation of PCL, gelatin and PCL–gelatin blended films was studied in the presence of lipase (Novozym 435, immobilized) and lysozyme. Novozym 435 degraded the PCL films whereas lysozyme degraded the gelatin. Though Novozym 435 and lysozyme individually could degrade PCL–gelatin blended films, the combination of these enzymes showed the highest degradation of these blended films. Moreover, the enzymatic degradation was much faster when fresh enzymes were added at regular intervals. The changes in physico-chemical properties of polymer films due to degradation were studied by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. These results have important implications for designing resorbable biomedical implants. (paper)

  9. Mapping the polysaccharide degradation potential of Aspergillus niger

    Science.gov (United States)

    2012-01-01

    Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger. PMID:22799883

  10. Leucoagaricus gongylophorus produces diverse enzymes for the degradation of recalcitrant plant polymers in leaf-cutter ant fungus gardens.

    Science.gov (United States)

    Aylward, Frank O; Burnum-Johnson, Kristin E; Tringe, Susannah G; Teiling, Clotilde; Tremmel, Daniel M; Moeller, Joseph A; Scott, Jarrod J; Barry, Kerrie W; Piehowski, Paul D; Nicora, Carrie D; Malfatti, Stephanie A; Monroe, Matthew E; Purvine, Samuel O; Goodwin, Lynne A; Smith, Richard D; Weinstock, George M; Gerardo, Nicole M; Suen, Garret; Lipton, Mary S; Currie, Cameron R

    2013-06-01

    Plants represent a large reservoir of organic carbon comprised primarily of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous fungus that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and, using genomic and metaproteomic tools, we investigate its role in lignocellulose degradation in the gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in ant gardens and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that likely play an important role in lignocellulose degradation. Our study provides a detailed analysis of plant biomass degradation in leaf-cutter ant fungus gardens and insight into the enzymes underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.

  11. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes.

    Science.gov (United States)

    Zhang, Meiling; Chekan, Jonathan R; Dodd, Dylan; Hong, Pei-Ying; Radlinski, Lauren; Revindran, Vanessa; Nair, Satish K; Mackie, Roderick I; Cann, Isaac

    2014-09-02

    Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT_04215 and BACOVA_04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xylose-configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM from its homolog in the Prevotella bryantii B14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. A minimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.

  12. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes

    KAUST Repository

    Zhang, Meiling

    2014-08-18

    Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT-04215 and BACOVA-04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xy-lose- configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM fromits homolog in the Prevotella bryantii B 14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. Aminimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.

  13. Mapping the polysaccharide degradation potential of Aspergillus niger

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Giese, Malene; de Vries, Ronald P.

    2012-01-01

    Background: The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required....... For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential...... of a given fungus for polysaccharide degradation. Results: Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list...

  14. Bacterial enzymes involved in lignin degradation

    NARCIS (Netherlands)

    de Gonzalo, Gonzalo; Colpa, Dana I; Habib, Mohamed H M; Fraaije, Marco W

    2016-01-01

    Lignin forms a large part of plant biomass. It is a highly heterogeneous polymer of 4-hydroxyphenylpropanoid units and is embedded within polysaccharide polymers forming lignocellulose. Lignin provides strength and rigidity to plants and is rather resilient towards degradation. To improve the

  15. Phosphorylation of the Streptococcus pneumoniae cell wall biosynthesis enzyme MurC by a eukaryotic-like Ser/Thr kinase.

    Science.gov (United States)

    Falk, Shaun P; Weisblum, Bernard

    2013-03-01

    Streptococcus pneumoniae contains a single Ser/Thr kinase-phosphatase pair known as StkP-PhpP. Here, we report the interaction of StkP-PhpP with S. pneumoniae UDP-N-acetylmuramoyl:L-alanine ligase, MurC, an enzyme that synthesizes an essential intermediate of the cell wall peptidoglycan pathway. Combinatorial phage display using StkP as target selected the peptide sequence YEVCGSDTVGC as an interacting partner and subsequently confirmed by ELISA. The phage peptide sequence YEVCGSDTVGC aligns closely with the MurC motif spanning S. pneumoniae amino acid coordinates 31-37. We show that MurC is phosphorylated by StkP and that phosphoMurC is dephosphorylated by PhpP. These data suggest a link between StkP-PhpP with the coordinated regulation of cell wall biosynthesis via MurC. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. NUCLEOTIDE SEQUENCING AND TRANSCRIPTIONAL MAPPING OF THE GENES ENCODING BIPHENYL DIOXYGENASE, A MULTICOM- PONENT POLYCHLORINATED-BIPHENYL-DEGRADING ENZYME IN PSEUDOMONAS STRAIN LB400

    Science.gov (United States)

    The DNA region encoding biphenyl dioxygenase, the first enzyme in the biphenyl-polychlorinated biphenyl degradation pathway of Pseudomonas species strain LB400, was sequenced. Six open reading frames were identified, four of which are homologous to the components of toluene dioxy...

  17. Composition and expression of genes encoding carbohydrate-active enzymes in the straw-degrading mushroom Volvariella volvacea.

    Directory of Open Access Journals (Sweden)

    Bingzhi Chen

    Full Text Available Volvariella volvacea is one of a few commercial cultivated mushrooms mainly using straw as carbon source. In this study, the genome of V. volcacea was sequenced and assembled. A total of 285 genes encoding carbohydrate-active enzymes (CAZymes in V. volvacea were identified and annotated. Among 15 fungi with sequenced genomes, V. volvacea ranks seventh in the number of genes encoding CAZymes. In addition, the composition of glycoside hydrolases in V. volcacea is dramatically different from other basidiomycetes: it is particularly rich in members of the glycoside hydrolase families GH10 (hemicellulose degradation and GH43 (hemicellulose and pectin degradation, and the lyase families PL1, PL3 and PL4 (pectin degradation but lacks families GH5b, GH11, GH26, GH62, GH93, GH115, GH105, GH9, GH53, GH32, GH74 and CE12. Analysis of genome-wide gene expression profiles of 3 strains using 3'-tag digital gene expression (DGE reveals that 239 CAZyme genes were expressed even in potato destrose broth medium. Our data also showed that the formation of a heterokaryotic strain could dramatically increase the expression of a number of genes which were poorly expressed in its parental homokaryotic strains.

  18. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes.

    Science.gov (United States)

    Nakajima-Kambe, T; Shigeno-Akutsu, Y; Nomura, N; Onuma, F; Nakahara, T

    1999-02-01

    Polyurethane (PUR) is a polymer derived from the condensation of polyisocyanate and polyol and it is widely used as a base material in various industries. PUR, in particular, polyester PUR, is known to be vulnerable to microbial attack. Recently, environmental pollution by plastic wastes has become a serious issue and polyester PUR had attracted attention because of its biodegradability. There are many reports on the degradation of polyester PUR by microorganisms, especially by fungi. Microbial degradation of polyester PUR is thought to be mainly due to the hydrolysis of ester bonds by esterases. Recently, polyester-PUR-degrading enzymes have been purified and their characteristics reported. Among them, a solid-polyester-PUR-degrading enzyme (PUR esterase) derived from Comamonas acidovorans TB-35 had unique characteristics. This enzyme has a hydrophobic PUR-surface-binding domain and a catalytic domain, and the surface-binding domain was considered as being essential for PUR degradation. This hydrophobic surface-binding domain is also observed in other solid-polyester-degrading enzymes such as poly(hydroxyalkanoate) (PHA) depolymerases. There was no significant homology between the amino acid sequence of PUR esterase and that of PHA depolymerases, except in the hydrophobic surface-binding region. Thus, PUR esterase and PHA depolymerase are probably different in terms of their evolutionary origin and it is possible that PUR esterases come to be classified as a new solid-polyester-degrading enzyme family.

  19. Enzymatic degradation of aliphatic nitriles by Rhodococcus rhodochrous BX2, a versatile nitrile-degrading bacterium.

    Science.gov (United States)

    Fang, Shumei; An, Xuejiao; Liu, Hongyuan; Cheng, Yi; Hou, Ning; Feng, Lu; Huang, Xinning; Li, Chunyan

    2015-06-01

    Nitriles are common environmental pollutants, and their removal has attracted increasing attention. Microbial degradation is considered to be the most acceptable method for removal. In this work, we investigated the biodegradation of three aliphatic nitriles (acetonitrile, acrylonitrile and crotononitrile) by Rhodococcus rhodochrous BX2 and the expression of their corresponding metabolic enzymes. This organism can utilize all three aliphatic nitriles as sole carbon and nitrogen sources, resulting in the complete degradation of these compounds. The degradation kinetics were described using a first-order model. The degradation efficiency was ranked according to t1/2 as follows: acetonitrile>trans-crotononitrile>acrylonitrile>cis-crotononitrile. Only ammonia accumulated following the three nitriles degradation, while amides and carboxylic acids were transient and disappeared by the end of the assay. mRNA expression and enzyme activity indicated that the tested aliphatic nitriles were degraded via both the inducible NHase/amidase and the constitutive nitrilase pathways, with the former most likely preferred. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Mapping the polysaccharide degradation potential of Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Andersen Mikael R

    2012-07-01

    Full Text Available Abstract Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger.

  1. Genetic engineering of grass cell wall polysaccharides for biorefining.

    Science.gov (United States)

    Bhatia, Rakesh; Gallagher, Joe A; Gomez, Leonardo D; Bosch, Maurice

    2017-09-01

    Grasses represent an abundant and widespread source of lignocellulosic biomass, which has yet to fulfil its potential as a feedstock for biorefining into renewable and sustainable biofuels and commodity chemicals. The inherent recalcitrance of lignocellulosic materials to deconstruction is the most crucial limitation for the commercial viability and economic feasibility of biomass biorefining. Over the last decade, the targeted genetic engineering of grasses has become more proficient, enabling rational approaches to modify lignocellulose with the aim of making it more amenable to bioconversion. In this review, we provide an overview of transgenic strategies and targets to tailor grass cell wall polysaccharides for biorefining applications. The bioengineering efforts and opportunities summarized here rely primarily on (A) reprogramming gene regulatory networks responsible for the biosynthesis of lignocellulose, (B) remodelling the chemical structure and substitution patterns of cell wall polysaccharides and (C) expressing lignocellulose degrading and/or modifying enzymes in planta. It is anticipated that outputs from the rational engineering of grass cell wall polysaccharides by such strategies could help in realizing an economically sustainable, grass-derived lignocellulose processing industry. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Lignocellulose degradation, enzyme production and protein ...

    African Journals Online (AJOL)

    Microbial conversion of corn stover by white rot fungi has the potential to increase its ligninolysis and nutritional value, thereby transforming it into protein-enriched animal feed. Response surface methodology was applied to optimize conditions for the production of lignocellulolytic enzymes by Trametes versicolor during ...

  3. A novel analytical method for D-glucosamine quantification and its application in the analysis of chitosan degradation by a minimal enzyme cocktail

    DEFF Research Database (Denmark)

    Mekasha, Sophanit; Toupalová, Hana; Linggadjaja, Eka

    2016-01-01

    Enzymatic depolymerization of chitosan, a β-(1,4)-linked polycationic polysaccharide composed of D-glucosamine (GlcN) and N-acetyl-D-glucosamine (GlcNAc) provides a possible route to the exploitation of chitin-rich biomass. Complete conversion of chitosan to mono-sugars requires the synergistic...... action of endo- and exo- chitosanases. In the present study we have developed an efficient and cost-effective chitosan-degrading enzyme cocktail containing only two enzymes, an endo-attacking bacterial chitosanase, ScCsn46A, from Streptomyces coelicolor, and an exo-attacking glucosamine specific β...

  4. Influence of exogenous lead pollution on enzyme activities and organic matter degradation in the surface of river sediment.

    Science.gov (United States)

    Huang, Danlian; Xu, Juanjuan; Zeng, Guangming; Lai, Cui; Yuan, Xingzhong; Luo, Xiangying; Wang, Cong; Xu, Piao; Huang, Chao

    2015-08-01

    As lead is one of the most hazardous heavy metals in river ecosystem, the influence of exogenous lead pollution on enzyme activities and organic matter degradation in the surface of river sediment with high moisture content were studied at laboratory scale. The dynamic changes of urease, catalase, protease activities, organic matter content, and exchangeable or ethylenediaminetetraacetic acid (EDTA)-extractable Pb concentration in sediment were monitored during different levels of exogenous lead infiltrating into sediment. At the early stage of incubation, the activities of catalase and protease were inhibited, whereas the urease activities were enhanced with different levels of exogenous lead. Organic matter content in polluted sediment with exogenous lead was lower than control and correlated with enzyme activities. In addition, the effects of lead on the three enzyme activities were strongly time-dependent and catalase activities showed lower significant difference (P < 0.05) than urease and protease. Correlations between catalase activities and EDTA-extractable Pb in the experiment were significantly negative. The present findings will improve the understandings about the ecotoxicological mechanisms in sediment.

  5. Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover.

    Science.gov (United States)

    Xu, Chunyan; Ma, Fuying; Zhang, Xiaoyu

    2009-11-01

    The white rot fungus Irpex lacteus CD2 was incubated on corn stover under solid-state fermentation conditions for different durations, from 5 days up to 120 days. Lignocellulose component loss, enzyme production and Fe3+-reducing activity were studied. The average weight loss ranged from 1.7% to 60.5% during the period of 5-120 days. In contrast to lignin, hemicellulose and cellulose were degraded during the initial time period. After 15 days, 63.0% of hemicellulose was degraded. Cellulose was degraded the most during the first 10 days, and 17.2% was degraded after 10 days. Lignin was significantly degraded and modified, with acid insoluble lignin loss being nearly 80% after 60 days. That weight loss, which was lower than the total component loss, indicated that not all of the lost lignocellulose was converted to carbon dioxide and water, which was indicated by the increase in soluble reducing sugars and acid soluble lignin. Filter paper activity, which corresponds to total cellulase activity, peaked at day 5 and remained at a high level from 40 to 60 days. High hemicellulase activity appeared after 30 days. No ligninases activity was detected during the incipient stage of lignin removal and only low lignin peroxidase activity was detected after 25 days. Apparently, neither of the enzymatic peaks coincided well with the highest amount of component loss. Fe3+-reducing activity could be detected during all the decay periods, which might play an important role in lignin biodegradation by I. lacteus CD2.

  6. Production of cell wall enzymes in pepper seedlings, inoculated with ...

    African Journals Online (AJOL)

    Pepper seedlings inoculated with arbuscular mycorrhizal AM fungus, Glomus etunicatum, produced cellulase, polygal-acturonase and pectin methylestrase enzymes. The activities of the enzymes increased as the pepper seedlings matured in age, showing that the activity of the enzymes in the seedlings was age mediated.

  7. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors

    International Nuclear Information System (INIS)

    Shi, Jin; Jaroch, David; Rickus, Jenna L; Marshall Porterfield, D; Claussen, Jonathan C; Ul Haque, Aeraj; Diggs, Alfred R; McLamore, Eric S; Calvo-Marzal, Percy

    2011-01-01

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 ± 0.5 μA mM -1 cm -2 ), linear range (0.0037-12 mM), detection limit (3.7 μM), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H 2 O 2 response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.

  8. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jin; Jaroch, David; Rickus, Jenna L; Marshall Porterfield, D [Weldon School of Biomedical Engineering, Purdue University (United States); Claussen, Jonathan C; Ul Haque, Aeraj; Diggs, Alfred R [Physiological Sensing Facility, Bindley Bioscience Center and Birck Nanotechnology Center, Purdue University (United States); McLamore, Eric S [Department of Agricultural and Biological Engineering, University of Florida (United States); Calvo-Marzal, Percy, E-mail: porterf@purdue.edu [Department of Chemistry, Purdue University (United States)

    2011-09-02

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 {+-} 0.5 {mu}A mM{sup -1} cm{sup -2}), linear range (0.0037-12 mM), detection limit (3.7 {mu}M), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H{sub 2}O{sub 2} response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.

  9. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors

    Science.gov (United States)

    Shi, Jin; Claussen, Jonathan C.; McLamore, Eric S.; Haque, Aeraj ul; Jaroch, David; Diggs, Alfred R.; Calvo-Marzal, Percy; Rickus, Jenna L.; Porterfield, D. Marshall

    2011-09-01

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 ± 0.5 µA mM - 1 cm - 2), linear range (0.0037-12 mM), detection limit (3.7 µM), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H2O2 response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.

  10. High temperature induced disruption of the cell wall integrity and structure in Pleurotus ostreatus mycelia.

    Science.gov (United States)

    Qiu, Zhiheng; Wu, Xiangli; Gao, Wei; Zhang, Jinxia; Huang, Chenyang

    2018-05-30

    Fungal cells are surrounded by a tight cell wall to protect them from harmful environmental conditions and to resist lysis. The synthesis and assembly determine the shape, structure, and integrity of the cell wall during the process of mycelial growth and development. High temperature is an important abiotic stress, which affects the synthesis and assembly of cell walls. In the present study, the chitin and β-1,3-glucan concentrations in the cell wall of Pleurotus ostreatus mycelia were changed after high-temperature treatment. Significantly higher chitin and β-1,3-glucan concentrations were detected at 36 °C than those incubated at 28 °C. With the increased temperature, many aberrant chitin deposition patches occurred, and the distribution of chitin in the cell wall was uneven. Moreover, high temperature disrupts the cell wall integrity, and P. ostreatus mycelia became hypersensitive to cell wall-perturbing agents at 36 °C. The cell wall structure tended to shrink or distorted after high temperature. The cell walls were observed to be thicker and looser by using transmission electron microscopy. High temperature can decrease the mannose content in the cell wall and increase the relative cell wall porosity. According to infrared absorption spectrum, high temperature broke or decreased the glycosidic linkages. Finally, P. ostreatus mycelial cell wall was easily degraded by lysing enzymes after high-temperature treatment. In other words, the cell wall destruction caused by high temperature may be a breakthrough for P. ostreatus to be easily infected by Trichoderma.

  11. The Cell Wall Teichuronic Acid Synthetase (TUAS Is an Enzyme Complex Located in the Cytoplasmic Membrane of Micrococcus luteus

    Directory of Open Access Journals (Sweden)

    Lingyi Lynn Deng

    2010-01-01

    composed of disaccharide repeating units [-4-β-D-ManNAcAp-(1→6α-D-Glcp−1-]n, which is covalently anchored to the peptidoglycan on the inner cell wall and extended to the outer surface of the cell envelope. An enzyme complex responsible for the TUA chain biosynthesis was purified and characterized. The 440 kDa enzyme complex, named teichuronic acid synthetase (TUAS, is an octomer composed of two kinds of glycosyltransferases, Glucosyltransferase, and ManNAcA-transferase, which is capable of catalyzing the transfer of disaccharide glycosyl residues containing both glucose and the N-acetylmannosaminuronic acid residues. TUAS displays hydrophobic properties and is found primarily associated with the cytoplasmic membrane. The purified TUAS contains carotinoids and lipids. TUAS activity is diminished by phospholipase digestion. We propose that TUAS serves as a multitasking polysaccharide assembling station on the bacterial membrane.

  12. Production of raw cassava starch-degrading enzyme by Penicillium and its use in conversion of raw cassava flour to ethanol.

    Science.gov (United States)

    Lin, Hai-Juan; Xian, Liang; Zhang, Qiu-Jiang; Luo, Xue-Mei; Xu, Qiang-Sheng; Yang, Qi; Duan, Cheng-Jie; Liu, Jun-Liang; Tang, Ji-Liang; Feng, Jia-Xun

    2011-06-01

    A newly isolated strain Penicillium sp. GXU20 produced a raw starch-degrading enzyme which showed optimum activity towards raw cassava starch at pH 4.5 and 50 °C. Maximum raw cassava starch-degrading enzyme (RCSDE) activity of 20 U/ml was achieved when GXU20 was cultivated under optimized conditions using wheat bran (3.0% w/v) and soybean meal (2.5% w/v) as carbon and nitrogen sources at pH 5.0 and 28 °C. This represented about a sixfold increment as compared with the activity obtained under basal conditions. Starch hydrolysis degree of 95% of raw cassava flour (150 g/l) was achieved after 72 h of digestion by crude RCSDE (30 U/g flour). Ethanol yield reached 53.3 g/l with fermentation efficiency of 92% after 48 h of simultaneous saccharification and fermentation of raw cassava flour at 150 g/l using the RCSDE (30 U/g flour), carried out at pH 4.0 and 40 °C. This strain and its RCSDE have potential applications in processing of raw cassava starch to ethanol.

  13. Carbohydrate-active enzymes from pigmented Bacilli: a genomic approach to assess carbohydrate utilization and degradation

    Directory of Open Access Journals (Sweden)

    Henrissat Bernard

    2011-09-01

    Full Text Available Abstract Background Spore-forming Bacilli are Gram-positive bacteria commonly found in a variety of natural habitats, including soil, water and the gastro-intestinal (GI-tract of animals. Isolates of various Bacillus species produce pigments, mostly carotenoids, with a putative protective role against UV irradiation and oxygen-reactive forms. Results We report the annotation of carbohydrate active enzymes (CAZymes of two pigmented Bacilli isolated from the human GI-tract and belonging to the Bacillus indicus and B. firmus species. A high number of glycoside hydrolases (GHs and carbohydrate binding modules (CBMs were found in both isolates. A detailed analysis of CAZyme families, was performed and supported by growth data. Carbohydrates able to support growth as the sole carbon source negatively effected carotenoid formation in rich medium, suggesting that a catabolite repression-like mechanism controls carotenoid biosynthesis in both Bacilli. Experimental results on biofilm formation confirmed genomic data on the potentials of B. indicus HU36 to produce a levan-based biofilm, while mucin-binding and -degradation experiments supported genomic data suggesting the ability of both Bacilli to degrade mammalian glycans. Conclusions CAZy analyses of the genomes of the two pigmented Bacilli, compared to other Bacillus species and validated by experimental data on carbohydrate utilization, biofilm formation and mucin degradation, suggests that the two pigmented Bacilli are adapted to the intestinal environment and are suited to grow in and colonize the human gut.

  14. Hyaluronan degrading silica nanoparticles for skin cancer therapy

    Science.gov (United States)

    Scodeller, P.; Catalano, P. N.; Salguero, N.; Duran, H.; Wolosiuk, A.; Soler-Illia, G. J. A. A.

    2013-09-01

    We report the first nanoformulation of Hyaluronidase (Hyal) and its enhanced adjuvant effect over the free enzyme. Hyaluronic acid (HA) degrading enzyme Hyal was immobilized on 250 nm silica nanoparticles (SiNP) maintaining specific activity of the enzyme via the layer-by-layer self-assembly technique. This process was characterized by dynamic light scattering (DLS), zeta potential, infrared and UV-Vis spectroscopy, transmission electron microscopy (TEM) and enzymatic activity measurements. The nanoparticles were tested in vivo as adjuvants of carboplatin (CP), peritumorally injected in A375 human melanoma bearing mice and compared with the non-immobilized enzyme, on the basis of equal enzymatic activity. Alcian Blue staining of A375 tumors indicated large overexpression of hyaluronan. At the end of the experiment, tumor volume reduction with SiNP-immobilized Hyal was significantly enhanced compared to non-immobilized Hyal. Field emission scanning electron microscopy (FE-SEM) images together with energy dispersive X-ray spectroscopy (EDS) spectra confirmed the presence of SiNP on the tumor. We mean a proof of concept: this extracellular matrix (ECM) degrading enzyme, immobilized on SiNP, is a more effective local adjuvant of cancer drugs than the non-immobilized enzyme. This could prove useful in future therapies using other or a combination of ECM degrading enzymes.We report the first nanoformulation of Hyaluronidase (Hyal) and its enhanced adjuvant effect over the free enzyme. Hyaluronic acid (HA) degrading enzyme Hyal was immobilized on 250 nm silica nanoparticles (SiNP) maintaining specific activity of the enzyme via the layer-by-layer self-assembly technique. This process was characterized by dynamic light scattering (DLS), zeta potential, infrared and UV-Vis spectroscopy, transmission electron microscopy (TEM) and enzymatic activity measurements. The nanoparticles were tested in vivo as adjuvants of carboplatin (CP), peritumorally injected in A375 human

  15. Alkoxyl- and carbon-centered radicals as primary agents for degrading non-phenolic lignin-substructure model compounds.

    Science.gov (United States)

    Ohashi, Yasunori; Uno, Yukiko; Amirta, Rudianto; Watanabe, Takahito; Honda, Yoichi; Watanabe, Takashi

    2011-04-07

    Lignin degradation by white-rot fungi proceeds via free radical reaction catalyzed by oxidative enzymes and metabolites. Basidiomycetes called selective white-rot fungi degrade both phenolic and non-phenolic lignin substructures without penetration of extracellular enzymes into the cell wall. Extracellular lipid peroxidation has been proposed as a possible ligninolytic mechanism, and radical species degrading the recalcitrant non-phenolic lignin substructures have been discussed. Reactions between the non-phenolic lignin model compounds and radicals produced from azo compounds in air have previously been analysed, and peroxyl radical (PR) is postulated to be responsible for lignin degradation (Kapich et al., FEBS Lett., 1999, 461, 115-119). However, because the thermolysis of azo compounds in air generates both a carbon-centred radical (CR) and a peroxyl radical (PR), we re-examined the reactivity of the three radicals alkoxyl radical (AR), CR and PR towards non-phenolic monomeric and dimeric lignin model compounds. The dimeric lignin model compound is degraded by CR produced by reaction of 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH), which under N(2) atmosphere cleaves the α-β bond in 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol to yield 4-ethoxy-3-methoxybenzaldehyde. However, it is not degraded by the PR produced by reaction of Ce(4+)/tert-BuOOH. In addition, it is degraded by AR produced by reaction of Ti(3+)/tert-BuOOH. PR and AR are generated in the presence and absence of veratryl alcohol, respectively. Rapid-flow ESR analysis of the radical species demonstrates that AR but not PR reacts with the lignin model compound. Thus, AR and CR are primary agents for the degradation of non-phenolic lignin substructures.

  16. The effect of dietary faba bean and non-starch polysaccharide degrading enzymes on the growth performance and gut physiology of young turkeys.

    Science.gov (United States)

    Mikulski, D; Juskiewicz, J; Przybylska-Gornowicz, B; Sosnowska, E; Slominski, B A; Jankowski, J; Zdunczyk, Z

    2017-12-01

    The aim of this study was to investigate the effect of dietary replacement of soya bean meal (SBM) with faba bean (FB) and a blend of non-starch polysaccharide (NSP) degrading enzymes on the gastrointestinal function, growth performance and welfare of young turkeys (1 to 56 days of age). An experiment with a 2×2 factorial design was performed to compare the efficacy of four diets: a SBM-based diet and a diet containing FB, with and without enzyme supplementation (C, FB, CE and FBE, respectively). In comparison with groups C, higher dry matter content and lower viscosity of the small intestinal digesta were noted in groups FB. The content of short-chain fatty acids (SCFAs) in the small intestinal digesta was higher in groups FB, but SCFA concentrations in the caecal digesta were comparable in groups C and FB. In comparison with control groups, similar BW gains, higher feed conversion ratio (FCR), higher dry matter content of excreta and milder symptoms of footpad dermatitis (FPD) were noted in groups FB. Enzyme supplementation increased the concentrations of acetate, butyrate and total SCFAs, but it did not increase the SCFA pool in the caecal digesta. The enzymatic preparation significantly improved FCR, reduced excreta hydration and the severity of FPD in turkeys. It can be concluded that in comparison with the SBM-based diet, the diet containing 30% of FB enables to achieve comparable BW gains accompanied by lower feed efficiency during the first 8 weeks of rearing. Non-starch polysaccharide-degrading enzymes can be used to improve the nutritional value of diets for young turkeys, but more desirable results of enzyme supplementation were noted in the SBM-based diet than in the FB-based diet.

  17. Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages

    Directory of Open Access Journals (Sweden)

    Tingting Ning

    2017-02-01

    Full Text Available Objective This study investigated the association of enzyme-producing microbes and their enzymes with starch and hemicellulose degradation during fermentation of total mixed ration (TMR silage. Methods The TMRs were prepared with soybean curd residue, alfalfa hay (ATMR or Leymus chinensis hay (LTMR, corn meal, soybean meal, vitamin-mineral supplements, and salt at a ratio of 25:40:30:4:0.5:0.5 on a dry matter basis. Laboratory-scale bag silos were randomly opened after 1, 3, 7, 14, 28, and 56 days of ensiling and subjected to analyses of fermentation quality, carbohydrates loss, microbial amylase and hemicellulase activities, succession of dominant amylolytic or hemicellulolytic microbes, and their microbial and enzymatic properties. Results Both ATMR and LTMR silages were well preserved, with low pH and high lactic acid concentrations. In addition to the substantial loss of water soluble carbohydrates, loss of starch and hemicellulose was also observed in both TMR silages with prolonged ensiling. The microbial amylase activity remained detectable throughout the ensiling in both TMR silages, whereas the microbial hemicellulase activity progressively decreased until it was inactive at day 14 post-ensiling in both TMR silages. During the early stage of fermentation, the main amylase-producing microbes were Bacillus amyloliquefaciens (B. amyloliquefaciens, B. cereus, B. licheniformis, and B. subtilis in ATMR silage and B. flexus, B. licheniformis, and Paenibacillus xylanexedens (P. xylanexedens in LTMR silage, whereas Enterococcus faecium was closely associated with starch hydrolysis at the later stage of fermentation in both TMR silages. B. amyloliquefaciens, B. licheniformis, and B. subtilis and B. licheniformis, B. pumilus, and P. xylanexedens were the main source of microbial hemicellulase during the early stage of fermentation in ATMR and LTMR silages, respectively. Conclusion The microbial amylase contributes to starch hydrolysis during the

  18. Application of enzymes in the textile industry: a review

    OpenAIRE

    Mojsov, Kiro

    2011-01-01

    The use of enzymes in textile industry is one of the most rapidly growing field in industrial enzymology. The enzymes used in the textile field are amylases, catalase, and laccase which are used to removing the starch, degrading excess hydrogen peroxide, bleaching textiles and degrading lignin. The use of enzymes in the textile chemical processing is rapidly gaining globally recognition because of their non-toxic and eco-friendly characteristics with the increasinly important requirements for...

  19. Iterative Otsu's method for OCT improved delineation in the aorta wall

    Science.gov (United States)

    Alonso, Daniel; Real, Eusebio; Val-Bernal, José F.; Revuelta, José M.; Pontón, Alejandro; Calvo Díez, Marta; Mayorga, Marta; López-Higuera, José M.; Conde, Olga M.

    2015-07-01

    Degradation of human ascending thoracic aorta has been visualized with Optical Coherence Tomography (OCT). OCT images of the vessel wall exhibit structural degradation in the media layer of the artery, being this disorder the final trigger of the pathology. The degeneration in the vessel wall appears as low-reflectivity areas due to different optical properties of acidic polysaccharides and mucopolysaccharides in contrast with typical ordered structure of smooth muscle cells, elastin and collagen fibers. An OCT dimension indicator of wall degradation can be generated upon the spatial quantification of the extension of degraded areas in a similar way as conventional histopathology. This proposed OCT marker can offer in the future a real-time clinical perception of the vessel status to help cardiovascular surgeons in vessel repair interventions. However, the delineation of degraded areas on the B-scan image from OCT is sometimes difficult due to presence of speckle noise, variable signal to noise ratio (SNR) conditions on the measurement process, etc. Degraded areas can be delimited by basic thresholding techniques taking advantage of disorders evidences in B-scan images, but this delineation is not optimum in the aorta samples and requires complex additional processing stages. This work proposes an optimized delineation of degraded areas within the aorta wall, robust to noisy environments, based on the iterative application of Otsu's thresholding method. Results improve the delineation of wall anomalies compared with the simple application of the algorithm. Achievements could be also transferred to other clinical scenarios: carotid arteries, aorto-iliac or ilio-femoral sections, intracranial, etc.

  20. Influence of protoplast fusion between two Trichoderma spp. on extracellular enzymes production and antagonistic activity.

    Science.gov (United States)

    Hassan, Mohamed M

    2014-11-02

    Biological control plays a crucial role in grapevine pathogens disease management. The cell-wall degrading enzymes chitinase, cellulase and β-glucanase have been suggested to be essential for the mycoparasitism activity of Trichoderma species against grapevine fungal pathogens. In order to develop a useful strain as a single source of these vital enzymes, it was intended to incorporate the characteristics of two parental fungicides tolerant mutants of Trichoderma belonging to the high chitinase producing species T. harzianum and the high cellulase producing species T. viride , by fusing their protoplasts. The phylogeny of the parental strains was carried out using a sequence of the 5.8S-ITS region. The BLAST of the obtained sequence identified these isolates as T. harzianum and T. viride . Protoplasts were isolated using lysing enzymes and were fused using polyethylene glycol. The fused protoplasts have been regenerated on protoplast regeneration minimal medium supplemented with two selective fungicides. Among the 40 fast growing fusants, 17 fusants were selected based on their enhanced growth on selective media for further studies. The fusant strains were growing 60%-70% faster than the parents up to third generation. All the 17 selected fusants exhibited morphological variations. Some fusant strains displayed threefold increased chitinase enzyme activity and twofold increase in β-glucanase enzyme activity compared to the parent strains. Most fusants showed powerful antagonistic activity against Macrophomin aphaseolina , Pythium ultimum and Sclerotium rolfsii pathogens. Fusant number 15 showed the highest inhibition percentage (92.8%) against M. phaseolina and P. ultimum, while fusant number 9 showed the highest inhibition percentage (98.2%) against the growth of S. rolfsii. A hyphal intertwining and degradation phenomenon was observed by scanning electron microscope. The Trichoderma antagonistic effect against pathogenic fungal mycelia was due to the

  1. Yeast Extract Promotes Cell Growth and Induces Production of Polyvinyl Alcohol-Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Min Li

    2011-01-01

    Full Text Available Polyvinyl alcohol-degrading enzymes (PVAases have a great potential in bio-desizing processes for its low environmental impact and low energy consumption. In this study, the effect of yeast extract on PVAases production was investigated. A strategy of four-point yeast extract addition was developed and applied to maximize cell growth and PVAases production. As a result, the maximum dry cell weight achieved was 1.48 g/L and the corresponding PVAases activity was 2.99 U/mL, which are 46.5% and 176.8% higher than the control, respectively. Applying this strategy in a 7 L fermentor increased PVAases activity to 3.41 U/mL. Three amino acids (glycine, serine, and tyrosine in yeast extract play a central role in the production of PVAases. These results suggest that the new strategy of four-point yeast extract addition could benefit PVAases production.

  2. Degradation of the endosperm cell walls of Lactuca sativa L., cv. grand rapids in relation to the mobilisation of proteins and the production of hydrolytic enzymes in the axis, cotyledons and endosperm.

    Science.gov (United States)

    Leung, D W; Reid, J S; Bewley, J D

    1979-01-01

    The timing of changes in total nitrogen and soluble amino nitrogen content, and in the activities of proteinase (pH 7.0), isocitrate lyase, catalase, phytase, phosphatase (pH 5.0), α-galactosidase and β-mannosidase were studied in extracts from the cotyledons, axis and endosperms of germinating and germinated light-promoted lettuce seeds. The largest amount of total nitrogen (2.7% seed dry weight) occurs within the cotyledons, as storage protein. As this decreases the total nitrogen content of the axis increases and the soluble amino nitrogen in the cotyledons and axis increases. Proteinase activity in the cotyledons increases coincidentally with the depletion of total nitrogen therein. Enzymes for phytate mobilisation and for gluconeogenesis of hydrolysed lipids increase in activity in the cotyledons as the appropriate stored reserves decline. Beta-mannosidase, an enzyme involved in the hydrolysis of oligo-mannans released by the action of endo-β-mannase on mannan reserves in the endosperm, arises within the cotyledons. This indicates that complete hydrolysis of mannans to the monomer does not occur within the endosperm. Mobilisation of all cotyledon reserves occurs after the endosperm has been degraded, providing further evidence that the endosperm is an early source of food reserves for the growing embryo.

  3. Effect of Enzyme Preparation with Activity Directed Towards Degradation of Non Starch Polysaccharides on Yellow Lupine Seed Based Diet for Young Broilers

    Directory of Open Access Journals (Sweden)

    Bogusław I Olkowski

    2010-01-01

    Full Text Available This work examined the impact of enzyme preparation with specific activity towards non starch polysaccharides on performance, morphological characteristics of gastrointestinal tract organs, microscopic evaluation of jejunal mucosa, and microbial status of ileum, caeca, and excreta in broilers fed a diet containing a high content of lupine meal. One-day-old chickens (Ross 308, mixed sex were randomly divided into control and experimental groups. Each group consisted of 36 birds, with 6 replications,and with 6 chickens per replication. The control group was fed the basal diet (consisting of maize and 40% of lupine, while the experimental treatment group was fed the basal diet supplemented with 0.06% commercial enzyme (Ronozyme VP. Chickens were fed diets in mash form for 4 weeks. Enzyme preparation significantly (P P P Enterobacteriaceae in caeca and excreta, and coliforms in excreta only (P < 0.01. Appropriate combination of enzyme preparations with activity towards degrading carbohydrates may offer a potential to reduce the deleterious impact of lupine in broilers.

  4. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Lange, Mette; Pilgaard, Bo

    2014-01-01

    The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence....... In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important...

  5. Temperature and UV light affect the activity of marine cell-free enzymes

    Directory of Open Access Journals (Sweden)

    B. Thomson

    2017-09-01

    Full Text Available Microbial extracellular enzymatic activity (EEA is the rate-limiting step in the degradation of organic matter in the oceans. These extracellular enzymes exist in two forms: cell-bound, which are attached to the microbial cell wall, and cell-free, which are completely free of the cell. Contrary to previous understanding, cell-free extracellular enzymes make up a substantial proportion of the total marine EEA. Little is known about these abundant cell-free enzymes, including what factors control their activity once they are away from their sites (cells. Experiments were run to assess how cell-free enzymes (excluding microbes respond to ultraviolet radiation (UVR and temperature manipulations, previously suggested as potential control factors for these enzymes. The experiments were done with New Zealand coastal waters and the enzymes studied were alkaline phosphatase (APase, β-glucosidase, (BGase, and leucine aminopeptidase (LAPase. Environmentally relevant UVR (i.e. in situ UVR levels measured at our site reduced cell-free enzyme activities by up to 87 % when compared to controls, likely a consequence of photodegradation. This effect of UVR on cell-free enzymes differed depending on the UVR fraction. Ambient levels of UV radiation were shown to reduce the activity of cell-free enzymes for the first time. Elevated temperatures (15 °C increased the activity of cell-free enzymes by up to 53 % when compared to controls (10 °C, likely by enhancing the catalytic activity of the enzymes. Our results suggest the importance of both UVR and temperature as control mechanisms for cell-free enzymes. Given the projected warming ocean environment and the variable UVR light regime, it is possible that there could be major changes in the cell-free EEA and in the enzymes contribution to organic matter remineralization in the future.

  6. Identification of potential cell wall component that allows Taka-amylase A adsorption in submerged cultures of Aspergillus oryzae.

    Science.gov (United States)

    Sato, Hiroki; Toyoshima, Yoshiyuki; Shintani, Takahiro; Gomi, Katsuya

    2011-12-01

    We observed that α-amylase (Taka-amylase A; TAA) activity in the culture broth disappeared in the later stage of submerged cultivation of Aspergillus oryzae. This disappearance was caused by adsorption of TAA onto the cell wall of A. oryzae and not due to protein degradation by extracellular proteolytic enzymes. To determine the cell wall component(s) that allows TAA adsorption efficiently, the cell wall was fractionated by stepwise alkali treatment and enzymatic digestion. Consequently, alkali-insoluble cell wall fractions exhibited high levels of TAA adsorption. In addition, this adsorption capacity was significantly enhanced by treatment of the alkali-insoluble fraction with β-glucanase, which resulted in the concomitant increase in the amount of chitin in the resulting fraction. In contrast, the adsorption capacity was diminished by treating the cell wall fraction with chitinase. These results suggest that the major component that allows TAA adsorption is chitin. However, both the mycelium and the cell wall demonstrated the inability to allow TAA adsorption in the early stage of cultivation, despite chitin content in the cell wall being identical in both early and late stages of cultivation. These results suggest the existence of unidentified factor(s) that could prevent the adsorption of TAA onto the cell wall. Such factor(s) is most likely removed or diminished from the cell wall following longer cultivation periods.

  7. Zymography methods for visualizing hydrolytic enzymes

    OpenAIRE

    Vandooren, Jennifer; Geurts, Nathalie; Martens, Erik; Van den Steen, Philippe E.; Opdenakker, Ghislain

    2013-01-01

    Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful., but often misinterpreted, tool. yielding information on potential. hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tis...

  8. Dissecting the polysaccharide-rich grape cell wall matrix using recombinant pectinases during winemaking.

    Science.gov (United States)

    Gao, Yu; Fangel, Jonatan U; Willats, William G T; Vivier, Melané A; Moore, John P

    2016-11-05

    The effectiveness of enzyme-mediated-maceration in red winemaking relies on the use of an optimum combination of specific enzymes. A lack of information on the relevant enzyme activities and the corresponding polysaccharide-rich berry cell wall structure is a major limitation. This study used different combinations of purified recombinant pectinases with cell wall profiling tools to follow the deconstruction process during winemaking. Multivariate data analysis of the glycan microarray (CoMPP) and gas chromatography (GC) results revealed that pectin lyase performed almost as effectively in de-pectination as certain commercial enzyme mixtures. Surprisingly the combination of endo-polygalacturonase and pectin-methyl-esterase only unraveled the cell walls without de-pectination. Datasets from the various combinations used confirmed pectin-rich and xyloglucan-rich layers within the grape pomace. These data support a proposed grape cell wall model which can serve as a foundation to evaluate testable hypotheses in future studies aimed at developing tailor-made enzymes for winemaking scenarios. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Surface binding sites (SBSs), mechanism and regulation of enzymes degrading amylopectin and α-limit dextrins

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Cockburn, Darrell; Nielsen, Jonas W.

    2013-01-01

    into barley seed α-amylase 1 (AMY1) and limit dextrinase (LD) includes i. kinetics of bi-exponential amylopectin hydrolysis by AMY1, one reaction having low Km (8 μg/mL) and high kcat (57 s-1) and the other high Km (97 μg/mL) and low kcat (23 s-1). β-Cyclodextrin (β-CD) inhibits the first reaction by binding...... to an SBS (SBS2) on domain C with Kd = 70 μM, which for the SBS2 Y380A mutant increases to 1.4 mM. SBS2 thus has a role in the fast, high-affinity component of amylopectin degradation. ii. The N-terminal domain of LD, the debranching enzyme in germinating seeds, shows distant structural similarity...

  10. Production of a biodegradable plastic-degrading enzyme from cheese whey by the phyllosphere yeast Pseudozyma antarctica GB-4(1)W.

    Science.gov (United States)

    Watanabe, Takashi; Shinozaki, Yukiko; Suzuki, Ken; Koitabashi, Motoo; Yoshida, Shigenobu; Sameshima-Yamashita, Yuka; Kuze Kitamoto, Hiroko

    2014-08-01

    Cheese whey is a by-product of cheese production and has high concentrations of lactose (about 5%) and other nutrients. Pseudozyma antarctica produces a unique cutinase-like enzyme, named PaE, that efficiently degrades biodegradable plastics. A previous study showed that a combination of 1% oil and 0.5% lactose increased cutinase-like enzyme production by another species of yeast. In this study, to produce PaE from cheese whey, we investigated the effects of soybean oil on PaE production (expressed as biodegradable plastic-degrading activity) by P. antarctica growing on lactose or cheese whey. In flask cultures, the final PaE activity was only 0.03 U/ml when soybean oil was used as the sole carbon source, but increased to 1.79 U/ml when a limited amount of soybean oil (under 0.5%) was combined with a relatively high concentration of lactose (6%). Using a 5-L jar fermentor with lactose fed-batch cultivation and periodic soybean oil addition, about 14.6 U/ml of PaE was obtained after 5 days of cultivation. When the lactose was replaced with cheese whey, PaE production was 10.8 U/ml after 3 days of cultivation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Effect of prolonged intravenous glucose and essential amino acid infusion on nitrogen balance, muscle protein degradation and ubiquitin-conjugating enzyme gene expression in calves

    Directory of Open Access Journals (Sweden)

    Scaife Jes R

    2008-02-01

    Full Text Available Abstract Background Intravenous infusions of glucose and amino acids increase both nitrogen balance and muscle accretion. We hypothesised that co-infusion of glucose (to stimulate insulin and essential amino acids (EAA would act additively to improve nitrogen balance by decreasing muscle protein degradation in association with alterations in muscle expression of components of the ubiquitin-proteasome proteolytic pathway. Methods We examined the effect of a 5 day intravenous infusions of saline, glucose, EAA and glucose + EAA, on urinary nitrogen excretion and muscle protein degradation. We carried out the study in 6 restrained calves since ruminants offer the advantage that muscle protein degradation can be assessed by excretion of 3 methyl-histidine and multiple muscle biopsies can be taken from the same animal. On the final day of infusion blood samples were taken for hormone and metabolite measurement and muscle biopsies for expression of ubiquitin, the 14-kDa E2 ubiquitin conjugating enzyme, and proteasome sub-units C2 and C8. Results On day 5 of glucose infusion, plasma glucose, insulin and IGF-1 concentrations were increased while urea nitrogen excretion and myofibrillar protein degradation was decreased. Co-infusion of glucose + EAA prevented the loss of urinary nitrogen observed with EAA infusions alone and enhanced the increase in plasma IGF-1 concentration but there was no synergistic effect of glucose + EAA on the decrease in myofibrillar protein degradation. Muscle mRNA expression of the ubiquitin conjugating enzyme, 14-kDa E2 and proteasome sub-unit C2 were significantly decreased, after glucose but not amino acid infusions, and there was no further response to the combined infusions of glucose + EAA. Conclusion Prolonged glucose infusion decreases myofibrillar protein degradation, prevents the excretion of infused EAA, and acts additively with EAA to increase plasma IGF-1 and improve net nitrogen balance. There was no evidence of

  12. Retinoblastoma protein co-purifies with proteasomal insulin-degrading enzyme: Implications for cell proliferation control

    Energy Technology Data Exchange (ETDEWEB)

    Radulescu, Razvan T., E-mail: ratura@gmx.net [Molecular Concepts Research (MCR), Muenster (Germany); Duckworth, William C. [Department of Medicine, Phoenix VA Health Care System, Phoenix, AZ (United States); Levy, Jennifer L. [Research Service, Phoenix VA Health Care System, Phoenix, AZ (United States); Fawcett, Janet, E-mail: janet.fawcett@va.gov [Research Service, Phoenix VA Health Care System, Phoenix, AZ (United States)

    2010-04-30

    Previous investigations on proteasomal preparations containing insulin-degrading enzyme (IDE; EC 3.4.24.56) have invariably yielded a co-purifying protein with a molecular weight of about 110 kDa. We have now found both in MCF-7 breast cancer and HepG2 hepatoma cells that this associated molecule is the retinoblastoma tumor suppressor protein (RB). Interestingly, the amount of RB in this protein complex seemed to be lower in HepG2 vs. MCF-7 cells, indicating a higher (cytoplasmic) protein turnover in the former vs. the latter cells. Moreover, immunofluorescence showed increased nuclear localization of RB in HepG2 vs. MCF-7 cells. Beyond these subtle differences between these distinct tumor cell types, our present study more generally suggests an interplay between RB and IDE within the proteasome that may have important growth-regulatory consequences.

  13. The activity of carbohydrate-degrading enzymes in the development of brood and newly emerged workers and drones of the Carniolan honeybee, Apis mellifera carnica.

    Science.gov (United States)

    Żółtowska, Krystyna; Lipiński, Zbigniew; Łopieńska-Biernat, Elżbieta; Farjan, Marek; Dmitryjuk, Małgorzata

    2012-01-01

    The activity of glycogen Phosphorylase and carbohydrate hydrolyzing enzymes α-amylase, glucoamylase, trehalase, and sucrase was studied in the development of the Carniolan honey bee, Apis mellifera carnica Pollman (Hymenoptera: Apidae), from newly hatched larva to freshly emerged imago of worker and drone. Phosphorolytic degradation of glycogen was significantly stronger than hydrolytic degradation in all developmental stages. Developmental profiles of hydrolase activity were similar in both sexes of brood; high activity was found in unsealed larvae, the lowest in prepupae followed by an increase in enzymatic activity. Especially intensive increases in activity occurred in the last stage of pupae and newly emerged imago. Besides α-amylase, the activities of other enzymes were higher in drone than in worker broods. Among drones, activity of glucoamylase was particularly high, ranging from around three times higher in the youngest larvae to 13 times higher in the oldest pupae. This confirms earlier suggestions about higher rates of metabolism in drone broods than in worker broods.

  14. Anaerobic Degradation of Bicyclic Monoterpenes in Castellaniella defragrans

    Directory of Open Access Journals (Sweden)

    Edinson Puentes-Cala

    2018-02-01

    Full Text Available The microbial degradation pathways of bicyclic monoterpenes contain unknown enzymes for carbon–carbon cleavages. Such enzymes may also be present in the betaproteobacterium Castellaniella defragrans, a model organism to study the anaerobic monoterpene degradation. In this study, a deletion mutant strain missing the first enzyme of the monocyclic monoterpene pathway transformed cometabolically the bicyclics sabinene, 3-carene and α-pinene into several monocyclic monoterpenes and traces of cyclic monoterpene alcohols. Proteomes of cells grown on bicyclic monoterpenes resembled the proteomes of cells grown on monocyclic monoterpenes. Many transposon mutants unable to grow on bicyclic monoterpenes contained inactivated genes of the monocyclic monoterpene pathway. These observations suggest that the monocyclic degradation pathway is used to metabolize bicyclic monoterpenes. The initial step in the degradation is a decyclization (ring-opening reaction yielding monocyclic monoterpenes, which can be considered as a reverse reaction of the olefin cyclization of polyenes.

  15. Determination of extra and intracellular content from some lytic enzymes related with carnation (Dianthus caryophyllus L. root cell wall

    Directory of Open Access Journals (Sweden)

    Sixta Tulia Martínez Peralta

    2016-11-01

    Full Text Available The presence of some enzymes related to cell wall (polygalacturonase, the pectate lyase, protease and xylanase in carnation (Dianthus caryophyllus L. roots as well as the activity levels were determined. These levels were analyzed in different cellular places: the intercellular fluid that is part of apoplast, the symplast, and the total level (apoplast and symplast in carnation roots. Two methods were tested to extract the intercellular fluid. To obtain the intracellular content (symplast and total extract (apoplast+symplast, three methods were tested, using as extracting solution  i phosphate buffer, ii phosphate buffer + PVPP,  iii before the extraction with phosphate buffer, the carnation roots were washed with acetone.  The results showed the effect of different extracting solutions in the enzymatic activities and in the protein content. A new only one step method is proposed to extract the four enzymes and make the comparative analysis of enzymatic activity.

  16. Mixed colonies of Aspergillus niger and Aspergillus oryzae cooperatively degrading wheat bran.

    Science.gov (United States)

    Benoit-Gelber, I; Gruntjes, T; Vinck, A; van Veluw, J G; Wösten, H A B; Boeren, S; Vervoort, J J M; de Vries, R P

    2017-05-01

    In both natural and man-made environments, microorganisms live in mixed populations, while in laboratory conditions monocultures are mainly used. Microbial interactions are often described as antagonistic, but can also be neutral or cooperative, and are generally associated with a metabolic change of each partner and cause a change in the pattern of produced bioactive molecules. A. niger and A. oryzae are two filamentous fungi widely used in industry to produce various enzymes (e.g. pectinases, amylases) and metabolites (e.g. citric acid). The co-cultivation of these two fungi in wheat bran showed an equal distribution of the two strains forming mixed colonies with a broad range of carbohydrate active enzymes produced. This stable mixed microbial system seems suitable for subsequent commercial processes such as enzyme production. XlnR knock-out strains for both aspergilli were used to study the influence of plant cell wall degrading enzyme production on the fitness of the mixed culture. Microscopic observation correlated with quantitative PCR and proteomic data suggest that the XlnR Knock-out strain benefit from the release of sugars by the wild type strain to support its growth. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Catabolism of methyl ter-butyl ether (MTBE): characterization of the enzymes of Mycobacterium austroafricanum IFP 2012 involved in MTBE degradation; Catabolisme du methyl tert-butyl ether (MTBE): caracterisation des enzymes impliquees dans la degradation du MTBE chez Mycobacterium austroafricanum IFP 2012

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Ferreira, N

    2005-11-15

    Methyl tert-butyl ether (MTBE) is added to gasoline to meet the octane index requirement. its solubility in water and its poor biodegradability made the use of MTBE a great environmental concern, particularly regarding aquifers. We previously isolated M austroafricanum IFP 2012 able to use MTBE as a sole source of carbon and energy and the MTBE pathway was partially characterized. In the present study, which aimed at isolating the genes involved in MTBE biodegradation in order to use them for estimation of MTBE biodegradation capacities in contaminated environment, we isolated a new M. austroafricanum strain, IFP 2015. A new degradation intermediate, the 2-methyl 1,2-propane-diol (2-M1,2-PD), the product of tert-butanol (TBA) oxidation, was identified. We also determined the enzymes induced during growth of M. austroafricanum IFP 2012 on MTBF. Then, using the tools of protein analysis and of molecular biology, we isolated and cloned the mpd genes cluster in the plasmid pCL4D. Heterologous expression of the recombinant plasmid in M smegmatis tmc2 155, showed the involvement of an 2-M1,2-PD dehydrogenase (MpdB) and a hydroxy-iso-butyr-aldehyde dehydrogenase (MpdC), encoded by mpdB and mpdC, respectively. Both enzymes were responsible for the conversion of 2-M 1,2-PD to hydroxy-isobutyric acid (HIBA). A further survey of different M austroafricanum strains, including IFP 2012, IFP 2015 and JOBS (ex-M vaccae) showed the link between the ability to grow on C{sub 2} to C{sub 16} n-alkanes and the MTBE and TBA degradation capacities. The alkB gene was partially sequenced in all these strains. Expression of alkB was demonstrated in M. austroafricanum IFP 2012 after growth on propane, hexane, hexadecane and TBA. Finally, we identified 2-propanol as the intermediate of HIBA degradation. The gene encoding the 2-propanol:p-N,N'-dimethyl-4-nitroso-aniline (NDMA) oxidoreductase was detected M austroafricanum IFP 2012. (author)

  18. Catabolism of methyl ter-butyl ether (MTBE): characterization of the enzymes of Mycobacterium austroafricanum IFP 2012 involved in MTBE degradation; Catabolisme du methyl tert-butyl ether (MTBE): caracterisation des enzymes impliquees dans la degradation du MTBE chez Mycobacterium austroafricanum IFP 2012

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Ferreira, N.

    2005-11-15

    Methyl tert-butyl ether (MTBE) is added to gasoline to meet the octane index requirement. its solubility in water and its poor biodegradability made the use of MTBE a great environmental concern, particularly regarding aquifers. We previously isolated M austroafricanum IFP 2012 able to use MTBE as a sole source of carbon and energy and the MTBE pathway was partially characterized. In the present study, which aimed at isolating the genes involved in MTBE biodegradation in order to use them for estimation of MTBE biodegradation capacities in contaminated environment, we isolated a new M. austroafricanum strain, IFP 2015. A new degradation intermediate, the 2-methyl 1,2-propane-diol (2-M1,2-PD), the product of tert-butanol (TBA) oxidation, was identified. We also determined the enzymes induced during growth of M. austroafricanum IFP 2012 on MTBF. Then, using the tools of protein analysis and of molecular biology, we isolated and cloned the mpd genes cluster in the plasmid pCL4D. Heterologous expression of the recombinant plasmid in M smegmatis tmc2 155, showed the involvement of an 2-M1,2-PD dehydrogenase (MpdB) and a hydroxy-iso-butyr-aldehyde dehydrogenase (MpdC), encoded by mpdB and mpdC, respectively. Both enzymes were responsible for the conversion of 2-M 1,2-PD to hydroxy-isobutyric acid (HIBA). A further survey of different M austroafricanum strains, including IFP 2012, IFP 2015 and JOBS (ex-M vaccae) showed the link between the ability to grow on C{sub 2} to C{sub 16} n-alkanes and the MTBE and TBA degradation capacities. The alkB gene was partially sequenced in all these strains. Expression of alkB was demonstrated in M. austroafricanum IFP 2012 after growth on propane, hexane, hexadecane and TBA. Finally, we identified 2-propanol as the intermediate of HIBA degradation. The gene encoding the 2-propanol:p-N,N'-dimethyl-4-nitroso-aniline (NDMA) oxidoreductase was detected M austroafricanum IFP 2012. (author)

  19. Double Walled Carbon Nanotube/TiO2 Nanocomposites for Photocatalytic Dye Degradation

    Directory of Open Access Journals (Sweden)

    Alex T. Kuvarega

    2016-01-01

    Full Text Available Double walled carbon nanotube (DWCNT/N,Pd codoped TiO2 nanocomposites were prepared by a modified sol-gel method and characterised using FTIR, Raman spectroscopy, TGA, DRUV-Vis, XRD, SEM, and TEM analyses. TEM images showed unique pearl-bead-necklace structured morphologies at higher DWCNT ratios. The nanocomposite materials showed characteristic anatase TiO2 Raman bands in addition to the carbon nanotube D and G bands. Red shifts in the UV-Vis absorption edge were observed at low DWCNT percentages. The photocatalytic activity of DWCNT/N,Pd TiO2 nanocomposite was evaluated by the photocatalytic degradation of eosin yellow under simulated solar light irradiation and the 2% DWCNT/N,Pd TiO2 nanocomposite showed the highest photoactivity while the 20% DWCNT/N,Pd TiO2 hybrid was the least efficient. The photocatalytic enhancement was attributed to the synergistic effects of the supporting and electron channeling role of the DWCNTs as well as the electron trapping effects of the platinum group metal. These phenomena favour the separation of the photogenerated electron-hole pairs, reducing their recombination rate, which consequently lead to significantly enhanced photoactivity.

  20. The CAZyome of Phytophthora spp.: A comprehensive analysis of the gene complement coding for carbohydrate-active enzymes in species of the genus Phytophthora

    Directory of Open Access Journals (Sweden)

    Laird Emma W

    2010-09-01

    Full Text Available Abstract Background Enzymes involved in carbohydrate metabolism include Carbohydrate esterases (CE, Glycoside hydrolases (GH, Glycosyl transferases (GT, and Polysaccharide lyases (PL, commonly referred to as carbohydrate-active enzymes (CAZymes. The CE, GH, and PL superfamilies are also known as cell wall degrading enzymes (CWDE due to their role in the disintegration of the plant cell wall by bacterial and fungal pathogens. In Phytophthora infestans, penetration of the plant cells occurs through a specialized hyphal structure called appressorium; however, it is likely that members of the genus Phytophthora also use CWDE for invasive growth because hyphal forces are below the level of tensile strength exhibited by the plant cell wall. Because information regarding the frequency and distribution of CAZyme coding genes in Phytophthora is currently unknown, we have scanned the genomes of P. infestans, P. sojae, and P. ramorum for the presence of CAZyme-coding genes using a homology-based approach and compared the gene collinearity in the three genomes. In addition, we have tested the expression of several genes coding for CE in cultures grown in vitro. Results We have found that P. infestans, P. sojae and P. ramorum contain a total of 435, 379, and 310 CAZy homologs; in each genome, most homologs belong to the GH superfamily. Most GH and PL homologs code for enzymes that hydrolyze substances present in the pectin layer forming the middle lamella of the plant cells. In addition, a significant number of CE homologs catalyzing the deacetylation of compounds characteristic of the plant cell cuticle were found. In general, a high degree of gene location conservation was observed, as indicated by the presence of sequential orthologous pairs in the three genomes. Such collinearity was frequently observed among members of the GH superfamily. On the other hand, the CE and PL superfamilies showed less collinearity for some of their putative members

  1. Autodigestion: Proteolytic Degradation and Multiple Organ Failure in Shock

    Science.gov (United States)

    Altshuler, Angelina E.; Kistler, Erik B.; Schmid-Schönbein, Geert W.

    2015-01-01

    There is currently no effective treatment for multiorgan failure following shock other than alleviation supportive care. A better understanding of the pathogenesis of these sequelae to shock is required. The intestine plays a central role in multiorgan failure. It was previously suggested that bacteria and their toxins are responsible for the organ failure seen in circulatory shock, but clinical trials in septic patients have not confirmed this hypothesis. Instead, we review here evidence that the digestive enzymes, synthesized in the pancreas and discharged into the small intestine as requirement for normal digestion, may play a role in multi-organ failure. These powerful enzymes are non-specific, highly concentrated and fully activated in the lumen of the intestine. During normal digestion they are compartmentalized in the lumen of the intestine by the mucosal epithelial barrier. However, if this barrier becomes permeable, e.g. in an ischemic state, the digestive enzymes escape into the wall of the intestine. They digest tissues in the mucosa and generate small molecular weight cytotoxic fragments such as unbound free fatty acids. Digestive enzymes may also escape into the systemic circulation and activate other degrading proteases. These proteases have the ability to clip the ectodomain of surface receptors and compromise their function; for example cleaving the insulin receptor causing insulin resistance. The combination of digestive enzymes and cytotoxic fragments leaking into the central circulation causes cell and organ dysfunction, and ultimately may lead to complete organ failure and death. We summarize current evidence suggesting that enteral blockade of digestive enzymes inside the lumen of the intestine may serve to reduce acute cell and organ damage and improve survival in experimental shock. PMID:26717111

  2. C allele of the rs2209972 single nucleotide polymorphism of the insulin degrading enzyme gene and Alzheimer's disease in type 2 diabetes, a case control study.

    Science.gov (United States)

    Gutiérrez-Hermosillo, Hugo; Díaz De León-González, Enrique; Palacios-Corona, Rebeca; Cedillo-Rodríguez, Javier Armando; Camacho-Luis, Abelardo; Reyes-Romero, Miguel Arturo; Medina-Chávez, Juan Humberto; Blandón, Pedro A

    2015-02-20

    In the last few decades we have witnessed an interesting transformation of the population pyramids throughout the world. As the population's life expectancy increases, there are more chronic diseases such as diabetes mellitus and dementias, and both of them have shown an association. To determine the association between Alzheimer's disease in diabetic patients and the insulin degrading enzyme in outpatients of a second level Hospital in Monterrey, Mexico. This was a case control study in which we included outpatients from the Geriatrics Clinic of a Hospital in Northeastern Mexico. Cases were patients with a Mini Mental Score Exam (MMSE) below 24 and DSM-IV criteria for Dementia. Controls were patients who had MMSE scores greater than 24. Data from 97 patients were analyzed. Regarding physical examination and the results of laboratory tests, there were no differences between the two groups (p>0.05). A 98% prevalence of the insulin degrading enzyme was documented in the sample studied. We found an association between a homozygous status for the CC genotype and Dementia with an estimated Odds Ratio (OR) of 2.5 (CI 95% 1.6-3.3) on the bivariate test, while, on the multivariate analysis, the OR was estimated 3.3 (CI 95% 1.3-8.2). Evidence shows that cognitive impairment is more frequent among those exposed to the C allele of the rs2209972 SNP of the insulin degrading enzyme gene. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  3. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs.

    Science.gov (United States)

    Jabłońska-Trypuć, Agata; Matejczyk, Marzena; Rosochacki, Stanisław

    2016-01-01

    The main group of enzymes responsible for the collagen and other protein degradation in extracellular matrix (ECM) are matrix metalloproteinases (MMPs). Collagen is the main structural component of connective tissue and its degradation is a very important process in the development, morphogenesis, tissue remodeling, and repair. Typical structure of MMPs consists of several distinct domains. MMP family can be divided into six groups: collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other non-classified MMPs. MMPs and their inhibitors have multiple biological functions in all stages of cancer development: from initiation to outgrowth of clinically relevant metastases and likewise in apoptosis and angiogenesis. MMPs and their inhibitors are extensively examined as potential anticancer drugs. MMP inhibitors can be divided into two main groups: synthetic and natural inhibitors. Selected synthetic inhibitors are in clinical trials on humans, e.g. synthetic peptides, non-peptidic molecules, chemically modified tetracyclines, and bisphosphonates. Natural MMP inhibitors are mainly isoflavonoids and shark cartilage.

  4. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger.

    Science.gov (United States)

    van Munster, Jolanda M; Daly, Paul; Delmas, Stéphane; Pullan, Steven T; Blythe, Martin J; Malla, Sunir; Kokolski, Matthew; Noltorp, Emelie C M; Wennberg, Kristin; Fetherston, Richard; Beniston, Richard; Yu, Xiaolan; Dupree, Paul; Archer, David B

    2014-11-01

    Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6h of exposure to wheat straw was very different from the response at 24h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24h of exposure to wheat straw, were also induced after 6h exposure. Importantly, over a third of the genes induced after 6h of exposure to wheat straw were also induced during 6h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Behaviour of Masonry Walls under Horizontal Shear in Mining Areas

    Science.gov (United States)

    Kadela, Marta; Bartoszek, Marek; Fedorowicz, Jan

    2017-12-01

    The paper discusses behaviour of masonry walls constructed with small-sized elements under the effects of mining activity. It presents some mechanisms of damage occurring in such structures, its forms in real life and the behaviour of large fragments of masonry walls subjected to specific loads in FEM computational models. It offers a constitutive material model, which enables numerical analyses and monitoring of the behaviour of numerical models as regards elastic-plastic performance of the material, with consideration of its degradation. Results from the numerical analyses are discussed for isolated fragments of the wall subjected to horizontal shear, with consideration of degradation, impact of imposed vertical load as well as the effect of weakening of the wall, which was achieved by introducing openings in it, on the performance and deformation of the wall.

  6. Hydrolytic And Enzymatic Degradation Characteristics Of Biodegradable Aliphatic Polysters

    Institute of Scientific and Technical Information of China (English)

    LI Suming

    2004-01-01

    Aliphatic polyesters, especially those derived from lactide (PLA), glycolide (PGA) and ε-caprolactone (PCL), are being investigated worldwide for applications in the field of surgery (suture material, devices for internal bone fracture fixation), pharmacology (sustained drug delivery systems), and tissue engineering (scaffold for tissue regeneration) [1,2]. This is mainly due to their good biocompatibility and variable degradability. These polymers present also a growing interest for environmental applications in agriculture (mulch films) and in our everyday life (packaging material)as the development of biodegradable materials is now considered as one of the potential solutions to the problem of plastic waste management.For both biomedical and environmental applications, it is of major importance to understand the degradation characteristics of the polymers. The hydrolytic degradation of aliphatic polyesters has been investigated by many research groups. Our group has shown that degradation of PLAGA large size devices is faster inside than at the surface. This heterogeneous degradation is due to the autocatalytic effect of carboxylic endgroups formed by ester bond cleavage. Moreover,degradation-induced morphological and compositional changes were also elucidated. In the case of PCL, the hydrolytic degradation is very slow due to its hydrophobicity and crystallinity.The enzymatic degradation of these polymers has been investigated by a number of authors. A specific enzyme, proteinase K, has been shown to have significant effects on PLA degradation. This enzyme preferentially degrade L-lactate units as opposed to D-lactate ones, amorphous zones as opposed to crystalline ones [3]. The enzymatic degradation of PCL polymers has also been investigated. A number of lipase-type enzymes were found to significantly accelerate the degradation of PCL despite its high crystallinity. In the case of PLA/PCL blends, the two components exhibited well separated crystalline domains

  7. Isolation and characterization of a tomato non-specific lipid transfer protein involved in polygalacturonase-mediated pectin degradation.

    Science.gov (United States)

    Tomassen, Monic M M; Barrett, Diane M; van der Valk, Henry C P M; Woltering, Ernst J

    2007-01-01

    An important aspect of the ripening process of tomato fruit is softening. Softening is accompanied by hydrolysis of the pectin in the cell wall by pectinases, causing loss of cell adhesion in the middle lamella. One of the most significant pectin-degrading enzymes is polygalacturonase (PG). Previous reports have shown that PG in tomato may exist in different forms (PG1, PG2a, PG2b, and PGx) commonly referred to as PG isoenzymes. The gene product PG2 is differentially glycosylated and is thought to associate with other proteins to form PG1 and PGx. This association is thought to modulate its pectin-degrading activity in planta. An 8 kDa protein that is part of the tomato PG1 multiprotein complex has been isolated, purified, and functionally characterized. This protein, designated 'activator' (ACT), belongs to the class of non-specific lipid transfer proteins (nsLTPs). ACT is capable of 'converting' the gene product PG2 into a more active and heat-stable form, which increases PG-mediated pectin degradation in vitro and stimulates PG-mediated tissue breakdown in planta. This finding suggests a new, not previously identified, function for nsLTPs in the modification of hydrolytic enzyme activity. It is proposed that ACT plays a role in the modulation of PG activity during tomato fruit softening.

  8. Insights into lignin degradation and its potential industrial applications.

    Science.gov (United States)

    Abdel-Hamid, Ahmed M; Solbiati, Jose O; Cann, Isaac K O

    2013-01-01

    Lignocellulose is an abundant biomass that provides an alternative source for the production of renewable fuels and chemicals. The depolymerization of the carbohydrate polymers in lignocellulosic biomass is hindered by lignin, which is recalcitrant to chemical and biological degradation due to its complex chemical structure and linkage heterogeneity. The role of fungi in delignification due to the production of extracellular oxidative enzymes has been studied more extensively than that of bacteria. The two major groups of enzymes that are involved in lignin degradation are heme peroxidases and laccases. Lignin-degrading peroxidases include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). LiP, MnP, and VP are class II extracellular fungal peroxidases that belong to the plant and microbial peroxidases superfamily. LiPs are strong oxidants with high-redox potential that oxidize the major non-phenolic structures of lignin. MnP is an Mn-dependent enzyme that catalyzes the oxidation of various phenolic substrates but is not capable of oxidizing the more recalcitrant non-phenolic lignin. VP enzymes combine the catalytic activities of both MnP and LiP and are able to oxidize Mn(2+) like MnP, and non-phenolic compounds like LiP. DyPs occur in both fungi and bacteria and are members of a new superfamily of heme peroxidases called DyPs. DyP enzymes oxidize high-redox potential anthraquinone dyes and were recently reported to oxidize lignin model compounds. The second major group of lignin-degrading enzymes, laccases, are found in plants, fungi, and bacteria and belong to the multicopper oxidase superfamily. They catalyze a one-electron oxidation with the concomitant four-electron reduction of molecular oxygen to water. Fungal laccases can oxidize phenolic lignin model compounds and have higher redox potential than bacterial laccases. In the presence of redox mediators, fungal laccases can oxidize non

  9. Nitrate-Dependent Degradation of Acetone by Alicycliphilus and Paracoccus Strains and Comparison of Acetone Carboxylase Enzymes

    Science.gov (United States)

    Dullius, Carlos Henrique; Chen, Ching-Yuan; Schink, Bernhard

    2011-01-01

    A novel acetone-degrading, nitrate-reducing bacterium, strain KN Bun08, was isolated from an enrichment culture with butanone and nitrate as the sole sources of carbon and energy. The cells were motile short rods, 0.5 to 1 by 1 to 2 μm in size, which gave Gram-positive staining results in the exponential growth phase and Gram-negative staining results in the stationary-growth phase. Based on 16S rRNA gene sequence analysis, the isolate was assigned to the genus Alicycliphilus. Besides butanone and acetone, the strain used numerous fatty acids as substrates. An ATP-dependent acetone-carboxylating enzyme was enriched from cell extracts of this bacterium and of Alicycliphilus denitrificans K601T by two subsequent DEAE Sepharose column procedures. For comparison, acetone carboxylases were enriched from two additional nitrate-reducing bacterial species, Paracoccus denitrificans and P. pantotrophus. The products of the carboxylase reaction were acetoacetate and AMP rather than ADP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of cell extracts and of the various enzyme preparations revealed bands corresponding to molecular masses of 85, 78, and 20 kDa, suggesting similarities to the acetone carboxylase enzymes described in detail for the aerobic bacterium Xanthobacter autotrophicus strain Py2 (85.3, 78.3, and 19.6 kDa) and the phototrophic bacterium Rhodobacter capsulatus. Protein bands were excised and compared by mass spectrometry with those of acetone carboxylases of aerobic bacteria. The results document the finding that the nitrate-reducing bacteria studied here use acetone-carboxylating enzymes similar to those of aerobic and phototrophic bacteria. PMID:21841031

  10. Degradation of polyethylene by Trichoderma harzianum--SEM, FTIR, and NMR analyses.

    Science.gov (United States)

    Sowmya, H V; Ramalingappa; Krishnappa, M; Thippeswamy, B

    2014-10-01

    Trichoderma harzianum was isolated from local dumpsites of Shivamogga District for use in the biodegradation of polyethylene. Soil sample of that dumpsite was used for isolation of T. harzianum. Degradation was carried out using autoclaved, UV-treated, and surface-sterilized polyethylene. Degradation was monitored by observing weight loss and changes in physical structure by scanning electron microscopy, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. T. harzianum was able to degrade treated polyethylene (40%) more efficiently than autoclaved (23%) and surface-sterilized polyethylene (13%). Enzymes responsible for polyethylene degradation were screened from T. harzianum and were identified as laccase and manganese peroxidase. These enzymes were produced in large amount, and their activity was calculated using spectrophotometric method and crude extraction of enzymes was carried out. Molecular weight of laccase was determined as 88 kDa and that of manganese peroxidase was 55 kDa. The capacity of crude enzymes to degrade polyethylene was also determined. By observing these results, we can conclude that this organism may act as solution for the problem caused by polyethylene in nature.

  11. Model for Stress-induced Protein Degradation in Lemna minor1

    Science.gov (United States)

    Cooke, Robert J.; Roberts, Keith; Davies, David D.

    1980-01-01

    Transfer of Lemna minor fronds to adverse or stress conditions produces a large increase in the rate of protein degradation. Cycloheximide partially inhibits stress-induced protein degradation and also partially inhibits the protein degradation which occurs in the absence of stress. The increased protein degradation does not appear to be due to an increase in activity of soluble proteolytic enzymes. Biochemical evidence indicates that stress, perhaps acting via hormones, affects the permeability of certain membranes, particularly the tonoplast. A general model for stress-induced protein degradation is presented in which changes in membrane properties allow vacuolar proteolytic enzymes increased access to cytoplasmic proteins. PMID:16661588

  12. Enzymes and Genes Involved in Aerobic Alkane Degradation

    Directory of Open Access Journals (Sweden)

    Zongze eShao

    2013-05-01

    Full Text Available Alkanes are major constituents of crude oil. They are also present at low concentrations in diverse non-contaminated because many living organisms produce them as chemo-attractants or as protecting agents against water loss. Alkane degradation is a widespread phenomenon in nature. The numerous microorganisms, both prokaryotic and eukaryotic, capable of utilizing alkanes as a carbon and energy source, have been isolated and characterized. This review summarizes the current knowledge of how bacteria metabolize alkanes aerobically, with a particular emphasis on the oxidation of long-chain alkanes, including factors that are responsible for chemotaxis to alkanes , transport across cell membrane of alkanes , the regulation of alkane degradation gene and initial oxidation.

  13. Assessment of dry-stone terrace wall degradation with a 3D approach

    Science.gov (United States)

    Djuma, Hakan; Camera, Corrado; Faka, Marina; Bruggeman, Adriana; Hermon, Sorin

    2016-04-01

    In the Mediterranean basin, terracing is a common element of agricultural lands. Terraces retained by dry-stone walls are used to conserve arable soil, delay erosion processes and retain rainfall runoff. Currently, agricultural land abandonment is widespread in the Mediterranean region leading to terrace wall failure due to lack of maintenance and consequently an increase in soil erosion. The objective of this study is to test the applicability of digital 3D documentation on mountainous agricultural areas for assessing changes in terrace wall geometry, including terrace wall failures and associated soil erosion. The study area is located at 800-1100 m above sea level, in the Ophiolite complex of the Troodos Mountains in Cyprus. Average annual precipitation is 750 mm. Two sites with dry-stone terraces were selected for this study. The first site had a sequence of three terrace walls that were surveyed. The uppermost terrace wall was collapsed at several locations; the middle at few locations; and the lowest was still intact. Three fieldwork campaigns were conducted at this site: during the dry season (initial conditions), the middle and end of the wet season. The second site had one terrace wall that was almost completely collapsed. This terrace was restored during a communal terrace rehabilitation event. Two fieldwork campaigns were conducted for this terrace: before and after the terrace wall restoration. Terrace walls were documented with a set of digital images, and transformed into a 3D point cloud (using web-based services and commercial software - Autodesk 123D catch and Menci Software uMap, respectively). A set of points, registered with the total station and geo-referenced with a GPS, enabled the scaling of the 3D model and aligning the terrace walls within the same reference system. The density (distance between each point) of the reconstructed point clouds is 0.005 m by Umap and 0.025 m by 123D Catch. On the first site, the model analysis identified wall

  14. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  15. Genome-wide analysis of cell wall-related genes in Tuber melanosporum.

    Science.gov (United States)

    Balestrini, Raffaella; Sillo, Fabiano; Kohler, Annegret; Schneider, Georg; Faccio, Antonella; Tisserant, Emilie; Martin, Francis; Bonfante, Paola

    2012-06-01

    A genome-wide inventory of proteins involved in cell wall synthesis and remodeling has been obtained by taking advantage of the recently released genome sequence of the ectomycorrhizal Tuber melanosporum black truffle. Genes that encode cell wall biosynthetic enzymes, enzymes involved in cell wall polysaccharide synthesis or modification, GPI-anchored proteins and other cell wall proteins were identified in the black truffle genome. As a second step, array data were validated and the symbiotic stage was chosen as the main focus. Quantitative RT-PCR experiments were performed on 29 selected genes to verify their expression during ectomycorrhizal formation. The results confirmed the array data, and this suggests that cell wall-related genes are required for morphogenetic transition from mycelium growth to the ectomycorrhizal branched hyphae. Labeling experiments were also performed on T. melanosporum mycelium and ectomycorrhizae to localize cell wall components.

  16. Inhibitors of the bacterial cell wall biosynthesis enzyme MurC.

    Science.gov (United States)

    Reck, F; Marmor, S; Fisher, S; Wuonola, M A

    2001-06-04

    A series of phosphinate transition-state analogues of the L-alanine adding enzyme (MurC) of bacterial peptidoglycan biosynthesis was prepared and tested as inhibitors of the Escherichia coli enzyme. Compound 4 was identified as a potent inhibitor of MurC from Escherichia coli with an IC(50) of 49nM.

  17. A thermo-degradable hydrogel with light-tunable degradation and drug release.

    Science.gov (United States)

    Hu, Jingjing; Chen, Yihua; Li, Yunqi; Zhou, Zhengjie; Cheng, Yiyun

    2017-01-01

    The development of thermo-degradable hydrogels is of great importance in drug delivery. However, it still remains a huge challenge to prepare thermo-degradable hydrogels with inherent degradation, reproducible, repeated and tunable dosing. Here, we reported a thermo-degradable hydrogel that is rapidly degraded above 44 °C by a facile chemistry. Besides thermo-degradability, the hydrogel also undergoes rapid photolysis with ultraviolet light. By embedding photothermal nanoparticles or upconversion nanoparticles into the gel, it can release the entrapped cargoes such as dyes, enzymes and anticancer drugs in an on-demand and dose-tunable fashion upon near-infrared light exposure. The smart hydrogel works well both in vitro and in vivo without involving sophisticated syntheses, and is well suited for clinical cancer therapy due to the high transparency and non-invasiveness features of near-infrared light. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Determination of co-metabolism for 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) degradation with enzymes from Trametes versicolor U97.

    Science.gov (United States)

    Sari, Ajeng Arum; Tachibana, Sanro; Itoh, Kazutaka

    2012-08-01

    Trametes versicolor U97 isolated from nature degraded 73% of the 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) in a malt extract liquid medium after a 40-d incubation period. This paper presents a kinetic study of microbial growth using the Monod equation. T. versicolor U97 degraded DDT during an exponential growth phase, using glucose as a carbon source for growth. The growth of T. versicolor U97 was not affected by DDT. DDT was degraded by T. versicolor U97 only when the secondary metabolism coincided with the production of several enzymes. Furthermore, modeling of several inhibitors using the partial least squares function in Minitab 15, revealed lignin peroxidase (98.7 U/l) plays a role in the degradation of DDT. T. versicolor U97 produced several metabolites included a single-ring aromatic compound, 4-chlorobenzoic acid. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Degradation of microbial polyesters.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P

    2004-08-01

    Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.

  20. Dissecting the polysaccharide-rich grape cell wall matrix using recombinant pectinases during winemaking

    DEFF Research Database (Denmark)

    Gao, Yu; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2016-01-01

    different combinations of purified recombinant pectinases with cell wall profiling tools to follow the deconstruction process during winemaking. Multivariate data analysis of the glycan microarray (CoMPP) and gas chromatography (GC) results revealed that pectin lyase performed almost as effectively in de......The effectiveness of enzyme-mediated-maceration in red winemaking relies on the use of an optimum combination of specific enzymes. A lack of information on the relevant enzyme activities and the corresponding polysaccharide-rich berry cell wall structure is a major limitation. This study used......-pectination as certain commercial enzyme mixtures. Surprisingly the combination of endo-polygalacturonase and pectin-methyl-esterase only unraveled the cell walls without de-pectination. Datasets from the various combinations used confirmed pectin-rich and xyloglucan-rich layers within the grape pomace. These data...

  1. [Potentialization of antibiotics by lytic enzymes].

    Science.gov (United States)

    Brisou, J; Babin, P; Babin, R

    1975-01-01

    Few lytic enzymes, specially papaine and lysozyme, acting on the membrane and cell wall structures facilitate effects of bacitracine, streptomycine and other antibiotics. Streptomycino resistant strains became sensibles to this antibiotic after contact with papaine and lysozyme. The results of tests in physiological suspensions concern only the lytic activity of enzymes. The results on nutrient medium concern together lytic, and antibiotic activities.

  2. Accessory enzymes from Aspergillus involved in xylan and pectin degradation

    NARCIS (Netherlands)

    Vries, de R.P.

    1999-01-01

    The xylanolytic and pectinolytic enzyme systems from Aspergillus have been the subject of study for many years. Although the main chain cleaving enzymes and their encoding genes have been studied in detail, little information is available about most of the accessory

  3. Comparative analysis of carbohydrate active enzymes in Clostridium termitidis CT1112 reveals complex carbohydrate degradation ability.

    Directory of Open Access Journals (Sweden)

    Riffat I Munir

    Full Text Available Clostridium termitidis strain CT1112 is an anaerobic, gram positive, mesophilic, cellulolytic bacillus isolated from the gut of the wood-feeding termite, Nasutitermes lujae. It produces biofuels such as hydrogen and ethanol from cellulose, cellobiose, xylan, xylose, glucose, and other sugars, and therefore could be used for biofuel production from biomass through consolidated bioprocessing. The first step in the production of biofuel from biomass by microorganisms is the hydrolysis of complex carbohydrates present in biomass. This is achieved through the presence of a repertoire of secreted or complexed carbohydrate active enzymes (CAZymes, sometimes organized in an extracellular organelle called cellulosome. To assess the ability and understand the mechanism of polysaccharide hydrolysis in C. termitidis, the recently sequenced strain CT1112 of C. termitidis was analyzed for both CAZymes and cellulosomal components, and compared to other cellulolytic bacteria. A total of 355 CAZyme sequences were identified in C. termitidis, significantly higher than other Clostridial species. Of these, high numbers of glycoside hydrolases (199 and carbohydrate binding modules (95 were identified. The presence of a variety of CAZymes involved with polysaccharide utilization/degradation ability suggests hydrolysis potential for a wide range of polysaccharides. In addition, dockerin-bearing enzymes, cohesion domains and a cellulosomal gene cluster were identified, indicating the presence of potential cellulosome assembly.

  4. Effects of thermo-resistant non-starch polysaccharide degrading multi-enzyme on growth performance, meat quality, relative weights of body organs and blood profile in broiler chickens.

    Science.gov (United States)

    Mohammadi Gheisar, M; Hosseindoust, A; Kim, I H

    2016-06-01

    This research was conducted to study the performance and carcass parameters of broiler chickens fed diets supplemented with heat-treated non-starch polysaccharide degrading enzyme. A total of 432 one-day old Ross 308 broiler chickens were allocated to five treatments: (i) CON (basal diet), (ii) E1: CON + 0.05% multi-enzyme, (iii) E2: CON + 0.1% multi-enzyme, (iv) E3: CON + 0.05% thermo-resistant multi-enzyme and (v) E4: CON + 0.1% thermo-resistant multi-enzyme, each treatment consisted of six replications and 12 chickens in each replication. The chickens were housed in three floor battery cages during 28-day experimental period. On days 1-7, gain in body weight (BWG) improved by feeding the diets supplemented with thermo-resistant multi-enzyme. On days 7-21 and 1-28, chickens fed the diets containing thermo-resistant multi-enzyme showed improved (p thermo-resistant multi-enzyme affected the percentage of drip loss on d 1 (p thermo-resistant multi-enzyme did not affect the relative weights of organs but compared to CON group, relative weight of breast muscle increased and abdominal fat decreased (p thermo-resistant multi-enzyme showed higher (p thermo-resistant multi-enzyme improved performance of broiler chickens. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  5. Rather than by direct acquisition via lateral gene transfer, GHF5 cellulases were passed on from early Pratylenchidae to root-knot and cyst nematodes

    NARCIS (Netherlands)

    Rybarczyk-Mydlowska, K.D.; Maboreke, H.R.; Megen, van H.H.B.; Elsen, van den S.J.J.; Mooijman, P.J.W.; Smant, G.; Bakker, J.; Helder, J.

    2012-01-01

    Background: Plant parasitic nematodes are unusual Metazoans as they are equipped with genes that allow for symbiont-independent degradation of plant cell walls. Among the cell wall-degrading enzymes, glycoside hydrolase family 5 (GHF5) cellulases are relatively well characterized, especially for

  6. Enzyme-substrate binding landscapes in the process of nitrile biodegradation mediated by nitrile hydratase and amidase.

    Science.gov (United States)

    Zhang, Yu; Zeng, Zhuotong; Zeng, Guangming; Liu, Xuanming; Chen, Ming; Liu, Lifeng; Liu, Zhifeng; Xie, Gengxin

    2013-08-01

    The continuing discharge of nitriles in various industrial processes has caused serious environmental consequences of nitrile pollution. Microorganisms possess several nitrile-degrading pathways by direct interactions of nitriles with nitrile-degrading enzymes. However, these interactions are largely unknown and difficult to experimentally determine but important for interpretation of nitrile metabolisms and design of nitrile-degrading enzymes with better nitrile-converting activity. Here, we undertook a molecular modeling study of enzyme-substrate binding modes in the bi-enzyme pathway for degradation of nitrile to acid. Docking results showed that the top substrates having favorable interactions with nitrile hydratase from Rhodococcus erythropolis AJ270 (ReNHase), nitrile hydratase from Pseudonocardia thermophila JCM 3095 (PtNHase), and amidase from Rhodococcus sp. N-771 (RhAmidase) were benzonitrile, 3-cyanopyridine, and L-methioninamide, respectively. We further analyzed the interactional profiles of these top poses with corresponding enzymes, showing that specific residues within the enzyme's binding pockets formed diverse contacts with substrates. This information on binding landscapes and interactional profiles is of great importance for the design of nitrile-degrading enzyme mutants with better oxidation activity toward nitriles or amides in the process of pollutant treatments.

  7. Intracranial arterial aneurysm vasculopathies: targeting the outer vessel wall

    International Nuclear Information System (INIS)

    Krings, Timo; Piske, Ronie L.; Lasjaunias, Pierre L.

    2005-01-01

    The pathogenesis of intracranial arterial aneurysms (AA) remains unclear, despite their clinical importance. An improved understanding of this disease is important in choosing therapeutic options. In addition to the ''classical'' berry-type aneurysm, there are various other types of intracranial AA such as infectious, dissecting or giant, partially-thrombosed aneurysms. From the clinician's perspective, the hypothesis that some of these intracranial AA might be due to abluminal factors has been proposed for several years. Indeed, this hypothesis and the empirical use of anti-inflammatory drugs in giant intracranial aneurysms have been confirmed by recent studies reporting that an enzyme involved in the inflammatory cascade (5-lipoxygenase or 5-LO) promotes the pathogenesis of specific aneurysms in humans. 5-LO generates different forms of leukotrienes which are potent mediators of inflammation. Adventitial inflammation leads to a weakening of the media from the abluminal part of the vessel wall due to the release of proinflammatory factors that invade the media, thereby degrading the extracellular matrix, the elastic lamina of the vascular wall, and, finally, the integrity of the vessel lumen. This in turn results in a dilation of the vessel and aneurysm formation. Moreover, neoangiogenesis of vasa vasorum is found in close proximity to 5-LO activated macrophages. In addition to this biological cascade, we argue that repeated subadventitial haemorrhages from the new vasa vasorum play an important role in aneurysm pathogenesis, due to a progressive increase in size mediated by the apposition of new layers of intramural haematoma within the vessel wall. Intracranial giant AA can therefore be regarded as a proliferative disease of the vessel wall induced by extravascular activity. (orig.)

  8. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, Irina I., E-mail: irina.vlasova@yahoo.com [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Vakhrusheva, Tatyana V. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Sokolov, Alexey V.; Kostevich, Valeria A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Research Institute for Experimental Medicine, Russian Academy of Medical Science, Saint Petersburg (Russian Federation); Gusev, Alexandr A.; Gusev, Sergey A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Melnikova, Viktoriya I. [Institute of Developmental Biology, Russian Academy of Science, Moscow (Russian Federation); Lobach, Anatolii S. [Institute of Problems of Chemical Physics, Russian Academy of Science, Chernogolovka (Russian Federation)

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  9. Degradation of Synthetic Dyes by Laccases – A Mini-Review

    Directory of Open Access Journals (Sweden)

    Legerská Barbora

    2016-06-01

    Full Text Available Laccases provide a promising future as a tool to be used in the field of biodegradation of synthetic dyes with different chemical structures. These enzymes are able to oxidize a wide range of phenolic substrates without the presence of additional co-factors. Laccases have been confirmed for their potential of synthetic dye degradation from wastewater and degradation products of these enzymatic reactions become less toxic than selected dyes. This study discusses the potential of laccase enzymes as agents for laccase-catalyzed degradation in terms of biodegradation efficiency of synthetic dyes, specifically: azo dyes, triphenylmethane, indigo and anthraquinone dyes. Review also summarizes the laccase-catalyzed degradation mechanisms of the selected synthetic dyes, as well as the degradation products and the toxicity of the dyes and their degradation products.

  10. Production of raw starch-degrading enzyme by Aspergillus sp. and its use in conversion of inedible wild cassava flour to bioethanol.

    Science.gov (United States)

    Moshi, Anselm P; Hosea, Ken M M; Elisante, Emrode; Mamo, Gashaw; Önnby, Linda; Nges, Ivo Achu

    2016-04-01

    The major bottlenecks in achieving competitive bioethanol fuel are the high cost of feedstock, energy and enzymes employed in pretreatment prior to fermentation. Lignocellulosic biomass has been proposed as an alternative feedstock, but because of its complexity, economic viability is yet to be realized. Therefore, research around non-conventional feedstocks and deployment of bioconversion approaches that downsize the cost of energy and enzymes is justified. In this study, a non-conventional feedstock, inedible wild cassava was used for bioethanol production. Bioconversion of raw starch from the wild cassava to bioethanol at low temperature was investigated using both a co-culture of Aspergillus sp. and Saccharomyces cerevisiae, and a monoculture of the later with enzyme preparation from the former. A newly isolated strain of Aspergillus sp. MZA-3 produced raw starch-degrading enzyme which displayed highest activity of 3.3 U/mL towards raw starch from wild cassava at 50°C, pH 5.5. A co-culture of MZA-3 and S. cerevisiae; and a monoculture of S. cerevisiae and MZA-3 enzyme (both supplemented with glucoamylase) resulted into bioethanol yield (percentage of the theoretical yield) of 91 and 95 at efficiency (percentage) of 84 and 96, respectively. Direct bioconversion of raw starch to bioethanol was achieved at 30°C through the co-culture approach. This could be attractive since it may significantly downsize energy expenses. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Removal of polycyclic aromatic hydrocarbons from aqueous media by the marine fungus NIOCC 312: Involvement of lignin-degrading enzymes and exopolysaccharides

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Shailaja, M.S.; Parameswaran, P.S.; Singh, S.K.

    (Shimadzu, Model RF 1501, Japan). The fungal biomass was extracted in a Soxhlet apparatus in 20 volumes of alkaline methanol (by addition of 1% KOH) twice, each for 3 h, pooled, concentrated, dried over anhydrous Na 2 SO 4 and the residual... of the lignin- degrading enzymes, lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase in a marine isolate of the white-rot fungus, NIOCC #312 obtained from decaying seagrass in a coral lagoon. This fungus efficiently decolorized bleach plant...

  12. Controlled expression of pectic enzymes in Arabidopsis thaliana enhances biomass conversion without adverse effects on growth.

    Science.gov (United States)

    Tomassetti, Susanna; Pontiggia, Daniela; Verrascina, Ilaria; Reca, Ida Barbara; Francocci, Fedra; Salvi, Gianni; Cervone, Felice; Ferrari, Simone

    2015-04-01

    Lignocellulosic biomass from agriculture wastes is a potential source of biofuel, but its use is currently limited by the recalcitrance of the plant cell wall to enzymatic digestion. Modification of the wall structural components can be a viable strategy to overcome this bottleneck. We have previously shown that the expression of a fungal polygalacturonase (pga2 from Aspergillus niger) in Arabidopsis and tobacco plants reduces the levels of de-esterified homogalacturonan in the cell wall and significantly increases saccharification efficiency. However, plants expressing pga2 show stunted growth and reduced biomass production, likely as a consequence of an extensive loss of pectin integrity during the whole plant life cycle. We report here that the expression in Arabidopsis of another pectic enzyme, the pectate lyase 1 (PL1) of Pectobacterium carotovorum, under the control of a chemically inducible promoter, results, after induction of the transgene, in a saccharification efficiency similar to that of plants expressing pga2. However, lines with high levels of transgene induction show reduced growth even in the absence of the inducer. To overcome the problem of plant fitness, we have generated Arabidopsis plants that express pga2 under the control of the promoter of SAG12, a gene expressed only during senescence. These plants expressed pga2 only at late stages of development, and their growth was comparable to that of WT plants. Notably, leaves and stems of transgenic plants were more easily digested by cellulase, compared to WT plants, only during senescence. Expression of cell wall-degrading enzymes at the end of the plant life cycle may be therefore a useful strategy to engineer crops unimpaired in biomass yield but improved for bioconversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Identification of novel biomass-degrading enzymes from genomic dark matter: Populating genomic sequence space with functional annotation.

    Science.gov (United States)

    Piao, Hailan; Froula, Jeff; Du, Changbin; Kim, Tae-Wan; Hawley, Erik R; Bauer, Stefan; Wang, Zhong; Ivanova, Nathalia; Clark, Douglas S; Klenk, Hans-Peter; Hess, Matthias

    2014-08-01

    Although recent nucleotide sequencing technologies have significantly enhanced our understanding of microbial genomes, the function of ∼35% of genes identified in a genome currently remains unknown. To improve the understanding of microbial genomes and consequently of microbial processes it will be crucial to assign a function to this "genomic dark matter." Due to the urgent need for additional carbohydrate-active enzymes for improved production of transportation fuels from lignocellulosic biomass, we screened the genomes of more than 5,500 microorganisms for hypothetical proteins that are located in the proximity of already known cellulases. We identified, synthesized and expressed a total of 17 putative cellulase genes with insufficient sequence similarity to currently known cellulases to be identified as such using traditional sequence annotation techniques that rely on significant sequence similarity. The recombinant proteins of the newly identified putative cellulases were subjected to enzymatic activity assays to verify their hydrolytic activity towards cellulose and lignocellulosic biomass. Eleven (65%) of the tested enzymes had significant activity towards at least one of the substrates. This high success rate highlights that a gene context-based approach can be used to assign function to genes that are otherwise categorized as "genomic dark matter" and to identify biomass-degrading enzymes that have little sequence similarity to already known cellulases. The ability to assign function to genes that have no related sequence representatives with functional annotation will be important to enhance our understanding of microbial processes and to identify microbial proteins for a wide range of applications. © 2014 Wiley Periodicals, Inc.

  14. The cellulases and their application in degrading agro-industrial waste

    Directory of Open Access Journals (Sweden)

    Wolfgang H. Schwarz

    2002-01-01

    Full Text Available A huge amount of lignocellulosic biomass is available which can be used to produce storable energy and basic material for the chemical industry. Its use is especially beneficial for a country's economy if it is waste material, which can be obtained at almost no cost and which presents an environmental burden. However, the polysaccharides present in biomass are difficult to degrade due to their heterogeneity and crystalline structure. This article addresses the enzymatic hydrolysis of cellulose by its natural degraders, the anaerobic bacteria. The difficulties of cellulose digestion are explained and the strategies used by the hydrolytic enzymes and enzyme systems, allowing for efficient degradation. The multitude of enzymes is uniform in having an identical chemical specificity, but differs in each component's action mode. Only by combining this with binding modules can efficient hydrolysis be performed. The variation of modular structures within a single enzyme family is an example of enzymatic activity's evolutionary diversification. A model for hydrolytically degrading natural cellulose is presented, but much more research has to be done to explain and describe the process on the molecular level, and to optimize an industrial enzymatic cellulose hydrolysis process.

  15. ligninolytic enzymes of the fungus isolated from soil contaminated

    African Journals Online (AJOL)

    FUTE

    aimed at isolating lignin degrading fungi from soil contaminated with cow dung ... strain was screened for production of ligninolytic enzymes using Rhemazol Brilliant blue R ... put in airtight plastic bag and carried out to ..... Enzyme Microbial.

  16. Screening para el aislamiento y caracterización de microorganismos y enzimas potencialmente útiles para la degradación de celulosas y hemicelulosas Screening for isolation and characterisation of microorganisms and enzymes with usefull potential for degradation of celullose and hemicelluose

    Directory of Open Access Journals (Sweden)

    Mikán Venegas José Fernando

    2004-07-01

    Full Text Available Se presenta un modelo práctico de microbiología aplicada y biotecnología para aislar y caracterizar microorganismos, como una minús­cula muestra de la extensa biodiversidad de nuestros suelos. Se analiza su capacidad para producir depolimerasas e hidrolasas accesorias para la degradación de xiloglucanos-pectatos o glucoarabinoxilanos, con el fin de evaluar su potencial como degradadores de material vegetal. Se propone el uso del cultivo en paredes celulares vegetales como única fuente de carbono, como inductores de las actividades hidrolíticas, y el uso de las mismas paredes celulares y de xilano entrecruzado para purificar en forma rápida y económica enzimas degradadoras de celulosas y hemicelulosas. Con estos soportes de afinidad se logró un redimiento de purificación de xilanasas del 500% en un solo paso. Partiendo de 65 aislamientos se seleccionaron cinco, a los cuales se les hizo caracterización isoenzimática para celulasas y xilanasas. Se les sugiere como potencialmente útiles en compostaje y otros procesos industriales. Palabras clave: celulasas, hemicelulasas, cromatografía de afinidad, sustratos entrecruzados, diversidad microbiológica, compostaje.A practical, applied microbiology and biotechnology model is presented for isolating and characterising micro-organisms, this being a tiny part of the immense biodiversity of tropical soils. These microbes' ability to produce depolymerases and accessory hydrolases degrading xyloglucans-pectates or glucoarabinoxylans is analysed to evaluate their potential for degrading plant material. We propose culturing micro-organisms on the cell wall as main carbon source and as hydrolitic activity inducer. The same cell walls can be used for cross-linking xylan and for rapid, low cost purification of cellulose and hemicellose degrading enzymes. A 500% xylanase purification yield was obtained in a single step with these affinity supports. Out of the 65 isolates obtained were finally

  17. Degradation of lignin β-aryl ether units in Arabidopsis thaliana expressing LigD, LigF and LigG from Sphingomonas paucimobilis SYK-6

    DEFF Research Database (Denmark)

    Mnich, Ewelina; Vanholme, Ruben; Oyarce, Paula

    2017-01-01

    Lignin is a major polymer in the secondary plant cell wall and composed of hydrophobic interlinked hydroxyphenylpropanoid units. The presence of lignin hampers conversion of plant biomass into biofuels; plants with modified lignin are therefore being investigated for increased digestibility....... The bacterium Sphingomonas paucimobilis produces lignin-degrading enzymes including LigD, LigF and LigG involved in cleaving the most abundant lignin inter-unit linkage, the β-aryl ether bond. In this study, we expressed the LigD, LigF and LigG (LigDFG) genes in Arabidopsis thaliana to introduce post...

  18. Transcriptional regulation of the xylanolytic enzyme system of Aspergillus

    NARCIS (Netherlands)

    Peij, van N.N.M.E.

    1999-01-01

    Filamentous fungi, such as Aspergillus niger , produce high levels of polysaccharide degrading enzymes and are frequently used as production organisms for industrial enzyme preparations. The application of these polysaccharidases as xylanases and cellulases comprises

  19. Gibberellic acid promoting phytic acid degradation in germinating soybean under calcium lactate treatment.

    Science.gov (United States)

    Hui, Qianru; Wang, Mian; Wang, Pei; Ma, Ya; Gu, Zhenxin; Yang, Runqiang

    2018-01-01

    Phytic acid as a phosphorus storage vault provides phosphorus for plant development. It is an anti-nutritional factor for humans and some animals. However, its degradation products lower inositol phosphates have positive effects on human health. In this study, the effect of gibberellic acid (GA) on phytic acid degradation under calcium lactate (Ca) existence was investigated. The results showed that Ca + GA treatment promoted the growth status, hormone metabolism and phytic acid degradation in germinating soybean. At the same time, the availability of phosphorus, the activity of phytic acid degradation-associated enzyme and phosphoinositide-specific phospholipase C (PI-PLC) increased. However, the relative genes expression of phytic acid degradation-associated enzymes did not vary in accordance with their enzymes activity. The results revealed that GA could mediate the transport and function of calcium and a series of physiological and biochemical changes to regulate phytic acid degradation of soybean sprouts. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Micromechanical sensors for the measurement of biopolymer degradation

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Gammelgaard, Lene; Jensen, M P

    2011-01-01

    We present microcantilever-based sensors for the characterization of biopolymer degradation by enzymes. Thin films of Poly(L-lactide) (PLLA) were spray-coated onto SU-8 cantilevers with well-known material properties and dimensions. The micromechanical sensors were immersed in solutions of protei......We present microcantilever-based sensors for the characterization of biopolymer degradation by enzymes. Thin films of Poly(L-lactide) (PLLA) were spray-coated onto SU-8 cantilevers with well-known material properties and dimensions. The micromechanical sensors were immersed in solutions...

  1. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.

    Science.gov (United States)

    Shah, Aamer Ali; Kato, Satoshi; Shintani, Noboru; Kamini, Numbi Ramudu; Nakajima-Kambe, Toshiaki

    2014-04-01

    Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.

  2. Energy balance associated with the degradation of lignocellulosic material by white-rot and brown-rot fungi.

    Science.gov (United States)

    Derrien, Delphine; Bédu, Hélène; Buée, Marc; Kohler, Annegret; Goodell, Barry; Gelhaye, Eric

    2017-04-01

    Forest soils cover about 30% of terrestrial area and comprise between 50 and 80% of the global stock of soil organic carbon (SOC). The major precursor for this forest SOC is lignocellulosic material, which is made of polysaccharides and lignin. Lignin has traditionally been considered as a recalcitrant polymer that hinders access to the much more labile structural polysaccharides. This view appears to be partly incorrect from a microbiology perspective yet, as substrate alteration depends on the metabolic potential of decomposers. In forest ecosystems the wood-rotting Basidiomycota fungi have developed two different strategies to attack the structure of lignin and gain access to structural polysaccharides. White-rot fungi degrade all components of plant cell walls, including lignin, using enzymatic systems. Brown-rot fungi do not remove lignin. They generate oxygen-derived free radicals, such as the hydroxyl radical produced by the Fenton reaction, that disrupt the lignin polymer and depolymerize polysaccharides which then diffuse out to where the enzymes are located The objective of this study was to develop a model to investigate whether the lignin relative persistence could be related to the energetic advantage of brown-rot degradative pathway in comparison to white-rot degradative pathway. The model simulates the changes in substrate composition over time, and determines the energy gained from the conversion of the lost substrate into CO2. The energy cost for the production of enzymes involved in substrate alteration is assessed using information derived from genome and secretome analysis. For brown-rot fungus specifically, the energy cost related to the production of OH radicals is also included. The model was run, using data from the literature on populous wood degradation by Trametes versicolor, a white-rot fungus, and Gloeophyllum trabeum, a brown-rot fungus. It demonstrates that the brown-rot fungus (Gloeophyllum trabeum) was more efficient than the white

  3. Plasma-wall interactions in RFX

    International Nuclear Information System (INIS)

    Valisa, M.; Bartiromo, R.; Carraro, L.

    1999-01-01

    Plasma wall interactions become a crucial issue in the Reversed Field Pinch RFX at high current (>0.7 MA). Wall-Mode Locking (WML) leads to carbon bloom, enhanced recycling and makes the density control very difficult to achieve. Several wall conditioning techniques have improved the capability of controlling recycling, especially boronization with diborane, but at 1 MA of plasma current removal of the WML becomes mandatory. Encouraging results have been achieved by rotating an externally induced perturbation that can unlock the WML. The strong impurity screening mechanism found at intermediate current does not degrade significantly at 1 MA. Modification of the tiles geometry could further reduce the power density dissipation and mitigate the PWI. (author)

  4. Plasma-wall interactions in RFX

    International Nuclear Information System (INIS)

    Valisa, M.; Bartiromo, R.; Carraro, L.

    2001-01-01

    Plasma wall interactions become a crucial issue in the Reversed Field Pinch RFX at high current (>0.7 MA). Wall-Mode Locking (WML) leads to carbon bloom, enhanced recycling and makes the density control very difficult to achieve. Several wall conditioning techniques have improved the capability of controlling recycling, especially boronisation with diborane, but at 1 MA of plasma current removal of the WML becomes mandatory. Encouraging results have been achieved by rotating an externally induced perturbation that can unlock the WML. The strong impurity screening mechanism found at intermediate current does not degrade significantly at 1 MA. Modification of the tiles geometry could further reduce the power density dissipation and mitigate the PWI. (author)

  5. Enzymes evaluation for the polymeric filter cake removal; Avaliacao de enzimas para remocao de reboco formado por fluidos polimericos de base agua

    Energy Technology Data Exchange (ETDEWEB)

    Kameda, Etel; Coelho, Maria Alice Z. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Langone, Marta A.P. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Quimica; Queiroz Neto, Joao C. de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    In the drilling wells in horizontal or complex configurations, the drilling fluid contact with the productive zone can reduce the productivity by fluid invasion in the borehole wall. Drilling fluids usually comprise natural polymers as starch and xanthan gum. These polymers are deposited as the filter-cake on the wellbore wall. A common approach to remove this filter-cake is the application of acids or strong oxidative solutions. However, these are non-specific species which will react with any encountered that is acid soluble or oxidizable. An alternative is the use of enzymatic preparations that are able to hydrolyze such polymers. The enzymes catalyze only certain specific substrates, are inherently environmentally friendly, the enzymatic degradation rate is slower than that achieved by the oxidative species, so the enzymes produces an uniform filter cake degradation. In this work, the kinetic behaviors of an enzymatic filter-cake breaker and a commercial thermo stable enzymatic complex were analyzed. Both kinetic profiles were very similar, as well as its electrophoresis analysis. The protein in each product showed identical molecular weight. The commercial enzymatic complex stability remained 58.56% of enzymatic activity after 30 days at 40 deg C. Stability at wellbore conditions can be considered similar for both products. At 65 deg C they showed the same enzymatic activity after 8 hours. After 3 hours at 80 deg C, the commercial enzymatic complex remained 29.89% of the initial activity and the filter-cake breaker 61.73%, while at 95 deg C remained 4.39% and 11.60% of the initial activity, respectively, after 15 minutes. (author)

  6. Mapping the polysaccharide degradation potential of Aspergillus niger

    NARCIS (Netherlands)

    Andersen, M.R.; Giese, M.; De Vries, R.P.; Nielsen, J.

    2012-01-01

    Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For

  7. Mature Biofilm Degradation by Potential Probiotics: Aggregatibacter actinomycetemcomitans versus Lactobacillus spp.

    Directory of Open Access Journals (Sweden)

    Norzawani Jaffar

    Full Text Available The biofilm degradation of Aggregatibacter actinomycetemcomitans is essential as a complete periodontal disease therapy, and here we show the effects of potential probiotic bacteria such as Lactobacillus spp. for the biofilm of several serotypes of A. actinomycetemcomitans strains. Eight of the 13 species showed the competent biofilm degradation of ≥ 90% reduction in biofilm values in A. actinomycetemcomitans Y4 (serotype b as well as four of the seven species for the biofilm of A. actinomycetemcomitans OMZ 534 (serotype e. In contrast, the probiotic bacteria did not have a big impact for the degradation of A. actinomycetemcomitans SUNY 75 (serotype a biofilm. The dispersed A. actinomycetemcomitans Y4 cells through the biofilm detachment were still viable and plausible factors for the biofilm degradation were not due to the lactic acid and low pH conditions. The three enzymes, protease, lipase, and amylase may be responsible for the biofilm degradation; in particular, lipase was the most effective enzyme for the biofilm degradation of A. actinomycetemcomitans Y4 along with the protease activity which should be also important for the other serotypes. Remarkable lipase enzyme activities were detected from some of the potential probiotics and a supporting result using a lipase inhibitor presented corroborating evidence that lipase activity is one of the contributing factors for biofilm degradation outside of the protease which is also another possible factor for the biofilm of the other serotype of A. actinomycetemcomitans strains. On the other hand, the biofilm of A. actinomycetemcomitans SUNY 75 (serotype a was not powerfully degraded by the lipase enzyme because the lipase inhibitor was slightly functional for only two of potential probiotics.

  8. Lysosomal degradation of membrane lipids.

    Science.gov (United States)

    Kolter, Thomas; Sandhoff, Konrad

    2010-05-03

    The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Quantitative framework for ordered degradation of APC/C substrates.

    Science.gov (United States)

    Lu, Dan; Girard, Juliet R; Li, Weihan; Mizrak, Arda; Morgan, David O

    2015-11-16

    During cell-cycle progression, substrates of a single master regulatory enzyme can be modified in a specific order. Here, we used experimental and computational approaches to dissect the quantitative mechanisms underlying the ordered degradation of the substrates of the ubiquitin ligase APC/C(Cdc20), a key regulator of chromosome segregation in mitosis. We show experimentally that the rate of catalysis varies with different substrates of APC/C(Cdc20). Using a computational model based on multi-step ubiquitination, we then show how changes in the interaction between a single substrate and APC/C(Cdc20) can alter the timing of degradation onset relative to APC/C(Cdc20) activation, while ensuring a fast degradation rate. Degradation timing and dynamics depend on substrate affinity for the enzyme as well as the catalytic rate at which the substrate is modified. When two substrates share the same pool of APC/C(Cdc20), their relative enzyme affinities and rates of catalysis influence the partitioning of APC/C(Cdc20) among substrates, resulting in substrate competition. Depending on how APC/C(Cdc20) is partitioned among its substrates, competition can have minor or major effects on the degradation of certain substrates. We show experimentally that increased expression of the early APC/C(Cdc20) substrate Clb5 does not delay the degradation of the later substrate securin, arguing against a role for competition with Clb5 in establishing securin degradation timing. The degradation timing of APC/C(Cdc20) substrates depends on the multi-step nature of ubiquitination, differences in substrate-APC/C(Cdc20) interactions, and competition among substrates. Our studies provide a conceptual framework for understanding how ordered modification can be established among substrates of the same regulatory enzyme, and facilitate our understanding of how precise temporal control is achieved by a small number of master regulators to ensure a successful cell division cycle.

  10. A novel method to depurate β-lactam antibiotic residues by administration of a broad-spectrum β-lactamase enzyme in fish tissues

    Directory of Open Access Journals (Sweden)

    Young-Sik Choe

    2016-12-01

    Full Text Available Abstract As a novel strategy to remove β-lactam antibiotic residues from fish tissues, utilization of β-lactamase, enzyme that normally degrades β-lactam structure-containing drugs, was explored. The enzyme (TEM-52 selectively degraded β-lactam antibiotics but was completely inactive against tetracycline-, quinolone-, macrolide-, or aminoglycoside-structured antibacterials. After simultaneous administration of the enzyme with cefazolin (a β-lactam antibiotic to the carp, significantly lowered tissue cefazolin levels were observed. It was confirmed that the enzyme successfully reached the general circulation after intraperitoneal administration, as the carp serum obtained after enzyme injection could also degrade cefazolin ex vivo. These results suggest that antibiotics-degrading enzymes can be good candidates for antibiotic residue depuration.

  11. A laser microsurgical method of cell wall removal allows detection of large-conductance ion channels in the guard cell plasma membrane

    Science.gov (United States)

    Miedema, H.; Henriksen, G. H.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts of Vicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. "Laser-assisted" patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.

  12. Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability

    Directory of Open Access Journals (Sweden)

    Lu Fachuang

    2010-06-01

    Full Text Available Abstract Background Recent discoveries highlighting the metabolic malleability of plant lignification indicate that lignin can be engineered to dramatically alter its composition and properties. Current plant biotechnology efforts are primarily aimed at manipulating the biosynthesis of normal monolignols, but in the future apoplastic targeting of phenolics from other metabolic pathways may provide new approaches for designing lignins that are less inhibitory toward the enzymatic hydrolysis of structural polysaccharides, both with and without biomass pretreatment. To identify promising new avenues for lignin bioengineering, we artificially lignified cell walls from maize cell suspensions with various combinations of normal monolignols (coniferyl and sinapyl alcohols plus a variety of phenolic monolignol substitutes. Cell walls were then incubated in vitro with anaerobic rumen microflora to assess the potential impact of lignin modifications on the enzymatic degradability of fibrous crops used for ruminant livestock or biofuel production. Results In the absence of anatomical constraints to digestion, lignification with normal monolignols hindered both the rate and extent of cell wall hydrolysis by rumen microflora. Inclusion of methyl caffeate, caffeoylquinic acid, or feruloylquinic acid with monolignols considerably depressed lignin formation and strikingly improved the degradability of cell walls. In contrast, dihydroconiferyl alcohol, guaiacyl glycerol, epicatechin, epigallocatechin, and epigallocatechin gallate readily formed copolymer-lignins with normal monolignols; cell wall degradability was moderately enhanced by greater hydroxylation or 1,2,3-triol functionality. Mono- or diferuloyl esters with various aliphatic or polyol groups readily copolymerized with monolignols, but in some cases they accelerated inactivation of wall-bound peroxidase and reduced lignification; cell wall degradability was influenced by lignin content and the degree

  13. Production of Enzymes from Marine Actinobacteria.

    Science.gov (United States)

    Zhao, X Q; Xu, X N; Chen, L Y

    Marine actinobacteria are well recognized for their capabilities to produce valuable natural products, which have great potential for applications in medical, agricultural, and fine chemical industries. In addition to producing unique enzymes responsible for biosynthesis of natural products, many marine actinobacteria also produce hydrolytic enzymes which are able to degrade various biopolymers, such as cellulose, xylan, and chitin. These enzymes are important to produce biofuels and biochemicals of interest from renewable biomass. In this chapter, the recent reports of novel enzymes produced by marine actinobacteria are reviewed, and advanced technologies that can be applied to search for novel marine enzymes as well as for improved enzyme production by marine actinobacteria are summarized, which include ribosome engineering, genome mining, as well as synthetic biology studies. © 2016 Elsevier Inc. All rights reserved.

  14. Zymography methods for visualizing hydrolytic enzymes.

    Science.gov (United States)

    Vandooren, Jennifer; Geurts, Nathalie; Martens, Erik; Van den Steen, Philippe E; Opdenakker, Ghislain

    2013-03-01

    Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful, but often misinterpreted, tool yielding information on potential hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tissue sections with in situ zymography. In vivo zymography can pinpoint proteolytic activity to sites in an intact organism. Future development of novel substrate probes and improvement in detection and imaging methods will increase the applicability of zymography for (reverse) degradomics studies.

  15. Lytic Polysaccharide Monooxygenases - Studies of Fungal Secretomes and Enzyme Properties

    DEFF Research Database (Denmark)

    Nekiunaite, Laura

    degradation, were also identified upstream the LPMO genes, providing evidence for a co-regulatory mechanism of LPMOs and amylolytic hydrolases. The second part of the PhD thesis is focused on understanding the binding properties of LPMOs to starch and starch mimic substrate. It was shown that LPMOs possessing...... to different substrates at the protein level. It could help to design better enzyme cocktails that increase efficiency of biomass degradation. The secretomes of A. nidulans revealed differences in growth and secretion of enzymes, depending on the type and properties of starches. A common characteristic...... conversion as they produce a wide diversity of degrading enzymes. In the first part of this PhD thesis, the secretomes of the well-known fungus Aspergillus nidulans grown on cereal and legume starches were analyzed. Secretomics is a powerful tool to unravel secretion patterns of fungi and their response...

  16. Biodegradation of paraffin wax by crude Aspergillus enzyme preparations for potential use in removing paraffin deposits.

    Science.gov (United States)

    Zhang, Junhui; Xue, Quanhong; Gao, Hui; Wang, Ping

    2015-11-01

    Paraffin deposition problems have plagued the oil industry. Whist mechanical and chemical methods are problematic, microbiological method of paraffin removal is considered an alternative. However, studies have mainly investigated the use of bacteria, with little attention to the potential of fungi. The performance of six Aspergillus isolates to degrade paraffin wax was evaluated under laboratory conditions using solid enzyme preparations. The results showed that all the six enzyme preparations efficiently improved the solubility of paraffin wax in n-hexane and degraded n-alkanes in paraffin wax. The degradation process was accompanied by dynamic production of gases (CO2 and H2 ) and organic acids (oxalate and propionate). The shape of wax crystals markedly changed after enzymatic degradation, with a rough surface and a loose structure. This study indicates that extracellular enzymes from Aspergillus spp. can efficiently degrade paraffin wax. These enzyme preparations have the potential for use in oil wells with paraffin deposition problems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Modification of antioxidant systems in cell walls of maize roots by different nitrogen sources

    International Nuclear Information System (INIS)

    Hadži-Tašković Šukalović V; Vuletić, M.; Marković, K.; Željko, Vučinić; Kravić, N.

    2016-01-01

    Antioxidant systems of maize root cell walls grown on different nitrogen sources were evaluated. Plants were grown on a medium containing only NO3- or the mixture of NO3-+NH4+, in a 2:1 ratio. Eleven-day old plants, two days after the initiation of lateral roots, were used for the experiments. Cell walls were isolated from lateral roots and primary root segments, 2-7 cm from tip to base, representing zones of intense or decreased growth rates, respectively. Protein content and the activity of enzymes peroxidase, malate dehydrogenase and ascorbate oxidase ionically or covalently bound to the walls, as well as cell wall phenolic content and antioxidant capacity, were determined. Cell walls of plants grown on mixed N possess more developed enzymatic antioxidant systems and lower non-enzymatic antioxidant defenses than cell walls grown on NO3-. Irrespective of N treatment, the activities of all studied enzymes and protein content were higher in cell walls of lateral compared to primary roots. Phenolic content of cell walls isolated from lateral roots was higher in NO3--grown than in mixed N grown plants. No significant differences could be observed in the isozyme patterns of cell wall peroxidases isolated from plants grown on different nutrient solution. Our results indicate that different N treatments modify the antioxidant systems of root cell walls. Treatment with NO3- resulted in an increase of constitutive phenolic content, while the combination of NO3-+NH4+ elevated the redox enzyme activities in root cell walls.

  18. Modification of antioxidant systems in cell walls of maize roots by different nitrogen sources

    Energy Technology Data Exchange (ETDEWEB)

    Hadži-Tašković Šukalović V; Vuletić, M.; Marković, K.; Željko, Vučinić; Kravić, N.

    2016-07-01

    Antioxidant systems of maize root cell walls grown on different nitrogen sources were evaluated. Plants were grown on a medium containing only NO3- or the mixture of NO3-+NH4+, in a 2:1 ratio. Eleven-day old plants, two days after the initiation of lateral roots, were used for the experiments. Cell walls were isolated from lateral roots and primary root segments, 2-7 cm from tip to base, representing zones of intense or decreased growth rates, respectively. Protein content and the activity of enzymes peroxidase, malate dehydrogenase and ascorbate oxidase ionically or covalently bound to the walls, as well as cell wall phenolic content and antioxidant capacity, were determined. Cell walls of plants grown on mixed N possess more developed enzymatic antioxidant systems and lower non-enzymatic antioxidant defenses than cell walls grown on NO3-. Irrespective of N treatment, the activities of all studied enzymes and protein content were higher in cell walls of lateral compared to primary roots. Phenolic content of cell walls isolated from lateral roots was higher in NO3--grown than in mixed N grown plants. No significant differences could be observed in the isozyme patterns of cell wall peroxidases isolated from plants grown on different nutrient solution. Our results indicate that different N treatments modify the antioxidant systems of root cell walls. Treatment with NO3- resulted in an increase of constitutive phenolic content, while the combination of NO3-+NH4+ elevated the redox enzyme activities in root cell walls.

  19. Inducible secretion of phytate-degrading enzymes from bacteria ...

    African Journals Online (AJOL)

    aghomotsegin

    2015-02-04

    Feb 4, 2015 ... Key words: Bacillus sp., phytase activities, soil bacteria, Bacillus broth, Bacillus broth. INTRODUCTION ... Penicillium) enzymes conquered many applications in ... U/(g×h)] than in (SSF) Solid State Fermentation [1.2. U/(g×h)] ... mM (from Loba Chemie Pvt. Ltd, Mumbai), and liquid nitrogen (from. Air liquid ...

  20. Production of cellulolytic enzymes from ascomycetes

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich; Lübeck, Mette; Frisvad, Jens Christian

    2015-01-01

    Optimizing production of cellulose degrading enzymes is of great interest in order to increase the feasibility of constructing biorefinery facilities for a sustainable supply of energy and chemical products. The ascomycete phylum has a large potential for the production of cellulolytic enzymes....... Although numerous enzymatic profiles have already been unraveled, the research has been covering only a limited number of species and genera, thus leaving many ascomycetes to be analyzed. Such analysis requires choosing appropriate media and cultivation methods that ensure enzyme profiles with high...... specificities and activities. However, the choice of media, cultivation methods and enzyme assays highly affect the enzyme activity profile observed. This review provides an overview of enzymatic profiles for several ascomycetes covering phylogenetically distinct genera and species. The profiles of cellulose...

  1. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc-André; Deacon, Ashley M.; Wilson, Ian A.

    2015-09-15

    ABSTRACT

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.

    IMPORTANCEPeptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural

  2. Degradation of polysaccharides by endo- and exoenzymes: dextran--dextranase model systems

    Energy Technology Data Exchange (ETDEWEB)

    Wheatley, M A; Moo-Young, M

    1977-02-01

    Experiments were carried out on dextran-dextranase systems to test the prediction of a mechanistic model recently proposed by us, for the synergistic effect of combined exo/endo enzymic action in the degradation of polymeric substrates. Soluble forms of the substrate were used. Preliminary experiments with an insoluble form of the substrate were also carried out to demonstrate the applicability of the analytical techniques to these cases. Molecular weight distributions of the degradation products were determined (by gel-permeation chromatography) and the rates of production of glucose and of other reducing sugars were also measured. It was found that the exodextranase alone had very little effect on the molecular weight distributions compared to a significant shift towards lower molecular weights obtained with the endodextranase which was synergistically enhanced by the action of the combined enzymes. Glucose was produced more rapidly by the exoenzyme compared to the endoenzyme, but combinations of the two enzymes gave a rate enhancement greater than the linear sum of the effects of the two individual enzymes. In comparing the degradation indices and polydispersities of the various degradation products, similar synergistic effects of the combined enzymes in accordance with the theoretical predictions were observed. The practical implications of these findings to the design of fermentation processes which depend on the action of endo- and exoenzyme mixtures are noted.

  3. Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica.

    Science.gov (United States)

    van den Brink, Joost; van Muiswinkel, Gonny C J; Theelen, Bart; Hinz, Sandra W A; de Vries, Ronald P

    2013-02-01

    Rapid and efficient enzymatic degradation of plant biomass into fermentable sugars is a major challenge for the sustainable production of biochemicals and biofuels. Enzymes that are more thermostable (up to 70°C) use shorter reaction times for the complete saccharification of plant polysaccharides compared to hydrolytic enzymes of mesophilic fungi such as Trichoderma and Aspergillus species. The genus Myceliophthora contains four thermophilic fungi producing industrially relevant thermostable enzymes. Within this genus, isolates belonging to M. heterothallica were recently separated from the well-described species M. thermophila. We evaluate here the potential of M. heterothallica isolates to produce efficient enzyme mixtures for biomass degradation. Compared to the other thermophilic Myceliophthora species, isolates belonging to M. heterothallica and M. thermophila grew faster on pretreated spruce, wheat straw, and giant reed. According to their protein profiles and in vitro assays after growth on wheat straw, (hemi-)cellulolytic activities differed strongly between M. thermophila and M. heterothallica isolates. Compared to M. thermophila, M. heterothallica isolates were better in releasing sugars from mildly pretreated wheat straw (with 5% HCl) with a high content of xylan. The high levels of residual xylobiose revealed that enzyme mixtures of Myceliophthora species lack sufficient β-xylosidase activity. Sexual crossing of two M. heterothallica showed that progenies had a large genetic and physiological diversity. In the future, this will allow further improvement of the plant biomass-degrading enzyme mixtures of M. heterothallica.

  4. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?

    Science.gov (United States)

    Chen, Ming; Zeng, Guangming; Xu, Piao; Lai, Cui; Tang, Lin

    2017-11-01

    Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Identification of residues in the insulin molecule important for binding to insulin-degrading enzyme.

    Science.gov (United States)

    Affholter, J A; Cascieri, M A; Bayne, M L; Brange, J; Casaretto, M; Roth, R A

    1990-08-21

    Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, we have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor I (25 nM and approximately 16,000 nM, respectively), the first set of analogues studied were hybrid molecules of insulin and IGF I. IGF I mutants [insB1-17,17-70]IGF I, [Tyr55,Gln56]IGF I, and [Phe23,Phe24,Tyr25]IGF I have been synthesized and share the property of having insulin-like amino acids at positions corresponding to primary sites of cleavage of insulin by IDE. Whereas the first two exhibit affinities for IDE similar to that of wild type IGF I, the [Phe23,Phe24,Tyr25]IGF I analogue has a 32-fold greater affinity for the immobilized enzyme. Replacement of Phe-23 by Ser eliminates this increase. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants [B25-Asp]insulin and [B25-His]insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Mars Climate History: Insights From Impact Crater Wall Slope Statistics

    Science.gov (United States)

    Kreslavsky, Mikhail A.; Head, James W.

    2018-02-01

    We use the global distribution of the steepest slopes on crater walls derived from Mars Orbiter Laser Altimeter profile data to assess the magnitudes of degradational processes with latitude, altitude, and time. We independently confirm that Amazonian polar/high-latitude crater slope modification is substantial, but that craters in the low latitudes have essentially escaped significant slope modification since the Early Hesperian. We find that the total amount of crater wall degradation in the Late Noachian is very small in comparison to the circumpolar regions in the Late Amazonian, an observation that we interpret to mean that the Late Noachian climate was not characterized by persistent and continuous warm and wet conditions. A confirmed elevational zonality in degradation in the Early Hesperian is interpreted to mean that the atmosphere was denser than today.

  7. Arabinogalactan proteins: focus on carbohydrate active enzymes

    Directory of Open Access Journals (Sweden)

    Eva eKnoch

    2014-06-01

    Full Text Available Arabinogalactan proteins (AGPs are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/ involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development.

  8. Where do the immunostimulatory effects of oral proteolytic enzymes ('systemic enzyme therapy') come from? Microbial proteolysis as a possible starting point.

    Science.gov (United States)

    Biziulevicius, Gediminas A

    2006-01-01

    Enteric-coated proteolytic enzyme preparations like Wobenzym and Phlogenzym are widely used for the so-called 'systemic enzyme therapy' both in humans and animals. Numerous publications reveal that oral proteolytic enzymes are able to stimulate directly the activity of immune competent cells as well as to increase efficiency of some of their products. But origins of the immunostimulatory effects of oral proteolytic enzymes are still unclear. The hypothesis described here suggests that it may be proteolysis of intestinal microorganisms that makes the immune competent cells to work in the immunostimulatory manner. The hypothesis was largely formed by several scientific observations: First, microbial lysis products (lipopolysaccharides, muropeptides and other peptidoglycan fragments, beta-glucans, etc.) are well known for their immunostimulatory action. Second, a normal human being hosts a mass of intestinal microorganisms equivalent to about 1 kg. The biomass (mainly due to naturally occurring autolysis) continuously supplies the host's organism with immunostimulatory microbial cell components. Third, the immunostimulatory effects resulting from the oral application of exogenously acting antimicrobial (lytic) enzyme preparations, such as lysozyme and lysosubtilin, are likely to be a result of the action of microbial lysis products. Fourth, cell walls of most microorganisms contain a considerable amount of proteins/peptides, a possible target for exogenous proteolytic enzymes. In fact, several authors have already shown that a number of proteases possess an ability to lyse the microbial cells in vitro. Fifth, the pretreatment of microbial cells (at least of some species) in vitro with proteolytic enzymes makes them more sensitive to the lytic action of lysozyme and, otherwise, pretreatment with lysozyme makes them more susceptible to proteolytic degradation. Sixth, exogenous proteases, when in the intestines, may participate in final steps of food-protein digestion

  9. Growth of Candida boidinii on methanol and the activity of methanol-degrading enzymes as affected from formaldehyde and methylformate.

    Science.gov (United States)

    Aggelis, G; Margariti, N; Kralli, C; Flouri, F

    2000-06-23

    Formaldehyde and methylformate affect the growth of Candida boidinii on methanol and the activity of methanol-degrading enzymes. The presence of both intermediates in the feeding medium caused an increase in biomass yield and productivity and a decrease in the specific rate of methanol consumption. In the presence of formaldehyde, the activity of formaldehyde dehydrogenase and formate dehydrogenase was essentially increased, whereas the activity of methanol oxidase was decreased. On the contrary, the presence of methylformate caused an increase of the activity of methanol oxidase and a decrease of the activity of formaldehyde dehydrogenase and formate dehydrogenase. Interpretations concerning the yeast behavior in the presence of intermediate oxidation products were considered and discussed.

  10. Enhanced production of raw starch degrading enzyme using agro-industrial waste mixtures by thermotolerant Rhizopus microsporus for raw cassava chip saccharification in ethanol production.

    Science.gov (United States)

    Trakarnpaiboon, Srisakul; Srisuk, Nantana; Piyachomkwan, Kuakoon; Sakai, Kenji; Kitpreechavanich, Vichien

    2017-09-14

    In the present study, solid-state fermentation for the production of raw starch degrading enzyme was investigated by thermotolerant Rhizopus microsporus TISTR 3531 using a combination of agro-industrial wastes as substrates. The obtained crude enzyme was applied for hydrolysis of raw cassava starch and chips at low temperature and subjected to nonsterile ethanol production using raw cassava chips. The agro-industrial waste ratio was optimized using a simplex axial mixture design. The results showed that the substrate mixture consisting of rice bran:corncob:cassava bagasse at 8 g:10 g:2 g yielded the highest enzyme production of 201.6 U/g dry solid. The optimized condition for solid-state fermentation was found as 65% initial moisture content, 35°C, initial pH of 6.0, and 5 × 10 6 spores/mL inoculum, which gave the highest enzyme activity of 389.5 U/g dry solid. The enzyme showed high efficiency on saccharification of raw cassava starch and chips with synergistic activities of commercial α-amylase at 50°C, which promotes low-temperature bioethanol production. A high ethanol concentration of 102.2 g/L with 78% fermentation efficiency was achieved from modified simultaneous saccharification and fermentation using cofermentation of the enzymatic hydrolysate of 300 g raw cassava chips/L with cane molasses.

  11. Structure–activity relationships of imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human insulin-degrading enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Charton, Julie; Gauriot, Marion; Totobenazara, Jane; Hennuyer, Nathalie; Dumont, Julie; Bosc, Damien; Marechal, Xavier; Elbakali, Jamal; Herledan, Adrien; Wen, Xiaoan; Ronco, Cyril; Gras-Masse, Helene; Heninot, Antoine; Pottiez, Virginie; Landry, Valerie; Staels, Bart; Liang, Wenguang G.; Leroux, Florence; Tang, Wei-Jen; Deprez, Benoit (INSRM-France); (UC); (IP-France)

    2015-10-30

    Insulin degrading enzyme (IDE) is a zinc metalloprotease that degrades small amyloid peptides such as amyloid-â and insulin. So far the dearth of IDE-specific pharmacological inhibitors impacts the understanding of its role in the physiopathology of Alzheimer's disease, amyloid-â clearance, and its validation as a potential therapeutic target. Hit 1 was previously discovered by high-throughput screening. Here we describe the structure-activity study, that required the synthesis of 48 analogues. We found that while the carboxylic acid, the imidazole and the tertiary amine were critical for activity, the methyl ester was successfully optimized to an amide or a 1,2,4-oxadiazole. Along with improving their activity, compounds were optimized for solubility, lipophilicity and stability in plasma and microsomes. The docking or co-crystallization of some compounds at the exosite or the catalytic site of IDE provided the structural basis for IDE inhibition. The pharmacokinetic properties of best compounds 44 and 46 were measured in vivo. As a result, 44 (BDM43079) and its methyl ester precursor 48 (BDM43124) are useful chemical probes for the exploration of IDE's role.

  12. Enzyme Kinetics By Directly Imaging A Porous Silicon Microfluidic Reactor Using Desorption/Ionization on Silicon Mass Spectrometry

    NARCIS (Netherlands)

    Nichols, K.P.F.; Azoz, Seyla; Gardeniers, Johannes G.E.

    2008-01-01

    Enzyme kinetics were obtained in a porous silicon microfluidic channel by combining an enzyme and substrate droplet, allowing them to react and deposit a small amount of residue on the channel walls, and then analyzing this residue by directly ionizing the channel walls using a matrix assisted laser

  13. Degradation and inhibition of cyclooxygenase

    OpenAIRE

    Neuß, Heiko

    2011-01-01

    The cyclooxygenase (COX) is a central enzyme in the genesis of pain, inflammation and carcinogenesis. Two major isoforms, COX-1 and COX-2, have been described. The COX-1 is constitutively expressed in most tissues and has housekeeping functions, whereas the COX-2 is the inducible isoform, expressed under conditions of inflammation and tumor growth. First, we researched the degradation of the COX-2 enzyme. We were able to demonstrate, that the COX-2 protein was ubiquitinated before prote...

  14. Synthesis of plant cell wall oligosaccharides

    DEFF Research Database (Denmark)

    Clausen, Mads Hartvig

    Plant cell walls are structurally complex and contain a large number of diverse carbohydrate polymers. These plant fibers are a highly valuable bio-resource and the focus of food, energy and health research. We are interested in studying the interplay of plant cell wall carbohydrates with proteins...... for characterizing protein-carbohydrate binding. The presentation will highlight chemical syntheses of plant cell wall oligosaccharides from the group and provide examples from studies of their interactions with proteins....... such as enzymes, cell surface lectins, and antibodies. However, detailed molecular level investigations of such interactions are hampered by the heterogeneity and diversity of the polymers of interest. To circumvent this, we target well-defined oligosaccharides with representative structures that can be used...

  15. Hydrolytic enzymes in the central vacuole of plant cells.

    Science.gov (United States)

    Boller, T; Kende, H

    1979-06-01

    The hydrolase content of vacuoles isolated from protoplasts of suspension-cultured tobacco cells, of tulip petals, and of pineapple leaves, and the sedimentation behavior of tobacco tonoplasts were studied. Three precautions were found to be important for the analysis of vacuolar hydrolases and of the tonoplast. (a) Purification of protoplasts in a Ficoll gradient was necessary to remove cell debris which contained contaminating hydrolases adsorbed from the fungal cell-wall-degrading enzyme preparation. (b) Hydrolase activities in the homogenates of the intact cells or the tissue used and of the purified protoplasts had to be compared to verify the absence of contaminating hydrolases in the protoplast preparation. (c) Vacuoles obtained from the protoplasts by an osmotic shock had to be purified from the lysate in a Ficoll gradient. Since the density of the central vacuole approximates that of the protoplasts, about a 10% contamination of the vacuolar preparation by surviving protoplasts could not be eliminated and had to be taken into account when the distribution of enzymes and of radioactivity was calculated.THE INTRACELLULAR ACTIVITIES OF THE FOLLOWING ACID HYDROLASES WERE PRIMARILY LOCALIZED IN THE VACUOLE OF TOBACCO CELLS: alpha-mannosidase, beta-N-acetylglucosaminidase, beta-fructosidase, nuclease, phosphatase, phosphodiesterase. A similar composition of acid hydrolases was found in vacuoles obtained from protoplasts of tulip petals. Proteinase, a hydrolase with low activity in tobacco cells and tulip petals and therefore difficult to localize unequivocally, was found to be vacuolar in pineapple leaves, a tissue containing high levels of this enzyme. Our data support the hypothesis that the central vacuole of higher plant cells has an enzyme composition analogous to that of the animal lysosome.None of the vacuolar enzymes investigated was found to be bound to the tonoplast. When vacuoles were isolated from cells labeled with radioactive choline, the vacuolar

  16. Purification and Characterization of a Novel β-Cypermethrin-Degrading Aminopeptidase from Pseudomonas aeruginosa GF31.

    Science.gov (United States)

    Tang, Ai-Xing; Liu, Hu; Liu, You-Yan; Li, Qing-Yun; Qing, Yi-Ming

    2017-11-01

    In this study, a novel β-cypermethrin-degrading enzyme was isolated and purified by 32.8 fold from the extracellular cell-free filtrate of Pseudomonas aeruginosa GF31with the protein recovery of 26.6%. The molecular mass of the enzyme was determined to be 53 kDa. The optimum temperature for the activity was surprisingly 60 °C, and moreover, the purified enzyme showed a good pH stability, maintaining over 85% of its initial activity in the pH 5.0-9.0 range. Most of the common metal ions exhibited little influence on the activity except for Hg 2+ , Ag + , and Cu 2+ . After the complete gene sequence of the degrading enzyme was obtained by subcloning, sequence analyses as well as enzymatic properties demonstrated that the islolated enzyme should be an aminopeptidase. This is the first reported aminopeptidase for pyrethroid hydrolase, providing new potential enzyme resources for the degradation of this type of pesticide.

  17. Surface Plasmon Resonance Imaging of the Enzymatic Degradation of Cellulose Microfibrils

    Science.gov (United States)

    Reiter, Kyle; Raegen, Adam; Clarke, Anthony; Lipkowski, Jacek; Dutcher, John

    2012-02-01

    As the largest component of biomass on Earth, cellulose represents a significant potential energy reservoir. Enzymatic hydrolysis of cellulose into fermentable sugars, an integral step in the production of biofuel, is a challenging problem on an industrial scale. More efficient conversion processes may be developed by an increased understanding of the action of the cellulolytic enzymes involved in cellulose degradation. We have used our recently developed quantitative, angle-scanning surface plasmon resonance imaging (SPRi) device to study the degradation of cellulose microfibrils upon exposure to cellulosic enzymes. In particular, we have studied the action of individual enzymes, and combinations of enzymes, from the Hypocrea Jecorina cellulase system on heterogeneous, industrially-relevant cellulose substrates. This has allowed us to define a characteristic time of action for the enzymes for different degrees of surface coverage of the cellulose microfibrils.

  18. Ligninolytic enzyme activities in mycelium of some wild and ...

    African Journals Online (AJOL)

    Lignin is probably one of the most recalcitrant compounds synthesized by plants. This compound is degraded by few microorganisms. White-rot fungi have been extensively studied due to its powerful ligninolytic enzymes. In this study, ligninolytic enzyme activities of different fungal species (six commercial and 13 wild) were ...

  19. The impact of alterations in lignin deposition on cellulose organization of the plant cell wall

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiliang; Kim, Jeong Im; Cusumano, Joanne C.; Chapple, Clint; Venugopalan, Nagarajan; Fischetti, Robert F.; Makowski, Lee

    2016-06-17

    Background: Coordination of synthesis and assembly of the polymeric components of cell walls is essential for plant growth and development. Given the degree of co-mingling and cross-linking among cell wall components, cellulose organization must be dependent on the organization of other polymers such as lignin. Here we seek to identify aspects of that codependency by studying the structural organization of cellulose fibrils in stems from Arabidopsis plants harboring mutations in genes encoding enzymes involved in lignin biosynthesis. Plants containing high levels of G-lignin, S-lignin, H-lignin, aldehyde-rich lignin, and ferulic acid-containing lignin, along with plants with very low lignin content were grown and harvested and longitudinal sections of stem were prepared and dried. Scanning X-ray microdiffraction was carried out using a 5-micron beam that moved across the sections in 5-micron steps and complete diffraction patterns were collected at each raster point. Approximately, 16,000 diffraction patterns were analyzed to determine cellulose fibril orientation and order within the tissues making up the stems. Results: Several mutations-most notably those exhibiting (1) down-regulation of cinnamoyl CoA reductase which leads to cell walls deficient in lignin and (2) defect of cinnamic acid 4-hydroxylase which greatly reduces lignin content-exhibited significant decrease in the proportion of oriented cellulose fibrils in the cell wall. Distinctions between tissues were maintained in all variants and even in plants exhibiting dramatic changes in cellulosic order the trends between tissues (where apparent) were generally maintained. The resilience of cellulose to degradative processes was investigated by carrying out the same analysis on samples stored in water for 30 days prior to data collection. This treatment led to significant loss of cellulosic order in plants rich in aldehyde or H-lignin, less change in wild type, and essentially no change in samples with

  20. Vitellin- and hemoglobin-digesting enzymes in Rhipicephalus (Boophilus) microplus larvae and females.

    Science.gov (United States)

    Estrela, Andréia Bergamo; Seixas, Adriana; Teixeira, Vivian de Oliveira Nunes; Pinto, Antônio Frederico Michel; Termignoni, Carlos

    2010-12-01

    The aim of the present study was to address the involvement of Rhipicephalus microplus larval cysteine endopeptidase (RmLCE) in protein digestion in R. microplus larvae and adult females. In this work, an improved purification protocol for native RmLCE was developed. Partial amino acid sequence of the purified enzyme indicates that it is the same enzyme as Boophilus microplus cathepsin-L1 (BmCL1). When vitellin (Vt) degradation by egg and larval enzymes was analyzed, stage-specific differences for RmLCE activity in comparison to vitellin-degrading cysteine endopeptidase (VTDCE) were observed. RmLCE is also able to degrade host hemoglobin (Hb). In agreement, an acidic cysteine endopeptidase activity was detected in larval gut. It was shown that cysteine and aspartic endopeptidases are involved in Vt and Hb digestion in R. microplus larvae and females. Interestingly, we observed that the aspartic endopeptidase Boophilus yolk cathepsin (BYC) is associated with a cysteine endopeptidase activity, in larvae. Synergic hemoglobin digestion by BYC and RmLCE was observed and indicates the presence of an Hb-degrading enzymatic cascade involving these enzymes. Our results suggest that RmLCE/BmCL1 has a continued role in vitellin and hemoglobin digestion during tick development. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Genetic and biochemical characterization of the GH72 family of cell wall transglycosylases in Neurospora crassa.

    Science.gov (United States)

    Ao, Jie; Free, Stephen J

    2017-04-01

    The Neurospora crassa genome encodes five GH72 family transglycosylases, and four of these enzymes (GEL-1, GEL-2, GEL-3 and GEL-5) have been found to be present in the cell wall proteome. We carried out an extensive genetic analysis on the role of these four transglycosylases in cell wall biogenesis and demonstrated that the transglycosylases are required for the formation of a normal cell wall. As suggested by the proteomic analysis, we found that multiple transglycosylases were being expressed in N. crassa cells and that different combinations of the enzymes are required in different cell types. The combination of GEL-1, GEL-2 and GEL-5 is required for the growth of vegetative hyphae, while the GEL-1, GEL-2, GEL-3 combination is needed for the production of aerial hyphae and conidia. Our data demonstrates that the enzymes are redundant with partially overlapping enzymatic activities, which provides the fungus with a robust cell wall biosynthetic system. Characterization of the transglycosylase-deficient mutants demonstrated that the incorporation of cell wall proteins was severely compromised. Interestingly, we found that the transglycosylase-deficient mutant cell walls contained more β-1,3-glucan than the wild type cell wall. Our results demonstrate that the GH72 transglycosylases are not needed for the incorporation of β-1,3-glucan into the cell wall, but they are required for the incorporation of cell wall glycoprotein into the cell wall. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Roman Brunecky | NREL

    Science.gov (United States)

    enzymes to protein scaffolds. The thermophilic bacterium Caldicellulosiruptor bescii uses an intermediate Systems I am interested in the novel mechanisms by which newly discovered multimodular cellulase enzymes bacteria degrade plant cell walls by secreting free, complementary enzymes that hydrolyze cellulose

  3. Conversion of xylan by recyclable spores of Bacillus subtilis displaying thermophilic enzymes.

    Science.gov (United States)

    Mattossovich, Rosanna; Iacono, Roberta; Cangiano, Giuseppina; Cobucci-Ponzano, Beatrice; Isticato, Rachele; Moracci, Marco; Ricca, Ezio

    2017-11-28

    The Bacillus subtilis spore has long been used to display antigens and enzymes. Spore display can be accomplished by a recombinant and a non-recombinant approach, with the latter proved more efficient than the recombinant one. We used the non-recombinant approach to independently adsorb two thermophilic enzymes, GH10-XA, an endo-1,4-β-xylanase (EC 3.2.1.8) from Alicyclobacillus acidocaldarius, and GH3-XT, a β-xylosidase (EC 3.2.1.37) from Thermotoga thermarum. These enzymes catalyze, respectively, the endohydrolysis of (1-4)-β-D-xylosidic linkages of xylans and the hydrolysis of (1-4)-β-D-xylans to remove successive D-xylose residues from the non-reducing termini. We report that both purified enzymes were independently adsorbed on purified spores of B. subtilis. The adsorption was tight and both enzymes retained part of their specific activity. When spores displaying either GH10-XA or GH3-XT were mixed together, xylan was hydrolysed more efficiently than by a mixture of the two free, not spore-adsorbed, enzymes. The high total activity of the spore-bound enzymes is most likely due to a stabilization of the enzymes that, upon adsorption on the spore, remained active at the reaction conditions for longer than the free enzymes. Spore-adsorbed enzymes, collected after the two-step reaction and incubated with fresh substrate, were still active and able to continue xylan degradation. The recycling of the mixed spore-bound enzymes allowed a strong increase of xylan degradation. Our results indicate that the two-step degradation of xylans can be accomplished by mixing spores displaying either one of two required enzymes. The two-step process occurs more efficiently than with the two un-adsorbed, free enzymes and adsorbed spores can be reused for at least one other reaction round. The efficiency of the process, the reusability of the adsorbed enzymes, and the well documented robustness of spores of B. subtilis indicate the spore as a suitable platform to display enzymes

  4. Biochemical activities of 1,2-dichloroethane (DCA) degrading bacteria

    African Journals Online (AJOL)

    Five indigenous DCA degrading bacterial isolates capable of completely degrading DCA under aerobic conditions recently isolated from South African waste water treatment facilities, were found to belong to the genus Ancylobacter. The specific activities of the enzymes in DCA catabolism were compared with previously ...

  5. Enzyme Engineering for In Situ Immobilization.

    Science.gov (United States)

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  6. Soil degradation effect on biological activity in Mediterranean calcareous soils

    Science.gov (United States)

    Roca-Pérez, L.; Alcover-Sáez, S.; Mormeneo, S.; Boluda, R.

    2009-04-01

    Soil degradation processes include erosion, organic matter decline, compaction, salinization, landslides, contamination, sealing and biodiversity decline. In the Mediterranean region the climatological and lithological conditions, together with relief on the landscape and anthropological activity are responsible for increasing desertification process. It is therefore considered to be extreme importance to be able to measure soil degradation quantitatively. We studied soil characteristics, microbiological and biochemical parameters in different calcareous soil sequences from Valencia Community (Easter Spain), in an attempt to assess the suitability of the parameters measured to reflect the state of soil degradation and the possibility of using the parameters to assess microbiological decline and soil quality. For this purpose, forest, scrubland and agricultural soil in three soil sequences were sampled in different areas. Several sensors of the soil biochemistry and microbiology related with total organic carbon, microbial biomass carbon, soil respiration, microorganism number and enzyme activities were determined. The results show that, except microorganism number, these parameters are good indicators of a soil biological activity and soil quality. The best enzymatic activities to use like indicators were phosphatases, esterases, amino-peptidases. Thus, the enzymes test can be used as indicators of soil degradation when this degradation is related with organic matter losses. There was a statistically significant difference in cumulative O2 uptake and extracellular enzymes among the soils with different degree of degradation. We would like to thank Spanish government-MICINN for funding and support (MICINN, project CGL2006-09776).

  7. INDUCTION OF ENZYME COCKTAILS BY LOW COST CARBON SOURCES FOR PRODUCTION OF MONOSACCHARIDE-RICH SYRUPS FROM PLANT MATERIALS

    Directory of Open Access Journals (Sweden)

    Caroline T. Gilleran

    2010-05-01

    Full Text Available The production of cellulases, hemicellulases, and starch-degrading enzymes by the thermophilic aerobic fungus Talaromyces emersonii under liquid state culture on various food wastes was investigated. A comprehensive enzyme screening was conducted, which resulted in the identification of spent tea leaves as a potential substrate for hydrolytic enzyme production. The potent, polysaccharide-degrading enzyme-rich cocktail produced when tea leaves were utilised as sole carbon source was analysed at a protein and mRNA level and shown to exhibit high level production of key cellulose and hemicellulose degrading enzymes. As presented in this paper, the crude enzyme preparation produced after 120 h growth of Talaromyces emersonii on used tea leaves is capable of hydrolysing other lignocellulosic materials into their component monosaccharides, generating high value sugar syrups with a host of industrial applications including conversion to fuels and chemicals.

  8. Structural biology of starch-degrading enzymes and their regulation

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Svensson, Birte

    2016-01-01

    disproportionating enzyme and a self-stabilised conformation of amylose accommodated in the active site of plant α-glucosidase. Important inhibitor complexes include a flavonol glycoside, montbretin A, binding at the active site of human pancreatic α-amylase and barley limit dextrinase inhibitor binding...

  9. An Integrated Metagenomics/Metaproteomics Investigation of the Microbial Communities and Enzymes in Solid-state Fermentation of Pu-erh tea

    Science.gov (United States)

    Zhao, Ming; Zhang, Dong-lian; Su, Xiao-qin; Duan, Shuang-mei; Wan, Jin-qiong; Yuan, Wen-xia; Liu, Ben-ying; Ma, Yan; Pan, Ying-hong

    2015-01-01

    Microbial enzymes during solid-state fermentation (SSF), which play important roles in the food, chemical, pharmaceutical and environmental fields, remain relatively unknown. In this work, the microbial communities and enzymes in SSF of Pu-erh tea, a well-known traditional Chinese tea, were investigated by integrated metagenomics/metaproteomics approach. The dominant bacteria and fungi were identified as Proteobacteria (48.42%) and Aspergillus (94.98%), through pyrosequencing-based analyses of the bacterial 16S and fungal 18S rRNA genes, respectively. In total, 335 proteins with at least two unique peptides were identified and classified into 28 Biological Processes and 35 Molecular Function categories using a metaproteomics analysis. The integration of metagenomics and metaproteomics data demonstrated that Aspergillus was dominant fungus and major host of identified proteins (50.45%). Enzymes involved in the degradation of the plant cell wall were identified and associated with the soft-rotting of tea leaves. Peroxiredoxins, catalase and peroxidases were associated with the oxidation of catechins. In conclusion, this work greatly advances our understanding of the SSF of Pu-erh tea and provides a powerful tool for studying SSF mechanisms, especially in relation to the microbial communities present. PMID:25974221

  10. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Bartley, Laura [Univ. of Oklahoma, Norman, OK (United States). Dept. of Microbiology and Plant Biology; Wu, Y. [Oklahoma State Univ., Stillwater, OK (United States); Zhu, L. [Oklahoma State Univ., Stillwater, OK (United States); Brummer, E. C. [Noble Foundation, Ardmore, OK (United States); Saha, M. [Noble Foundation, Ardmore, OK (United States)

    2016-05-31

    markers might be used to select switchgrass genotypes with improved composition in breeding programs for biofuel and forage production. Because the SSAC continues to be characterized by collaborators in the bioenergy community, the data generated will be used to identify additional markers in higher resolution genotyping data to approach identifying the genes and alleles that cause natural variation in switchgrass cell wall quality. For example, these markers can be surveyed in the 2100-member Oklahoma Southern and Northern Lowland switchgrass collections that this project also characterized. An orthogonal approach to biodiversity studies, using comparative functional genomics permits systematic querying of how much regulatory information is likely to be transferable from dicots to grasses and use of accumulated functional genomics resources for better-characterized grass species, such as rice, itself a biomass source in global agriculture and in certain regions. The project generated and tested a number of specific hypotheses regarding cell wall transcription factors and enzymes of grasses. To aid identification of cell wall regulators, the project assembled a novel, highdepth and -quality gene association network using a general linearized model scoring system to combine rice gene network data. Using known or putative orthologs of Arabidopsis cell wall biosynthesis genes and regulators, the project pulled from this network a cell wall sub-network that includes 96 transcription factors. Reverse genetics of a co-ortholog of the Arabidopsis MYB61 transcription factor in rice revealed that this regulatory node has evolved the ability to regulate grass-specific cell wall synthesis enzymes. A transcription factor with such activity has not been previously characterized to our knowledge, representing a major conclusion of this work. Changes in gene expression in a protoplast-based assay demonstrated positive or negative roles in cell wall regulation for eleven other

  11. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  12. Host cell capable of producing enzymes useful for degradation of lignocellulosic material

    Energy Technology Data Exchange (ETDEWEB)

    Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schoonneveld-Bergmans, Margot Elisabeth Francoise; Damveld, Robbertus Antonius

    2017-08-22

    The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.

  13. Host cell capable of producing enzymes useful for degradation of lignocellulosic material

    Science.gov (United States)

    Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Damveld, Robbertus Antonius

    2015-08-18

    The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.

  14. Influence of non starch polysaccharide-degrading enzymes on the ...

    African Journals Online (AJOL)

    enzymes on the performance, meat yield, water intake, litter moisture and jejunal digesta viscosity of chicks fed wheat/barley based diet. A total of 195 1-d-old male broiler chicks (Ross 308) were allocated to 5 treatment groups, with 3 replicates per ...

  15. Hydrolytic enzymes in the central vacuole of plant cells

    International Nuclear Information System (INIS)

    Boller, T.; Kende, H.

    1979-01-01

    The hydrolase content of vacuoles isolated from protoplasts of suspension-cultured tobacco cells, of tulip petals, and pineapple leaves, and the sedimentation behavior of tobacco tonoplasts were studied. Three precautions were found to be important for the analysis of vacuolar hydrolases and of the tonoplast: (a) purification of protoplasts in a Ficoll gradient was necessary to remove cell debris which contained contaminating hydrolases adsorbed from the fungal cell-wall-degrading enzyme preparation; (b) hydrolase activities in the homogenates of the intact cells or the tissue used and of the purified protoplasts had to be compared to verify the absence of contaminating hydrolases in the protoplast preparation; and (c) vacuoles obtained from the protoplasts by an osmotic shock had to be purified from the lysate in a Ficoll gradient. Since the density of the central vacuole approximates that of the protoplasts, about a 10% contamination of the vacuolar preparation by surviving protoplasts could not be eliminated. The intracellular activities of the following acid hydrolases were primarily localized in the vacuole of tobacco cells: α-mannosidase, β-N-acetylglucosaminidase, β-fructosidase, nuclease, phosphatase, phosphodiesterase. A similar composition of acid hydrolases was found in vacuoles obtained from protoplasts of tulip petals. Proteinase, a hydrolase with low activity in tobacco cells and tulip petals was found to be vacuolar in pineapple leaves, a tissue containing high levels of this enzyme. None of the vacuolar enzymes investigated ws found to be bound to the tonoplast. When vacuoles were isolated from cells labeled with radioactive choline, the vacuolar membrane was found to contain radioactivity. On sucrose gradients, the label incorporated into tonoplasts banded around a density of 1.10 grams per cubic centimeter

  16. Isolation and screening of strains producing high amounts of rutin degrading enzymes from Fagopyrum tataricum seeds.

    Science.gov (United States)

    Zheng, Ya-Di; Luo, Qing-Lin; Zhou, Mei-Liang; Wang, De-Zhou; Zhang, Ye-Dong; Shao, Ji-Rong; Zhu, Xue-Mei; Tang, Yu

    2013-02-01

    The rutin degrading enzyme (RDE) was isolated and purified from tartary buckwheat seeds. The RDE was purified about 11.34-fold and its final yield was 3.5%, which was very low, due to our purification strategy of giving priority to purity over yield. The RDE molecular weight was estimated to be about 60 kDa. When rutin was used as substrate, an optimal enzyme activity was seen at around pH 5.0 and 40 °C. Strains isolation strategy characterized by the use of rutin as sole carbon source in enrichment cultures was used to isolate RDE-producing strains. Then the active strains were identified by morphology characterization and 18s rDNA-ITS (Internal Transcribed Spacer) gene sequencing. Three isolates coded as B3, W2, Y2 were successfully isolated from fusty Fagopyrum tataricum flour cultures. Strain B3 possessed the highest unit activity among these three strains, and its total activity reached up to 171.0 Unit. The active isolate (B3) could be assigned to Penicillium farinosum. When the Penicillium farinosum strains were added to tartary buckwheat flour cultures at pH 5.0, 30 °C after 5 days fermentation, the quercetin production raised up to 1.78 mg/l, almost 5.1 times higher than the fermentation without the above active strains. Hence, a new approach was available to utilize microorganism-aided fermentation for effective quercetin extraction from Fagopyrum tataricum seeds. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Longevity in vivo of primary cell wall cellulose synthases.

    Science.gov (United States)

    Hill, Joseph Lee; Josephs, Cooper; Barnes, William J; Anderson, Charles T; Tien, Ming

    2018-02-01

    Our work focuses on understanding the lifetime and thus stability of the three main cellulose synthase (CESA) proteins involved in primary cell wall synthesis of Arabidopsis. It had long been thought that a major means of CESA regulation was via their rapid degradation. However, our studies here have uncovered that AtCESA proteins are not rapidly degraded. Rather, they persist for an extended time in the plant cell. Plant cellulose is synthesized by membrane-embedded cellulose synthase complexes (CSCs). The CSC is composed of cellulose synthases (CESAs), of which three distinct isozymes form the primary cell wall CSC and another set of three isozymes form the secondary cell wall CSC. We determined the stability over time of primary cell wall (PCW) CESAs in Arabidopsis thaliana seedlings, using immunoblotting after inhibiting protein synthesis with cycloheximide treatment. Our work reveals very slow turnover for the Arabidopsis PCW CESAs in vivo. Additionally, we show that the stability of all three CESAs within the PCW CSC is altered by mutations in individual CESAs, elevated temperature, and light conditions. Together, these results suggest that CESA proteins are very stable in vivo, but that their lifetimes can be modulated by intrinsic and environmental cues.

  18. Autonomous valve for detection of biopolymer degradation

    DEFF Research Database (Denmark)

    Keller, Stephan Urs; Noeth, Nadine-Nicole; Fetz, Stefanie

    2009-01-01

    We present a polymer microvalve that allows the detection of biopolymer degradation without the need of external energy. The valve is based on a polymer container filled with a colored marker solution and closed by a thin lid. This structure is covered by a film of poly(L-lactide) and degradation...... of the biopolymer triggers the release of the color which is detected visually. The autonomous valve has potential for the fast testing of biopolymer degradation under various environmental conditions or by specific enzymes....

  19. Characterization and mode of action of enzymes degrading galactan structures of arabinogalactans

    NARCIS (Netherlands)

    Vis, van de J.W.

    1994-01-01

    Agricultural biomass consisting mainly of cellulose, hemicellulose and lignin, is a renewable source of fuels and chemicals. An interesting option is enzymic conversion of biomass to readily usable material. To improve the overall economics of enzymic conversion of biomass not only

  20. Dipeptidyl Peptidase IV in Angiotensin-Converting Enzyme Inhibitor–Associated Angioedema

    OpenAIRE

    Byrd, James Brian; Touzin, Karine; Sile, Saba; Gainer, James V.; Yu, Chang; Nadeau, John; Adam, Albert; Brown, Nancy J.

    2007-01-01

    Angioedema is a potentially life-threatening adverse effect of angiotensin-converting enzyme inhibitors. Bradykinin and substance P, substrates of angiotensin-converting enzyme, increase vascular permeability and cause tissue edema in animals. Studies indicate that amino-terminal degradation of these peptides, by aminopeptidase P and dipeptidyl peptidase IV, may be impaired in individuals with angiotensin-converting enzyme inhibitor–associated angioedema. This case-control study tested the hy...

  1. Decolorization of complex dyes and textile effluent by extracellular enzymes of Cyathus bulleri cultivated on agro-residues/domestic wastes and proposed pathway of degradation of Kiton blue A and reactive orange 16.

    Science.gov (United States)

    Vats, Arpita; Mishra, Saroj

    2017-04-01

    In this study, the white-rot fungus Cyathus bulleri was cultivated on low-cost agro-residues, namely wheat bran (WB), wheat straw (WS), and domestic waste orange peel (OP) for production of ligninolytic enzymes. Of the three substrates, WB and OP served as good materials for the production of laccase with no requirement of additional carbon or nitrogen source. Specific laccase activity of 94.4 U mg -1 extracellular protein and 21.01 U mg -1 protein was obtained on WB and OP, respectively. Maximum decolorization rate of 13.6 μmol h -1  U -1 laccase for reactive black 5 and 22.68 μmol h -1  U -1 laccase for reactive orange 16 (RO) was obtained with the WB culture filtrate, and 11.7 μmol h -1  U -1 laccase for reactive violet 5 was observed with OP culture filtrate. Importantly, Kiton blue A (KB), reported not to be amenable to enzymatic degradation, was degraded by culture filtrate borne activities. Products of degradation of KB and RO were identified by mass spectrometry, and a pathway of degradation proposed. WB-grown culture filtrate decolorized and detoxified real and simulated textile effluents by about 40%. The study highlights the use of inexpensive materials for the production of enzymes effective on dyes and effluents.

  2. Genome-wide analysis of pectate-induced gene expression in Botrytis cinerea: identification and functional analysis of putative D-galacturonic acid transporters

    NARCIS (Netherlands)

    Zhang, L.; Hua, C.; Stassen, J.H.M.; Chatterjee, S.; Cornelissen, M.; Kan, van J.A.L.

    2014-01-01

    The fungal plant pathogen Botrytis cinerea produces a spectrum of cell wall degrading enzymes for the decomposition of host cell wall polysaccharides and the consumption of the monosaccharides that are released. Especially pectin is an abundant cell wall component, and the decomposition of pectin by

  3. A coarse-grained model for synergistic action of multiple enzymes on cellulose

    Directory of Open Access Journals (Sweden)

    Asztalos Andrea

    2012-08-01

    Full Text Available Abstract Background Degradation of cellulose to glucose requires the cooperative action of three classes of enzymes, collectively known as cellulases. Endoglucanases randomly bind to cellulose surfaces and generate new chain ends by hydrolyzing β-1,4-D-glycosidic bonds. Exoglucanases bind to free chain ends and hydrolyze glycosidic bonds in a processive manner releasing cellobiose units. Then, β-glucosidases hydrolyze soluble cellobiose to glucose. Optimal synergistic action of these enzymes is essential for efficient digestion of cellulose. Experiments show that as hydrolysis proceeds and the cellulose substrate becomes more heterogeneous, the overall degradation slows down. As catalysis occurs on the surface of crystalline cellulose, several factors affect the overall hydrolysis. Therefore, spatial models of cellulose degradation must capture effects such as enzyme crowding and surface heterogeneity, which have been shown to lead to a reduction in hydrolysis rates. Results We present a coarse-grained stochastic model for capturing the key events associated with the enzymatic degradation of cellulose at the mesoscopic level. This functional model accounts for the mobility and action of a single cellulase enzyme as well as the synergy of multiple endo- and exo-cellulases on a cellulose surface. The quantitative description of cellulose degradation is calculated on a spatial model by including free and bound states of both endo- and exo-cellulases with explicit reactive surface terms (e.g., hydrogen bond breaking, covalent bond cleavages and corresponding reaction rates. The dynamical evolution of the system is simulated by including physical interactions between cellulases and cellulose. Conclusions Our coarse-grained model reproduces the qualitative behavior of endoglucanases and exoglucanases by accounting for the spatial heterogeneity of the cellulose surface as well as other spatial factors such as enzyme crowding. Importantly, it captures

  4. Biodegradation of softwood lignin and guaiacylglycerol-beta-guiacyl ether by extracellular enzyme in shiitake Lentinus edodes (Berk) Sing

    Energy Technology Data Exchange (ETDEWEB)

    Oki, T.; Senba, Y.; Ishikawa, H.

    1982-01-01

    In order to explain the biodegradation of softwood lignin by shiitake (Lentinus edodes Berk. Sing.), akamatsu (Pinus densiflora Sekb. and Zucc.) dioxane lignin (NDL) and guaicylglycerol-beta-guaiacyl ether (I) were degraded by extracellular enzyme from the NDL-contained potato and malt extracts cultures of shiitake TMI-563 and 655 at 25 degrees C for a prolonged period. The main results on the basis of a functional group analysis and gel-filtration of NDL before and after the enzymatic degradation showed that the degraded DL had a higher content of phenolic OH groups than sound lignin, whereas the methoxyl or aromatic aldehyde-yielding group content was lower in the degraded lignin. The main degradation products formed from I in a crude enzyme solution were guaiacol, guaiacylglycerol, guaiacylglycol-beta-guaiacyl ether (II), and guaiacoxyacetoguaiacone (III), although the polymer was formed at pH 4.0, which is the optimum pH of peroxidase and laccase. It also was clarified that the oxidative polymerization of NDL and I occurred preferably in a crude enzyme solution at pH 4.0, and that these compounds were degraded to lower molecular fragments at pH 6.8 under the same conditions. From the above results, it is suggested that softwood lignin is more effectively degraded by the other enzyme than polyphenoloxidase, such as laccase and peroxidase, in a crude enzyme solution of L. edodes. (Refs. 9).

  5. Monitoring of the Enzymatically Catalyzed Degradation of Biodegradable Polymers by Means of Capacitive Field-Effect Sensors.

    Science.gov (United States)

    Schusser, Sebastian; Krischer, Maximilian; Bäcker, Matthias; Poghossian, Arshak; Wagner, Patrick; Schöning, Michael J

    2015-07-07

    Designing novel or optimizing existing biodegradable polymers for biomedical applications requires numerous tests on the effect of substances on the degradation process. In the present work, polymer-modified electrolyte-insulator-semiconductor (PMEIS) sensors have been applied for monitoring an enzymatically catalyzed degradation of polymers for the first time. The thin films of biodegradable polymer poly(D,L-lactic acid) and enzyme lipase were used as a model system. During degradation, the sensors were read-out by means of impedance spectroscopy. In order to interpret the data obtained from impedance measurements, an electrical equivalent circuit model was developed. In addition, morphological investigations of the polymer surface have been performed by means of in situ atomic force microscopy. The sensor signal change, which reflects the progress of degradation, indicates an accelerated degradation in the presence of the enzyme compared to hydrolysis in neutral pH buffer media. The degradation rate increases with increasing enzyme concentration. The obtained results demonstrate the potential of PMEIS sensors as a very promising tool for in situ and real-time monitoring of degradation of polymers.

  6. Degradation and Moisture Absorption Study of Potato-starch Linear ...

    African Journals Online (AJOL)

    Composite of linear low density polyethylene (LLDPE) and potato-starch was produced and subjected to degradation studies with the agencies of enzymes, exposure to weather and immersion in water. Enzymatic hydrolysis degraded the matrix to an extent greater than 40% loss in strength and about 20% loss in ...

  7. Chapter 5: Organopollutant Degradation by Wood Decay Basidiomycetes

    Science.gov (United States)

    Yitzhak Hadar; Daniel Cullen

    2013-01-01

    Wood decay fungi are obligate aerobes, deriving nutrients from the biological ‘combustion’ of wood, using molecular oxygen as terminal electron acceptor (Kirk and Farrell 1987; Blanchette 1991). Non-specific extracellular enzymes are generally viewed as key components in lignin depolymerization. The major enzymes implicated in lignin degradation are lignin peroxidase (...

  8. Cytokinin oxidase or dehydrogenase? Mechanism of cytokinin degradation in cereals

    DEFF Research Database (Denmark)

    Galuszka, P.; Frebort, I.; Sebela, M.

    2001-01-01

    An enzyme degrading cytokinins with isoprenoid side chain, previously named cytokinin oxidase, was purified to near homogeneity from wheat and barley grains. New techniques were developed for the enzyme activity assay and staining on native electrophoretic gels to identify the protein. The purifi...

  9. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    of fermentable sugars (glucose) as cellulose is tightly linked to hemicellulose and lignin. Lignocellulose is disrupted during pretreatment, but to degrade cellulose to single sugars, lignocellulolytic enzymes such as cellulases and hemicellulases are needed. Lignocellulolytic enzymes are costly...... for the ioethanol production, but the expenses can be reduced by using thermostable enzymes, which are known for their increased stability and inhibitor olerance. However, the advantage of using thermostable enzymes has not been studied thoroughly and more knowledge is needed for development of bioethanol processes....... Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...

  10. Investigation of the indigenous fungal community populating barley grains: Secretomes and xylanolytic potential

    DEFF Research Database (Denmark)

    Sultan, Abida; Frisvad, Jens Christian; Andersen, Birgit

    2017-01-01

    The indigenous fungal species populating cereal grains produce numerous plant cell wall-degrading enzymes including xylanases, which could play important role in plant-pathogen interactions and in adaptation of the fungi to varying carbon sources. To gain more insight into the grain surface......-associated enzyme activity, members of the populating fungal community were isolated, and their secretomes and xylanolytic activities assessed. Twenty-seven different fungal species were isolated from grains of six barley cultivars over different harvest years and growing sites. The isolated fungi were grown...... on medium containing barley flour or wheat arabinoxylan as sole carbon source. Their secretomes and xylanase activities were analyzed using SDS-PAGE and enzyme assays and were found to vary according to species and carbon source. Secretomes were dominated by cell wall degrading enzymes with xylanases...

  11. STRUCTURAL PERFORMANCE OF DEGRADED REINFORCED CONCRETE MEMBERS

    International Nuclear Information System (INIS)

    Braverman, J.I.; Miller, C.A.; Ellingwood, B.R.; Naus, D.J.; Hofmayer, C.H.; Bezler, P.; Chang, T.Y.

    2001-01-01

    This paper describes the results of a study to evaluate, in probabilistic terms, the effects of age-related degradation on the structural performance of reinforced concrete members at nuclear power plants. The paper focuses on degradation of reinforced concrete flexural members and shear walls due to the loss of steel reinforcing area and loss of concrete area (cracking/spalling). Loss of steel area is typically caused by corrosion while cracking and spalling can be caused by corrosion of reinforcing steel, freeze-thaw, or aggressive chemical attack. Structural performance in the presence of uncertainties is depicted by a fragility (or conditional probability of failure). The effects of degradation on the fragility of reinforced concrete members are calculated to assess the potential significance of various levels of degradation. The fragility modeling procedures applied to degraded concrete members can be used to assess the effects of degradation on plant risk and can lead to the development of probability-based degradation acceptance limits

  12. CELL-WALL DEGRADING ENZYMES OF AQUATIC HYPHOMYCETES: A REVIEW. (U915444)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane.

    Science.gov (United States)

    Kaur, Harsimran; Kapoor, Shammi; Kaur, Gaganjyot

    2016-10-01

    Lindane, a broad-spectrum organochlorine pesticide, has caused a widespread environmental contamination along with other pesticides due to wrong agricultural practices. The high efficiency, sustainability and eco-friendly nature of the bioremediation process provide an edge over traditional physico-chemical remediation for managing pesticide pollution. In the present study, lindane degradation was studied by using a white-rot fungus, Ganoderma lucidum GL-2 strain, grown on rice bran substrate for ligninolytic enzyme induction at 30 °C and pH 5.6 after incorporation of 4 and 40 ppm lindane in liquid as well as solid-state fermentation. The estimation of lindane residue was carried out by gas chromatography coupled to mass spectrometry (GC-MS) in the selected ion monitoring mode. In liquid-state fermentation, 100.13 U/ml laccase, 50.96 U/ml manganese peroxidase and 17.43 U/ml lignin peroxidase enzymes were obtained with a maximum of 75.50 % lindane degradation on the 28th day of incubation period, whereas under the solid-state fermentation system, 156.82 U/g laccase, 80.11 U/g manganese peroxidase and 18.61 U/g lignin peroxidase enzyme activities with 37.50 % lindane degradation were obtained. The lindane incorporation was inhibitory to the production of ligninolytic enzymes and its own degradation but was stimulatory for extracellular protein production. The dialysed crude enzyme extracts of ligninolytic enzymes were though efficient in lindane degradation during in vitro studies, but their efficiencies tend to decrease with an increase in the incubation period. Hence, lindane-degrading capabilities of G. lucidum GL-2 strain make it a potential candidate for managing lindane bioremediation at contaminated sites.

  14. Isolation and characterization of mesophilic, oxalate-degrading Streptomyces from plant rhizosphere and forest soils

    Science.gov (United States)

    Sahin, Nurettin

    2004-10-01

    The present work was aimed at the isolation of additional new pure cultures of oxalate-degrading Streptomyces and its preliminary characterization for further work in the field of oxalate metabolism and taxonomic studies. Mesophilic, oxalate-degrading Streptomyces were enriched and isolated from plant rhizosphere and forest soil samples. Strains were examined for cultural, morphological (spore chain morphology, spore mass colour, diffusible and melanin pigment production), physiological (antibiosis, growth in the presence of inhibitory compounds, assimilation of organic acids and enzyme substrates) and chemotaxonomic characters (cellular lipid components and diagnostic cell-wall diamino acid). The taxonomic data obtained were analysed by using the simple matching (SSM) and Jaccard (SJ) coefficients, clustering was achieved using the UPGMA algorithm. All strains were able to utilize sodium-, potassium-, calcium- and ammonium-oxalate salts. Based on the results of numerical taxonomy, isolates were grouped into five cluster groups with a ≥70% SSM similarity level. Streptomyces rochei was the most common of the cluster groups, with a Willcox probability of P>0.8. Streptomyces antibioticus, S. anulatus, S. fulvissimus, S. halstedii and S. violaceusniger are newly reported as oxalate-utilizing Streptomyces.

  15. Fabrication of highly electro catalytic active layer of multi walled carbon nanotube/enzyme for Pt-free dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Arbab, Alvira Ayoub, E-mail: alvira_arbab@yahoo.com [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Sun, Kyung Chul, E-mail: hytec@hanyang.ac.kr [Department of Fuel cells and hydrogen technology, Hanyang University, Seoul 133-791 (Korea, Republic of); Sahito, Iftikhar Ali, E-mail: iftikhar.sahito@faculty.muet.edu.pk [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Qadir, Muhammad Bilal, E-mail: bilal_ntu81@hotmail.com [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeong, Sung Hoon, E-mail: shjeong@hanyang.ac.kr [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-09-15

    Graphical abstract: - Highlights: • We prepared three different types of enzyme dispersed multiwall carbon nanotube (E-MWCNT) layer for application in Pt-free dye sensitized solar cell (DSSCs). • E-MWCNT catalysts exhibited an extremely good electro-catalytic activity (ECA), compared with the conventional catalyst, when synthesized with lipase enzyme. • E-MWCNT as counter electrode exhibits a high power conversion efficiency (PCE) of 7.5%, which can be compared to 8% efficiency of Pt catalyst. - Abstract: Highly dispersed conductive suspensions of multi walled carbon nanotubes (MWCNT) can have intrinsic electrical and electrochemical characteristics, which make them useful candidate for platinum (Pt)-free, dye sensitized solar cells (DSSCs). High energy conversion efficiency of 7.52% is demonstrated in DSSCs, based on enzyme dispersed MWCNT (E-MWCNT) layer deposited on fluorine doped tin oxide (FTO) glass. The E-MWCNT layer shows a pivotal role as platform to reduce large amount of iodide species via electro catalytically active layer, fabricated by facile tape casting under air drying technique. The E-MWCNT layer with large surface area, high mechanical adhesion, and good interconnectivity is derived from an appropriate enzyme dispersion, which provides not only enhanced interaction sites for the electrolyte/counter electrode interface but also improved electron transport mechanism. The surface morphology and structural characterization were investigated using field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy and electronic microscopy techniques. Electro catalytic activity (ECA) and electrochemical properties of E-MWCNT counter electrode (CE) were investigated using cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) measurements. The high power conversion efficiency (PCE) of E-MWCNT CE is associated with the low charge transfer

  16. Fabrication of highly electro catalytic active layer of multi walled carbon nanotube/enzyme for Pt-free dye sensitized solar cells

    International Nuclear Information System (INIS)

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-01-01

    Graphical abstract: - Highlights: • We prepared three different types of enzyme dispersed multiwall carbon nanotube (E-MWCNT) layer for application in Pt-free dye sensitized solar cell (DSSCs). • E-MWCNT catalysts exhibited an extremely good electro-catalytic activity (ECA), compared with the conventional catalyst, when synthesized with lipase enzyme. • E-MWCNT as counter electrode exhibits a high power conversion efficiency (PCE) of 7.5%, which can be compared to 8% efficiency of Pt catalyst. - Abstract: Highly dispersed conductive suspensions of multi walled carbon nanotubes (MWCNT) can have intrinsic electrical and electrochemical characteristics, which make them useful candidate for platinum (Pt)-free, dye sensitized solar cells (DSSCs). High energy conversion efficiency of 7.52% is demonstrated in DSSCs, based on enzyme dispersed MWCNT (E-MWCNT) layer deposited on fluorine doped tin oxide (FTO) glass. The E-MWCNT layer shows a pivotal role as platform to reduce large amount of iodide species via electro catalytically active layer, fabricated by facile tape casting under air drying technique. The E-MWCNT layer with large surface area, high mechanical adhesion, and good interconnectivity is derived from an appropriate enzyme dispersion, which provides not only enhanced interaction sites for the electrolyte/counter electrode interface but also improved electron transport mechanism. The surface morphology and structural characterization were investigated using field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy and electronic microscopy techniques. Electro catalytic activity (ECA) and electrochemical properties of E-MWCNT counter electrode (CE) were investigated using cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) measurements. The high power conversion efficiency (PCE) of E-MWCNT CE is associated with the low charge transfer

  17. Development of monoclonal antibodies and quantitative ELISAs targeting insulin-degrading enzyme

    Directory of Open Access Journals (Sweden)

    Dickson Dennis W

    2009-10-01

    Full Text Available Abstract Background Insulin-degrading enzyme (IDE is a widely studied zinc-metalloprotease implicated in the pathogenesis of type 2 diabetes mellitus, Alzheimer disease (AD and varicella zoster virus infection. Despite more than six decades of research on IDE, progress has been hampered by the lack of well-characterized reagents targeting this biomedically important protease. To address this important need, we generated and characterized new mouse monoclonal antibodies (mAbs targeting natively folded human and rodent IDE. Results Eight monoclonal hybridoma cell lines were derived in house from mice immunized with full-length, natively folded, recombinant human IDE. The mAbs derived from these lines were shown to detect IDE selectively and sensitively by a wide range of methods. Two mAbs in particular—designated 6A1 and 6H9—proved especially selective for IDE in immunocytochemical and immunohistochemical applications. Using a variety of methods, we show that 6A1 selectively detects both human and rodent IDE, while 6H9 selectively detects human, but not rodent, IDE, with both mAbs showing essentially no cross reactivity with other proteins in these applications. Using these novel anti-IDE mAbs, we also developed sensitive and quantitative sandwich ELISAs capable of quantifying IDE levels present in human brain extracts. Conclusion We succeeded in developing novel mAbs that selectively detect rodent and/or human IDE, which we have shown to be suitable for a wide range of applications, including western blotting, immunoprecipitation, immunocytochemistry, immunohistochemistry, and quantitative sandwich ELISAs. These novel anti-IDE mAbs and the assays derived from them constitute important new tools for addressing many unresolved questions about the basic biology of IDE and its role in multiple highly prevalent human diseases.

  18. Microbial P450 Enzymes in Bioremediation and Drug Discovery: Emerging Potentials and Challenges.

    Science.gov (United States)

    Bhattacharya, Sukanta S; Yadav, Jagjit S

    2018-01-01

    Cytochrome P450 enzymes are a structurally conserved but functionally diverse group of heme-containing mixed function oxidases found across both prokaryotic and eukaryotic forms of the microbial world. Microbial P450s are known to perform diverse functions ranging from the synthesis of cell wall components to xenobiotic/drug metabolism to biodegradation of environmental chemicals. Conventionally, many microbial systems have been reported to mimic mammalian P450-like activation of drugs and were proposed as the in-vitro models of mammalian drug metabolism. Recent reports suggest that native or engineered forms of specific microbial P450s from these and other microbial systems could be employed for desired specific biotransformation reactions toward natural and synthetic (drug) compounds underscoring their emerging potential in drug improvement and discovery. On the other hand, microorganisms particularly fungi and actinomycetes have been shown to possess catabolic P450s with unusual potential to degrade toxic environmental chemicals including persistent organic pollutants (POPs). Wood-rotting basidiomycete fungi in particular have revealed the presence of exceptionally large P450 repertoire (P450ome) in their genomes, majority of which are however orphan (with no known function). Our pre- and post-genomic studies have led to functional characterization of several fungal P450s inducible in response to exposure to several environmental toxicants and demonstration of their potential in bioremediation of these chemicals. This review is an attempt to summarize the postgenomic unveiling of this versatile enzyme superfamily in microbial systems and investigation of their potential to synthesize new drugs and degrade persistent pollutants, among other biotechnological applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. An Investigation into the Gastrointestinal Stability of Exenatide in the Presence of Pure Enzymes, Everted Intestinal Rings and Intestinal Homogenates.

    Science.gov (United States)

    Sun, Yanan; Wang, Mengshu; Sun, Bingxue; Li, Feng; Liu, Shubo; Zhang, Yong; Zhou, Yan; Chen, Yan; Kong, Wei

    2016-01-01

    The purpose of this study was to investigate the gastrointestinal stability of exenatide to determine the key factor(s) contributing to peptide degradation during the oral delivery process. The effects of pH and various digestive enzymes on the degradation kinetics of exenatide were determined. Moreover, the degradation clearances of peptide were also examined using rat everted intestinal rings and intestinal homogenates from various intestinal locations. Exenatide was comparatively stable within a pH range of 1.2-8. However, obvious degradation was observed in the presence of digestive enzymes. The order of enzymes, in terms of ability to degradate exenatide, was chymotrypsin>aminopeptidase N>carboxypeptidase A>trypsin>pepsin. Chymotrypsin showed the greatest ability to degrade exenatide (half-life t1/2, 5.784×10(-2) h), whereas aminopeptidase N and carboxylpeptidase A gave t1/2 values of 3.53 and 10.16 h, respectively. The degradation of exenatide was found to be peptide concentration- and intestinal site-dependent, with a lower clearance in the upper part of the duodenum and the lower part of the ileum. When using intestinal homogenates as enzyme sources, the order, in terms of peptide degradation ability, was ileum>jejunum>duodenum. However, no significant difference was observed in the remaining peptide concentrations throughout 2 h of incubation, which may be due to the involvement of cytosolic enzymes. These results revealed key factors contributing to peptide degradation, and suggest that the inhibition of chymotrypsin and site-specific delivery of exenatide might be advantageous in overcoming metabolic obstacles during its oral delivery.

  20. Microbial Activity and Silica Degradation in Rice Straw

    Science.gov (United States)

    Kim, Esther Jin-kyung

    Abundantly available agricultural residues like rice straw have the potential to be feedstocks for bioethanol production. Developing optimized conditions for rice straw deconstruction is a key step toward utilizing the biomass to its full potential. One challenge associated with conversion of rice straw to bioenergy is its high silica content as high silica erodes machinery. Another obstacle is the availability of enzymes that hydrolyze polymers in rice straw under industrially relevant conditions. Microbial communities that colonize compost may be a source of enzymes for bioconversion of lignocellulose to products because composting systems operate under thermophilic and high solids conditions that have been shown to be commercially relevant. Compost microbial communities enriched on rice straw could provide insight into a more targeted source of enzymes for the breakdown of rice straw polysaccharides and silica. Because rice straw is low in nitrogen it is important to understand the impact of nitrogen concentrations on the production of enzyme activity by the microbial community. This study aims to address this issue by developing a method to measure microbial silica-degrading activity and measure the effect of nitrogen amendment to rice straw on microbial activity and extracted enzyme activity during a high-solids, thermophilic incubation. An assay was developed to measure silica-degrading enzyme or silicase activity. This process included identifying methods of enzyme extraction from rice straw, identifying a model substrate for the assay, and optimizing measurement techniques. Rice straw incubations were conducted with five different levels of nitrogen added to the biomass. Microbial activity was measured by respiration and enzyme activity. A microbial community analysis was performed to understand the shift in community structure with different treatments. With increased levels of nitrogen, respiration and cellulose and hemicellulose degrading activity

  1. [Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8].

    Science.gov (United States)

    Li, Hong-ya; Li, Shu-na; Wang, Shu-xiang; Wang, Quan; Xue, Yin-yin; Zhu, Bao-cheng

    2015-05-01

    Microbial degradation of lignocellulose is one of the key problems that need to be solved urgently in the process of utilizing biomass resource. Bacillus amyloliquefaciens MN-8 is our previously isolated bacterium capable of degrading lignin. To determine the capability of strain MN-8 to degrade lignocellulose of corn straw, B. amyloliquefaciens MN-8 was inoculated and fermented with solid-state corn straw powder-MSM culture medium. The changes in the enzyme activity and degradation products of lignocellulose were monitored in the process of fermentation using the FTIR and GC/MS. The results showed that B. amyloliquefaciens MN-8 could produce lignin peroxidase, manganese peroxidase, cellulase and hemicellulase enzymes. The activities of all these enzymes reached the peak after being incubated for 10-16 days, and the highest enzyme activities were 55.0, 16.7, 45.4 and 60.5 U · g(-1), respectively. After 24 d of incubation, the degradation percentages of lignin, cellulose and hemicellulose were up to 42.9%, 40.6% and 27.1%, respectively. The spectroscopic data by FTIR indicated that the intensities of characteristic absorption peaks of lignin, cellulose and hemicellulose of the corn straw were decreased, indicating that the lignocellulose was degraded partly after being fermented by B. amyloliquefaciens MN-8. GC/MS analysis also demonstrated that strain MN-8 could degrade lignocellulose efficiently. It could depolymerize lignin into some monomeric compounds with retention of phenylpropane structure unit, such as amphetamine, benzene acetone and benzene propanoic acids, by the rupture of β-O-4 bond connected between lignin monomer, and it further oxidized some monomer compounds into Cα carbonyl compounds, such as 2-amino-1-benzeneacetone and 4-hydroxy-3,5-dimethoxy-acetophenone. The GC/MS analysis of the degradation products of cellulose and hemicellulose showed that there were not only monosaccharide compounds, such as glucose, mannose and galactose, but also some

  2. Poly(lactide)-containing multifunctional nanoparticles: Synthesis, domain-selective degradation and therapeutic applicability

    Science.gov (United States)

    Samarajeewa, Sandani

    Construction of nanoassemblies from degradable components is desired for packaging and controlled release of active therapeutics, and eventual biodegradability in vivo. In this study, shell crosslinked micelles composed of biodegradable poly(lactide) (PLA) core were prepared by the self-assembly of an amphiphilic diblock copolymer synthesized by a combination of ring opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. Enzymatic degradation of the PLA cores of the nanoparticles was achieved upon the addition of proteinase K (PK). Kinetic analyses and comparison of the properties of the nanomaterials as a function of degradation extent will be discussed. Building upon our findings from selective-excavation of the PLA core, enzyme- and redox-responsive nanoparticles were constructed for the encapsulation and stimuli-responsive release of an antitumor drug. This potent chemotherapeutic, otherwise poorly soluble in water was dispersed into aqueous solution by the supramolecular co-assembly with an amphiphilic block copolymer, and the release from within the core of these nanoparticles were gated by crosslinking the hydrophilic shell region with a reduction-responsive crosslinker. Enzyme- and reduction-triggered release behavior of the antitumor drug was demonstrated along with their remarkably high in vitro efficacy. As cationic nanoparticles are a promising class of transfection agents for nucleic acid delivery, in the next part of the study, synthetic methodologies were developed for the conversion of the negatively-charged shell of the enzymatically-degradable shell crosslinked micelles to positively-charged cationic nanoparticles for the complexation of nucleic acids. These degradable cationic nanoparticles were found to efficiently deliver and transfect plasmid DNA in vitro. The hydrolysis of the PLA core and crosslinkers of the nanocarriers may provide a mechanism for their programmed disassembly within

  3. Microbial genetic engineering and enzyme technology

    Energy Technology Data Exchange (ETDEWEB)

    Hollenberg, C.P.; Sahm, H.

    1987-01-01

    In a series of up-to-date contributions BIOTEC 1 has experts discussing the current topics in microbial gene technology and enzyme technology and speculating on future developments. Bacterial and yeast systems for the production of interferons, growth hormone or viral antigenes are described as well as the impact of gene technology on plants. Exciting is the prospect of degrading toxic compounds in our environment by microorganisms tuned in the laboratory. Enzymes are the most effective catalysts we know. They exhibit a very high substrate- and stereospecificity. These properties make enzymes extremely attractive as industrial catalysts, leading to new production processes that are non-polluting and save both energy and raw materials. (orig.) With 135 figs., 36 tabs.

  4. Synergism between ultrasonic pretreatment and white rot fungal enzymes on biodegradation of wheat chaff.

    Science.gov (United States)

    Sabarez, Henry; Oliver, Christine Maree; Mawson, Raymond; Dumsday, Geoff; Singh, Tanoj; Bitto, Natalie; McSweeney, Chris; Augustin, Mary Ann

    2014-11-01

    Lignocellulosic biomass samples (wheat chaff) were pretreated by ultrasound (US) (40kHz/0.5Wcm(-2)/10min and 400kHz/0.5Wcm(-2)/10min applied sequentially) prior to digestion by enzyme extracts obtained from fermentation of the biomass with white rot fungi (Phanerochaete chrysosporium or Trametes sp.). The accessibility of the cellulosic components in wheat chaff was increased, as demonstrated by the increased concentration of sugars produced by exposure to the ultrasound treatment prior to enzyme addition. Pretreatment with ultrasound increased the concentration of lignin degradation products (guaiacol and syringol) obtained from wheat chaff after enzyme addition. In vitro digestibility of wheat chaff was also enhanced by the ultrasonics pretreatment in combination with treatment with enzyme extracts. Degradation was enhanced with the use of a mixture of the enzyme extracts compared to that for a single enzyme extract. Copyright © 2014. Published by Elsevier B.V.

  5. Discovery and characterization of surface binding sites in polysaccharide converting enzymes

    DEFF Research Database (Denmark)

    Wilkens, Casper

    Enzymes that act on various polysaccharides are widespread in any domain of life and they play a role in degradation, modification, and synthesis of carbohydrates. These carbohydrate active enzymes interact with their substrate (the polysaccharide) at the active site and often at so called subsites...

  6. EFFECT OF DIETARY SUPPLEMENTATION OF NON-STARCH POLYSACCHARIDE DEGRADING ENZYMES ON GROWTH PERFORMANCE OF BROILER CHICKS

    Directory of Open Access Journals (Sweden)

    M. A. Nadeem, M. I. Anjum, A. G. Khan and A. Azim

    2005-10-01

    Full Text Available An experiment was conducted to study the performance and carcass parameters of broilers chicks fed diets with and without supplementing non-starch polysaccharide degrading enzymes (NSPDE at the rate of 0.5 g/kg diet. A total of 300 day-old broiler chicks were randomly divided into 12 sets (replicates each comprising 25 chicks and three sets per treatment group, reared on deep litter from 1-42 days post-hatch. Group A was fed diets without NSPDE supplementation, while group B was fed diets supplemented with NSPDE (0.5 g/kg. Group C was fed diets containing 50 kcal/kg less metabolizable energy (ME without NSPDE and group D was fed diets having 50 kcal/kg less ME with NSPDE (0.5 g/kg supplementation. Feed and water were provided ad libitum. Feed intake and feed conversion ratio (FCR from 1-28 days and 1-42 days was significantly (p<0.05 improved in chicks fed NSPDE supplemented diets (groups B and D compared to non-supplemented diets (groups A and C. However, during 29-42 days of growing period enzymes supplementation did not influence feed intake and FCR. Body weight gain, dressing percentage and relative weights of heart, gizzard and shank at 42 days of age was found to be non-significantly different among all groups. However, liver weight reduced significantly (p<0.05 in NSPDE supplemented groups. The study suggested that NSPDE supplementation was beneficial in enhancing feed utilization during the starter phase, while its effects on weight gain, dressing percentage and weights of organs, except liver weight, were found to be non-significant.

  7. RNA degradation in Archaea and Gram-negative bacteria different from Escherichia coli.

    Science.gov (United States)

    Evguenieva-Hackenberg, Elena; Klug, Gabriele

    2009-01-01

    Exoribonucleolytic and endoribonucleolytic activities are important for controlled degradation of RNA and contribute to the regulation of gene expression at the posttranscriptional level by influencing the half-lives of specific messenger RNAs. The RNA half-lives are determined by the characteristics of the RNA substrates and by the availability and the properties of the involved proteins-ribonucleases and assisting polypeptides. Much is known about RNA degradation in Eukarya and Bacteria, but there is limited information about RNA-degrading enzymes and RNA destabilizing or stabilizing elements in the domain of the Archaea. The recent progress in the understanding of the structure and function of the archaeal exosome, a protein complex with RNA-degrading and RNA-tailing capabilities, has given some first insights into the mechanisms of RNA degradation in the third domain of life and into the evolution of RNA-degrading enzymes. Moreover, other archaeal RNases with degrading potential have been described and a new mechanism for protection of the 5'-end of RNA in Archaea was discovered. Here, we summarize the current knowledge on RNA degradation in the Archaea. Additionally, RNA degradation mechanisms in Rhodobacter capsulatus and Pseudomonas syringae are compared to those in the major model organism for Gram-negatives, Escherichia coli, which dominates our view on RNA degradation in Bacteria.

  8. Enzymatic Systems for Cellulose Acetate Degradation

    Directory of Open Access Journals (Sweden)

    Oskar Haske-Cornelius

    2017-09-01

    Full Text Available Cellulose acetate (CA-based materials, like cigarette filters, contribute to landscape pollution challenging municipal authorities and manufacturers. This study investigates the potential of enzymes to degrade CA and to be potentially incorporated into the respective materials, enhancing biodegradation. Deacetylation studies based on Liquid Chromatography-Mass Spectrometry-Time of Flight (LC-MS-TOF, High Performance Liquid Chromatography (HPLC, and spectrophotometric analysis showed that the tested esterases were able to deacetylate the plasticizer triacetin (glycerol triacetate and glucose pentaacetate (cellulose acetate model compound. The most effective esterases for deacetylation belong to the enzyme family 2 (AXE55, AXE 53, GAE, they deacetylated CA with a degree of acetylation of up to 1.8. A combination of esterases and cellulases showed synergistic effects, the absolute glucose recovery for CA 1.8 was increased from 15% to 28% when an enzymatic deacetylation was performed. Lytic polysaccharide monooxygenase (LPMO, and cellobiohydrolase were able to cleave cellulose acetates with a degree of acetylation of up to 1.4, whereas chitinase showed no activity. In general, the degree of substitution, chain length, and acetyl group distribution were found to affect CA degradation. This study shows that, for a successful enzyme-based deacetylation system, a cocktail of enzymes, which will randomly cleave and generate shorter CA fragments, is the most suitable.

  9. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products

    DEFF Research Database (Denmark)

    Lange, Lene

    2017-01-01

    Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme treatm...... contributed to mycology and environmental research? Future perspectives and approaches are listed, highlighting the importance of fungi in development of the bioeconomy.......Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme...... treatment. Such processes reflect inherent characteristics of the fungal way of life, namely, that fungi as heterotrophic organisms must break down complex carbon structures of organic materials to satisfy their need for carbon and nitrogen for growth and reproduction. This chapter describes major steps...

  10. Two endogenous proteins that induce cell wall extension in plants

    Science.gov (United States)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  11. The earthworm Aporrectodea caliginosa stimulates abundance and activity of phenoxyalkanoic acid herbicide degraders

    Science.gov (United States)

    Liu, Ya-Jun; Zaprasis, Adrienne; Liu, Shuang-Jiang; Drake, Harold L; Horn, Marcus A

    2011-01-01

    2-Methyl-4-chlorophenoxyacetic acid (MCPA) is a widely used phenoxyalkanoic acid (PAA) herbicide. Earthworms represent the dominant macrofauna and enhance microbial activities in many soils. Thus, the effect of the model earthworm Aporrectodea caliginosa (Oligochaeta, Lumbricidae) on microbial MCPA degradation was assessed in soil columns with agricultural soil. MCPA degradation was quicker in soil with earthworms than without earthworms. Quantitative PCR was inhibition-corrected per nucleic acid extract and indicated that copy numbers of tfdA-like and cadA genes (both encoding oxygenases initiating aerobic PAA degradation) in soil with earthworms were up to three and four times higher than without earthworms, respectively. tfdA-like and 16S rRNA gene transcript copy numbers in soil with earthworms were two and six times higher than without earthworms, respectively. Most probable numbers (MPNs) of MCPA degraders approximated 4 × 105 gdw−1 in soil before incubation and in soil treated without earthworms, whereas MPNs of earthworm-treated soils were approximately 150 × higher. The aerobic capacity of soil to degrade MCPA was higher in earthworm-treated soils than in earthworm-untreated soils. Burrow walls and 0–5 cm depth bulk soil displayed higher capacities to degrade MCPA than did soil from 5–10 cm depth bulk soil, expression of tfdA-like genes in burrow walls was five times higher than in bulk soil and MCPA degraders were abundant in burrow walls (MPNs of 5 × 107 gdw−1). The collective data indicate that earthworms stimulate abundance and activity of MCPA degraders endogenous to soil by their burrowing activities and might thus be advantageous for enhancing PAA degradation in soil. PMID:20740027

  12. Cellulose-binding domains: tools for innovation in cellulosic fibre production and modification

    NARCIS (Netherlands)

    Quentin, M.G.E.; Valk, van der H.C.P.M.; Dam, van J.E.G.; Jong, de E.

    2003-01-01

    Plant cell walls are composed of cellulose, nature's most abundant macromolecule, and therefore represent a renewable resource of special technical importance. Cellulose degrading enzymes involved in plant cell wall loosening (expansins), or produced by plant pathogenic microorganisms (cellulases),

  13. Degradation of Aflatoxins by Means of Laccases from Trametes versicolor: An In Silico Insight

    Directory of Open Access Journals (Sweden)

    Luca Dellafiora

    2017-01-01

    Full Text Available Mycotoxins are secondary metabolites of fungi that contaminate food and feed, and are involved in a series of foodborne illnesses and disorders in humans and animals. The mitigation of mycotoxin content via enzymatic degradation is a strategy to ensure safer food and feed, and to address the forthcoming issues in view of the global trade and sustainability. Nevertheless, the search for active enzymes is still challenging and time-consuming. The in silico analysis may strongly support the research by providing the evidence-based hierarchization of enzymes for a rational design of more effective experimental trials. The present work dealt with the degradation of aflatoxin B1 and M1 by laccase enzymes from Trametes versicolor. The enzymes–substrate interaction for various enzyme isoforms was investigated through 3D molecular modeling techniques. Structural differences among the isoforms have been pinpointed, which may cause different patterns of interaction between aflatoxin B1 and M1. The possible formation of different products of degradation can be argued accordingly. Moreover, the laccase gamma isoform was identified as the most suitable for protein engineering aimed at ameliorating the substrate specificity. Overall, 3D modeling proved to be an effective analytical tool to assess the enzyme–substrate interaction and provided a solid foothold for supporting the search of degrading enzyme at the early stage.

  14. Sexual crossing of thermophilic fungus Myceliophthora heterothallica improved enzymatic degradation of sugar beet pulp

    NARCIS (Netherlands)

    Aguilar-Pontes, Maria Victoria; Zhou, Miaomiao; van der Horst, Sjors; Theelen, Bart; de Vries, Ronald P.; van den Brink, Joost

    2016-01-01

    Background Enzymatic degradation of plant biomass requires a complex mixture of many different enzymes. Like most fungi, thermophilic Myceliophthora species therefore have a large set of enzymes targeting different linkages in plant polysaccharides. The majority of these enzymes have not been

  15. OECD/NEA component operational experience, degradation and ageing project

    International Nuclear Information System (INIS)

    Gott, K.; Nevander, O.; Riznic, J.; Lydell, B.

    2015-01-01

    Several OECD Member Countries have agreed to establish the OECD/NEA 'Component Operational Experience, Degradation and Ageing Programme' (CODAP) to encourage multilateral co-operation in the collection and analysis of data relating to degradation and failure of metallic piping and non-piping metallic passive components in commercial nuclear power plants. The scope of the data collection includes service-induced wall thinning, part through-wall cracks, through-wall cracks with and without active leakage, and instances of significant degradation of metallic passive components, including piping pressure boundary integrity. CODAP is the continuation of the 2002-2011 'OECD/NEA Pipe Failure Data Exchange Project' (OPDE) and the Stress Corrosion Cracking Working Group of the 2006-2010 - OECD/NEA SCC and Cable Ageing project - (SCAP). OPDE was formally launched in May 2002. Upon completion of the 3. Term (May 2011), the OPDE project was officially closed to be succeeded by CODAP. In May 2011, 13 countries signed the CODAP first Term agreement. The first Term (2011-2014) work plan includes the development of a web-based relational event database on passive, metallic components in commercial nuclear power plants, a web-based knowledge base on material degradation, codes and standards relating to structural integrity and national practices for managing material degradation. The work plan also addresses the preparation of Topical Reports to foster technical cooperation and to deepen the understanding of national differences in ageing management. These Topical Reports are in the public domain and available for download on the NEA web site. Published in 2014, a first Topical Report addressed flow accelerated corrosion (FAC) of carbon steel and low alloy steel piping. A second Topical Report addresses operating experience with electro-hydraulic control (EHC) and instrument air (IA) system piping

  16. Shorten fungal treatment of lignocellulosic waste with additives to improve rumen degradability

    NARCIS (Netherlands)

    Kuijk, van S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W.

    2014-01-01

    Selective lignin degrading fungi can be used as pre-treatment to make cellulose in plant cell walls accessible for rumen microbes. According to previous studies, Ceriporiopsis subvermispora and Lentinula edodes can increase the in vitro rumen degradability of lignocellulosic biomass in 7 to 8 weeks.

  17. Global regulators ExpA (GacA) and KdgR modulate extracellular enzyme gene expression through the RsmA-rsmB system in Erwinia carotovora subsp. carotovora.

    Science.gov (United States)

    Hyytiäinen, H; Montesano, M; Palva, E T

    2001-08-01

    The production of the main virulence determinants, the extracellular plant cell wall-degrading enzymes, and hence virulence of Erwinia carotovora subsp. carotovora is controlled by a complex regulatory network. One of the global regulators, the response regulator ExpA, a GacA homolog, is required for transcriptional activation of the extracellular enzyme genes of this soft-rot pathogen. To elucidate the mechanism of ExpA control as well as interactions with other regulatory systems, we isolated second-site transposon mutants that would suppress the enzyme-negative phenotype of an expA (gacA) mutant. Inactivation of kdgR resulted in partial restoration of extracellular enzyme production and virulence to the expA mutant, suggesting an interaction between the two regulatory pathways. This interaction was mediated by the RsmA-rsmB system. Northern analysis was used to show that the regulatory rsmB RNA was under positive control of ExpA. Conversely, the expression of rsmA encoding a global repressor was under negative control of ExpA and positive control of KdgR. This study indicates a central role for the RsmA-rsmB regulatory system during pathogenesis, integrating signals from the ExpA (GacA) and KdgR global regulators of extracellular enzyme production in E. carotovora subsp. carotovora.

  18. Retention of Proanthocyanidin in Wine-like Solution Is Conferred by a Dynamic Interaction between Soluble and Insoluble Grape Cell Wall Components.

    Science.gov (United States)

    Bindon, Keren A; Li, Sijing; Kassara, Stella; Smith, Paul A

    2016-11-09

    For better understanding of the factors that impact proanthocyanidin (PA) adsorption by insoluble cell walls or interaction with soluble cell wall-derived components, application of a commercial polygalacturonase enzyme preparation was investigated to modify grape cell wall structure. Soluble and insoluble cell wall material was isolated from the skin and mesocarp components of Vitis vinifera Shiraz grapes. It was observed that significant depolymerization of the insoluble grape cell wall occurred following enzyme application to both grape cell wall fractions, with increased solubilization of rhamnogalacturonan-enriched, low molecular weight polysaccharides. However, in the case of grape mesocarp, the solubilization of protein from cell walls (in buffer) was significant and increased only slightly by the enzyme treatment. Enzyme treatment significantly reduced the adsorption of PA by insoluble cell walls, but this effect was observed only when material solubilized from grape cell walls had been removed. The loss of PA through interaction with the soluble cell wall fraction was observed to be greater for mesocarp than skin cell walls. Subsequent experiments on the soluble mesocarp cell wall fraction confirmed a role for protein in the precipitation of PA. This identified a potential mechanism by which extracted grape PA may be lost from wine during vinification, as a precipitate with solubilized grape mesocarp proteins. Although protein was a minor component in terms of total concentration, losses of PA via precipitation with proteins were in the order of 50% of available PA. PA-induced precipitation could proceed until all protein was removed from solution and may account for the very low levels of residual protein observed in red wines. The results point to a dynamic interaction of grape insoluble and soluble components in modulating PA retention in wine.

  19. Effects of coagulating enzyme types (commercial calf rennet ...

    African Journals Online (AJOL)

    Aysegul

    2013-09-11

    clotting enzyme in traditional cheese-making world- wide (Fox, 1987 ... Following pre-brining, the cheeses were packaged in plastic cups (1 kg) containing ..... study the differential degradation of αs-casein by various coagulants.

  20. Quantitative proteomic study of Aspergillus Fumigatus secretome revealed deamidation of secretory enzymes.

    Science.gov (United States)

    Adav, Sunil S; Ravindran, Anita; Sze, Siu Kwan

    2015-04-24

    Aspergillus sp. plays an essential role in lignocellulosic biomass recycling and is also exploited as cell factories for the production of industrial enzymes. This study profiled the secretome of Aspergillus fumigatus when grown with cellulose, xylan and starch by high throughput quantitative proteomics using isobaric tags for relative and absolute quantification (iTRAQ). Post translational modifications (PTMs) of proteins play a critical role in protein functions. However, our understanding of the PTMs in secretory proteins is limited. Here, we present the identification of PTMs such as deamidation of secreted proteins of A. fumigatus. This study quantified diverse groups of extracellular secreted enzymes and their functional classification revealed cellulases and glycoside hydrolases (32.9%), amylases (0.9%), hemicellulases (16.2%), lignin degrading enzymes (8.1%), peptidases and proteases (11.7%), chitinases, lipases and phosphatases (7.6%), and proteins with unknown function (22.5%). The comparison of quantitative iTRAQ results revealed that cellulose and xylan stimulates expression of specific cellulases and hemicellulases, and their abundance level as a function of substrate. In-depth data analysis revealed deamidation as a major PTM of key cellulose hydrolyzing enzymes like endoglucanases, cellobiohydrolases and glucosidases. Hemicellulose degrading endo-1,4-beta-xylanase, monosidases, xylosidases, lignin degrading laccase, isoamyl alcohol oxidase and oxidoreductases were also found to be deamidated. The filamentous fungi play an essential role in lignocellulosic biomass recycling and fungal strains belonging to Aspergillus were also exploited as cell factories for the production of organic acids, pharmaceuticals, and industrially important enzymes. In this study, extracellular proteins secreted by thermophilic A. fumigatus when grown with cellulose, xylan and starch were profiled using isobaric tags for relative and absolute quantification (iTRAQ) by

  1. Addressing the Recalcitrance of Cellulose Degradation through Cellulase Discovery, Nano-scale Elucidation of Molecular Mechanisms, and Kinetic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Larry P., Bergstrom, Gary; Corgie, Stephane; Craighead, Harold; Gibson, Donna; Wilson, David

    2011-06-13

    This research project was designed to play a vital role in the development of low cost sugars from cellulosic biomass and contributing to the national effort to displace fossil fuel usage in the USA transportation sector. The goal was to expand the portfolio of cell wall degrading enzymes through innovative research at the nano-scale level, prospecting for novel cellulases and building a kinetic framework for the development of more effective enzymatic conversion processes. More precisely, the goal was to elucidate the molecular mechanisms for some cellulases that are very familiar to members of our research team and to investigate what we hope are novel cellulases or new enzyme combinations from the world of plant pathogenic fungi and bacteria. Hydrolytic activities of various cellulases and cellulase cocktails were monitored at the nanoscale of cellulose fibrils and the microscale of pretreated cellulose particles, and we integrated this insight into a heterogeneous reaction framework. The over-riding approach for this research program was the application of innovative and cutting edge optical and high-throughput screening and analysis techniques for observing how cellulases hydrolyze real substrates.

  2. Sexual crossing of thermophilic fungus Myceliophthora heterothallica improved enzymatic degradation of sugar beet pulp.

    Science.gov (United States)

    Aguilar-Pontes, Maria Victoria; Zhou, Miaomiao; van der Horst, Sjors; Theelen, Bart; de Vries, Ronald P; van den Brink, Joost

    2016-01-01

    Enzymatic degradation of plant biomass requires a complex mixture of many different enzymes. Like most fungi, thermophilic Myceliophthora species therefore have a large set of enzymes targeting different linkages in plant polysaccharides. The majority of these enzymes have not been functionally characterized, and their role in plant biomass degradation is unknown. The biotechnological challenge is to select the right set of enzymes to efficiently degrade a particular biomass. This study describes a strategy using sexual crossing and screening with the thermophilic fungus Myceliophthora heterothallica to identify specific enzymes associated with improved sugar beet pulp saccharification. Two genetically diverse M. heterothallica strains CBS 203.75 and CBS 663.74 were used to generate progenies with improved growth on sugar beet pulp. One progeny, named SBP.F1.2.11, had a different genetic pattern from the parental strains and had improved saccharification activity after the growth on 3 % sugar beet pulp. The improved SBP saccharification was not explained by altered activities of the major (hemi-)cellulases. Exo-proteome analysis of progeny and parental strains after 7-day growth on sugar beet pulp showed that only 17 of the 133 secreted CAZy enzymes were more abundant in progeny SBP.F1.2.11. Particularly one enzyme belonging to the carbohydrate esterase family 5 (CE5) was more abundant in SBP.F1.2.11. This CE5-CBM1 enzyme, named as Axe1, was phylogenetically related to acetyl xylan esterases. Biochemical characterization of Axe1 confirmed de-acetylation activity with optimal activities at 75-85 °C and pH 5.5-6.0. Supplementing Axe1 to CBS 203.75 enzyme set improved release of xylose and glucose from sugar beet pulp. This study identified beneficial enzymes for sugar beet pulp saccharification by selecting progeny with improved growth on this particular substrate. Saccharification of sugar beet pulp was improved by supplementing enzyme mixtures with a previously

  3. Isolation, N-glycosylations and Function of a Hyaluronidase-Like Enzyme from the Venom of the Spider Cupiennius salei.

    Directory of Open Access Journals (Sweden)

    Olivier Biner

    Full Text Available Hyaluronidases are important venom components acting as spreading factor of toxic compounds. In several studies this spreading effect was tested on vertebrate tissue. However, data about the spreading activity on invertebrates, the main prey organisms of spiders, are lacking. Here, a hyaluronidase-like enzyme was isolated from the venom of the spider Cupiennius salei. The amino acid sequence of the enzyme was determined by cDNA analysis of the venom gland transcriptome and confirmed by protein analysis. Two complex N-linked glycans akin to honey bee hyaluronidase glycosylations, were identified by tandem mass spectrometry. A C-terminal EGF-like domain was identified in spider hyaluronidase using InterPro. The spider hyaluronidase-like enzyme showed maximal activity at acidic pH, between 40-60°C, and 0.2 M KCl. Divalent ions did not enhance HA degradation activity, indicating that they are not recruited for catalysis.Besides hyaluronan, the enzyme degrades chondroitin sulfate A, whereas heparan sulfate and dermatan sulfate are not affected. The end products of hyaluronan degradation are tetramers, whereas chondroitin sulfate A is mainly degraded to hexamers. Identification of terminal N-acetylglucosamine or N-acetylgalactosamine at the reducing end of the oligomers identified the enzyme as an endo-β-N-acetyl-D-hexosaminidase hydrolase. The spreading effect of the hyaluronidase-like enzyme on invertebrate tissue was studied by coinjection of the enzyme with the Cupiennius salei main neurotoxin CsTx-1 into Drosophila flies. The enzyme significantly enhances the neurotoxic activity of CsTx-1. Comparative substrate degradation tests with hyaluronan, chondroitin sulfate A, dermatan sulfate, and heparan sulfate with venoms from 39 spider species from 21 families identified some spider families (Atypidae, Eresidae, Araneidae and Nephilidae without activity of hyaluronidase-like enzymes. This is interpreted as a loss of this enzyme and fits quite well

  4. Isolation, N-glycosylations and Function of a Hyaluronidase-Like Enzyme from the Venom of the Spider Cupiennius salei

    Science.gov (United States)

    Trachsel, Christian; Moser, Aline; Kopp, Lukas; Langenegger, Nicolas; Kämpfer, Urs; von Ballmoos, Christoph; Nentwig, Wolfgang; Schürch, Stefan; Schaller, Johann

    2015-01-01

    Structure of Cupiennius salei venom hyaluronidase Hyaluronidases are important venom components acting as spreading factor of toxic compounds. In several studies this spreading effect was tested on vertebrate tissue. However, data about the spreading activity on invertebrates, the main prey organisms of spiders, are lacking. Here, a hyaluronidase-like enzyme was isolated from the venom of the spider Cupiennius salei. The amino acid sequence of the enzyme was determined by cDNA analysis of the venom gland transcriptome and confirmed by protein analysis. Two complex N-linked glycans akin to honey bee hyaluronidase glycosylations, were identified by tandem mass spectrometry. A C-terminal EGF-like domain was identified in spider hyaluronidase using InterPro. The spider hyaluronidase-like enzyme showed maximal activity at acidic pH, between 40–60°C, and 0.2 M KCl. Divalent ions did not enhance HA degradation activity, indicating that they are not recruited for catalysis. Function of venom hyaluronidases Besides hyaluronan, the enzyme degrades chondroitin sulfate A, whereas heparan sulfate and dermatan sulfate are not affected. The end products of hyaluronan degradation are tetramers, whereas chondroitin sulfate A is mainly degraded to hexamers. Identification of terminal N-acetylglucosamine or N-acetylgalactosamine at the reducing end of the oligomers identified the enzyme as an endo-β-N-acetyl-D-hexosaminidase hydrolase. The spreading effect of the hyaluronidase-like enzyme on invertebrate tissue was studied by coinjection of the enzyme with the Cupiennius salei main neurotoxin CsTx-1 into Drosophila flies. The enzyme significantly enhances the neurotoxic activity of CsTx-1. Comparative substrate degradation tests with hyaluronan, chondroitin sulfate A, dermatan sulfate, and heparan sulfate with venoms from 39 spider species from 21 families identified some spider families (Atypidae, Eresidae, Araneidae and Nephilidae) without activity of hyaluronidase-like enzymes

  5. Repeated batch and continuous degradation of chlorpyrifos by Pseudomonas putida.

    Science.gov (United States)

    Pradeep, Vijayalakshmi; Subbaiah, Usha Malavalli

    2015-01-01

    The present study was undertaken with the objective of studying repeated batch and continuous degradation of chlorpyrifos (O,O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate) using Ca-alginate immobilized cells of Pseudomonas putida isolated from an agricultural soil, and to study the genes and enzymes involved in degradation. The study was carried out to reduce the toxicity of chlorpyrifos by degrading it to less toxic metabolites. Long-term stability of pesticide degradation was studied during repeated batch degradation of chlorpyrifos, which was carried out over a period of 50 days. Immobilized cells were able to show 65% degradation of chlorpyrifos at the end of the 50th cycle with a cell leakage of 112 × 10(3) cfu mL(-1). During continuous treatment, 100% degradation was observed at 100 mL h(-1) flow rate with 2% chlorpyrifos, and with 10% concentration of chlorpyrifos 98% and 80% degradation was recorded at 20 mL h(-1) and 100 mL h(-1) flow rate respectively. The products of degradation detected by liquid chromatography-mass spectrometry analysis were 3,5,6-trichloro-2-pyridinol and chlorpyrifos oxon. Plasmid curing experiments with ethidium bromide indicated that genes responsible for the degradation of chlorpyrifos are present on the chromosome and not on the plasmid. The results of Polymerase chain reaction indicate that a ~890-bp product expected for mpd gene was present in Ps. putida. Enzymatic degradation studies indicated that the enzymes involved in the degradation of chlorpyrifos are membrane-bound. The study indicates that immobilized cells of Ps. putida have the potential to be used in bioremediation of water contaminated with chlorpyrifos.

  6. Polycyclic aromatic hydrocarbons (PAHs) degradation by laccase ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... Full Length Research Paper. Polycyclic aromatic ... production of paper, feeds, chemicals and fuels there is ... microbes with the production of lignin-modifying enzymes ... enable white rot fungi to degrade a variety of toxic.

  7. Management of Fusarium Wilt using mycolytic enzymes produced by ...

    African Journals Online (AJOL)

    Aghomotsegin

    Trichoderma strain to manage the Fusarium wilt disease of Cicer aritenum under in vitro conditions. We also studied ... antibiosis, competition, parasitism and cell lysis can ideally be ... hydrolytic enzymes associated with fungal cell wall lysis,.

  8. Actinomycete enzymes and activities involved in straw saccharification

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, A J; Ball, A S [Liverpool Univ. (UK). Dept. of Genetics and Microbiology

    1990-01-01

    This research programme has been directed towards the analysis of actinomycete enzyme systems involved in the degradation of plant biomass (lignocellulose.) The programme was innovative in that a novel source of enzymes was systematically screened and wheat straw saccharifying activity was the test criterion. Over 200 actinomycete strains representing a broad taxonomic range were screened. A range of specific enzyme activities were involved and included cellulase, xylanase, arabinofuranosidase, acetylesterase, {beta}-xylosidase and {beta}-glucosidase. Since hemicellulose (arabinoxylan) was the primary source of sugar, xylanases were characterized. The xylan-degrading systems of actinomycetes were complex and nonuniform, with up to six separate endoxylanases identified in active strains. Except for microbispora bispora, actinomycetes were found to be a poor source of cellulase activity. Evidence for activity against the lignin fraction of straw was produced for a range of actinomycete strains. While modification reactions were common, cleavage of inter-monomer bonds, and utilization of complex polyphenolic compounds were restricted to two strains: Thermomonospora mesophila and Streptomyces badius. Crude enzyme preparations from actinomycetes can be used to generate sugar, particularly pentoses, directly from cereal straw. The potential for improvements in yield rests with the formulation to cooperative enzyme combinations from different strains. The stability properties of enzymes from thermophilic strains and the general neutral to alkali pH optima offer advantages in certain process situations. Actinomycetes are a particularly rich source of xylanases for commercial application and can rapidly solubilise a lignocarbohydrate fraction of straw which may have both product and pretreatment potential. 31 refs., 4 figs., 5 tabs.

  9. Efficient, environmentally-friendly and specific valorization of lignin: promising role of non-radical lignolytic enzymes.

    Science.gov (United States)

    Wang, Wenya; Zhang, Chao; Sun, Xinxiao; Su, Sisi; Li, Qiang; Linhardt, Robert J

    2017-06-01

    Lignin is the second most abundant bio-resource in nature. It is increasingly important to convert lignin into high value-added chemicals to accelerate the development of the lignocellulose biorefinery. Over the past several decades, physical and chemical methods have been widely explored to degrade lignin and convert it into valuable chemicals. Unfortunately, these developments have lagged because of several difficulties, of which high energy consumption and non-specific cleavage of chemical bonds in lignin remain the greatest challenges. A large number of enzymes have been discovered for lignin degradation and these are classified as radical lignolytic enzymes and non-radical lignolytic enzymes. Radical lignolytic enzymes, including laccases, lignin peroxidases, manganese peroxidases and versatile peroxidases, are radical-based bio-catalysts, which degrade lignins through non-specific cleavage of chemical bonds but can also catalyze the radical-based re-polymerization of lignin fragments. In contrast, non-radical lignolytic enzymes selectively cleave chemical bonds in lignin and lignin model compounds and, thus, show promise for use in the preparation of high value-added chemicals. In this mini-review, recent developments on non-radical lignolytic enzymes are discussed. These include recently discovered non-radical lignolytic enzymes, their metabolic pathways for lignin conversion, their recent application in the lignin biorefinery, and the combination of bio-catalysts with physical/chemical methods for industrial development of the lignin refinery.

  10. The Unfolded Protein Response Is Induced by the Cell Wall Integrity Mitogen-activated Protein Kinase Signaling Cascade and Is Required for Cell Wall Integrity in Saccharomyces cerevisiae

    OpenAIRE

    Scrimale, Thomas; Didone, Louis; de Mesy Bentley, Karen L.; Krysan, Damian J.

    2009-01-01

    The yeast cell wall is an extracellular structure that is dependent on secretory and membrane proteins for its construction. We investigated the role of protein quality control mechanisms in cell wall integrity and found that the unfolded protein response (UPR) and, to a lesser extent, endoplasmic reticulum (ER)-associated degradation (ERAD) pathways are required for proper cell wall construction. Null mutation of IRE1, double mutation of ERAD components (hrd1Δ and ubc7Δ) and ire1Δ, or expres...

  11. Current Status on Biochemistry and Molecular Biology of Microbial Degradation of Nicotine

    Science.gov (United States)

    Gurusamy, Raman; Natarajan, Sakthivel

    2013-01-01

    Bioremediation is one of the most promising methods to clean up polluted environments using highly efficient potent microbes. Microbes with specific enzymes and biochemical pathways are capable of degrading the tobacco alkaloids including highly toxic heterocyclic compound, nicotine. After the metabolic conversion, these nicotinophilic microbes use nicotine as the sole carbon, nitrogen, and energy source for their growth. Various nicotine degradation pathways such as demethylation pathway in fungi, pyridine pathway in Gram-positive bacteria, pyrrolidine pathway, and variant of pyridine and pyrrolidine pathways in Gram-negative bacteria have been reported. In this review, we discussed the nicotine-degrading pathways of microbes and their enzymes and biotechnological applications of nicotine intermediate metabolites. PMID:24470788

  12. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos.

    Science.gov (United States)

    Smolikova, Galina; Dolgikh, Elena; Vikhnina, Maria; Frolov, Andrej; Medvedev, Sergei

    2017-09-16

    The embryos of some angiosperms (usually referred to as chloroembryos) contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN ( SGR ) genes are the principle ones. On the biochemical level, abscisic acid (ABA) is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.

  13. Non-covalent interaction between polyubiquitin and GTP cyclohydrolase 1 dictates its degradation.

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    Full Text Available GTP cyclohydrolase 1 (GTPCH1 is the rate-limiting enzyme in the de novo synthesis of tetrahydrobiopterin (BH4. GTPCH1 protein degradation has been reported in animal models of several diseases, including diabetes mellitus and hypertension. However, the molecular mechanisms by which GTPCH1 is degraded remain uncharacterized. Here we report a novel non-covalent interaction between polyubiquitin and GTPCH1 in vitro and in vivo. The non-covalent binding of GTPCH1 to polyubiquitin via an ubiquitin-binding domain (UBD results in ubiquitination and degradation. Ectopic expression of ubiquitin in cultured cells accelerated GTPCH1 degradation. In cultured cells and in vitro assays, Lys48-linked ubiquitin chains, but not Lys63-linked chains, interacted with GTPCH1 and targeted it for degradation. Consistently, proteasome inhibition attenuated GTPCH1 degradation. Finally, direct mutagenesis of an isoleucine (Ile131 in the hydrophobic patch of the GTPCH1 UBD affected its ubiquitin binding and the enzyme stability. Taken together, we conclude that GTPCH1 non-covalently interacts with polyubiquitin via an ubiquitin-binding domain. The polyubiquitin binding directs GTPCH1 ubiquitination and proteasome degradation.

  14. Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone

    NARCIS (Netherlands)

    Everts, Vincent; Korper, Wolf; Hoeben, Kees A.; Jansen, Ineke D. C.; Bromme, Dieter; Cleutjens, Kitty B. J. M.; Heeneman, Sylvia; Peters, Christoph; Reinheckel, Thomas; Saftig, Paul; Beertsen, Wouter

    2006-01-01

    Osteoclastic bone degradation involves the activity of cathepsin K. We found that in addition to this enzyme other, yet unknown, cysteine proteinases participate in digestion. The results support the notion that osteoclasts from different bone sites use different enzymes to degrade the collagenous

  15. Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century

    Science.gov (United States)

    Magnin, Florence; Josnin, Jean-Yves; Ravanel, Ludovic; Pergaud, Julien; Pohl, Benjamin; Deline, Philip

    2017-08-01

    High alpine rock wall permafrost is extremely sensitive to climate change. Its degradation has a strong impact on landscape evolution and can trigger rockfalls constituting an increasing threat to socio-economical activities of highly frequented areas; quantitative understanding of permafrost evolution is crucial for such communities. This study investigates the long-term evolution of permafrost in three vertical cross sections of rock wall sites between 3160 and 4300 m above sea level in the Mont Blanc massif, from the Little Ice Age (LIA) steady-state conditions to 2100. Simulations are forced with air temperature time series, including two contrasted air temperature scenarios for the 21st century representing possible lower and upper boundaries of future climate change according to the most recent models and climate change scenarios. The 2-D finite element model accounts for heat conduction and latent heat transfers, and the outputs for the current period (2010-2015) are evaluated against borehole temperature measurements and an electrical resistivity transect: permafrost conditions are remarkably well represented. Over the past two decades, permafrost has disappeared on faces with a southerly aspect up to 3300 m a.s.l. and possibly higher. Warm permafrost (i.e. > - 2 °C) has extended up to 3300 and 3850 m a.s.l. in N and S-exposed faces respectively. During the 21st century, warm permafrost is likely to extend at least up to 4300 m a.s.l. on S-exposed rock walls and up to 3850 m a.s.l. depth on the N-exposed faces. In the most pessimistic case, permafrost will disappear on the S-exposed rock walls at a depth of up to 4300 m a.s.l., whereas warm permafrost will extend at a depth of the N faces up to 3850 m a.s.l., but possibly disappearing at such elevation under the influence of a close S face. The results are site specific and extrapolation to other sites is limited by the imbrication of local topographical and transient effects.

  16. Degradation of endothelial basement membrane by human breast cancer cell lines

    International Nuclear Information System (INIS)

    Yee, C.; Shiu, R.P.

    1986-01-01

    During metastasis, it is believed that tumor cells destroy the basement membrane (BM) of blood vessels in order to disseminate through the circulatory system. By radioactively labeling the extracellular matrix produced by primary endothelial cells in vitro, the ability of human breast cancer cells to degrade BM components was studied. We found that T-47D, a human breast cancer line, was able to degrade significant amounts of [35S]methionine-labeled and [3H]proline-labeled BM, but not 35SO4-labeled BM. Six other tumor cell lines of human breast origin were assayed in the same manner and were found to degrade BM to varying degrees. Several non-tumor cell lines tested showed relatively little degrading activity. The use of serum-free medium greatly enhanced degradation of the BM by tumor cells, suggesting a role for naturally occurring enzyme inhibitors in the serum. Direct cell contact with the BM was required for BM degradation, suggesting that the active enzymes are cell associated. The addition of hormones implicated in the etiology of breast cancer did not significantly alter the ability of T-47D cells to degrade the BM. The use of this assay affords future studies on the mechanism of invasion and metastasis of human breast cancer

  17. Influence of the wall material on the H-mode performance

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.

    1994-06-01

    Theory on the influence of the wall material on the level of the enhanced confinement in H-mode is discussed. When the high-Z material is employed as the wall, the reflection of the neutral particles causes the higher neutral particle density in the plasma. The increased neutral particles lead to the loss of the ion momentum, decrease the radial electric field and degrade the confinement improvement. (author)

  18. Effect of electron beam irradiation on the enzymatic degradation of composites based on biodegradable polymers and coconut fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Yasko; Bardi, Marcelo Augusto Goncalves; Machado, Luci Diva Brocardo, E-mail: ykodama@ipen.b, E-mail: marcelo.bardi@usp.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rosa, Derval dos Santos, E-mail: derval.rosa@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2011-07-01

    The development of polymeric materials that are susceptible to microbiological degradation and that have properties similar to the conventional polymers would reduce waste deposit. Degradable plastics suffer significant change on chemical structure when submitted to specific environmental condition. PCL and PLLA have been extensively investigated due to their bio-assimilation and because they are considered as eco-friendly. So the degradation of PCL and PLLA homopolymers, PCL:PLLA 20:80 (w:w) blend and coconut fiber-modified composites were studied by means of their degradation under lipase enzyme from Pseudomonas cepacia. Non-irradiated and EB-irradiated samples at 50 kGy and 100 kGy were exposed during 24, 72, 120 and 168 hours to the enzyme-buffer solution and the retained mass of dried samples was accompanied over time. The results were compared to the not submitted to the enzyme solution samples. Degradation rate of PCL was higher than PLLA in the presence of Pseudomonas lipase. PLLA presence reduced PCL's enzymatic degradation in the PCL:PLLA 20:80 w:w blend. After 120 h exposure, blend mass loss variation approached pure PLLA behavior. Composites degradation behavior through time was similar to the blend. Values of retained mass for composites were superior to the blends suggesting that coconut fiber did not significantly degrade in the period of test. Degradation rate of 50 kGy-irradiated PCL slightly reduced, and it was observed increase of degradation rate of samples irradiated with 100 kGy, probably attributed to its crystallinity decrease. Degradation rate of irradiated composite was similar to the blend, suggesting that fiber presence did not affect significantly this parameter. Samples tested during 168 h were affected by the water absorption by PLLA or coconut fibers through time testing. Studied samples degraded accentuatedly in the enzyme presence and were not negatively affected by the radiation processing. (author)

  19. Effect of electron beam irradiation on the enzymatic degradation of composites based on biodegradable polymers and coconut fiber

    International Nuclear Information System (INIS)

    Kodama, Yasko; Bardi, Marcelo Augusto Goncalves; Machado, Luci Diva Brocardo; Rosa, Derval dos Santos

    2011-01-01

    The development of polymeric materials that are susceptible to microbiological degradation and that have properties similar to the conventional polymers would reduce waste deposit. Degradable plastics suffer significant change on chemical structure when submitted to specific environmental condition. PCL and PLLA have been extensively investigated due to their bio-assimilation and because they are considered as eco-friendly. So the degradation of PCL and PLLA homopolymers, PCL:PLLA 20:80 (w:w) blend and coconut fiber-modified composites were studied by means of their degradation under lipase enzyme from Pseudomonas cepacia. Non-irradiated and EB-irradiated samples at 50 kGy and 100 kGy were exposed during 24, 72, 120 and 168 hours to the enzyme-buffer solution and the retained mass of dried samples was accompanied over time. The results were compared to the not submitted to the enzyme solution samples. Degradation rate of PCL was higher than PLLA in the presence of Pseudomonas lipase. PLLA presence reduced PCL's enzymatic degradation in the PCL:PLLA 20:80 w:w blend. After 120 h exposure, blend mass loss variation approached pure PLLA behavior. Composites degradation behavior through time was similar to the blend. Values of retained mass for composites were superior to the blends suggesting that coconut fiber did not significantly degrade in the period of test. Degradation rate of 50 kGy-irradiated PCL slightly reduced, and it was observed increase of degradation rate of samples irradiated with 100 kGy, probably attributed to its crystallinity decrease. Degradation rate of irradiated composite was similar to the blend, suggesting that fiber presence did not affect significantly this parameter. Samples tested during 168 h were affected by the water absorption by PLLA or coconut fibers through time testing. Studied samples degraded accentuatedly in the enzyme presence and were not negatively affected by the radiation processing. (author)

  20. Active Site Flexibility as a Hallmark for Efficient PET Degradation by I. sakaiensis PETase.

    Science.gov (United States)

    Fecker, Tobias; Galaz-Davison, Pablo; Engelberger, Felipe; Narui, Yoshie; Sotomayor, Marcos; Parra, Loreto P; Ramírez-Sarmiento, César A

    2018-03-27

    Polyethylene terephthalate (PET) is one of the most-consumed synthetic polymers, with an annual production of 50 million tons. Unfortunately, PET accumulates as waste and is highly resistant to biodegradation. Recently, fungal and bacterial thermophilic hydrolases were found to catalyze PET hydrolysis with optimal activities at high temperatures. Strikingly, an enzyme from Ideonella sakaiensis, termed PETase, was described to efficiently degrade PET at room temperature, but the molecular basis of its activity is not currently understood. Here, a crystal structure of PETase was determined at 2.02 Å resolution and employed in molecular dynamics simulations showing that the active site of PETase has higher flexibility at room temperature than its thermophilic counterparts. This flexibility is controlled by a novel disulfide bond in its active site, with its removal leading to destabilization of the catalytic triad and reduction of the hydrolase activity. Molecular docking of a model substrate predicts that PET binds to PETase in a unique and energetically favorable conformation facilitated by several residue substitutions within its active site when compared to other enzymes. These computational predictions are in excellent agreement with recent mutagenesis and PET film degradation analyses. Finally, we rationalize the increased catalytic activity of PETase at room temperature through molecular dynamics simulations of enzyme-ligand complexes for PETase and other thermophilic PET-degrading enzymes at 298, 323, and 353 K. Our results reveal that both the binding pose and residue substitutions within PETase favor proximity between the catalytic residues and the labile carbonyl of the substrate at room temperature, suggesting a more favorable hydrolytic reaction. These results are valuable for enabling detailed evolutionary analysis of PET-degrading enzymes and for rational design endeavors aiming at increasing the efficiency of PETase and similar enzymes toward plastic